
A Modular Associative Commutative (AC)
Congruence Closure Algorithm
Deepak Kapur #

Department of Computer Science, University of New Mexico, Albuquerque, NM, USA

Abstract
Algorithms for computing congruence closure of ground equations over uninterpreted symbols
and interpreted symbols satisfying associativity and commutativity (AC) properties are proposed.
The algorithms are based on a framework for computing the congruence closure by abstracting
nonflat terms by constants as proposed first in Kapur’s congruence closure algorithm (RTA97). The
framework is general, flexible, and has been extended also to develop congruence closure algorithms
for the cases when associative-commutative function symbols can have additional properties including
idempotency, nilpotency and/or have identities, as well as their various combinations. The algorithms
are modular; their correctness and termination proofs are simple, exploiting modularity. Unlike
earlier algorithms, the proposed algorithms neither rely on complex AC compatible well-founded
orderings on nonvariable terms nor need to use the associative-commutative unification and extension
rules in completion for generating canonical rewrite systems for congruence closures. They are
particularly suited for integrating into Satisfiability modulo Theories (SMT) solvers.

2012 ACM Subject Classification Software and its engineering; Theory of computation; Mathematics
of computing

Keywords and phrases Congruence Closure, Associative and Commutative, Word Problems, Finitely
Presented Algebras, Equational Theories

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.15

Funding Research partially supported by the NSF award: CCF-1908804.

Acknowledgements Heartfelt thanks to the referees for their reports which substantially improved
the presentation.

1 Introduction

Equality reasoning arises in many applications including compiler optimization, functional
languages, and reasoning about data bases, most importantly, reasoning about different
aspects of software and hardware. The significance of the congruence closure algorithms on
ground equations in compiler optimization and verification applications was recognized in
the mid 70’s and early 80’s, leading to a number of algorithms for computing the congruence
closure of ground equations on uninterpreted function symbols [8, 28, 25]. Whereas congruence
closure algorithms were implemented in earlier verification systems [28, 25, 19, 32], their role
has become particularly critical in Satisfiability modulo Theories (SMT) solvers as a glue to
combine different decision procedure for various theories.

We present algorithms for the congruence closure of ground equations which in addition
to uninterpreted function symbols, have symbols with the associative (A) and commutative
(C) properties. Using these algorithms, it can be decided whether another ground equation
follows from a finite set of ground equations with associative-commutative (AC) symbols
and uninterpreted symbols. Canonical forms (unique normal forms) can be associated with
congruence classes. Further, a unique reduced ground congruence closure presentation can
be associated with a finite set of ground equations, enabling checks whether two different
finite sets of ground equations define the same congruence closure or one is contained in the
other. In the presence of disequations on ground terms with AC and uninterpreted symbols,
a finite set of ground equations and disequations can be checked for satisfiability.

© Deepak Kapur;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 15; pp. 15:1–15:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kapur@cs.unm.edu
https://doi.org/10.4230/LIPIcs.FSCD.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Modular AC Congruence Closure

The main contributions of the paper are (i) a modular combination framework for the
congruence closure of ground equations with multiple AC symbols, uninterpreted symbols,
and constants, leading to (ii) modular and simple algorithms that can use flexible termination
orderings on ground terms and do not need to use AC/E unification algorithms for generating
canonical forms; (iii) the termination and correctness proofs of these algorithms are modular
and easier. The key insights are based on extending the author’s previous work presented in
[13, 14]: introduction of new constants for nested subterms, resulting in flat and constant
equations, extended to purification of mixed subterms with many AC symbols by flattening
AC ground terms and introducing new constants for pure AC terms in each AC symbol,
resulting in disjoint subsets of ground equations on single AC symbols with shared constants.
The result of this transformation is a finite union of disjoint subsets of ground equations
with shared constants: (i) a finite set of constant equations, (ii) a finite set of flat equations
with uninterpreted symbols, and (iii) for each AC symbol, a finite set of equations on pure
flattened terms in a single AC symbol.

With the above decomposition, reduced canonical rewrite systems are generated for each
of the subsystems using their respective termination orderings that extend a common total
ordering on constants. A combination of the reduced canonical rewrite systems is achieved
by propagating constant equalities among various rewrite systems; whenever new implied
constant equalities are generated, each of the reduced canonical rewrite systems must be
updated with additional computations to ensure their canonicity. Due to this modularity and
factoring/decomposition, the termination and correctness proofs can be done independently
of each subsystem, providing considerable flexibility in choosing termination orderings.

The combination algorithm terminates when no additional implied constant equalities
are generated. Since there are only finitely many constants in the input and only finitely
many constants are needed for purification, the termination of the combination algorithm
is guaranteed. The result is a reduced canonical rewrite system corresponding to the AC
congruence closure of the input ground equations, which is unique for a fixed family of
total orderings on constants and different pure AC terms in each AC symbol. The reduced
canonical rewrite system can be used to generate canonical signatures of ground terms with
respect to the congruence closure.

The framework provides flexibility in choosing orderings on constants and terms with
different AC symbols, enabling canonical forms suitable for applications instead of restrictions
imposed due to the congruence closure algorithms. Interpreted AC symbols can be further
enriched with properties including idempotency, nilpotency, existence of identities, and
simply commutativity, without restrictions on orderings on mixed terms. Termination and
correctness proofs of congruence closure algorithms are modular and simple in contrast to
complex arguments and proofs in [5, 24]. These features of the proposed algorithms make
them attractive for integration into SMT solvers as their implementation does not need heavy
duty infrastructure including AC unification, extension rules, and AC compatible orderings.

The next subsection contrasts in detail, the results of this paper with the previous methods,
discussing the advantages of the proposed framework and the resulting algorithms. Section 2
includes definitions of congruence closure with uninterpreted and interpreted symbols. This
is followed by a review of key constructions used in the congruence closure algorithm over
uninterpreted symbols as proposed in [13]. Section 3 introduces purification and flattening of
ground terms with AC and uninterpreted symbols by extending the signature and introducing
new constants. This is followed by an algorithm first reported in [11] for computing the
congruence closure and the associated canonical rewrite system from ground equations with
a single AC symbol and constants. It is shown how additional properties of AC symbols



D. Kapur 15:3

such as idempotency, nilpotency and identity can be integrated into the algorithm. In the
next subsection, an algorithm for computing congruence closure of AC ground equations
with multiple AC symbols and constants is presented. Section 4 generalizes to the case of
combination of AC symbols and uninterpreted symbols. Section 5 discusses a variety of
examples illustrating the proposed algorithms. Section 6 illustrates the power and elegance
of the proposed framework by demonstrating how the congruence closure algorithm for two
AC symbols can be further generalized to get a Gröbner basis algorithm on polynomial ideals
over the integers. Section 7 concludes with some ideas for further investigation. Appendix
includes proofs of some of the results in the paper.

1.1 Related Work
Congruence closure algorithms have been developed and analyzed for over four decades [8,
28, 25]. The algorithms presented here use the framework first informally proposed in [13] for
congruence closure in which the author separated the algorithm into two parts: (i) constant
equivalence closure, and (ii) nonconstant flat terms related to constants by flattening nested
terms by introducing new constants to stand for them, and (iii) update nonconstant rules
as constant equivalence closure evolves. This simplified the presentation, the correctness
argument as well as the complexity analysis, and made the framework easier to generalize
to other settings including conditional congruence closure [14] and semantic congruence
closure [1]. Further, it enables the generation of a reduced unique canonical rewrite system
for a congruence closure, assuming a total ordering on constants; most importantly, the
framework gives freedom in choosing orderings on ground terms, leading to desired canonical
forms appropriate for applications.

To generate congruence closure in the presence of AC symbols, the proposed framework
builds on the author and his collaborators’ work dating back to 1985, where they demonstrated
how an ideal-theoretic approach based on Gröbner basis algorithms could be employed for
word problems and unification problems over commutative algebras [11].

Congruence closure algorithms on ground equations with interpreted symbols can be
viewed as special cases of the Knuth-Bendix completion procedure [20] on (nonground)
equations with universal properties characterizing the semantics of the interpreted symbols.
In case of equations with AC symbols, Peterson and Stickel’s extension of the Knuth-Bendix
completion [27] using extension rules, AC unification and AC compatible orderings can be
used for congruence closure over AC symbols. For an arbitrary set E of universal axioms
characterizing the semantics of interpreted symbols, E-completion with coherence check
and E-unification along with E-compatible orderings need to be used. Most of the general
purpose methods do not terminate in general. Even though the Knuth-Bendix procedure
can be easily proved to terminate on ground equations of uninterpreted terms, that is not
necessarily case for its extensions for other ground formulas.

In [6], a generalization of the Knuth-Bendix completion procedure [20] to handle AC
symbols [27] is adapted to develop decision algorithms for word problems over finitely
presented commutative semigroups; this is equivalent to the congruence closure of ground
equations with a single AC symbol on constants. Related methods using extension rules
introduced to handle AC symbols and AC rewriting for solving word problems over other
finite presented commutative algebras were subsequently reported in [29].

In [24], the authors used the completion algorithm discussed in [11] and a total AC-
compatible polynomial reduction ordering on congruence classes of AC ground terms to
establish the existence of a ground canonical AC system first with one AC symbol. To extend
their method to multiple AC symbols, particularly the instances of distributivity property

FSCD 2021



15:4 Modular AC Congruence Closure

relating ground terms in two AC symbols ∗ and +: the authors had to combine an AC-
compatible total reduction ordering on terms along with complex polynomial interpretations
with polynomial ranges, resulting in a complicated proof to orient the distributivity axiom
from left to right. Using this highly specialized generalization of polynomial orderings, it was
proved in [24] that every ground AC theory has a finite canonical system which also serves
as its congruence closure.

The proposed approach, in contrast, is orthogonal to ordering arguments on AC ground
terms; instead a total ordering on constants in the extended signature is extended to many
different possible orderings on pure terms with a single AC symbol is sufficient to compute a
canonical ground AC rewrite system. Different orderings on AC terms with different AC
symbols can be used; for example, for ground terms of an AC symbol + could be oriented
in a completely different way than ground terms for another AC symbol ∗. Instances of
the distributivity property expressed on different AC ground terms can also be oriented in
different nonuniform ways. This leads to flexible ordering requirements on uninterpreted and
interpreted symbols based on the properties desired of canonical forms.

In [21], a different approach was taken for computing a finite canonical rewrite system
for ground equations on AC symbols. Marche first proved a general result about AC ground
theories that for any finite set of ground equations with AC symbols, if there is an equivalent
canonical rewrite system modulo AC, then that rewrite system must be finite. He gave an
AC completion procedure, which does not terminate even on ground equations; he then
proved its termination on ground equations with AC symbols using a special control on its
inference rules using a total ordering on AC ground terms in [24]. Neither in [24] nor in [21],
any explicit mention is made of uninterpreted symbols appearing in ground equations.

Similar to [6], several approaches based on adapting Peterson and Stickel’s generalization
of the Knuth-Bendix completion procedure to consider special ground theories have been
reported [29, 21]. In [4, 5], the authors adapted Kapur’s congruence closure [13] using its
key ideas to an abstract inference system (Table for new constant symbols defining flat
terms introducing during flattening of nested nonconstant terms in Make_Rule were called
D-rule for defining a flat term and C-rule for introducing a new constant symbol). Various
congruence closure algorithms, including Sethi, Downey and Tarjan [8], Nelson and Oppen [25]
and Shostak [28], from the literature can be expressed as different combinations of these
inference steps. They also proposed an extension of this inference system to AC function
symbols, essentially integrating it with [27] of the Knuth-Bendix completion procedure using
extension rules, adapted to ground equations with AC symbols. All of these approaches
based on Paterson and Stickel’s generalization used extension rules introduced in [27] to
define rewriting modulo AC theories so that a local-confluence test for rules with AC symbols
could be developed using AC unification. During completion on ground terms, rules with
variables appear in intermediate computations. All of these approaches suffer from having
to consider many unnecessary inferences due to extension rules and AC unification, as it is
well-known that AC unification can generate doubly exponentially many unifiers [18].

An approach based on normalized rewriting was proposed in [22] and decision procedures
were reported for ground AC theories with AC symbols satisfying additional properties
including idempotency, nilpotency and identity as well as their combinations. This was an
attempt to integrate Le Chenadec’s method [29] for finitely presented algebraic structures
with Peterson and Stickel’s AC completion, addressing weaknesses in E-completion and
constrained rewriting, while considering additional axioms of AC symbols, including identity,
idempotency and nilpotency for which termination orderings are difficult to design. However,
that approach had to redefine local confluence for normalized rewriting and normalized
critical pairs, leading to a complex completion procedure whose termination and proof of
correctness needed extremely sophisticated machinery of normalized proofs.



D. Kapur 15:5

The algorithms presented in this paper, in contrast, are very different and are based on
an approach first presented in [11] by the author with his collaborators. Their termination
and correctness proofs are based on the termination and correctness proofs of a congruence
closure algorithm for uninterpreted symbols (if present) and the termination and correctness
of an algorithm for deciding the word problems of a finitely presented commutative semig-
roup using Dickson’s Lemma. Since the combination is done by propagating equalities on
shared constants among various components, the termination and correctness proofs of the
combination algorithm become much easier since there are only finitely many constants to
consider, as determined by the size of the input ground equations.

A detailed comparison leads to several reasons why the proposed algorithms are simpler,
modular, easier to understand and prove correct: (i) there is no need in the proposed approach
to use extension rules whereas almost all other approaches are based on adapting AC/E
completion procedures for this setting requiring considerable/sophisticated infrastructure
including AC unification and E/Normalized rewriting As a result, proofs of correctness and
termination become complex using heavy machinery including proof orderings and normalized
proof methods not to mention arguments dealing with fairness of completion procedures.
(ii) all require complex total AC compatible orderings. In contrast, ordering restrictions
in the proposed algorithms are dictated by individual components–little restriction for the
uninterpreted part, independent orderings on +-monomials for each AC symbol + insofar
as orderings on constants are shared by all parts, thus giving considerable flexibility in
choosing termination orderings. In most related approaches except for [24], critical pairs
computed using expensive AC unification steps are needed, which are likely to make the
algorithms inefficient; it is well-known that many superfluous critical pairs are generated
due to AC unification. These advantages make us predict that the proposed algorithms can
be easily integrated with SMT solvers since they do not require sophisticated machinery of
AC-unification and AC-compatible orderings, extension rules and AC completion.

2 Preliminaries

Let F be a set of function symbols including constants and GT (F ) be the ground terms
constructed from F ; sometimes, we will write it as GT (F, C) to highlight the constants of
F . We will abuse the terminology by calling a k-ary function symbol as a function symbol
if k > 0 and constant if k = 0. A function term is meant to be a nonconstant term with a
nonconstant outermost symbol. Symbols in F are either uninterpreted (to mean no semantic
property of such a function is assumed) or interpreted satisfying properties expressed as
universally quantified equations (called universal equations).

2.1 Congruence Relations
▶ Definition 1. Given a finite set S = {ai = bi|1 ≤ i ≤ m} of ground equations where ai, bi ∈
GT (F ), the congruence closure CC(S) is inductively defined as follows: (i) S ⊆ CC(S), (ii)
for every a ∈ GT (F ), a = a ∈ CC(S), (iii) if a = b ∈ CC(S), b = a ∈ CC(S), (iv) if a = b

and b = c ∈ CC(S), a = c ∈ CC(S), and (v) for every nonconstant f ∈ F of arity k > 0, if
for all 1 ≤ k, ai = bi ∈ CC(S), then f(a1, · · · , ak) = f(b1, · · · , bk) ∈ CC(S). Nothing else
is in CC(S).

CC(S) is thus the smallest relation that includes S and is closed under reflexivity,
symmetry, transitivity, and under function application. It is easy to see that CC(S) is also
the equational theory of S [2, 1].

FSCD 2021



15:6 Modular AC Congruence Closure

2.2 Kapur’s Congruence Closure Algorithm for Uninterpreted Symbols
The algorithm in [13, 14] for computing congruence closure of a finite set S of ground equations
serves as the main building block in this paper. The algorithm extends the input signature
by introducing new constant symbols to recursively stand for each nonconstant subterm
and generates two types of equations: (i) constant equations, and (ii) flat terms of the form
f(c1, · · · , ck) equal to constants. A disequation is converted to a disequation on constants
by introducing new symbols for the terms. It can be proved that the congruence closure
of ground equations on the extended signature when restricted to the original signature, is
indeed the congruence closure of the original equations [1].

Using a total ordering on constants (typically with new constants introduced to extend
the signature being smaller than constants from the input), the output of the algorithm
in [13, 14] is a reduced canonical rewrite system RS associated with CC(S) (as well as S)
that includes function, also called flat rules of the form f(c1, · · · , ck) → d and constant rules
c → d such that no two left sides of the rules are identical; further, all constants are in
canonical forms. As proved in [13] (see also [26]),

▶ Theorem 2 ([13]). Given a set S of ground equations, a reduced canonical rewrite system
RS on the extended signature, consisting of nonconstant flat rules f(c1, . . . , ck) → d, and
constant rules c → d, can be generated from S in O(n2) steps. The complexity can be further
reduced to O(n ∗ log(n)) steps if all function symbols are binary or unary. For a given total
ordering ≫ on constants, RS is unique for S, subject to the introduction of the same set of
new constants for nonconstant subterms.

As shown in [8] (see [26]), function symbols of arity > 2 can be encoded using binary
symbols using additional linearly many steps.

The canonical form of a ground term g using RS is denoted by ĝ and is its canonical
signature (in the extended language). Ground terms g1, g2 are congruent in CC(S) iff ĝ1 = ĝ2.

2.3 AC Congruence Closure
The above definition of congruence closure CC(S) is extended to consider interpreted symbols.
Let IE be a finite set of universally quantified equations with variables, specifying properties
of interpreted function symbols in F . For example, the properties of an AC symbol f are:
∀x, y, z, f(x, y) = f(y, x), f(x, f(y, z)) = f(f(x, y), z). An idempotent symbol g, for another
example, is specified as ∀x, g(x, x) = x. To incorporate the semantics of these properties:

(vi) from a universal axiom s = t ∈ IE, for each variable x in s, t, for any ground
substitution σ, i.e., σ(x) ∈ GT (F ), σ(s) = σ(t) ∈ CC(S).

CC(S) is thus the smallest relation that includes S and is closed under reflexivity,
symmetry, transitivity, function application, and the substitution of variables in IE by
ground terms. CC(S) is also the ground equational theory of S.

Given a finite set S of ground equations with uninterpreted and interpreted symbols,
the congruence closure membership problem is to check whether another ground equation
u = v ∈ CC(S) (meaning semantically that u = v follows from S, written as S |= u = v). A
related problem is whether given two sets S1 and S2 of ground equations, CC(S2) ⊆ CC(S1),
equivalently S1 |= S2. Birkhoff’s theorem relates the syntactic properties, the equational
theory, and the semantics of S.

If S also includes ground disequations, then besides checking the unsatisfiability of a
finite set of ground equations and disequations, new disequations can be derived in case S is
satisfiable. The inference rule for deriving new disequations for an uninterpreted symbol is:

f(c1, . . . , ck) ̸= f(d1, · · · , dk) =⇒ (c1 ̸= d1 ∨ · · · ∨ ck ̸= dk).
In particular, if f is unary, then the disequation is immediately derived.



D. Kapur 15:7

Disequations in case of interpreted symbols generate more interesting formulas. In
case of a commutative symbol f , for example, the disequation f(a, b) ̸= f(c, d) implies
(a ̸= c ∨ a ̸= c ∨ b ≠ d ∨ c ̸= d). For an AC symbol g, as an example, the disequation
g(a, g(b, c)) ̸= g(a, g(a, g(a, c))) implies (a ̸= g(a, c) ∨ b ̸= c ∨ b ̸= g(a, a) ∨ · · · ).

To emphasize the presence of AC symbols, let ACCC(S) stand for the AC congruence
closure of S with AC symbols; we will interchangeably use ACCC(S) and CC(S).

2.4 Flattening and Purification
Let F include a finite set C of constants, a finite set FU of uninterpreted symbols, and a
finite set FAC of AC symbols. i.e., F = FAC ∪ FU ∪ C.

Following [13], ground equations in GT (F ) with AC symbols are transformed into three
kinds of equations by introducing new constants for subterms: (i) constant equations of the
form c = d, (ii) flat equations with uninterpreted symbols of the form h(c1, · · · , ck) = d,
and (iii) for each f ∈ FAC , f(c1 · · · , cj) = f(d1, · · · , dj′), where c’s, d’s are constants in
C, h ∈ FU , and every AC symbol f is viewed to be variadic (including f(c) = c). Nested
subterms of every AC symbol f are repeatedly flattened: f(f(s1, s2), s3) to f(s1, s2, s3)
and f(s1, f(s2, s3)) to f(s1, s2, s3) until all arguments to f are constants or nonconstant
terms with outermost symbols different from f . Nonconstant arguments of a mixed AC
term f(t1, · · · , tk) are transformed to f(u1, · · · , uk), where ui’s are new constants, with
ti = ui if ti is not a constant. A subterm whose outermost function symbol is uninterpreted,
is also flattened by introducing new constants for their nonconstant arguments. These
transformations are recursively applied on the equations with new constants.

New constants are introduced only for nonconstant subterms and their number is minim-
ized by introducing a single new constant for each distinct subterm irrespective of its number
of occurrences (which is equivalent to representing terms by directed acyclic graphs (DAGs)
with full sharing whose each non-leaf node is assigned a distinct constant). As an example,
((f(a, b) ∗ g(a)) + f(a + (a + b), (a ∗ b) + b)) ∗ ((g(a) + ((f(a, b) + a) + a)) + (g(a) ∗ b)) = a is
purified and flattened with new constants ui’s, resulting in {f(a, b) = u1, g(a) = u2, u1 ∗ u2 =
u3, a + a + b = u4, a ∗ b = u5, u5 + b = u6, f(u4, u6) = u7, u3 + u7 = u8, u2 ∗ b =
u9, u2 + u1 + a + a + u9 = u10, u7 ∗ u10 = a

The arguments of an AC symbol are represented as a multiset since the order does not
matter but multiplicity does. For an AC symbol f , let f(M) be a flattened term f(a1, · · · , ak)
with M = {{a1, · · · , ak}}, a multiset of constants; f(M) is called an f-monomial. In case
f has its identity e, i.e., f(x, e) = x, then e is written as is, or f({{}}). A singleton constant
c is written as is or equivalently f({{c}}). An f -monomial f(M1) is equal to f(M2) iff the
multisets M1 and M2 are equal.

Without any loss of generality, the input to the algorithms below are assumed to be the
above set of flattened ground equations on constants.

3 Congruence Closure with Associative-Commutative (AC) Functions

The focus in this section is on interpreted symbols with the associative-commutative properties;
later, uninterpreted symbols are considered.

Checking whether a ground equation on AC terms is in the congruence closure ACCC(S)
of a finite set S on ground equations is the word problem over finitely presented commutative
algebraic structures, presented by S characterizing their interpretations as discussed in
[11, 29, 6]. In the presence of disequations over AC ground terms, one is also interested
in determining whether the set of ground equations and disequations is satisfiable or not.

FSCD 2021



15:8 Modular AC Congruence Closure

Another goal is to associate a reduced canonical rewrite system as a unique presentation of
ACCC(S) and a canonical signature with every AC congruence class in the AC congruence
closure of a satisfiable S.

For a single AC symbol f and a finite set S of monomial equations {f(Mi) = f(M ′
i)|1 ≤

i ≤ k}, ACCC(S) is the reflexive, symmetric and transitive closure of S closed under f : if
f(M1) = f(M2) and f(N1) = f(N2) in ACCC(S), then f(M1 ∪ N1) = f(M2 ∪ N2) is also in
ACCC(S). In case of multiple AC symbols, for every AC symbol g ̸= f , g(f(M1), f(N1)) =
g(f(M2), f(N2)) ∈ ACCC(S).

3.1 Congruence Closure with a Single AC Symbol
As in [13], we follow a rewrite-based approach for computing the AC congruence closure
ACCC(S) by generating a canonical rewrite system from S. To make rewrite rules from
equations in S, a total ordering ≫ on the set C of constants is extended to a total ordering
on f -monomials and denoted as ≫f . One of the main advantages of the proposed approach
is the flexibility in using termination orderings on f -monomials, both from the literature on
termination orderings on term rewriting systems as well as well-founded orderings (also called
admissible orderings) from the literature on symbolic computation including Gröbner basis.

Using the terminology from the Gröbner basis literature, an ordering ≫f on the set of
f -monomials, GT ({f}, C), is called admissible iff i) f(A) ≫f f(B) if the multiset B is a
proper subset of the multiset A (subterm property) for any nonempty multiset M , and (ii)
for any multiset B, f(A1) ≫f f(A2) =⇒ f(A1 ∪ B) ≫f f(A2 ∪ B) (the compatibility
property). f({{}}) may or may not be included in GT (F ) depending upon an application.

From S, a rewrite system RS is associated with S by orienting nontrivial equations in S

(after deleting trivial equations t = t from S) using ≫f : a ground equation f(A1) = f(A2)
is oriented into a terminating rewrite rule f(A1) → f(A2), where f(A1) ≫f f(A2). The
rewriting relation induced by this rewrite rule is defined below.

▶ Definition 3. A flattened term f(M) is rewritten in one step, denoted by →AC (or simply
→), using a rule f(A1) → f(A2) to f(M ′) iff A1 ⊆ M and M ′ = (M − A1) ∪ A2, where
−, ∪ are operations on multisets.

Given that f(A1) ≫f f(A2), it follows that f(M) ≫f f(M ′), implying the rewriting
terminates. Standard notation and concepts from [2] are used to represent and study
properties of the reflexive and transitive closure and transitive closure of →AC induced by
RS ; the reflexive, symmetric and transitive closure of →AC is the AC congruence closure
ACCC(S) of S. Below, the subscript AC is dropped from →AC , f is dropped from Sf and
≫f whenever obvious from the context.

A rewrite relation → defined by RS is called terminating iff there are no infinite rewrite
chains of the form t0 → t1 → · · · → tk → · · · . A rewrite relation → is locally confluent iff for
any term t such that t → u1, t → u2, there exists v such that u1→∗v, u2→∗v. → is confluent
iff for any term t such that t →∗ u1, t →∗ u2, there exists v such that u1 →∗ v, u2 →∗ v.
→ is canonical iff it is terminating and locally-confluent (and hence also terminating and
confluent). A term t is in normal form iff there is no u such that t → u.

An f -monomial f(M) is in normal form with respect to RS iff f(M) cannot be rewritten
using any rule in RS .

Define a nonstrict partial ordering on f -monomials, informally capturing when an f -
monomial rewrites another f -monomial, called the Dickson ordering: f(M) ≫D f(M ′) iff
M ′ is a subset of M . Observe that the strict subpart of this ordering, while well-founded, is
not total; for example, two distinct singleton multisets (constants) {{a}} ̸= {{b}} cannot be
compared. This ordering is later used to show the termination of the completion algorithm.



D. Kapur 15:9

A rewrite system RS is called reduced iff neither the left side nor the right side of any
rule in RS can be rewritten by any of the other rules in RS .

As in [11], the local confluence of RS can be checked using the following constructions of
superposition and critical pair.

▶ Definition 4. Given two distinct rewrite rules f(A1) → f(A2), f(B1) → f(B2), let
AB = (A1 ∪ B1) − (A1 ∩ B1); f(AB) is then the superposition of the two rules, and the
critical pair is (f((AB − A1) ∪ A2), f((AB − B1) ∪ B2)).

To illustrate, consider two rules f(a, b) → a, f(b, c) → b; their superposition f(a, b, c)
leads to the critical pair (f(a, c), f(a, b)).

A rule can have a constant on its left side and a nonconstant on its right side. As stated
before, a singleton constant stands for the multiset containing that constant.

A critical pair is nontrivial iff the normal forms of its two components in →AC as multisets
are not the same (i.e., they are not joinable). A nontrivial critical pair generates an implied
equality relating distinct normal forms of its two components.

For the above two rewrite rules, normal forms of two sides are (f(a, c), a), respectively,
indicating that the two rules are not locally confluent. A new derived equality is generated:
f(a, c) = a which is in ACCC({f(a, b) = a, f(b, c) = b}).

It is easy to prove that if A1, B1 are disjoint multisets, their critical pair is trivial. Many
critical pair criteria to identify additional trivial critical pairs have been investigated and
proposed in [7, 17, 3].

▶ Lemma 5. An AC rewrite system RSf
is locally confluent iff the critical pair: (f((AB −

A1) ∪ A2), f((AB − B1) ∪ B2)) between every pair of distinct rules f(A1) → f(A2), f(B1) →
f(B2) is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1).

See the Appendix for a proof.
Using the above local confluence check, a completion procedure is designed in the classical

manner; equivalently, a nondeterministic algorithm can be given as a set of inference rules [2].
If a given rewrite system is not locally confluent, then new rules generated from nontrivial
critical pairs (that are not joinable) are added until the resulting rewrite system is locally
confluent. New rules can always be oriented since an ordering on f -monomials is assumed to
be total. This completion algorithm is a special case of Gröbner basis algorithm on monomials
built using a single AC symbol. The result of the completion algorithm is a locally confluent
and terminating rewrite system for ACCC(S).

Doing the completion algorithm on the two rules in the above examples, the derived
equality is oriented into a new rule f(a, c) → a. The system {f(a, b) → a, f(b, c) →
b, f(a, c) → a} is indeed locally-confluent. This canonical rewrite system is a presentation of
the congruence closure of {f(a, b) = a, f(b, c) = b}. Using the rewrite system, membership
in its congruence closure can be decided by rewriting: f(a, b, b) = f(a, b, c) ∈ ACCC(S)
whereas f(a, b, b) ̸= f(a, a, b).

A simple completion algorithm is presented for the sake of completeness. It takes as input,
a finite set SC of constant equations and a finite set Sf of equations on f -monomials, and a
total ordering ≫f on f -monomials extending a total ordering ordering ≫ on constants, and
computes a reduced canonical rewrite system Rf (interchangeably written as RS) such that
ACCC(S) = ACCC(SRf

), where SRf
is the set of equations l = r for every l → r ∈ Rf .

FSCD 2021



15:10 Modular AC Congruence Closure

Algorithm 1 1AC-Completion(S = Sf ∪ SC , ≫f ).

1. Orient constant equations in SC into terminating rewrite rules RC using ≫ and interreduce
them. Equivalently, using Tarjan’s Union-Find data structure, for every constant c ∈ C,
compute, from SC , the equivalence class [c] of constants containing c and make RC =
∪c∈C{c → ĉ | c ̸= ĉ and ĉ is the least element in [c]}.

Initialize Rf to be RC . Let T := Sf .
2. Pick an f -monomial equation l = r ∈ T using some selection criterion (typically an

equation of the smallest size) and remove it from T . Compute normal forms l̂, r̂ using
Rf . If equal, then discard the equation, otherwise, orient into a terminating rewrite rule
using ≫f . Without any loss of generality, let the rule be l̂ → r̂.

3. Generate critical pairs between l̂ → r̂ and every f -rule in Rf , adding them to T .1
4. Add the new rule l̂ → r̂ into Rf ; interreduce other rules in Rf using the new rule.

(i) For every rule l → r in Rf whose left side l is reduced by l̂ → r̂, remove l → r from
Rf and insert l = r in T . If l cannot be reduced but r can be reduced, then reduce r by
the new rule and generate a normal form r′ of the result. Replace l → r in Rf by l → r′.

5. Repeat the previous three steps until the critical pairs among all pairs of rules in Rf are
joinable, and T becomes empty.

6. Output Rf as the canonical rewrite system associated with S.

▶ Theorem 6. The algorithm 1AC-Completion terminates, i.e., in Step 4, rules to Rf

cannot be added infinitely often.

See the Appendix for a proof.

▶ Theorem 7. Given a finite set S of ground equations with a single AC symbol f and
constants, and a total admissible ordering ≫f on flattened AC terms and constants, a reduced
canonical rewrite system Rf is generated by the above completion procedure, which serves as
a decision procedure for ACCC(S).

The proof the theorem is classical, typical of a correctness proof of a completion algorithm
based on ensuring local confluence by adding new rules generated from superpositions whose
critical pairs are not joinable.

▶ Theorem 8. Given a total ordering ≫f on f-monomials, there is a unique reduced
canonical rewrite system associated with Sf

See the Appendix for a proof.
The complexity of this specialized decision procedure has been proved to require expo-

nential space and double exponential upper bound on time complexity [23, 31].
The above completion algorithm generates a unique reduced canonical rewrite system Rf

for the congruence closure ACCC(S) because of interreduction of rules whenever a new rule
is added to Rf ; Rf (RS) thus serves as its unique presentation. Using the same ordering ≫
on f -monomials, two sets S1, S2 of AC ground equations have identical (modulo presentation
of multisets as AC terms) reduced rewrite systems RS1 = RS2 iff ACCC(S1) = ACCC(S2),
thus generalizing the result for the uninterpreted case. Every f -monomial in GT ({f}, C) has
its canonical signature–its canonical form computed using Rf generated from S.

3.2 Idempotent and/or Nilpotent AC Symbols with Identity
If an AC symbol f has additional properties such as nilpotency, idempotency and/or unit,
the above completion algorithm can be easily extended by expanding the local confluence
check. Along with the above discussed critical pairs from a distinct pair of rules, additional



D. Kapur 15:11

critical pairs must be considered from each rule in Rf . We discuss below the case of an AC
symbol being idempotent in detail; analysis for a nilpotent AC symbol, an AC symbol with
identity, and various combination of properties is similar.

For any rule f(M) → f(N) where f is idempotent and M, N do not have duplicates,
for every constant a ∈ M , generate a superposition f(M ∪ {{a}}), a new critical pair
(f(N ∪ {{a}}), f(M)) and check its joinability. It can be proved that Rf is locally confluent
iff the critical pairs constructed as above, from each distinct pair of rules in Rf and the new
critical pair from each rule are joinable; see the Appendix for a proof. For an example, from
f(a, b) → c with an idempotent f , the superpositions are f(a, a, b) and f(a, b, b), leading to
the critical pairs: (f(a, c), f(a, b)) and (f(b, c), f(a, b)), respectively, which further reduces
to (f(a, c), c) and (f(b, c), c), respectively. See the Appendix for a proof sketch.

For a nilpotent AC symbol f with f(x, x) = e, for every rule f(M) → f(N), generate a
critical pair (f(N ∪ {{a}}), f((M − {{a}}) ∪ {{e}})). If f has identity, say e, no additional
critical pair is needed since from every rule f(M) → f(N), (f(N ∪{{e}}), f(M)) are trivially
joinable. The termination proof from the previous subsection extends to each of these cases
and their combination.

3.3 Computing Congruence Closure with Multiple AC symbols
The extension of the above algorithm for computing congruence closure with a single AC
symbol to multiple AC symbols is straightforward.

Given a total ordering ≫ on constants, for each AC symbol f , define a total well-founded
admissible ordering ≫f on f -monomials extending ≫. However, nonconstant f -monomials
are not comparable with nonconstant g-monomials for f ̸= g.

From SC and each Sf , reduced canonical rewrite systems RC and Rf , respectively are
independently generated using the algorithm of the previous subsection. Equalities on shared
constants must be propagated until no additional implied equalities are generated.

Any constant equality c = d generated in an Rf , f ∈ FAC , is oriented as a rewrite rule;
wlog c → d is added to RC with c reduced to d everywhere in various Rf ’s. If c appears in
the left side of a rule in some Rg, it is removed from Rg and instead viewed as an equation,
which is further reduced and the normalized equation is oriented as a rewrite rule using ≫g

and checked for local confluence with other rules in Rg. This process is continued until no
new implied constant equalities are generated and local confluence of each Rf is restored.

A subtle issue is when two distinct Rf and Rg, f ̸= g, have rewrite rules with the same
constant on their left sides, i.e., there is a rule c → f(M) ∈ Rf and c → g(N) ∈ Rg, f ̸= g.
This implies that a constant c is congruent to both nonconstant f -monomial as well as g-
monomial. The above can happen if in ≫f and ≫g, c ≫f f(M) and c ≫g g(N), respectively.
However, f(M) and g(N) are noncomparable in ≫f or ≫g since they have two different AC
symbols. We will call this case to be that of a shared constant having two distinct normal
forms in different AC symbols.

A new constant u is introduced with c ≫ u, as is usually the case with new constants;
≫f and ≫g are extended to include monomials in which u appears with the constraint that
f(M) ≫f u and g(N) ≫g u. Add a rule c → u ∈ RC , replace the rule c → f(M) ∈ Rf by
f(M) → u and c → g(N) ∈ Rg by g(N) → u. These restrictions are easily satisfied.

The replacements of c → f(M) to f(M) → u in Rf and similarly of c → g(N) to
g(N) → u in Rg may violate the local confluence of Rf and Rg. New superpositions are
generated in Rf as well as Rg, possibly leading to new rules. After local confluence is
restored, the result is new R′

f and R′
g. To illustrate, consider S = {c = a + b, c = a ∗ b}

with AC +, ∗. For an ordering c ≫ b ≫ a with both ≫+ and ≫∗ being pure lexicographic,

FSCD 2021



15:12 Modular AC Congruence Closure

R+ = {c → a + b}, R∗ = {c → a ∗ b}. These canonical rewrite systems have a shared constant
c with two different normal forms. Introduce a new constant u with c ≫ b ≫ a ≫ u; make
RS = {a + b → u, a ∗ b → u, c → u}. The reader must have observed that whereas in the
extended signature, the above rewrite system is unique, reduced, and canonical, on the
original signature, it is not even locally confluent. A choice about whether the canonical
form of c is an f -monomial or a g-monomial is not made as part a of this algorithm since
nonconstant f -monomials and g-monomials are noncomparable.

A reduced canonical rewrite system R = RC ∪
⋃

f∈FAC
Rf is generated from S to compute

the AC congruence closure ACCC(S) in which rules have distinct left sides.

Algorithm 2 Combination Algorithm (S = SC ∪
⋃

f∈FAC
Sf , {≫f |f ∈ fAC}).

1. Generate a reduced canonical rewrite system RC from SC using the total ordering ≫
on C; equivalently, as in step 1 of the algorithm for the single AC symbol, Tarjan’s
Union-Find data structure, can be employed.

2. Normalize each Sf using Rc, resulting in equations on f -monomials on canonical constants.
Wlog, we will continue to call the result Sf . This step is eagerly applied as new constant
equalities on constants are generated in the steps below.

3. Run the congruence closure algorithm on each Sf from the previous subsection using
the ordering ≫f , generating a reduced canonical rewrite system Rf for the congruence
closure ACCC(Sf ).

4. If any of Rf ’s generates an implied constant equality, say c → d, include it in RC and
inter-reduce. If c → d and any other constant rewrite rule generated from RC , reduces a
rule, say g(M) → g(N) in any Rg, two cases are considered: (i) g(M) is rewritten using
the new rules: move g(M) = g(N) from Rg to Tg

2, and check for the local confluence of
the modified Rg along with Tg by generating new superposition, if any, and adding new
rules in Rg. (ii) g(M) is not rewritten but g(N) is, then replace g(M) → g(N ′), where
g(N ′) is a normal form of g(N) using Rg.

5. Shared constant with canonical forms in different AC symbols:
If two different canonical rewrite subsystems Rf , Rg, f ≠ g have identical constants as
the left sides, i.e. if there is a rule c → f(M) ∈ Rf and c → g(N) ∈ Rg, f ≠ g, introduce
a new constant u, make c ≫ u extending ≫f on f -monomials with u making f(M) ≫f u

and g(N) ≫g u, and add a rule c → u ∈ RC , replace rules c → f(M) ∈ Rf by f(M) → u

and c → g(N) ∈ Rg by g(N) → u. Since u is a new symbol, orderings on f -monomials
and g-monomials are extended to satisfy these requirements.
Replacing c → f(M) by f(M) → u can result in additional superpositions with other
rules in Rf and possibly new rules using u; this applies to Rg as well. After ensuring local-
confluence of all new superpositions and adding new rules if needed, reduced canonical
rewrite systems are generated for each Rf .

6. If no new constant equalities are generated and the set of rewrite systems Rf ’s do not
satisfy the shared constant condition, the algorithm terminates.

7. Output the combined rewrite system consisting of a reduced canonical RC on constants
and a reduced canonical Rf for each f ∈ FAC . These canonical Rewrite systems do not
share a constant symbol appearing on the left side of any rule.

The termination and correctness of the algorithm follows from the termination and
correctness of the algorithm for a single AC symbol and the fact there are finitely many new
constant equalities that can be added.



D. Kapur 15:13

The result of the above algorithm is a finite reduced canonical rewrite system RS =
RC ∪

⋃
f∈FAC

RSf
, a disjoint union of sets of reduced canonical rewrite rules on f -monomials

for each AC symbol f , along with a canonical rewrite system RC consisting of constant rules
such that the left sides of rules are distinct. RS is unique in the extended signature assuming
a family of total admissible orderings on f -monomials for every f ∈ FAC , extending a total
ordering on constants; this assumes a fixed choice of new constants standing for the same
set of subterms during purification and flattening. In the original signature, however, RS

is neither unique nor even locally confluent (or canonical) if it includes a shared constant
having multiple canonical forms in two different AC symbols as illustrated in the above
example. It then becomes necessary to compare monomials in different AC symbols.

▶ Theorem 9. RS as defined above is a unique reduced canonical rewrite system in the
extended signature for a given family {≫f |f ∈ fAC} of admissible orderings on f -monomials
extending a total ordering on constants, such that ACCC(RS), with rewrite rules in RS

viewed as equations, on the original signature is ACCC(S).

The proof of the theorem follows from the fact that (i) each RSf
is reduced and canonical,

and is unique for Sf using ≫f , (ii) the left sides of all rules are distinct, (iii) these rewrite
systems are normalized using RC .

4 Congruence Closure with Uninterpreted and Multiple AC symbols

The algorithm presented in the previous subsection to compute AC congruence closure
with multiple AC symbols is combined with Kapur’s congruence closure algorithm for
uninterpreted symbols. The combination is straightforward given that the output of the
congruence closure algorithm is a unique reduced canonical rewrite system consisting of flat
rules of the form h(a1, · · · , ak) → b and constant rules a → b. There is no interaction between
flat rules and other rules generated from AC monomials. When new constant equalities are
generated, they can reduce flat rules, making the left sides of some flat rules equal, resulting
in additional equalities which are handled in the same way as constant equalities generated
during completion on equations on f -monomials. All other steps are the same as in the case
of the congruence closure algorithm in the previous subsection for multiple AC symbols. The
output of this general algorithm share the properties of the output of the congruence closure
over multiple AC symbols.

It is preferable to generate RC first and then generate RU to check if any implied constant
equalities are generated. The result is a reduced canonical rewrite system RC ∪ RU for the
congruence closure of SC ∪ SU over uninterpreted symbols. RC , RU can be computed very
fast in O(n ∗ log(n)) steps, whereas computing Rf from a set of f -monomial equations is
very expensive, so it always pays off to deduce constant equalities from RC and RU . During
the computation of generating canonical rewrite systems for Rf from Sf , f ∈ FAC , if a new
constant equality is implied and generated, it is eagerly used to update RC ∪ RU to generate
any new implied equalities, and used to update monomial equations and monomial rewrite
systems constructed so far.

The algorithm from the previous subsection for computing reduced canonical rewrite
systems from each Sf is applied, looking for new constant equalities generated and checking
shared constant condition. As discussed in the previous subsection, in both cases, local
confluence of Rf ’s may have to restored for checking additional superpositions, leading to
possibly new rules.

The result is a modular combination, whose termination and correctness is established in
terms of the termination and correctness of its various components: (i) the termination and
correctness of algorithms for generating canonical rewrite systems from ground equations

FSCD 2021



15:14 Modular AC Congruence Closure

in a single AC symbol, for each AC symbol in FAC , and their combination together with
each other, and (ii) the termination and correctness of congruence closure over uninterpreted
symbols and its combination with the AC congruence closure for multiple AC symbols.

Given a total ordering ≫ on C, let ≫U =≫ ∪{h ≫U c, h ∈ FU , c ∈ C}. For each AC
symbol f , define a total admissible ordering ≫f on f -monomials extending ≫ on C.

Algorithm 3 General Congruence Closure(S = SC ∪SU ∪∪f∈FAC Sf , ≫U ∪{≫f |f ∈ FAC}).

1. From SC ∪ SU , generate a reduced canonical rewrite system RC ∪ RU representing the
congruence closure over uninterpreted symbols such that each rule has its left side as
h(c1, · · · , ck) → c or a → b and no two left sides are the same.

2. Normalize Sf , f ∈ FAC using RC .
3. Run the AC congruence closure for multiple AC symbols from the previous subsection,

on the output from the previous step, using ≫f for each f ∈ FAC .
4. If new constant equalities are generated and/or shared constant condition is satisfied,

redo steps 1, 2, 3, restoring local confluence of RC , RU and each Rf .
5. Repeat this step until no more new constant equalities are generated and until shared

constant condition is satisfied, leading to the termination of the algorithm.

Since there are finitely many constants, bounded by the size of input ground equations,
only finitely many constant equalities on them can be added during the propagation. As a
result, the termination of the general algorithm follows from the termination of the algorithms
for each of the components–SU and Sf , for every AC symbol f . The correctness proof of the
general algorithm is also structured in a modular fashion using the correctness proofs of the
components SU and Sf , f ∈ FAC .

▶ Theorem 10. Given a set S of ground equations in GT (F ), the above algorithm generates
a reduced canonical rewrite system RS on the extended signature such that RS = RC ∪ Ru ∪⋃

f∈FAC
Rf , where each of RC , RU , Rf is a reduced canonical rewrite system using a set of

total admissible monomial orderings ≫f on f -monomials, which extends a ordering ≫U on
uninterpreted symbols and constants as defined above, and ACCC(RS), with rules in RS

viewed as equations, on the original signature is ACCC(S). Further, for this given set of
orderings ≫U and {≫f | f ∈ FAC}, RS is unique for S in the extended signature.

It should be noted that it is not necessary to run a completion algorithm for each AC
symbol separately, instead, they can be interleaved along with any new constant equalities
generated to reduce constants appearing in other Rf eagerly. Even though there are new
constants introduced in the generation of a reduced canonical rewrite system if two different
Rf , Rg have the same constant appearing on the left sides of rules with f -monomials and
g-monomials on their right side, the number of choices for canonical forms is finite given that
there are only finite many AC symbols and finitely many constants.

5 Examples

The proposed algorithms are illustrated using several examples which are mostly picked from
the above cited literature with the goal of not only to show how the proposed algorithms
work, but also contrast them with the algorithms reported in the literature.



D. Kapur 15:15

▶ Example 1. Consider an example from [5]: S = {f(a, c) = a, f(c, g(f(b, c))) = b, g(f(b, c)) =
f(b, c)} with g being uninterpreted and f being an AC symbol. A number of variations of
the same example will be considered.

Mixed term f(c, g(f(b, c))) is purified by introducing new symbols u1 for f(b, c) and u2
for g(u1), gives {f(a, c) = a, f(b, c) = u1, g(u1) = u2, f(c, u2) = b, u2 = u1}. (i) SC =
{u2 = u1}, (ii) SU = {g(u1) = u2}, and (iii) Sf = {f(a, c) = a, f(b, c) = u1, f(c, u2) = b}.

Different total orderings on constants are used to illustrate how different canonical forms
can be generated. Consider a total ordering f ≫ g ≫ a ≫ b ≫ u2 ≫ u1. RC = {1. u2 → u1}
normalizes the uninterpreted equation and it is oriented as: RU = {2. g(u1) → u1}.

To generate a reduced canonical rewrite system for AC f -terms, an admissible ordering
on f -terms must be chosen. The degree-lexicographic ordering on monomials will be used for
simplicity: f(M1) ≫f f(M2) iff |M1| > |M2| or |M1| = |M2| ∧ M1 − M2 includes a constant
≫ every constant in M2 − M1. f -equations are normalized using rules 1 and 2, and oriented:
{3. f(a, c) → a, 4. f(c, u1) → b, 5. f(b, c) → u1}.

Applying the AC congruence closure completion algorithm, the superposition between
the rules 3, 5 is f(a, b, c) with the critical pair: (f(a, b), f(a, u1)), leading to a rewrite rule
6. f(a, b) → f(a, u1); the superposition between the rules 3, 4 is f(a, c, u1) with the critical
pair: (f(a, u1), f(a, b)) which is trivial by rule 6. The superposition between the rules 4, 5 is
f(b, c, u1) with the critical pair: (f(b, b), f(u1, u1)) giving : 7. f(b, b) → f(u1, u1). The rewrite
system Rf = {3, 4, 5, 6, 7} is a reduced canonical rewrite system for Sf . RS = {1, 2} ∪ Rf is
a reduced canonical rewrite system associated with the AC congruence closure of the input
and serves as its decision procedure.

In the original signature, the rewrite system RS is: {g(f(b, c))) → f(b, c), f(a, c) →
a, f(b, c, c) → b, f(a, b) → f(a, b, c), f(b, b) → f(b, b, c, c)} with 5 becoming trivial. The
reader would observe this rewrite system is locally confluent but not terminating.

Consider a different ordering: f ≫ g ≫ a ≫ b ≫ u1 ≫ u2. This gives rise to a related
rewrite system in which u1 is replaced by u2: {u1 → u2, g(u2) → u2, f(a, c) → a, f(c, u2) →
b, f(b, c) → u2, f(a, b) → f(a, u2), f(b, b) → f(u2, u2)}. Compare it in the original signature
with the above system: RS = {f(b, c) → g(f(b, c)), g(g(f(b, c))) → g(f(b, c)), f(a, c) →
a, f(c, g(f(b, c))) → b, f(a, b) → f(a, g(f(b, c))), f(b, b) → f(g(f(b, c)), g(f(b, c)))}.

▶ Example 2. This example illustrates interaction between congruence closures over uninter-
preted symbols and AC symbols. Let S = {g(b) = a, g(d) = c, a ∗ c = c, b ∗ c = b, a ∗ b = d}
where g is uninterpreted and ∗ is AC. Let ∗ ≫ g ≫ a ≫ b ≫ c ≫ d with g, ∗. Apply-
ing the steps of the algorithm, RU , the congruence closure over uninterpreted symbols, is
{g(b) → a, g(d) → c}, Completion on the ∗-equations using degree lexicographic ordering,
oriented as {a ∗ c → c, b ∗ c → b, a ∗ b → d}, generates an implied constant equality b = d

from the critical pair of a ∗ c → c, b ∗ c → b. Using the rewrite rule b → d, the AC rewrite
system reduces to: R∗ = {a ∗ c → c, c ∗ d → d, a ∗ d → d}, which is canonical.

The implied constant equality b = d is added to RC : {b → d} and is also propagated
to RU , which makes the left sides of g(b) → a and g(d) → c equal, generating another
implied equality a = c. This equality is oriented and added to RC : {a → c, b → d}, and RU

becomes {g(d) → c}. This implied equality is propagated to the AC rewrite system on ∗. RC

normalizes R∗ to {c ∗ c → c, c ∗ d → d, a ∗ d → d}.

The output of the algorithm is a canonical rewrite system: {g(d) → c, b → d, a → c, c∗c →
c, c ∗ d → d}. In general, propagation of equalities can result in the left sides of the rules in
AC subsystems change, generating new superpositions, much like in the uninterpreted case.

FSCD 2021



15:16 Modular AC Congruence Closure

▶ Example 3. Consider another example with multiple AC symbols from [24]: S = {a + b =
a ∗ b, a ∗ c = g(e), e = e′} with +, ∗ being AC and g as uninterpreted, to illustrate flexibility
in choosing orderings in our framework.

Purification leads to introduction of new constants : {1. a+b = u0, 2. a∗b = u1, 3. a∗c =
u2, 4. g(e) = u2, 5. e = e′, 6. u0 = u1}. Depending upon a total ordering on constants
a, b, c, e, e′, there are thus many possibilities depending upon the desired canonical forms.

Recall that a + b cannot be compared with a ∗ b, however u0 and u1 can be compared.
If canonical forms are desired so that the canonical form of a + b is a ∗ b, the ordering
should include u0 ≫ u1. Consider an ordering a ≫ b ≫ c ≫ e ≫ e′ ≫ u2 ≫ u0 ≫ u1.
Degree-lexicographic ordering is used on + and ∗ monomials. This gives rise to: RC =
{6. u0 → u1, 5. e → e′}, RU = {4′. g(e′) → u2} along with R+ = {1. a + b → u1} and
R∗ = {2. a ∗ b → u1, 3. a ∗ c → u2}. The canonical rewrite system for ∗ is: {2. a ∗ b →
u1, 3. a ∗ c → u2, 7. b ∗ u2 → c ∗ u1}.

The rewrite system RS = {1. a + b → u1, 2. a ∗ b → u1, 2. u0 → u1, 3. a ∗ c →
u2, 4′. g(e′) → u2, 5. e → e′, 6. b ∗ u2 → c ∗ u1} is canonical. Both a + b and a ∗ b have the
same normal form u1 standing for a ∗ b in the original signature.

With u1 ≫ u0, another canonical rewrite system RS = {1. a + b → u0, 2. a ∗ b →
u0, 6′. u1 → u0, 3. a ∗ c → u2, 4. g(e′) → u2, 5. e → e′, 6. b ∗ u2 → c ∗ u0} in which a + b

and a ∗ b have the normal form u0 standing for a + b, different from the one above.

6 A Gröbner Basis Algorithm as an AC Congruence Closure

Buchberger’s Gröbner basis algorithm when extended to polynomial ideals over integers [10]
can be interestingly viewed as a special congruence closure algorithm with multiple AC
symbols + and ∗ which in addition, satisfy the properties of a commutative ring with unit.
A manuscript proposing this new perspective on Gröbner basis algorithms with interesting
implications is under preparation [15]. Below, we illustrate this new insight using an example
from [10]. Relationship between Gröbner basis algorithm and the Knuth-Bendix completion
procedure has been investigated in [9, 30, 12, 22], but the proposed insight is novel.

The ring structure of polynomials gives rise to additional interaction when a canonical
rewrite system for the congruence closure of +-monomials is combined with a canonical
rewrite system for the congruence closure of ∗-monomials. Along with the identities for
+, x + 0 = x, and for ∗, x ∗ 1 = x, and the distributivity axiom, + also has an inverse
operation: x + −(x) = 0, −0 = 0, −(−x) = x, −(x + y) = −x + −y. Abusing the notation,
x + −(y) will be written as x − y. In addition, x ∗ 0 = 0. With the distributivity rule:
x ∗ (y + z) = (x ∗ y) + (x ∗ z), these axioms when oriented from left to right constitute a
canonical rewrite system for a commutative ring with unit and are used for normalizing
terms to polynomials.

An additive monomial c t, where c ̸= 0, is an abbreviation of repeating ∗-monomial
t c times; if c is positive, say 3, then 3 t is an abbreviation for t + t + t; similarly if c is
negative, say −2, then −2 t is an abbreviation for −t − t. A ∗-monomial with unit coefficient
is a pure term expressed in ∗, but a monomial 3 y ∗ y ∗ y, for example,is a mixed term
y ∗ y ∗ y + y ∗ y ∗ y + y ∗ y ∗ y with + as the outermost symbol which has ∗ subterms.

Consider an example [10]; a related example is also discussed in [22], so an interested
reader is invited to contrast the proposed approach with the one there. The input basis is:
7 x ∗ x ∗ y = 3 x, 4 x ∗ y ∗ y = x ∗ y, 3 y ∗ y ∗ y = 0 of a polynomial ideal over the integers [10].

Purification of the above equations leads to: 1. 7 u1 = 3 x, 2. 4 u2 = u3, 3. 3 u4 = 0 with
4. x ∗ x ∗ y = u1, 5. x ∗ y ∗ y = u2, 6. x ∗ y = u3.7. y ∗ y ∗ y = u4.



D. Kapur 15:17

Let a total ordering on all constants be: u1 ≫ u2 ≫ u4 ≫ u3 ≫ x ≫ y. Extend it
using the degree-lexicographic ordering on +-monomials as well as ∗-monomials, Orienting
∗ equations: R∗ = {4. x ∗ x ∗ y → u1, 5. x ∗ y ∗ y → u2, 6. x ∗ y → u3, 7. y ∗ y ∗ y → u4}.
Orienting + equations, R+ = {1. 7 u1 → 3 x, 2. 4 u2 → u3, 3. 3 u4 → 0}.

Completion on the ground equations on ∗ terms generates a reduced canonical rewrite
system: R∗ = {6. x ∗ y → u3, 7. y ∗ y ∗ y → u4, 8. u3 ∗ y → u2, 9. u3 ∗ x → u1, 10. u2 ∗ x →
u3∗u3, 11. u1∗y → u3∗u3, 12. u1∗u4 → u2∗u2, 13. u4∗x∗x → u2∗u3, 14. u3∗u3∗u3 → u1∗u2}.
This system captures relationships among all product monomials appearing in the input.
The canonical rewrite system for + is: R+ = {1. 7 u1 → 3 x, 2. 4 u2 → u3, 3. 3 u4 → 0}.

Rules in R+ and R∗ interact, leading to new superpositions and critical pairs: for
c u → r ∈ R+, u ∗ m → r′ ∈ R∗, where c ∈ Z − {0}, u is a constant and m is *-monomial,
the superposition is (c u) ∗ m generating the critical pair (r ∗ m, c r′), which is normalized
using distributivity and other rules. It can be shown that only this superposition needs to
be considered to check local confluence of R+ ∪ R∗[15].

As an example, rules 3 : 3 u4 → 0 and 12 : u1 ∗ u4 → u2 ∗ u2 give the superposition
u1 ∗ u4 + u1 ∗ u4 + u1 ∗ u4, which is 3u1 ∗ u4, generating the critical pair (3 u2 ∗ u2, 0); rules 3
and 13 gives a trivial critical pair. Considering all such superpositions, the resulting canonical
rewrite system can be shown to include {3 x → 0, u1 → 0, u2 → u3, 3 u4 → 0} among other
rules. When converted into the original signature, this is precisely the Gröbner basis reported
as generated using Kandri-Rody and Kapur’s algorithm: {3 x → 0, x ∗ x ∗ y → 0, x ∗ y ∗ y →
x ∗ y, 3 y ∗ y ∗ y → 0} as reported in [10].

The above illustrates the power and elegance of the proposed combination framework.
Comparing with [22], it is reported there that a completion procedure using normalized
rewriting generated 90 critical pairs in contrast to AC completion procedure [27] computed
1990 critical pairs; in the proposed approach, much fewer critical pairs are generated in
contrast, without needing to use any AC unification algorithm or extension rules.

The proposed approach can also be used to compute Gröbner basis of polynomial ideals
with coefficients over finite fields such as Zp for a prime number p, as well as domain with zero
divisor such as Z4 [16]. For example, in case of Z5, another rule is added: 1+1+1+1+1 → 0
added to the input basis.

7 Conclusion

A modular algorithm for computing the congruence closure of ground equations expressed
using AC function symbols and uninterpreted symbols is presented. The algorithm is derived
by generalizing the framework first presented in [13] for generating the congruence closure
of ground equations over uninterpreted symbols. The key insight from [13]–flattening of
subterms by introducing new constants and congruence closure on constants, is generalized
by flattening mixed AC terms and purifying them by introducing new constants to stand
for pure AC terms in every (single) AC symbol. The result of this transformation on a set
of equations on mixed ground terms is a set of constant equations, a set of flat equations
relating a nonconstant term in an uninterpreted symbol to a constant, and a set of equations
on pure AC terms in a single AC symbol. Such decomposition and factoring enable using
congruence closure algorithms for each of the subproblems independently, which propagate
equalities on shared constants. Once the propagation of constant equalities stabilizes (reaches
a fixed point), the result is (i) unique reduced canonical rewrite systems for each subproblem
and finally, (ii) a unique reduced canonical rewrite system for the congruence closure of a
finite set of ground equations over multiple AC symbols and uninterpreted symbols. The
algorithms extend easily when AC symbols have additional properties such as idempotency,
identity and nilpotency.

FSCD 2021



15:18 Modular AC Congruence Closure

The modularity of the algorithms leads to easier and simpler correctness and termination
proofs in contrast to those in [5, 22]. The complexity of the procedure is governed by the
complexity of generating a canonical rewrite system for AC ground equations on constants.

The proposed algorithm is a direct generalization of Kapur’s algorithm for the uninter-
preted case, which has been shown to be efficiently integrated into SMT solvers including
BarcelogicTools [26]. We believe that the AC congruence closure can also be effectively
integrated into SMT solvers. Unlike other proposals, the proposed algorithm neither uses
specialized AC compatible orderings on nonground terms nor extension rules often needed
in AC/E completion algorithms and AC/E-unification, thus avoiding explosion of possible
critical pairs for consideration.

A by-product of this new algorithm based on the proposed framework is a new way to
view a Gröbner basis algorithm for polynomial ideals over integers, as a congruence closure
algorithm over a commutative ring with unit, which is a congruence closure algorithm with
two AC symbols + and ∗, extended to consider the additional properties of + and ∗.

References

1 Franz Baader and Deepak Kapur. Deciding the word problem for ground identities with
commutative and extensional symbols. In Nicolas Peltier and Viorica Sofronie-Stokkermans,
editors, Automated Reasoning – 10th International Joint Conference, IJCAR 2020, Paris,
France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer
Science, pages 163–180. Springer, 2020. doi:10.1007/978-3-030-51074-9_10.

2 Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University Press,
1998.

3 Leo Bachmair and Nachum Dershowitz. Critical pair criteria for completion. J. Symb. Comput.,
6(1):1–18, 1988. doi:10.1016/S0747-7171(88)80018-X.

4 Leo Bachmair, I. V. Ramakrishnan, Ashish Tiwari, and Laurent Vigneron. Congruence closure
modulo associativity and commutativity. In Hélène Kirchner and Christophe Ringeissen,
editors, Frontiers of Combining Systems, Third International Workshop, FroCoS 2000, Nancy,
France, March 22-24, 2000, Proceedings, volume 1794 of Lecture Notes in Computer Science,
pages 245–259. Springer, 2000. doi:10.1007/10720084_16.

5 Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence closure. J. Autom.
Reason., 31(2):129–168, 2003. doi:10.1023/B:JARS.0000009518.26415.49.

6 A. Michael Ballantyne and Dallas Lankford. New decision algorithms for finitely presented
commutative semigroups. Computers and Mathematics Applications, 7:159–165, 1981.

7 Thomas Becker, Volker Weispfenning, and Heinz Kredel. Gröbner bases – a computational
approach to commutative algebra, volume 141 of Graduate texts in mathematics. Springer,
1993.

8 Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subexpres-
sion problem. J. ACM, 27(4):758–771, 1980. doi:10.1145/322217.322228.

9 Abdelilah Kandri-Rody and Deepak Kapur. On relationship between buchberger’s gröbner
basis algorithm and the knuth-bendix completion procedure. Technical report no. ge-83crd286,
General Electric Corporate Research and Development, Schenectady, NY, November 1983.

10 Abdelilah Kandri-Rody and Deepak Kapur. Computing a gröbner basis of a polynomial ideal
over a euclidean domain. J. Symb. Comput., 6(1):37–57, 1988. doi:10.1016/S0747-7171(88)
80020-8.

11 Abdelilah Kandri-Rody, Deepak Kapur, and Paliath Narendran. An ideal-theoretic approach
to work problems and unification problems over finitely presented commutative algebras. In
Jean-Pierre Jouannaud, editor, Rewriting Techniques and Applications, First International
Conference, RTA-85, Dijon, France, May 20-22, 1985, Proceedings, volume 202 of Lecture
Notes in Computer Science, pages 345–364. Springer, 1985. doi:10.1007/3-540-15976-2_17.

https://doi.org/10.1007/978-3-030-51074-9_10
https://doi.org/10.1016/S0747-7171(88)80018-X
https://doi.org/10.1007/10720084_16
https://doi.org/10.1023/B:JARS.0000009518.26415.49
https://doi.org/10.1145/322217.322228
https://doi.org/10.1016/S0747-7171(88)80020-8
https://doi.org/10.1016/S0747-7171(88)80020-8
https://doi.org/10.1007/3-540-15976-2_17


D. Kapur 15:19

12 Abdelilah Kandri-Rody, Deepak Kapur, and Franz Winkler. Knuth-bendix procedure and
buchberger algorithm: A synthesis. In Gaston H. Gonnet, editor, Proceedings of the ACM-
SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation, ISSAC ’89,
Portland, Oregon, USA, July 17-19, 1989, pages 55–67. ACM, 1989. doi:10.1145/74540.
74548.

13 Deepak Kapur. Shostak’s congruence closure as completion. In Hubert Comon, editor,
Rewriting Techniques and Applications, 8th International Conference, RTA-97, Sitges, Spain,
June 2-5, 1997, Proceedings, volume 1232 of Lecture Notes in Computer Science, pages 23–37.
Springer, 1997. doi:10.1007/3-540-62950-5_59.

14 Deepak Kapur. Conditional congruence closure over uninterpreted and interpreted symbols. J.
Syst. Sci. Complex., 32(1):317–355, 2019. doi:10.1007/s11424-019-8377-8.

15 Deepak Kapur. Weird gröbner bases: An application of associative-commutative congruence
closure algorithm. Tech report under preparation, Department of Computer Science, University
of New Mexico, May 2021.

16 Deepak Kapur and Yongyang Cai. An algorithm for computing a gröbner basis of a polynomial
ideal over a ring with zero divisors. Math. Comput. Sci., 2(4):601–634, 2009. doi:10.1007/
s11786-009-0072-z.

17 Deepak Kapur, David R. Musser, and Paliath Narendran. Only prime superpositions need be
considered in the knuth-bendix completion procedure. J. Symb. Comput., 6(1):19–36, 1988.
doi:10.1016/S0747-7171(88)80019-1.

18 Deepak Kapur and Paliath Narendran. Double-exponential complexity of computing a complete
set of ac-unifiers. In Proceedings of the Seventh Annual Symposium on Logic in Computer
Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992, pages 11–21. IEEE
Computer Society, 1992. doi:10.1109/LICS.1992.185515.

19 Deepak Kapur and Hantao Zhang. An overview of rewrite rule laboratory (rrl). Computers
and Mathematics Applications, 29:91–114, 1995.

20 Donald Knuth and Peter Bendix. Simple word problems in universal algebras. In Leech, editor,
Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.

21 Claude Marché. On ground ac-completion. In Ronald V. Book, editor, Rewriting Techniques
and Applications, 4th International Conference, RTA-91, Como, Italy, April 10-12, 1991,
Proceedings, volume 488 of Lecture Notes in Computer Science, pages 411–422. Springer, 1991.
doi:10.1007/3-540-53904-2_114.

22 Claude Marché. Normalized rewriting: An alternative to rewriting modulo a set of equations.
J. Symb. Comput., 21(3):253–288, 1996. doi:10.1006/jsco.1996.0011.

23 Ernst W. Mayr and Albert Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46:305–439, 1982.

24 Paliath Narendran and Michaël Rusinowitch. Any gound associative-commutative theory has
a finite canonical system. In Ronald V. Book, editor, Rewriting Techniques and Applications,
4th International Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings, volume
488 of Lecture Notes in Computer Science, pages 423–434. Springer, 1991. doi:10.1007/
3-540-53904-2_115.

25 Greg Nelson and Derek C. Oppen. Fast decision procedures based on congruence closure. J.
ACM, 27(2):356–364, 1980. doi:10.1145/322186.322198.

26 Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and extensions. Inf. Comput.,
205(4):557–580, 2007. doi:10.1016/j.ic.2006.08.009.

27 Gerald E. Peterson and Mark E. Stickel. Complete sets of reductions for some equational
theories. J. ACM, 28(2):233–264, 1981. doi:10.1145/322248.322251.

28 Robert E. Shostak. An algorithm for reasoning about equality. Commun. ACM, 21(7):583–585,
1978. doi:10.1145/359545.359570.

29 Franz Winkler. Canonical forms in the finitely presented algebras. Ph.d. dissertation, U. of
Paris 11, 1983.

FSCD 2021

https://doi.org/10.1145/74540.74548
https://doi.org/10.1145/74540.74548
https://doi.org/10.1007/3-540-62950-5_59
https://doi.org/10.1007/s11424-019-8377-8
https://doi.org/10.1007/s11786-009-0072-z
https://doi.org/10.1007/s11786-009-0072-z
https://doi.org/10.1016/S0747-7171(88)80019-1
https://doi.org/10.1109/LICS.1992.185515
https://doi.org/10.1007/3-540-53904-2_114
https://doi.org/10.1006/jsco.1996.0011
https://doi.org/10.1007/3-540-53904-2_115
https://doi.org/10.1007/3-540-53904-2_115
https://doi.org/10.1145/322186.322198
https://doi.org/10.1016/j.ic.2006.08.009
https://doi.org/10.1145/322248.322251
https://doi.org/10.1145/359545.359570


15:20 Modular AC Congruence Closure

30 Franz Winkler. The Church-Rosser Property in Computer Algebra and Special Theorem Proving:
An Investigation of Critical-Pair/Completion Algorithms. Ph.d. dissertation, University of
Linz, 1984.

31 Chee-Keng Yap. A new lower bound construction for commutative thue systems with aapplic-
ations. J. Symb. Comput., 12(1):1–28, 1991. doi:10.1016/S0747-7171(08)80138-1.

32 Hantao Zhang. Implementing contextual rewriting. In Michaël Rusinowitch and Jean-Luc
Rémy, editors, Conditional Term Rewriting Systems, Third International Workshop, CTRS-
92, Pont-à-Mousson, France, July 8-10, 1992, Proceedings, volume 656 of Lecture Notes in
Computer Science, pages 363–377. Springer, 1992. doi:10.1007/3-540-56393-8_28.

A Appendix: Proofs

▶ Lemma 5. An AC rewrite system RS is locally confluent iff the critical pair: (f((AB−A1)∪
A2), f((AB − B1) ∪ B2)) between every pair of distinct rules f(A1) → f(A2), f(B1) → f(B2)
is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1).

Proof. Consider a flat term f(C) rewritten in two different ways in one step using not
necessarily distinct rules: f(A1) → f(A2), f(B1) → f(B2). The result of the rewrites is:
(f((C − A1) ∪ A2), f((C − B1) ∪ B2)). Since A1 ⊆ C as well as B1 ⊆ C, AB ⊆ C; let
D = C − AB. The critical pair is then (f(D ∪ ((AB − A1) ∪ A2))f(D ∪ ((AB − B1) ∪ B2))),
all rules applicable to the critical pair to show its joinability, also apply, thus showing the
joinability of the pair. The other direction is straightforward. The case of when at least one
of the rules has a constant on its left side is trivially handled. ◀

▶ Theorem 6. The algorithm 1AC-Completion terminates, i.e., in Step 4, rules to Rf

cannot be added infinitely often.

Proof. Proof by Contradiction. A new rule l̂ → r̂ in Step 4 of the algorithm is added to Rf

only if no other rule can reduce it, i.e, for every rule l → r ∈ Rf , l̂ and l are noncomparable
in ≫D. For Rf to be infinite, implying the nontermination of the algorithm means that Rf

must include infinitely many noncomparable left sides in ≫D, a contradiction to Dickson’s
Lemma. ◀

▶ Theorem 8. Given a total ordering ≫f on f-monomials, there is a unique reduced
canonical rewrite system associated with Sf .

Proof. Proof by Contradiction. Suppose there are two distinct reduced canonical rewrite
systems R1 and R2 associated with Sf for the same ≫f . Pick the least rule l → r in ≫f on
which R1 and R2 differ; wlog, let l → r ∈ R1. Given that R2 is a canonical rewrite system
for Sf and l = R ∈ ACCC(Sf ), l and r must reduce using R2 implying that there is a rule
l′ → r′ ∈ R2 such that l ≫D l′; since R1 has all the rules of R2 smaller than l → r, l → r

can be reduced in R1, contradicting the assumption that R1 is reduced. If l → r′ ∈ R2 where
r′ ̸= r but r′ ≫f r, then r′ is not reduced implying that R2 is not reduced. ◀

▶ Lemma 5Idem. An AC rewrite system RS with f(x, x) = x, is locally confluent iff (i)
the critical pair: (f((AB − A1) ∪ A2), f((AB − B1) ∪ B2)) between every pair of distinct
rules f(A1) → f(A2), f(B1) → f(B2) is joinable, where AB = (A1 ∪ B1) − (A1 ∩ B1), and
(ii) for every rule f(M) → f(N) ∈ RS and for every constant a ∈ M , the critical pair,
(f(M), f(N ∪ {{a}}), is joinable.

Proof. Consider a flat term f(C) rewritten in two different ways in one step using not
necessarily distinct rules and/or f(x, x) → x. There are three cases: (i) f(C) is rewritten
in two different ways in one step using f(x, x) → x to f(C − {{a}}) and f(C − {{b}}).
After single step rewrites, the idempotent rule can be applied again on both sides giving
f(C − {{a, b}}).

https://doi.org/10.1016/S0747-7171(08)80138-1
https://doi.org/10.1007/3-540-56393-8_28


D. Kapur 15:21

(ii) f(C) is rewritten in two different ways, with one step using f(x, x) → x and another
using f(M) → f(N). An application of the idempotent rule implies that C includes a constant
a, say, at least twice; the result of one step rewriting is: (f(C −{{a}}), f((C −M)∪N). This
implies there exists a multiset A such that C = A ∪ M ∪ { a}}. The critical pair generated
from f(M) → f(N) is (f(M), f(N ∪ {{a}}). The rewrite steps used to show the joinability
of (f(M), f(N ∪ {{a}}) apply also on (f(C − {{a}}), f((C − M) ∪ N), showing joinability.
The third case is the same as that of Lemma 5 and is omitted. ◀

Similar local confluence lemmas can be proved in case f is nilpotent, has unit and various
combinations.

FSCD 2021


	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Congruence Relations
	2.2 Kapur's Congruence Closure Algorithm for Uninterpreted Symbols
	2.3 AC Congruence Closure
	2.4 Flattening and Purification

	3 Congruence Closure with Associative-Commutative (AC) Functions
	3.1 Congruence Closure with a Single AC Symbol
	3.2 Idempotent and/or Nilpotent AC Symbols with Identity
	3.3 Computing Congruence Closure with Multiple AC symbols

	4 Congruence Closure with Uninterpreted and Multiple AC symbols
	5 Examples
	6 A Gröbner Basis Algorithm as an AC Congruence Closure
	7 Conclusion
	A Appendix: Proofs

