
Z
Syntax-Free Developments

Vincent van Oostrom #

Universität Innsbruck, Austria

Abstract
We present the Z-property and instantiate it to various rewrite systems: associativity, positive braids,
self-distributivity, the lambda-calculus, lambda-calculi with explicit substitutions, orthogonal TRSs,
. . . . The Z-property is proven equivalent to Takahashi’s angle property by means of a syntax-free
notion of development. We show that several classical consequences of having developments such as
confluence, normalisation, and recurrence, can be regained in a syntax-free way, and investigate how
the notion corresponds to the classical syntactic notion of development in term rewriting.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting

Keywords and phrases rewrite system, confluence, normalisation, recurrence

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.24

Acknowledgements Patrick Dehornoy introduced me to the main themes presented here, and indeed
this paper was always intended to be a joint one. His work continues to be an inspiration. I want to
thank Bertram Felgenhauer, Julian Nagele, and Christian Sternagel for discussions on their Isabelle
formalisations of the Z-property.

Dedicated to Patrick Dehornoy

1 Introduction

Confluence of rewrite systems is discussed in order-theoretic terms on the first page of [25]. It
expresses the existence of an upper bound1 for pairs of objects having a common lower bound,
in the quasi-order obtained by the reflexive–transitive closure of a rewrite system. Qualifying
confluence proof-methods from this order-theoretic perspective, Newman’s Lemma is seen
to construct the greatest upper bound (the normal form) and the Tait–Martin-Löf (TML)
method [4] the least upper bound [21, 38].2 The Z-property, depicted in Fig. 1 and formally
defined in the preliminaries, introduced here is based on constructing an upper bound for
sets of objects having a common single-step lower bound. The choice of upper bound is
arbitrary but should be monotonic; increasing the single-step lower-bound should increase
the constructed upper bound. In complexity, establishing some upper bound is often much
shorter and simpler than getting a tight upper bound. The choice offered by the Z-property
enables the same for proving confluence, as we illustrate in Sect. 3.

Skolemising the existence of upper bounds gives rise to a function •3 mapping each object
a to the chosen upper bound a• of objects b such that a → b, i.e. having a as single-step
lower bound. Accordingly, we define the many-step rewrite strategy •−→ to rewrite a into
a•. For instance, taking as upper bound of a term t the term t• obtained by a complete
development of the full set of redexes in t, •−→ is known as the Gross–Knuth/full substitution
strategy in the λ-calculus/term rewriting [4, 38]. Based on •, the classical notion of a

1 [25] employs the reverse order, so speaks of existence of lower bounds.
2 Newman leaves studing least upper bounds for later [25, p. 223] but we didn’t find later work by him

on this. TML in fact gives least upper bounds only up to permutation equivalence [21, 38].
3 We will speak of the bullet function with the suggestion •−→ is bullet-fast; cf. Sect. 4.1.

© Vincent van Oostrom;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 24; pp. 24:1–24:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Vincent.van-Oostrom@uibk.ac.at
https://orcid.org/0000-0002-4818-7383
https://doi.org/10.4230/LIPIcs.FSCD.2021.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Z; Syntax-Free Developments

development [5, 4, 38] can be given a syntax-free definition as a ◦−→ b if a ↠ b ↠ a•; that
is, a develops to b if b is between a and a•; with our notations suggesting that ◦−→ is a
development that is not as full as •−→ is. In Sect. 4 we first show that if the Z-property
holds then several results (on confluence, normalisation, and recurrence) can be obtained
in a syntax-free way, i.e. in terms of •−→ and ◦−→. Next we investigate for term rewrite
systems in how far our syntax-free definition of developments corresponds or can be made to
correspond to the traditional syntactic definition, and show they correspond in the absence
of syntactic accidents.
▶ Remark 1. Thinking of reduction steps and reductions to normal form as small respectively
big step semantics, •−→ can be seen as a medium step semantics; although •−→-steps need not
directly yield a normal form, they are monotonic. This may be suitable in a setting where
for a step a→ b, the semantics of b should be greater than that of a, i.e. approximate better.

2 Preliminaries

We define our key notions for abstract rewriting with which we assume basic familiarity [38].

▶ Definition 2. A rewrite system is a system comprising a set of objects, a set of (rewrite)
steps, and functions src, tgt mapping a step to its source, target object. Two steps are called
co-initial if they have the same sources, co-final if they have the same targets, and composable
if the target of the former is the source of the latter. The corresponding pair of steps is then
called, respectively, a peak, a valley, and consecutive.

▶ Remark 3. We follow [25] in taking steps as first-class citizens of rewrite systems and speak
of a rewrite relation (only) if there is at most one step between any two objects.
We use arrow-like notations to denote rewrite systems and their steps, let a, b, . . . range over
objects, and ϕ, ψ, . . . over steps. Sources and targets naturally extend to peaks, valleys, and
consecutive steps; e.g., the source of a peak is the common source of its steps and its target
is its pair of targets.

a

a•

a

a•

b

b•

Figure 1 Diamond, angle, and Z-property for bullet function •; named after the diagram shapes.

▶ Definition 4. A rewrite system → has the (see Fig. 1):
diamond property if for every peak there is a composable valley;
angle property if there is map • such that b→ a• for every a and step a→ b; and
Z property if there is a map • such that b↠ a• ↠ b• for every a and step a→ b.

where ↠ denotes reduction, finite (possibly empty) composition of steps. A map • is extensive
if a↠ a• for all a, and induces a rewrite system •−→ having the same objects as → and steps
a •−→ a• for all a not in →-normal form.

▶ Remark 5. The diamond and angle properties are relatively standard in rewriting, see
e.g. [38, Def. 1.1.8]; our angle property is the Skolemisation of the triangle property there.
We obtained the Z-property in 2007 by abstracting Dehornoy’s proof-method for showing
confluence of self-distributivity [6] with preliminary results distributed and presented at

V. van Oostrom 24:3

diverse venues, e.g. [7, 31]. It has been introduced both before, for the λ-calculus, in [18,
Ex. 4.1] and after in [16]. In the meantime it has been formalised [9] and applied, e.g. [23, 11].

Two angles make a diamond, but the angle property is stronger than the diamond property.
If the Z-property holds • is monotonic on reductions: if a↠ b then a• ↠ b• (by induction).

▶ Example 6. Less-than < on Z has the diamond but not the angle property for lack of
upper bounds of infinite sets of numbers. Note that the predecessor relation on Z does have
the angle property, despite inducing the same quasi-order as <.

The following simple but key result was the starting point of our investigations on the
Z-property. It hinges on a syntax-free definition of the classical notion of development [4, 38].

▶ Definition 7. For rewrite system → and map • on its objects, the •-development rewrite
system ◦−→ has the objects of → and a step a ◦−→ b for each pair of →-reductions a↠ b↠ a•.

One may think of b as being between a and a• and of ◦−→ as comprising prefixes or left-divisors
of •−→ w.r.t. composition (for sources not in normal form).

▶ Lemma 8. Let → be a rewrite system.
→ has the Z-property iff some →′ such that → ⊆→′ ⊆↠ has the angle property;4

if → has the Z-property for •, then it has the Z-property for some extensive ⋆; and
→ has the Z-property for an extensive • iff some rewrite system→′ such that→ ⊆→′ ⊆↠
has the angle property and a→′ a• for all a.

Proof. We only provide a detailed proof of the first, main, item.
we show both directions taking the same bullet function •.
For the if-direction, assume →′ has the angle property, → ⊆→′ ⊆↠, and suppose a→ b.
Then by → ⊆ →′ and the angle property for a →′ b we have b →′ a•, hence a• →′ b•

by applying the angle property again. Two angles make a Z; using →′ ⊆ ↠ twice, we
conclude to b↠ a• and a• ↠ b•.
For the only–if-direction, assume → has the Z-property. Consider the •-development
rewrite system ◦−→. To show ◦−→ has the angle property, suppose a ◦−→ b. By definition
a↠ b↠ a•. Combining b↠ a• with a• ↠ b•, which follows from a↠ b by monotonicity
of •, yields b ◦−→ a• by definition of ◦−→, showing the angle property. That the first
inclusion in→ ⊆ ◦−→ ⊆↠ holds follows from that a→ b entails b↠ a• by the Z-property
hence by definition a ◦−→ b, and that the second inclusion holds from that a ◦−→ b unfolds
to a↠ b↠ a•.
one checks that defining ⋆ to be • updated to map each object that is not the source of
some step to itself, works; and
one checks the additional conditions on either side in the first item. The if-direction is
trivial since →′ ⊆↠ by assumption. ◀

Adjoining being extensive to the angle property in Fig. 1 gives rise to a triangle, i.e. the
second and third items reconcile both names of the property.

Although the intuition is that •-developments correspond to developments, the former,
by being defined in a syntax-free way, are more liberal (we will look into this in Sect. 4.4) as
shown by:

4 The inclusions are relation inclusions, i.e. concern the rewrite relation underlying the rewrite systems.

FSCD 2021

24:4 Z; Syntax-Free Developments

▶ Example 9. The rewrite system ai → ai+1 mod 4 has the Z-property for the function
• mapping ai to ai+1 mod 4 because → is deterministic. Classically there are only two
developments from a0 namely to itself, the empty development, and to a1. However, because
→ is cyclic there are more •-developments, e.g. a0 ◦−→ a2 (since a0 ↠ a2 ↠ a1 = a•

0).

3 Examples of the Z-property

We present (non-)examples of rewrite systems having the Z-property with a focus on the
diversity of the examples and the similarity of the proofs. We give proofs in as far as they
could serve as blue-prints of proofs of the Z-property for related calculi. We proceed from
abstract to more concrete rewrite systems.

3.1 Abstract
We investigate for some known confluence criteria for (abstract) rewrite systems [3, 38]
whether or not they entail the Z-property. We assume → is a rewrite system. In the previous
section we have already seen a characterisation of the Z-property via the angle property.
That the Z-property holds for deterministic (if a → b and a → c, then a = b) systems by
mapping to the next object was exemplified in Ex. 9.

▶ Lemma 10. If → is deterministic, then it has the Z-property.

In case a rewrite system is terminating mapping to the greatest object works.

▶ Lemma 11. If → is terminating, then → has the Z-property iff → is locally confluent.

Proof. Suppose → is locally confluent and terminating. Let • be the normal form function
mapping each object to its →-normal form, This is well-defined: the normal form exists by
termination and is unique as local confluence entails confluence by Newman’s Lemma. Thus
we conclude to the Z-property since if a → b then b ↠ a• = b•. Vice versa, if → has the
Z-property for • then a• is a common reduct to all b such that a→ b. ◀

Ex. 6 shows there are confluent rewrite systems → that do not have the Z-property but
admit it in that there is a rewrite system →′ presenting the same quasi-order, i.e. ↠ = ↠′,
that does have the Z-property: < does not have the Z-property but admits it as it is the
reflexive–transitive closure of the predecessor relation that does have the Z-property (by
being deterministic).5 By the first item of Lem. 8 a rewrite system admits the Z-property iff
it admits the angle property, using for the only–if-direction that → ⊆ →′ ⊆ ↠ entails →
and →′ present the same quasi-order. But there are confluent rewrite systems not admitting
either.

▶ Example 12. Consider the confluent rewrite system6 given by a → bi → ci → ci+1 for
i ∈ N, and suppose →′ were some presentation of it having the Z-property. Observe that
then a →′ bi for i ∈ N, since there are no objects between a and bi in →, but there is no
common upper bound to all bi in →, so neither there is one in →′.

▶ Remark 13. Bullet functions for the Z-property may be incomparable (comparing their
images bulletwise by ↠), but are preserved under composition allowing arbitrary speed-up.

5 If a rewrite system has the Z-property, then so does its so-called transitive reduction, but not necessarily
the other way around. However note that < admits the Z-property even on R, e.g. by restricting to
pairs of reals having distance at most 1, despite that < then has no transitive reduction.

6 The rewrite system is a variation on the rewrite systems visualised in [12, Fig. 2].

V. van Oostrom 24:5

σ1

w
σ3

σ1 σ1

w
σ2

σ1
σ1

σ2
wσ1

wσ3

wσ1σ3 ≡ wσ3σ1 wσ1 wσ1σ2σ1 ≡ wσ2σ1σ2

wσ2

σ3 σ2

Figure 2 Local confluence diagrams for positive braids.

Figure 3 Isotopic braids, σ3σ5σ1σ4σ3σ3 ≡ σ5σ4σ3σ4σ1σ3, deformable into one another.

3.2 Positive braids
Positive braids have the Z-property [6] or equivalently the angle property [34],[38, Sect. 8.9].

▶ Definition 14. The rewrite system B+ of (positive) braids on ℓ strands has:
as objects braids, words over the Artin generators σi for 1 ≤ i < ℓ, modulo

σiσjσi = σjσiσj if |i− j| = 1 (1)
σiσj = σjσi if |i− j| > 1 (2)

steps w → wσi for any braid w and 1 ≤ i < ℓ.
The equivalence generated by (1) and (2) is denoted by ≡. The rewrite system B+ is locally
confluent as illustrated in Figure 2: any pair of distinct generators σi, σj either is too far
apart (2) like σ1 and σ3 on the left, or too close together (1) like σ1 and σ2 on the right. See
Figure 3 for two words representing the same positive braid on 6 strands. Extending a braid
by a full swap, crossing all strands over another as represented by the Garside word, works,
the intuition being that is the least way to extend all single steps. The proof is short and by
straightforward inductions.

▶ Lemma 15. B+ has the Z-property for the map that suffixes the Garside word.

Proof. The bullet function • suffixing the Garside word is formally defined by w• := wGℓ,
where, starting crossing from the left, the Garside word may be inductively defined by
G0 := ε and if n > 0, then Gn := Gn−̇1σ⟨n,1⟩ with σ⟨i,j⟩ := σi−̇1 . . . σj crossing the ith strand
over i −̇ j strands to its left. The key property of Gℓ is that it is a so-called Garside element
as each generator is both a left and right divisor of it. More specifically, we claim that for all
1 ≤ i < n there exists a braid Gi

n such that (cf. Ex. 16)

σiG
i
n ≡ Gn ≡ Gi

nσn−̇i (3)

From the claim we conclude to the Z-property, since for a step w → wσi then wσi ↠
wσiG

i
n ≡ wGn → wGnσn−̇i ≡ wσiG

i
nσn−̇i ≡ wσiGn.

FSCD 2021

24:6 Z; Syntax-Free Developments

It remains to prove the claim (a well-known fact). The intuition for Gi
n is that it is

the residual of Gn after σi, i.e. what remains to be done of a full swap after swapping
i. Formally, it may be inductively defined by Gn−̇1

n := Gn−̇1σ⟨n,2⟩ and Gi
n := Gi

n−̇1σ⟨n,1⟩
otherwise. Accordingly, we show (3) by induction on n, with trivial base case, and cases on
whether or not i = n −̇ 1:

σiG
i
n = σiG

i
n−̇1σ⟨n,1⟩ σn−̇1G

n−̇1
n = σn−̇1Gn−̇2σ⟨n−̇1,1⟩σ⟨n,2⟩

≡IH Gn−̇1σ⟨n,1⟩ ≡(i) Gn−̇2σ⟨n,1⟩σ⟨n,2⟩
≡IH Gi

n−̇1σn−̇1−̇iσ⟨n,1⟩ ≡(iii) Gn−̇2σ⟨n−̇1,1⟩σ⟨n,1⟩
≡(ii) Gi

n−̇1σ⟨n,1⟩σn−̇i = Gn−̇1σ⟨n,1⟩
= Gi

nσn−̇i = Gn−̇1
n σ1

where (i) follows by (2); σn−̇1 and Gn−̇2 commute, i.e. σn−̇1Gn−̇2 ≡ Gn−̇2σn−̇1, as their
generators are too far apart, (ii) holds since for all i −̇ 1 > k ≥ j:

σkσ⟨i,j⟩ ≡(2) σ⟨i,k+2⟩σkσk+1σkσ⟨k,j⟩
≡(1) σ⟨i,k+2⟩σk+1σkσk+1σ⟨k,j⟩ ≡(2) σ⟨i,j⟩σk+1

and (iii) follows from (ii) by induction on σ⟨n,2⟩. ◀

▶ Example 16. To see that (3) holds for i := 2 and n := 4, we first compute G2
4 := σ1σ2σ3σ2σ1

and G4 := σ1σ2σ1σ3σ2σ1, and then verify σ2σ1σ2σ3σ2σ1 ≡(1) σ1σ2σ1σ3σ2σ1 ≡(2)
σ1σ2σ3σ1σ2σ1 ≡(1) σ1σ2σ3σ2σ1σ2.

3.3 First-order terms
In this section we consider TRSs, i.e. first-order term rewrite systems [3, 38]. We show the
Z-property holds for orthogonal TRSs for the full development and the full superdevelopment
functions, for weakly orthogonal TRSs by the maximal multistep map, for associativity by
an inductive normal form function, and extending that, for self-distributivity by the full
distribution function. Our presentation suggests the commonality between the proofs the
Z-property holds. We assume T is a TRS and →T or simply → to be its underlying rewrite
system on terms t, s, r, Each bullet function • on terms defined below is assumed to be
pointwise extended to vectors of terms t⃗, s⃗, . . . and substitutions σ, τ, We first observe
that as a corollary to Lem. 11 and Huet’s Critical Pair Lemma we immediately have:

▶ Corollary 17. A terminating TRS has the Z-property iff all its critical pairs are joinable.

3.3.1 Orthogonal
We show orthogonal TRSs, i.e. left-linear and non-overlapping, have the Z-property.

▶ Example 18. The classical example of an orthogonal TRS is Combinatory Logic (CL).
It has a binary symbol @ and constants K,S, I and rules, written in full on the left and
applicatively [38, Sect. 3.3.5] on the right (making @ implicit, infix, and associate to the left):

@(I, x) → x Ix → x

@(@(K,x), y) → x Kxy → x

@(@(@(S, x), y), z) → @(@(x, z),@(y, z)) Sxyz → xz(yz)

For orthogonal TRSs mapping a term to the result of contracting all redexes works, the
intuition being again that it is the least way of extending all single steps. This amounts to an
inductive definition of the full substitution or maximal multistep strategy [38, Def. 9.3.18].

V. van Oostrom 24:7

▶ Definition 19. For an orthogonal TRS, full development • is inductively defined by

x• := x

f (⃗t)• := rσ if f (⃗t) is a redex and f (⃗t•) = ℓσ for some rule ℓ→ r and substitution σ

:= f (⃗t•) otherwise

▶ Example 20. In CL (I(Ix))• = x and (IIx)• = Ix contracting II but not the created Ix.

▶ Remark 21. By orthogonality, if for some redex t there is a reduction without head-steps
t↠ ℓτ for lhs of a rule ℓ and substitution τ , then t = ℓσ for some substitution σ such that
σ ↠ τ . Vice versa, if we have such reduction ℓτ ↠ t for some term t, then t = ℓσ and τ ↠ σ.

▶ Lemma 22.
(Extensive) t↠ t• for all terms t;
(Rhs) t(σ•) ↠ (tσ)• for terms t, substitutions σ; t(σ•) = (tσ)• if t is a proper subterm of a
lhs;

(Z) → has the Z-property for the full development function.

Proof.

(Extensive) By induction on t. If t is a variable x, then t• = x and we conclude by
reflexivity of ↠. Otherwise t has shape f (⃗t) and t⃗ ↠ t⃗• by the IH and transitivity, so
f (⃗t) ↠ f(t⃗•). If the third clause applies we immediately conclude. Otherwise, f (⃗t•) = ℓσ

and t• = rσ for symbol f , terms t⃗, rule ℓ→ r and substitution σ, and we append ℓσ → rσ;
(Rhs) We show the first by induction on t. If t is some variable x, then both sides are
equal to σ(x)•. Otherwise, t = f (⃗t) for some symbol f and terms t⃗, and t⃗(σ•) ↠ (⃗tσ)• by
the IH, hence f (⃗t)(σ•) ↠ f((⃗tσ)•). If the third clause applies to f (⃗tσ) then we conclude,
and otherwise we append a corresponding final root step to the reduction. For the second,
note we have the stronger f((⃗tσ)•) = f (⃗t)(σ•) in the induction step, so the second clause
never applies as this is not an instance of a lhs by assumption on t and orthogonality;

(Z) We show for the full-development function •, that s↠ t• ↠ s• for all steps t→ s by
induction on t. The case that t is a single variable being impossible, as variables cannot
be rewritten due to the assumption that lhss of rules are not single variables, assume t
has shape f (⃗t) for symbol f and terms t⃗ and distinguish cases on the clause of •.
Suppose the second clause applies, i.e. f (⃗t•) = ℓτ for some rule ℓ→ r and t• = rτ for
symbol f , terms t⃗, rule ℓ→ r and substitution τ . Distinguish cases on the step t→ s.

If the step is a head step, then it must have shape t = ℓσ → rσ = s for the same
rule ℓ→ r and some substitution σ such that σ• = τ , by Rem. 21 and (Rhs) as
t = f (⃗t) ↠ f (⃗t•) by (Extensive). Then (Z) holds by rσ ↠ rτ = (ℓσ)• = r(σ•) ↠ (rσ)•

using (Extensive) for σ for the first reduction and (Rhs) for the second; and
If the step is not a head step, then s = f(s⃗) for some s⃗ equal to t⃗ except for some
i for which ti → si, for which by the IH si ↠ t•i ↠ s•

i . From that, Rem. 21 and
(Extensive) ℓτ = f (⃗t•) ↠ f(s⃗•) = ℓσ → rσ = s• for some substitution σ with τ ↠ σ.
Using that for the second reduction, and the IH and (Extensive) for the first, (Z) holds
by f(s⃗) ↠ f (⃗t•) = ℓτ → rτ = f (⃗t)• ↠ rσ = s• = f(s⃗)•.

Suppose the third clause applies, so t• = f (⃗t•). Then the step cannot be a head step
(otherwise f (⃗t•) would be a redex) and s = f(s⃗) for some s⃗ equal to t⃗ except for some i
for which ti → si, for which by the IH si ↠ t•i ↠ s•

i . Then (Z) holds by using the IH and
(Extensive) on t⃗ for both reductions in f(s⃗) ↠ f (⃗t•) = f (⃗t)• ↠ f(s⃗•), to which a further
head step must be appended in case the second clause applies to s to yield s•. ◀

FSCD 2021

24:8 Z; Syntax-Free Developments

In the proof of the lemma the condition f (⃗t) is a redex in the second clause of Def. 19 was
never used. Indeed, dropping it preserves the proof. We dub the resulting function the full
superdevelopment function as it relates to the full development function as Aczel’s proof
of confluence [2, 26] relates to the Tait–Martin-Löf proof [4]; see [35] for a discussion. Full
superdevelopments also contract all upward created [17] redexes.

▶ Definition 23. Replacing redex by term in Def. 19 gives the full superdevelopment function.

▶ Lemma 24. → has the Z-property for the full superdevelopment function.

▶ Example 25. Compared to Ex. 20 again (I(Ix))• = x but now (IIx)• = x by also allowing
to contract the upward created redex Ix. That CL has the Z-property is formalised in [9].

For simply typed CL we now already have seen 3 distinct functions witnessing the Z-property,
in order of increasing(ly lax) upperbounds: full-development, full-superdevelopment, and
normal form (Lem. 11 applies as simply typed CL is terminating).

3.3.2 Weakly orthogonal
We show weakly orthogonal TRSs [3, 38], having left-linear rules whose critical peaks
s← t→ r are trivial, i.e. s = r, have the Z-property.

▶ Example 26. The TRS with rules p(s(x))→ x and s(p(x))→ x is weakly orthogonal.

▶ Definition 27. For a weakly orthogonal TRS, the maximal multistep map • is inductively
defined simultaneously with its maximal context max by

x• := x max(x) := □
f (⃗t)• := rσ max(f (⃗t)) := □ if P

:= f (⃗t•) := f(max(t⃗)) otherwise

where P asks f (⃗t) = ℓσ for some substitution σ, rule ℓ→r such that ℓ is a prefix of f(max(t⃗)).

▶ Example 28. For the predecessor–successor TRS of Ex. 26 letting t := p(s(x)) and
s := p(s(p(x))), we have t• = x and max(t) = □, respectively s• = p(x) and max(s) = p(□).

The full development function being ambiguous7 for weakly orthogonal TRSs, is resolved by
the maximal multistep map by adhering to an inside–out strategy. The intuition for max(t)
is that it comprises the context of all maximal redexes selected for contraction by •, and the
intuition for • is that it tries to find any lhs that is contained in that context, i.e. does not
have overlap with any of the already selected redexes in its arguments. As a consequence, in
P the condition ℓ is a prefix of f(max(t⃗)) is always satisfied for TRSs that are orthogonal
and for those the maximal multistep and full development functions coincide.

▶ Lemma 29. → has the Z-property for the maximal multistep function.

Proof. Since the Z-property is equivalent to the angle property, Lem. 8, this follows from
the maximal multistep function having the angle property [38, Thm. 8.8.27], noting Def. 27
is a rephrasing of the notion going under the same name in the proof of that theorem. ◀

7 Different maximal sets of non-overlapping redexes may exist and result in different terms. E.g. the other
redexes overlap the underlined one in p(s(p(s(x)))) hence the latter is maximal, but so are the other 2.

V. van Oostrom 24:9

▶ Remark 30. Proceeding outside–in instead of inside–out, in a naïve way cannot work. It does
not yield a bullet function having the Z-property as exemplified by the TRS with rules c(x)→x,
f(f(x))→ f(x) and g(f(f(f(x))))→ g(f(f(x))). We have t→ s for t := g(f(f(c(f(f(x))))))
and s := g(f(f(f(f(x))))) by contracting the c-redex, but the Z-property (monotonicity) fails
for a naïve outside–in bullet function ⋆, as we do not have t⋆ = g(f(f(x))) ↠ g(f(f(f(x)))) =
s⋆. This can be overcome [8, Lem. 7.10]8, even effectively so [8, Cor. 7.27], by discarding
Takahashi configurations [38, Prop. 9.3.5], [14, Rem. 4.38].

3.3.3 Associativity
From the above one might have the impression that the Z-property only holds for confluent
TRSs that are orthogonal or closely associated to such. This is not the case.

▶ Example 31. The term rewrite system for associativity (to the right) has as single rule:

@(@(x, y), z) → @(x,@(y, z)) xyz → x(yz)

written on the left in standard notation and applicatively (cf. Ex. 18) on the right.

As is well-known associativity is terminating and locally confluent as its one and only critical
pair is joinable. Hence it has the Z-property by Cor. 17. Here we give a direct inductive
definition of the normal form function, cf. Rem. 1, to show that one can proceed similarly to
the (weakly) orthogonal case, and to prepare for the case of self-distributivity below.

▶ Definition 32. We give an inductive definition of the normal form function • depending
on an auxiliary grafting function t⟨r] (we assume grafting binds stronger than the implicit @)

x⟨r] := xr x• := x

(ts)⟨r] := ts⟨r] (ts)• := t•⟨s•]

The idea is that t⟨r] grafts the second argument r to the right tip of the first argument t.

▶ Example 33. (xy)• = x•⟨y•] = xy, so (xyz)• = (xy)⟨z] = x(yz) and (xyzw)• = x(y(zw)).

Note • indeed only has normal forms in its image and these are preserved by grafting. The
second example shows associativity can be viewed as performing an elementary case of
grafting. How grafting and the normal form function interact with rewriting is captured by
the following two lemmata, all of whose items are proven by induction on terms.9

▶ Lemma 34.
(Sequentialisation) ts↠ t⟨s], for all terms t, s;
(Compatible) t⟨s] ↠ t′⟨s′], if t↠ t′ and s↠ s′; and
(Substitution) t⟨s]⟨r] = t⟨s⟨r]], for all terms t, s, r.

▶ Lemma 35.
(Extensive) t↠ t•, for all terms t;
(Rhs) t•(s•r•) ↠ (tsr)•, for all terms t, s, r;
(Z) → has the Z-property for the normal form function •.

8 As shown there, this extends to infinitary rewriting, for non-collapsing TRSs.
9 See Appendix A to check that the proofs of the two lemmata are indeed by straightforward inductions.

FSCD 2021

24:10 Z; Syntax-Free Developments

▶ Remark 36. Def. 32 effectively encodes a normalising strategy. A priori this entails neither
termination of → nor uniqueness of the computed normal form.10 The latter only follows by
the monotonicity part of the Z-property for •. Turning things around, because • maps to
normal forms, (Extensive) and monotonicity would have sufficed to establish the Z-property,
as then t→ s entails s↠ s• = t•, but that would break the analogy with other proofs here.

3.3.4 Self-distributivity
Dehornoy’s proof that self-distributivity has the Z-property [6] fits in the above mould.

▶ Example 37. The self-distributivity TRS has the (applicative) rule xyz→ xz(yz).

Self-distributivity is non-terminating as its lhs can be embedded in its rhs, and is locally
confluent as its one and only critical peak is joinable. Both its equational and rewrite theories
are highly non-trivial; the book [6] is entirely devoted to them and still much more is to say.

▶ Example 38. Self-distributivity has any ACI-operation (e.g., logical ∧ or ∨) as model, as
well as interpreting the binary operation as taking the middle between points in R2. The
Substitution Lemma of the λ-calculus (cf. [32, Thm. 5]) yields an instance of self-distributivity.
Self-distributivity is obtained by “forgetting” the S in the CL rule for S, or alternatively
(and giving more insight) by “enriching” the rhs of the associativity rule with another copy
of z.

▶ Definition 39. We give an inductive definition of the full distribution function • [6,
Def. V.3.7] depending on the uniform distribution t[s] of s over t [6, Def. V.3.4].

x[s] := xs x• := x

(tr)[s] := t[s]r[s] (ts)• := t•[s•]

Uniform distribution grafts the 2nd argument uniformly to all leafs t[s] = t[x1,x2,...:=x1s,x2s,...].
The following key lemmata, obtained by structuring [6, Lem. V.3.6,10–12] in the same way as
was done for associativity above, are again proven by straightforward induction on terms.9

▶ Lemma 40.
(Sequentialisation) ts↠ t[s], for all terms t, s;
(Compatible) t[s] ↠ t′[s′], if t↠ t′ and s↠ s′; and
(Substitution) t[s][r] ↠ t[r][s[r]], for all terms t, s, r.

▶ Lemma 41.
(Extensive) t↠ t•, for all terms t; and
(Z) → has the Z-property for the full distribution function •.

3.4 The lambda-calculus
The λβ-calculus and the λβη-calculus [4] being prime examples of orthogonal respectively
weakly orthogonal higher-order term rewrite systems [20, 27], it is natural that the full
development and full superdevelopment functions for orthogonal TRSs, and the maximal
multistep map for weakly orthogonal TRSs should lift. They do. As the Z-property for the
full development function is known [18]/[16] and for the full superdevelopment function was
formalised [22, 9], we will be satisfied with giving the definitions and proof structure.

10 But in fact it can be shown to do so, by choosing appropriate weights in random descent [33].

V. van Oostrom 24:11

▶ Definition 42. The full development function • is inductively [37, p. 121] defined by:

x• := x

(λx.M)• := λx.M•

(MN)• := M ′[x:=N ′] if MN is a redex and M•N• = (λx.M ′)N ′

:= M•N• otherwise

The full superdevelopment function is obtained by dropping the condition MN is a redex from
the third clause (or replacing it by MN is a term; cf. Def. 19 and the text below Lem. 22).

▶ Example 43. Taking I := λx.x in Ex. 20 gives full (super)developments as for CL.

Assuming α-equivalence, congruence of β-reduction, the Substitution Lemma [4, Lem. 2.1.16],
and compatibility of β-reduction with substitution [4, Sect. 3.1], and coherence of β-reduction
with abstraction, we successively show:

▶ Lemma 44.
(Extensive) M ↠M•, for all λ-terms M ;
(Rhs) M (σ•) ↠ (Mσ)• for λ-terms M , substitutions σ; and
(Z) →β has the Z-property for the full (super)development function •.

▶ Remark 45. It would be interesting to see whether one could have a single formalised
statement and proof for the Z-property for both full developments and full superdevelopments.
▶ Remark 46. Our inside–out definition of the maximal multistep map for weakly orthogonal
TRSs straightforwardly extends to all weakly orthogonal higher-order term rewrite systems,
and the Z-property still holds (in [29] we established the angle property), which immediately
yields the same for the λβη-calculus. Although the outside–in construction on [37, p. 121,
(F8∗)] does yield the Z-property for the λβη-calculus,11 it fails to do so for weakly orthogonal
higher-order term rewrite systems in general; monotonicity fails for the TRS in Rem. 30.
▶ Remark 47. We do not know whether there is a generalisation of the full superdevelopment
function to the λβη-calculus. A problem is illustrated by the following example taken
from [27, Rem. 3.4.24]. We have the co-initial full and non-full superdevelopments:

(λx.(λy.yx)I)z →β (λx.Ix)z →η Iz →β z (λx.(λy.yx)I)z →β (λy.yz)I

but to reduce the target of the latter to that of the former requires two superdevelopments.

▶ Example 48. The λ-calculus with explicit substitutions λσ [1] has the Z-property on
closed terms. This is witnessed by the composition of first the function mapping a term to
its →′-normal form where →′ denotes σ reduction, and next the full development function •
contracting all Beta-redexes (Beta on its own is orthogonal). The proof is given in Fig. 4,
where black ordinary arrows denote Beta-reductions, blue open arrows →′-reductions, t the
→′-normal form of t, and t• the result of subsequently applying the full-development function.
For the result to hold, it suffices that

(Γ) →′ is confluent and terminating [38, Exercise 3.6.3(i)];
(∆) ◦−→ has the triangle property for •; and
(E) single ◦−→-steps commute with →′-reduction [38, Exercise 3.6.3(iii)].

▶ Example 49. We do not know whether Mints’ λ-calculus with restricted η-expansion (such
that no β-redexes are created) has the Z-property. The restriction hampers monotonicity.

11 It coincides with the maximal multistep function since redex-clusters are chains [14, Defs. 4.31,4.47].

FSCD 2021

24:12 Z; Syntax-Free Developments

Γ

t• = s•

t st s

t = s

Γ

t t′

s′t• s•

E

E
∆

∆

s

Figure 4 λσ has the Z-property.

4 Syntax-free developments

We first show in Sects. 4.1–4.3 that several classical rewrite results that are known for the
classical syntactic notion of development12 in term rewriting [38] and the λ-calculus [4] carry
over to our syntax-free notion ◦−→ of •-development (Def. 7) defined for a bullet function •
witnessing the Z-property. The diagrammatic proofs are obtained by pasting with Zs. Next,
we investigate in Sect. 4.4 for the special case of orthogonal TRSs, under what conditions
the syntactic and syntax-free notions of development coincide. Throughout we assume →
has the Z-property for •.

4.1 Hyper-Cofinality
We show •−→ is a best possible many-step strategy for → in that it is hyper-cofinal [38,
Sect. 9.1.1]; in order-theoretic terms: starting from object a and always eventually performing
a •−→-step eventually will yield a result greater than b, for any b greater than a. Observe
first that •−→ is a many-step strategy since if a •−→ a• then by Def. 4 a is not in →-normal
form, so there is some step a→ b from which we conclude to a↠ a• by the Z-property.

▶ Theorem 50. •−→ is hyper-cofinal for →.

Proof. It suffices to show that, for a given step a→ b and maximal [38, below Def. 1.1.13]
reduction γ of →, •−→-steps which always eventually contains a •−→-step, there is another
such reduction δ from b eventually coinciding with it. By maximality, γ either ends in a

c•

a

b a•

c

c•

c•

=ZZZ Z

d

γ1 γ2

δ1

a b

c a• b•

Figure 5 Hyper-cofinality of •−→ (left) and confluence of → (right), by tiling with Zs.

normal form c, or by the assumption (“always eventually”) decomposes into a →-reduction
γ1 : a↠ c, followed by c •−→ c• followed by another such reduction γ2 from c• (see Fig. 5).
Induction on the length of a↠ c and monotonicity of • give a d between c and c• such that
δ1 : b↠ d. If c is a normal form, c = d and we set δ := δ1, else we compose δ from δ1, d↠ c•

and γ2. ◀

12 Developments go all the way back to sequences of contractions on the parts in [5], for the λI-calculus.

V. van Oostrom 24:13

As a consequence [38, Sect. 9.1] •−→ is a hyper-normalising strategy, i.e. if an object reduces to
a normal form then always eventually performing a •−→-step will reach it. For the λ-calculus
•−→ is (weak-)head-normalising, since (weak-)head-normal forms are closed under reduction;

Normalisation of •−→, i.e. of Gross–Knuth-reduction, was already noted in [18, Ex. 4.1].

4.2 Confluence
▶ Lemma 51. → is confluent.

Proof. Confluence can be established in several ways. We present three.
By tiling the plane with Zs as displayed in Fig. 5 (formally by the Strip Lemma and [38,
Prop. 1.1.10]). In Fig. 5 we have high-lighted the Zs for a→ b and a→ c in red and blue;
Via Lem. 8, the angle property for ◦−→ and [38, Prop. 1.1.11]; and
Via Thm. 50, cofinality of •−→ and [38, Thm. 1.2.3(iv)]:13

↞ ·↠ ⊆ ↠ · •←−←− · •−→−→ ·↞ as ↠ ⊆ •−→−→ ·↞ by cofinality of •−→
⊆ ↠ · •−→−→ · •←−←− ·↞ as •−→ is deterministic hence confluent
⊆ ↠ ·↠ ·↞ ·↞ as •−→ is a many-step →-strategy
⊆ ↠ ·↞ by transitivity of ↠ ◀

Since confluence is defined as the diamond property of the induced quasi-order, we have as a
corollary that any rewrite system admitting the Z-property (Sect. 3.1) is confluent.

▶ Remark 52. Choosing an appropriate bullet function (cf. Sect. 1) can lead to remarkably
short proofs of confluence via the Z-property. To wit, the confluence proofs for positive
braids (by full swaps), self-distributivity (by full distribution),14 and for orthogonal TRSs
and the λ-calculus (by full superdevelopments)15 are the shortest ones we know, in the same
informal sense of “shortest” as was used by Takahashi on [37, p. 121] when she stated the
proof of confluence of λβ via the angle property was “perhaps the shortest”. However, the
proof via the Z-property is (a bit) shorter [22].

▶ Remark 53. Takahashi’s confluence proof method [37, Sect. 1] for the λ-calculus can be
viewed as being based on the angle property for developments. Although the Z and angle
properties are equivalent (Lem. 8), her method is slightly more involved, conceptually and
technically, as it involves (inductively) defining both the bullet function and developments
(called ∗ respectively parallel reduction in [37]). Our approach does away with the latter; our
•-developments are derived from • in a syntax-free way; beware though that developments
and •-developments in general differ, cf. Sect. 4.4.

4.3 Recurrence
[36, Proposition 1] characterises the recurrent terms in CL (see Ex. 18) in terms of Gross–
Knuth reduction. We recast this in a syntax-free way for → having the Z-property.

▶ Definition 54. An object a is →-recurrent if a→ b entails b→ a for all b. An object is
recurrent if it is ↠-recurrent.

▶ Proposition 55. If • is extensive, then a is recurrent iff a• ↠ a.

13 This generalises half of Staples’ confluence method [38, Exercise 1.3.9].
14 Confluence of self-distributivity is non-trivial. Currently no tool can prove it automatically; see

problem 126 of http://cops.uibk.ac.at/results/?y=2020-full-run&c=TRS.
15 Full developments involve a useless test for being a redex (Def. 42).

FSCD 2021

http://cops.uibk.ac.at/results/?y=2020-full-run&c=TRS

24:14 Z; Syntax-Free Developments

Proof. For the if-direction we show for all n, for all b, if a→n b then b↠ a, by induction on
n. In the base case a = b and we conclude by reflexivity of ↠. In the induction step, we have
a→n c→ b for some object c, so c↠ a by the IH for a→n c. We conclude by composing
b↠ c•, which holds by the Z-property for c→ b, with c• ↠ a•, which holds by monotonicity
of • for c↠ a, and with a• ↠ a, which holds by assumption, to b↠ a as desired.

For the only–if-direction, we have a↠ a• by the assumption that • is extensive, hence
a• ↠ a by the assumption that a is recurrent, as desired. ◀

▶ Remark 56. This result was used and formalised by Felgenhauer for a study of fixed-point
combinators in CL [10]. E.g., although it is simple to see SII(SII) is recurrent, how to prove
it in a simple way? By Proposition 55 it suffices to show that the result of a Gross–Knuth
step reduces to it, i.e. that I(SII)(I(SII)) ↠ SII(SII), which is simple to check.

4.4 Syntactic developments in orthogonal term rewriting
We investigate for orthogonal TRSs (cf. Sect. 3.3.1) the correspondence between the classical
syntactic definition of a development and the syntax-free definition of •-development (Def. 7)
arising from taking as bullet function • the full development function that maps a term to the
result of contracting all redex-patterns in it (Def. 19). This section is based on permutation
equivalence via residual theory originating with [13], as presented in [38, Chs. 8 and 9]. We
restrict to investigating the, non-trivial, correspondence for orthogonal TRSs hoping it can
serve as a stepping stone for the same for more complex cases such as self-distributivity and
the λ-calculus.

We first expand on the discrepancy between the syntactic and the syntax-free notions
as observed in Ex. 9 (a non-terminating orthogonal TRS). Our first observation is that
•-developments are more encompassing than developments due to what are called syntactic
accidents [17, p. 34], i.e. due to reductions yielding the same result despite not doing the same
work, not being permutation equivalent. We show absence of syntactic accidents suffices.

▶ Example 57. For the erasing TRS with rules a→ b→ c and f(x)→ d, we have f(a)• := d

and there is a •-development from f(a) to f(c), but no such development. For the collapsing
TRS with rules g(x)→ h(x), h(x)→ i(x) and i(x)→ x, we have i(h(g(a)))• := i(h(a)) and
there is a •-development from i(h(g(a))) to i(h(i(a))), but no such development.

▶ Proposition 58. For orthogonal, terminating, non-collapsing, and non-erasing TRSs,
developments and •-developments coincide.

Proof. We claim the assumptions guarantee the absence of syntactical accidents: if γ, δ
are reductions from t to s then they are permutation equivalent γ ≃ δ.16 From the claim
it follows that if γ : t •−→ t• and δ : t ↠ s for some ϵ : s ↠ t•, then γ ≃ δ · ϵ. Therefore,
decomposing δ as δ1 · ϕ · δ2 for some step ϕ : t′ → s′, we have γ/δ1 : t′ ◦−→ s and ϕ ≲ γ/δ1,
which by non-erasingness entails that ϕ is among the redex-patterns in γ/δ1.17 Since this
holds for each step, δ is a development of the set of all redex-patterns in t. The other
implication follows from that every development from t can be completed into a complete
development to t•.

16 We employ the projection equivalence notation ≃ from [38, Def. 8.7.21]. We freely employ results from
that chapter, e.g. that permutation and projection equivalence coincide for orthogonal TRSs.

17 This fails for erasing systems. For instance, the step f(a) → f(s) is not a development of the step
f(a) → c in the TRS with rules a → b and f(x) → c.

V. van Oostrom 24:15

It remains to prove the claim, which we prove by contradiction assuming γ ̸≃ δ. By
residual theory, the peak γ, δ (where both have the same target, say u, by accident) can
be completed by a valley comprising γ′ := δ/γ and δ′ := γ/δ such that γ · γ′ ≃ δ · δ′. At
least one of γ′, δ′ must be non-empty, as otherwise γ, δ would be projection equivalent. But
then the other must be non-empty as well, since otherwise we would have a reduction cycle
on u contradicting the assumed termination. To see that γ′ ̸≃ δ′ note we may assume that
γ, δ are standard, where a reduction is standard [13] if for each step in it the position of
the contracted redex-pattern is in the redex-pattern of the first step after and left–outer of
it [38, Definition 8.5.40]. W.l.o.g. we may assume γ, δ differ in their first steps and at least
one of them contains a head-step, say γ contains head-step ϕ. Then δ doesn’t, as otherwise
their first steps would not differ by [15, Lemma 1]. We conclude γ/δ ̸≃ δ/γ since the former
contains a head-step as projection of a reduction γ containing a head-step over a reduction
δ containing none, and the latter contains no head-step as projection of δ containing none
over another reduction γ using the assumption that rules are non-collapsing. Applying the
construction again, to the peak γ′, δ′ (where both have the same target again by accident)
yields a valley comprising γ′′ := δ′/γ′ and δ′′ := γ′/δ′ such that γ′ · γ′′ ≃ δ′ · δ′′ but γ′′ ̸≃ δ′′.
Repeating arbitrarily often yields an infinite reduction from t, contradicting termination. ◀

The three conditions in Prop. 58 are rather restrictive. We employ labelling [38, Sect. 8.4] to
turn an arbitrary orthogonal term rewrite system into one satisfying them, and recover the
result. We separate this into two phases, first turning a TRS into a non-erasing one by means
of memorising the erased arguments,18 and next lifting to a TRS that is also terminating
and non-collapsing by means of the Hyland–Wadsworth labelling [38, Sect. 8.4.4].

▶ Definition 59. The TRS with memory [T] of a TRS T has
as signature the signature of T extended with a binary symbol [,];
as rules ϱℓ̂ : ℓ̂ → [r, x⃗] for some T -rule ϱ : ℓ → r, where ℓ̂ is such that projecting all
occurrences of [,] in it on their first argument yields ℓ, but these are not at the root, do
not have a variable as first argument, and all have fresh variables (uniquely determined
by their position) as second arguments. Here x⃗ is the list (unique for ℓ̂) of all variables in
ℓ̂ not in r, [t] denotes t, and [t, xy⃗] denotes [t, [x, y⃗]].

▶ Example 60. The TRS with memory for the rules f(a)→ b and f(x)→ b, yields infinitely
many rules f(a)→ b, f([a, x])→ [b, x], f([[a, y], x])→ [b, xy],. . . for the first rule, and the
single rule f(x)→ [b, x] for the second one.

▶ Lemma 61. If T is orthogonal, then [T] is orthogonal and non-erasing. The identity map
induces a rewrite labelling [38, Def. 8.4.5(ii)] of T into [T].

▶ Example 62. Memorising overcomes erasingness. With memory f(a)• := [d, b] for the first
TRS in Ex. 57, so the •-developments from f(a) are the initial prefixes of f(a)→ f(b)→ [d, b]
and f(a)→ [d, a]→ [d, b]. There is now no •-development from f(a) to f(c).
To overcome also non-termination and (as a side-effect) collapsingness, we employ the
Hyland–Wadsworth labelling [17, 4, 19, 38] T ω of a TRS T . The idea of that labelling is
to approximate arbitrary (possibly infinite) T -reductions with arbitrary precision, where
precision is measured via the causal length of reductions. Technically, this is achieved by
labelling edges19 in terms with their creation depth (a natural number) in such a way that
any unlabelled reduction can be lifted to one having some bounded creation depth n, and
such that the corresponding subsystem T n of T ω is terminating and confluent.

18 A technique going back to Nederpelt’s scars [24, p. 90].
19 To make sure that every redex-pattern contains at least one edge, we replace any function symbol f

with a pair f ′–f with f ′ a fresh unary function symbol.

FSCD 2021

24:16 Z; Syntax-Free Developments

▶ Definition 63. The Hyland–Wadsworth (HW) labelling of a TRS T is the TRS T ω

having as signature all natural numbers (labels) and for every f of T both f and a fresh
copy f ′ of it, with all symbols not in T having arity 1;
having as rules ϱℓ̂ : ℓ̂→ (r′)n for every rule ϱ : ℓ→ r, where ℓ̂ is such that between any two
non-labels there is at least one label, n is the maximum value of all labels in ℓ̂ plus one,
and removing all yields ℓ′, where priming and natural-number-labelling are defined by:

x′ := x xn := n(x)
f (⃗t)′ := f ′(f(t⃗′)) g(s⃗)n := n(g(s⃗n))

T n is the restriction of T ω to rules whose lhss have labels < n.

▶ Example 64. We illustrate the saturation process of the HW-labelling on a rule with a
single-function-symbol left-hand side (cf. footnote 19), The Hyland–Wadsworth labelling of
the TRS with rule f(x)→x has the infinitely many rules f ′(0(f(x)))→1(x), f ′(1(f(x)))→2(x),
. . . , f ′(0(0(f(x))))→1(x), f ′(1(0(f(x))))→2(x), f ′(0(1(f(x))))→2(x), Note the original
rule was collapsing, but its HW-labellings are not.

Hyland–Wadsworth labelling preserves orthogonality and is sound in that reductions can be
lifted, however with ever increasing labels so bounding them yields termination.

▶ Lemma 65. T ω and T n are (left/right) linear and/or orthogonal iff T is;
mapping every term t to (t′)0 gives a rewrite labelling of T ; and
the restriction T n of T ω to lhs with labels < n is terminating [19].

▶ Example 66. To see how the HW-labelling avoids syntactical accidents for collapsing rules
consider the reduction f(f(x))→ f(x) for rule f(x)→ x. It lifts differently depending on
which redex-pattern is contracted:

0(f ′(0(f(0(f ′(0(f(0(x)))))))))→ 0(1(0(f ′(0(f(0(x)))))))

0(f ′(0(f(0(f ′(0(f(0(x)))))))))→ 0(f ′(0(f(0(1(0(x)))))))
Along the lines of the proof of Prop. 58 we show all syntactical accidents are avoided. The
lemma expresses an invertibility property (cf. [38, Thm. 8.4.20]): given the target term of a
T ω reduction, the reduction can be reconstructed up to permutation equivalence.

▶ Lemma 67. If γ, δ are co-initial and co-final T ω reductions, then γ ≃ δ.

▶ Theorem 68. Developments and •-developments coincide in [T]ω, if T is orthogonal.

Proof. Since T is orthogonal by assumption, so is [T] by Lemma 61. Therefore, by Lemma 67:
if γ, δ : a ↠ b are [T]ω-reductions then γ ≃ δ. It follows that if γ : t •−→ t• and δ : t ↠ s

for some ϵ : s ↠ t•, then γ ≃ δ · ϵ. Therefore, decomposing δ as δ1 · ϕ · δ2 for some step
ϕ : t′ → s′, we have γ/δ1 : t′ ◦−→ s and ϕ ≲ γ/δ1, which by non-erasingness of [T] hence of
[T]ω entails that ϕ is among the redex-patterns in γ/δ1. Since this holds for each step, δ is a
development of the set of all redex-patterns in t. The other implication follows from that
every development from t can be completed into a complete development to t•. ◀

5 Conclusion

We have presented the Z-property and illustrated its flexibility, showing it applies to various
rewrite systems to yield short proofs for classical results such as confluence and normalisation.
Their proofs are based on a syntax-free version of the classical notion of development. We
hope and expect more results can be factored in this way. We showed it coincides for
orthogonal TRSs with the syntactic notion of development if syntactical accidents are absent
(Prop. 58, Lem. 67) and hope that this invertibility result and its novel proof method extend
to more complex systems, e.g. λ-calculus or self-distributivity.

V. van Oostrom 24:17

References
1 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In F.E. Allen, editor,

Conference Record of the Seventeenth Annual ACM Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 1990, pages 31–46. ACM Press, 1990.
doi:10.1145/96709.96712.

2 P. Aczel. A general Church–Rosser theorem, 1978. corrections http://www.ens-lyon.fr/LIP/
REWRITING/MISC/AGRT_corrections.pdf. URL: http://www.ens-lyon.fr/LIP/REWRITING/
MISC/AGeneralChurch-RosserTheorem.pdf.

3 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
4 H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in

Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 2nd revised edition,
1984.

5 A. Church and J.B. Rosser. Some properties of conversion. Transactions of the American
Mathematical Society, 39:472–482, 1936. doi:10.2307/1989762.

6 P. Dehornoy. Braids and Self-Distributivity, volume 192 of Progress in Mathematics. Birkhäuser,
2000.

7 P. Dehornoy and V. van Oostrom. Z; proving confluence by monotonic single-step upper-
bound functions. In Logical Models of Reasoning and Computation (LMRC-08), Moscow,
2008. URL: http://cl-informatik.uibk.ac.at/users/vincent/research/publication/
talk/lmrc060508.pdf.

8 J. Endrullis, C. Grabmayer, D. Hendriks, J.W. Klop, and V. van Oostrom. Infinitary term
rewriting for weakly orthogonal systems: Properties and counterexamples. Logical Methods in
Computer Science, 10(2), 2014. doi:10.2168/LMCS-10(2:7)2014.

9 B. Felgenhauer, J. Nagele, V. van Oostrom, and C. Sternagel. The Z property. Arch. Formal
Proofs, 2016, 2016. URL: https://www.isa-afp.org/entries/Rewriting_Z.shtml.

10 B. Felgenhaurer. Personal communication, 2017.
11 Y. Honda, K. Nakazawa, and K. Fujita. Confluence proofs of lambda-mu-calculi by Z theorem.

Studia Logica, 2021. doi:10.1007/s11225-020-09931-0.
12 G. Huet. Confluent reductions: Abstract properties and applications to term rewriting systems.

J. ACM, 27(4):797–821, 1980. doi:10.1145/322217.322230.
13 G. Huet and J.-J. Lévy. Computations in orthogonal rewriting systems, Part I + II. In J.L.

Lassez and G.D. Plotkin, editors, Computational Logic – Essays in Honor of Alan Robinson,
pages 395–443, Cambridge MA, 1991. MIT Press. Update of: Call-by-need computations in
non-ambiguous linear term rewriting systems, 1979.

14 J. Ketema, J.W. Klop, and V. van Oostrom. Vicious circles in rewriting systems. Technical
Report E0427, Centrum voor Wiskunde en Informatica, December 2004. URL: https://ir.
cwi.nl/pub/11022/11022D.pdf.

15 J.W. Klop, V. van Oostrom, and F. van Raamsdonk. Reduction strategies and acyclicity.
In H. Comon-Lundh, C. Kirchner, and H. Kirchner, editors, Rewriting, Computation and
Proof, Essays Dedicated to Jean-Pierre Jouannaud on the Occasion of His 60th Birthday,
volume 4600 of Lecture Notes in Computer Science, pages 89–112. Springer, 2007. doi:
10.1007/978-3-540-73147-4_5.

16 Y. Komori, N. Matsuda, and F. Yamakawa. A simplified proof of the Church–Rosser theorem.
Studia Logica: An International Journal for Symbolic Logic, 102(1):175–183, 2014. doi:
10.1007/s11225-013-9470-y.

17 J.-J. Lévy. Réductions correctes et optimales dans le λ-calcul. Thèse de doctorat d’état,
Université Paris VII, 1978. URL: http://pauillac.inria.fr/~levy/pubs/78phd.pdf.

18 R. Loader. Notes on simply typed lambda calculus. ECS-LFCS- 98-381, Laboratory for
Foundations of Computer Science, The University of Edinburgh, 1998. URL: http://www.
lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/.

19 L. Maranget. La stratégie paresseuse. Thèse de doctorat, Université Paris 7, 1992.

FSCD 2021

https://doi.org/10.1145/96709.96712
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGRT_corrections.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
http://www.ens-lyon.fr/LIP/REWRITING/MISC/AGeneralChurch-RosserTheorem.pdf
https://doi.org/10.2307/1989762
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/talk/lmrc060508.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/talk/lmrc060508.pdf
https://doi.org/10.2168/LMCS-10(2:7)2014
https://www.isa-afp.org/entries/Rewriting_Z.shtml
https://doi.org/10.1007/s11225-020-09931-0
https://doi.org/10.1145/322217.322230
https://ir.cwi.nl/pub/11022/11022D.pdf
https://ir.cwi.nl/pub/11022/11022D.pdf
https://doi.org/10.1007/978-3-540-73147-4_5
https://doi.org/10.1007/978-3-540-73147-4_5
https://doi.org/10.1007/s11225-013-9470-y
https://doi.org/10.1007/s11225-013-9470-y
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/
http://www.lfcs.inf.ed.ac.uk/reports/98/ECS-LFCS-98-381/

24:18 Z; Syntax-Free Developments

20 R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. Theor. Comput.
Sci., 19(1):3–29, 1998. doi:10.1016/S0304-3975(97)00143-6.

21 P.-A. Melliès. Axiomatic rewriting theory VI residual theory revisited. In S. Tison, editor,
Rewriting Techniques and Applications, 13th International Conference, RTA 2002, Copenhagen,
Denmark, July 22–24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Science,
pages 24–50. Springer, 2002. doi:10.1007/3-540-45610-4_4.

22 J. Nagele, V. van Oostrom, and C Sternagel. A short mechanized proof of the Church–Rosser
theorem by the Z-property for the λβ-calculus in nominal Isabelle. In 5th International Work-
shop on Confluence, IWC 2016, Obergurgl, Austria, September 8–9, 2016, Online Proceedings,
1016. URL: http://www.csl.sri.com/users/tiwari/iwc2016/iwc2016.pdf.

23 K. Nakazawa and K. Fujita. Compositional Z: Confluence proofs for permutative conversion.
Studia Logica: An International Journal for Symbolic Logic, 104(6):1205–1224, 2016. doi:
10.1007/s11225-016-9673-0.

24 R.P. Nederpelt. Strong Normalization in a Typed Lambda Calculus with Lambda Structured
Types. PhD thesis, Technische Hogeschool Eindhoven, June 1973.

25 M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43:223–243, 1942. doi:10.2307/2269299.

26 T. Nipkow. Orthogonal higher-order rewrite systems are confluent. In M. Bezem and J.F.
Groote, editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 306–317. Springer, 1993.
doi:10.1007/BFb0037114.

27 V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije
Universiteit, Amsterdam, March 1994. URL: https://research.vu.nl/files/62846778/
complete%20dissertation.pdf.

28 V. van Oostrom. Finite family developments. In H. Comon, editor, Rewriting Techniques
and Applications, 8th International Conference, RTA-97, Sitges, Spain, June 2-5, 1997,
Proceedings, volume 1232 of Lecture Notes in Computer Science, pages 308–322. Springer,
1997. doi:10.1007/3-540-62950-5_80.

29 V. van Oostrom. Reduce to the max, 1999. Unpublished manuscript. URL: http:
//cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf.

30 V. van Oostrom. Random descent. In RTA, volume 4533 of Lecture Notes in Computer Science,
pages 314–328. Springer, 2007. doi:10.1007/978-3-540-73449-9_24.

31 V. van Oostrom. Abstract rewriting. In A. Middeldorp, editor, 3rd International School on
Rewriting, ISR 2008, Obergurgl, Austria, July 21–26, 2008, 2008. Z-property in part 2 of the
slides. URL: http://cl-informatik.uibk.ac.at/isr-2008/html/b.4.html.

32 V. van Oostrom. Confluence by decreasing diagrams; converted. In A. Voronkov, editor,
Rewriting Techniques and Applications, 19th International Conference, RTA 2008, Hagenberg,
Austria, July 15-17, 2008, Proceedings, volume 5117 of Lecture Notes in Computer Science,
pages 306–320. Springer, 2008. doi:10.1007/978-3-540-70590-1_21.

33 V. van Oostrom and Y. Toyama. Normalisation by Random Descent. In FSCD, volume 52
of LIPIcs, pages 32:1–32:18. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.FSCD.2016.32.

34 V. van Oostrom and Y. Venema. Term rewriting systems I and II. In 10th European
Summer School in Logic, Language and Information, ESSLLI 98, Saarbrücken, Germany,
August 17—28, 1998, 2008. Course notes on braids in part I of the course. URL: http:
//cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf.

35 F. van Raamsdonk. Confluence and Normalisation for Higher-Order Rewriting. PhD
thesis, Vrije Universiteit Amsterdam, 1996. URL: https://research.vu.nl/files/62847150/
complete%20dissertation.pdf.

https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1007/3-540-45610-4_4
http://www.csl.sri.com/users/tiwari/iwc2016/iwc2016.pdf
https://doi.org/10.1007/s11225-016-9673-0
https://doi.org/10.1007/s11225-016-9673-0
https://doi.org/10.2307/2269299
https://doi.org/10.1007/BFb0037114
https://research.vu.nl/files/62846778/complete%20dissertation.pdf
https://research.vu.nl/files/62846778/complete%20dissertation.pdf
https://doi.org/10.1007/3-540-62950-5_80
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/max.pdf
https://doi.org/10.1007/978-3-540-73449-9_24
http://cl-informatik.uibk.ac.at/isr-2008/html/b.4.html
https://doi.org/10.1007/978-3-540-70590-1_21
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
https://doi.org/10.4230/LIPIcs.FSCD.2016.32
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf
http://cl-informatik.uibk.ac.at/users/vincent/research/publication/pdf/braids.pdf
https://research.vu.nl/files/62847150/complete%20dissertation.pdf
https://research.vu.nl/files/62847150/complete%20dissertation.pdf

V. van Oostrom 24:19

36 R. Statman. There is no hyperrecurrent s,k combinator. Research Report 91-1332, Department
of Mathematics, Carnegie Mellon University, Pittsburg, PA 15213, June 1991. URL: http:
//shelf2.library.cmu.edu/Tech/53922203.pdf.

37 M. Takahashi. Parallel reductions in λ-calculus. Information and Computation, 118:120–127,
1995. doi:10.1006/inco.1995.1057.

38 Terese. Term Rewriting Systems. Cambridge University Press, 2003.

A Proofs omitted from the main text

Proofs of second and third items of Lem. 8.
Assume → has the Z-property for bullet function •. Define ⋆ to be • updated to map
each object that is not the source of some step, to itself.
To see that ⋆ is extensive, we distinguish cases on whether a is the source of some step or
not. If it is, say a→ b, then b↠ a• ↠ b• by the Z-property for •. Hence a↠ a• = a⋆ by
composition and definition of ⋆. If it is not, then a↠ a⋆ = a by reflexivity and definition
of ⋆.
To see that → has the Z-property for ⋆, suppose a→ b. By the Z-property for • and by
definition of ⋆, then b↠ a• = a⋆ ↠ b•. The result follows if, as we claim, b• = b⋆. That
follows by noting that, by definition of ⋆, the only way in which b• = b⋆ could fail to
hold, is if b were not the source of some step. But then the above reduction collapses to
b = a• = a⋆ = b• and we conclude since b = b⋆.
We only check the additional conditions on either side w.r.t. the first item.
For the only–if-direction, suppose → has the Z-property for an extensive •. To show
a ◦−→ a•, distinguish cases on whether there is some →-step from a or not. If there is,
say a → b then by the Z-property, a ↠ b• ↠ a•. If there is no →-step from a, then
extensivity of • entails a = a•. In either case, a ↠ a• ↠ a• by reflexivity of ↠, so
a ◦−→ a• by definition of ◦−→. ◀

Proof of Lem. 34.
(Sequentialisation) The proof is by induction on t. If t is a variable, then ts = t⟨s] and
we conclude by reflexivity. Otherwise, t has shape t1t2 and we conclude using the IH to
ts = t1t2s→ t1(t2s) ↠ t1t2⟨s] = t⟨s] from which the statement follows by transitivity.

(Compatible) We show the stronger fact that single steps in either t or s are preserved, by
induction on t, which suffices by transitivity of ↠. If t is a variable x, then s→ s′ and
t⟨s] = xs→ xs′ = t⟨s′] by compatibility of reduction. If t = t1t2, we distinguish cases on
where the step takes place:

If the step takes place at the root of t, then t = t11t12t2 → t11(t12t2) = t′ and
we conclude by unfolding the definition of right-substitution twice on both sides to
t⟨s] = t11t12t2⟨s]→ t11(t12t2⟨s]) = t′⟨s];
If the step takes place in t1, then t⟨s] = t1t2⟨s]→ t′1t2⟨s] = t′⟨s] by compatibility of
reduction;
If the step takes place in t2, then t⟨s] = t1t2⟨s] → t1t

′
2⟨s] = t′⟨s] by the IH and

compatibility of reduction;
If the step takes place in s, then t⟨s] = t1t2⟨s] → t1t2⟨s′] = t⟨s′] by the IH and
compatibility of reduction.

(Substitution) The statement is shown by induction on t. If t is a variable, say x then
t⟨s]⟨r] = xs⟨r] = t⟨s⟨r]] by unfolding the definition of right-substitution. If t has shape
t1t2, then t⟨s]⟨r] = t1t2⟨s]⟨r] = t1t2⟨s⟨r]] = t⟨s⟨r]] by unfolding the definition of right-
substitution and the IH. ◀

FSCD 2021

http://shelf2.library.cmu.edu/Tech/53922203.pdf
http://shelf2.library.cmu.edu/Tech/53922203.pdf
https://doi.org/10.1006/inco.1995.1057

24:20 Z; Syntax-Free Developments

Proof of Lem. 35.
(Extensive) By induction on t. If t is a variable, then t = t• and we conclude by reflexivity
of ↠. Otherwise t has shape t1t2, and we conclude by (Sequentialisation), the IH twice,
(Compatible), and definition to t1t2 ↠ t1⟨t2] ↠ t•1⟨t•2] = (t1t2)•;

(Rhs) By (Sequentialization) twice and (Substitution) we conclude t•(s•r•) ↠ t•⟨s•⟨r•]] =
t•⟨s•]⟨r•] = (tsr)•;

(Z) As • maps to normal forms, we show a strengthening of the Z-property, s↠ t• = s•,
for all steps t→ s, by induction and cases on t.
If t is a variable, then the statement holds vacuously since the term then does not allow
any step. Otherwise, t has shape t1t2 and we distinguish cases on the position of the step.

If the step takes place at the root, then t = (t11t12)t2 → t11(t12t2) = s, and we
conclude using (extensive), (Rhs), the definition, and (Substitution) to t11(t12t2) ↠
t•11(t•12t

•
2) ↠ (t11t12t2)• = t•11⟨t•12]⟨t•2] = t•11⟨t•12⟨t•2]];

If the step takes place in t1, say t1 → s1, then we conclude using the IH, (Extensive),
(Sequentialisation) and definition to s1t2 ↠ t•1t

•
2 ↠ (t1t2)• = t•1⟨t•2] = s•

1⟨t•2] = (s1t2)•.
If the step takes place in t2 we proceed as in the previous item. ◀

Proof of Lem. 40. Both items can we proven by induction on t or via the alternative
definition of uniform distribution by means of substitution as given in the main text. We
give samples of both:

(Sequentialisation) For variables xs = x[s], and for applications t1t2s → t1s(t2s) ↠
t1[s]t2[s] = (t1t2)[s], as tis↠ ti[s] by the IH;

(Compatible) t[s] = tσ for the substitution σ mapping x to xs, and t′[s′] = t′σ
′ for

σ′ mapping x to xs′. Hence if t ↠ t′ and s ↠ s′ then σ ↠ σ′, hence tσ ↠ t′σ
′ by

compatibility of rewriting with substitution; and
(Substitution) For variables x[s][r] = (xs)[r] = xrs[r] ↠ x[r][s[r]] by Sequentialisa-
tion twice, and for applications (t1t2)[s][r] = t1[s][r]t2[s][r] ↠ t1[r][s[r]]t2[r][s[r]] =
(t1t2)[r][s[r]] by the induction hypothesis twice. ◀

Proof of Lem. 41. The items are proven by induction on t.

(Extensive) For variables x = x•, and for applications ts ↠ t[s] ↠ t•[s•] = (ts)• by
(Sequentialisation) first and then (Compatible) using the IH twice;

(Z) We distinguish cases on whether the step is a head step or not.
Suppose the step is a head step, so has shape tsr → tr(sr). Then tr(sr) ↠ t[r]s[r] =
(ts)[r] ↠ (ts)•[r•] = (tsr)• by (Sequentialisation) and (Extensive), twice. Monotonicity
of • holds by (tsr)• = t•[s•][r•] ↠ t•[r•][s•[r•]] = (tr(sr))• using (Substitution).
If t1t2 → s2s2 because ti → si and t3−̇i = s3−̇i for some i ∈ {1, 2}, then sj ↠
t•j ↠ s•

j for j ∈ {1, 2}, either by the IH, or (Extensive) and reflexivity. Using that,
(Sequentialisation), and (Substitution) s1s2 ↠ s1[s2] ↠ t•1[t•2] = (t1t2)• ↠ s•

1[s•
2] =

(s1s2)•. ◀

Proof of Lem. 61. Orthogonality is preserved since brackets are only inserted between
original function symbols, so overlapping [T]-redex-patterns are mapped to overlapping
T -patterns by projecting brackets on their first arguments. That [T] is non-erasing holds
per construction.20

The second part holds per construction of saturating left-hand sides of rules with memory.
◀

20 if T is orthogonal and right-linear, then [T] is linear, so has random descent [30]: all reductions to a
normal form have the same length.

V. van Oostrom 24:21

Proof of Lem. 65. For the first item first note that its only–if-direction requires n > 0 as
otherwise T n has no rules. Then, all (priming, labelling) operations for obtaining the rules
of T ω from those of T are linear (only unary function symbols are added/removed) and
redex-patterns overlapping in T ω still do so after removing labels and collapsing f ′–f -pairs
to f . T n being a sub-system of T ω the properties are preserved.

The second item holds per construction of the rules with both left- and right-hand sides
being of shape t′ in which labels are inserted, for some t. Note that we also have the structural
properties that reachable terms have at least one label between any two non-labels and
removing all labels yields a term of shape s′ for some s.

Maranget [19] shows termination in the third item is a consequence of RPO, for the
greater–than relation on labels, which is well-founded by the assumption that labels < n .
Instead of basing ourselves on RPO, we can also give a direct inductive proof of termination
in the style of van Daalen [17, 4]. In particular, we specialise the higher-order approach of [28]
to first-order term rewriting. The proof is based on the so-called RHS lemma [28, Lemma 8]21

stating that a term rewrite system is terminating iff rσ is terminating for every rhs r of a rule
and terminating substitution σ. The only–if-direction of the RHS-lemma being trivial, to see
the if-direction holds note that if there were a non-terminating term then there would be
one of minimal size which then would have shape f (⃗t) with all t⃗ terminating by minimality.
Hence an infinite reduction from it would have shape f (⃗t) ↠ f(s⃗) = ℓσ → rσ ↠ . . . for some
rule ℓ→ r, substitution σ, and terms s⃗ such that ti ↠ si for all i. This is impossible as
rσ is terminating by assumption since σ is terminating as it assigns subterms of the s⃗ to
variables22 and each si is terminating as reduct of ti.

To establish the assumption of the RHS lemma for T n we prove the more general
claim23 that (tm)σ is terminating for every m ≤ n, term t over (primed) symbols in T , and
terminating substitution σ. This suffices as per construction of T n rhss of rules have this
shape since labels in lhss are < n.24 The proof of the claim is by induction on the pair (m, t)
ordered by, in lexicographic order, the greater-than-or-equal order and the subterm order,
and by distinguishing cases on the shape of t.

If t is a variable, then (xm)σ := m(xσ) and we conclude by the assumption that σ is
terminating, since the head symbol m is not affected by any step per construction of T ω;
labels occur in lhss only between (possibly primed) T -symbols.
Otherwise t has shape f (⃗t) for some (possibly primed) T -symbol. Since each (tmi)σ is
terminating by the IH, which applies by a decrease in the second component of the pair, a
hypothetical infinite reduction from (tm)σ must then contain a head-step, i.e. have shape

m(f((⃗tm)σ)) ↠ m(f(s⃗)) = m(ℓτ)→ m((rk)τ) ↠ . . .

for some T n rule of shape ℓ→ rk with k the maximum of the labels in ℓ plus one,
substitution τ and r a term over (possibly primed) T -symbols, and terms s⃗ such that
(tmi)σ ↠ si for each i. This is impossible as (rk)τ is terminating by the IH, which applies
by a decrease in the first component of the pair: m < k because (tmi)σ ↠ si guarantees

21 Despite being intuitive and easy to prove the right-hand side lemma is informative: it would already
fail for first-order TRSs if left-hand sides of rules were allowed to be single variables, consider the “rule”
x → x, and for higher-order TRSs it would fail if non-pattern-lhss were allowed [28].

22 Here we use that left-hand sides of term rewrite rules are not single variables.
23 To enable induction on terms; rhss of rules are not closed (as rhss!) under subterms in general.
24 Although terms of T n may contain labels > n, these need not be taken into consideration here. They

have been “filtered-out” already by means of the RHS lemma so to speak, since labels > n do not occur
in the rules of T n.

FSCD 2021

24:22 Z; Syntax-Free Developments

that m is the head symbol of each si, and per construction of T ω the lhs of any rule
applicable to f(s⃗) contains the labels directly below f ; in fact f must be a (unary) primed
symbol having a corresponding unprimed symbol (in T) below it. That τ is terminating
follows from that it assigns subterms of the si to variables, which are reducts of the
(tmi)σ. ◀

Proof of Lem. 67. We proceed as in the proof of Proposition 58, here stressing the similarity
of structure and referring to that proof for details. We show that for all natural numbers n,
for all T n reductions γ, δ : t ↠ s we have γ ≃ δ by induction on t ordered by the union of
← and the sub-term relation, well-founded since T n is terminating. This suffices since any
pair of T ω-reductions is a pair of T n-reductions (take n greater than all labels occurring in
the redex-patterns contracted in γ, δ), and T n-projection equivalence entails T ω-projection
equivalence.

Suppose γ, δ were minimal such that γ ̸≃ δ. By residual theory, the peak γ, δ can be
completed by a valley comprising γ′ := δ/γ and δ′ := γ/δ such that γ · γ′ ≃ δ · δ′. By
assumption, at least one of γ′, δ′ must be non-empty. We may assume that γ, δ are standard,
and by minimality that they don’t have the same first step (one may be empty), and at
least one of them, say w.l.o.g. γ, contains a head step. Since the system is orthogonal, [15,
Lemma 1] yields then that δ does not contain a head step. Hence γ/δ ̸≃ δ/γ since γ/δ
contains a head step as projection of a reduction γ containing a head step over a reduction δ
containing none, and δ/γ contains no head step as projection of δ containing none over another
reduction γ, using that T n-rules are non-collapsing. Their sources being →+-reachable from
t, γ/δ, δ/γ contradicts minimality of γ, δ. ◀

	1 Introduction
	2 Preliminaries
	3 Examples of the Z-property
	3.1 Abstract
	3.2 Positive braids
	3.3 First-order terms
	3.3.1 Orthogonal
	3.3.2 Weakly orthogonal
	3.3.3 Associativity
	3.3.4 Self-distributivity

	3.4 The lambda-calculus

	4 Syntax-free developments
	4.1 Hyper-Cofinality
	4.2 Confluence
	4.3 Recurrence
	4.4 Syntactic developments in orthogonal term rewriting

	5 Conclusion
	A Proofs omitted from the main text

