
A Functional Abstraction of
Typed Invocation Contexts
Youyou Cong # Ñ

Tokyo Institute of Technology, Japan

Chiaki Ishio #

Ochanomizu University, Tokyo,Japan

Kaho Honda #

Ochanomizu University, Tokyo, Japan

Kenichi Asai # Ñ

Ochanomizu University, Tokyo, Japan

Abstract
In their paper “A Functional Abstraction of Typed Contexts”, Danvy and Filinski show how to
derive a type system of the shift and reset operators from a CPS translation. In this paper, we
show how this method scales to Felleisen’s control and prompt operators. Compared to shift and
reset, control and prompt exhibit a more dynamic behavior, in that they can manipulate a trail
of contexts surrounding the invocation of captured continuations. Our key observation is that, by
adopting a functional representation of trails in the CPS translation, we can derive a type system
that allows fine-grain reasoning of programs involving manipulation of invocation contexts.

2012 ACM Subject Classification Theory of computation → Functional constructs; Theory of
computation → Control primitives; Theory of computation → Type structures

Keywords and phrases delimited continuations, control operators, control and prompt, CPS transla-
tion, type system

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.12

Supplementary Material Model (Agda Formalization): https://github.com/YouyouCong/
fscd21-artifact; archived at swh:1:dir:9eaf9840fc9b223e030f633c3f9b3b5ea7b47bc6

Funding Youyou Cong: supported in part by JSPS KAKENHI under Grant No. 19K24339.
Kenichi Asai: supported in part by JSPS KAKENHI under Grant No. JP18H03218.

Acknowledgements We sincerely thank the reviewers for their constructive feedback.

1 Introduction

Delimited continuations have been proven useful in diverse domains. Their applications
range from representation of monadic effects [19], to formalization of partial evaluation [13],
and to implementation of automatic differentiation [41]. As a means to handle delimited
continuations, researchers have designed a variety of control operators [18, 15, 21, 16, 32].
Among them, Danvy and Filinski’s shift/reset operators [15] have a solid theoretical
foundation: there are a canonical CPS translation [15], a general type system [14], and a set
of equational axioms [25]. Recent work by Materzok and Biernacki [32, 31] has also fostered
understanding of shift0 and reset0, by establishing similar artifacts for these operators.
Other variants, however, are not as well-understood as the aforementioned ones, due to their
complex semantics.

Understanding the subtleties of control operators is important, especially given the
rapid adoption of algebraic effects and handlers [36, 6] observed in the past decade. Effect
handlers can be thought of as a form of exception handlers that provide access to delimited

© Youyou Cong, Chiaki Ishio, Kaho Honda, and Kenichi Asai;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 12; pp. 12:1–12:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cong@c.titech.ac.jp
http://prg.is.titech.ac.jp/people/cong/
https://orcid.org/0000-0003-2315-6182
mailto:ishio.chiaki@is.ocha.ac.jp
mailto:g1720538@is.ocha.ac.jp
mailto:asai@is.ocha.ac.jp
http://pllab.is.ocha.ac.jp/~asai/
https://doi.org/10.4230/LIPIcs.FSCD.2021.12
https://github.com/YouyouCong/fscd21-artifact
https://github.com/YouyouCong/fscd21-artifact
https://archive.softwareheritage.org/swh:1:dir:9eaf9840fc9b223e030f633c3f9b3b5ea7b47bc6;origin=https://github.com/YouyouCong/fscd21-artifact;visit=swh:1:snp:373313627617f63181509188a8b0c474bf25b38f;anchor=swh:1:rev:c88b251d074865dd2d22d7cd755a2ffa40c42891
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Functional Abstraction of Typed Invocation Contexts

continuations. As suggested by the similarity in the functionality, effect handlers have a close
connection with control operators [20, 35], and in fact, they are often implemented using
control operators provided by the host language [27, 28]. This means, a well-established
theory of control operators is crucial for safer and more efficient implementation of effect
handlers.

In this paper, we formalize a typed calculus of control and prompt, a pair of control
operators proposed by Felleisen [18]. These operators bring an interesting behavior into
programs: when a captured continuation k is invoked, the subsequent computation may
capture the context surrounding the invocation of k. From a practical point of view, the
ability to manipulate invocation contexts is useful for implementing sophisticated algorithms,
such as list reversing [8] and breadth-first traversal [10]. From a theoretical perspective, on
the other hand, this ability makes it hard to type programs in a way that fully reflects their
runtime behavior.

We address the challenge with typing by rigorously following Danvy and Fillinski’s [14]
recipe for building a type system of a delimited control calculus. The idea is to analyze
the CPS translation of the calculus, and identify all the constraints that are necessary for
making a translated expression well-typed. In fact, the recipe has already been applied to
the control and prompt [26] operators, but the type system obtained is not satisfactory for
two reasons. First, the type system imposes certain restrictions on the contexts in which a
captured continuation may be invoked. Second, the type system does not precisely describe
the way contexts compose and propagate during evaluation. We show that, by choosing
a right representation of invocation contexts in the CPS translation, we can build a type
system without such limitations.

Below is a summary of our specific contributions:
We present a type system of control and prompt that allows fine-grain reasoning
of programs involving manipulation of invocation contexts. The type system is the
control/prompt-equivalent of Danvy and Filinski’s [14] type system for shift/reset,
in that it incorporates all and only constraints that are imposed by the CPS translation.
We prove three properties of our calculus: type soundness, type preservation of the CPS
translation, and termination of well-typed programs. Among these, termination relies on
the precise typing of invocation contexts available in our calculus; indeed, the property
does not hold for the existing type system of control and prompt [26].

We begin with an informal account of control and prompt (Section 2), highlighting the dy-
namic behavior of these operators. We next formalize an untyped calculus of control/prompt
(Section 3) and its CPS translation (Section 4), which is equivalent to the translation given
by Shan [40]. Then, from the CPS translation, we derive a type system of our calculus
(Section 5), and prove its properties (Section 6). Lastly, we discuss related work (Section 7)
and conclude with future directions (Section 8).

As an artifact, we provide a formalization of our calculus and proofs in the Agda proof
assistant [34]. The code is checked using Agda version 2.6.0.1, and is available online at:

https://github.com/YouyouCong/fscd21-artifact

Relation to Prior Work. This is an updated and extended version of our previous paper [2].
The primary contributions of this paper are a complete proof of type soundness of the
proposed calculus, and a proper formalization of the target language of the CPS translation.
We have also changed the title to clarify the kind of contexts considered in the paper.

https://github.com/YouyouCong/fscd21-artifact

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:3

2 Control and Prompt

As a motivating example, consider the following program:

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩

Throughout the paper, we write F to mean control and ⟨⟩ to mean prompt. We also assume
two primitive functions: is0, which tells us if a given integer is zero or not, and b2s, which
converts a boolean into a string "true" or "false".

Under the call-by-value, left-to-right evaluation strategy, the above program evaluates in
the following way:

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. x + (Fk2. b2s (k2 8))/k1]⟩
= ⟨is0 (5 + (Fk2. b2s (k2 8)))⟩
= ⟨b2s (k2 8) [λx. is0 (5 + x)/k2]⟩
= ⟨b2s (is0 (5 + 8))⟩
= ⟨b2s (is0 13)⟩
= ⟨b2s false⟩
= ⟨"false"⟩
= "false"

The first control operator captures the delimited context up to the enclosing prompt, namely
[.] + (Fk2. b2s (k2 8)) (where [.] denotes a hole). The captured context is then reified into
a function λx. x + (Fk2. b2s (k2 8)), and evaluation shifts to the body is0 (k1 5), where
k1 is the reified continuation. After β-reducing the invocation of k1, we obtain another
control in the evaluation position. This control captures the context is0 (5 + [.]), which
is a composition of two contexts: the addition context originally surrounding the control
construct, and the application of is0 surrounding the invocation of k1. The context is then
reified into a function λx. is0 (5 + x), and evaluation shifts to the body b2s (k2 8), where
k2 is the reified continuation. By β-reducing the invocation of k2, we obtain the expression
b2s (is0 (5 + 8)), where the original delimited context, the invocation context of k1, and
the invocation context of k2 are all composed together. The expression returns the value
"false" to the enclosing prompt clause, and the evaluation of the whole program finishes
with this value.

From the above example, we can make two observations. First, a control operator can
capture the context surrounding the invocation of a previously captured continuation. More
generally, control may capture a trail of such invocation contexts. The ability comes from
the absence of the delimiter in the body of captured continuations. Indeed, if we replace
control with shift (S) in the above program, the second shift would have no access to
the context is0 [.], since the first shift would insert a reset into the continuation k1. As a
consequence, the program gets stuck after the application of k2.

⟨(Sk1. is0 (k1 5)) + (Sk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. ⟨x + (Sk2. b2s (k2 8))⟩/k1]⟩
= ⟨is0 ⟨5 + (Sk2. b2s (k2 8))⟩⟩
= ⟨is0 ⟨b2s (k2 8) [λx. ⟨5 + x⟩/k2]⟩⟩
= ⟨is0 ⟨b2s ⟨5 + 8⟩⟩⟩
= ⟨is0 ⟨b2s 13⟩⟩

FSCD 2021

12:4 A Functional Abstraction of Typed Invocation Contexts

Syntax

v ::= c | x | λx. e Values e ::= v | e e | Fk. e | ⟨e⟩ Expressions

Evaluation Contexts

E ::= [.] | E e | v E | ⟨E⟩ General Contexts
F ::= [.] | F e | v F Pure Contexts

Reduction Rules

E[(λx. e) v]⇝ E[e [v/x]] (β)
E[⟨F [Fk. e]⟩]⇝ E[⟨e [λx. F [x]/k]⟩] (F)

E[⟨v⟩]⇝ E[v] (P)

Figure 1 λF : A Calculus of control and prompt.

The second observation is that a trail of invocation contexts can be heterogeneous. In our
particular example, the first continuation k1 is called in a int-to-bool context, whereas the
second continuation k2 is called in a bool-to-string context. These are apparently distinct
types, and furthermore, the input and output types of each context are also different.

It turns out that our motivating example would be judged ill-typed by the existing type
system for control and prompt [26]. This is because the type system imposes the following
restrictions on the type of invocation contexts.

All invocation contexts within a prompt clause must have the same type.
For each invocation context, the input and output types must be the same.

We claim that, a fully general type system of control and prompt should be more flexible
about the type of invocation contexts. Now the question is: Is it possible to allow such
flexibility? Our answer is “yes”. As we will see in Section 5, we can build a type system that
accommodates invocation contexts having varying types, and that accepts our motivating
example as a well-typed program.

3 λF : A Calculus of control and prompt

In Figure 1, we present λF , a λ-calculus featuring the control and prompt operators.
The calculus has a separate syntactic category for values, which, in addition to variables
and abstractions, has a set of constants c, such as integers, booleans, and string literals.
Expressions consist of values, application, and delimited control constructs control and
prompt.

We equip λF with a call-by-value, left-to-right evaluation strategy. As is usual with
delimited control calculi, there are two groups of evaluation contexts: general contexts
(E) and pure contexts (F). Their difference is that general contexts may contain prompt
surrounding a hole, while pure contexts can never have such prompt. The distinction is used
in the reduction rule (F) of control, which says, control always captures the context up to
the nearest enclosing prompt. In the reduct, we see that the body of a captured continuation
is not surrounded by prompt, as we observed in the previous section. On the other hand, the
body of control is evaluated in a prompt clause. The reduction rule (P) for prompt simply
removes a delimiter surrounding a value.

Note that λF is currently presented as an untyped calculus. We will introduce types in
Section 5, according to the CPS translation to be defined in the next section.

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:5

Syntax

v ::= c | x | λx. e | () Values
e ::= v | e e | (case t of () ⇒ e | k ⇒ e) Expressions

Evaluation Contexts

E ::= [.] | E e | v E | (case E of () ⇒ e | k ⇒ e)

Reduction Rules

E[(λx. e) v]⇝ E[e [v/x]] (β)
E[case () of () ⇒ e1 | k ⇒ e2]⇝ E[e1] (case-())
E[case v of () ⇒ e1 | k ⇒ e2]⇝ E[e2 [v/k]] (case-k)

Figure 2 λC : Target Calculus of CPS Translation.

4 CPS Translation

As we mentioned earlier, the type system of a delimited control calculus is often derived
from a translation into continuation-passing style (CPS) [14]. When the source calculus has
control and prompt, a CPS translation exposes both continuations and trails of invocation
contexts. Trails can be represented either as a list of functions [8, 9] or as a composition
of functions [40]. While previous work [26] on typing control and prompt adopts the list
representation, we adopt the functional representation, as it fits better for the purpose of
building a general type system (see Section 5 for details).

4.1 λC: Target Calculus of CPS Translation

In Figure 2, we define the target calculus of the CPS translation, which we call λC . The
calculus is a pure, call-by-value λ-calculus featuring the unit value (), which represents an
empty trail, and a case analysis construct, which allows inspection of trails. Note that a
non-empty trail is represented as a regular function.

As in λF , we evaluate λC programs under a call-by-value, left-to-right strategy. The
particular choice of evaluation strategy is not necessary in our setting, but it is mandatory
if the source and target calculi of the CPS translation have non-control effects (such as
non-termination and I/O), because the result of the translation may have non-tail calls.

4.2 The CPS Translation

In Figure 3, we present the CPS translation J_K from λF to λC , which is equivalent to the
translation given by Shan [40]. The translation converts an expression into a function that
takes in a continuation k and a trail t. The trail is the composition of the invocation contexts
encountered so far, and is used together with a continuation to produce an answer (hence a
continuation now receives a trail). Below, we detail the translation of three representative
constructs: variables, prompt, and control.

FSCD 2021

12:6 A Functional Abstraction of Typed Invocation Contexts

Variables. The translation of a variable is an η-expanded version of the standard, call-by-
value translation. The trivial use of the current trail t communicates the fact that a variable
can never change the trail during evaluation. In general, the CPS translation of a pure
expression uniformly calls the continuation with an unmodified trail.

Prompt. The translation of prompt has the same structure as the translation of variables,
because prompt forms a pure expression. The translated body JeK is run with the identity
continuation kid and an empty trail ()1, describing the behavior of prompt as a control
delimiter. Note that, in this CPS translation, the identity continuation is not the identity
function. It receives a value v and a trail t, and behaves differently depending on whether
t is empty or not. When t is empty, the identity continuation simply returns v. When t

is non-empty, t must be a function composed of one or more invocation contexts, which
looks like λx. En[... E1[x] ...]. In this case, the identity continuation builds an expression
En[... E1[v] ...] by calling the trail with v and ().

Control. The translation of control shares the same pattern with the translation of
prompt, because its body is evaluated in a prompt clause (as defined by the (F) rule in
Figure 1). The translated body JeK is applied a substitution that replaces the variable c with
the trail t @ (k′ :: t′), describing how the trail is extended when a captured continuation is
invoked2. Recall that, in this CPS translation, trails are represented as functions. The @
and :: operators are thus defined as a function producing a function3. More specifically, these
operators compose contexts in a first-captured, first-called manner (as we can see from the
second clause of ::). Notice that :: is defined as a recursive function4. The reason is that,
when extending a trail t with a continuation k, we need to produce a function that takes in
a trail t′, which in turn must be composed with a continuation k′.

The CPS translation is correct with respect to the definitional abstract machine given by
Biernacka et al. [7]. The statement is proved by Shan [40], using the functional correspond-
ence [1] between evaluators and abstract machines.

As a last note, let us mention here that the alternative CPS translation of control and
prompt, where trails are represented as lists, can be obtained by replacing () with the empty
list, and the two operations @ and :: with ones that work on lists.

5 Type System

Having defined a CPS translation, we now derive a type system of λF . We proceed in
three steps. First, we specify the syntax of trail types (Section 5.1). Next, we identify
an appropriate form of typing judgment (Section 5.2). Lastly, we define the typing rules
of individual syntactic constructs (Section 5.3). In each step, we contrast our outcome
with its counterpart in Kameyama and Yonezawa’s [26] type system, showing how different
representations of trails in the CPS translation lead to different typing principles.

1 The identity continuation kid and the empty trail () correspond to the send function and the #f value
of Shan [40], respectively.

2 There is in fact a superficial difference between our CPS translation and Shan’s original translation [40].
In the rule for control, we replace the continuation variable c with the function λx. λk′. λt′. k x (t @ (k′ ::
t′)), while Shan replaces c with λx. λk′. λt′. (k :: t) x (k′ :: t′). However, by expanding the definition of
@ and ::, we can easily see that the two functions are equivalent. We prefer the one that uses @ because
it is closer to the abstract machine given by Biernacki et al. [9], as well as the list-based CPS translation
derived from it.

3 The :: function is equivalent to Shan’s compose function.
4 While recursive, the :: function is guaranteed to terminate, as the types of the two arguments become

smaller in every three successive recursive calls (or they reach the base case in fewer steps).

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:7

JcK = λk. λt. k c t

JxK = λk. λt. k x t

Jλx. eK = λk. λt. k (λx. λk′. λt′. JeK k′ t′) t

Je1 e2K = λk. λt. Je1K (λv1. λt1. Je2K (λv2. λt2. v1 v2 k t2) t1) t

JFc. eK = λk. λt. JeK [λx. λk′. λt′. k x (t @ (k′ :: t′))/c] kid ()
J⟨e⟩K = λk. λt. k (JeK kid ()) t

kid = λv. λt. case t of () ⇒ v | k ⇒ k v ()
@ = λt. λt′. case t of () ⇒ t′ | k ⇒ k :: t′

:: = λk. λt. case t of () ⇒ k | k′ ⇒ λv. λt′. k v (k′ :: t′)

Figure 3 CPS Translation of λF Expressions.

5.1 Syntax of Trail Types
Recall from Section 4.1 that, in λC , trails have two possible forms: () or a function.
Correspondingly, in λF , trail types µ are defined by a two-clause grammar: • | τ → ⟨µ⟩ τ ′.
The latter type is interpreted in the following way.

The trail accepts a value of type τ .
The trail is to be composed with a context of type µ.
After the composition, the trail produces a value of type τ ′.

Put differently, τ is the input type of the innermost invocation context, τ ′ is the output type
of the context to be composed in the future, and µ is the type of this future context.

To better understand non-empty trail types, let us revisit the example from Section 2.

⟨(Fk1. is0 (k1 5)) + (Fk2. b2s (k2 8))⟩
= ⟨is0 (k1 5) [λx. x + (Fk2. b2s (k2 8))/k1]⟩
= ⟨is0 (5 + (Fk2. b2s (k2 8)))⟩
= ⟨b2s (k2 8) [λx. is0 (5 + x)/k2]⟩
= ⟨b2s (is0 (5 + 8))⟩
= "false"

When the continuation k1 is invoked, the trail is extended with the context is0 [.]. This
context will be composed with the invocation context b2s [.] of k2 later in the reduction
sequence. Therefore, the trail at this point is given type int → ⟨bool → ⟨•⟩ string⟩ string,
consisting of the input type of is0, the type of b2s, and the output type of b2s.

When the continuation k2 is invoked, the trail is extended with the context b2s [.] (hence
the whole trail looks like b2s (is0 [.])). This context will not be composed with any further
contexts in the subsequent steps of reduction. Therefore, the trail at this point is given type
int → ⟨•⟩ string, consisting of the input type of is0, the type of an empty trail, and the
output type of b2s.

Observe that our trail types can be inhabited by heterogeneous trails, where the input
and output types of each invocation context may be different. The flexibility is exactly what
we wish a general type system of control and prompt to have, as we discussed in Section 2.

FSCD 2021

12:8 A Functional Abstraction of Typed Invocation Contexts

Comparison with Previous Work. In the CPS translation of Kameyama and Yonezawa [26],
a trail is treated as a list of invocation contexts. Such a list is given a recursive type Trail(ρ)
defined as follows:

Trail(ρ) = µX. list(ρ → X → ρ)

We can easily see that the definition restricts the type of invocation contexts in two ways.
First, all invocation contexts in a trail must have the same type. This is because lists are
homogeneous by definition. Second, each invocation context must have equal input and
output types. This is a direct consequence of the first restriction. The two restrictions
prevent one from invoking a continuation in a context such as is0 [.] or b2s [.]. Moreover, the
use of the list type makes empty and non-empty trails indistinguishable at the level of types,
and extension of trails undetectable in types. On the other hand, these limitations allow one
to use an ordinary expression type (such as int, instead of a type designed specifically for
trails) to encode the information of trails in the control/prompt calculus. That is, if a trail
has type Trail(ρ) in the target, it has type ρ in the source.

5.2 Typing Judgment
We next turn our attention to the typing of a CPS-translated expression. Suppose e is a λF
expression of type τ . In the general case, the CPS counterpart of e is typed in the following
way:

Jeτ K = λkτ→µα→α. λtµβ . e′β

Here, α and β are answer types, representing the return type of the enclosing prompt before
and after evaluation of e. It is well-known that delimited control can make the two answer
types distinct [14], and since they are needed for deciding the typability of programs, they
must be integrated into the typing judgment. The other pair of types, µβ and µα, are trail
types, representing the composition of invocation contexts encountered before and after
evaluation of e. As control can extend a given trail by invoking a captured continuation,
the two trail types may be different, and have to be integrated into the typing judgment.

Summing up the above discussion, we conclude that a fully general typing judgment for
control and prompt must carry five types, as follows:

Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β

We place the types in the same order as their appearance in the annotated CPS expression.
That is, the first three types τ , µα, and α correspond to the continuation of e, the next
one µβ represents the trail required by e, and the last one β stands for the eventual value
returned by e. We will hereafter call α and β initial and final answer types, and µβ and µα

initial and final trail types – be careful of the direction in which answer types and trail types
change.

With the typing judgment specified, we can define the syntax of expression types in λF
(Figure 4). Expression types are formed with base types ι (such as int and bool) and arrow
types τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β. Notice that the codomain of arrow types carries five components.
These types represent the control effect of a function’s body, and correspond exactly to the
five types that appear in a typing judgment.

Comparison with Previous Work. In the type system developed by Kameyama and Yonez-
awa [26], a CPS-translated expression is typed in the following way:

λkτ→Trail(ρ)→α. λtTrail(ρ). e′β

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:9

It is obvious that the typing is not as general as ours, since the two trail types are equal.
This constraint is imposed by the list representation of trails: since a list type is insensitive
to extension, we can always use a trail of the same type for the evaluation of e and the rest
of the computation. Thus, Kameyama and Yonezawa arrive at a typing judgment carrying
four types, with the last one (ρ) representing the information of trails:

Γ ⊢ e : τ, α, β/ρ

Correspondingly, they assign source functions an arrow type of the form τ1 → τ2, α, β/ρ.

5.3 Typing Rules
Now we are ready to define the typing rules of λF (Figure 4). As in the previous section, we
elaborate the typing rules of variables, prompt, and control.

Variables. Recall that the CPS translation of variables is an η-expanded version of the
standard translation. If we annotate the types of each subexpression, a translated variable
would look like:

λkτ→µα→α. λtµα . (k x t)α

We see duplicate occurrences of the answer type α and the trail type µα. The duplication
arises from the application k x t, and reflects the fact that a variable cannot change the
answer type or the trail type. By a straightforward conversion from the annotated expression
into a typing judgment, we obtain rule (Var) in Figure 4. In general, when the subject of a
typing judgment is a pure construct, the answer types and trail types both coincide.

Prompt. We next analyze the CPS translation of prompt, again with type annotations.

λkτ→µα→α. λtµα . (k (JeK(β→µid→β′)→•→τ kid ()) t)α

As ⟨e⟩ is a pure expression, we again have equal answer types α and trail types µα for the
whole expression. The initial trail type • and final answer type τ of e are determined by
the application JeK kid () and k (JeK kid ()), respectively. What is left is to ensure that the
application of JeK to the identity continuation kid is type-safe. In our type system, we use
a relation is-id-trail(τ, µ, τ ′) to ensure this type safety. The relation holds when the type
τ → µ → τ ′ can be assigned to the identity continuation. The valid combination of τ , µ, and
τ ′ is derived from the definition of the identity continuation, repeated below:

λvτ . λtµ. case t of () ⇒ vτ ′
| k ⇒ (k v ())τ ′

When t is an empty trail () of type •, the return value of kid is v, which has type τ . Since
the expected return type of kid is τ ′, we need the equality τ ≡ τ ′.

When t is a non-empty trail k of type τ1 → µ → τ1
′, the return value of kid is the result

of the application k v (), which has type τ1
′. Since the expected return type of kid is τ ′, we

need the equality τ ′ ≡ τ1
′. Furthermore, since k must accept v and () as arguments, we need

the equalities τ ≡ τ1 and µ ≡ •.
We define is-id-trail as an encoding of these constraints, and in the rule (Prompt), we

use is-id-trail(β, µid, β′) to constrain the type of the continuation of e. Now, it is statically
guaranteed that e can be safely evaluated in an empty context.

FSCD 2021

12:10 A Functional Abstraction of Typed Invocation Contexts

Syntax of Types

τ, α, β ::= ι | τ → τ ⟨µα⟩ α ⟨µβ⟩ β Expression Types
µ, µα, µβ ::= • | τ → ⟨µ⟩ τ Trail Types

Typing Rules Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β

c : ι ∈ Σ
Γ ⊢ c : ι ⟨µα⟩ α ⟨µα⟩ α

(Const)
x : τ ∈ Γ

Γ ⊢ x : τ ⟨µα⟩ α ⟨µα⟩ α
(Var)

Γ, x : τ1 ⊢ e : τ2 ⟨µα⟩ α ⟨µβ⟩ β

Γ ⊢ λx. e : (τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β) ⟨µγ⟩ γ ⟨µγ⟩ γ
(Abs)

Γ ⊢ e1 : (τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β) ⟨µγ⟩ γ ⟨µδ⟩ δ

Γ ⊢ e2 : τ1 ⟨µβ⟩ β ⟨µγ⟩ γ

Γ ⊢ e1 e2 : τ2 ⟨µα⟩ α ⟨µδ⟩ δ
(App)

Γ, k : τ → τ1 ⟨µ1⟩ τ1
′ ⟨µ2⟩ α ⊢ e : γ ⟨µid⟩ γ′ ⟨•⟩ β

is-id-trail(γ, µid, γ′)
compatible((τ1 → ⟨µ1⟩ τ1

′), µ2, µ0)
compatible(µβ , µ0, µα)

Γ ⊢ Fk. e : τ ⟨µα⟩ α ⟨µβ⟩ β
(Control)

Γ ⊢ e : β ⟨µid⟩ β′ ⟨•⟩ τ

is-id-trail(β, µid, β′)
Γ ⊢ ⟨e⟩ : τ ⟨µα⟩ α ⟨µα⟩ α

(Prompt)

Auxiliary Relations

is-id-trail(τ, •, τ ′) = τ ≡ τ ′

(first branch of kid in Figure 3)
is-id-trail(τ, (τ1 → ⟨µ⟩ τ ′

1), τ ′) = (τ ≡ τ1) ∧ (τ ′ ≡ τ ′
1) ∧ (µ ≡ •)

(second branch of kid in Figure 3)

compatible(•, µ2, µ3) = µ2 ≡ µ3

(first branch of @ in Figure 3)
compatible(µ1, •, µ3) = µ1 ≡ µ3

(first branch of :: in Figure 3)
compatible((τ1 → ⟨µ1⟩ τ ′

1), µ2, •) = ⊥
(no counterpart in Figure 3)

compatible((τ1 → ⟨µ1⟩ τ ′
1), µ2, (τ3 → ⟨µ3⟩ τ ′

3)) = (τ1 ≡ τ3) ∧ (τ ′
1 ≡ τ ′

3) ∧ (compatible(µ2, µ3, µ1))
(second branch of :: in Figure 3)

Figure 4 Type System of λF . We assume a global signature Σ mapping constants to base types.

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:11

Control. Lastly, we apply the same method to control. Here is the annotated CPS
translation:

λkτ→µα→α. λtµβ . JeK(γ→µid→γ′)→•→β [λxτ . λk′τ1→µ1→τ1
′

. λt′µ2 . k x (t @ (k′ :: t′)µ0)/c] kid ()

As the body e of control is evaluated in a prompt clause, we again have an empty initial
trail type for e, and we know that the types γ, µid, and γ′ must satisfy the is-id-trail relation.
What is left is to ensure that the composition of contexts in t @ (k′ :: t′) is type-safe. In
our type system, we use a relation compatible(µ1, µ2, µ3) to ensure this type safety. The
relation holds when composing a context of type µ1 and another context of type µ2 results
in a context of type µ3. Intuitively, the relation can be thought of as an addition over trail
types, and the valid combination of µ1, µ2, and µ3 is derived from the definition of the @
and :: functions.

tµ1 @ t′µ2 = case t of () ⇒ t′µ3 | k ⇒ (k :: t′)µ3

kτ1→µ1→τ1
′

:: tµ2 = case t of () ⇒ kτ3→µ3→τ3
′

| k′ ⇒ (λv. λt′. k v (k′ :: t′))τ3→µ3→τ3
′

The first clause of @ and that of :: are straightforward: they tell us that the empty trail
type • serves as the left and right identity of the addition.

The second clause of :: requires more careful reasoning. The return value of this case is
the result of the application k v (k′ :: t′), which has type τ1

′. Since the expected return type
of :: is τ3

′, we need the equality τ1
′ ≡ τ3

′. Moreover, since k must accept v and k′ :: t′ as
arguments, we need the equality τ1 ≡ τ3, as well as a recursive use of compatible, where the
third type is µ1.

The definition of @ and :: further tells us that, when either of their arguments is non-
empty, the result of composition cannot be an empty trail. In terms of types, this can be
rephrased as: when one of µ1 and µ2 is an arrow type, µ3 cannot be the empty trail type.

We define compatible as an encoding of these constraints, and in the (Control) rule, we
use two instances of this relation to constrain the type of contexts appearing in t @ (k′ :: t′).
Among the two instances, the first one compatible((τ1 → ⟨µ1⟩ τ1

′), µ2, µ0) states that consing
k′ to t′ is type-safe, and the result has type µ0. The second one compatible(µβ , µ0, µα) states
that appending t to k′ :: t′ is type-safe, and the result has type µα, which is required by the
continuation k of the whole control expression.

Comparison with Previous Work. In the type system of Kameyama and Yonezawa [26],
the typing rules for control and prompt are defined as follows:

Γ, k : τ → ρ, ρ, α/ρ ⊢ e : γ, γ, β/γ

Γ ⊢ Fk. e : τ, α, β/ρ
(Control)

Γ ⊢ e : ρ, ρ, τ/ρ

Γ ⊢ ⟨e⟩ : τ, α, α/σ
(Prompt)

The rules are simpler than the corresponding rules in our type system. In particular, there is
no equivalent of is-id-trail or compatible, since the homogeneous nature of trails makes those
relations trivial. Note that the input and output types shared among invocation contexts
come from the body of prompt, namely the first occurrence of ρ in the premise of (Prompt).

5.4 Typing Motivating Example
We now show that the motivating example discussed in Section 2 is judged well-typed in
λF

5. The well-typedness of the whole program largely relies on the well-typedness of the
two control constructs, so let us look at the typing of these constructs:

5 Our online artifact includes an Agda implementation of this example (exp4 in lambdaf.agda).

FSCD 2021

12:12 A Functional Abstraction of Typed Invocation Contexts

⊢ Fk1. is0 (k1 5) : int ⟨µ1⟩ string ⟨•⟩ string

⊢ Fk2. b2s (k2 8) : int ⟨µ2⟩ string ⟨µ1⟩ string

For brevity, we write µ1 to mean int → ⟨bool → ⟨•⟩ string⟩ string, and µ2 to mean
int → ⟨•⟩ string. We can see how the trail type changes from empty (•), to one that refers
to a future context (µ1), and to one that mentions no further context (µ2). In particular, µ2
is the result of “adding” µ1 and the type of b2s [.]; that is, the invocation of k2 discharges
the future context awaited by is0 [.]. The trail type µ2 serves as the final trail type of the
body of the enclosing prompt, and as it allows us to establish the is-id-trail relation required
by (Prompt), we can conclude that the whole program is well-typed.

6 Properties

The type system of λF enjoys various pleasant properties. First, the type system is sound,
that is, well-typed programs do not go wrong [33]. Following Wright and Felleisen [42], we
prove type soundness via the preservation and progress theorems.

▶ Theorem 1 (Preservation). If Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β and e ⇝ e′, then Γ ⊢ e′ :
τ ⟨µα⟩ α ⟨µβ⟩ β.

Proof. The proof is by induction on the typing derivation, and is formalized in Agda
(the Reduce relation in lambdaf-red.agda). Note that, to prove type preservation of the
control reduction (rule (F) in Figure 1), we need to define a set of typing rules for evaluation
contexts. ◀

▶ Theorem 2 (Progress). If • ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β, then either (i) e is a value, (ii) e takes a
step, or (iii) e is a stuck term of the form F [Fk. e′].

Proof. The proof is by induction on the typing derivation. The third alternative is commonly
found in the progress property of effectful calculi [3, 43]. We can remove this alternative
by refining our type system to one that can decide the purity of an expression; with this
refinement, we can state the usual progress theorem for pure expressions (which include
top-level programs). ◀

▶ Theorem 3 (Type Soundness). If • ⊢ ⟨e⟩ : τ ⟨µα⟩ α ⟨µα⟩ α, then evaluation of ⟨e⟩ does not
get stuck.

Proof. The statement is a direct implication of preservation and progress. The need for the
top-level prompt stems from the fact that a well-typed, closed expression may be a stuck
term (corresponding to the third clause of the progress theorem). ◀

Secondly, our CPS translation preserves typing, i.e., it converts a well-typed λF expression
into a well-typed λC expression. To establish this theorem, we define the type system of λC

(Figure 5) and a CPS translation ∗ on λF types (Figure 6).
Let us elaborate on rule (Case) in Figure 5, which is the only non-trivial typing rule.

This rule is used to type the case analysis construct in the three auxiliary functions of
the CPS translation, namely kid, @, and ::. Unlike the standard typing rule for case
analysis, rule (Case) type-checks the two branches using equality assumptions µ ≡ • and

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:13

Syntax of Types

τ = ι | τ → τ | •

Typing Rules

c : ι ∈ Σ
Γ ⊢ x : ι

(Const)
x : τ ∈ Γ
Γ ⊢ x : τ

(Var)
Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 → τ2
(Abs)

Γ ⊢ () : •
(Unit)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(App)

Γ ⊢ t : µ∗ Γ, µ ≡ • ⊢ e1 : τ

∀τ1, µ1, τ1
′. Γ, k : µ∗, µ ≡ τ1 → ⟨µ1⟩ τ1

′ ⊢ e2 : τ

Γ ⊢ case t of () ⇒ e1 | k ⇒ e2 : τ
(Case)

Figure 5 Type System of λC . We assume a global signature Σ mapping constants to base types.

µ ≡ τ1 → ⟨µ1⟩ τ1
′6. These assumptions, together with the is-id-trail and compatible relations,

allow us to fill in the gap between the expected and actual return types. To see how the
assumptions work, consider the typing of kid:

λvτ . λtµ. case t of () ⇒ vτ ′
| k ⇒ (k v ())τ ′

In the first branch, we see an inconsistency between the expected return type τ ′ and the
actual return type τ . However, by the typing rules defined in Figure 4, we know that kid

is used only when the relation is-id-trail(τ, µ, τ ′) holds, and that if µ ≡ •, we have τ ≡ τ ′.
The equality assumption µ ≡ • made available by rule (Case) allows us to derive τ ≡ τ ′

and conclude that the first branch has the correct type. Similarly, in the second branch, we
use the equality assumption µ ≡ τ1 → ⟨µ1⟩ τ ′

1 to derive τ ≡ τ1, τ ′ ≡ τ ′
1, and µ1 ≡ •, which

imply the well-typedness of the application k v (). The @ and :: functions can be typed in
an analogous way.

▶ Theorem 4 (Type Preservation of CPS Translation). If Γ ⊢ e : τ ⟨µα⟩ α ⟨µβ⟩ β in λF , then
Γ∗ ⊢ JeK : (τ∗ → µ∗

α → α∗) → µ∗
β → β∗ in λC .

Proof. The proof is by induction on the typing derivation, and is formalized in Agda (the
cpse function in cps.agda). With the carefully designed rule for case analysis, we can prove
the statement in a straightforward manner, as our type system is directly derived from the
CPS translation. ◀

Thirdly, and most interestingly, our type system enjoys termination.

6 The use of equality assumptions in (Case) is inspired by dependent pattern matching [12] available
in dependently typed languages. Our case analysis is weaker than the dependent variant, in that the
return type only depends on the type of the scrutinee, not on the scrutinee itself.

FSCD 2021

12:14 A Functional Abstraction of Typed Invocation Contexts

Translation of Expression Types

ι∗ = ι

(τ1 → τ2 ⟨µα⟩ α ⟨µβ⟩ β)∗ = τ∗
1 → (τ∗

2 → µ∗
α → α∗) → µ∗

β → β∗

Translation of Trail Types

•∗ = •
(τ → ⟨µ⟩ τ ′)∗ = τ∗ → µ∗ → τ ′∗

Figure 6 CPS Translation of λF Types.

▶ Theorem 5 (Termination). If Γ ⊢ e : τ ⟨•⟩ α ⟨•⟩ α, then there exists some value v such that
e⇝∗ v, where ⇝∗ is the reflexive, transitive closure of ⇝ defined in Figure 1.

Proof. The statement is witnessed by a CPS interpreter of λF implemented in Agda (the
go function in lambdaf.agda). Since every well-typed Agda program terminates, and
since our interpreter is judged well-typed, we know that evaluation of λF expressions must
terminate. ◀

The termination property is unique to our type system. In the existing type system of
Kameyama and Yonezawa [26], it is possible to write a well-typed program that does not
evaluate to a value, as shown below:

⟨(Fk1. k1 1; k1 1); (Fk2. k2 1; k2 1)⟩
= ⟨k1 1; k1 1 [λx. x; (Fk2. k2 1; k2 1)/k1]⟩
= ⟨(Fk2. k2 1; k2 1); ((λx. x; (Fk2. k2 1; k2 1)) 1)⟩
= ⟨k2 1; k2 1 [λy. y; (λx. x; (Fk2. k2 1; k2 1)) 1/k2]⟩
= ⟨(Fk2. k2 1; k2 1); (λy. y; (λx. x; (Fk2. k2 1; k2 1)) 1) 1⟩
= ...

We see that the two succeeding invocations of captured continuations result in duplication of
control, leading to a looping behavior.

The well-typedness of the above program in Kameyama and Yonezawa’s type system is
due to the limited expressiveness of trail types. More precisely, their trail types are mere
expression types, which carry no information about the type of contexts to be composed in
the future. In our type system, on the other hand, trail types explicitly mention the type of
future contexts. This prevents us from duplicating expressions forever, which in turn allows
us to statically reject the above looping program.

7 Related Work

Variations of Control Operators. There are four variants of delimited control operators
in the style of control and prompt, differing in whether the control operator keeps the
surrounding delimiter, and whether it inserts a delimiter into the captured continuation [16].

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:15

Among those variants, shift and reset [15] are called static, as the extent of a captured
continuation can always be determined from the lexical structure of the program. Other
variants are all dynamic, since the control operator may capture the invocation contexts of
previously captured continuations (as control does), or the meta-contexts outside of the
original innermost delimiter (as shift0 [32] does), or both kinds of contexts (as control0 [16]
does). Dynamic control operators all have a semantics that involves a trail-like structure,
containing the contexts beyond the lexically enclosing one.

Type Systems for Control Operators. The CPS-based approach to designing type systems
has been applied to several variants of delimited control operators, including shift/reset [14,
3], control/prompt [26], and shift0/prompt0 [32]. While Danvy and Filinski [14] consider
all expressions as effectful (like we do), subsequent studies distinguish between pure and
effectful expressions. This is typically done by not mentioning the answer type (and trail
type) of syntactically pure expressions. Having pure expressions makes more programs
typable [3, 26, 32], and allows more efficient compilation via a selective CPS translation [37,
32, 4].

Algebraic Effects and Handlers. In the past decade, algebraic effects and handlers [6, 36]
have become a popular tool for handling delimited continuations. A prominent feature of
effect handlers is that a captured continuation is used at the delimiter site. This makes
it unnecessary to keep track of answer types in the type system, as we can decide within
a handler whether the use of a continuation is consistent with the actual context. The
irrelevance of answer types in turn makes the connection between the type system and CPS
translation looser. Indeed, type systems of effect handlers [5, 27] existed before their CPS
semantics [29, 24, 23]. Also, type-preserving CPS translation of effect handlers is an open
problem in the community [23].

8 Conclusion and Future Work

In this paper, we show how to derive a general type system for the control and prompt
operators. The main idea is to identify all the typing constraints from a CPS translation,
where trails are represented as a composition of functions.

The present study is part of a long-term project on formalizing delimited control facilities
whose theory is not yet fully developed. In the rest of this section, we describe several
directions for future work.

Implementation. Having designed a type system for control and prompt, a natural next
step is to implement a language based on the type system. To make the language practical,
we need to address the following challenges. First, we must extend our type system with a
form of effect polymorphism or subtyping [26, 32], in order to allow a function or continuation
to be called in different contexts. We are currently attempting to adapt Kameyama and
Yonezawa’s treatment of trail polymorphism to a setting where every typing judgment carries
two trail types. Second, we need to design an algorithm for type inference and type checking.
We conjecture that answer types can be left implicit in the user program, because it is the
case in a calculus featuring shift and reset [3]. On the other hand, we anticipate that some
of the trail types need to be explicitly given by the user, as it does not seem always possible
to synthesize the intermediate trail types (µ0, τ1 → ⟨µ1⟩ τ1

′, and µ2) in the (Control) rule.
Once we have done these, we will develop an implementation (possibly as an extension of
OchaCaml [30]) and experiment with various programs from the continuations literature.

FSCD 2021

12:16 A Functional Abstraction of Typed Invocation Contexts

Equational Theory. The semantics of control and prompt is currently given in the form of
a CPS translation or an abstract machine [40, 9]. A more direct approach to specifying the
semantics of these operators is to establish an equational theory, that is, we identify a set of
equations that are sound and complete with respect to the existing semantics. Such equations
are particularly useful for compilation: for instance, they enable converting an optimization
in a CPS compiler into a rewrite in a direct-style (DS) program [38]. We intend to develop
an equational theory for control and prompt, following previous studies on call/cc [38],
shift/reset [25], and shift0/reset0 [31].

Reflection. An equational theory can be strengthened to a reflection [39] by defining a DS
translation that serves as a left inverse of the CPS translation. Having a reflection means
every reduction in the DS calculus has a corresponding reduction in the CPS calculus, and
vice versa. We seek to establish a reflection for control and prompt, by extending Biernacki
et al.’s [11] reflection for shift and reset.

Control0/Prompt0 and Shallow Effect Handlers. The control0 and prompt0 operators
are a variation of control and prompt that remove the matching delimiter upon capturing
of a continuation (which is a feature of shift0 and reset0). We plan to formalize a typed
calculus of control0/prompt0, as well as their equational theory, by combining the insights
from our work on control/prompt and previous studies on shift0/reset0 [32, 31]. As shown
by Piróg et al. [35], there exists a pair of macro translations [17] between control0/prompt0
and shallow effect handlers [22]. Therefore, an equational theory for control0/prompt0
could potentially serve as a stepping stone to optimization of shallow handlers, which has
not yet been explored [43].

References
1 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corres-

pondence between evaluators and abstract machines. In Proceedings of the 5th ACM SIGPLAN
International Conference on Principles and Practice of Declaritive Programming, PPDP ’03,
pages 8–19, New York, NY, USA, 2003. ACM. doi:10.1145/888251.888254.

2 Kenichi Asai, Youyou Cong, and Chiaki Ishio. A functional abstraction of typed trails.
Short paper presented at the ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation (PEPM 2021), 2021.

3 Kenichi Asai and Yukiyoshi Kameyama. Polymorphic delimited continuations. In Proceedings
of the 5th Asian Conference on Programming Languages and Systems, APLAS’07, pages
239–254, Berlin, Heidelberg, 2007. Springer-Verlag.

4 Kenichi Asai and Chihiro Uehara. Selective CPS transformation for shift and reset. In
Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
PEPM ’18, pages 40–52, New York, NY, USA, December 2017. ACM. doi:10.1145/3162069.

5 Andrej Bauer and Matija Pretnar. An effect system for algebraic effects and handlers. In
Reiko Heckel and Stefan Milius, editors, Algebra and Coalgebra in Computer Science, pages
1–16, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

6 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. Journal
of Logical and Algebraic Methods in Programming, 84(1):108–123, 2015.

7 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational foundation for
delimited continuations in the CPS hierarchy. Logical Methods in Computer Science, 1, 2005.

8 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing style
for dynamic delimited continuations. BRICS Report Series, 13(15), 2006.

https://doi.org/10.1145/888251.888254
https://doi.org/10.1145/3162069

Y. Cong, C. Ishio, K. Honda, and K. Asai 12:17

9 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-passing
style for dynamic delimited continuations. ACM Trans. Program. Lang. Syst., 38(1), 2015.
doi:10.1145/2794078.

10 Dariusz Biernacki, Olivier Danvy, and Chung-chieh Shan. On the static and dynamic extents
of delimited continuations. Science of Computer Programming, 60(3):274–297, 2006.

11 Dariusz Biernacki, Mateusz Pyzik, and Filip Sieczkowski. A reflection on continuation-
composing style. In Proceedings of 5th International Conference on Formal Structures for
Computation and Deduction, FSCD ’20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2020.

12 Thierry Coquand. Pattern matching with dependent types. In Proceedings of the Third
Workshop on Logical Frameworks, 1992.

13 Olivier Danvy. Type-directed partial evaluation. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’96, pages 242–257.
ACM, 1996.

14 Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. BRICS 89/12,
1989.

15 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 151–160. ACM, 1990.

16 R. Kent Dyvbig, Simon Peyton Jones, and Amr Sabry. A monadic framework for de-
limited continuations. J. Funct. Program., 17(6):687–730, November 2007. doi:10.1017/
S0956796807006259.

17 Matthias Felleisen. On the expressive power of programming languages. In Selected Papers
from the Symposium on 3rd European Symposium on Programming, ESOP ’90, pages 35–75,
New York, NY, USA, 1991. Elsevier North-Holland, Inc.

18 Mattias Felleisen. The theory and practice of first-class prompts. In Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88,
pages 180–190, New York, NY, USA, 1988. ACM. doi:10.1145/73560.73576.

19 Andrzej Filinski. Representing monads. In Proceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’94, pages 446–457, New York,
NY, USA, 1994. ACM. doi:10.1145/174675.178047.

20 Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expressive power
of user-defined effects: Effect handlers, monadic reflection, delimited control. Proc. ACM
Program. Lang., 1(ICFP):13:1–13:29, August 2017. doi:10.1145/3110257.

21 Carl A. Gunter, Didier Rémy, and Jon G. Riecke. A generalization of exceptions and control
in ML-like languages. In Proceedings of the Seventh International Conference on Functional
Programming Languages and Computer Architecture, FPCA ’95, pages 12–23, New York, NY,
USA, 1995. ACM. doi:10.1145/224164.224173.

22 Daniel Hillerström and Sam Lindley. Shallow effect handlers. In Asian Symposium on
Programming Languages and Systems, APLAS ’18, pages 415–435. Springer, 2018.

23 Daniel Hillerström, Sam Lindley, and Robert Atkey. Effect handlers via generalised continu-
ations. Journal of Functional Programming, 30, 2020. doi:10.1017/S0956796820000040.

24 Daniel Hillerström, Sam Lindley, Robert Atkey, and KC Sivaramakrishnan. Continuation
passing style for effect handlers. In Proceedings of 2nd International Conference on Formal
Structures for Computation and Deduction, FSCD ’17, pages 18:1–18:19. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2017.

25 Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiomatization of
delimited continuations. In Proceedings of the 8th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’03, pages 177–188. ACM, 2003.

26 Yukiyoshi Kameyama and Takuo Yonezawa. Typed dynamic control operators for delimited
continuations. In International Symposium on Functional and Logic Programming, FLOPS
’08, pages 239–254. Springer, 2008.

FSCD 2021

https://doi.org/10.1145/2794078
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1017/S0956796807006259
https://doi.org/10.1145/73560.73576
https://doi.org/10.1145/174675.178047
https://doi.org/10.1145/3110257
https://doi.org/10.1145/224164.224173
https://doi.org/10.1017/S0956796820000040

12:18 A Functional Abstraction of Typed Invocation Contexts

27 Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP ’13, pages
145–158, New York, NY, USA, 2013. ACM. doi:10.1145/2500365.2500590.

28 Oleg Kiselyov and K. C. Sivaramakrishnan. Eff directly in ocaml. In ML Workshop, 2016.
29 Daan Leijen. Type directed compilation of row-typed algebraic effects. In Proceedings of the

44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL ’17, pages
486–499, New York, NY, USA, 2017. ACM. doi:10.1145/3009837.3009872.

30 Moe Masuko and Kenichi Asai. Caml Light+ shift/reset= Caml Shift. In Theory and Practice
of Delimited Continuations, TPDC ’11, pages 33–46, 2011.

31 Marek Materzok. Axiomatizing subtyped delimited continuations. In Computer Science Logic
2013, CSL 2013. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

32 Marek Materzok and Dariusz Biernacki. Subtyping delimited continuations. In Proceedings of
the 16th ACM SIGPLAN International Conference on Functional Programming, ICFP ’11,
pages 81–93, New York, NY, USA, 2011. ACM. doi:10.1145/2034773.2034786.

33 Robin Milner. A theory of type polymorphism in programming. Journal of computer and
system sciences, 17(3):348–375, 1978.

34 Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology, 2007.

35 Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Typed equivalence of effect handlers and
delimited control. In 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

36 Gordon Plotkin and Matija Pretnar. Handlers of algebraic effects. In European Symposium on
Programming, ESOP ’09, pages 80–94. Springer, 2009.

37 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform. In Proceedings of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’09, pages 317–328,
New York, NY, USA, 2009. ACM. doi:10.1145/1596550.1596596.

38 Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-passing style.
Lisp and symbolic computation, 6(3):289–360, 1993.

39 Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM transactions on programming
languages and systems (TOPLAS), 19(6):916–941, 1997.

40 Chung-chieh Shan. A static simulation of dynamic delimited control. Higher-Order and
Symbolic Computation, 20(4):371–401, 2007.

41 Fei Wang, Daniel Zheng, James Decker, Xilun Wu, Grégory M Essertel, and Tiark Rompf.
Demystifying differentiable programming: Shift/reset the penultimate backpropagator. Pro-
ceedings of the ACM on Programming Languages, 3(ICFP):1–31, 2019.

42 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and computation, 115(1):38–94, 1994.

43 Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and
Daan Leijen. Effect handlers, evidently. Proceedings of the ACM on Programming Languages,
4(ICFP):1–29, 2020. doi:10.1145/3408981.

https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/2034773.2034786
https://doi.org/10.1145/1596550.1596596
https://doi.org/10.1145/3408981

	1 Introduction
	2 Control and Prompt
	3 lambda_F: A Calculus of control and prompt
	4 CPS Translation
	4.1 lambda_C: Target Calculus of CPS Translation
	4.2 The CPS Translation

	5 Type System
	5.1 Syntax of Trail Types
	5.2 Typing Judgment
	5.3 Typing Rules
	5.4 Typing Motivating Example

	6 Properties
	7 Related Work
	8 Conclusion and Future Work

