
On the Logical Strength of Confluence and
Normalisation for Cyclic Proofs
Anupam Das !Ï

University of Birmingham, UK

Abstract
In this work we address the logical strength of confluence and normalisation for non-wellfounded
typing derivations, in the tradition of “cyclic proof theory” . We present a circular version CT
of Gödel’ s system T , with the aim of comparing the relative expressivity of the theories CT and
T . We approach this problem by formalising rewriting-theoretic results such as confluence and
normalisation for the underlying “coterm” rewriting system of CT within fragments of second-order
arithmetic.

We establish confluence of CT within the theory RCA0, a conservative extension of primitive
recursive arithmetic and IΣ1. This allows us to recast type structures of hereditarily recursive
operations as “coterm” models of T . We show that these also form models of CT , by formalising a
totality argument for circular typing derivations within suitable fragments of second-order arithmetic.
Relying on well-known proof mining results, we thus obtain an interpretation of CT into T ; in
fact, more precisely, we interpret level-n-CT into level-(n + 1)-T , an optimum result in terms of
abstraction complexity.

A direct consequence of these model-theoretic results is weak normalisation for CT . As further
results, we also show strong normalisation for CT and continuity of functionals computed by its
type 2 coterms.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Proof theory; Theory of computation → Higher order logic; Theory of computation
→ Lambda calculus

Keywords and phrases confluence, normalisation, system T, circular proofs, reverse mathematics,
type structures

Digital Object Identifier 10.4230/LIPIcs.FSCD.2021.29

Related Version This work is based on part of the following preprint, where related results, proofs
and examples may be found.
Extended Version: https://arxiv.org/abs/2012.14421 [12]

Funding This work was supported by a UKRI Future Leaders Fellowship, Structure vs. Invariants
in Proofs, project reference MR/S035540/1.

Acknowledgements I would like to thank Denis Kuperberg, Laureline Pinault and Damien Pous
for several interesting discussions on this and related topics. I am also grateful to the anonymous
reviewers for their helpful feedback and suggestions.

1 Introduction

Cyclic (or circular) proofs have attracted increasing attention in recent years, in settings
including modal fixed point logics [28, 16, 35, 1, 18], predicate logic [8, 9, 7, 6], algebras
[31, 14, 15, 13], arithmetic [33, 5, 11] and type systems [19, 4, 3]. In short, cyclic proofs are
possibly non-wellfounded derivations (“coderivations”) that have only finitely many distinct
subderivations (and so are finitely presentable). That they are meaningful (i.e., sound, total,
terminating, etc.) is usually guaranteed by some ω-regular correctness condition at the level
of their infinite branches.

© Anupam Das;
licensed under Creative Commons License CC-BY 4.0

6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021).
Editor: Naoki Kobayashi; Article No. 29; pp. 29:1–29:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
http://www.anupamdas.com/
https://orcid.org/0000-0002-0142-3676
https://doi.org/10.4230/LIPIcs.FSCD.2021.29
https://arxiv.org/abs/2012.14421
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

In this work we investigate the interface between theories of arithmetic and type systems.
These two settings are fundamentally related by means of well-known proof interpretations,
such as the functional and realisability interpretations (see, e.g., [2, 24]). In particular Gödel’s
system T , a simply typed classical quantifier-free theory with recursion and induction, is
capable of interpreting all of Peano Arithmetic, effectively trading off quantifier complexity
for abstraction complexity (i.e. type level).

Inspired by the aforementioned previous work on circular type systems, we present a
circular version, CT , of T , and compare the relative expressivity of (fragments of) the two
theories. More precisely, we show that the restriction of CT to level n (CTn) is interpreted
in the restriction of T to level n + 1 (Tn+1). This result is optimal due to a converse result
in parallel work [12] (that is beyond the scope of the present paper).1

Since non-wellfounded derivations do not directly admit inductive arguments and their
correctness relies on nontrivial infinitary combinatorics, we employ a “proof mining” approach
towards establishing this interpretation. More precisely, we formalise models of CTn within
fragments of (second-order) arithmetic, and rely on the aforementioned proof interpretations
to extract corresponding terms of Tn+1. This builds on analogous aforementioned work in
the arithmetic setting, namely [33, 11], also taking advantage of second-order theories.

Our formalisation requires us to establish a form of confluence for the underlying rewrite
system of CT , which we show holds in one of the weakest second-order theories RCA0,
essentially a form of primitive recursive arithmetic with quantification over sets. Showing
that these structures indeed constitute models of CT requires a formalisation of the totality
argument for circular derivations, with quantifiers relativised to this structure.

A direct consequence of these model-theoretic results is weak normalisation for coterms
of CT . As further results, we also show strong normalisation for CT and continuity of
functionals computed by its type 2 coterms.

Relation to other work. In [26] the authors present a circular version of the underlying type
system of T , using a slightly different type language including a Kleene ∗. In particular, they
show that circular derivations compute, in the standard model, just the primitive recursive
functionals at type 1, i.e. the natural number functions computed by terms of T , also using a
formalisation within second-order theories of arithmetic. We generalise that result in several
ways: (a) we optimise the result with respect to abstraction complexity; (b) we give a logical
correspondence, at the level of theories, not just the standard model; (c) we give bona fide
confluence and normalisation results for the underlying rewrite system on coterms.

This work is based on part of the (unpublished) preprint [12], where related results, proofs
and examples may be found.

Preliminaries. We shall assume some basic familiarity with the underlying technical dis-
ciplines of this work, which are now well-established and form the subjects of multiple
monographs. In particular, these include rewriting theory [37], subsystems of second-order
arithmetic [34, 22], and Gödel’s system T and program extraction [2, 24]. Some familiarity
with higher-order computability [27] and metamathematics [20, 23, 38] is also helpful.

1 It is easy, however, to see that Tn is interpreted in CTn, as we will see in Example 2.5.

A. Das 29:3

ρ⃗, σ, ρ, σ⃗ ⇒ τ
ex

ρ⃗, ρ, σ, σ⃗ ⇒ τ

σ⃗ ⇒ τ
wk

σ⃗, σ ⇒ τ

σ⃗, σ, σ ⇒ τ
cntr

σ⃗, σ ⇒ τ

σ⃗ ⇒ σ σ⃗, σ ⇒ τ
cut

σ⃗ ⇒ τ

id
σ ⇒ σ

σ⃗ ⇒ ρ σ⃗, σ ⇒ τ
L

σ⃗, ρ → σ ⇒ τ

σ⃗, σ ⇒ τ
R

σ⃗ ⇒ σ → τ

0
⇒ N

s
N ⇒ N

σ⃗ ⇒ τ σ⃗, N ⇒ τ
cond

σ⃗, N ⇒ τ

σ⃗ ⇒ τ σ⃗, N, σ ⇒ τ
recτ

σ⃗, N ⇒ τ

Figure 1 Sequent style typing rules for T .

2 A circular version of Gödel’s T

Throughout this work we shall work with theories that are simply or finitely typed. Namely
types, written σ, τ etc., are generated by the following grammar:

σ, τ ::= N | (σ → τ)

A simply typed theory is a multi-sorted (classical) first-order theory, whose sorts are just
the simple types, equipped with application operators ◦σ,σ→τ for each pair σ, σ → τ of
types, as usual. (Typed) terms, written s, t etc., are formed from constants of a simply
typed language under typed application. We simply write t s for the application of a term
t of type σ → τ to a term s of type σ. As usual we may sometimes omit parentheses, e.g.
writing r s t instead of ((r s) t).

In this work, we always assume intensional equality for simply typed theories. Namely
we have binary relation symbols =σ for each type σ, axiomatised by reflexivity, t =σ t, and
the Leibniz property, (s =σ t ∧ φ(s)) ⊃ φ(t), for each formula φ and terms s, t of type σ.

2.1 Sequent calculus presentation of T terms
Sequent calculi give us a way to write typed terms that are more succinct with respect to type
level, and also enjoy elegant proof theoretic properties, e.g. cut-elimination. Importantly, the
induced relations between type occurrences makes it easier to define our correctness criterion
for non-wellfounded derivations later.

▶ Definition 2.1 (Sequent calculus). Sequents are expressions σ⃗ ⇒ τ , where σ⃗ is a list of
types and τ is a type. The typing rules for T are given in Figure 1.

Here, and throughout this subsection, colours of each type occurrence in typing rules may
be ignored for now and will become relevant later in Section 2.2.

Each rule instance (or step) determines a constant of the appropriate type. E.g., a step
ρ⃗ ⇒ ρ σ⃗ ⇒ σ

τ⃗ ⇒ τ
is a constant of type (ρ⃗ → ρ) → (σ⃗ → σ) → τ⃗ → τ .2 In this way, we may

identify each derivation with a term obtained by just repeatedly applying rule instances,
starting from the conclusion, to its subderivations. Note that this “combinatory” approach,
treating rule instances as constants rather than, say, meta-level operations on λ-terms,
ensures that this association of a term to a derivation is continuous. This is important for
our later association of “coterm” to a “coderivation” .

2 Here and elsewhere we freely write, say, ρ⃗ → ρ for ρ1 → · · · → ρn → ρ when ρ⃗ is a list (ρ1, . . . , ρn).

FSCD 2021

29:4 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

id x = x

ex t x⃗ x y y⃗ = t x⃗ y x y⃗

wk t x⃗ x = t x⃗

cntr t x⃗ x = t x⃗ x x

cut s t x⃗ = t x⃗ (s x⃗)
L s t x⃗ y = t x⃗ (y (s x⃗))

R t x⃗ x = t x⃗ x

rec s t x⃗ 0 = s x⃗

rec s t x⃗ sz = t x⃗ z (rec s t x⃗ z)
cond s t x⃗ 0 = s x⃗

cond s t x⃗ sz = t x⃗ z

Figure 2 Equational axiomatisation of T , where z is a variable of type N .

1. ¬ sx = 0
2. sx = sy ⊃ x = y

(Ind) If ⊢ φ(0) and ⊢ φ(x) ⊃ φ(sx) then ⊢ φ(t), for φ quantifier-free.

Figure 3 Number-theoretic axioms for T , where x, y and t are variables/a term of type N .

A term of the form
n︷ ︸︸ ︷

s · · · s 0 is called a numeral, and is more succinctly written just n.

▶ Definition 2.2 (System T). T is the simple type theory over the language given by Figure 1,
axiomatised by the formulas and rules from Figure 2 and Figure 3.

▶ Remark 2.3 (Standard model). We may consider usual Henkin structures for simply typed
theories, called type structures. One particular structure, the “standard” or “full set-
theoretic” model N, is given by the following interpretation:

NN is N and (σ → τ)N is the set of functions σN → τN.
0N := 0 ∈ N and sN(n) := n + 1.
The other constants of T are interpreted by (higher-order) functionals by taking the
equations from Figure 2 as definitions, left-to-right.
Given f ∈ σN and g ∈ (σ → τ)N, g ◦N f ∈ τN is defined as g(f).
For each type σ, we have an extensional equality relation =N

σ :
=N

N is just equality of natural numbers;
for f, g ∈ (σ → τ)N, we have f =N

σ→τ g just if ∀x ∈ σN.f(x) =N
τ g(x).

It is clear, by reduction to induction at the meta-level, that the interpretations of the
constants above are well-defined, and that the axioms of Figure 3 (as well as Figure 2) are
satisfied in N. Thus N constitutes a bona fide model of T .

2.2 “Coderivations” and a correctness condition
Coterms are generated coinductively from constants and variables under typed application.
Formally, we may construe a coterm as a possibly infinite binary tree (of height ≤ ω) where
each leaf (if any) is labelled by a typed variable or constant and each interior node is labelled
by a typed application operation, having type consistent with the types of its children. I.e.,
an interior node with children of types σ and σ → τ , respectively, must have type τ .

Similarly, a coderivation, is a possibly non-wellfounded tree built from the derivation
rules of Figure 1. As for (well-founded) derivations and terms, we treat coderivations as
coterms in the natural way. We say that a coderivation or coterm is regular (or circular)
if it has finitely many distinct sub-coderivations or sub-coterms, respectively. Note that a
regular coderivation or coterm is indeed finitely presentable, e.g. as a finite directed graph,
possibly with cycles, or a finite binary tree with “backpointers”.

A. Das 29:5

Note that the equational theory induced by Figure 2 forms a Kleene-Herbrand-Gödel style
equational specification for regular coterms (cf., e.g., [23]). This allows us to view coterms
as partial recursive functionals in the standard model N of the appropriate type, though a
full exposition is beyond the scope of this paper. Instead we will give a more formal (and,
indeed, formalised) treatment of “regular” coterms and their computational interpretations
in Section 3. We point the reader to the excellent book [27] for further details on models of
(partial) (recursive) function(al)s.

Nonetheless, let us temporarily adopt the notation tN for the partial functional “computed”
by a coterm t in N, and present some examples, at the same time establishing some
foundational results. As before, the reader may safely ignore the colouring of type occurrences
in what follows. That will become meaningful later in the section.

▶ Example 2.4 (Extensional completeness at type 1). For any f : Nk → N, there is a
coderivation t : Nk ⇒ N s.t. tN = f . To demonstrate this, we proceed by induction on k.3
If k = 0 then the numerals clearly suffice. Otherwise, suppose f : N × Nk → N and write fn

for the projection Nk → N by fn(x⃗) = f(n, x⃗). We define the coderivation for f as follows:

f0

N⃗ ⇒ N

f1

N⃗ ⇒ N

f2

N⃗ ⇒ N

...
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N
cond

N, N⃗ ⇒ N

(1)

where the derivations for each fn are obtained by the inductive hypothesis. It is not difficult
to see that the interpretation of this coderivation in the standard model indeed coincides
with f .

Notice that, while we have extensional completeness at type 1, we cannot possibly have
such a result for higher types by a cardinality argument: there are only continuum many
coderivations.

▶ Example 2.5 (Naïve simulation of primitive recursion). Terms of T may be interpreted as
coterms without the rec combinators in a straightforward manner, by the following translation:

σ⃗ ⇒ σ σ⃗, N, σ ⇒ σ
rec

σ⃗, N ⇒ σ
⇝

σ⃗ ⇒ σ

...
cond •

σ⃗, N ⇒ σ σ⃗, N, σ ⇒ σ
cut

σ⃗, N ⇒ σ
cond •

σ⃗, N ⇒ σ

(2)

where the occurrences of • indicate roots of identical coderivations.

3 While we may assume k = 1 WLoG by the availability of sequence (de)coding, the current argument is
both more direct and avoids the use of cuts (on non-numerals).

FSCD 2021

29:6 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Denoting the RHS of (2) above as rec′, we can check that the two sides of (2) are
equivalent under Figures 2 and 3. Formally, we show rec′ s t x⃗ y = rec s t x⃗ y by induction
on y:

rec′s t x⃗ 0 = cond s (cut (rec′s t) t) x⃗ 0 by definition of rec′ above
= s x⃗ by cond axioms
= rec s t x⃗ 0 by rec axioms

rec′s t x⃗ sy = cond s (cut (rec′s t) t) x⃗ sy by definition of rec′ above
= cut (rec′s t) t x⃗ y by cond axioms
= t x⃗ y (rec′ s t x⃗ y) by cut axiom
= t x⃗ y (rec s t x⃗ y) by inductive hypothesis
= rec s t x⃗ sy by rec axioms

▶ Example 2.6 (Turing completeness). The set of regular coderivations is Turing-complete,4
i.e. {tN | t : Nk ⇒ N regular} includes all partial recursive functions on N. We have already
seen in Example 2.5 that we can encode the primitive recursive functions, so it remains to
simulate minimisation, i.e. the operation µx(fx = 0), for a given function f , returning the
least natural number x s.t. fx = 0 (if it exists). For this, we observe that µx(fx = 0) is
equivalent to H 0 where:

H x = cond (f x) x (H sx) (3)

Note that H is computed by the following coderivation:

f

N ⇒ N

id
N ⇒ N

s
N ⇒ N

...
cut •

N ⇒ N
cut

N ⇒ N
wk

N, N ⇒ N
cond

N, N ⇒ N
cut •

N ⇒ N

(4)

It is intuitive here to think of the blue N standing for x, the red N standing for f(x), and the
purple N standing for sx. Again, the reader may verify that this coderivation indeed satisfies
Equation (3) in the standard model N. Note that we only used the type N above, and no
higher-order types, so Turing-completeness holds already for N -only regular coderivations.

▶ Definition 2.7 (Immediate ancestry). Let t be a (co)derivation. A type occurrence σ1 is
an immediate ancestor5 of a type occurrence σ2 in t if σ1 and σ2 appear in the LHSs
of a premiss and conclusion, respectively, of a rule instance and have the same colour in
the corresponding rule typeset in Figure 1. If σ1 and σ2 are elements of an indicated list,
say σ⃗, we also require that they are at the same position of the list in the premiss and the
conclusion. Note that, if σ1 is an immediate ancestor of σ2, they are necessarily occurrences
of the same type.

4 For a model of program execution, we may simply take the aforementioned Kleene-Herbrand-Gödel
model with equational derivability, cf. [23]. Note that this coincides with derivability by the axioms
thus far presented.

5 This terminology is standard in proof theory, e.g. as in [10].

A. Das 29:7

The notion of immediate ancestor thus defined, being a binary relation, induces a directed
graph whose paths will form the basis of our termination criterion.

▶ Definition 2.8 (Threads and progress). A thread is a maximal path in the graph of
immediate ancestry. A σ-thread is a thread whose elements are occurrences of the type
σ. We say that a N-thread progresses when it is principal for a cond step (i.e. it is the
indicated blue N in the cond rule typeset in Figure 1). A (infinitely) progressing thread is
a N -thread that progresses infinitely often (i.e. it is infinitely often the indicated blue N in
the cond rule typeset in Figure 1.)

A coderivation is progressing if every infinite branch has a progressing thread.

Note that progressing threads do not necessarily begin at the root of a coderivation, they
may begin arbitrarily far into a branch. In this way, the progressing coderivations are closed
under all typing rules. Note also that arbitrary coderivations may be progressing, not only
the regular ones.

▶ Example 2.9 (Extensional completeness at type 1, revisited). Recalling Example 2.4, note
that the infinite branch marked · · · in (1) has a progressing thread along the red Ns. Other
infinite branches, say through f0, f1, etc., will have progressing threads along their infinite
branches by an appropriate inductive hypothesis, though these may progress for the first
time arbitrarily far from the root of (1).

As previously mentioned, we shall focus our attention in this work on the regular
coderivations. Let us take a moment to appreciate some previous (non-)examples of regular
coderivations with respect to the progressing criterion.

▶ Example 2.10 (Primitive recursion and Turing-completeness, revisited). Recalling Ex-
ample 2.5, notice that the RHS of (2) is a progressing coderivation: there is precisely
one infinite branch (that loops on •) and it has a progressing thread on the blue N indicated
there.

Now recalling Example 2.6, notice that the coderivation given for H in (4) is not
progressing: the only infinite branch loops on • and immediate ancestry, as indicated by the
colouring, admits no thread along the •-loop.

One of the most appealing features of the progressing criterion is that it is decidable (for
regular coderivations) by a well-known reduction to unviersality of Büchi automata (see,
e.g., [17] for an exposition for a similar circular system). On the semantic side, we duly have:

▶ Proposition 2.11. If t : σ⃗ ⇒ τ is a progressing coderivation, then tN is a well-defined total
functional in (σ⃗ → τ)N.

Proof sketch. First, observe that each constant (i.e. rule instance) computes a total functional
of corresponding type. Thus, contrapositively, if tN is non-total then so is one of its immediate
sub-coderivations. Continuing this reasoning yields an infinite branch (ti : σ⃗i ⇒ τi)i of
non-total coderivations. Now, by the progressing criterion, there must be a progressing
thread (Ni)i≥k along this branch. Assigning to each occurrence Ni the least natural number
ni on which ti is non-total yields a monotone non-increasing sequence (ni)i≥k that does not
converge (by definition of progressing thread), giving the required contradiction. ◀

2.3 Some fragments and program extraction
Let us write T− for the restriction of T to the language without the rec constants from
Figure 1, and so also without the rec axioms from Figure 2.

FSCD 2021

29:8 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

▶ Definition 2.12 (Circular version of T). The language of CT contains every regular
progressing coderivation of T − as a symbol. We identify “terms” of this language (i.e. finite
applications of regular progressing coderivations, constants and variables) with coterms in the
obvious way, and call them regular progressing coterms. CT itself is axiomatised by the
schemata from Figures 2 and 3, now interpreting the metavariables s, t etc. there as ranging
over (regular progressing) coterms.

The aim of this work is to compare fragments of CT and fragments of T delineated by
type level. Recall that the level of a type σ, written lev(σ) is given by: lev(N) := 0 and
lev(σ → τ) := max(1 + lev(σ), lev(τ)).
▶ Definition 2.13 (Type level restricted fragments of T and CT). Tn is the restriction of T
to the language containing only recursors recσ where lev(σ) ≤ n.

CTn is the restriction of CT to the language containing only coderivations where all
types occurring have level ≤ n. CTn still has symbols for each constant of T−.

Note that this definition of CTn is quite natural, since it is known that Tn derivations (of
level n + 1 functionals) can be put into an analogous form (see, e.g., [12]). For instance, the
coderivation in Equation (4) has level 0 (though it is not an element of CT0 since it is not
progressing). Note that CT itself is just the union of all CTn, since regular coderivations
have only finitely many type occurrences and so exhibit a maximum type level.

The significance of the fragments Tn, in terms of quantifier-restricted fragments of
arithmetic, was investigated in the seminal work of Parsons [29]. Let us first recall such
fragments in a two-sorted framework.

RCA0 is a second-order6 theory in the language of arithmetic (i.e. with symbols
0, s, +, ×, <). It is axiomatised by an appropriate extension of Robinson’s Q to the second-
order setting, along with comprehension for (provably) ∆0

1 predicates and induction for
Σ0

1 formulas. A comprehensive presentation of RCA0 and related theories can be found in,
e.g., [34, 22].

Writing IΣ0
n for the induction scheme for Σ0

n formulas we have:
▶ Proposition 2.14 ([29]). If RCA0 + IΣ0

n+1 ⊢ ∀x⃗∃yA(x⃗, y), where A is ∆0
0, then there is a

Tn term t with Tn ⊢ A(x⃗, t x⃗).7

Since we use it later, let us note that IΣ0
n is equivalent, over a weak base theory (certainly

RCA0), to induction on Boolean combinations of Σ0
n formulas, cf., e.g., [20]. The theory

ACA0 is obtained from RCA0 by adding comprehension for arithmetical predicates, and is
equivalent, over arithmetical theorems, to the extension of RCA0 by arithmetical induction.

Let us also mention a nontrivial result from previous work that we shall make use of:
▶ Proposition 2.15 ([11]). For any regular progressing coderivation t, RCA0 proves that t is
progressing.
Since progressiveness is, a priori, a Π1

2 property, the above result is not at all immediate
and relies on a formalisation of Büchi automaton theory that is implicit in [25]. Note that
this result is “non-uniform” , in that the quantification over coderivations t takes place at
the meta-level. As noted in [11], the above result cannot be strengthened to a uniform one
unless RCA0 (and so PRA) is inconsistent, by a reduction to Gödel-incompleteness.

6 As for simple type theories, all references to “second” or “higher” order are purely due to convention.
Strictly speaking, these are multi-sorted first-order theories.

7 We assume here some standard encoding of ∆0 formulas into quantifier-free formulas of T0. Alternatively
we could admit bounded quantifiers into the language of T , on which induction is allowed, without
affecting expressivity. We shall gloss over this technicality here.

A. Das 29:9

3 Confluence and models of T

We cannot formalise the standard model N in arithmetic for cardinality reasons, however
there are natural models of partial recursive functionals that can be formalised, namely
the hereditarily recursive operations of finite type (see, e.g., [27]). We shall recast this type
structure using regular coterms, in light of Example 2.6 and Example 2.10.

3.1 Reduction sequences and their logical complexity
▶ Definition 3.1. The reduction relation ⇝ on coterms is defined by orienting all the
equations in Figure 2 left-to-right and taking closure under substitution and contexts. We
write ≈ for the reflexive, symmetric, transitive closure of ⇝, and freely use standard rewriting
theoretic terminology and notations for these relations.

Since coterms are potentially infinite, equality for them is a Π0
1 predicate. Thus, for the

sake of simplicity, we shall henceforth deal with only regular coterms, which are finite so
may be coded by natural numbers. Representing regular coterms as finite directed graphs,
note that equality now reduces to checking bisimilarity, which is provably recursive in RCA0.

In fact, throughout this section, we will only deal with coterms that are finite applications
of regular coderivations, variables and constants (“FARs” for short). We better show that
these are at least closed under reduction. To this end, let us write, for v ∈ {0, 1}∗, tv for the
sub-coterm of t rooted at position v. We have:

▶ Proposition 3.2 (RCA0). If s⇝ t then t is finitely composed of sub-coterms of s:

∃ a finite term r(x1, . . . , xn). ∃⟨v1, . . . , vn⟩. t = r(sv1 , . . . , svn
) (5)

We can take sv1 , . . . , svn to include the coderivations indicated in the contractum of a
reduction, as well as the “comb” of the redex of the reduction in s, i.e. the siblings of all the
nodes in the path leading to the redex. r(x⃗) is now the finite term induced by the contracta
and this comb.

Naturally, this property also holds for ⇝∗ and ≈, by Σ0
1-induction. As a consequence:

▶ Corollary 3.3 (RCA0). If s is a FAR and s⇝ t or s⇝∗ t or s ≈ t, then t is a FAR.

Note, in particular, that ⇝, ⇝∗ and ≈, restricted to FARs, are Σ0
1-relations.

3.2 Confluence of reduction
In order to obtain basic metamathematical properties of the coterm models we later consider,
we need to know that our model of computation is deterministic, so that coterms have unique
interpretations. There are various ways to prove this in arithmetic, but we will approach it
in terms of confluence in rewriting theory.

Throughout this subsection we continue to deal only with FARs, i.e. coterms that are
finite applications of regular coderivations, variables and constants. The main goal of this
subsection is to prove the following:

▶ Theorem 3.4 (Church-Rosser, RCA0). Let t : σ be a FAR. If t0 ⇝∗ t⇝∗ t1 then there is
t′ : σ such that t0 ⇝∗ t′ ⇝∗ t1.

FSCD 2021

29:10 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

To some extent, we follow a standard approach to proving this result. However, since
coterms are infinite (and, moreover, non-wellfounded), we must carry out our argument
without appeal to induction on term structure, as is usual in presentations of arguments due
to Tait and Martin-Löf (cf., e.g., [21]). Instead, we perform an argument by induction on
reduction length, as in, e.g., [30].

▶ Definition 3.5 (Parallel reduction). We define the relation ▷ on FARs as follows:
1. t ▷ t for any FAR t.8
2. For a reduction step r t⃗⇝ r(⃗t), if each ti ▷ t′

i then we have r t⃗ ▷ r(⃗t′).
3. For a reduction step r t⃗ ss ⇝ r(⃗t, s) (i.e. a rec or cond successor step), if each ti ▷ t′

i and
s ▷ s′ then we have r t⃗ ss ▷ r(⃗t′, s′).

4. If s ▷ s′ and t ▷ t′ then s t ▷ s′ t′.

▶ Proposition 3.6 (RCA0). s⇝ t =⇒ s ▷ t and s ▷ t =⇒ s⇝∗ t.

The proof of this result is not difficult, but before giving an argument let us point out a
particular consequence that we will need, obtained by Σ0

1-induction on the length of reduction
sequences:

▶ Corollary 3.7 (RCA0). s⇝∗ t ⇐⇒ s ▷∗ t

Even though it is not necessary to prove the proposition above, we shall first prove the
following useful lemma since we will use it later:

▶ Lemma 3.8 (Substitution, RCA0). Suppose t ▷ t′. If s ▷ s′ then s[t/x] ▷ s′[t′/x], for a
variable x of the same type as t and t′.

Writing, say, d : s ⇝∗ t for the (provably) ∆0
1 predicate “d is a ⇝-derivation from s to t”,

the above result is shown by proving

d : s ▷ s′ =⇒ s[t/x] ▷ s′[t′/x]

by Σ0
1-induction on the structure of the derivation d : s ▷ s′. We crucially use the fact

that we are dealing with FARs for the base case when s′ = s, using a subinduction on the
maximum depth of an x-occurrence in s.

Notice that Proposition 3.6 now follows immediately, by simply instantiating the Lemma
above with s = s′ to deduce context-closure of ▷.

▶ Lemma 3.9 (Diamond property of ▷, RCA0). Suppose t0 ◁ s ▷ t1. Then there is some u

with t0 ▷ u ◁ t1.

Before giving the proof, it will be useful to have the following intermediate result, which
follows by Σ0

1-induction:

▶ Proposition 3.10 (RCA0). Suppose d : r s⃗ ▷ t, and there is no redex in r s⃗ involving r.
There are some t⃗ s.t. t = r t⃗ and, for each i, some di : si ▷ ti for some di < d.

The diamond property, Lemma 3.9, now follows by proving

∃s′. ((d0 : s ▷ t0 and d1 : s ▷ t1) =⇒ (t0 ▷ s′ and t1 ▷ s′))

by Σ0
1-induction on min(|d0|, |d1|). We use Lemma 3.8 for the case when both d0 and d1 end

by clause (2), and we use Proposition 3.10 when d0 ends by clause (2) and d1 ends by clause
(4) or vice-versa.

8 Note that we really do seem to require t ▷ t for arbitrary FARs t, not just variables and constants, since
we cannot finitely derive the former from the latter.

A. Das 29:11

▶ Proposition 3.11 (Weighted CR for ▷, RCA0). If t0 ◁m t ▷n t1 then there is some t′ with
t0 ▷n t′ ◁m t1.

The argument for this follows by proving

(d0 : t ▷m t0 and d1 : t ▷n t1) =⇒ ∃t′(t0 ▷
n t′ and d′

1 : t1 ▷
m t′)

by Σ0
1-induction on m = |d0|. The following corollary is immediate:

▶ Corollary 3.12 (CR for ▷, RCA0). If t0 ◁∗ t ▷∗ t1 then there is t′ s.t. t0 ▷∗ t′ ◁∗ t1.

We may finally conclude the main result of this subsection:

Proof of Theorem 3.4. Suppose t0 ⇝∗ s⇝∗ t1. Then, by Corollary 3.7 we have t0 ◁∗ s ▷∗

t1. By Corollary 3.12 above, we have some s′ with t0 ▷∗ s′ ◁∗ t1, whence t0 ⇝∗ s′ ⇝t1 by
Corollary 3.7 again. ◀

3.3 Hereditarily total coterms under conversion
We are now ready to present a type structure that will allow us to obtain an interpretation
of CTn within Tn+1. The structure that we present in this subsection is essentially the
hereditrarily recursive operations of finite type, but where we adopt FARs under conversion
as the underlying model of computation, cf. Example 2.6 and Example 2.10.

▶ Definition 3.13. We define the following sets of FARs:
HRN := {t : N | ∃n ∈ N. t ≈ n}
HRσ→τ := {t : σ → τ | ∀s ∈ HRσ. t s ∈ HRτ }

We write HRn for the union of all HRσ with lev(σ) ≤ n.

Note that it is immediate from the definition that each HRσ contains only closed FARs
of type σ. Notice that, by the confluence result of the previous subsection, Theorem 3.4, if
t ≈ n then n ∈ N is unique and in fact t⇝∗ n (provably in RCA0). In this way we can view
every element of HRN as computing a unique natural number by means of reduction.

▶ Fact 3.14. HRN is Σ0
1, and if lev(σ) = n > 0 then HRσ is Π0

n+1.

This is obtained by a (meta-level) induction on the type σ. The same induction also yields:

▶ Proposition 3.15 (Closure properties of HR). Fix types σ and τ . RCA0 proves the following:
1. If s ∈ HRσ and t ∈ HRσ→τ then ts ∈ HRτ . (HR closed under application)
2. If t ∈ HRτ and t ≈ t′ then t′ ∈ HRτ . (HR closed under conversion)

Note that provability within RCA0 above is non-uniform in σ and τ , i.e. RCA0 proves the
statements for each particular σ and τ . These properties justify defining the following type
structure:

▶ Definition 3.16 (HR structure). We write HR for the type structure defined as follows:
σHR is HRσ.
rHR is just r for each constant r.

t ◦HR s is just ts.
=HR

σ is ≈σ.

Ultimately we will show that this structure constitutes a model of CT . For this the
following lemma will be key:

▶ Lemma 3.17 (Induction for HR, RCA0). Suppose r(x) and s(x) are FARs. If r(0) ≈ s(0)
and ∀t ∈ HRN .(r(t) ≈ s(t) =⇒ r(st) ≈ s(st)), then ∀t ∈ HRN .r(t) ≈ s(t).

FSCD 2021

29:12 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

This result is essentially “forced” by the definition of HRN , reducing induction in HR to
induction in RCA0. We also rely on the Leibniz property of equality in the structure (i.e. if
s ≈ t and φ(s) then φ(t)), which is facilitated by the symmetry and transitivity of ≈.

Note that the axioms governing the constants are immediate given that our reduction
relation is obtained from them. The remaining number-theoretic axioms follow from conflu-
ence (for ¬s0 ≈ 0, by uniqueness of normal forms) and the fact that no reduction rule has s
at the head (for ss ≈ st implies s ≈ t, requiring a Σ0

1-induction).
Thus to conclude that HR actually constitutes a model of T (or CT) it remains to show

that it interprets each term t of T (or coterm of CT), i.e. that indeed t ∈ HR. For T , this
follows from Tait’s seminal normalisation result [36]:

▶ Proposition 3.18. HR is a model of T.

In fact this result can be formalised non-uniformly in the following sense: for each term t

of type τ with lev(σ) ≤ n, we have RCA0 + IΣ0
n+1 ⊢ HRτ (t). We will see a similar situation

for membership of CTn coderivations in HRn+1 later, but with the quantifier complexity of
induction increased by 1.

4 Interpretation of CT into T

In this section we show that the type structure HR introduced in the previous section indeed
constitutes a model of CT . In fact, we will formalise the membership of CTn coderivations
in HRn+1 within the theory RCA0 + IΣ0

n+2 (non-uniformly), whence we obtain explicit
equivalent terms of Tn+1 by program extraction. Throughout this section we continue to
work only with regular coterms that are finite applications of coderivations, variables and
constants (i.e. FARs).

4.1 Canonical branches of non-total coterms
In this section we give a formalised proof of the totality of CT -coterms. Our approach will be
to import a suitable version of the proof of Proposition 2.11 but relativise all the quantifiers,
there in the standard model, to their respective domains in HR.

First let us note that HR is closed under the typing rules of CT :

▶ Observation 4.1. Consider a rule instance
σ⃗0 ⇒ τ0 · · · σ⃗k ⇒ τk

r
σ⃗ ⇒ τ

for some k < 2. If

ti ∈ HRσ⃗i→τi
for i < k then r t0 · · · tk ∈ HRσ⃗→τ .

This follows by simple inspection of the rules of CT . By contraposition, any coderivation
/∈ HR must induce an infinite branch of coderivations /∈ HR, similarly to the proof of
Proposition 2.11. The next definition formalises a canonical such branch, as induced by an
input on which a coderivation is non-hereditarily-total. We shall present just the definition
of the branch first, and then argue that it is well-defined, for each explicit CTn coderivation,
in RCA0 + IΣ0

n+2.

▶ Definition 4.2 (Branch generated by a non-total input). Let t0 : σ⃗0 ⇒ τ0 be a coderivation
and let s⃗0 ∈ HRσ⃗0 s.t. t0 s⃗0 /∈ HRτ . We define the branch (ti : σ⃗i ⇒ τi)i≥0 and inputs
s⃗i ∈ HRσ⃗i

, generated by t0 and s⃗0 below. Each rule instance is as typeset in Figure 1, with
immediate sub-coderivations t and t′ respectively. Furthermore, we preserve the invariant
ti s⃗i /∈ HRτi throughout the definition.

A. Das 29:13

1. (ti cannot be an initial sequent).
2. Suppose ti ends with wk and s⃗i = (s⃗, s). Then ti+1 := t and s⃗i+1 := s⃗.
3. Suppose ti ends with ex and s⃗i = (r⃗, r, s, s⃗). Then ti+1 := t and s⃗i+1 := (r⃗, s, r, s⃗).
4. Suppose ti ends with cntr and s⃗i = (s⃗, s). Then ti+1 := t and s⃗i+1 := (s⃗, s, s).
5. Suppose ti ends with cut and s⃗i = s⃗. Then if t s⃗ ∈ HRσ then ti+1 := t′ and s⃗i+1 := (s⃗, t s⃗).

Otherwise, ti+1 := t and s⃗i+1 := s⃗.
6. Suppose ti ends with L and s⃗i = (s⃗, s). If t s⃗ ∈ HRρ then ti+1 := t′ and s⃗i+1 := (s⃗, s (t s⃗)).

Otherwise ti+1 := t and s⃗i+1 := s⃗.
7. Suppose ti ends with R and s⃗i = s⃗. Let s be the least9 element of HRσ such that t s⃗ s /∈ HRτ .

We set ti+1 := t and s⃗i+1 := (s⃗, s).
8. Suppose ti ends with cond and s⃗i = (s⃗, r). If r ≈ 0 then ti+1 := t and s⃗i+1 := s⃗.

Otherwise, if r ≈ sn, then ti+1 := t′ and s⃗i+1 := (s⃗, n).

The main result of this subsection is:

▶ Proposition 4.3. Let t0 : σ⃗0 ⇒ τ0 be a fixed coderivation in which all types occurring have
level ≤ n. RCA0 + IΣ0

n+2 proves the following: if s⃗0 ∈ HRσ⃗0 s.t. t0 s⃗0 /∈ HRτ0 then the branch
(ti)i and inputs (s⃗i)i generated by t0 and s0 are ∆0

n+2-well-defined.

Most of the cases follow by the inductive hypothesis and the closure of HR under ≈. Crucially,
for the R case, we must use the Σ0

n+1-minimisation principle, a consequence of IΣ0
n+1 cf. [20],

to find the “least” FAR s satisfying a Σ0
n+1 property. We also use confluence to ensure that

the cond-case is well-defined.

4.2 Progressing coterms are hereditarily total
We are now ready to show that CT -coterms are hereditarily total, i.e. that they belong to HR.
Now that we have formalised the infinite “non-total” branches of the proof of Proposition 2.11,
relativised to the type structure HR, we continue to formalise the remainder of the argument.
First, again by confluence, we have:

▶ Lemma 4.4 (RCA0). Let t0 : σ⃗0 ⇒ τ0 and s⃗0 ∈ HRσ⃗0 be a coderivation and inputs s.t.
t0 s⃗0 /∈ HRτ0 . Furthermore let (ti : σ⃗i ⇒ τi)i and s⃗i ∈ HRσ⃗i

be a branch and inputs generated
by t0 and s⃗0, satisfying Definition 4.2.

Suppose some N -occurrence N i+1 ∈ σ⃗i+1 is an immediate ancestor of some N -occurrence
N i ∈ σ⃗i. Write si ∈ s⃗i for the coterm in HRN corresponding to N i, and similarly si+1 ∈ s⃗i+1
for the coterm si+1 ∈ HRN corresponding to N i+1. If si ≈ ni and si+1 ≈ ni+1, for
ni, ni+1 ∈ N, then:
1. ni ≥ ni+1.
2. If N i is principal for a cond step, then ni > ni+1.

In order to complete our formalisation of the totality argument, we actually have to
use an “arithmetical approximation” of thread progression that nonetheless suffices for our
purposes, similarly to [11]. The reason for this is that, even though non-total branches are
well-defined by Proposition 4.3, we do not a priori have access to them as sets in extensions
of RCA0 by induction principles, and so the lack of progressing threads along them does not
directly contradict the fact that a coderivation is progressing.10

9 Recall that, strictly speaking, we assume all our objects are coded by natural numbers in the ambient
theory (here fragments of second-order arithmetic). Thus we may always find a “least” object satisfying
a property when one exists. Naturally this will correspond to a form of induction in the proof of
well-definedness.

10 Notice that this is not an issue in the presence of arithmetical comprehension, i.e. in ACA0, but in that
case logical complexity of defined sets is not a stable notion: all of arithmetical comprehension reduces
to Π0

1-comprehension.

FSCD 2021

29:14 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

▶ Proposition 4.5 (RCA0). Suppose ti and s⃗i are as in Lemma 4.4. Any N-thread along
(ti)i is not progressing. Moreover, ∀k.∃m. any N -thread from tk progresses ≤ m times.

The main result of this subsection is:

▶ Theorem 4.6. Let t : σ⃗ ⇒ τ be a CTn-coderivation. Then RCA0 + IΣ0
n+2 ⊢ t ∈ HRσ⃗→τ .

As well as using Proposition 4.5, this result relies crucially on the fact that we prove that CT -
coderivations progress in RCA0, Proposition 2.15 (itself from [11], allowing us to “substitute”
the ∆0

n+2-definition of a non-hereditarily-total branch from Definition 4.2 to obtain an
argument using IΣ0

n+2 overall.

▶ Corollary 4.7. HR is a model of CT.

4.3 Interpretation of CTn into Tn+1

We may now realise our model-theoretic results as bona fide interpretations of fragments of
CT into fragments of T . As a word of warning, coterms of CT in this section, when operating
inside T , should formally be understood by their Gödel codes, i.e. in this section T is “one
meta-level higher” than CT . Until now we have been formalising the metatheory of CT
within second-order arithmetic, and so arithmetising its syntax as natural numbers. Since
we will here invoke program extraction from these fragments of arithmetic to fragments of T
to interpret CT , the same coding carries over. At the risk of confusion, we shall suppress
this formality henceforth.

▶ Theorem 4.8. If CTn ⊢ s = t then Tn+1 ⊢ s ≈ t.

The main idea here is that our formalisation of the HR model within arithmetic allows us to
prove the following reflection principle in RCA0 + IΣ0

2:

∀P (if “P is a CTn proof of s = t” then ∃d : s ≈ t)

Since this statement is Π0
2, we may apply program extraction, Proposition 2.14, to indeed

witness the required derivation d within Tn+1, as required.

▶ Corollary 4.9. If t : N⃗ ⇒ N is a progressing coterm of CTn, then there is a Tn+1-term
t : N⃗ → N such that t′N = tN.

5 Further results

In this section we shall give some further rewriting-theoretic results related to the system
CT we have presented.

5.1 Continuity at type 2
It is well-known that the type 2 functionals of T are continuous, in the sense that any type 1
function input is only queried a finite number of times, e.g. [38, 32, 39]. For the case of CT ,
we may actually formalise a variation of the classical argument of [38] within second-order
arithmetic, extending the simulation of CT coterms within T to type 2 functionals. For the
sake of brevity, we shall not refine our exposition by type level in this subsection.

Let us fix a CT coderivation t : σ⃗ ⇒ N s.t. each σi = N1 → · · · → Nki → N , and let
us henceforth work in ACA0, distinguishing second-order variables fi : Nki → N, intuitively
representing the inputs for t. Within CT , introduce new (uninterpreted) constant symbols
f

i
: N1 → · · · → Nki

→ N for each σi, and new reduction steps:

f
i
n1 . . . nki

⇝ fi(n1, . . . , nki
) (6)

A. Das 29:15

Notice that reduction is now still semi-recursive in the oracles f⃗ , i.e.⇝,⇝∗, ≈ are now Σ0
1(f⃗).

To save the effort of reproving our confluence results from Section 3 with these new oracle
symbols, we shall simply henceforth assume a suitable consistency principle:

UNFN : ∀m, n. (m ≈ n ⊃ m = n)

Note that, since this is a true Π0
1 statement (by meta-level reasoning), it carries no computa-

tional content and adding it to ACA0 still admits extraction into T (see, e.g., [24]).11 From
here, we define HRf⃗

σ just as HRσ, but allowing coterms to include the symbols f⃗ . Since each
HRσ is arithmetical in ⇝, we have that each HRf⃗

σ is arithmetical in our extended reduction
relation, so with free second-order variables f⃗ . Note in particular that we have that each
f

i
∈ HRf⃗

σi
, thanks to (6) above. By adapting our approach from Section 4, we may show:

▶ Theorem 5.1 (ACA0 + UNFN). ∀f⃗ . t f⃗ ∈ HRf⃗
N

Expanding out this result we have that ACA0 + UNFN ⊢ ∀f⃗ .∃n. t f⃗ ≈ n. Note that
this yields the required syntactic continuity property: since any ≈-sequence is finite, we
may compute t(f⃗) by querying each fi only finitely many times. From here, by applying a
relativised version of program extraction (see, e.g., [24]), we obtain a strengthening of our
simulation of CT -coterms by T terms to type 2 (stated without refinement to type level):

▶ Corollary 5.2. If t is a level 2 coterm of CT, then there is a T term t′ s.t. t′N = tN.

5.2 A “term model” à la Tait and strong normalisation
It is an immediate consequence of our results that CT -coterms are weakly normalising.
Namely, by an induction on type (using confluence for the base case, at type N), we may
show that each t ∈ HR is weakly normalising. Thus, by Theorem 4.6, we have:

▶ Proposition 5.3. Each closed CT coterm is weakly normalising. Moreover, any CTn

coterm is provably weakly normalising inside RCA0 + IΣ0
n+2.

In this section we will go further and show that CT -coterms are actually strongly
normalising, just like T -terms. For the sake of brevity, we will not formalise our exposition
within arithmetic. We will define a minimal “coterm model” in a similar way to Tait’s
term models of sytem T [36]. This is complementary to our development of HR: while that
structure was an “over-approximation” of the language of CT , the structure we are about to
define is an “under-approximation” , by virtue of its definition. Naturally, the point is to
show that the approximation is, in fact, tight.

▶ Definition 5.4 (Convertibility). We define the following sets of closed CT-coterms:
CN := {t : N | t is strongly normalising}.
Cσ→τ := {t : σ → τ | ∀s ∈ Cσ. ts ∈ Cτ }.

By an induction on type, we establish suitable versions of Proposition 3.15 and the normal-
isation property for C:

▶ Proposition 5.5. We have the following:
1. If t ∈ Cσ→τ and s ∈ Cσ then ts ∈ Cτ . (C closed under application)
2. If t ∈ Cτ and t⇝ t′ then t′ ∈ Cτ . (C closed under reduction)
3. If t ∈ Cτ then t is strongly normalising. (C ⊆ SN)

11 The drawback of this approach is that it does not yield any bona fide interpretation of CT into T ,
which is why we chose to formalise a confluence argument for our main interpretation result.

FSCD 2021

29:16 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Closure of ⇝ under contexts is required for 2 and 3. Note that the strong normalisation
condition for CN is crucial to justify closure under reduction, (2), at base type N . In contrast,
for HRN we only asked for conversion to a numeral, and so the analogous property of closure
under conversion was a consequence of symmetry.

Let us call a coterm t neutral if, for any s, any redex of ts is either entirely in t or entirely
in s. We also have the following expected characterisation of convertibility by induction on
type:

▶ Lemma 5.6 (Convertibility lemma). Let t be neutral. If ∀t′ ⇝t. t′ ∈ Cτ , then t ∈ Cτ .

As for classical proofs of strong normalisation for T , we must also make use of a sub-induction
on the size of the complete reduction trees of elements of C; recall that they are strongly
normalising, by Proposition 5.5, and so have finite reduction trees by König’s lemma,12 since
there are always only finitely many redexes.

Now we can go on to define a non-converting branch, just like we did for the standard
model N in Proposition 2.11 (non-total branch), and for HR in Definition 4.2 (non-hereditarily-
total branch). As in the latter case, we need to prove well-definedness of such a branch,
cf. Observation 4.1 and Proposition 4.3.

▶ Proposition 5.7 (Preservation of convertibility). Let r⃗ ∈ Cρ⃗ and s⃗ ∈ Cσ⃗. We have:13

If s ∈ Cσ then id s ∈ Cσ.
If r ∈ Cρ, s ∈ Cσ and t r⃗ s r s⃗ ∈ Cτ then ex t r⃗ r s s⃗ ∈ Cτ .
If s ∈ Cσ and t s⃗ ∈ Cτ then wk t s⃗ s ∈ Cτ .
If s ∈ Cσ and t s⃗ s s ∈ Cτ then cntr t s⃗ s ∈ Cτ .
If t0 s⃗ ∈ Cσ and ∀s ∈ Cσ. t1 s⃗ s ∈ Cτ then cut t0 t1 s⃗ ∈ Cτ .
If r ∈ Cρ→σ and t0 s⃗ ∈ Cρ and ∀s ∈ Cσ. t1 s⃗ s ∈ Cτ then L t0 t1 s⃗ r ∈ Cτ .
If ∀s ∈ Cσ. t s⃗ s ∈ Cτ then R t s⃗ ∈ Cσ→τ .
0 ∈ CN .
If s ∈ CN then ss ∈ CN .
If s ∈ CN and t0 s⃗ ∈ Cτ then cond t0 t1 s⃗ 0 ∈ Cτ .
If s ∈ CN and t1 s⃗ s ∈ Cτ then cond t0 t1 s⃗ ss ∈ Cτ .

This is proved by an induction on the reduction trees of s⃗, s, r⃗, r (which, again, are strongly
normalising), in most cases appealing directly to the convertibility lemma above. For the L
case we rely on closure of C under application, cf. Proposition 5.5, and for the R case we
must employ a sub-induction on the reduction tree of an input s ∈ Cσ.

As a consequence of our results in Sections 3 and 4, observe that any s ∈ CN reduces
to a unique numeral. This is because CN contains only CT -coterms, by definition, which
are weakly normalising and confluent. From here we may establish the main result of this
subsection:

▶ Theorem 5.8 (Convertibility for CT). Any CT-coderivation t : σ⃗ ⇒ τ is in Cσ⃗→τ .

The proof constructs a “non-converting” branch similarly to Definition 4.2 (or the proof of
Proposition 2.11). There is one subtlety, however, in the treatment of the cond case, requiring
the uniqueness of normal forms for elements of CN . We obtain the required inputs for the
premiss occurrences of N by an induction on the reduction tree of an input of the conclusion
occurrence.

12 Note that König’s lemma is equivalent to arithmetical comprehension, i.e. ACA0, already over RCA0 (cf.,
e.g., [34]).

13 All rules have type as presented in Figure 1.

A. Das 29:17

Since C is closed under application, Proposition 5.5, we inherit C membership for all
CT -coterms. Since elements of C are strongly normalising, again Proposition 5.5, and since
reduction is confluent, Theorem 3.4, we finally have:

▶ Corollary 5.9 (Strong normalisation for CT). Any closed CT coterm strongly normalises to
a unique normal form.

6 Conclusions

In this work we gave an interpretation of a theory of level n circular derivations (CTn)
into level n + 1 T (Tn+1), by formalising models of CT within fragments of arithmetic
and applying program extraction. This result is optimal by a converse result from parallel
work [12]. In particular, CTn and Tn+1 are equi-consistent. We also showed confluence,
strong normalisation, and continuity at type 2 for CT -coterms.

In future work it would be interesting to establish results on Curry-Howard aspects of
our underlying type systems, establishing forms of cut-elimination and relationships with
infinitary lambda-calculi. Ideas from [4, 15, 3] may prove useful to this effect.

References
1 Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus. In

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20–23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005088.

2 Jeremy Avigad and Solomon Feferman. Gödel’s functional (“dialectica”) interpretation.
Handbook of Proof Theory, 137:337–405, 1998.

3 David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. Bouncing threads for
infinitary and circular proofs. CoRR, abs/2005.08257, 2020. arXiv:2005.08257.

4 David Baelde, Amina Doumane, and Alexis Saurin. Infinitary proof theory: the multiplicative
additive case. In 25th EACSL Annual Conference on Computer Science Logic, CSL 2016,
August 29–September 1, 2016, Marseille, France, pages 42:1–42:17, 2016. doi:10.4230/LIPIcs.
CSL.2016.42.

5 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005114.

6 James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic
entailment proofs in separation logic. In CADE-23 – 23rd International Conference on
Automated Deduction, Wroclaw, Poland, July 31–August 5, 2011. Proceedings, pages 131–146,
2011. doi:10.1007/978-3-642-22438-6_12.

7 James Brotherston, Nikos Gorogiannis, and Rasmus L. Petersen. A generic cyclic theorem
prover. In Programming Languages and Systems – 10th Asian Symposium, APLAS 2012,
Kyoto, Japan, December 11–13, 2012. Proceedings, pages 350–367, 2012. doi:10.1007/
978-3-642-35182-2_25.

8 James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite
descent. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10–12 July
2007, Wroclaw, Poland, Proceedings, pages 51–62, 2007. doi:10.1109/LICS.2007.16.

9 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. J.
Log. Comput., 21(6):1177–1216, 2011. doi:10.1093/logcom/exq052.

10 Samuel R. Buss, editor. Handbook of Proof Theory. Studies in Logic and the Foundations of
Mathematics 137. Elsevier, 1998.

FSCD 2021

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1109/LICS.2017.8005088
http://arxiv.org/abs/2005.08257
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1093/logcom/exq052

29:18 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

11 Anupam Das. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci.,
16(1), 2020. doi:10.23638/LMCS-16(1:1)2020.

12 Anupam Das. A circular version of Gödel’s T and its abstraction complexity, 2021. arXiv:
2012.14421.

13 Anupam Das, Amina Doumane, and Damien Pous. Left-handed completeness for kleene
algebra, via cyclic proofs. In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors,
LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Awassa, Ethiopia, 16–21 November 2018, volume 57 of EPiC Series in Computing,
pages 271–289. EasyChair, 2018. URL: https://easychair.org/publications/paper/SDqf.

14 Anupam Das and Damien Pous. A cut-free cyclic proof system for Kleene algebra. In Automated
Reasoning with Analytic Tableaux and Related Methods – 26th International Conference,
TABLEAUX 2017, Brasília, Brazil, September 25–28, 2017, Proceedings, pages 261–277, 2017.
doi:10.1007/978-3-319-66902-1_16.

15 Anupam Das and Damien Pous. Non-wellfounded proof theory for
(kleene+action)(algebras+lattices). In Dan R. Ghica and Achim Jung, editors, 27th
EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018,
Birmingham, UK, volume 119 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.CSL.2018.19.

16 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13–15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer Science, pages
273–284. Springer, 2006. doi:10.1007/11944836_26.

17 Christian Dax, Martin Hofmann, and Martin Lange. A proof system for the linear time µ-
calculus. In S. Arun-Kumar and Naveen Garg, editors, FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13–15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer Science, pages
273–284. Springer, 2006. doi:10.1007/11944836_26.

18 Amina Doumane. Constructive completeness for the linear-time µ-calculus. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20–23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005075.

19 Jérôme Fortier and Luigi Santocanale. Cuts for circular proofs: semantics and cut-elimination.
In Computer Science Logic 2013 (CSL 2013), September 2–5, 2013, Torino, Italy, pages
248–262, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

20 Petr Hájek and Pavel Pudlák. Metamathematics of First-Order Arithmetic. Perspectives
in mathematical logic. Springer, 1993. URL: http://www.springer.com/mathematics/book/
978-3-540-63648-9.

21 J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, USA, 1986.

22 Denis R. Hirschfeldt. Slicing the truth: On the computable and reverse mathematics of
combinatorial principles. World Scientific, 2014.

23 S.C. Kleene. Introduction to Metamathematics. Bibliotheca Mathematica. North Holland, 7
edition, 1980.

24 Ulrich Kohlenbach. Applied Proof Theory – Proof Interpretations and their Use in Mathematics.
Springer Monographs in Mathematics. Springer, 2008. doi:10.1007/978-3-540-77533-1.

25 Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal Skrzypczak.
The logical strength of büchi’s decidability theorem. Log. Methods Comput. Sci., 15(2), 2019.
doi:10.23638/LMCS-15(2:16)2019.

26 Denis Kuperberg, Laureline Pinault, and Damien Pous. Cyclic Proofs, System T, and the
Power of Contraction. Proceedings of the ACM on Programming Languages, 2021. doi:
10.1145/3434282.

https://doi.org/10.23638/LMCS-16(1:1)2020
http://arxiv.org/abs/2012.14421
http://arxiv.org/abs/2012.14421
https://easychair.org/publications/paper/SDqf
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1007/11944836_26
https://doi.org/10.1007/11944836_26
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.4230/LIPIcs.CSL.2013.248
http://www.springer.com/mathematics/book/978-3-540-63648-9
http://www.springer.com/mathematics/book/978-3-540-63648-9
https://doi.org/10.1007/978-3-540-77533-1
https://doi.org/10.23638/LMCS-15(2:16)2019
https://doi.org/10.1145/3434282
https://doi.org/10.1145/3434282

A. Das 29:19

27 John Longley and Dag Normann. Higher-Order Computability. Theory and Applications of
Computability. Springer, 2015. doi:10.1007/978-3-662-47992-6.

28 Damian Niwinski and Igor Walukiewicz. Games for the mu-calculus. Theor. Comput. Sci.,
163(1&2):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.

29 Charles Parsons. On n-quantifier induction. The Journal of Symbolic Logic, 37(3):466–482,
1972.

30 Frank Pfenning. A proof of the church-rosser theorem and its representation in a logical
framework. Technical report, Carnegie-Mellon University, Pittsburgh. Department of Computer
Science., 1992.

31 Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In Mogens Nielsen
and Uffe Engberg, editors, Foundations of Software Science and Computation Structures, 5th
International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2002 Grenoble, France, April 8–12, 2002, Proceedings,
volume 2303 of Lecture Notes in Computer Science, pages 357–371. Springer, 2002. doi:
10.1007/3-540-45931-6_25.

32 B. Scarpellini. A model for barrecursion of higher types. Compositio Mathematica, 23(1):123–
153, 1971. URL: http://eudml.org/doc/89072.

33 Alex Simpson. Cyclic arithmetic is equivalent to Peano arithmetic. In Foundations of
Software Science and Computation Structures – 20th International Conference, FOSSACS
2017, Proceedings, pages 283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

34 Stephen G. Simpson. Subsystems of second order arithmetic, volume 1. Cambridge University
Press, 2009.

35 Thomas Studer. On the proof theory of the modal mu-calculus. Stud Logica, 89(3):343–363,
2008. doi:10.1007/s11225-008-9133-6.

36 William W. Tait. Intensional interpretations of functionals of finite type I. J. Symb. Log.,
32(2):198–212, 1967. doi:10.2307/2271658.

37 Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 2003.

38 Anne S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis.
Lecture Notes in Mathematics. Springer, 1 edition, 1973. URL: http://gen.lib.rus.ec/
book/index.php?md5=5E0718442C0178C4B23065E54AC7889C.

39 Chuangjie Xu. A syntactic approach to continuity of T-definable functionals. Logical Methods
in Computer Science, Volume 16, Issue 1, 2020. doi:10.23638/LMCS-16(1:22)2020.

A Further material for Section 4

Proof of Proposition 4.3. Let us write Gen(i, (t0, s⃗0), (ti, s⃗i)) for “ti and s⃗i are the ith

sequent and input tuple generated by t0 and s⃗0”. Notice that the construction of ti and
s⃗i itself is recursive in HRn, t0 and s⃗0, and so Gen is certainly recursion-theoretically
∆0

n+2(t0, s⃗0), by appealing to Fact 3.14. To formally prove that Gen is ∆0
n+2 inside our

theory, it suffices to show determinism:

∀i.∀(ti, s⃗i), (t′
i, s⃗′

i).
(

Gen(i, (t0, s⃗0), (ti, s⃗i)) ∧ Gen(i, (t0, s⃗0), (t′
i, s⃗′

i))
=⇒ ti = t′

i ∧ s⃗i = s⃗′
i

)
Writing Gen syntactically as a Σ0

n+2 formula, the above may be directly proved by Π0
n+2-

induction on i, appealing to the cases of Definition 4.2 above.
It remains to show that the construction is total, i.e. that each (ti, s⃗i) actually exists. In

fact we will simultaneously prove this and the inductive invariant of the construction, so the
formula,

∃(ti, s⃗i).(Gen(i, (t0, s⃗0), (ti, s⃗i)) ∧ ti s⃗i /∈ HRτi
) (7)

FSCD 2021

https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/3-540-45931-6_25
http://eudml.org/doc/89072
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/s11225-008-9133-6
https://doi.org/10.2307/2271658
http://gen.lib.rus.ec/book/index.php?md5=5E0718442C0178C4B23065E54AC7889C
http://gen.lib.rus.ec/book/index.php?md5=5E0718442C0178C4B23065E54AC7889C
https://doi.org/10.23638/LMCS-16(1:22)2020

29:20 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

by induction on i. Note that, since lev(τi) ≤ n we have that HRτi is Π0
n+1 by Fact 3.14, and

so tis⃗i /∈ HRτi
is Σ0

n+1, whereas Gen(i, (t0, s⃗0), (ti, s⃗i)) is ∆0
n+2 as already mentioned. Thus

the inductive invariant in (7) is indeed Σ0
n+2.

First, to justify (1), let us consider the possible initial sequents:
For the 0 rule: we have 0 ∈ HRN by definition;
For the s rule: if t ∈ HRN , then t ≈ n for some n ∈ N, by definition of HRN , and so also
st ≈ sn, by closure of ≈ under contexts. Hence st ∈ HRN .
For an idσ rule: if s ∈ HRσ then id s ≈ s by id reduction. Hence id s ∈ HRσ.

Now, the base case, for i = 0, follows by the assumption on t0 and s⃗0, so let us assume
that Gen(i, (t0, s⃗0), (ti, s⃗i)) and ti s⃗i /∈ HRτi . We will witness the existential of the inductive
invariant with the coderivation ti+1 and inputs s⃗i+1 as given in Definition 4.2 above (justifying
their existence when necessary), showing ti+1 s⃗i+1 /∈ HRτi+1 . We shall also adopt the same
notation for inputs and types as in Definition 4.2.

For (2), the wk case, we have:

ti s⃗i /∈ HRτ by inductive hypothesis
∴ wk t s⃗ s /∈ HRτi

by definitions
∴ t s⃗ /∈ HRτ by ⇝wk and closure of HRτ under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (3), the ex case, we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ ex t r⃗ r s s⃗ /∈ HRτ by definitions
∴ t r⃗ s r s⃗ /∈ HRτ by ⇝ex and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (4), the cntr case, we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ cntr t s⃗ s /∈ HRτ by definitions
∴ t s⃗ s s /∈ HRτ by ⇝cntr and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (5), the cut case, assume without loss of generality that t s⃗ ∈ HRτ . We have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ cut t t′s⃗ /∈ HRτ by definitions
∴ t′s⃗ (t s⃗) /∈ HRτ by ⇝cut and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

For (6), the L case, assume without loss of generality that t s⃗ ∈ HRτ , and so also
s (t s⃗) ∈ HRσ by Proposition 3.15. We have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ L t t′s⃗ s /∈ HRτ by definitions
∴ t′s⃗ (s (t s⃗)) /∈ HRτ by ⇝L and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

A. Das 29:21

For (7), the R case, we have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ R t s⃗ /∈ HRσ→τ by definitions
∴ ∃s′ ∈ HRσ. R t s⃗ s′ /∈ HRτ by definition of HRσ→τ

∴ ∃s′ ∈ HRσ. t s⃗ s′ /∈ HRτ by ⇝R and ∵ HRτ closed under ≈
∴ t s⃗ s /∈ HRτ ∵ s is well-defined by Σ0

n+1-minimisation
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

In the penultimate step, note that we have from the inductive hypothesis ∃s(s ∈ HRσ ∧ t s⃗ s /∈
HRτ), where lev(σ) < n and lev(τ) ≤ n. Thus (s ∈ HRσ ∧ t s⃗ s /∈ HRτ) is indeed Σ0

n+1, by
Fact 3.14, and so Σ0

n+1-minimisation applies.
For (8), the cond case, note by the inductive hypothesis we have r ∈ HRN so by definition

of HRN and confluence, we have that r converts to a unique numeral. Thus the two cases
considered by the definition of ti+1 and s⃗i+1 are exhaustive and exclusive, and we consider
each separately.

If r ≈ 0 then we have:

ti s⃗i /∈ HRτi by inductive hypothesis
∴ cond t t′s⃗ r /∈ HRτ by definitions
∴ cond t t′s⃗ 0 /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t s⃗ /∈ HRτ by ⇝cond and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

If r ≈ sn then we have:

ti s⃗i /∈ HRτi
by inductive hypothesis

∴ cond t t′s⃗ r /∈ HRτ by definitions
∴ cond t t′s⃗ sn /∈ HRτ by assumption and ∵ HRτ closed under ≈
∴ t′s⃗ n /∈ HRτ by ⇝cond and ∵ HRτ closed under ≈
∴ ti+1 s⃗i+1 /∈ HRτi+1 by definitions

This concludes the proof. ◀

Proof of Proposition 4.5. We shall prove only the “moreover” clause, the former following
a fortiori. First, suppose we have a (finite) N -thread (N i)l

i=k beginning at tk. Let si ∈ s⃗i

be the corresponding input of N i for 1 ≤ i ≤ l, and let each ri ≈ ni, for unique ni ∈ N, by
definition of HRN and confluence. Letting m be the number of times that (N i)l

i=1 progresses,
we may show by induction on l that nl ≤ nk − m, using Lemma 4.4 for the inductive steps.

Now, to prove the “moreover” statement, fix some k and let N⃗k ⊆ σ⃗k exhaust the N

occurrences in σ⃗k. Let r⃗k ⊆ s⃗k be the corresponding inputs, and write n⃗k for the unique
natural numbers such that each rki ≈ nki, by definition of HRN and confluence. We may
now simply set m := max n⃗k, whence no thread from tk may progress more than m times by
the preceding paragraph. ◀

Proof of Theorem 4.6. First, by Proposition 2.15 (from [11]), we have that RCA0 proves
that t is progressing. Consequently RCA0 proves that, for any branch (ti)i, there is some k

s.t. there are arbitrarily often progressing finite threads beginning from tk:14

∃k.∀m. there is a (finite) N -thread from tk progressing > m times (8)

14 The argument for this is similar to that of Proposition 6.2 from [11].

FSCD 2021

29:22 On the Logical Strength of Confluence and Normalisation for Cyclic Proofs

Note that this statement is purely arithmetical in (ti)i and so, if (ti)i is ∆0
n+2-well-defined, then

in fact RCA0 + IΣ0
n+2 proves (8), by conservativity over IΣn+2((ti)i) and then substitution

of the ∆n+2-definition of (ti)i.
Now, working inside RCA0 +IΣ0

n+2, suppose for contradiction that s⃗ ∈ HRσ⃗ s.t. t s⃗ /∈ HRτ .
By Proposition 4.3, we can ∆0

n+2-well-define the branch (ti)i generated by t and s⃗. Thus we
indeed have (8), contradicting Proposition 4.5. ◀

Proof sketch of Theorem 4.8. Let us work inside RCA0 + IΣ0
n+2. By Theorem 4.6 we have

that s, t ∈ HRσ, so suppose that CTn ⊢ s = t (which is a Σ0
1 relation). Now, invoking

Lemma 3.17 and by verifying the other axioms for FARs in general, we indeed have that
s ≈ t, by Σ0

1-induction on the CTn proof of s = t.
Now, invoking the extraction theorem, Proposition 2.14, for the above paragraph, we can

extract a Tn+1-term d(·) witnessing the following “reflection” principle:

Tn+1 ⊢ “P is a CTn proof of s = t” ⊃ d(P) : s ≈ t

We may duly substitute a concrete CTn proof P of s = t into the above principle to conclude
that Tn+1 ⊢ s ≈ t, as required. ◀

B Further material for Section 5

Proof sketch of Theorem 5.1. The argument is essentially the same as that for Theorem 4.6.
Assuming otherwise, for contradiction, we may generate a non-hereditarily-total branch just
as in Definition 4.2, and its well-definedness is shown just as in Proposition 4.3. Note that all
induction/minimisation used is in fact arithmetical in ⇝ and HRf⃗

σ, so the branch is indeed
∆0

n+2(f⃗)-well-defined (for n the maximal type level in t).
Since we no longer concern ourselves with the refinement of type levels, the remainder

of the argument is actually simpler than that of Section 4. Instead of dealing with the
arithmetical approximation of progressiveness, we may immediately access the generated
non-total branch as a set, thanks to the availability of arithmetical comprehension in ACA0.
We also have a suitable version of Lemma 4.4 for HRf⃗

N , this time using UNFN instead of
confluence, and so the appropriate contradiction of the well-ordering property of N is readily
obtained. ◀

▶ Observation B.1. If s ∈ CN then s reduces to a unique numeral.

Proof. Since CN contains only CT -coterms, we have as a special case of Theorem 4.6 that
s ≈ n for some n ∈ N. By confluence, we have that n is unique and furthermore s⇝∗ n. ◀

Proof of Theorem 5.8. Suppose for contradiction we have s⃗ ∈ Cσ⃗ such that t s⃗ /∈ Cτ . We
define a branch (ti : σ⃗i ⇒ τi)i of t and inputs s⃗i ∈ Cσ⃗i

s.t. ti s⃗i /∈ Cτi by induction on i just
like in Definition 4.2 (or the proof of Proposition 2.11). The only difference is that we use
Proposition 5.7 above for preservation in C rather than the analogous closure properties for
HR (or N).

There is one subtlety, which is the treatment of the cond case. Suppose we have a regular
progressing coderivation,

t

σ⃗ ⇒ τ

t′

σ⃗, N ⇒ τ
cond

σ⃗, N ⇒ τ

and s⃗i = (s⃗, s) with s⃗ ∈ Cσ⃗, s ∈ CN and cond t t′s⃗ s /∈ Cτ . Since s ∈ CN we have from
Observation B.1 that s reduces to a unique numeral n. We will show that,

A. Das 29:23

if n = 0 then t s⃗ /∈ Cτ ; and,
if n = m + 1 then there is some r ∈ CN reducing to m with t′s⃗ r /∈ Cτ ;

by induction on RedTree(s⃗) + RedTree(s). By the conversion lemma, Lemma 5.6, there must
be a reduction from cond t t′ s⃗ s not reaching Cτ . Let us consider the possible cases:

If s = 0 and cond t t′ s⃗ s ⇝ t s⃗ /∈ Cτ then we are done.
If s = sr and cond t t′ s⃗ s ⇝ t′s⃗ r /∈ Cτ then we are done. (Note that such r must strongly
normalise to m, and so in particular r ∈ CN).
If cond t t′ s⃗ s ⇝ condt t′s⃗′s′ /∈ Cτ , then by the inductive hypothesis either,

n = 0 and t s⃗′ /∈ Cτ , so t s⃗ /∈ Cτ by Proposition 5.5.(2); or,
n = m + 1 and there is some r ∈ CN reducing to m s.t. t′ s⃗′ r /∈ Cτ , so t′s⃗ r /∈ Cτ by
Proposition 5.5.(2).

From here, any progressing thread (N i)i≥k along (ti)i yields a sequence of coterms
(ri ∈ CN)i≥k that, under normalisation, induces an infinitely often descending sequence of
natural numbers, yielding the required contradiction. ◀

FSCD 2021

	1 Introduction
	2 A circular version of Gödel's T
	2.1 Sequent calculus presentation of T terms
	2.2 ``Coderivations'' and a correctness condition
	2.3 Some fragments and program extraction

	3 Confluence and models of T
	3.1 Reduction sequences and their logical complexity
	3.2 Confluence of reduction
	3.3 Hereditarily total coterms under conversion

	4 Interpretation of CT into T
	4.1 Canonical branches of non-total coterms
	4.2 Progressing coterms are hereditarily total
	4.3 Interpretation of C_{#1} n into T_{n+1}

	5 Further results
	5.1 Continuity at type 2
	5.2 A ``term model'' à la Tait and strong normalisation

	6 Conclusions
	A Further material for Section 4
	B Further material for Section 5

