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Abstract

This work considers software execution traces, where a trace is a sequence of run-time events.
Each user of a software system collects the set of traces covered by her execution of the software,
and reports this set to an analysis server. Our goal is to report the local data of each user in a
privacy-preserving manner by employing local differential privacy, a powerful theoretical framework
for designing privacy-preserving data analysis. A significant advantage of such analysis is that it
offers principled “built-in” privacy with clearly-defined and quantifiable privacy protections. In local
differential privacy, the data of an individual user is modified using a local randomizer before being
sent to the untrusted analysis server. Based on the randomized information from all users, the
analysis server computes, for each trace, an estimate of how many users have covered it.

Such analysis requires that the domain of possible traces be defined ahead of time. Unlike in prior
related work, here the domain is either infinite or, at best, restricted to many billions of elements.
Further, the traces in this domain typically have structure defined by the static properties of the
software. To capture these novel aspects, we define the trace domain with the help of context-free
grammars. We illustrate this approach with two exemplars: a call chain analysis in which traces are
described through a regular language, and an enter/exit trace analysis in which traces are described
by a balanced-parentheses context-free language. Randomization over such domains is challenging
due to their large size, which makes it impossible to use prior randomization techniques. To solve
this problem, we propose to use count sketch, a fixed-size hashing data structure for summarizing
frequent items. We develop a version of count sketch for trace analysis and demonstrate its suitability
for software execution data. In addition, instead of randomizing separately each contribution to the
sketch, we develop a much-faster one-shot randomization of the accumulated sketch data.

One important client of the collected information is the identification of high-frequency (“hot”)
traces. We develop a novel approach to identify hot traces from the collected randomized sketches.
A key insight is that the very large domain of possible traces can be efficiently explored for hot traces
by using the frequency estimates of a visited trace and its prefixes and suffixes. Our experimental
study of both call chain analysis and enter/exit trace analysis indicates that the frequency estimates,
as well as the identification of hot traces, achieve high accuracy and high privacy.
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8:2 Differential Privacy for Coverage Analysis of Software Traces

1 Introduction

In this work we consider privacy-preserving coverage analysis for software traces. A trace is
an event sequence t ∈ E+ over some pre-defined set of possible run-time events E . Consider
a software system deployed over a set of software users u1, . . . , un. Each user ui executes
her own copy of the software and that execution records a local set Ti of traces that were
observed at run time. This data is collected locally and then sent to an analysis server.
We consider the following problem: for each t ∈ E+, estimate the frequency of t over the
population of users, that is, f(t) = |{i : t ∈ Ti}|, while collecting the local data of each user
in a privacy-preserving manner and sending it to an untrusted analysis server.

Trace information has a wide range of uses in software analysis and transformation.
For example, high-frequency traces can focus software optimization, testing, and static
checking on important user behaviors. Similarly, behavior flow analysis in mobile/web
analytics [21, 19, 22, 37] allows developers to optimize the functionality and performance of
common paths taken by app users through the app code.

1.1 The Need for Privacy-Preserving Analysis

Our goal is to design an analysis that obtains accurate trace coverage statistics across a
population of software users, while controlling carefully the “privacy loss” of each user.
This is motivated by the increased importance of reducing the amount of user information
collected by business entities. Both societal and legislative pressures have highlighted the
need for such reduction. For software-generated event information – for example, collected
with the help of popular analysis infrastructures for mobile/web analytics (e.g., provided by
Google and Facebook) – typically there are no “built-in” privacy protection mechanisms. The
infrastructures themselves collect a wealth of information, including user IP addresses and
GUI events. App-specific data collection can provide even more fine-grained knowledge about
user’s behavior and interaction with the software. For example, trace coverage information can
provide details about what paths through the code a user has taken, and what functionality
(possibly sensitive) she has executed. This data could potentially be used to infer user-specific
habits, interests, and characteristics.

From the point of view of software users, the release of data collected from software
executions is often undeclared or obscured. Even if the user is aware of the data collection,
they are unlikely to have true appreciation of its implications. What is particularly troubling
is that the collected data could be linked with other sources of information about this
user (which cannot be prevented even with anonymization [34, 35]) and could be used as
part of future larger-scale data mining and machine learning attempts to infer user-specific
information. At data collection time, it is impossible to predict what extra data sources will
be linked and what future inferences will be possible using that data.

Privacy-preserving data analysis aims to develop systematic mechanisms for addressing
this problem. Such analysis benefits two categories of stakeholders. First, the privacy of
individual users is protected in a well-defined manner. Further, entities performing data
collection (e.g., Google and app developers using Google’s analytics infrastructure) benefit
as well: they are responsive to privacy expectations and do not have access to raw data that
can compromised by unexpected data leaks or unethical business practices. In this work we
focus on one particular privacy-preserving mechanism: local differential privacy. Our goal is
to use local differential privacy to design a privacy-preserving trace coverage analysis.
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1.2 Local Differential Privacy
Differential privacy [16] is a powerful theoretical framework for privacy-preserving data
analyses. This approach has been recognized by the theoretical computer science com-
munity [1] and has been employed by high-profile companies such as Google, Apple, and
Microsoft [18, 4, 33, 51] and by the U.S. government [14]. More widespread use of this
technology is becoming possible via recent open-source tools [40].

A significant advantage of differentially-private data analyses is that they offer principled
“built-in” privacy with clearly-defined and quantifiable privacy protections. Broadly, privacy
is achieved by randomizing the collected data in a way that ensures the impossibility of high-
confidence inferences from the randomized data. There is increasing interest in using such
techniques in the context of software. For example, the programming languages community
has considered techniques for verification of differentially-private algorithms [56, 53, 36, 61].
Others have considered uses of differential privacy for event frequency analysis of deployed
software [58, 60, 57], with natural applications to mobile app analytics [59].

In local differential privacy, the data of an individual user is modified using a local
randomizer before being sent to an untrusted analysis server. Thus, the raw local information
never leaves the user’s environment. In our setting the analysis server computes, for each
trace, an estimate of how many users have covered it.

A major advantage of this approach is that it is resilient to other known and unknown
categories of knowledge that may become available about this user in the future. Thus, a
differentially-private analysis is designed to be robust even under the current trend of fast-
growing data collection and linking from various sources, used by businesses and governments
to create user behavior profiles and to mine them for user-specific patterns [55, 16]. Such user
protection is also important under the threat of unexpected data releases caused by obscure
changes to privacy agreements, information requests by law enforcement, or security breaches
in which user data is compromised. The quantifiable privacy-preserving machinery of local
differential privacy is appealing not only to software users, but also to software developers
and analysis infrastructure providers. Both the developers and the infrastructure providers
can claim, with confidence, that they deploy privacy-by-design in their data collection. As a
result, the data they collect and store is protected, in the statistical differentially-private
sense, against data breaches, rogue employees/subcontractors, and scrutiny from government
agencies and law enforcement. Section 2 further discusses the assumptions behind this
analysis model and the nature of privacy protection achieved under it.

1.3 Challenges and Contributions
Various differentially-private approaches have been considered for similar styles of problems.
Some have considered data analysis with single data item per user [18, 52, 8]. Others
have studied data collection for a pre-defined small set of items from software executions
[58, 57, 60, 59]. However, the analysis of software traces presents unique challenges. Our
contributions in solving these challenges are summarized below.

Contribution 1: Analysis for structured large domains

Differentially-private analyses require that the domain of possible data items be defined
ahead of time, as part of algorithm design. Unlike prior related work where software
executions generate data over a small unstructured domain containing a few thousand
elements [58, 57, 60], here the domain is either infinite or, at best, restricted to many billions
of elements. Further, the traces in this domain typically have structure defined by the static
properties of the software. To capture these novel aspects, we propose to define the trace

ECOOP 2021



8:4 Differential Privacy for Coverage Analysis of Software Traces

domain with the help of context-free grammars. This approach has the key advantage that
both the domain definition and the exploration of its elements are formulated using popular
programming language machinery. We illustrate this approach with two exemplar analyses: a
call chain analysis in which traces are described through a regular language, and an enter/exit
trace analysis in which traces are described by a balanced-parentheses context-free language.
Both kinds of structures are widely used in program analysis and are applicable to a range
of techniques beyond these two exemplars. This formulation plays a key role in our approach
for identification of high-frequency domain elements, as described later.

Contribution 2: Count sketch

The domain of possible traces is very large. For example, in a realistic setting for our
benchmarks, this set has billions of elements. One of the key features of a differentially-
private approach is that it produces per-user randomized data that could contain an arbitrarily
large subset of this extremely large domain. This is essential for achieving the differential
privacy guarantee, but is clearly impractical for our purposes, in terms of both space and
generation time. We address this exponential explosion by using count sketch [10], a fixed-
size hashing data structure originally designed to collect data about frequent items in data
streams. While prior work [8] has considered the theoretical applications of count sketch for
a simple single-item differentially-private data analysis, we develop a version of count sketch
that is applicable to the more complex analysis we consider, and demonstrate its suitability
for real software execution data.

Contribution 3: Efficient randomization

The standard approach for designing the local randomizer is to randomize individual contri-
butions (i.e., observations of covered traces) as they are observed. However, our experience
shows that the cost of such randomization is high and not suitable for real-world software
analysis. Instead, we develop a technique to accumulate the effects of unrandomized count
sketch updates, and only perform the local randomization as a one-shot step on this accumu-
lated data. This reduces the cost of the randomization by orders of magnitude and makes it
practical to use for realistic data gathering from deployed software.

Contribution 4: Analysis of hot traces

After the randomized local data is collected by the analysis server, a resulting global count
sketch captures the population-wide information about observed traces. From this global
sketch, a frequency estimate can be obtained for any given trace t from the domain of
possible traces. However, this alone is not enough for many forms of data analyses, since the
number of possible traces is exponential or even infinite, and obtaining an estimate for each
t (and then analyzing all these estimates) is not possible. We focus on one particular data
analysis of significant importance: identifying the hot traces and estimating their frequencies.
A hot trace has a frequency that exceeds some threshold. Knowledge of such traces is
useful to identify common user behaviors, leading to focused performance optimization,
testing/checking, and application-flow optimization. We develop a novel approach to identify
likely-hot traces from the randomized data in the global sketch. The key insight of our
approach is that the explosively-large domain of possible traces can be efficiently explored
for hot traces by using the frequency estimates of a visited trace and its prefixes and suffixes.
We illustrate this approach with the help of the two exemplar analyses mentioned earlier,
and demonstrate how the exploration of the domain can be performed by exploring the states
of the automaton corresponding to the underlying context-free language.
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Contribution 5: Study of privacy/accuracy trade-offs

The trade-offs between accuracy and privacy are central in the design of privacy-preserving
algorithms. Our experimental study characterizes these trade-offs in several dimensions for
both call chain analysis and enter/exit trace analysis. The conclusions from this study can be
summarized as follows: (1) frequency estimates for software traces can be obtained with both
high accuracy and high privacy, as long as the data collection includes a sufficiently-large
number of software users, (2) the set of hot traces can be discovered with high recall and
precision by reasoning about a trace’s prefixes and suffixes, (3) the frequency estimates for
hot traces are accurate and better than the estimates for the remaining traces, (4) after a
certain point in the accuracy/privacy trade-off spectrum, reduced privacy does not result in
significantly better accuracy; this point provides a natural choice for selecting such trade-offs.

2 Background and Problem Statement

2.1 Software Traces
We consider software traces, collected over a set of software users ui for i ∈ [1, n]. Each user
ui executes her own copy of the software. During execution, run-time events are observed
and recorded. Let E be the finite set of possible run-time events. This set is defined before
software deployment, as part of the design of the trace analysis. For convenience of definitions,
we assume that E contains an artificial “start” event s denoting the start of a trace. A trace
t is a string t ∈ E+, starting with s. We will use the notation t = ⟨s, e1, . . . , ek⟩ to denote a
trace t of length k. (Note that we exclude s when defining trace length.)

Let T be a domain describing conservatively (i.e., over-approximating) the set of all
possible traces that could be observed at run time. We expect this domain to be statically
described as part of the design of the trace analysis. In the simplest case, T = E+. More
precise definitions of T may be possible via static analysis. Regardless of the means to
derive T , we expect it to be very large (e.g., exponential in the static size of the program).
In addition, traces typically have structure that is constrained by the static properties of
the software. In particular, one important special case we investigate is when T is defined
inductively through a family of “extension” functions extk: Ek × E → P(Ek+1). Here P(X)
denotes the power set of X and k ranges over the natural numbers. For any t ∈ T of length
k, extk(t) is the set of all traces t′ ∈ T of length k + 1 such that t is a prefix of t′. That is,
extk(t) shows all ways in which t could be extended with one more event to form a valid
trace. For simplicity, we will omit the subscript k in extk when it is clear from the context.
As discussed later, this definition of T enables incremental search for “hot” traces. While our
definitions of privacy-preserving analysis are conceptually applicable to broader categories of
T , the application of this approach for identification of traces that appear frequently in the
user population requires such incremental definition of T (Section 4).

Below we discuss two examples of such trace domains T , both with direct connections to
popular categories of analyses. These exemplars illustrate how common properties of such
analyses can be mapped to the problem definition and solution described in this work. In
particular, we define these two domains via well-understood formal languages – a regular
language and a balanced-parentheses context-free language – which provides a natural
definition for the domain and its extension function. This choice is also motivated by the
fact that such languages are widely used in various existing software analysis techniques.
Our approach is directly applicable to other trace analyses where the trace domain has a
similar structure. This machinery is likely to be generalizable to broader domains (e.g.,
ones that correspond to more general context-free languages) but we do not explore these
generalizations in this work.
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8:6 Differential Privacy for Coverage Analysis of Software Traces

Both domains are based on a set of events corresponding to entering or exiting a software
component (e.g., method, module, or GUI window). We simplify the definition by assuming
that each component is uniquely identified by an integer id from [1, c]. In addition, we
introduce an artificial component with id 0 which corresponds to the external environment –
e.g., the caller of the main method, or the framework code that invokes Android app entry
points. The set of events is then E = Enter ∪ Exit where Enter = {enter(i) : i ∈ [0, c]} and
Exit = {exit(i) : i ∈ [0, c]}. The artificial start event s is enter(0).

2.1.1 Exemplar 1: Call Chains
We first describe an exemplar analysis in which the static domain T of possible traces is
defined by a simple regular language. Suppose that we are given a set of static call edges
i → j showing that, at run time, the execution of component i may trigger the execution
of component j. A finite sequence i→ j → k → . . . of such call edges is a static call chain.
A call chain denotes a trace of events “i calls j which in turn calls k which in turn calls
. . .”. Equivalently, we can define the domain T through a regular language containing strings
t = ⟨enter(0), enter(i1), . . . , enter(ik)⟩ over the alphabet Enter . The static call graph can be
thought of as the finite-state automaton that defines this language, and the trace extension
function ext is the transition function of that automaton.

2.1.2 Exemplar 2: Enter/Exit Traces
Next we define an exemplar analysis in which T is based on a balanced-parentheses context-
free language. This language captures the standard notion of interprocedurally valid paths [46]
and is defined by the following grammar:

Valid → enter(i) Valid | Balanced Valid | λ

Balanced → enter(i) Balanced exit(i) | Balanced Balanced | λ

where λ is the empty string. Non-terminal Balanced defines a sequence of matching enter
and exit events. Starting non-terminal Valid describes a sequence with some not-yet-matched
enter events. Grammars of similar structure have been used extensively in a wide variety of
static analyses (e.g., [46, 48]). For our exemplar analysis we consider the domain of enter/exit
traces T to be strings derived from Valid and starting with enter(0). We further restrict
the strings to respect a given set of static call edges i → j. This can be easily encoded
in the definition of the corresponding pushdown automaton, as follows. We can define a
deterministic pushdown automaton with a single state. The input alphabet is Enter ∪ Exit
and the stack alphabet is Enter , with initial stack symbol enter(0). The transitions upon
observing input event enter(j) when the top of the stack is enter(i) is defined only if there is
a static call edge i→ j. This transition pushes enter(j) onto the stack. If the input symbol is
exit(i), the transition is defined only if the top of the stack is enter(i), in which case the stack
top is popped. The trace extension function ext, which captures all ways in which a given
trace is extended with one more event, is easily derivable from this pushdown automaton.

There are two reasons we use these formalisms to describe our exemplar analyses. First,
the underlying structure, defined by a finite-state automaton or a balanced-parentheses
pushdown automaton, is commonly observed in a variety other of dynamic analyses. Our
machinery can be directly employed for such analyses. Second, the automata naturally
provide the definition of incremental algorithms to explore the domain of possible traces
via the extension functions ext. As described later, such incremental algorithms play an
important role in our identification of frequently-occurring domain elements. It may be



Y. Hao, S. Latif, H. Zhang, R. Bassily, and A. Rountev 8:7

possible to generalize such machinery to more general pushdown automata, but the definition
of the extension functions (derived from the automata) would be more complex than the
simple extension functions described above.

2.2 Trace Coverage Analysis for Deployed Software

When the program is executed by a software user, some subset of T is actually observed
(i.e., covered) at run time. A variety of run-time techniques can be used to determine this
coverage (e.g., [7, 3, 62, 49]). We consider such coverage across a large number of software
users, each running her copy of the program. Let there be n software users denoted by
u1, . . . , un and let Ti ⊆ T be the set of traces covered when user ui executes the program.
We consider the following trace coverage analysis: for each t ∈ T , estimate the frequency of t

over the population of users, that is, f(t) = |{i : t ∈ Ti}|, while collecting the local data of
each user with differential privacy.

Trace information has been used extensively to analyze and optimize software perform-
ance [7, 3, 5, 62, 26, 2]. The frequency information defined above can be used to focus such
efforts on important user behaviors. Similarly, testing and static checking can be focused
on traces that are commonly observed in the user population. Another example is behavior
flow analysis in mobile and web analytics frameworks [21, 37], which allows developers to
see different paths that users take through the app. The paths can be thought of as a form
of traces across GUI components, and the analysis annotates each edge with the number
of users who have performed the corresponding transition. A similar example is funnel
analysis [21, 19, 22, 37], which visualizes the completion rate of a task in terms of a series
of specific events and helps developers find optimizations in their software design. Traces
collected for funnel analysis may contain sensitive information. For example, events in trace
“launch the app, open the news page, navigate to sports news, perform sports merchandise
purchase” can be used for targeted advertising. Our approach allows developers to conduct
frequency analysis while ensuring worst-case privacy guarantees even when users are unaware
of the data being collected and the unexpected/unpredictable future uses of this data.

2.3 Differential Privacy

Differential privacy is applicable to data analyses where data is being collected from many
participants, and some processing of this data produces results that are then made available
to untrusted parties. Such untrusted parties could be, for example, government agencies
and business entities. Two main models of differential privacy have been considered [16].
In the centralized model, a trusted “data curator” collects the raw data from participants,
performs the data analysis, and releases the results to untrusted entities. As part of the data
analysis, some form of randomization is applied to ensure the differential privacy guarantee
(this guarantee will be described shortly). In the local model, the randomization is performed
by each participant, and the resulting modified data is then released to untrusted entities,
which perform data analysis on this data. Again, the randomization ensures the differential
privacy guarantee. Our work focuses on the second scenario, which is well suited for analysis
of deployed software. In the specific problem we consider, the raw data for software user ui

is the set Ti of locally-covered traces. The user applies a local randomizer R to this data
and then reports R(Ti). We assume a typical setting where the reported data is collected
by an untrusted analysis server. This server analyzes the data from all users and computes
estimates f̂(t) of the true frequencies f(t).
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8:8 Differential Privacy for Coverage Analysis of Software Traces

Differential privacy guarantee

Suppose R(Ti) is released publicly by a software user. We aim to design a randomizer R

that ensures the following differential privacy property: for every possible t ∈ T , an external
observer of R(Ti) cannot have high confidence that the hidden raw data contains that t. In
other words, whether t is in Ti cannot be ascertained with high probability based only on
the observation of R(Ti). In essence, the presence of t in the private local data is hidden in a
probabilistic sense.

More precisely, let P [R(X) = Z] be the probability that given input X, the randomizer
produces output Z. For any Z and any two X ⊆ T and Y ⊆ T that differ by a single element
t, the ratio of P [R(X) = Z] and P [R(Y ) = Z] should be bounded by eϵ. Here X and Y are
considered to be “neighbors” in the space of inputs to the randomization algorithm. Because
the two probabilities are close to each other, when someone observes any output Z, she
cannot have much higher confidence in the statement “the raw data contained t”, compared
to the confidence she can have in the statement “the raw data did not contain t”. Here ϵ

is the privacy loss parameter, which is used to tune accuracy/privacy trade-offs. A typical
value used in related work is ln(9) [18, 52, 58]; for example, this value is used in the “basic
one-time” version of a popular randomization technique [18]. Larger values of ϵ improve the
accuracy of analysis results, but weaken the privacy guarantee.

A key assumption is that the adversarial observer of R(Ti) knows fully all details of how
randomizer R works, for example, because this observer designed the randomizer in the first
place, or because she reverse-engineered it from the program code. As part of this assumption,
the observer also knows the value ϵ which was embedded in the randomizer design. Even
under such strong assumptions, the differential privacy guarantee makes it impossible to
distinguish, in a probabilistic sense, neighbor inputs to the randomizer after the randomizer
output is publicly released. Such principled and quantifiable protection is one of the reasons
differential privacy has been employed by companies such as Google [18], Microsoft [33],
Apple [4], and Uber [51], as well as by the U.S. Census Bureau [14]. More widespread use of
such protection has become possible via recent open-source tools for differentially-private
analysis [40].

Randomized response

To illustrate this key indistinguishability property, we present a classic simplified example.
For illustration, suppose that the raw data for user ui is a single trace ti ∈ T . A well-know
randomization technique is derived from randomized response, an approach used in social
sciences to handle evasive answers to sensitive questions [54]. The randomizer R : T → P(T )
takes as input a single trace t and produces a set of traces, based on the following rules: (1)
the input t is included in the output with some probability p, and (2) for every other t′ ∈ T ,
t′ is included in the output with probability 1 − p. Thus, the real trace could be missing
from the output, and any other trace could be part of the output. Note that this approach is
applicable only when T is finite and, practically, the size of T is relatively small.

By selecting p = e
ϵ
2 /(1 + e

ϵ
2 ), this approach provably achieves ϵ-indistinguishability: for

any set Z ⊆ T and any two traces t′ ∈ T and t′′ ∈ T , the probabilities P [R(t′) = Z] and
P [R(t′′) = Z] can differ by at most a factor of eϵ. In other words, observing Z means that
(1) the raw data that produced Z could have been any trace from T , and (2) no trace from
T is much more likely to have been the input, compared to the remaining elements of T .

In this simplified problem, each user ui reports R(ti) to the analysis server; here 1 ≤ i ≤ n.
The server produces estimates f̂(t) by computing h(t) = |{i : t ∈ R(ti)}| and then calibrating
it in order to create an unbiased f(t) estimate: f̂(t) = ((1 + e

ϵ
2 )h(t)− n)/(e ϵ

2 − 1).
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2.4 Assumptions
Several assumptions need to be explicitly stated before we describe our differentially-private
analysis (Section 3). As usual in this type of work, it is assumed that the design and
implementation of the approach are fixed before any data collection and are publicly known
by all stakeholders, including untrustred parties. Another assumption is that the software
code correctly implements the design; in particular, it does implement the randomization as
publicly announced, and does not try to circumvent it by sending the raw data (or some
version of it) to a malicious party. Although this is a strong assumption, it is no different
than what is currently used in remote analysis of deployed software, where the design is
typically undocumented and/or obfuscated, and there is no checking of the implementation
of the data collection for correctness or presence of malicious code.

If a software developer commits to using the correct design and implementing it as
expected, this raises the confidence of software users and watchdog agencies that indeed
privacy is protected. Further, several techniques can be used to increase this confidence,
including (1) open-source implementations, (2) use of certified and trusted third-party
libraries, (3) scrutiny by privacy experts, and (4) code analysis via automated tools. Note
that there are no assumptions about the analysis server to which the randomized data is
sent. This server could be part of a privacy attack, possibly involving additional external
sources of information about the targeted software user. Even with this assumption, the
differential privacy guarantee holds [55].

3 Randomized Count Sketch for Software Traces

Even if a user’s local information contains a single trace, the approach outlined in the previous
section is not possible when T is infinite, since every elements of T must be visited when
randomization is applied. Even if T is made finite – for example, by using a pre-defined limit
on trace length – the approach is still not practical. For illustration, consider call chains for
the localtv Android app used in our experiments. The alphabet size |Enter | = 2974 in this
app is close to the median for our set of benchmarks. Even if we only consider chains of
at most three methods and count the strings recognized by the corresponding finite-state
automaton (as described in Section 2.1.1), we have |T | = 3, 272, 137. Increasing this length
by one, the size of T becomes more than 163 million. A further length increase by one
results in |T | of over 8 billion. Our implementation of the finite-state automaton is based on
a call graph constructed through class hierarchy analysis. Using a more precise call graph
analysis (e.g., based on context-sensitive analysis) may reduce |T |. However, it is likely that
T will still be very large, since conditional behaviors (e.g., calls guarded by conditionals) are
common and easily produce exponential growth in the number of statically-possible traces.
The cost of the randomizer described earlier is proportional to the size of T , as each element
t ∈ T must be visited and a random value must be generated for that t (independently
of the processing of the remaining elements of T ) in order to decide whether t is included
in the randomizer output. Further, the randomizer output, which needs to be sent to the
analysis server, has size dependent on the exponentially-large size of T . Clearly, these costs
are infeasible.

3.1 Count Sketch
To address this problem we employ count sketch [10], a data structure originally designed to
find frequent items in data streams. Prior work [8] has considered the theoretical analysis
of using count sketch for a restricted form of differentially-private data analysis, where
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Chain h1(t), g1(t) h2(t), g2(t) h3(t), g3(t)
t1 = ⟨0, 473⟩ 3, −1 6, −1 8, 1
t2 = ⟨0, 93⟩ 1, 1 7, 1 3, −1
t3 = ⟨0, 473, 83⟩ 5, −1 1, −1 4, −1
t4 = ⟨0, 473, 472⟩ 5, −1 4, 1 4, −1
t5 = ⟨0, 473, 83, 1605⟩ 5, 1 5, −1 2, 1
t6 = ⟨0, 473, 472, 971⟩ 8, 1 1, −1 7, 1
t7 = ⟨0, 473, 472, 973⟩ 7, −1 3, −1 4, 1

Local Sketch
1 0 -1 0 -1 0 -1 1

-2 0 -1 1 -1 -1 1 0
0 1 -1 -1 0 0 1 1

Figure 1 Count sketch illustration, with m = 8 and s = 3.

each user has a single data item. However, there is no clarity on the practical use of this
data structure for analysis of real-world software execution data and for the more general
problem we consider, where each user has a set of local traces. Using insights from this
prior work, we develop a version of count sketch for our trace analysis and demonstrate its
effectiveness on data from actual software executions. We first describe count sketch without
any privacy-related randomization. The next subsection shows how randomization can be
applied to achieve the differential privacy guarantee.

Counts sketch in our setting is based on s pairs of independent hash functions (hk, gk),
for 1 ≤ k ≤ s, such that hk : T → {1, . . . , m} and gk : T → {+1,−1}. Here parameters s

and m are chosen ahead of time; this choice will be discussed later. To perform analysis
without differential privacy, each user would create a local sketch and then send it to the
analysis server, where a global sketch is constructed and used to produce frequency estimates.
The local sketch for user ui is a s × m matrix Si initialized with 0 elements. For every
locally-covered trace t ∈ Ti, and for every 1 ≤ k ≤ s, matrix element Si[k, hk(t)] is updated
by adding to it the value of gk(t). In essence, for every row k in the matrix, we use hash
function hk to hash t into a value from {1, . . . , m}, and then update a counter for that value
with +1 or −1 depending on hash function gk. The local sketches Si for all users are then
sent to the analysis server, where a global sketch Sg is constructed by element-wise addition
of all Si. Finally, for any t ∈ T , a frequency estimate can be obtained by reporting the
median value of Sg[k, hk(t)]× gk(t) over all 1 ≤ k ≤ s.

Example

Figure 1 illustrates the local sketch for one user, based on data obtained from our implementa-
tion on one of our benchmarks (Android app drumpads). We use integer method ids to denote
app methods. For example, id 473 corresponds to method MainActivity.initOnboarding
and id 971 corresponds to OnboardingView.createImageScene. For brevity, the example
uses the method id to signify an enter event for the corresponding method; id 0 corresponds
to the start event.

Suppose that the locally-covered chains for some user are t1, . . . , t7. We illustrate count
sketch with m = 8 and s = 3. Thus, each chain t is hashed into a value hk(t) ∈ {1, . . . , m}
using three different hash functions (i.e., 1 ≤ k ≤ 3). An additional hash gk(t) produces a
+1/ − 1 value. Accumulating these values, as described above, results in the local sketch
shown at the bottom of the figure. For example, the first cell in the second row has a value of
−2 because h2(t3) = h2(t6) = 1 (i.e., both chains map to this cell), and g2(t3) = g2(t6) = −1
(i.e, both contribute −1 to the value of the cell). This also illustrates that hashing does
produce collisions. Using s pairs of hash functions helps ameliorate this problem.
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In this particular example the sketch accurately preserves the original information.
Consider, for example, chain t3. The cells for this chain, as determined by hashes hk, are
[1, 5], [2, 1], and [3, 4] in [row,column] format. The corresponding cell values are −1, −2, and
−1. The median value of −1× g1(t3), −2× g2(t3), and −1× g3(t3) is 1, which accurately
reflects the raw local data.

The advantage of using this approach is that a local sketch Si for user ui provides a
fixed-sized representation of the arbitrary subset Ti of the set T of possible traces. Further,
randomization of the local sketch, as described shortly, can be performed in time proportional
to this s×m sketch size. Thus, instead of recording the raw data Ti and randomizing it with
randomized response to achieve the differential privacy guarantee over T , we will record the
sketch Si and randomize it to achieve the differential privacy guarantee over local sketches.
Finally, the count sketch technique is theoretically proven to produce accurate estimates
for high-frequency items, which aligns well with our goal to produce information about
frequently-occurring traces, as discussed further in Section 4.

3.2 Sketch Randomization
Trace-level randomization

To introduce privacy-achieving randomization, for each locally-covered trace t ∈ Ti the
following actions are performed. First, for each row k in the local sketch Si, the contribution
of t to this row is expressed as a vector of length m (which is the number of columns in the
sketch). The vector has the value of gk(t) ∈ {+1,−1} in position hk(t), and 0 values in all
other positions. Then, the following randomization is applied to this vector:

for each position with a 0 value, independently of any other positions in the vector, with
equal probability the 0 value is replaced by +1 or −1
for the position with the single −1/ + 1 value, the sign of this value is inverted with
probability 1/(eϵ + 1)

The resulting randomized vector contains only +1 and −1 values. We can think of this
process as applying a randomizer Rk : T → {+1,−1}m. It can be proven that this approach
achieves indistinguishability between t and any t′ ∈ T . The outline of this proof is as
follows. First, consider the case when t and t′ are hashed to the same position in count
sketch row – that is, hk(t) = hk(t′). For any Z ∈ {+1,−1}m, it is easy to see that the
ratio of P [Rk(t) = Z] and P [Rk(t′) = Z] can be bounded by the ratio of eϵ/(eϵ + 1) (i.e.,
the probability that the sign at the non-zero position is preserved) and 1/(eϵ + 1) (i.e., the
probability that the sign at the non-zero position is inverted). The second case is when t

and t′ are hashed to different positions. Then the ratio of P [Rk(t) = Z] and P [Rk(t′) = Z]
is bounded by the ratio of 1

2 eϵ/(eϵ + 1) and 1
2 /(eϵ + 1); here 1

2 is the probability associated
with the randomization of the zero positions. In either case, for any vector Z containing m

values +1/− 1, the probabilities P [Rk(t) = Z] and P [Rk(t′) = Z] differ by at most a factor
of eϵ. By observing Z, a malicious observer cannot conclude with high confidence that the
underlying trace was t as opposed to any other t′ ∈ T .

Set-level randomization

Next we define the complete randomizer: given the local set of traces Ti, Rk(Ti) =
∑

t∈Ti
Rk(t)

where the addition is element-wise. This definition satisfies the indistinguishability property
in the following sense. Consider any t ∈ Ti and any t′ ∈ T \ Ti. Let T ′

i = (Ti \ {t}) ∪ {t′}.
Thus, T ′

i is obtained by replacing t with t′. For any output Z of Rk, the probabilities
P [Rk(Ti) = Z] and P [Rk(T ′

i ) = Z] differ by at most a factor of eϵ. Thus, an observer of
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Z cannot determine with high confidence that a particular trace t was present in Ti, as
opposed to any other trace t′ /∈ Ti. The complete randomized local sketch is constructed as a
s×m matrix in which row k is Rk(Ti); we will denote this matrix by R(Si) where Si is the
non-randomized local sketch. This randomized local sketch is reported to the analysis server.

3.3 Efficient Randomization
The approach described above is impractically expensive. Specifically, for any t ∈ Ti we need
to compute s randomized vectors of length m, where each vector element requires drawing
a random value. In our experience the cost of such processing could be high for data from
actual software executions. Instead, we use an approach that first records the contributions of
each t without randomization, and then draws random values from the binomial distribution
to implement “one-shot” randomization.

Algorithm 1 describes the details of this approach. Consider a cell [k, j] in the sketch.
Let N+1[k, j] be the number of traces that contribute +1 to the value in this cell, without
randomization. Similarly, let N−1[k, j] be the number of traces that contribute −1 to the cell.
Our approach first records these counts (function add) without randomization. After data
collection is completed, finalize computes the randomized sketch. With randomization, each
of the N+1[k, j] occurrences of +1 contributes +1 with probability p and −1 with probability
1− p. Binomial distribution gives us the probability of y successes in x independent trials,
where each trial succeeds with probability p. Let binomial(x, p) denote a random value drawn
from this distribution. The randomization will contribute binomial(N+1[k, j], p) values of +1
to the cell value; the remaining N+1[k, j]− binomial(N+1[k, j], p) contributions will be −1.
Thus, at line 19 of the algorithm we compute the cumulative contribution of the “raw” +1
values as the difference between these two quantities – that is, as 2× binomial(N+1[k, j], p)−
N+1[k, j]. A similar computation is performed at line 20 for the −1 values. Finally, we also
have to account for the randomization of 0 values, which is done at line 21. The combined
effect of these three cases is computed at line 22 as the cell value in the randomized sketch.
This approach has cost in the order of s×m, while a naive implementation with separate
randomization for each observed trace will have cost in the order of |Ti| × s×m.

3.4 Server-Side Processing
The randomized local sketches R(Si) from all users are collected by the analysis server and
their element-wise sum is computed. To obtain unbiased estimates, all elements of the sum
need to be scaled by (eϵ + 1)/(eϵ − 1). The resulting s×m matrix Sg is the global sketch
produced by the analysis. For any t ∈ T , an estimate f̂(t) of the true frequency f(t) can be
obtained as the median value of Sg[k, hk(t)]× gk(t) over all sketch rows k. This processing is
described in Algorithm 2. It is important to note that summing up of the local sketches is
essential in order for the randomized noises to “cancel out” across the population of users.

3.5 Selecting Sketch Size
The selection of sketch size is important for achieving high accuracy of estimates. In our
implementation, both the number of rows s and the number of columns m are powers of 2.
Parameter s is set to 256, which is similar to values used in prior work [8]. When selecting
the number m of sketch columns, we aim to use a value that would produce a small number
of hash collisions. One simple choice is to select m to be similar to the total number of
unique traces that would be represented in the global sketch – that is, similar to the size
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Algorithm 1 Randomized count sketch.
output : Si: randomized local sketch

1 Function init():
2 Si ← {0}s×m

3 N+1 ← {0}s×m

4 N−1 ← {0}s×m

5 Function add(t):
6 Ti ← Ti ∪ {t}
7 for k ← 1 to s do
8 if gk(t) = +1 then
9 N+1[k, hk(t)]← N+1[k, hk(t)] + 1

10 else
11 N−1[k, hk(t)]← N−1[k, hk(t)] + 1
12 end
13 end
14 Function finalize():
15 p← eϵ

1+eϵ

16 for k ← 1 to s do
17 for j ← 1 to m do
18 z ← |Ti| −N+1[k, j]−N−1[k, j]
19 n+1 ← 2× binomial(N+1[k, j], p)−N+1[k, j]
20 n−1 ← 2× binomial(N−1[k, j], p)−N−1[k, j]
21 n0 ← 2× binomial(z, 1

2 )− z

22 Si[k, j]← n+1 − n−1 + n0

23 end
24 end

of the union of all local sets Ti. The value of m has to be selected ahead of time, before
deployment, so that the randomization machinery is included in the distributed code. To
make this selection, we use an approach similar in spirit to existing techniques [6, 57]. First,
a group of opt-in users is used to obtain detailed information in a non-differentially-private
manner. Specifically, the set of local traces Ti from each opt-in user ui is collected and
reported to the analysis server. Then, the union of these sets is determined. The value of m

is defined as the smallest power of 2 greater than or equal to the size of this union. This
value of m is then used by the regular software users, whose copy of the software embeds
this m value and only reports the randomized sketch of their local information.

In practice, there are several options for obtaining this opt-in data. First, some users may
be willing to share their raw data. Even in this case, instead of the raw data the approach
could collect some hashed version of it, which provides some degree of privacy protection
(although weaker than differential privacy). Alternatively, such data could also be provided
from in-house testing or beta testing. In our experiments, each run of the approach randomly
picks 10% of the users as opt-in users, computes m based on their data, and then performs
the rest of the experiment on the remaining 90% users.

The size of the sketch produced by this approach depends on the underlying volume of
collected data. Suppose, for example, that there are a total of 15 thousand unique traces
across all software users, which corresponds to m = 214. Assuming each sketch element is
represented as a 2-byte integer, the total sketch size is 8MB, which is a practical amount of
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Algorithm 2 Server-side processing.

1 Function global_sketch(R(S1), . . . , R(Sn)):
2 Sg ← {0}s×m

3 for i← 1 to n do
4 Sg ← Sg + R(Si)
5 end
6 Sg ← eϵ+1

eϵ−1 × Sg

7 Function estimate(t):
8 E ← ∅
9 for k ← 1 to s do

10 E ← E ∪ {Sg[k, hk(t)]× gk(t) }
11 end
12 return median(E)

data to transfer. However, if the number of unique traces across the population of software
users is many hundreds of thousands, sketch size becomes impractical. If the goal is to achieve
high accuracy of estimates while having a reasonably small amount of data communication
with the analysis server, our approach would be most suitable for scenarios where the total
number of unique traces reported from the user population is in the order of a few thousands
to a few tens of thousands. Depending on the intended use of the analysis information, this
could be a reasonable constraint. For example, if the analysis data is used to identify common
user behaviors for the purposes of manual performance optimization or user interface redesign,
it is unlikely that frequency estimates for hundreds of thousands of traces would be of value
to software developers. To achieve such data sizes, a simple approach is to use pre-defined
limits on the sizes of local sets or the lengths of collected traces. Our implementation limits
the length of collected call chains to 10 events and the length of collected enter/exit traces to
20 events. This also bounds the depth of exploration for hot traces, which is described next.

4 Identification of Hot Traces

From the global sketch, the analysis server can estimate the frequency of any particular trace
t ∈ T . However, this is not enough for many forms of data analyses, since the size of T is
very large (or even infinite) and obtaining an estimate for each t is not possible. Next we
focus on one particular data analysis of significant practical importance: identifying the hot
traces and estimating their frequencies. Hot traces are useful in identifying common user
behavior, which themselves can be used for performance optimization, focused testing and
static checking, and application-flow optimization. We consider a trace t to be hot if its
true frequency f(t) ≥ h, where h = α× n is a “hotness threshold” defined by a parameter α

and the number of software users n. The question is, given the global sketch, how can we
efficiently and accurately construct an estimate of the set of hot traces? Next, we develop an
approach to answer this question.

Exploration of estimated hot traces

Our approach takes as input the global sketch Sg, together with the set E of possible run-time
events, the start event s ∈ E , and the family of extension functions ext. We perform a pruned
exploration of the elements of T defined by E and ext. The key observation is that if a trace
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t is not hot, any t′ that has t as a prefix cannot be hot, since the number of users that
covered t′ cannot exceed the number of users that covered t. This leads to the following
approach: starting with the length-0 trace ⟨s⟩, explore the space of possible trace extensions
defined by ext. For each explored trace t, estimate its frequency using sketch Sg and stop
the exploration if the frequency estimate f̂(t) is below the hotness threshold h. Otherwise,
continue the exploration with all traces in ext(t).

A key assumption of this approach is that for any given trace t, the set of extended
traces ext(t) can be computed efficiently. We chose the two exemplar analyses presented in
Section 2 – call chains and enter/exit traces – to illustrate two common cases where this
computation is naturally derived from the definition of the underlying formal language. Such
trace structure is not specific to these two examples; other dynamic analyses (e.g., paths
in control-flow graphs) have similar properties. For call chains, the traces are strings in a
regular language. Thus, the exploration is equivalent to exploring paths in the corresponding
finite-state automaton. The extension function is defined by the set of possible transitions
from the current state of the automaton. For enter/exit traces, defined by a Dyck context-free
language (i.e., a language of balanced parentheses), the corresponding pushdown automaton
can be maintained during the exploration of strings, and the extension function is again
defined by the possible transitions from the current automaton state. Our implementation of
these exemplar analyses uses exactly this approach. In both cases, the transitions are efficient:
the cost of computing ext(t) is linear in the size of this set. Note that this approach is also
applicable in the more general case where T is defined by an arbitrary context-free grammar,
as the corresponding pushdown automaton can be maintained during trace exploration and
consulted to decide how to extend the current trace.

Relaxed hotness criterion

Our experience indicates that the approach described above has the following disadvantage:
sometimes entire groups of hot traces with a common prefix are not discovered because this
prefix is misclassified as not being hot due to an inaccuracy of its frequency estimate. As a
result, the exploration stops too early. To address this problem, we designed a more robust
“relaxed” check for hot traces. If for some explored trace t we have h/2 ≤ f̂(t) < h, we
consider this trace a potentially-misclassified hot trace due to an inaccurate estimate. In
such cases, we check whether at least one t′ ∈ ext(t) has an estimate above the threshold h.
If such a t′ exists, we take it as strong indication that t itself is hot and treat it as such. The
details of the entire approach are presented in Algorithm 3.

For illustration, consider an enter/exit trace derived from actual data for the equibase app,
which is one of our experimental subjects. The trace is t = ⟨enter(0), enter(1685), enter(1678),
enter(910), enter(805), enter(10), exit(10), exit(805), exit(910), enter(1677)⟩. The true frequency
is f(t) = 818. For the hotness cut-off h = 810 which was used in that experiment, the trace
is hot. However, because of estimate f̂(t) = 763, the exploration will stop at this trace if the
relaxed criterion is not employed. As a result, 15 hot traces that have t as a prefix would be
missed. Using the relaxed criterion, all 15 traces are correctly discovered by Algorithm 3.

5 Evaluation

For evaluation, we used 15 Android applications that were used by prior related work [59, 58].
We simulated 1000 users interacting with each app using the Monkey tool [23]. Specifically,
we performed 1000 independent Monkey runs and considered each Monkey execution as
triggered by one simulated user. During this process, for each run, we collected the sequence
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Algorithm 3 Identification of hot traces.
output : H: set of estimated hot traces

1 Function hot_traces():
2 H ← ∅
3 for t ∈ ext(s) do explore(t)
4 Function explore(t):
5 if hot(t) then
6 H ← H ∪ {t}
7 for t′ ∈ ext(t) do explore(t′)
8 Function hot(t):
9 e← f̂(t)

10 if e ≥ h then return true
11 if e < h/2 then return false
12 for t′ ∈ ext(s) do
13 if f̂(t′) ≥ h then return true
14 end
15 return false

of method enter/exit events until the total number of enter events reaches 10× the number
of methods defined in the static app code (excluding libraries). If the app crashed or Monkey
triggered events very slowly, we restarted Monkey and continued collecting the trace for
this simulated user until the total number of enter events reached this targeted value. From
this sequence of enter/exit events we constructed the set of observed call chains for that
simulated user ui – that is, set Ti for call chain analysis. In addition, we also considered the
entry methods of the app and collect the subsequences that start at the enter events of those
methods; these subsequences form set Ti for enter/exit trace analysis. Thus, for each of the
two analyses we gathered sets T1, T2, . . . , T1000. We also wanted to study the effects of the
number of users, but since execution of a large number of Monkey runs in device emulators
takes a very long time, we employed an approach used by others [59]: each of the 1000 sets
was replicated 10 times to generate Ti for n = 10000.

Our trace collection approach creates a threat to validity: it is well known that the app
coverage achieved via tools such as Monkey can be limited [11]. In general, data generated
by automated GUI crawling may not be representative of the behavior of real-world app
users. One indication of coverage for our experiments is the size of ∪iTi, shown in columns
“Total” in Table 1. For most apps, more than a thousand different traces were observed.

The instrumentation is based on the Soot code rewriting tool [47]. Only application
code is instrumented, as this is the most likely focus of interest for app developers. We
treat the following methods as app entry methods: methods that implement/override any
Android framework methods (e.g., callbacks such as onClick); <clinit> methods; and
<init> methods of application subclasses of Android framework classes.

Given the data collected by the instrumentation, we ran all randomization separately
from the executions that gather the traces. This allowed us to conduct each experiment
30 times, in order to report rigorous statistical results that account for the randomness
introduced by local randomizers [20]. Experiments were performed for several values of ϵ

used in prior work [18, 52, 59, 58]. For brevity, most results are presented for ϵ = ln(9), but
the effects of other values are also discussed. To implement count sketch, we used SHA-256
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Table 1 Experimental subjects and analyzed traces.

App Classes Call Chains Enter/Exit Traces

Total Lenavg Timeu Times Total Lenavg Timeu Times

barometer 379 2765 4.3 0.3 25 2717 10.2 0.4 6.4
bible 1107 1604 3.3 0.2 64 2427 8.8 0.2 21
dpm 272 1272 4.0 0.1 4.3 2475 10.6 0.2 3.7
drumpads 447 926 3.4 0.1 6 1289 8.8 0.1 4.1
equibase 252 773 3.0 0.1 3.2 1602 9.1 0.3 4.9
localtv 716 4037 4.6 0.3 42 5285 10.4 0.3 12
loctracker 198 480 1.8 0.1 0.8 1098 6.2 0.1 8.9
mitula 973 24757 7.0 2.8 1784 5614 10.2 0.8 27
moonphases 166 1755 6.4 0.2 3.3 947 9.9 0.1 0.6
parking 379 1477 3.1 0.1 10 2875 8.8 0.2 4.6
parrot 1099 7575 4.7 0.8 427 6499 10.0 0.9 63
post 1107 2358 3.8 0.4 92 3564 9.9 0.5 45
quicknews 1107 3668 3.4 0.4 51 6062 8.9 0.7 57
speedlogic 86 244 3.0 0.0 0.1 304 8.1 0.0 0.3
vidanta 1608 7811 4.9 0.8 833 6687 9.7 0.9 124

hashing. In particular, hash functions hk and gk used in count sketch were implemented by
prepending k to the string representation of the trace (which itself is based on the methods
ids), computing SHA-256, and taking the appropriate number of bits from the result.

Table 1 shows the details of the subjects used in our experiments. Column “Classes”
lists the number of application classes, excluding several well-known third-party Android
libraries, e.g., dagger and okio. The group of columns labeled “Call Chains” describes
measurements for the call chain analysis, and the group labeled “Enter/Exit Traces” shows
the same measurements for the analysis of enter/exit traces. Column “Total” and “Lenavg”
show the total number of unique traces across the 1000 local sets Ti and their average length
respectively. Column “Timeu” shows the average time (in seconds) to process the local data
of a user, as described in Algorithm 1. Column “Times” contains the time (in seconds)
to identify hot traces from the global sketch at the analysis server, using the approach
from Algorithm 2 for n = 1000. For both analyses, the costs are practical and suitable for
real-world use.

As mentioned in Section 3.3, we initially attempted to perform randomization separately
for each covered trace, but incurred high running times for the local randomizer. This led to
the development of the optimized approach in Algorithm 1. For example, for the parrot
app, the naive randomization of call chains and enter/exit traces took 264 seconds per user
on average, while the optimized one took 1.7 seconds. We typically observed two orders of
magnitude improvement in the running time of the local randomizer.

5.1 Accuracy for All Covered Traces

The first research question we consider is this: What is the accuracy of estimates for traces
that are covered by at least one user? Note that, from the data in the global sketch, the
analytics server cannot directly determine this set of traces. (We address this issue in the
next subsection.) However, the knowledge of this accuracy provides a useful baseline. To
answer this question, we use a normalized L1 distance between the vector of true frequencies
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(a) Call chains.

ba
ro

m
et

er
bi

bl
e

dp
m

dr
um

pa
ds

eq
ui

ba
se

lo
ca

ltv
lo

ct
ra

ck
er

m
itu

la
m

oo
np

ha
se

s
pa

rk
in

g
pa

rro
t

po
st

qu
ick

ne
ws

sp
ee

dl
og

ic
vid

an
ta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Er
ro

r A
ll

1000 users 10000 users

(b) Enter/exit traces.

Figure 2 Error of estimates for all covered traces.

and the vector of their estimates. Specifically, for all t that appear in at least one Ti, we
compute the error as

∑
t |f(t)− f̂(t)|/

∑
t f(t). Values close to 0 mean that the estimates are

overall close to the real frequencies. Figure 2 shows these measurements for the two values
of n. As described in Section 3.5, each run of this experiment (and all later experiments)
used a randomly-selected set of size n/10 as opt-in users, and then performed the analysis
and computed all reported error measurements for the remaining users. For these and all
other experiments reported later, we followed a popular approach for statistically-rigorous
performance measurements [20]: 30 independent runs of the experiment were performed, and
the mean together with the 95% confidence interval are reported. The confidence interval
characterizes the variance due to the randomization. In the bar charts, the confidence interval
is shown at the top of the corresponding bar. In many cases, the interval is so small (i.e., the
variance is so low), that it is hard to see in the figures.

From this data, we reach the following answer to the above question: with sufficiently
large number of users participating in the data collection, the estimates are close to the real
frequencies. For example, for the call chain analysis with n = 10000, the cumulative error
over all t is under 20% in all cases, and its average value across the 15 apps is 7.4%. Similarly,
for the enter/exit trace analysis with n = 10000, the cumulative error over all covered traces
is always under 15% and, averaged across the apps, is 8.4%. It is fairly common for Android
apps to have many thousands of users, and popular apps usually have hundreds of thousands
of users. Thus, obtaining data from a sufficient number of app users should be feasible.

5.2 Precision and Recall for Hot Traces
As discussed earlier, the set of all covered traces is not directly known to the analysis server.
Section 4 discussed an approach to identify hot traces. Our next research question is: How
accurately are the hot traces identified? The metrics we use to answer this question are
recall (what portion of the true hot traces are discovered) and precision (what portion of
the reported hot traces are actually hot). We executed Algorithm 3 on the global sketch
to identify likely hot traces, with hotness threshold h = 0.9 × n. This was done in 30
independent repetitions of the experiment. The mean values from these experiments and
their 95% confidence intervals are shown in Figure 3.

Overall, the results of this experiment provide strong indication that hot traces can indeed
be identified accurately with a sufficient number of users. For n = 1000, the average recall
across the 15 apps is 92.1% and the average precision is 92.5% for call chains, and 90.4% and
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(b) Entry/exit traces.

Figure 3 Recall and precision for hot traces.
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Figure 4 Recall and precision for hot traces: strict vs relaxed hotness criterion.

94.5% for enter/exit traces respectively. For n = 10000, the recall for call chains increases to
99.3% and the precision to 95.0%; for enter/exit traces, the recall increases to 99.7% and
precision decreases slightly to 94.1%. We investigated the apps with the lowest precision and
determined that they have a large number of traces whose true frequencies are slightly below
the threshold h; some of these almost-hot traces are misclassified as being hot, leading to the
lower precision.

One related question is how the design choices for Algorithm 3 affect its precision and
recall. In Section 4, we discussed two possible criteria for deciding whether a trace should
be considered hot. The “strict” criterion is that a trace’s estimate f̂(t) should exceed the
hotness threshold h. However, if this estimate is inaccurate and too small, the chain and
all other hot chains that have it as prefix will be missed. Thus, in the algorithm we use a
“relaxed” criterion which also considers traces t with estimates h/2 ≤ f̂(t) < h such that t

has at least one extended trace with an estimate that exceeds h. This relaxed criterion was
employed when collecting the data in Figure 3.

To understand the effects of this choice, we also measured precision and recall using the
strict criterion. Figure 4 shows a comparison between the two criteria for n = 1000; the other
value for n leads to similar conclusions. As can be seen from these measurements, using the
strict criterion results in lower recall. For example, for call chain analysis, three apps have
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Figure 5 Error of estimates for reported hot traces.

recall less than 50%. Similarly, for enter/exit trace analysis there are six apps with recall
below 50%. As expected, the strict criterion does improve precision, but this effect is not
very pronounced. Depending on the intended uses of the analysis, the app developers may
prefer higher recall or higher precision. Using these two criteria, or variations of them, allows
this trade-off to be adjusted as desired.

5.3 Accuracy of Estimates for Reported Hot Traces
For the set of traces reported by Algorithm 3 as likely-hot, we ask following question: What
is the accuracy of estimates for reported hot traces? Figure 5 shows the error of estimates,
using a metric similar to the one used in Figure 2: the sum of |f̂(t)− f(t)| for all reported
hot traces t, normalized by the sum of f(t) for those t. Based on these results, the answer
to the question is that high accuracy is achieved for the frequency estimates of hot traces.
Combined with the high recall demonstrated earlier, our conclusion is that hot traces and
their frequencies can be successfully estimated via our differentially-private analysis.

Compared to other apps, in Figure 5a the error for app mitula is significantly larger for
1000 users. The underlying reasons are indicated in Figure 2a, where the estimates for this
app have large cumulative error for 1000 users. This produces a large number of false positive
hot chains (Figure 3a); further, those false positives have significant cumulative error. If we
remove the false-positive hot chains from Figure 5a, the cumulative error becomes similar to
that for the other apps. The reason for the error in Figure 2a is that there are many more
chains in this app compared to the other apps. Further, the distribution of the frequency of
these chains is not uniform: there is a large number of low-frequency chains, and the DP
approaches produce inaccurate estimates for such chains. This can be solved by increasing
the number of users (as can be seen in all figures for 10000 users): even the low-frequency
chains now have enough instances to benefit from “random noise cancellation” across a larger
number of instances.

It is instructive to compare Figure 5 with Figure 2. Overall, the estimate error for hot
traces is smaller than the estimate error for all traces. For example, for n = 10000, the
average error value in Figure 5a is 1.6%, compared to 7.4% in Figure 2a, and 1.7% vs 8.4%
for Figure 5b vs Figure 2b. Theoretically, both count sketch and randomized response tend
to favor higher-frequency items. The higher accuracy for hot traces demonstrates that this
also holds in practice.
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(a) Call chains.
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Figure 6 Error of estimates for all covered traces for three values of ϵ.

5.4 Privacy Loss Parameter

As discussed earlier, the privacy loss parameter ϵ can be used to tune accuracy/privacy
trade-offs. We considered the following question: To what degree does accuracy change with
changes in this parameter? In existing work, ϵ ranges from 0.01 to 10 [28]. Related work
that employs randomized response has used, for example, ln(3), ln(9), and ln(49) [18, 59, 58].
We computed the error for all covered traces for these three values; the results for ln(9) were
already presented in Figure 2 and are repeated here. Figure 6 shows these measurements
for n = 1000; similar trends are seen for the other n value. Overall, with increasing ϵ, the
expected accuracy gains are observed but seem to level off. For call chains and enter/exit
traces, respectively, the average error across all apps decreases from 25.3% and 28.7% for the
smallest value of ϵ to 16.6% and 19.0% for ln(9), and then further to 14.5% and 16.5% for
the largest value of the parameter. Based on these results, we consider ln(9) to provide a
reasonable trade-off and have used it to present the majority of data in our evaluation. In
practical scenarios, the developers can select a small fixed value of ϵ (before deployment),
based on data from in-house testing or from real opt-in users, as well as the desired accuracy.
Once selected, ϵ provides an upper bound on the privacy loss: for any data, and any two
data items, they are guaranteed to be ϵ-indistinguishable. The real workload will affect only
the accuracy, not the privacy.

5.5 Summary of Results

Our experimental results can be summarized as follows. First, as illustrated in Figure 2,
the frequency estimates have high accuracy, for practical values of ϵ. This results indicates
that with good privacy and sufficient number of software users, one can obtain accurate
frequency estimates for software traces. Second, based on the results in Figure 3, the set of
hot traces can be determined with high precision and recall. The relaxed identification of
hot traces is important for achieving this result (Figure 4). Third, the frequency estimates
for hot traces are accurate and better than those for the remaining covered traces (Figure 5).
Finally, consider the accuracy/privacy trade-off spectrum: from smaller values of ϵ (i.e.,
stronger privacy) and lower accuracy, to larger values of ϵ and high accuracy. As indicated by
Figure 6, after a certain point in this spectrum there do not seem to be significant additional
improvements in accuracy.
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6 Related Work

Differential privacy

There is a large body of work on both the theory and practice of differential privacy. As
already discussed, several approaches based on randomized response consider a single data
item per user [18, 52, 8], while we are interested in a set of data items (i.e., a set of locally-
covered traces). Differentially-private analysis of software executions has also been studied
in prior work [58, 57, 60]. In those efforts the domain of possible items is small, enumerated
ahead of time before software deployment, and the randomizer output is straightforward to
generate and store. A key distinguishing feature of our work is that the domain of possible
traces is either infinite or very large, which requires different randomization techniques. We
address this problem by using a count sketch representation. This allows tunable trade-offs
between accuracy and representation size, as well as higher accuracy for high-frequency traces.
Efficient randomization of simple bitvectors has also been considered [58]. Our efficient
randomization (Section 3.3) requires more general reasoning. Because of the small number
of possible data items, these prior efforts do not need to explore a large domain in order to
identify hot items. In contrast, we need to develop effective search in a domain containing
billions of possible traces. We demonstrate how to achieve this using considerations of
chain prefixes and suffixes, and illustrate the approach for context-free-language domains by
exploring the states of the corresponding automaton (Section 4).

Privacy-preserving techniques in programming languages and software engineering

The programming languages community has investigated techniques for testing and veri-
fication of differentially-private algorithms and implementations [56, 53, 36, 61]. Privacy
issues are also important for many areas in software engineering, including design [25],
testing [24, 9, 50, 32], and defect prediction [44, 45, 31]. Other than the work described
earlier, we are not aware of attempts to employ differential privacy techniques in this area.
Given the strong theoretical properties of such techniques, and their increasing adoption in
industry and government [33, 4, 18, 51, 14], it is a worthwhile research goal to reconsider a
range of software engineering techniques using differential privacy machinery.

Analysis of deployed software

Remote analysis of deployed software is an area with a significant body of prior work. As
one example, residual coverage monitoring [43] uses coverage information from software users
for testing purposes. GAMMA [42] collects data from software users and orchestrates the
data collection across program instances. Placement of profiling probes has been considered
by several projects [15, 39]. Failure reproduction and debugging are aided by collected data
from deployed software [12]. Similarly, researchers have proposed analysis of post-deployment
failure reports [38].

Privacy in remote software analysis has been targeted by prior efforts. Anonymization
of collected data has taken several forms [17, 13]. As shown by privacy researchers [34, 35],
anonymization is not enough to provide strong privacy guarantees. Instead, we consider the
principled protection provided by local differential privacy. Remote software analyses from
prior work could potentially benefit from developing differentially-private versions for them.
Examples of such analyses include impact analysis and regression testing [41], as well as
failure analysis [27, 29, 30].
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7 Conclusions and Future Work

Differential privacy is a promising approach for developing new privacy-preserving software
analyses. The growing adoption of differential privacy for practical use, together with its
rigorous foundations, provide further motivation to study such analyses. We develop the
design of a differentially-private trace coverage analysis, based on an incremental definition of
the trace domain. We employ local count sketches, randomize them efficiently, and analyze
them at the server side to obtain frequency estimates and to search for hot traces. The
approach is illustrated with a call chain analysis and an enter/exit trace analysis. Our
experimental studies present promising findings: with realistic numbers of software users,
one can use these privacy-preserving techniques to obtain accurate frequency estimates for
trace coverage and to effectively identify hot traces.

There is a large body of prior work on software analysis that could be revisited with
increased emphasis on privacy in general, and differential privacy in particular [42, 41, 27, 12,
13, 29, 30, 38]. Such studies will contribute to broader efforts to integrate privacy-preserving
techniques in the analysis of deployed software, in response to growing needs for better
privacy of data collection.
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