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Abstract
Cyclic proof systems are sequent-calculus style proof systems that allow circular structures represent-
ing induction, and they are considered suitable for automated inductive reasoning. However, Kimura
et al. have shown that the cyclic proof system for the symbolic heap separation logic does not satisfy
the cut-elimination property, one of the most fundamental properties of proof systems. This paper
proves that the cyclic proof system for the bunched logic with only nullary inductive predicates does
not satisfy the cut-elimination property. It is hard to adapt the existing proof technique chasing
contradictory paths in cyclic proofs since the bunched logic contains the structural rules. This
paper proposes a new proof technique called proof unrolling. This technique can be adapted to the
symbolic heap separation logic, and it shows that the cut-elimination fails even if we restrict the
inductive predicates to nullary ones.
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1 Introduction

Static verification of software often needs to check the validity of entailments, which are
implications between logical formulas. One of the ways to check entailments is an automated
proof search in some proof systems.

The bunched logic [9] was introduced to reason compositional properties of resources with
some additional logical connectives such as the multiplicative conjunction. The separation
logic [11], which is based on the bunched logic, is one of the most successful logical foundations
for verification of heap-manipulating programs using pointers. For inductive reasoning in
these logics, Brotherston et al. proposed some cyclic proof systems for the bunched logic
[3] and the separation logic [4, 5]. The cyclic proof systems allow cycles in proofs, which
correspond to induction. They offer an efficient way for automated validity checking of
entailments with inductive definitions since they provide a proof search algorithm that does
not require finding induction hypothesis formulas a priori.
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11:2 Failure of Cut-Elimination in Cyclic BI

The cut-elimination property of proof systems means that the provability does not change
with or without the cut rule:

A ⊢ C C ⊢ B
A ⊢ B

(Cut)
.

From a theoretical viewpoint, the cut-elimination property means that applying lemma
is admissible, and it implies significant properties such as the subformula property and
consistency. The cut-elimination property is also important from a practical viewpoint:
When the cut rule is included as a candidate of the next rules during an automated proof
search, we have to find a suitable cut formula, namely the formula C in the cut rule above.
In general, cut formulas are independent of formulas in the conclusion of cut rules, and we
have to find them heuristically.

Hence, we expect proof systems to enjoy the cut-elimination property, and it holds in
many proof systems such as Gentzen’s LK for the first-order logic and the (non-cyclic)
proof system LBI for the bunched logic [10]. Furthermore, it has been shown that the
cut-elimination property holds in some infinitary proof systems [6, 7, 2]. The cut-elimination
processes in the existing proofs are not closed under the regularity of infinitary proof trees,
and that suggests that the cut-elimination does not hold in the cyclic proof systems since
cyclic proofs are regular infinitary proofs.

Kimura et al. [8] showed that the cut-elimination property fails for Brotherston’s cyclic
proof system [4] for the symbolic heaps, which are restricted forms of the separation logic
formulas. They gave a counterexample entailment ls(x, y) ⊢ sl(x, y), where both ls(x, y)
and sl(x, y) are inductive predicates that represent the semantically same data structure,
namely singly-linked list from x to y, but are defined in the different ways. They assumed
the existence of a cut-free cyclic proof of this counterexample and showed that a unique
infinite path in the cyclic proof is a contradictory path, namely, an infinite path in which
the sizes of sequents are strictly increasing. The contradictory path leads to a contradiction
since it breaks the finiteness of the cyclic proof.

In [8], they guessed that the cut-elimination would not hold for the bunched logic either,
but suggested that their proof technique needs some modification to handle the structural
rules, the left weakening and the left contraction rules, in the bunched logic. The structural
rules cause much more possibilities of paths than the symbolic heap separation logic, and we
have to find a contradictory path from them. For example, we can assume a segment of a
cyclic proof of the sequent PAB ⊢ PBA in the bunched logic as in Figure 1, where PAB and
PBA are inductively defined as

PAB := PB | PAB ∗A PA := I | PA ∗A
PBA := PA | PBA ∗B PB := I | PB ∗B.

Here, the separators “,” and “;” on the left-hand sides of sequents correspond to the
multiplicative conjunction (∗) and the additive conjunction (∧), respectively. The proposition
constants I and ⊤ are the units for ∗ and ∧, respectively. The rule (UL) unfolds predicates
on the left-hand side from bottom to top. The rule (E) replaces the left-hand side with an
equivalent one. The rules (W ) and (C) are the left weakening and the left contraction rules,
respectively. The rule (⊤) is admissible using the left weakening rule, and a link between two
sequents marked with (†) forms a cycle, which satisfies the soundness condition for the cyclic
proofs, the global trace condition [6]. Therefore, the rightmost path contains no contradiction.
Furthermore, the part (⋆) is easily proved. This means that, to find a contradictory path, we
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.... (⋆)
PB ⊢ PBA

PAB ; PB ⊢ PBA
(W )

.... (#)
PAB ; (PB ,⊤) ⊢ PBA

PAB ; (PAB ,⊤) ⊢ PBA (†)
PAB ; (PAB , (A,⊤)) ⊢ PBA

(⊤)

PAB ; ((PAB , A),⊤) ⊢ PBA
(E)

PAB ; (PAB ∗A,⊤) ⊢ PBA
(∗L)

PAB ; (PAB ,⊤) ⊢ PBA(†) (UL)2

PAB ; (PAB , A) ⊢ PBA
(⊤)

PAB ; PAB ∗A ⊢ PBA
(∗L)

PAB ; PAB ⊢ PBA
(UL)1

PAB ⊢ PBA
(C)

Figure 1 A proof segment in the cyclic proof system of the bunched logic.

.... (#′)
I ∗Am; (I,⊤) ⊢ PBA (†)
I ∗Am; (I, (A,⊤)) ⊢ PBA

(⊤)

I ∗Am; ((I, A),⊤) ⊢ PBA
(E)

....
I ∗Am; (I ∗Am−2,⊤) ⊢ PBA

I ∗Am; (I ∗Am−2, (A,⊤)) ⊢ PBA

(⊤)

I ∗Am; ((I ∗Am−2, A),⊤) ⊢ PBA

(E)

I ∗Am; (I ∗Am−1,⊤) ⊢ PBA (†)
(∗L)

I ∗Am; (I ∗Am−1, A) ⊢ PBA

(⊤)

I ∗Am; I ∗Am ⊢ PBA
(∗L)

I ∗Am ⊢ PBA
(C)

Figure 2 Proof unrolling.

have to chase it in the part (#), and hence we sometimes have to choose the right assumption
(at (UL)1), and also have to choose the left assumption (at (UL)2). Therefore, it is hard to
find such a contradictory path in cyclic proofs.

Kimura et al. also mentioned a possibility to recover the cut-elimination property by
restricting the number of arities (to unary or nullary) for inductive predicates. Restricting
arities of inductive predicates may drastically change the situation as the result of Tatsuta
et al [12]. They showed the decidability of the entailment checking problem for the symbolic
heap separation logic with only unary inductive predicates whereas the problem for that
with general inductive predicates is known to be undecidable [1].

In this paper, we show that the cut-elimination property fails for the cyclic proof system
of the bunched logic [3] by a counterexample only with nullary inductive predicates. We
develop a proof technique called proof unrolling. For a cut-free cyclic proof of Γ ⊢ ϕ, by
using proof unrolling, we can construct a cut-free non-cyclic proof of ∆ ⊢ ϕ for any ∆
obtained by unfolding inductive predicates in Γ. For the example in Figure 1 and the formula
I ∗Am = ((I ∗A) ∗ · · · ∗A) ∗A (m copies of A’s) obtained by unfolding PAB , we can construct
the non-cyclic proof of I ∗ Am ⊢ PBA in Figure 2 by proof unrolling. During the proof
unrolling, we unroll the cycle (at (†)), and choose cases at the rule (UL) depending on the
unfolding tree of PAB to obtain I ∗Am. We will show that, for any cyclic proof of PAB ⊢ PBA,
if m is sufficiently large, any path in the non-cyclic proof by proof unrolling corresponds

FSCD 2021



11:4 Failure of Cut-Elimination in Cyclic BI

to a contradictory path in the original cyclic proof. The remaining path in the part (#′)
of Figure 2 corresponds to a contradictory path in the part (#) of Figure 1. Hence, the
existence of a cyclic proof of PAB ⊢ PBA derives a contradiction.

The proof unrolling is a general technique almost independent of a choice of logic. We
can straightforwardly adapt our proof to any cyclic proof system of a logic that contains
a connective representing resource composition such as the separation logic and the mul-
tiplicative linear logic. Hence, the cut-elimination fails for the cyclic proof system of the
separation logic even if we restrict inductive predicates to nullary ones.

The structure of the paper is as follows. Section 2 introduces a simple fragment of the
propositional bunched logic BIID0 with inductive definitions, and its cyclic proof system
CLBIω

ID0, which is a subsystem of CLBIω
ID given by Brotherston [3]. Section 3 presents our

proof unrolling technique. Section 4 proves the main result of this paper, which shows that
the cut-elimination property does not hold in CLBIω

ID0 using the proof unrolling technique.
It also discusses that our proof technique can be adapted to other systems including CLBIω

ID.
Section 5 concludes.

2 Bunched Logic with Inductive Propositions

In this section, we define the syntax and semantics of a core of the bunched logic BIID0,
which is based on the logic in [3]. In BIID0, atomic and inductive predicates are restricted
to nullary ones, which we call atomic propositions and inductive propositions, respectively.
We also define proof systems for BIID0: one is the ordinary proof system LBIID0, and the
other is the cyclic proof system CLBIω

ID0.
In the following sections, we will prove that cuts cannot be eliminated in CLBIω

ID0, and
this result can be easily extended to the system in [3].

2.1 Syntax of BIID0

We use metavariables A, B,. . . for atomic propositions and P , Q,. . . for inductive proposi-
tions. We implicitly fix a language Σ consisting of atomic and inductive propositions. Note
that in BIID0, we have neither terms, variables, nor function symbols.

▶ Definition 1 (Formulas of BIID0). Let I and ⊤ be propositional constants. The formulas
of BIID0, denoted by ϕ, ψ,. . . , are defined as

ϕ ::= I | ⊤ | A | P | ϕ ∗ ϕ | ϕ ∧ ϕ.

In this paper, ∗ and ∧ are treated as left-associative operators, that is, we write ϕ1 ∗ϕ2 ∗ϕ3
for (ϕ1 ∗ ϕ2) ∗ ϕ3. The notation An denotes A ∗ · · · ∗ A where the number of A’s is n. We
also use the notation P ∗An for P ∗A ∗ · · · ∗A, namely (· · · ((P ∗A) ∗A) · · · ) ∗A).

▶ Definition 2 (Bunch). The bunches, denoted by Γ,∆, . . . , are defined as

Γ,∆ ::= ϕ | Γ,Γ | Γ; Γ.

We sometimes use terminologies of trees to bunches by identifying a bunch as a tree
whose internal nodes are labeled by “,” or “;”, and whose leaves are labeled by a formula.
We write Γ(∆) to mean that Γ of which ∆ is a subtree. For a bunch Γ(∆), Γ(∆′) is a bunch
obtained by replacing the subtree ∆ of Γ by ∆′.
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The labels “,” and “;” intuitively mean ∗ and ∧, respectively. For a bunch Γ, we define
the bunch formula ϕΓ as the formula defined as:

ϕΓ = Γ, (Γ is a formula);
ϕΓ1,Γ2 = ϕΓ1 ∗ ϕΓ2 ;
ϕΓ1;Γ2 = ϕΓ1 ∧ ϕΓ2 .

▶ Definition 3 (Equivalence of bunches). Define the bunch equivalence ≡ as the least equival-
ence relation satisfying:

commutative monoid equations for ’,’ and I;

commutative monoid equations for ’;’ and ⊤;

congruence: if ∆ ≡ ∆′ then Γ(∆) ≡ Γ(∆′).

▶ Definition 4 (Size of formulas and bunches). Let ϕ be a formula and Γ be a bunch. The
size of ϕ (denoted by |ϕ|) is as

|ϕ| = 1 (ϕ = I or ⊤ or A or P );
|ϕ| = |ψ| + |ψ′| + 1 (ϕ = ψ ∗ ψ′ or ψ ∧ ψ′).

The size of Γ (denoted by |Γ|) is as

|Γ| = |ϕ| (Γ = ϕ);
|Γ| = |∆| + |∆′| + 1 (Γ = ∆,∆′ or ∆; ∆′).

▶ Definition 5 (Inductive definition). An inductive definition clause of P is of the form
P := ϕ. For a set Φ of inductive definition clauses of inductive propositions, we define
ΦP = {ϕ | P := ϕ ∈ Φ}. We say that P is defined by P := ϕ1 | · · · | ϕk in Φ if and only if
ΦP = {ϕ1, · · · , ϕk}.

▶ Definition 6 (BIID0 sequent). Let Γ be a bunch and ϕ be a formula. Γ ⊢ ϕ is called a
BIID0 sequent. Γ is called the antecedent of Γ ⊢ ϕ and ϕ is called the succedent of Γ ⊢ ϕ.
We define L(Γ ⊢ ϕ) = Γ and R(Γ ⊢ ϕ) = ϕ.

2.2 Semantics of BIID0

We recall a standard model [3] as the semantics of BIID0. In the following, we fix a set Φ of
inductive definition clauses.

▶ Definition 7 (BIID0 standard model). A BIID0 standard model is a tuple M =
(⟨R, ◦, e⟩,AM ) satisfying the following:

⟨R, ◦, e⟩ is a partial commutative monoid with the unit e;

AM is a set consisting of AM ⊆ R for each atomic proposition A.

FSCD 2021



11:6 Failure of Cut-Elimination in Cyclic BI

Let M be a BIID0 standard model and let r ∈ R. We define the satisfaction relation
M, r |= ϕ by

M, r |= ⊤ ⇐⇒ true

M, r |= I ⇐⇒ r = e

M, r |= A ⇐⇒ r ∈ AM (for atomic proposition A)

M, r |= P (0) never holds

M, r |= P (m+1) ⇐⇒ M, r |= ϕ[P (m)
1 , . . . , P

(m)
k /P1, . . . , Pk]

for some ϕ ∈ ΦP containing inductive propositions P1, . . . , Pk

M, r |= P ⇐⇒ M, r |= P (m) for some m
M, r |= ϕ1 ∧ ϕ2 ⇐⇒ M, r |= ϕ1 and M, r |= ϕ2

M, r |= ϕ1 ∗ ϕ2 ⇐⇒ r = r1 ◦ r2 and M, r1 |= ϕ1 and M, r2 |= ϕ2 for some r1, r2 ∈ R ,

where P (m) are auxiliary proposition symbols, and ϕ[P (m)
1 , . . . , P

(m)
k /P1, . . . , Pk] is the formula

obtained by replacing each Pi by P (m)
i . We define M, r |= Γ as M, r |= ϕΓ.

By defining in this way, the satisfaction relation for inductive propositions is the same as
that in the standard model of [3].

▶ Definition 8 (Validity). Let M be a standard model. A sequent Γ ⊢ ϕ is true in M , denoted
by Γ |=M ϕ, if and only if, M, r |= Γ implies M, r |= ϕ for any r. A sequent Γ ⊢ ϕ is valid,
denoted by Γ |= ϕ, if and only if, it is true for any standard models. Γ |=M ∆ and Γ |= ∆ are
similarly defined.

▶ Example 9. An example of the standard models is the multiset model. Let the set of atomic
propositions Σ be {A,B}. The multiset modelMmulti for Σ is the tuple (⟨Rmulti,⊎, ∅⟩,AMmulti)
such that

Rmulti is the set of multisets consisting of a and b;
⊎ is the merging operation of two multisets;
AM and BM are {{a}} and {{b}}, respectively.

For example, Mmulti, {a} |= A, Mmulti, {a, b} |= A ∗ B, and Mmulti, {a, a} |= A ∗ A ∗ I are
true, and Mmulti, {a} |= B and Mmulti, {a} |= A ∗A are false.

2.3 Inference rules of LBIID0 and CLBIω
ID0

This and the next subsection define two proof systems LBIID0 and CLBIω
ID0. The system

LBIID0 is a non-cyclic proof system and the system CLBIω
ID0is a cyclic proof system. The

common inference rules of them are given as follows.

▶ Definition 10. The common inference rules of the proof systems LBIID0 and CLBIω
ID0

are the following.

ϕ ⊢ ϕ
(Ax)

Γ ⊢ ϕ ∆(ϕ) ⊢ ψ

∆(Γ) ⊢ ψ
(Cut)

,

Γ(∆) ⊢ ϕ

Γ(∆; ∆′) ⊢ ϕ
(W )

Γ(∆; ∆) ⊢ ϕ

Γ(∆) ⊢ ϕ
(C) Γ ⊢ ϕ

∆ ⊢ ϕ
(E) (∆ ≡ Γ)

,

Γ(ϕ, ψ) ⊢ χ

Γ(ϕ ∗ ψ) ⊢ χ
(∗L) Γ ⊢ ϕ ∆ ⊢ ψ

Γ,∆ ⊢ ϕ ∗ ψ (∗R)
Γ(ϕ;ψ) ⊢ χ

Γ(ϕ ∧ ψ) ⊢ χ
(∧L) Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ ϕ ∧ ψ
(∧R)

.
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Γ(ϕ1) ⊢ ϕ · · · Γ(ϕn) ⊢ ϕ

Γ(P ) ⊢ ϕ
(UL) Γ ⊢ ϕi

Γ ⊢ P
(UR) (1 ≤ i ≤ n)

,

where the inductive predicate P is defined by P := ϕ1 | . . . | ϕn. (UL) and (UR) are called
unfolding rules. The formula ϕ in (Cut) is called its cut formula.

2.4 Proofs in LBIID0 and CLBIω
ID0

Let Seq be the set of the BIID0 sequents, Rules be the set of the common inference rules of
LBIID0 and CLBIω

ID0, and Rules+ be the set Rules ∪ {(Bud)}.

▶ Definition 11 (LBIID0 Proof). An LBIID0 proof is a tuple Pr = (N, l, r) satisfying the
following:

N is the set of nodes for a finite tree. The elements of N are strings of positive integers,
the root is the empty string ε, and children of v are v1, v2,. . . , where vi is a concatenation
of the string v and the integer i.
l : N → Seq is a label function.
r : N → Rules is a rule function.
If r(v) ∈ Rules is a rule with n premises, then v has exactly n children, and
l(v1) . . . l(vn)

l(v)
r(v) is a correct rule instance of LBIID0.

An LBIID0 proof Pr = (N, l, r) is called an LBIID0 proof of l(ε). When r(v) is not (Cut)
for any v ∈ N , Pr is called a cut-free LBIID0 proof.

▶ Definition 12 (CLBIω
ID0 pre-proof). A CLBIω

ID0 pre-proof is a tuple Pr = (N, l, r, ρ)
satisfying the following:

N and l are defined similarly as those of the LBIID0 proofs.
r : N → Rules+ is a rule function.
ρ : {v ∈ N | r(v) = (Bud)} → N is a bud-companion function.
If r(v) ∈ Rules is a rule with n premises, then v has exactly n children, and
l(v1) . . . l(vn)

l(v)
r(v) is a correct rule instance.

If r(v) = (Bud), then v has no child and we have l(v) = l(ρ(v)).
When r(v) = (Bud), v is called a bud, and ρ(v) is called the companion of v.

▶ Definition 13 (Path). Let Pr = (N, l, r, ρ) be a CLBIω
ID0 pre-proof. The proof graph G(Pr)

is a directed graph whose set of the nodes are N , and which has an edge from v to v′ if and
only if either v′ is a child of v or v′ is the companion of v. A path in Pr is a path in G(Pr).

The path of LBIID0 is defined in the same way except for the bud-companion edges. We
consider both finite and infinite paths in proofs. We use α for either a natural number or the
ordinal ω, and we denote a path by (vi)i<α.

▶ Definition 14 (Trace). Let (vi)i<α be a path in a CLBIω
ID0 pre-proof Pr. A trace along

(vi)i<α is a sequence of occurrences of inductive predicates (Pi)i<α such that each Pi occurs
in L(l(vi)), and satisfies the following conditions:

If r(vi) = (UL) and Pi is unfolded by this rule instance, Pi+1 appears as a subformula in
the unfolding result of Pi in L(l(vi+1)). In this case, i is called a progressing point of the
trace (Pi)i<α.
Otherwise, Pi+1 is the subformula occurrence in L(l(vi+1)) corresponding to Pi in L(l(vi)).

If a trace contains infinitely many progressing points, it is called an infinitely progressing
trace.

FSCD 2021



11:8 Failure of Cut-Elimination in Cyclic BI

▶ Definition 15 (CLBIω
ID0 Proof). A CLBIω

ID0 pre-proof Pr = (N, l, r, ρ) is called a
CLBIω

ID0 proof when it satisfies the global trace condition, that is, for every infinite path
(vi)i<ω in Pr, there is an infinitely progressing trace following some tail of the path (vi)n≤i<ω.
A CLBIω

ID0 proof Pr = (N, l, r, ρ) is called a CLBIω
ID0 proof of l(ε). When r(v) is not (Cut)

for any v ∈ N , Pr is called a cut-free CLBIω
ID0 proof.

Both the proof systems LBIID0 and CLBIω
ID0 are subsystems of CLBIω

ID in [3], and
hence their soundness follows from the soundness of CLBIω

ID.

▶ Theorem 16 (Soundness of LBIID0 and CLBIω
ID0). If Γ ⊢ ϕ is provable in either LBIID0

or CLBIω
ID0, then Γ ⊢ ϕ is valid.

3 Proof Unrolling

In this section, we introduce a new technique, called proof unrolling, for constructing a
non-cyclic proof from a given cyclic proof: we first define a non-cyclic proof system that is a
variant of LBIID0 (say LBI ′

ID0), and then, for a cyclic proof of Γ ⊢ ϕ in CLBIω
ID0 and Γ′

obtained from Γ by unfolding inductive propositions, construct a non-cyclic proof of Γ′ ⊢ ϕ

in LBI ′
ID0.

▶ Definition 17 (Unfolded formula and unfolded bunch). The set Unf(ϕ) of unfolded formulas
of ϕ is defined with auxiliary sets Unfm(ϕ), which is the set of formulas without inductive
propositions obtained by at most m-time unfoldings of inductive predicates in ϕ, as follows:

Unf(ϕ) =
⋃
m

Unf(m)(ϕ);

Unf(m)(ϕ) = {ϕ} (when ϕ is I, ⊤, or an atomic proposition);

Unf(m)(ϕ1 ∗ ϕ2) = {ϕ′
1 ∗ ϕ′

2 | ϕ′
1 ∈ Unf(m)(ϕ1) and ϕ′

2 ∈ Unf(m)(ϕ2)};

Unf(m)(ϕ1 ∧ ϕ2) = {ϕ′
1 ∧ ϕ′

2 | ϕ′
1 ∈ Unf(m)(ϕ1) and ϕ′

2 ∈ Unf(m)(ϕ2)};

Unf(0)(P ) = ∅;

Unf(m+1)(P ) =
⋃

ϕ∈ΦP

Unf(m)(ϕ).

The set Unf(Γ) of unfolded bunches of Γ is defined as follows:

Unf(Γ) = Unf(ϕ) (when Γ = ϕ)
Unf(Γ,Γ′) = {∆,∆′ | ∆ ∈ Unf(Γ) and ∆′ ∈ Unf(Γ′)}
Unf(Γ; Γ′) = {∆; ∆′ | ∆ ∈ Unf(Γ) and ∆′ ∈ Unf(Γ′)}.

Before discussing the proof unrolling technique, we define an weakened variant of the rule
(Ax) in LBIID0.

▶ Definition 18. We consider the following inference rule.

ϕ ⊢ ψ
(Ax′) ϕ ∈ Unf(ψ)

We define LBI ′
ID0 as LBIID0 in which (Ax) is replaced by (Ax′).

▶ Lemma 19. If a sequent is cut-free provable in LBI ′
ID0, then it is cut-free provable in

LBIID0, and hence LBI ′
ID0 is sound.
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Proof. It is sufficient to prove ϕ ⊢ ψ is cut-free provable in LBIID0 for any n and ϕ ∈
Unf(n)(ψ), and it is proved by induction on (n, ψ). The only nontrivial case is the case where
n > 1, ψ = P , and ϕ ∈ Unf(n)(P ). In this case, for some definition clause ψ′ of P , we have
ϕ ∈ Unf(n−1)(ψ′). By the induction hypothesis, we have ϕ ⊢ ψ′, and hence we have ϕ ⊢ P

by the rule (UR). ◀

▶ Lemma 20. If ∆ ∈ Unf(Γ), then ∆ |= Γ holds.

Proof. It is proved by induction on Γ and the soundness of the rule (Ax′) by Lemma 19. ◀

▶ Lemma 21. If an LBI ′
ID0 proof contains a finite path (vi)i≤n such that l(v0) = Γ ⊢ ϕ,

l(vn) = Γ′ ⊢ ϕ, and r(vi) is either (W ), (C), (E), or (∗L) for 0 ≤ i < n, then we have
Γ |= Γ′.

Proof. It is sufficient to show that Γ |= Γ′ holds for any rule instance

Γ′ ⊢ ϕ

Γ ⊢ ϕ
(R)

,

where (R) is either (W ), (C), (E), or (∗L). It is easily proved. ◀

▶ Lemma 22. Let (R) be a rule of CLBIω
ID0 except for (Cut). If Γ ⊢ ϕ is inferred by (R)

from the premises Γ1 ⊢ ϕ1, . . . ,Γn ⊢ ϕn, and ∆ ∈ Unf(Γ), we have the following.
1. If (R) = (Ax), ∆ ⊢ ϕ is inferred by (Ax′).
2. If (R) = (UL), ∆ ∈ Unf(Γi) and ϕ = ϕi hold for some i.
3. Otherwise, ∆ ⊢ ϕ is inferred by (R) from ∆1 ⊢ ϕ1, . . . ,∆n ⊢ ϕn for some ∆i ∈ Unf(Γi)

(1 ≤ i ≤ n).

Proof.
1. By the definition of (Ax′).
2. In the definition of ∆ ∈ Unf(Γ), we choose an inductive definition clause of P , which is

unfolded by the rule (UL). If the clause is i-th one, we can choose a premise Γi ⊢ ϕ such
that ∆ ∈ Unf(Γi) holds.

3. If (R) is a left rule, by the definition of the unfolded bunches, ∆ ⊢ ϕ contains the
corresponding connectives of the principal formula in Γ ⊢ ϕ for (R). Otherwise, it is
easily proved. ◀

▶ Definition 23 (UL path). A finite path (vi)i≤m in a cyclic proof (N, l, r, ρ) is called a UL
path when r(vi) is either (UL) or (Bud) for any i such that 0 ≤ i < m.

▶ Lemma 24 (Proof unrolling). Let Pr1 = (N1, l1, r1, ρ1) be a cut-free CLBIω
ID0 proof of

Γ1 ⊢ ϕ and Γ2 ∈ Unf(Γ1). We can construct a cut-free LBI ′
ID0 proof Pr2 = (N2, l2, r2) of

Γ2 ⊢ ϕ accompanied with a mapping f : N2 → N1 such that the following hold:
f(ε) = ε.
For any v ∈ N2, L(l2(v)) ∈ Unf(L(l1(f(v)))) and R(l2(v)) = R(l1(f(v))).
For any v ∈ N2, there is a UL path (vi)0≤i≤m in Pr1 such that v0 = f(v), r1(vm) = r2(v),
and f(vn) = vmn.

Proof. (Sketch) We can construct Pr2 from Pr1 by unrolling the cyclic structures and choosing
the premises of (UL) depending on the definition of the unfolded bunch Γ2. Lemma 22
guarantees that this construction works well and the global trace condition guarantees that
the construction eventually terminates for the unfolded bunch Γ2 since any infinite path in
Pr1 has an infinitely progressing trace. ◀
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I ⊢ I(2)
(Ax)

I ⊢ PA
(UR)

PAA ⊢ PA(8)(†) A ⊢ A(9)
(Ax)

PAA, A ⊢ PA ∗A(7)
(∗R)

PAA, A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax)

(PAA, A), A ⊢ PA ∗A(5)
(∗R)

(PAA, A), A ⊢ PA(4)
(UR)

PAA ∗A,A ⊢ PA(3)
(∗L)

PAA ∗A ∗A ⊢ PA
(∗L)

PAA ⊢ PA(1)(†)
(UL)

Figure 3 CLBIω
ID0 proof of PAA ⊢ PA.

I ⊢ I(2)
(Ax′)

I ⊢ PA(8)
(UR)

I, A ⊢ PA ∗A(7)
(∗L)

I, A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax′)

(I, A), A ⊢ PA ∗A(5)
(∗L)

(I, A), A ⊢ PA(4)
(UR)

I ∗A,A ⊢ PA(3)
(∗L)

I ∗A ∗A ⊢ PA(8)
(∗L)

A ⊢ A(9)
(Ax′)

I ∗A ∗A,A ⊢ PA ∗A(7)
(∗R)

I ∗A ∗A,A ⊢ PA(6)
(UR)

A ⊢ A(10)
(Ax′)

(I ∗A ∗A,A), A ⊢ PA ∗A(5)
(∗R)

(I ∗A ∗A,A), A ⊢ PA(4)
(UR)

I ∗A ∗A ∗A,A ⊢ PA(3)
(∗L)

I ∗A ∗A ∗A ∗A ⊢ PA(1)
(∗L)

Figure 4 LBI ′
ID0 proof of I ∗ A ∗ A ∗ A ∗ A ⊢ PA constructed by proof unrolling.

Intuitively, a cyclic proof of Γ ⊢ ϕ contains several (possibly infinite) cases according to
the unfolding of inductive propositions in Γ. The proof unrolling technique takes one case
among them by Γ′ ∈ Unf(Γ) and extracts a non-cyclic proof of Γ′ ⊢ ϕ from the cyclic proof
of Γ ⊢ ϕ.

▶ Example 25. We consider two inductive propositions PA and PAA, which are defined by

PA := I | PA ∗A PAA := I | PAA ∗A ∗A.

For these inductive propositions, the sequent PAA ⊢ PA is provable in CLBIω
ID0 as Figure 3.

The sequents marked (†) are corresponding bud and companion. The numbers (1), (2), . . .
are identifiers of sequents.

From this cyclic proof, we can construct an LBI ′
ID0 (non-cyclic) proof of I ∗A∗A∗A∗A ⊢

PA for I ∗A ∗A ∗A ∗A ∈ Unf(PAA) by the proof unrolling as Figure 4. The identifiers of
sequents indicate the corresponding nodes in the cyclic proof, where we unroll the cycle at
(†) twice, and for (UL) in the cyclic proof, we choose the right premise twice at (3) and the
left premise at (2).
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PAB ⊢ PBA(@)

PA ⊢ PA
(Ax)

A ⊢ A
(Ax)

PA, A ⊢ PA ∗A (∗R)

PA, A ⊢ PA
(UR)

PA, A ⊢ PBA
(UR)

PBA, A ⊢ PBA(#) B ⊢ B
(Ax)

(PBA, A), B ⊢ PBA ∗B
(∗R)

(PBA, B), A ⊢ PBA ∗B
(E)

(PBA, B), A ⊢ PBA
(UR)

PBA ∗B,A ⊢ PBA
(∗L)

PBA, A ⊢ PBA(#)
(UL)

PAB , A ⊢ PBA
(Cut)

PAB ∗A ⊢ PBA (1)
(∗L)

is the subproof of the following proof figure:

I ⊢ I
(Ax)

I ⊢ PA
(UR)

I ⊢ PBA
(UR)

PB ⊢ PBA(†) B ⊢ B
(Ax)

PB , B ⊢ PBA ∗B (∗R)

PB , B ⊢ PBA
(UR)

PB ∗B ⊢ PBA
(∗L)

PB ⊢ PBA(†)
(UL)

.... the above proof figure
PAB ∗A ⊢ PBA (1) ,

PAB ⊢ PBA(@)
(UL)

Each bud marked (†), (@), or (#) has its companion with the same mark.

Figure 5 CLBIω
ID0 proof of PAB ⊢ PBA.

4 Failure of Cut-Elimination

In this section, we give a counterexample of the cut-elimination property in CLBIω
ID0. We fix

the language Σ consisting of the atomic propositions A and B, and the inductive propositions
PAB, PBA, PA, and PB. We also fix the set Φ of inductive definitions for PAB, PBA, PA,
and PB defined by:

PAB := PB | PAB ∗A; PA := I | PA ∗A;
PBA := PA | PBA ∗B; PB := I | PB ∗B.

Intuitively, PA and PB mean I ∗ An and I ∗ Bm with arbitrary n,m ≥ 0, respectively.
PAB and PBA mean (I ∗Bm)∗An and (I ∗Am)∗Bn with arbitrary n,m ≥ 0, respectively. We
note that PAB and PBA are logically equivalent in the standard models since the separating
conjunction ∗ and the formula I are interpreted as a commutative monoid operator and the
unit of it, respectively.

The intention of the name PAB is that, during the unfolding of PAB, A’s appear first,
and then B’s appear in the unfolding of PB . PBA is also named by a similar intention.

Our main result will be obtained by showing the entailment PAB ⊢ PBA is a counter-
example for the cut-elimination. We need to show two things: One is that PAB ⊢ PBA is
provable in CLBIω

ID0 with (Cut), and the other is that PAB ⊢ PBA is not cut-free provable
in CLBIω

ID0.
First, we show that PAB ⊢ PBA is provable in CLBIω

ID0 with (Cut).

▶ Proposition 26. PAB ⊢ PBA is provable in CLBIω
ID0.

Proof. The proof figures in Figure 5 show this proposition. ◀
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To show that PAB ⊢ PBA is not cut-free provable in CLBIω
ID0, we assume that it is

cut-free provable to derive a contradiction. For this purpose, we will consider only the
multiset model Mmulti introduced in Example 9. We omit Mmulti in the satisfaction relation,
that is, r |= ϕ means Mmulti, r |= ϕ. We write {an} for the multiset consisting of n a’s.

We shall describe our proof approach before starting the formal discussion. We assume
the existence of a cut-free cyclic proof of PAB ⊢ PBA. By the proof unrolling, we can
construct proofs of ϕ ⊢ PBA in LBI ′

ID0 for any unfolded formula ϕ of PAB . Hence we have
proofs of I ∗ An ⊢ PBA for arbitrary n. We consider parts of the proofs of I ∗ An ⊢ PBA

which contain the conclusion and do not contain the rule (UR). We call such parts the proof
segments. In such a proof segment, {an} ∈ Mmulti satisfies every antecedent. Then, {an}
also satisfies every antecedent in the corresponding part of the cyclic proof. Since the cyclic
proof is finite, for a sufficiently large n, the antecedents cannot contain An, but they must
contain either PAB or ⊤, and then both {an} and {an, b} satisfy the antecedents. On the
other hand, since the proof segment does not contain (UR), every succedent is PBA. When
we unfold PBA, we have to decide either PA or PBA ∗B. However, neither of them can be
satisfied by both {an} and {an, b}.

To achieve our plan, we prepare some definitions and theorems.

▶ Definition 27 (PAB-formula and PAB-bunch). A PAB-formula ϕPAB
is defined as follows:

ϕPAB
::= I | ⊤ | A | B | PAB | PB | PAB ∗A | PB ∗B.

A PAB-bunch ΓPAB
is a bunch all of whose leaves are PAB-formulas.

▶ Lemma 28. Let (N, l, r, ρ) be a cut-free CLBIω
ID0 proof of PAB ⊢ ϕ. For any v ∈ N ,

L(l(v)) is a PAB-bunch.

Proof. This lemma is proved by induction on the size of N . ◀

▶ Lemma 29. Let Γ be a PAB-bunch. If we have {ai} |= Γ for i > 2|Γ|, then we also have
{ai, b} |= Γ.

Proof. It is proved by induction on Γ. The only nontrivial case is the case of Γ = ∆,∆′. In
this case, we have {aj} |= ∆ and {aj′} |= ∆′ for some j and j′ such that j + j′ = i. By the
assumption, we have i > 2 ·2|Γ|−1 > 2 ·2max(|∆|,|∆′|). Hence either j > 2|∆| or j′ > 2|∆′| holds.
By the induction hypothesis, we have either {aj , b} |= ∆ or {aj′

, b} |= ∆′ holds. Therefore
we have {ai, b} |= Γ. ◀

▶ Definition 30 (Proof segment). Let Pr1 = (N1, l1, r1) be a LBI ′
ID0 proof. Pr = (N2, l2, r2)

is a proof segment of Pr1 when it enjoys the following conditions:
N2 ⊆ N1 holds, and vi ∈ N2 implies v ∈ N2.
For any v ∈ N2, l2(v) = l1(v) and r2(v) = r1(v) hold.

Note that leaves of a proof segment are not necessarily assigned the rule (Ax′).

▶ Proposition 31. PAB ⊢ PBA is not cut-free provable in CLBIω
ID0.

Proof. This proposition is shown by contradiction. We assume that there is a cut-free
CLBIω

ID0 proof Pr1 = (N1, l1, r1, ρ1) of PAB ⊢ PBA. Let n = max{|L(l1(v))| | v ∈ N1}.
Since I ∗A2n+1 ∈ Unf(PAB), we can construct a cut-free LBI ′

ID0 proof Pr2 = (N2, l2, r2)
of I ∗A2n+1 ⊢ PBA and the mapping f : N2 → N1 by Lemma 24.

Let PrBA
2 = (NBA

2 , lBA
2 , rBA

2 ) be the biggest proof segment of Pr2 such that R(lBA
2 (v)) =

PBA for any v ∈ NBA
2 . Note that PrBA

2 is not empty since R(l2(ε)) = PBA. For any
v ∈ NBA

2 , rBA
2 (v) is either (W ), (C), (∗L), (E), (Ax′), or (UR). In particular, (Ax′) and
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(UR) are only applied to leaves of PrBA
2 , and the other rules are not applied to leaves since

these rules do not change the succedents. We have {a2n+1} |= I ∗ A2n+1 in the multiset
model, and hence we have {a2n+1} |= L(lBA

2 (v)) holds for any v ∈ NBA
2 by Lemma 21.

Let v be a leaf node of PrBA
2 . Then, rBA

2 (v) is either (Ax′) or (UR).
In the case of (Ax′), by Lemma 24, there is a UL path from f(v) to some v′ in Pr1

such that r1(v′) = (Ax). By Lemma 28, l1(v′) = Γ ⊢ PBA for some PAB-bunch Γ, and it
contradicts r1(v′) = (Ax) since PBA is not a PAB-bunch. Hence, (Ax′) is not the case.

In the case of (UR), let v′ be the premise of v in Pr2. Since we have lBA
2 (v) = l2(v) =

Γ ⊢ PBA for some Γ, l2(v′) is either Γ ⊢ PBA ∗B or Γ ⊢ PA, but it is proved as follows that
both of them are not the case.

For l2(v′) = Γ ⊢ PBA ∗ B, we have {a2n+1} |= Γ and {a2n+1} ̸|= PBA ∗ B, and hence
Γ ⊢ PBA ∗B is invalid. It contradicts the soundness of LBI ′

ID0. Hence, this is not the case.
For l2(v′) = Γ ⊢ PA, we have l1(f(v′)) = Γ′ ⊢ PA for some PAB-bunch Γ′ such that

Γ ∈ Unf(Γ′). Then, we have {a2n+1} |= Γ′ by Lemma 20, and {a2n+1, b} |= Γ′ by Lemma 29
and 2n + 1 > 2|Γ′|. Since {a2n+1, b} ̸|= PA, it contradicts the soundness of LBI ′

ID0. Hence,
this is not the case.

Therefore, there is no possible rule at the leaves of PrBA
2 , and hence there is no cut-free

CLBIω
ID0 proof of PAB ⊢ PBA. ◀

▶ Theorem 32 (Failure of cut-elimination in CLBIω
ID0). CLBIω

ID0 does not enjoy the cut-
elimination property.

Proof. By Proposition 26 and Proposition 31, PAB ⊢ PBA is a counterexample. ◀

This result is easily extended to the original cyclic proof system CLBIω
ID in [3], which

contains full logical connectives of the bunched logic and inductive predicates with arbitrary
arity.

▶ Corollary 33 (Failure of cut elimination in CLBIω
ID). CLBIω

ID does not enjoy cut-elimination
property.

Proof. PAB ⊢ PBA is a counterexample. It is provable in CLBIω
ID, since the proof in Figure 5

is also a CLBIω
ID proof with cuts. If there is a cut-free CLBIω

ID proof of PAB ⊢ PBA, it is
a cut-free CLBIω

ID0 proof since neither logical connectives other than ∗, inductive predicates
accompanied by some arguments, nor first-order terms can occur in the proof. ◀

5 Conclusion and Future Work

We have proved by the proof unrolling technique that the cut-elimination fails for the cyclic
proof system of the bunched logic CLBIω

ID in [3] only with nullary inductive predicates.
For a logic with a connective representing resource composition such as the separation

logic and the multiplicative linear logic, we can straightforwardly adapt our proof technique
to the cyclic proof system for the logic.

For the separation logic, we allow arbitrary substitution in the definition of Unf for
existentially quantified variables as

Unf(m+1)(P ) =
⋃

∃x⃗.ϕ(x⃗) ∈ ΦP and t⃗ : arbitrary terms

Unf(m)(ϕ(⃗t)),

and we reread the atomic propositions A and B in our proof as to the following nullary
predicates, for example,

FSCD 2021
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A = ∃x(x 7→ x) B = ∃x(x 7→ nil),

and then we can prove that the cut-elimination fails for the cyclic proof system of the
separation logic with only nullary predicates.

We can adapt the proof unrolling to cyclic proof system CLKIDω [6] for the first-order
logic when we consider a cut-free cyclic proof that contains only positive occurrences of
inductive predicates. However, the proof in Section 4 depends on the multiset model, and it
is an interesting question if we can apply our proof idea for the first-order logic. Another
direction of future work is to find reasonable restrictions for the inductive predicates to
recover the cut-elimination property in the cyclic proof systems. Our result shows that the
restriction on the arity of predicates is not sufficient.
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