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Abstract
In this paper we consider the intuitionistic sentential calculus with Suszko’s identity (ISCI). After
recalling the basic concepts of the logic and its associated Hilbert proof system, we introduce a
new sound and complete class of models for ISCI which can be viewed as algebraic counterparts
(and extensions) of sheaf-theoretic topological models of intuitionistic logic. We use this new class
of models, called Beth semantics for ISCI, to derive a first labelled sequent calculus and show its
adequacy w.r.t. the standard Hilbert axiomatization of ISCI. This labelled proof system, like all
other current proof systems for ISCI that we know of, does not enjoy the subformula property,
which is problematic for achieving termination. We therefore introduce a second labelled sequent
calculus in which the standard rules for identity are replaced with new special rules and show that
this second calculus admits cut-elimination. Finally, using a key regularity property of the forcing
relation in Beth models, we show that the eigenvariable condition can be dropped, thus leading to
the termination and decidability results.
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1 Introduction

In this paper we consider the intuitionistic sentential calculus with identity (ISCI) which
extends intuitionistic logic with Suszko’s identity operator ≈ introduced in [12] for non-
Fregean logics, and studied in the context of classical logic in [9] and [1].

Under the usual Fregean interpretation, the question of the equivalence of two formulas
reduces to the problem of asking whether or not they have the same logical value. In presence
of the non-truth functional identity operator, the rejection of the Fregean axiom makes
it possible for two logically equivalent formulas to be considered non-identical in Suszko’s
sense. The philosophical motivation behind the Sentential Calculus with Identity (SCI) is
related to the ontology of situations. In classical logic, only two situations are possible: truth
and falsity, and truth (resp. falsity) is described and witnessed by any true (resp. false)
proposition. According to [1], this is unfortunate and could be remedied by allowing a new
identity connective ≈ to describe and witness the fact that two propositions denote the same
situation. From this point of view, SCI can be considered as a generalization of classical logic
in which we assume that there are more than (and at least) two different situations [7, 9].

In this paper, our aim is to revisit the interpretation of the identity connective on the
grounds of intuitionistic logic [3] and to propose a new labelled sequent calculus with good
properties like termination from which we can obtain the decidability of the logic. Related
works include sequent calculi for both the classical and intuitionistic variants of SCI [2]. Such
sequent calculi are obtained following the strategy described in [10] and do not have the
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13:2 Beth Semantics and Labelled Deduction for ISCI

subformula property. They have been compared with other proof systems for SCI [6, 13]
but cannot lead to a decidability procedure for SCI [2]. In the case of the intuitionistic
version ISCI, there exists an initial algebraic semantics that combines the ideas of the matrix
semantics for sentential calculi with the Kripke semantics of intuitionistic logic. An Hilbert
proof system is provided in [9]. A Kripke semantics for ISCI is introduced in [3] along with a
sequent calculus for which cut elimination holds. However, since the sequent calculus is not
analytic, the cut elimination theorem does not provide a decidability argument.

In Section 2 we introduce ISCI and its standard Hilbert calculus HISCI. In Section 3,
we propose a new class of models for ISCI, called Beth semantics, which can be viewed as
algebraic counterparts (and extensions) of sheaf-theoretic topological models of intuitionistic
logic. We first show that general Beth models are complete w.r.t. HISCI (Th. 11). Then, we
define the more specific class of regular Beth models and show that they are also complete
w.r.t. HISCI (Th. 14). In Section 4, we introduce a first labelled calculus L1ec

ISCI which is proved
complete w.r.t. HISCI (Th. 22) and also w.r.t. Beth models (Th. 23). In Section 5, we derive a
second labelled calculus L2ec

ISCI with new rules for identity and show that L2ec
ISCI is also complete

w.r.t. HISCI (Th. 25) and w.r.t. Beth models (Th. 26), but more interestingly, we show that
any L1ec

ISCI-proof can be translated into an L2ec
ISCI-proof (Th. 27). Moreover, we show that cut

is admissible in L2ec
ISCI, leading to the cut-free labelled calculus L2e

ISCI (Th. 33). In Section 6,
we derive L2

ISCI, a liberalized variant of L2e
ISCI in which the eigenvariable condition can be

dropped. We show the soundness of L2
ISCI w.r.t. regular Beth models (Th. 40), which implies

the soundness of regular Beth models w.r.t. HISCI and the soundness of all our labelled calculi
w.r.t. regular Beth models, as depicted and summarized in the picture below

⊨A ⊢HISCI A
Th. 11

⊨r A

⊢L1ec
ISCI ATh. 22 ⊢L2ec

ISCI ATh. 27 ⊢L2e
ISCI ATh. 33 ⊢L2

ISCI ATh. 34

Th. 40Th. 14

Finally, we discuss and give arguments for the termination of L2
ISCI, from which we deduce

the decidability of ISCI.

2 Intuitionistic Sentential Calculus with Identity

In this section, we recall the basic notions of intuitionistic sentential calculus with Suszko’s
identity (ISCI) [9, 12]. ISCI extends propositional intuitionistic logic by adding a set of
axioms that formalizes the non-truth functional nature of the identity connective ≈. The
Hilbert-style system for ISCI [3, 9] is introduced and illustrated with examples.

▶ Definition 1. Let P = { p, q, . . . } be a countable set of propositional letters. The formulas
of ISCI, the set of which is denoted F, are given by the grammar:

A ::= P | ⊥ | A ∧ A | A ∨ A | A ⊃ A | A ≈ A

Formulas of the form A ≈ B are called equations. We write F/≈ for the restriction of F
to equations. Negation ¬A and truth ⊤ are respectively defined as A ⊃ ⊥ and ⊥ ⊃ ⊥.
To reduce the amount of parentheses, we interpret connectives up to left associativity
according to the following strictly decreasing order of precedence: ¬, ≈, ∧, ∨, ⊃. Therefore,
A ∧ B ∧ A ∨ C ⊃ ¬A ≈ B ⊃ C means ((((A ∧ B) ∧ A) ∨ C) ⊃ ((¬A) ≈ B)) ⊃ C.

ISCI can be axiomatized by adding the four identity axioms described in Figure 1 to
any axiom schemata for intuitionistic logic (IL). We call “HISCI” the Hilbert proof system
consisting of the four axioms for identity, the ten axioms for IL and the rule of modus
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(≈1) A ≈ A
(≈2) (A ≈ B) ⊃ (¬A ≈ ¬B)
(≈3) (A ≈ B) ⊃ (B ⊃ A)
(≈4) (A ≈ B) ∧ (C ≈ D) ⊃ (A ⊗ C) ≈ (B ⊗ D) where ⊗ ∈ { ∧, ∨, ⊃, ≈ }

(IL1) A ⊃ (B ⊃ A) (IL2) (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C))
(IL3) A ⊃ (B ⊃ (A ∧ B)) (IL4) (A ∧ B) ⊃ A
(IL5) (A ∧ B) ⊃ B (IL6) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C))
(IL7) A ⊃ (A ∨ B) (IL8) B ⊃ (A ∨ B)
(IL9) (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A) (IL10) ¬A ⊃ (A ⊃ B)
(MP) From A and A ⊃ B deduce B.

Figure 1 Axioms for ISCI.

(1) A ≈ B assumption
(2) B ≈ B ≈1

(3) ((B ≈ B) ∧ (A ≈ B)) ⊃ ((B ≈ A) ≈ (B ≈ B)) ≈4

(4) (B ≈ B) ⊃ ((A ≈ B) ⊃ ((B ≈ B) ∧ (A ≈ B))) IL3

(5) (A ≈ B) ⊃ ((B ≈ B) ∧ (A ≈ B)) MP 2, 4
(6) (B ≈ B) ∧ (A ≈ B) MP 1, 5
(7) (B ≈ A) ≈ (B ≈ B) MP 3, 6
(8) ((B ≈ A) ≈ (B ≈ B)) ⊃ ((B ≈ B) ⊃ (B ≈ A)) ≈3

(9) (B ≈ B) ⊃ (B ≈ A) MP 7, 8
(10) B ≈ A MP 2, 9

Figure 2 Proof of ≈ - symmetry: A ≈ B ⊢HISCI B ≈ A.

ponens. We write S ⊢HISCI B to mean that a formula B is derivable in HISCI from a finite set
S = { A1, . . . , An } of assumptions. Whenever S is empty, B is called a thesis or a theorem of
HISCI and we write ⊢HISCI B instead of ∅ ⊢HISCI B. Let us note that ∅ ⊢HISCI B iff ⊤ ⊢HISCI B and
that the deduction theorem holds for HISCI, i.e. A1, . . . , An ⊢HISCI B iff ⊢HISCI A1 ∧ . . . ∧ An ⊃ B.

Figure 2 and Figure 3 show that identity is a symmetric and transitive connective.

3 Beth Semantics for ISCI

In this section we propose a new class of models, which we call Beth semantics for ISCI. Let
us recall that there already exists an algebraic semantics for ISCI [9]. A Kripke semantics
has also been recently investigated in [3]. Kripke-style semantics are usually better suited to
the construction of labelled proof systems than algebraic semantics since the forcing relation
enables an easy interpretation of a labelled formula A : x as ρ(x) ⊩ A, where ρ(x) is the
denotation of the label x in some suitable class of models. Kripke models have succeeded
in becoming the most popular forcing semantics for intuitionistic logic. One reason for this
success is their very natural interpretation of disjunction as m ⊩A ∨ B iff m ⊩A or m ⊩ B,
whereas Beth and topological models require more complex notions such as bars and covers.

The models we propose in this section interpret disjunctions in a way which is similar
to their interpretation in (sheaf-theoretic) topogical models of intuitionistic logic, but in
the more algebraic context of distributive bounded lattices (Heyting algebras). While we
pay the price of losing the very natural Kripke interpretation of disjunction, we gain a
regularity property that allows us to build a labelled proof system that does not require any
eigenvariable conditions, thus opening the way for simpler termination arguments.

▶ Definition 2. Let M be a set of elements, called worlds, such that ω, π ∈ M and ω ̸= π.

FSCD 2021
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(1) A ≈ B assumption
(2) B ≈ C assumption
(3) (A ≈ B) ⊃ (B ≈ A) ≈ - symmetry
(4) B ≈ A MP 1, 3
(5) (B ≈ A) ⊃ ((B ≈ C) ⊃ ((B ≈ A) ∧ (B ≈ C))) IL3

(6) (B ≈ C) ⊃ ((B ≈ A) ∧ (B ≈ C)) MP 4, 5
(7) (B ≈ A) ∧ (B ≈ C) MP 3, 6
(8) ((B ≈ A) ∧ (B ≈ C)) ⊃ ((B ≈ B) ≈ (A ≈ C)) ≈4

(9) (B ≈ B) ≈ (A ≈ C) MP 7, 8
(10) (B ≈ B) ≈ (A ≈ C) ⊃ (A ≈ C) ≈ (B ≈ B) ≈ - symmetry
(11) (A ≈ C) ≈ (B ≈ B) MP 9, 10
(12) ((A ≈ C) ≈ (B ≈ B)) ⊃ ((B ≈ B) ⊃ (A ≈ C)) ≈3

(13) (B ≈ B) ⊃ (A ≈ C) MP 11, 12
(14) B ≈ B ≈1

(15) A ≈ C MP 13, 14

Figure 3 Proof of ≈ - transitivity: (A ≈ B), (B ≈ C) ⊢HISCI A ≈ C.

A Beth frame is a bounded distributive lattice F = (M,⩽, ⊔, ω, ⊓, π) with ω and π as least
and greatest elements respectively.

▶ Definition 3. A Beth pre-model is a triple M = (F , [·],⊩), where F is a Beth frame, and
[·] is a valuation function from M to ℘(P ∪ F/≈), such that for all worlds m and n:
(Mπ) [π] = P ∪ F/≈,
(MK) if m ⩽ n then [m] ⊆ [n],
(M≈1) A ≈ A ∈ [m],
(M≈2) if A ≈ B ∈ [m] then ¬A ≈ ¬B ∈ [m],
(M≈4) for all ⊗ ∈ { ∧, ∨, ⊃, ≈ }, if A ≈ B, C ≈ D ∈ [m] then A ⊗ C ≈ B ⊗ D ∈ [m].
The forcing relation ⊩ is inductively defined as the smallest relation on M × F such that:

m ⊩ p iff p ∈ [m],
m ⊩A ≈ B iff A ≈ B ∈ [m],
m ⊩⊥ iff π ⩽ m,
m ⊩A ∧ B iff m ⊩A and m ⊩ B,
m ⊩A ⊃ B iff for all worlds n, if n ⊩A then m ⊔ n ⊩ B,
m ⊩A ∨ B iff there exist two worlds n1, n2 such that n1 ⊓ n2 ⩽ m, n1 ⊩A and n2 ⊩ B.

A Beth-model is a Beth pre-model in which ⊩ satisfies the following admissibility condition:
(M≈3) if m ⊩A ≈ B then m ⊩ B ⊃ A.

As usual, a formula A is true (or satisfied) in a Beth model M, written M ⊨ A, iff
m ⊩ A for all worlds m in M (or equivalently, iff ω ⊩ A) and valid, written ⊨A, iff it is
true in all Beth models. It is routine to show that Mπ and MK extend from propositional
letters and equations to all formulas. MK is the well-known Kripke monotonicity condition,
which applies to equations in our setting (see [3] for a discussion on alternative choices). Let
us remark that Mπ implies that all Beth models have a world π that forces all formulas,
including inconsistency (⊥).

3.1 Completeness of Beth models
A standard way of proving the completeness of a given semantics is to build a canonical
model that relates the denotation of formulas to a derivability relation that syntactically
defines the logic under consideration (often an Hilbert proof system). Algebraic semantics are
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usually obtained through Lindenbaum-Tarski constructions that mostly rely on equivalence
classes of formulas w.r.t. the underlying derivability relation (for ISCI, we would consider
classes such as Ȧ = { B | B ⊢HISCI A and A ⊢HISCI B }). Following an idea of Beth, we replace
equivalence classes with theories of formulas to build a canonical model for ISCI in which the
forcing relation faithfully mimics the derivability relation in HISCI.

▶ Definition 4. The theory At associated with a formula A is the set { B | A ⊢HISCI B }.

Let T denote the set { At | A ∈ F } of theories generated by all formulas of ISCI. Reading
A ⊢HISCI B as “A ⩽ B”, all sets of formulas can be preordered by derivability in HISCI. We
define min(X) as the set { A ∈ X | ∀ B ∈ X, A ⊢HISCI B } of all formulas that are minimal
in X w.r.t. ⊢HISCI. It follows that for all theories X ∈ T, X = At for all A ∈ min(X).
Moreover, for all formulas A, B ∈ F, if X = At = Bt then both A ⊢HISCI B and B ⊢HISCI A.

▶ Definition 5. The canonical Beth frame for ISCI is the structure T = (T, ⊆, ⊔, ⊤t, ⊓, ⊥t),
where for all theories X, Y ∈ T:

X ⊓ Y = X ∩ Y and X ⊔ Y =
⋃

{ (A ∧ B)t | A ∈ min(X), B ∈ min(Y ) }.

▶ Lemma 6. For all theories X, Y ∈ T and all formulas A ∈ min(X), B ∈ min(Y ), the
canonical Beth frame for ISCI satisfies the following properties:

(a) X ⊓ Y = (A ∨ B)t, (b) X ⊔ Y = (A ∧ B)t, (c) X ⊆ Y iff B ⊢HISCI A.

Proof. Since A ∈ min(X) and B ∈ min(Y ) we have both X = At and Y = Bt.
For (a), by definition At ⊓ Bt = At ∩ Bt. Firstly, we show At ∩ Bt ⊆ (A ∨ B)t. If

C ∈ At ∩Bt then A ⊢HISCI C and B ⊢HISCI C, which implies A∨B ⊢HISCI C (by axiom IL6). Thus,
C ∈ (A ∨ B)t. Secondly, we show (A ∨ B)t ⊆ At ∩ Bt. If C ∈ (A ∨ B)t, then A ∨ B ⊢HISCI C.
Since axioms IL7 and IL8 imply A ⊢HISCI A ∨ B and B ⊢HISCI A ∨ B, we have A ⊢HISCI C and
B ⊢HISCI C. Thus, C ∈ At ∩ Bt.

For (b), by definition, (A ∧ B)t ⊆ X ⊔ Y . We show X ⊔ Y ⊆ (A ∧ B)t. If C ∈ X ⊔ Y

then C ∈ (F ∧ G)t for some F ∈ min(X) and some G ∈ min(Y ). Since X = At = Ft and
Y = Bt = Gt, we have A ⊢HISCI F and B ⊢HISCI G, which implies A ∧ B ⊢HISCI F ∧ G. By
definition, C ∈ (F ∧ G)t implies F ∧ G ⊢HISCI C. Thus, A ∧ B ⊢HISCI C implies C ∈ (A ∧ B)t.

For (c), we show that B ⊢HISCI A iff At ⊆ Bt. If B ⊢HISCI A then for all C ∈ At, we have
A ⊢HISCI C, from which it follows that B ⊢HISCI C, i.e. C ∈ Bt. Conversely, since A ⊢HISCI A
implies A ∈ At, if At ⊆ Bt then A ∈ Bt, i.e. B ⊢HISCI A. ◀

Lemma 6 shows that, in the canonical Beth frame T , the partial order defined as set
inclusion mimics derivability in HISCI. Moreover, the lattice meet ⊓ and join ⊔ respectively
correspond to disjunction and conjunction in the logic. It then easily follows that T is a
bounded distributive lattice since ∧ and ∨ distribute over one another in the logic. Let us note
that while the meet of two theories coincides with intersection, their join does not coincide
with union since for any two distinct propositional letters p and q, we have p ∧ q ∈ (p ∧ q)t,
but neither p ∧ q ∈ pt, nor p ∧ q ∈ qt (since neither p ⊢HISCI p ∧ q, nor q ⊢HISCI p ∧ q).

▶ Definition 7. The canonical Beth model for ISCI is the triple Mt = (T , [·],⊩), where the
canonical valuation is defined as [X] =

⋃
{ At | A ∈ min(X) } ∩ (P ∪ F/≈) for all X ∈ T.

▶ Lemma 8. The canonical valuation satisfies the conditions of Definition 3 and for all
theories X ∈ T and all formulas A ∈ min(X), [X] = At ∩ (P ∪ F/≈).

FSCD 2021
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Proof. [X] = At ∩ (P ∪ F/≈) for all A ∈ min(X) follows from the fact that Ct = Dt for all
C, D ∈ min(X), which implies

⋃
{ Bt | B ∈ min(X) } = At for all A ∈ min(X).

Case Mπ: By definition, [⊥t] = { B | B ∈ ⊥t ∩(P ∪ F/≈) }. Since ⊥ ⊢HISCI B for all formulas
B, we have ⊥t = F, which implies ⊥t ∩(P ∪ F/≈) = (P ∪ F/≈) = [⊥t].

Case MK: Suppose we have X, Y ∈ T such that X ⊆ Y , then X = At and Y = Bt

for some A ∈ min(X) and some B ∈ min(Y ). Since X ⊆ Y implies At ⊆ Bt, if
C ∈ [X] = At ∩ (P ∪ F/≈), then C ∈ Bt ∩ (P ∪ F/≈) = [Y ]. Thus, [X] ⊆ [Y ].

The other cases M≈i∈{ 1,2,4 } easily follow from the HISCI axioms ≈i∈{ 1,2,4 }. ◀

▶ Lemma 9. For all X ∈ T, for all A ∈ min(X), X ⊩ B iff At ⊩ B iff B ∈ At iff A ⊢HISCI B.

Proof. By definition of a theory we have B ∈ At iff A ⊢HISCI B. Moreover, since X = At for
all A ∈ min(X), we only need to prove that At ⊩ B iff B ∈ At by structural induction on B.
Base case: B ∈ (P ∪ F/≈). Lemma 8 implies B ∈ [At] iff B ∈ At. Since At ⊩ B iff B ∈ [At]

by Definition 3, At ⊩ B iff B ∈ At.
Case B = B1 ∨ B2:

At ⊩ B1 ∨ B2 ⇔ ∃ C1
t, C2

t. C1
t ⊓ C2

t ⊆ At, C1
t ⊩ B1, C2

t ⊩ B2

⇔ ∃ C1
t, C2

t. (C1 ∨ C2)t ⊆ At, B1 ∈ C1
t, B2 ∈ C2

t Lem. 6, I.H.
⇔ ∃ C1, C2. A ⊢HISCI C1 ∨ C2, C1 ⊢HISCI B1, C2 ⊢HISCI B2 Lem. 6, Def. 4
⇔ A ⊢HISCI B1 ∨ B2 Logic
⇔ B1 ∨ B2 ∈ At Def. 4

Case B = B1 ⊃ B2:
At ⊩ B1 ⊃ B2 ⇔ ∀ Ct. if Ct ⊩ B1 then At ⊔ Ct ⊩ B2

⇔ ∀ Ct. if B1 ∈ Ct then B2 ∈ (A ∧ C)t Lem. 6, I.H.
⇔ ∀ C. if C ⊢HISCI B1 then A ∧ C ⊢HISCI B2 Def. 4
⇔ A ⊢HISCI B1 ⊃ B2 Logic
⇔ B1 ⊃ B2 ∈ At Def. 4

The other cases are similar. ◀

▶ Lemma 10. The canonical Beth model Mt satisfies the admissibility condition M≈3 .

Proof. Any X ∈ T such that X ⊩ A ≈ B entails C ⊢HISCI A ≈ B for all C ∈ min(X) by
Lemma 9, which implies C ⊢HISCI B ⊃ A by axiom (≈3). Thus, X ⊩ B ⊃ A by Lemma 9. ◀

▶ Theorem 11. Beth models for ISCI are complete, i.e., if ⊨A then ⊢HISCI A.

Proof. We show that ⊬HISCI A implies ⊭A. Suppose that ⊬HISCI A, then ⊤ ⊬HISCI A which
implies A ̸∈ ⊤t. By Lemma 9 we get ⊤t ⊮A in Mt, which by definition implies ⊭A. ◀

3.2 Regular Beth Models
We now show that the canonical Beth model for ISCI satisfies a regularity property that is
essential for the termination arguments in Section 6.3.

▶ Definition 12. Let M = (F , [·],⊩) be a Beth model. M is regular iff for all formulas A, if
m⊩A for some world m, then there exists a world mA, called A-minimal, such that mA ⊩A
and for all worlds n, n ⊩A implies mA ⩽ n. We write ⊨r (instead of ⊨) for the restriction
of validity to the class of regular Beth models.

▶ Lemma 13. The canonical model Mt is regular: for all formulas A, At is A-minimal.

Proof. Suppose that Bt⊩A for an arbitrary theory Bt. Then, B ⊢HISCI A by Lemma 9, which
implies At ⊆ Bt by Lemma 6. ◀
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▶ Theorem 14. Regular Beth models for ISCI are complete: if ⊨r A then ⊢HISCI A.

Proof. The result is an immediate consequence of Lemma 13. ◀

▶ Theorem 15. Regular Beth models for ISCI are sound: if ⊢HISCI A then ⊨r A.

Proof. The result follows from Theorems 22, 27, 33, 34 and 40. ◀

Let us remark that non-regular Beth models are neither sound for ISCI, nor for IL. Indeed,
p ∨ p ⊃ p is a theorem of IL, but ω ⊮ p ∨ p ⊃ p in the Beth model ((M,⩽, ⊔, ω, ⊓, π), [·],⊩),
where M = { ω, m1, m2, π }, m ⩽ n iff m = ω or n = π, [ω] = { A ≈ A | A ∈ F },
[m1] = [m2] = [ω] ∪ { p }, and [π] = P ∪ F/≈.

▶ Theorem 16. In a regular Beth model M, if m ⊩A and n ⊩A then m ⊓ n ⊩A.

Proof. Since M is regular, m⊩A and n⊩A imply the existence of an A-minimal world mA.
Since mA ⩽ m and mA ⩽ n imply mA ⩽ m ⊓ n, m ⊓ n ⊩A by Kripke monotonicity. ◀

4 Labelled Deduction for ISCI

In this section we propose a new labelled sequent calculus, called L1ec
ISCI, which is derived from

the Beth models described in Section 3. The methodology is inspired by and in the spirit
of our works on labelled deduction in BI and bi-intuitionistic logic [4, 5]. Let us note that
there exists a label-free sequent calculus for ISCI [3], built following the strategy described
in [10, 11], which like L1ec

ISCI does not enjoy the subformula property.

4.1 A Labelling Algebra
Let Ln be the set { S | S ⊂ N and |S| = n } of all subsets of N of size (cardinal) n. The set L∗

of label letters is defined as
⋃

n∈N Ln. Let Lu = { ∅,N } be the set of label units, the set L
of labels is then defined as L∗ ∪ Lu. We use the (possibly subscripted or primed) letters
a, b, c to denote labels which are singletons (i.e., elements of L1) and save the letters x, y, z
to denote arbitrary labels. A label x is a sublabel of a label y if x ⊆ y.

We work with a labelling algebra L defined as the lattice (L, ⊆, ∪, ∅, ∩,N), where join ∪

and meet ∩ are standard set union and intersection. We consider that ∪ binds stronger
than ∩ and we shall frequently write xy instead of x ∪ y (xx′ ∩ yy′ should therefore be read as
(x ∪ x′) ∩ (y ∪ y′)). In this paper, we shall only use examples with label letters built from the
subset { 1, . . . , 9 }. Therefore, we shall use the more concise notation 13 to unambiguously
refer to { 1, 3 } (and not to the label letter { 13 }).

4.2 The Labelled Sequent Calculus L1ec
ISCI

▶ Definition 17. A labelled formula is a pair (C, x), written C : x, where C is a formula and
x is a label. A labelled sequent is a pair (Γ, ∆), written Γ ⊢ ∆, where Γ, ∆ are multi-sets of
labelled formulas.

We use the generic notation O(T ) to mean that the object T is a subobject of an object O

(for some well defined notion of object inclusion). For example, when S is a set, S(e1, . . . , en)
means that { e1, . . . , en } is a subset of S. Similarly, if F and G are formulas, F(G) means
that G is a subformula of F and if x is a label, x(y) means that y is a sublabel of x. If ∆
is a set or multi-set of labelled formulas, we define x ⊆ ∆ as ∃A : y ∈ ∆ such that x ⊆ y,
which is more shortly written ∆(x). The notation x ⊆ A : y is a shorthand for x ⊆ { A : y }.
A labelled sequent Γ ⊢ ∆ is connected iff x ⊆ ∆ for all A : x ∈ Γ.
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id(x ⊆ y)
Γ(A : x) ⊢ ∆(A : y)

⊥L(x ⊆ y)
Γ(⊥ : x) ⊢ ∆(A : y)

Γ, A : x, B : x ⊢ ∆
∧L

Γ(A ∧ B : x) ⊢ ∆
Γ ⊢ ∆, A : x Γ ⊢ ∆, B : x

∧R
Γ ⊢ ∆(A ∧ B : x)

Γ ⊢ ∆, A : y Γ, B : x ∪ y ⊢ ∆
⊃L(x ∪ y ⊆ ∆)

Γ(A ⊃ B : x) ⊢ ∆
Γ, A : a ⊢ ∆, B : x ∪ a

⊃R(a ̸⊆ Γ ∪ ∆)
Γ ⊢ ∆(A ⊃ B : x)

Γ, A : x ∪ a ⊢ ∆, C : y ∪ a Γ, B : x ∪ b ⊢ ∆, C : y ∪ b
∨L(a ̸= b ̸⊆ Γ ∪ ∆, x ⊆ y)

Γ(A ∨ B : x) ⊢ ∆(C : y)

Γ ⊢ ∆, A : x, B : x
∨R

Γ ⊢ ∆(A ∨ B : x)
Γ ⊢ ∆, C : x C : x, Γ ⊢ ∆

cut(x ⊆ ∆)
Γ ⊢ ∆

Γ, A ≈ A : x ⊢ ∆
≈L1(x ⊆ ∆)

Γ ⊢ ∆

Γ, ¬A ≈ ¬B : x ⊢ ∆
≈L2

Γ(A ≈ B : x) ⊢ ∆
Γ, B ⊃ A : x ⊢ ∆

≈L3
Γ(A ≈ B : x) ⊢ ∆

Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆
≈L4

Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆
Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆

≈L4′

Γ(A ≈ B : x) ⊢ ∆

Figure 4 Labelled Sequent Calculus L1ec
ISCI.

id
B ≈ B : ∅ ⊢ B ≈ B : ∅

≈L1
⊢ B ≈ B : ∅

id
B ≈ A : 1 ⊢ B ≈ A : 1

⊃L
(B ≈ B) ⊃ (B ≈ A) : 1 ⊢ B ≈ A : 1

≈L3
(B ≈ A) ≈ (B ≈ B) : 1 ⊢ B ≈ A : 1

≈L4B ≈ B : 1, A ≈ B : 1 ⊢ B ≈ A : 1
≈L1A ≈ B : 1 ⊢ B ≈ A : 1 ⊃R

⊢ (A ≈ B) ⊃ (B ≈ A) : ∅

Figure 5 L1ec
ISCI-Proof of ≈-symmetry.

The labelled calculus L1ec
ISCI is given in Figure 4. The only structural rule in L1ec

ISCI is cut. All
lattice properties of Beth models are implicity reflected in our labelling algebra by our choice
of labels as subsets of N. The rules ⊃R and ∨L have eigenvariable (or freshness) conditions
on the label letters a, b they introduce. Since connectedness plays a significant role in our
forthcoming proof of cut elimination, the rules of L1ec

ISCI have been carefully designed so as
to preserve this property from their conclusion to their premise. For instance, the cut rule
has a side condition that requires the label of the cut formula to occur as a sublabel on the
right-hand side of the conclusion.

▶ Definition 18. A formula A is a theorem of (or derivable in) L1ec
ISCI, written ⊢L1ec

ISCI A, if the
labelled sequent ⊢ A : ∅ is derivable from the rules given in Figure 4.

The proof rules in Figure 4 are formulated in a non-destructive way, i.e. they preserve
(a copy of) their principal formulas in their premise. This is only a technical choice that
makes the proofs of the forthcoming admissibility results shorter, but we shall use the more
standard destructive versions of the rules in our examples to keep them more concise.

Figure 5 gives a labelled proof in L1ec
ISCI of the symmetry of the identity connective, from

which one can easily derive a symmetry rule ≈LS, as illustrated in Figure 6, which proves
the transitivity of ≈. More examples are given in the proof of Lemma 20.
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id
B ≈ B : ∅ ⊢ B ≈ B : ∅

≈L1
⊢ B ≈ B : ∅

id
A ≈ C : 1 ⊢ A ≈ C : 1

⊃L
(B ≈ B) ⊃ (A ≈ C) : 1 ⊢ A ≈ C : 1

≈L3
(A ≈ C) ≈ (B ≈ B) : 1 ⊢ A ≈ C : 1

≈LS
(B ≈ B) ≈ (A ≈ C) : 1 ⊢ A ≈ C : 1

≈L4B ≈ A : 1, B ≈ C : 1 ⊢ A ≈ C : 1
≈LSA ≈ B : 1, B ≈ C : 1 ⊢ A ≈ C : 1

∧L
(A ≈ B) ∧ (B ≈ C) : 1 ⊢ A ≈ C : 1

⊃R
⊢ (A ≈ B) ∧ (B ≈ C) ⊃ (A ≈ C) : ∅

Figure 6 L1ec
ISCI-Proof of ≈-Transitivity.

4.3 Soundness and Completeness of L1ec
ISCI

▶ Theorem 19 (Soundness). If ⊢L1ec
ISCI A then ⊢HISCI A.

Proof. A corollary of Theorems 27, 33, 34 and 40. ◀

▶ Lemma 20. All of the axioms for ≈ given in Figure 1 are derivable in L1ec
ISCI.

Proof. Axiom ≈1: id
A ≈ A : ∅ ⊢ A ≈ A : ∅

≈L1
⊢ A ≈ A : ∅

Axioms ≈2, ≈3:

id
¬A ≈ ¬B : 1 ⊢ ¬A ≈ ¬B : 1 ≈L2A ≈ B : 1 ⊢ ¬A ≈ ¬B : 1 ⊃R
⊢ (A ≈ B) ⊃ (¬A ≈ ¬B) : ∅

id
B : 2 ⊢ B : 2

id
A : 12 ⊢ A : 12 ⊃LB ⊃ A : 1, B : 2 ⊢ A : 12

≈L3A ≈ B : 1, B : 2 ⊢ A : 12
⊃RA ≈ B : 1 ⊢ B ⊃ A : 1 ⊃R

⊢ (A ≈ B) ⊃ (B ⊃ A) : ∅
Axiom ≈4:

id
(A ⊗ C) ≈ (B ⊗ D) : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

≈L4
A ≈ B : 1, C ≈ D : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

∧L
(A ≈ B) ∧ (C ≈ D) : 1 ⊢ (A ⊗ C) ≈ (B ⊗ D) : 1

⊃R
⊢ (A ≈ B) ∧ (C ≈ D) ⊃ (A ⊗ C) ≈ (B ⊗ D) : ∅

◀

▶ Lemma 21. All of the axioms for IL given in Figure 1 are derivable in L1ec
ISCI.

Proof. Axiom IL6:
id

A : 34 ⊢ A : 234
id

C : 1234 ⊢ C : 1234 ⊃LA ⊃ C : 1, A : 34 ⊢ C : 1234

id
B : 35 ⊢ B : 135

id
C : 1235 ⊢ C : 1235 ⊃LB ⊃ C : 2, B : 35 ⊢ C : 1235

∨LA ⊃ C : 1, B ⊃ C : 2, A ∨ B : 3 ⊢ C : 123
⊃R

A ⊃ C : 1, B ⊃ C : 2 ⊢ (A ∨ B) ⊃ C : 12
⊃R

A ⊃ C : 1 ⊢ (B ⊃ C) ⊃ ((A ∨ B) ⊃ C) : 1
⊃R

⊢ (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨ B) ⊃ C)) : ∅

Axioms IL7, IL8, IL10:
id

A : 1 ⊢ A : 1, B : 1
∨RA : 1 ⊢ A ∨ B : 1 ⊃R

⊢ A ⊃ (A ∨ B) : ∅

id
B : 1 ⊢ A : 1, B : 1

∨RB : 1 ⊢ A ∨ B : 1 ⊃R
⊢ B ⊃ (A ∨ B) : ∅

id
A : 2 ⊢ A : 2

⊥L⊥ : 12 ⊢ B : 12 ⊃L¬A : 1, A : 2 ⊢ B : 12
⊃R¬A : 1 ⊢ A ⊃ B : 1 ⊃R

⊢ ¬A ⊃ (A ⊃ B) : ∅
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Γ ⊢ ∆, Cσ : y
≈LR(x ⊆ y, A ̸= B)

Γ(A ≈ B : x) ⊢ ∆(C : y)
≈R

Γ ⊢ ∆(A ≈ A : x)

σ = [B 7→ A] if |A| ⩽ |B| and [A 7→ B] otherwise.

Figure 7 L2ec
ISCI “Special” Identity Rules.

Rule MP: We use admissibility of weakening, which is stated and proved in the paper for
L2ec

ISCI in Lemma 29, but which also holds for L1ec
ISCI with a similar proof.

⊢ A : ∅
⊢ B : ∅, A : ∅

⊢ A ⊃ B : ∅
A : ∅ ⊢ B : ∅, A ⊃ B : ∅

id
A : ∅ ⊢ A : ∅

id
B : ∅ ⊢ B : ∅

⊃L
A ⊃ B : ∅, A : ∅ ⊢ B : ∅

cut
A : ∅ ⊢ B : ∅

cut
⊢ B : ∅

The other cases are similar. ◀

▶ Theorem 22 (HISCI completeness). If ⊢HISCI A then ⊢L1ec
ISCI A.

Proof. A direct consequence of Lemma 20 and Lemma 21. ◀

▶ Theorem 23 (Beth completeness). If ⊨A then ⊢L1ec
ISCI A.

Proof. If ⊨A then Theorem 11 yields ⊢HISCI A, which by Theorem 22 implies ⊢L1ec
ISCI A. ◀

5 The Labelled Calculus L2ec
ISCI

L1ec
ISCI is not very interesting from the point of view of termination as it lacks the subformula

property. Indeed, even if we eliminate the cut rule from L1ec
ISCI, we can still introduce infinitely

many subformulas using the identity rule ≈L1. Moreover, defining the size |A| of a formula A
as the number of its connectives, it is easy to see that the identity rules ≈L4 and ≈L4′

introduce in their single premiss an active formula the size of which is greater than the size
of the principal formula in their conclusion.

As a first step toward termination we define L2ec
ISCI as the variant of L1ec

ISCI in which all of
the identity rules of Figure 4 are replaced with the identity rules of Figure 7. Depending on
the size of A and B, the rule ≈LR simultaneously replaces all occurrences of the formula B in
C with the formula A whenever |A| ⩽ |B| and A is not syntactically equal to B.

5.1 Soundness and Completeness
▶ Theorem 24 (Soundness). If ⊢L2ec

ISCI A then ⊢HISCI A.

Proof. A corollary of Theorems 33, 34 and 40. ◀

▶ Theorem 25 (HISCI completeness). If ⊢HISCI A then ⊢L2ec
ISCI A.

Proof. Similar to the proof of Theorem 22. ◀

▶ Theorem 26 (Beth completeness). If ⊨A then ⊢L2ec
ISCI A.

Proof. If ⊨A then Theorem 11 yields ⊢HISCI A, which by Theorem 25 implies ⊢L2ec
ISCI A. ◀
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▶ Theorem 27 (L1ec
ISCI to L2ec

ISCI). If Π is an L1ec
ISCI proof of A, then there exists a translation

t(Π) of Π which is an L2ec
ISCI proof of A.

Proof. The proof is by induction on the height of L1ec
ISCI proofs. Since L2ec

ISCI only differs from
L1ec

ISCI on the identity rules, the base cases for axioms are immediate and we only need to
show that L2ec

ISCI can simulate L1ec
ISCI identity rules. We assume without loss of generality that

|A| ⩽ |B| and |C| ⩽ |D|. Moreover, in the translated proofs below, the occurrences of ≈LR
only actually exist when the formulas on both sides of the principal identity connective are
not syntactically equal.
Case ≈L1:

Π1

Γ, A ≈ A : x ⊢ ∆
≈L1

Γ ⊢ ∆
⇝

≈R
Γ ⊢ ∆, A ≈ A : x

t(Π1) from I.H.
Γ, A ≈ A : x ⊢ ∆

cut
Γ ⊢ ∆

Case ≈L2:
Π1

Γ, ¬A ≈ ¬B : x ⊢ ∆
≈L2

Γ(A ≈ B : x) ⊢ ∆
⇝

≈R
Γ(A ≈ B : x) ⊢ ∆, ¬A ≈ ¬A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, ¬A ≈ ¬B : x

t(Π1) from I.H.
Γ, ¬A ≈ ¬B : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

Case ≈L3:

Π1

Γ, B ⊃ A : x ⊢ ∆
≈L3

Γ(A ≈ B : x) ⊢ ∆
⇝

id
Γ(A ≈ B : x), A : a ⊢ ∆, A : xa

⊃R
Γ(A ≈ B : x) ⊢ ∆, A ⊃ A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, B ⊃ A : x

t(Π1) from I.H.
Γ, B ⊃ A : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

Case ≈L4:
Π1

Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆
≈L4

Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆

⇝

≈R
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ A ⊗ C : x

≈LR(C ̸= D)
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ A ⊗ D : x

≈LR(A ̸= B)
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆, A ⊗ C ≈ B ⊗ D : x

t(Π1) from I.H.
Γ, A ⊗ C ≈ B ⊗ D : x ⊢ ∆

cut
Γ(A ≈ B : x, C ≈ D : x) ⊢ ∆

Case ≈L4′ :
Π1

Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆
≈L4′

Γ(A ≈ B : x) ⊢ ∆

⇝

≈R
Γ(A ≈ B : x) ⊢ ∆, A ⊗ A ≈ A ⊗ A : x

≈LR(A ̸= B)
Γ(A ≈ B : x) ⊢ ∆, A ⊗ A ≈ B ⊗ B : x

t(Π1) from I.H.
Γ, A ⊗ A ≈ B ⊗ B : x ⊢ ∆

cut
Γ(A ≈ B : x) ⊢ ∆

◀
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5.2 Cut Elimination in L2ec
ISCI

We now eliminate the cut rule from L2ec
ISCI. The cut free version of L2ec

ISCI is denoted L2e
ISCI (the c

superscript is dropped). Let us write h(Π) for the height of a proof Π defined as the length
of its longest branch. For a proof system S and a formula or labelled sequent s, the notation
⊢nS s means that s is derivable in S with a proof Π such that h(Π) ⩽ n (n ∈ N).

Label substitution is defined as follows: if y ⊆ x then x[u/y] = (x − y) ∪ u, otherwise
x[u/y] = x. For instance, 374[∅/7] = { 3, 7, 4 } − { 7 } ∪ ∅ = { 3, 4 } = 34. Label substitutions
straightforwardly extend to labelled formulas and labelled sequents.

▶ Lemma 28. Let s = Γ ⊢ ∆. If ⊢nL2e
ISCI s then ⊢nL2e

ISCI s[u/c], where c ∈ L1 or c = ∅.

Proof. By induction on the height h of the proof of Γ ⊢ ∆. The base case h = 0 is when s

is the conclusion of an axiom.
Case id: s is of the form Γ(A : x) ⊢ ∆(A : y) with x ⊆ y. If c ̸⊆ y then s[u/c] = s and the

result is immediate. Otherwise, c ⊆ y and y = (y − c) ∪ c. Since x ⊆ y, y = (y − x) ∪ x
implies y = (y − (x ∪ c)) ∪ (x − c) ∪ c. Hence, y[u/c] = (y − (x ∪ c)) ∪ (x − c) ∪ u. We then
show that s[u/c] remains an axiom for A by showing that x[u/c] ⊆ y[u/c]. If c ̸⊆ x then
x[u/c] = x = x − c and x − c ⊆ y[u/c]. If c ⊆ x then x[u/c] = ((x − c) ∪ c)[u/c] = (x − c) ∪ u
and (x − c) ∪ u ⊆ y[u/c].

Case ⊥L: Similar to Case id.
For the inductive case h = n + 1, let r be the last rule applied (which has s as a conclusion).
If r requires the introduction of eigenvariables we proceed as follows.
Case ∨L: s is of the form Γ, A ∨ B : x ⊢ ∆(C : y) and is obtained by the rule ∨L from the

premise s1 = Γ, A ∨ B : x, A : xa ⊢ ∆, C : ya and s2 = Γ, A ∨ B : x, B : xb ⊢ ∆, C : yb, where
a, b ̸⊆ Γ ∪ ∆, which have proofs Π1, Π2 such that h(Π1), h(Π2) ⩽ n. We choose two
labels a′ ̸= b′ such that a′, b′ ̸⊆ Γ ∪ ∆ and a′, b′ ̸⊆ xyuabc. By I.H. on Π1 and Π2 with
substitutions [a′/a] and [b′/b] we get proofs Π′

1 and Π′
2 of Γ, A ∨ B : x, A : xa′ ⊢ ∆, C : ya′

and Γ, A ∨ B : x, B : xb′ ⊢ ∆, C : yb′. Then, by I.H. on Π′
1 and Π′

2 with substitution [u/c],
we get proofs Π′′

1 and Π′′
2 of Γ[u/c], A ∨ B : x[u/c], A : x[u/c]a′ ⊢ ∆[u/c], C : y[u/c]a′ and

Γ[u/c], A ∨ B : x[u/c], B : x[u/c]b′ ⊢ ∆[u/c], C : y[u/c]b′ from which we infer the conclusion
Γ[u/c], A ∨ B : x[u/c] ⊢ ∆[u/c] by the rule ∨L.

Case ⊃R: Similar to Case ∨L.
If r does not require eigenvariables, we apply the I.H. on all of the premise of r since they
have proofs of height strictly less than n + 1 and we conclude s[u/c] by reapplying r. ◀

▶ Lemma 29. If ⊢nL2e
ISCI Γ ⊢ ∆ then ⊢nL2e

ISCI Γ, Γ′ ⊢ ∆, ∆′.

Proof. By induction on the height h of a proof Π of Γ ⊢ ∆. For h = 0, it is immediate
that when Γ ⊢ ∆ is an axiom, then so is Γ, Γ′ ⊢ ∆, ∆′. For h = n + 1, let r be the last rule
applied in Π. If r is not ⊃R or ∨L, we apply the I.H. on the premise of r and conclude by
reapplying r. Otherwise, we first use Lemma 28 to replace the eigenvariables in all of the
premise of r with variables not occurring in Γ ∪ Γ′ ∪ ∆ ∪ ∆′ and then apply the I.H. to the
modified premise before concluding with a new instance of r. ◀

▶ Lemma 30. All L2e
ISCI rules are height preserving invertible.

Proof. A k-ary proof rule r with premise s1 . . . sk and conclusion s is height preserving
invertible if ⊢nL2e

ISCI s implies ⊢nL2e
ISCI si for all 1 ⩽ i ⩽ k. Let s = Γ ⊢ ∆. Since proof rules are

non-destructive, each premiss si can be represented as Γ, Γi ⊢ ∆, ∆i, where Γi, ∆i are the
active parts of r. If k = 0 (for axioms), the result is immediate. Otherwise, if we have a
proof Π of s, then by Lemma 29, we have a proof Πi of si such that h(Πi) ⩽ h(Π). ◀
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▶ Lemma 31. If ⊢nL2e
ISCI Γ(A : x, A : y) ⊢ ∆ and x ⊆ y then ⊢nL2e

ISCI Γ(A : x) ⊢ ∆. Similarly, if
⊢nL2e

ISCI Γ ⊢ ∆(A : x, A : y) and y ⊆ x then ⊢nL2e
ISCI Γ ⊢ ∆(A : x).

Proof. By induction on the height of the proofs, using Lemma 30. ◀

▶ Lemma 32. If Π is a proof of either Γ, A : x ⊢ ∆, or Γ ⊢ ∆, A : x, in which A : x is never
principal for any sequent in Π, then there exists a proof Π′ of Γ ⊢ ∆ such that h(Π′) ⩽ h(Π).

Proof. By induction on the height of the proof Π deleting all occurrences of A : x. ◀

▶ Theorem 33 (Cut elimination). The cut rule is admissible in L2ec
ISCI.

Proof. Our proof follows the pattern given in [10] or in [8] for Boolean BI. We define the
cut rank of (an instance) of the cut rule as the pair (|C|, h(Π1) + h(Π2)), where C is the cut
formula and Πi∈{1,2} is the proof whose conclusion is the sequent si corresponding to the
i-th premiss above the cut. For the base case we consider that one of the premiss of the
cut has a proof of height 0. For the inductive step, we distinguish three cases: C : z is not
principal in s1, C : z is principal only in s1, C : z is principal in both s1 and s2. We only do a
few illustrative or difficult cases. More cases are given in the appendix (see Theorem 43).
Cases n1.⊥L, p1.⊥L: s1 is the conclusion of ⊥L. If C : z is not principal in s1 (Case n1.⊥L),

then let A : y denote the principal formula of ⊥L in s1. By the side condition of ⊥L, we
have x ⊆ y. If C : z is principal in s1 (Case p1.⊥L), then by the connectedness property,
⊥ : x ∈ Γ implies A : y ∈ ∆ for some A and y such that x ⊆ y. In both cases, we eliminate
the cut rule as follows:

⊥L
Γ(⊥ : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆(A : y)
cut

Γ(⊥ : x) ⊢ ∆(A : y)
⇝ ⊥L

Γ(⊥ : x) ⊢ ∆(A : y)

Case p1.∨Rp2.∨L: C : z is principal in both s1 and s2, C has the form A ∨ B, z ⊆ y.

Π1

Γ ⊢ ∆, A ∨ B : z, A : z, B : z
∨R

Γ ⊢ ∆, A ∨ B : z

Π1
2

A : za, A ∨ B : z, Γ ⊢ ∆, D : ya
Π2

2

B : zb, A ∨ B : z, Γ ⊢ ∆, D : yb
∨L

A ∨ B : z, Γ ⊢ ∆(D : y)
cut

Γ ⊢ ∆

We first use a cut on A ∨ B : z of strictly lower cut height to get the following proof:

Π3


Π1

Γ ⊢ ∆, A ∨ B : z, A : z, B : z
Π1′

2 from Lemma 29 Π2′

2 from Lemma 29
∨L

A ∨ B : z, Γ ⊢ ∆, A : z, B : z
cut

Γ ⊢ ∆, A : z, B : z

We apply Lemma 28 on Π1
2 with [∅/a] and on Π2

2 with [∅/b] to get:

Π4

{
Π1

2[∅/a]

A : z, A ∨ B : z, Γ ⊢ ∆(D : y), D : y
Π5

{
Π2

2[∅/b]

B : z, A ∨ B : z, Γ ⊢ ∆(D : y), D : y

We apply Lemma 31 on Π4 and Π5 to get:

Π′
4

A : z, A ∨ B : z, Γ ⊢ ∆(D : y)
Π′

5

B : z, A ∨ B : z, Γ ⊢ ∆(D : y)

We use two cuts on A ∨ B : z of strictly lower cut height to get Π6, Π7, which are finally
combined with Π3 to obtain a proof with two cuts on strictly smaller formulas.
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Π6


Π′

1 from Lemma 29
A : z, Γ ⊢ ∆, A ∨ B : z, A : z, B : z

∨R
A : z, Γ ⊢ ∆, A ∨ B : z

Π′
4

A : z, A ∨ B : z, Γ ⊢ ∆(D : y)
cut

A : z, Γ ⊢ ∆

Π7


Π′′

1 from Lemma 29
B : z, Γ ⊢ ∆, A ∨ B : z, A : z, B : z

∨R
B : z, Γ ⊢ ∆, A ∨ B : z

Π′
5

B : z, A ∨ B : z, Γ ⊢ ∆(D : y)
cut

B : z, Γ ⊢ ∆

Π3

Γ ⊢ ∆, A : z, B : z
Π′

7 from Lemma 29
B : z, Γ ⊢ ∆, A : z

cut
Γ ⊢ ∆, A : z

Π6

A : z, Γ ⊢ ∆
cut

Γ ⊢ ∆ ◀

6 Liberalizing L2e
ISCI and Decidability

Even restricted to the simple case of intuitionistic logic, the termination of a labelled proof
system is not straightforward. A problem is the rules ⊃L and ∨R (called β-rules) can be used
several times as long as there are yet untried labels satisfying their requirements. Combined
with the fact that the rules ⊃R and ∨L (called α-rules) require the systematic introduction
of fresh singleton labels, the proof-search process might degenerate into the construction of
infinite branches when there are α-formulas in the scope of β-formulas.

Let us assume a globally fixed1 total injective indexing function i : F × N → L1 that
given a formula A and an index n maps the pair (A, n) to the singleton label denoted in

A.
We define L2

ISCI as the labelled proof system obtained from L2e
ISCI in which the eigenvariable

requirements are dropped by replacing the α-rules of Figure 4 with the following ones:

Γ, A : i1
A⊃B ⊢ ∆, B : x ∪ i1

A⊃B ⊃R
Γ ⊢ ∆(A ⊃ B : x)

Γ, A : x ∪ i1
A∨B ⊢ ∆, C : y ∪ i1

A∨B Γ, B : x ∪ i2
A∨B ⊢ ∆, C : y ∪ i2

A∨B ∨L(x ⊆ y)
Γ(A ∨ B : x) ⊢ ∆(C : y)

▶ Theorem 34. If ⊢nL2e
ISCI A then ⊢nL2

ISCI A.

Proof. By induction on the height of the L2e
ISCI proof of A. ◀

6.1 Validity of the Replacement Law for ISCI
▶ Lemma 35. Let A, B, C be formulas and let C[A 7→ B] be the formula obtained from C
by simultaneously replacing all occurrences of A in C with B. Then, the formula (A ≈ B) ⊃
(C ≈ C[A 7→ B]) is valid in Beth semantics.

Proof. Let M be a Beth model and m be a world such that m ⊩ A ≈ B. If C does not
contain any occurrence of A then C[A 7→ B] = C and condition M≈1 of Definition 3 then
implies m ⊩ C ≈ C. If C contains at least one occurrence of A, let d(F, C) denote the
depth at which a subformula F is nested in C. We proceed by induction on the depth

1 The use of a globally fixed indexing function is just for technical convenience. One could also associate
each derivation with a partial indexing function defined only on the formulas occurring in that derivation.
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d = min{ d(A, C) | A ∈ C } of the least deeply nested occurrence(s) of A in C (e.g., if
C = (A ⊃ D) ∧ ((A ∨ B) ≈ A) then d = 2). The base case is when d = 0, i.e., when C = A.
Thus, C[A 7→ B] = B and we have m ⊩ A ≈ B by assumption. For the inductive case, C is of
the form C1 ⊗ C2, where ⊗ is a binary connective. We assume as an I.H. that the property
holds for all formulas C and all d′ such that 0 ≤ d′ < d. By definition of a substitution,
(C1 ⊗ C2)[A 7→ B] = C1[A 7→ B] ⊗ C2[A 7→ B]. For Ci ∈ { C1, C2 }, if A does not occur
in Ci then Ci[A 7→ B] = Ci. Thus, m ⊩ Ci ≈ Ci[A 7→ B] by condition M≈1 of Definition 3.
Otherwise, if A occurs in Ci then m ⊩ Ci ≈ Ci[A 7→ B] by I.H. Hence, by condition M≈4 of
Definition 3, we get (C1 ⊗ C2) ≈ (C1[A 7→ B] ⊗ C2[A 7→ B]). ◀

▶ Lemma 36. If m ⊩A ≈ B then for all formulas C, m ⊩ C iff m ⊩ C[A 7→ B].

Proof. By Lemma 35, if m ⊩A ≈ B then m ⊩ C ≈ D, where D = C[A 7→ B]. By symmetry
of ≈, m ⊩ C ≈ D implies m ⊩D ≈ C. Therefore, by condition M≈3 of Definition 3, we get
both m ⊩D ⊃ C and m ⊩ C ⊃ D. Consequently, if m ⊩ C, then m ⊩ C ⊃ D implies m ⊩D.
Conversely, if m ⊩D, then m ⊩D ⊃ C implies m ⊩ C. ◀

6.2 Liberalized Soundness
To show that L2

ISCI is sound even in the absence of the eigenvariable condition, we take
advantage of the completeness of ISCI w.r.t. regular Beth models (Theorem 14) by semantically
interpreting (realizing) the unique index iA of a formula A by an A-minimal world.

▶ Definition 37 (Realization). Let M be a regular Beth model. Let s = Γ ⊢ ∆ be a labelled
sequent. A realization of s in M is a partial function ρ : L → M such that:

ρ(∅) = ω, ρ(N) = π, ρ(in∈{1,2}
A1⊗A2 ) = mAn for all in∈{1,2}

A1⊗A2 ⊆ s and ρ(x ∪ y) = ρ(x) ⊔ ρ(y),
for all x, y ⊆ Γ, if x ⊆ y then ρ(x) ⩽ ρ(y) holds in M,
for all A : x in Γ, ρ(x) ⊩A and for all A : x in ∆, ρ(x) ⊮ A.

A sequent s is realizable in M if there exists a realization of s in M, and realizable if it is
realizable in some regular Beth model M.

▶ Lemma 38. If the sequent s = Γ ⊢ ∆ is an initial sequent in an L2
ISCI-proof, i.e., a leaf

sequent that is the conclusion of a zero-premiss rule, then s is not realizable.

Proof. If s is realizable, then we have a realization ρ of s in some regular Beth model M.
We proceed by case analysis on the zero-premiss rule of which s is the conclusion.
Case id: s = Γ, A : x ⊢ ∆, A : y with x ⊆ y, which implies the contradiction ρ(y) ⊮ A since

ρ(x) ⩽ ρ(y) and ρ(x) ⊩A imply ρ(y) ⊩A by Kripke monotonicity.
Case ⊥L: s = Γ, ⊥ : x ⊢ ∆, A : y with x ⊆ y, which implies the contradiction ρ(y) ⊮ A since

ρ(x) = ρ(y) = π and π ⊩A for all A.
Case ≈R: s = Γ ⊢ ∆, A ≈ A : x, which implies the contradiction ρ(x) ⊮ A ≈ A. ◀

▶ Lemma 39. Every proof rule in L2
ISCI preserves realizability in regular Beth models.

Proof. By case analysis of the proof rules of L2
ISCI. We show that whenever the conclusion of

a rule is realizable in some regular model M for some realization ρ, then at least one of its
premise is also realizable in M for some extension of ρ. We write s = Γ ⊢ ∆ for the sequent
which is the conclusion of the rule and si = Γi ⊢ ∆i for the i-th premiss (for i ∈ { 1, 2 }).
Since ρ realizes both Γ and ∆ in s, ρ also realizes Γi and ∆i in si since Γi ⊆ Γ and ∆i ⊆ ∆.
Therefore, we only need to consider the principal and active parts of each rule.
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Case ∨L: If ρ realizes s = Γ(A ∨ B : x) ⊢ ∆(C : y) in M, then ρ(x) ⊩ A ∨ B implies that
there exist n1, n2 ∈ M such that n1 ⊓ n2 ⩽ ρ(x), n1 ⊩ A and n2 ⊩ B. Moreover, a = i1

A∨B

and b = i2
A∨B. If ρ(a) is already defined then ρ(a) = mA by definition. Otherwise,

we extend ρ by setting ρ(a) = mA. We proceed similarly for ρ(b) to get ρ(b) = mB.
Since mA is A-minimal, we get mA ⩽ n1 and ρ(x) ⊔ ρ(a) ⊩ A. Similarly, since mB is
B-minimal, we get mB ⩽ n2 and ρ(x) ⊔ ρ(b) ⊩ B. Moreover, mA ⩽ n1 and mB ⩽ n2
imply mA ⊓ mB ⩽ n1 ⊓ n2. Thus, xa ∩ xb = x implies (ρ(x) ⊔ ρ(a)) ⊓ (ρ(x) ⊔ ρ(b)) = ρ(x).
Now if both ρ(y) ⊔ ρ(a) ⊩ C and ρ(y) ⊔ ρ(b) ⊩ C then, since M is a regular Beth model,
there exists a C-minimal world mC. Thus, mC ⩽ ρ(y) ⊔ ρ(a) and mC ⩽ ρ(y) ⊔ ρ(b),
which implies mC ⩽ (ρ(y) ⊔ ρ(a)) ⊓ (ρ(y) ⊔ ρ(b)) = ρ(y). Hence, ρ(y) ⊩ C, which is a
contradiction since ρ(y) ⊮ C by definition. Therefore, either ρ(y) ⊔ ρ(a) ⊮ C and s1 is
realizable, or ρ(y) ⊔ ρ(b) ⊮ C and s2 is realizable.

Case ∨R: If ρ realizes s = Γ ⊢ ∆(A ∨ B : x) then ρ(x)⊮A ∨ B. Suppose that ρ(x)⊩A. Since
M is regular there exists an A-minimal world mA. Since mA ⊩A and π⊩B by definition,
we have mA ⊓ π = mA ⩽ ρ(x) which implies the contradiction ρ(x) ⊩ A ∨ B. Similarly, if
ρ(x) ⊩ B we also get the contradiction ρ(x) ⊩A ∨ B. Hence, s1 is realizable.

Case ≈LR: This case directly follows from Lemma 36.
The other cases are similar. ◀

▶ Theorem 40 (Liberalized soundness). If ⊢L2
ISCI A then ⊨r A.

Proof. Suppose that ⊢L2
ISCI A, then there exists an L2

ISCI-proof Π of ⊢ A : ∅. If ⊭r A, then there
is a regular Beth model M such that ω ⊮ A. Since ⊢ A : ∅ is trivially realizable, Lemma 39
implies that Π contains a branch the sequents of which are all realizable. Since Π is a proof,
this branch ends with an initial sequent s that is the conclusion of an axiom rule. Lemma 38
then implies that s is not realizable, which is a contradiction. Therefore, ⊨r A. ◀

6.3 Termination and Decidability
Giving a full-fledged proof that L2

ISCI is a terminating proof-system is out of the scope of
this paper as it would require a detailed proof-search algorithm with a well defined proof
strategy. Moreover, since L2

ISCI proof rules as formulated non-destructively, we would also
need a suitable notion of (sequent) saturation to decide whether a labelled formula is fully
analyzed or not. For instance, an occurrence of A ∧ B : x on the left-hand side of a sequent
Γ ⊢ ∆ would be considered fully analyzed whenever A : y and B : z occur in Γ for some labels
y, z such that y, z ⊆ x. We now sketch the proof that L2

ISCI has a finite proof search space.

▶ Theorem 41 (Termination). L2
ISCI is a terminating proof system.

Proof sketch. Firstly, without any eigenvariable requirements, only finitely many singleton
labels can occur in an L2

ISCI derivation of A. Since labels occurring in an L2
ISCI derivation of A

are finite unions of singleton labels, there can only be finitely many of them. Secondly, let
n = |A| and let At(A) be the set of propositional letters occurring in A. It is easy to see
that the active formula introduced by an instance of the rule ≈LR has a size m ⩽ n and is
built using only atoms in At(A) (this can be viewed as a weak form of subformula property).
There can only be finitely many formulas of size ⩽ n built from At(A). Finally, with a finitely
many subformulas and labels, one can only generate a finite number of labelled formulas.
Therefore, only finitely many unsaturated labelled sequents can occur in a L2

ISCI derivation
of A. Thus, the proof search space for ⊢ A : ∅ in L2

ISCI is finite. ◀

▶ Corollary 42 (Decidability). ISCI is a decidable logic.
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A Appendix

A.1 Cut Elimination
▶ Theorem 43 (Cut elimination). The cut rule is admissible in L2ec

ISCI.

Proof. Our proof follows the pattern given in [10] or in [8] for Boolean BI. We define the
cut rank of (an instance) of the cut rule as the pair (|C|, h(Π1) + h(Π2)), where C is the cut
formula and Πi∈{1,2} is the proof whose conclusion is the sequent si corresponding to the
i-th premiss above the cut. For the base case we consider that one of the premiss of the
cut has a proof of height 0. For the inductive step, we distinguish three cases: C : z is not
principal in s1, C : z is principal only in s1, C : z is principal in both s1 and s2.

Case n1.id: s1 is the conclusion of id, C : z is not principal in s1, x ⊆ y.

id
Γ(A : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(A : x) ⊢ ∆(A : y)
⇝ id

Γ(A : x) ⊢ ∆(A : y)

Case p1.id: s1 is the conclusion of id, C : z is principal in s1, x ⊆ z.

id
Γ(C : x) ⊢ ∆, C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(C : x) ⊢ ∆
⇝

Π′
2 from Lemma 31

Γ(C : x) ⊢ ∆
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Case n2.id: s2 is the conclusion of id, C : z is not principal in s2. Similar to Case n1.id.
Case p2.id: s2 is the conclusion of id, C : z is principal in s2. Similar to Case p1.id.
Case n1.⊥L: s1 is the conclusion of ⊥L, C : z is not principal in s1, x ⊆ y.

⊥L
Γ(⊥ : x) ⊢ ∆(A : y), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(⊥ : x) ⊢ ∆(A : y)
⇝ ⊥L

Γ(⊥ : x) ⊢ ∆(A : y)

Case p1.⊥L: s1 is the conclusion of ⊥L, C : z is principal in s1, x ⊆ z.

⊥L
Γ(⊥ : x) ⊢ ∆, C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ(⊥ : x) ⊢ ∆
⇝

connectedness: x ⊆ u
⊥L

Γ(⊥ : x) ⊢ ∆(A : u)

Case n2.⊥L: s2 is the conclusion of ⊥L, C : z is not principal in s2. Similar to Case n1.⊥L.
Case p2.⊥L: s2 is the conclusion of ⊥L, C : z is principal in s2. Similar to Case p1.⊥L.
Case n1.≈R: s1 is the conclusion of ≈R, C : z is not principal in s1.

≈R
Γ ⊢ ∆(A ≈ A : x), C : z

Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆(A ≈ A : x)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : x)

Case p1.≈R: s1 is the conclusion of ≈R, C : z is principal in s1. Then, C has the form A ≈ A
for some A. Since A ̸= A is not satisfiable, A ≈ A : x can never be the principal formula
of an occurrence of ≈LR in Π2. Therefore, the only way for A ≈ A : x to be principal in
Π2 is if s2 is the conclusion of an occurrence of id, which then implies that ∆ contains an
occurrence of A ≈ A : y for some x ⊆ y. In this case, we have

≈R
Γ ⊢ ∆, A ≈ A : x

Π2

A ≈ A : x, Γ ⊢ ∆(A ≈ A : y)
cut

Γ ⊢ ∆(A ≈ A : y)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : y)

Otherwise, A ≈ A : x is never principal in Π2 and we apply Lemma 32 on Π2 to get a
proof Π′

2 of Γ ⊢ ∆ as follows

≈R
Γ ⊢ ∆, A ≈ A : x

Π2

A ≈ A : x, Γ ⊢ ∆
cut

Γ ⊢ ∆
⇝

Π′
2 from Lemma 32

Γ ⊢ ∆

Case n2.≈R: s2 is the conclusion of ≈R, C : z is not principal in s2. Similar to Case n1.≈R.

Π1

Γ ⊢ ∆, C : z
≈R

C : z, Γ ⊢ ∆(A ≈ A : x)
cut

Γ ⊢ ∆(A ≈ A : x)
⇝ ≈R

Γ ⊢ ∆(A ≈ A : x)

Case p2.≈R: cannot happen (A ≈ A : z on the left-hand side cannot be principal for ≈R).

Case n1.r1: C : z is not principal in s1, r is a rule with one premiss and active parts Γ′, ∆′.

Π1

Γ, Γ′ ⊢ ∆, ∆′, C : z
r

Γ ⊢ ∆, C : z
Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

⇝

Π1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π′
2 from Lemma 29

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

r
Γ ⊢ ∆

The rank of the new cut is (|C|, h(Π1) + h(Π′
2)), which is strictly lower than the rank

(|C|, 1 + h(Π1) + h(Π2)) of the original cut.
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Case p1n2.r1: C : z is only principal in s1, r is a rule with one premiss and active parts
Γ′, ∆′. Similar to Case n1.r1.

Π1

Γ ⊢ ∆, C : z

Π2

C : z, Γ, Γ′ ⊢ ∆, ∆′

r
C : z, Γ ⊢ ∆

cut
Γ ⊢ ∆

⇝

Π′
1 from Lemma 29

Γ, Γ′ ⊢ ∆, ∆′, C : z
Π2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

r
Γ ⊢ ∆

The rank of the new cut is (|C|, h(Π′
1) + h(Π2)), which is strictly lower than the rank

(|C|, h(Π1) + h(Π2) + 1) of the original cut.
Case n1.r2: C : z is not principal in s1, r is a rule with two premise and active parts Γ′, ∆′

in the first premiss and Γ′′, ∆′′ in the second one. We apply Lemma 29 twice on Π2 to
get Π′

2 and Π′′
2 .

Π1
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π2
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z
r

Γ ⊢ ∆, C : z
Π2

C : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

⇝

Π1
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π′
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

Π2
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z

Π′′
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

cut
Γ, Γ′′ ⊢ ∆, ∆′′

r
Γ ⊢ ∆

The ranks (|C|, h(Π1
1) + h(Π′

2)) and (|C|, h(Π2
1) + h(Π′′

2)) of the two new cuts are strictly
lower than the rank (|C|, 1 + max(h(Π1

1), h(Π2
1)) + h(Π2)) of the original cut.

Case p1n2.r2: C : z is only principal in s1, r is a rule with two premises and active parts
Γ′, ∆′ in the first premiss and Γ′′, ∆′′ in the second one. We apply Lemma 29 twice on
Π1 to get Π′

1 and Π′′
1 . Similar to Case n1.r2.

Π1

Γ ⊢ ∆, C : z

Π1
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

Π2
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

r
C : z, Γ ⊢ ∆

cut
Γ ⊢ ∆

⇝

Π′
1

Γ, Γ′ ⊢ ∆, ∆′, C : z

Π1
2

C : z, Γ, Γ′ ⊢ ∆, ∆′

cut
Γ, Γ′ ⊢ ∆, ∆′

Π′′
1

Γ, Γ′′ ⊢ ∆, ∆′′, C : z

Π2
2

C : z, Γ, Γ′′ ⊢ ∆, ∆′′

cut
Γ, Γ′′ ⊢ ∆, ∆′′

r
Γ ⊢ ∆

The ranks (|C|, h(Π′
1) + h(Π1

2)) and (|C|, h(Π′′
1) + h(Π2

2)) of the two new cuts are strictly
lower than the rank (|C|, h(Π1) + max(h(Π1

2), h(Π2
2)) + 1) of the original cut.

Case p1.∧Rp2.∧L: C : z is principal in both s1 and s2, C has the form A ∧ B.

Π1
1

Γ ⊢ ∆, A ∧ B : z, A : z
Π2

1

Γ ⊢ ∆, A ∧ B : z, B : z
∧R

Γ ⊢ ∆, A ∧ B : z

Π2

A ∧ B : z, A : z, B : z, Γ ⊢ ∆
∧L

A ∧ B : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

We use three cuts on A ∧ B : z of strictly lower cut height to get the following proofs:

Π3


Π′

1 from Lemma 29
∧R

A : z, B : z, Γ ⊢ ∆, A ∧ B : z
Π2

A ∧ B : z, A : z, B : z, Γ ⊢ ∆
cut

A : z, B : z, Γ ⊢ ∆
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Π4


Π2

1

Γ ⊢ ∆, B : z, A ∧ B : z

Π′
2 from Lemma 29

A ∧ B : z, A : z, B : z, Γ ⊢ ∆, B : z
∧L

A ∧ B : z, Γ ⊢ ∆, B : z
cut

Γ ⊢ ∆, B : z

Π5


Π1

1

Γ ⊢ ∆, A : z, A ∧ B : z

Π′′
2 from Lemma 29

A ∧ B : z, A : z, B : z, Γ ⊢ ∆, A : z
∧L

A ∧ B : z, Γ ⊢ ∆, A : z
cut

Γ ⊢ ∆, A : z

We construct the following proof using two cuts on strictly smaller formulas:

Π5

Γ ⊢ ∆, A : z

Π′
4 from Lemma 29
A : z, Γ ⊢ ∆, B : z

Π3

A : z, B : z, Γ ⊢ ∆
cut

A : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

Case p1.⊃Lp2.⊃R: C : z is principal in both s1 and s2, C has the form A ⊃ B.

Π1

A : a, Γ ⊢ ∆, B : z ∪ a
⊃R

Γ ⊢ ∆, A ⊃ B : z

Π1
2

A ⊃ B : z, Γ ⊢ ∆, A : x
Π2

2

A ⊃ B : z, B : z ∪ x, Γ ⊢ ∆
⊃L

A ⊃ B : z, Γ ⊢ ∆
cut

Γ ⊢ ∆

We first apply Lemma 28 on Π1 to replace a with x.

Π3

A : x, Γ ⊢ ∆, B : z ∪ x

We then apply Lemma 29 on Π1 to get Π′
1:

Π′
1

A : a, Γ ⊢ ∆, B : z ∪ a, A : x

We combine Π′
1 and Π1

2 to get the following proof with a cut of strictly lower cut height:

Π4


Π′

1

A : a, Γ ⊢ ∆, B : z ∪ a, A : x
⊃R

Γ ⊢ ∆, A : x, A ⊃ B : z
Π1

2

A ⊃ B : z, Γ ⊢ ∆, A : x
cut

Γ ⊢ ∆, A : x

Applying Lemma 29 on Π4 we get Π′
4:

Π′
4

Γ ⊢ ∆, B : z ∪ x, A : x

Since B : z ∪ x occurs on the left-hand side of the conclusion of Π2
2, z ∪ x necessarily is a

sublabel of some label in ∆. We can therefore apply Lemma 29 on Π1 to get Π′′
1 :

Π′′
1

A : a, Γ, B : z ∪ x ⊢ ∆, B : z ∪ a

We combine Π′′
1 and Π2

2 to get the following proof with a cut of strictly lower cut height:
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Π5


Π′′

1

A : a, Γ, B : z ∪ x ⊢ ∆, B : z ∪ a
⊃R

Γ, B : z ∪ x ⊢ ∆, A ⊃ B : z
Π2

2

A ⊃ B : z, Γ, B : z ∪ x ⊢ ∆
cut

Γ, B : z ∪ x ⊢ ∆

We finally cut on strictly smaller formulas:

Π′
4

Γ ⊢ ∆, B : z ∪ x, A : x
Π3

A : x, Γ ⊢ ∆, B : z ∪ x
cut

Γ ⊢ ∆, B : z ∪ x
Π5

B : z ∪ x, Γ ⊢ ∆
cut

Γ ⊢ ∆

◀
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