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Abstract
In this survey, we show how the processes-as-formulas interpretation, where computations and
proof-search are strongly connected, can be used to specify different concurrent behaviors as logical
theories. The proposed interpretation is parametric and modular, and it faithfully captures behaviors
such as: Linear and spatial computations, epistemic state of agents, and preferences in concurrent
systems. The key for this modularity is the incorporation of multimodalities in a resource aware logic,
together with the ability of quantifying on such modalities. We achieve tight adequacy theorems by
relying on a focusing discipline that allows for controlling the proof search process.
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1 Introduction

Computational logic research has produced deep and fruitful cross-fertilizations between
programming languages and proof theory. Arguably, the most well-known one is the Curry-
Howard correspondence (also known as types-as-formulas) where (functional) programs
correspond to formal proofs and their execution to cut-elimination. A second type of
correspondence, processes-as-formulas (also known as computation-as-proof-search), was
initiated by Miller [21] where, instead, (logic) programs correspond to formulas and their
execution to proof search. These two foundational correspondences have been exploited to
propose new programming language paradigms as well as greatly extend the expressiveness
of existing ones.

When processes or programs are specified as formulas, one has to be careful with the level
of adequacy obtained. In particular, it is expected that logical steps in derivations correspond
to steps of computations in programs. However, different from computational systems, where
one step of computation is rigidly determined by the operation semantics, one step of logical
reasoning depends strongly on the logical framework chosen. Also, the logic should capture,
in a natural way, the behavior of programs. For instance, intuitionistic logic (IL) is not
adequate to specify systems that may consume information (substructural behavior), execute
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processes in different locations (spatial modalities) or time instances (timed reasoning), or
when the information shared by processes is subject to quantitative information (such as
preferences or costs).

Hence the need for a more expressive logic (such as multimodal and resource aware logics)
and an appropriate notion of normal proofs as the logical counterpart of the processes-as-
formulas correspondence. This paper surveys one of such choices: focused linear logic with
subexponentials (SELLF) [28]. We present different mechanisms previously explored by the
authors to both: extend SELLF with quantification over subexponentials; and give adequate
characterizations of existing concurrent languages. This fruitful collaboration between the
two areas has been useful to provide reasoning techniques for process calculi with the motto
reachability as entailment, and also to propose declarative extensions of concurrent languages
with solid logical grounds.

The focusing discipline [1] determines an alternating mechanism on proofs (between
focused and unfocused phases), which controls the non-determinism during proof search,
producing normal form proofs. Such normalization of proofs leads to a practical approach to
identify logical steps: a focused step is a block determined by a focused phase followed by an
unfocused one, in a (bottom-up) focused proof.

In Section 2 we recall the proof theory of focused intuitionistic linear logic (ILLF), which will
be the base logical language for the processes-as-formulas correspondences addressed in this
paper. Section 3 then introduces the base computational counterpart of the correspondence,
Concurrent Constraint Programming (CCP) [42], a declarative model for concurrency. We
show how to adequately capture the behavior of CCP processes in ILLF.

The level of adequacy attained in such interpretations will be important in order to justify
the choice of the underlying logic: the closer the two systems are, the easier is to prove the
correspondence. Also, a strong adequacy allows for the use of the logical system for proving
properties of the computational system, or reconstructing counter-examples from failing
derivations. Following [29], we classify the level of adequacy into two classes:

FCP (full completeness of proofs) claims that processes outputting an observable are in
1-1 correspondence with the corresponding completed proofs.
FCD (full completeness of derivations) claims that one step of computation should
correspond to one step of logical reasoning.

In the first case, even though the outputs of a program are characterized by proofs in the
underlying logic, it may be the case that there are steps in the logical reasoning that do not
correspond to computational steps and vice-versa. In the second case, computational and
(in our case, focused) logical steps are in one-to-one correspondence. We present a careful
discussion about these different levels of adequacy regarding CCP and ILLF in Section 3.2,
and indicate throughout the text, in each result, its level of adequacy.

Even though (focused, intuitionistic) linear logic is suitable for the encoding of (vanilla)
CCP, the situation changes when modalities are added to concurrent systems: For that,
linear logic subexponentials are needed. In Section 4 we present SELLF, which shares with
ILL all its connectives except the exponential: instead of having a single !, it may contain as
many subexponentials as one needs (written !a). Such labels are organized in a pre-order,
and different organizations give rise to different CCP flavors. Section 5 is then devoted
to show how to add such structures parametrically to SELLF, obtaining strongly adequate
specifications. In this way, processes may be executed and add/query constraints in different
locations, where the meaning of such locations may vary, for example: Spaces of computation,
the epistemic state of agents, time units, levels of preferences, etc. Modularity is guaranteed
by the fact that the underline interpretation is the same: Locations in CCP become labels in
SELLF. Finally, Section 6 concludes the paper.
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2 Focused intuitionistic linear logic

Linear logic (LL) is a substructural logic proposed by Girard [13] as a refinement of classical
and intuitionistic logics, joining the dualities of the former with many of the constructive
properties of the latter.

In this paper, we will concentrate in the intuitionistic version of linear logic (ILL) [13],
with formulas built from the following grammar

F, G ::= A | 1 | 0 | ⊤ | F ⊗ G | F & G | F ⊕ G | F −◦ G | ! F | ∀x.F | ∃x.F

Here, A denotes an atomic formula; −◦, ⊗, 1 represent the multiplicative implication,
conjunction and true, respectively; &, ⊤, ⊕, 0 are the additive conjunction, true, disjunction,
and false, respectively; ! is the exponential; and ∃, ∀ represent the existential and universal
quantifiers, respectively.2

These connectives can be separated into two classes, the negative: ⊸, &, ⊤, ∀ and the
positive: ⊗, ⊕, !, 1, 0, ∃. The polarity of non-atomic formulas is inherited from its outermost
connective (e.g., F ⊗ G is a positive formula) and any bias can be assigned to atomic
formulas.3 This partition induces an alternating mechanism on proofs, known as focusing,
which aims at reducing the non-determinism during proof search. In this sense, focused
proofs can be interpreted as normal form proofs.

The focusing discipline [1] is determined by the alternation of focused and unfocused phases
in the proof construction. In the unfocused phase, inference rules can be applied eagerly
and no backtracking is necessary; in the focused phase, on the other hand, either context
restrictions apply, or choices within inference rules can lead to failures for which one may need
to backtrack. These phases are totally determined by the polarities of formulas: provability
is preserved when applying right/left rules for negative/positive formulas respectively, but
not necessarily in other cases.

The focused intuitionistic linear logic system (ILLF) is depicted in Figure 1.
There are three contexts on the left side of ILLF sequents: the set Θ denotes the unbounded

context, containing only formulas with a banged scope; Γ is a linear context containing only
negative or atomic formulas; and ∆ is the general linear context. Observe that formulas
in the context Θ behave as in classical logic: they can be weakened (erased) or contracted
(duplicated). Formulas in the other contexts are linear, and are consumed when used.

The phase distinction is reflected in the design of sequents in ILLF: the presence of “⇑”
indicates unfocused sequents, while “⇓” marks the formula under focus in focused sequents.
Sequents in ILLF have one of the following shapes:

i. Θ; Γ ⇑ ∆ ⊢ F ⇑ is an unfocused sequent.
ii. Θ; Γ ⇑ · ⊢ · ⇑ F is an unfocused sequent representing the end of an unfocused phase.
iii. Θ; Γ ⊢ F ⇓ is a sequent focused on the right.
iv. Θ; Γ ⇓ F ⊢ R is a sequent focused on the left.

The swing between focused and unfocused phases is described below.
At the beginning of an unfocused phase, sequents have the shape (i) and: non-atomic
negative formulas appearing in the right context, and positive non-atomic formulas
appearing in ∆ are eagerly introduced; atomic/negative left formulas are stored in Γ
using the store rule Sl; atomic/positive right formulas are stored in the outermost right
context using the store rule Sr.
When this phase ends, sequents have the form (ii).

2 Observe that the multiplicative false ⊥ could be added to ILL’s syntax. However, this would break the
nice feature of having exactly one formula on succedent of sequents.

3 Although the bias assigned to atoms does not interfere with provability, it changes considerably the
shape of proofs (see, e.g., [19]).

FSCD 2021
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Unfocused introduction rules

Θ; Γ ⇑ F, ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F −◦ G ⇑

−◦r
Θ; Γ ⇑ F, G, ∆ ⊢ R

Θ; Γ ⇑ F ⊗ G, ∆ ⊢ R
⊗l

F, Θ; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ ! F, ∆ ⊢ R !l

Θ; Γ ⇑ ∆ ⊢ F ⇑ Θ; Γ ⇑ ∆ ⊢ G ⇑
Θ; Γ ⇑ ∆ ⊢ F & G ⇑ &r

Θ; Γ ⇑ F, ∆ ⊢ R Θ; Γ ⇑ G, ∆ ⊢ R
Θ; Γ ⇑ F ⊕ G, ∆ ⊢ R

⊕l

Θ; Γ ⇑ ∆ ⊢ F [y/x] ⇑
Θ; Γ ⇑ ∆ ⊢ ∀x.F ⇑ ∀r

Θ; Γ ⇑ F [y/x], ∆ ⊢ R
Θ; Γ ⇑ ∃x.F, ∆ ⊢ R ∃l

Θ; Γ ⇑ ∆ ⊢ ⊤ ⇑ ⊤r
Θ; Γ ⇑ ∆ ⊢ R

Θ; Γ ⇑ 1, ∆ ⊢ R 1l Θ; Γ ⇑ 0, ∆ ⊢ R 0l

Focused introduction rules

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⇓ G ⊢ R

Θ; Γ1, Γ2 ⇓ F −◦ G ⊢ R
−◦l

Θ; Γ ⊢ Fi ⇓
Θ; Γ ⊢ F1 ⊕ F2 ⇓

⊕ri

Θ; Γ ⇓ Fi ⊢ R

Θ; Γ ⇓ F1 & F2 ⊢ R
&li

Θ; Γ1 ⊢ F ⇓ Θ; Γ2 ⊢ G ⇓
Θ; Γ1, Γ2 ⊢ F ⊗ G ⇓ ⊗r

Θ; · ⇑ · ⊢ F ⇑
Θ; · ⊢ ! F ⇓ !r

Θ; Γ ⇓ F [t/x] ⊢ R

Θ; Γ ⇓ ∀x.F ⊢ R
∀l

Θ; Γ ⊢ F [t/x] ⇓
Θ; Γ ⊢ ∃x.F ⇓ ∃r Θ; · ⊢ 1 ⇓ 1r

Structural and identity rules

Θ; Γ ⇓ N ⊢ R

Θ; Γ, N ⇑ · ⊢ · ⇑ R
Dl

Θ, F ; Γ ⇓ F ⊢ R

Θ, F ; Γ ⇑ · ⊢ · ⇑ R
Du

Θ; Γ ⊢ P ⇓
Θ; Γ ⇑ · ⊢ · ⇑ P

Dr

Θ; Γ ⇑ P ⊢ · ⇑ R

Θ; Γ ⇓ P ⊢ R
Rl

Θ; Γ ⇑ · ⊢ N ⇑
Θ; Γ ⊢ N ⇓ Rr

Θ; C, Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ C, ∆ ⊢ R Sl

Θ; Γ ⇑ · ⊢ · ⇑ D

Θ; Γ ⇑ · ⊢ D ⇑ Sr

Θ; A ⊢ A ⇓ I Θ, A; · ⊢ A ⇓ Ic

Here, P is positive, N is negative, C is a negative formula or positive atom, D a positive
formula or negative atom, and A is a positive atom. Other formulas are arbitrary. R denotes
∆1 ⇑ ∆2 where the union of ∆1 and ∆2 contains exactly one formula. In the rules ∀r and ∃l

the eigenvariable y does not occur free in any formula of the conclusion.

Figure 1 The focused intuitionistic linear sequent calculus ILLF.

The focused phase begins by choosing, via one of the decide rules Dl, Du or Dr, a formula
to be focused on, enabling sequents of the forms (iii) or (iv). Rules are then applied on
the focused formula until either: an axiom is reached (in which case the proof ends); the
right promotion rule !r is applied; or a negative formula on the right or a positive formula
on the left is derived. At this point, focusing will be lost, and the proof switches to the
unfocused phase again.

We will call a focused step a focused phase followed by an unfocused one, in a (bottom-up)
focused proof.
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Observe that the design of the axioms I and Ic in ILLF induces a positive polarity to atoms.
As it will become clear in Section 3.2, this is necessary for guaranteeing the higher level of
adequacy on encodings.

Sequents in ILL will be denoted by Γ ⊢ A. Rules for ILL are the same as in ILLF, only not
considering focusing, and the structural rules being substituted by the usual bang left rules:
dereliction (D), weakening (W) and contraction (C):

Γ, F ⊢ G

Γ, ! F ⊢ G
D Γ ⊢ G

Γ, ! F ⊢ G
W

Γ, ! F, ! F ⊢ G

Γ, ! F ⊢ G
C

Note that, in ILLF, dereliction is embedded into the bang left (!l) and unbounded decide
(Du) rules.

3 Concurrent Constraint Processes as LL Formulas

In this section we shall see how the process-as-formula interpretation can be used for both,
providing verification techniques for a process calculus and characterizing different semantics
for it in a uniform way. We start by describing the model of computation of Concurrent
Constraint Programming (CCP) to later show that ILLF provides a suitable framework for
interpreting CCP processes.

Concurrent Constraint Programming (CCP) [41, 42, 43, 37] is a model for concurrency
based upon the shared-variables communication model. CCP traces its origins back to the
ideas of computing with constraints [25], Concurrent Logic Programming [45] and Constraint
Logic Programming (CLP) [15]. Different from other models for concurrency, based on
point-to-point communication as in CCS [23], the π-calculus [24], CSP [14] among several
others, the CCP model focuses on the concept of partial information, traditionally referred
to as constraints. Under this paradigm, the conception of store as valuation in the von
Neumann model is replaced by the notion of store as constraint, and processes are seen as
information transducers.

The model of concurrency in CCP is quite simple: concurrent agents (or processes)
interact with each other and their environment by posting and asking information (i.e.,
constraints) in a medium, a so-called store. As we shall see, CCP processes can be seen as
both computing processes (behavioral style) and as formulas in logic (logical declarative style).
In particular, we shall see a strong connection between ILL and CCP originally developed in
[11] and later refined in [34].

3.1 Constraint system and processes
We start by defining the language of processes and constraints. The type of constraints
processes may act on is not fixed but parametric in a constraint system. Such systems can be
formalized as Scott information systems [44] as in [40], or they can be built upon a suitable
fragment of logic e.g. as in [46, 11, 26]. Here we shall follow the second approach. More
precisely, a constraint system is a tuple C = (C, |=∆) where the set of constraints C is built
from a first-order signature and the grammar

F ::= true | A | F ∧ F | ∃x.F

where A is an atomic formula. We shall use c, c′, d, d′, etc, to denote elements in C. The
entailment relation |=∆ is parametric on a set of non-logical axioms ∆ of the form ∀x.[c ⊃ c′]
where all free variables in c and c′ are in x. We say that d entails c, written as d |=∆ c, iff

FSCD 2021



3:6 Process-As-Formula Interpretation: A Substructural Multimodal View

the sequent ∆, d ⊢ c is provable in intuitionistic logic (IL). Intuitively, the entailment relation
specifies inter-dependencies between constraints: c |=∆ d means that the information d can
be deduced from the information represented by c, e.g. x > 42 |=∆ x > 0.

The constraint store, shared by processes, is a conjunction of constraints and true denotes
the empty store. The existential quantifier is used to specify variable hiding.

Processes are built from constraint as follows:

P, Q ::= tell(c) |
∑
i∈I

ask ci then Pi | P ∥ Q | (local x) P | p(x)

A process tell(c) adds the constraint c to the store, thus incrementing the information
in it. The guarded choice

∑
i∈I

ask ci then Pi, where I is a finite set of indexes, chooses

non-deterministically one of the processes Pj whose guard cj can be deduced from the
current store. If none of the guards can be deduced, this process remains blocked until more
information is added. Hence, ask agents implement a synchronization mechanism based on
entailment of constraints. The interleaved parallel composition of P and Q is denoted as
P ∥ Q. The agent (local x) P behaves as P and binds the variable x to be local to it. Finally,
given a possibly recursive process definition p(y) ∆= P , where all free variables of P are in
the set of pairwise distinct variables y, the process p(x) evolves into P [x/y].

The operational semantics of CCP is given by the transition relation γ −→ γ′ satisfying
the rules in Figure 2. Here we follow the semantics in [11] and a configuration γ is a triple of
the form (X; Γ; c), where c is a constraint specifying the store, Γ is a multiset of processes,
and X is the set of hidden (local) variables of c and Γ. The multiset Γ = P1, P2, . . . , Pn

represents the process P1 ∥ P2... ∥ Pn. We shall indistinguishably use both notations to
denote parallel composition of processes.

Processes are quotiented by a structural congruence relation ∼= satisfying: (1) P ∼= Q if
they differ only by a renaming of bound variables (alpha-conversion); (2) P ∥ Q ∼= Q ∥ P ;
and (3) P ∥ (Q ∥ R) ∼= (P ∥ Q) ∥ R. Furthermore, Γ = {P1, ..., Pn} ∼= {P ′

1, ..., P ′
n} = Γ′ iff

Pi
∼= P ′

i for all 1 ≤ i ≤ n. Finally, (X; Γ; c) ∼= (X ′; Γ′; c′) iff X = X ′, Γ ∼= Γ′ and c ≡∆ c′

(i.e., c |=∆ c′ and c′ |=∆ c).
Rules RT and RC are self-explanatory. Rule REQUIV says that structurally congruent

processes have the same transitions. Rule RL adds the variable x to the set of variables X

when it is fresh (otherwise, Rule REQUIV can be used to apply alpha conversion). The rule
RA says that the process

∑
i∈I

ask ci then Pi evolves into Pj if the current store d entails cj .

▶ Definition 1 (Observables). Let −→∗ be the reflexive and transitive closure of −→. If
(X; Γ; d) −→∗ (X ′; Γ′; d′) and ∃X ′.d′ |=∆ c we write (X; Γ; d) ⇓c. If X = ∅ and d = true we
simply write Γ ⇓c.

Intuitively, if P is a process then P ⇓c says that P outputs c under input true.

3.2 Interpretation and adequacy
We shall present different encodings for processes (P[[·]]) and constraints (C[[·]]) as formulas
in ILL. Our goal is to show that the outputs of a process P can be characterized by
proofs in ILLF. More precisely, we shall show that P outputs c iff a sequent of the form
P [[Ψ]], C[[∆]] : ·⇑P [[P ]] ⊢ C[[c]] ⊗⊤⇑ is provable in ILLF, where Ψ is a set of process definitions
and ∆ is the set of non-logical axioms in the constraint system. Note the use of ⊤: we shall
erase the formulas corresponding to processes that were not executed. Below, we will see
how to tune the process interpretation to get the highest level of adequacy possible.
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(X; Γ; c) ∼= (X ′; Γ′; c′) −→ (Y ′; ∆′; d′) ∼= (Y ; ∆; d)
(X; Γ; c) −→ (Y ; ∆; d)

REQUIV

(X; tell(c), Γ; d) −→ (X; Γ; c ∧ d) RT
d |=∆ cj

⟨X,
∑
i∈I

ask ci then Pi, Γ, d⟩ −→ ⟨X, Pj , Γ, d⟩ RA

(X; (local x) P, Γ; d) −→ (X ∪ {x}; P, Γ; d) RL
p(x) ∆= P

(X; p(y), Γ; d) −→ (X; P [y/x], Γ; d) RC

Figure 2 Operational semantics of CCP. In RL, x ̸∈ X and it does not occur free in Γ nor in d.

▶ Definition 2. Constraints and axioms in CCP are encoded in ILL as follows:

C[[true]] = 1 C[[A]] = ! A C[[F1 ∧ F2]] = C[[F1]] ⊗ C[[F2]]
C[[∃x.F ]] = ∃x.C[[F ]] C[[∀x.(c ⊃ d)]] = ∀x.(C[[c]] −◦ C[[d]])

For the processes and process definition, the interpretation is the following:

P[[tell(c)]]]] = C[[c]] P[[P ∥ Q]] = P[[P ]] ⊗ P[[Q]]
P[[

∑
i∈I

ask ci then Pi]] = &
i∈I

(C[[ci]] ⊸ P[[Pi]]) P[[(local x) P ]] = ∃x.P[[P ]]

P[[p(y)]] = p(y) P[[p(x) ∆= P ]] = ∀x.(p(x) ⊸ P[[P ]])

Since the store in CCP is monotonic, i.e., constraints cannot be removed, we mark atomic
formulas with a bang (to be stored in the unbounded context). Parallel composition is
identified with multiplicative conjunction and the act of choosing one of the branches in a
non-deterministic choice is specified with additive conjunction. The action of querying the
store in ask agents is specified with a linear implication. Similarly, the unfolding of a process
definition is guarded by the atomic proposition p(y⃗) (denoting the call).

If Γ is a set of constraints, or axioms of the form ∀x.[c ⊃ c′], we write C[[Γ]] to denote the
set {C[[d]] | d ∈ Γ}. A similar convention applies for P[[·]]. Moreover, !Γ = {!F | F ∈ Γ}.

▶ Theorem 3 (Adequacy – ILL [11]). Let (C, |=∆) be a constraint system, P be a process and
Ψ be a set of process definitions. Then, for any constraint c, P ⇓c iff there is a proof of the
sequent ! P[[Ψ]], ! C[[∆]], P[[P ]] ⊢ C[[c]] ⊗ ⊤ in ILL. The level of adequacy is FCP.

Without focusing (as originally done in [11]), the proof of this theorem is not straightfor-
ward and a low level of adequacy is obtained: there may be logical steps not corresponding
to any operational step and vice-versa. Let us focus first in the case where logical steps do
not correspond to the operational ones. We will come back to the other direction later.

Consider the two derivations bellow.
π1

Γ, c1 −◦ F1 ⊢ d

Γ, (c1 −◦ F1) & (c2 −◦ F2) ⊢ d
&l

π2
Γ1, F1 ⊢ d

π3
Γ2 ⊢ c1

Γ1, Γ2, c1 ⊸ F1 ⊢ d
⊸l (1)

In the first, one of the branches is chosen but, in π1, it could be the case that c1 is never
proved (and F1 is never added to the context). This is not the intended meaning in Rule RA,
that first checks the entailment of cj to immediately add the corresponding process Pj to the
context. In the second example, π3 could contain sub-derivations that have nothing to do
with the proof of the guard c1. For instance, process definitions could be unfolded or other
processes could be executed. This would correspond, operationally, to the act of triggering
an ask process ask c then P with no guarantee that its guard c will be derivable only from
the set of non-logical axioms ∆ and the current store. For instance, it may be the case, in
π3, that c1 will be later produced by a process Q such that P[[Q]] ∈ Γ2. This is clearly not
allowed by the operational semantics.

FSCD 2021
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Let’s now put focusing into play. An inspection in the encoding reveals that the fragment
of ILL used is restricted to the following grammar:

G := 1 | ! A | G ⊗ G | ∃x.G Guards and Goals
P := G | P ⊗ P | P & P | G ⊸ P | ∃x.P | p(t) Processes
PD := ∀x.p(x) ⊸ P. Process Definitions

where A is an atomic formula (constraint) in C and p (a process identifier) is also atomic but
p /∈ C. In any derivation, the only formulas that can appear on the right are guards/goals G

and heads p. The other formulas, including processes, process definitions and axioms, appear
on the left. Hence, only instances of the unfocused rules 1l, ⊗l, ∃l, !l, ⊤r and the focused rules
⊗r,⊸l, ∃r, !r, &l, ∀l are used.

Observe that formulas G, p are strictly positive. Thus, focusing on such a formula on
the right either forces finishing the proof, or the formula will be entirely decomposed into
formulas of the shape 1 or ! A. This means that a proof of A can use only the theory ∆, the
encoding of constraints and process definitions (since all of them are unbounded). In fact, we
can show that the encoding of process definitions can be weakened (since calls of the form
p(y⃗) are necessarily stored in the linear context). Hence, when a goal is focused on, it must
be completely decomposed, and the atomic constraints must be proved only from the current
store and the non-logical axioms.

Formulas occurring on the left of sequents can be positive or negative. Positive formulas on
the left (that cannot be focused on) come from the interpretation of tell, parallel composition
and locality that do not need any interaction with the context. Note, for instance, that
the formula ∃x. ! G1 ⊗ ! G2, resulting from the encoding of tell(∃x.G1 ∧ G2), can be entirely
decomposed in an unfocused phase using the rules ⊗l, ∃l and !l. On the other hand, negative
formulas on the left (that can be chosen for focusing) come from the encodings of guarded
choices and process definitions. They do need to interact with the environment, either for
choosing a path to follow (in non-deterministic choices), or waiting for a guard to be available
(in asks or procedure calls).

Due to completeness of focusing [1], Theorem 3 trivially holds if we replace in it ILL with
ILLF. But using directly the focused system, the proof of the theorem becomes simpler. For
instance, it is a routine exercise to show that non-logical axioms permute up, and it is always
possible to apply them at the top of proofs. Moreover, situations as the ones described
after the derivations in Equation (1) are not longer valid in the focused system: focusing
over c1 −◦ F1 implies immediately proving c1 (from the logical axioms and accumulated
constraints), thus reflecting exactly the operational semantics of CCP.

▶ Example 4. Consider a community coffee machine, which is triggered by the insertion
of a coin, always available at the side of the machine. When the user inserts the coin, the
machine delivers a coffee and returns the coin, which will be available for the next user. This
machine can be specified as the CCP process

P = tell(coin) ∥ m() where m() ∆= ask coin then (tell(coffee) ∥ m())

Hence, P ⇓c, where c = coin ∧ coffee:

⟨∅, P, true⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), coin⟩ −→ ⟨∅, m(), coin ∧ coffee⟩

On the other hand, the sequent P[[P ]] ⊢ C[[c]] ⊗ ⊤ has the following focused proof
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coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coffee ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; · ⊢ ! coin ⇓
!r, Sr, Dr, I

coffee, coin, P[[m()]]; m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤ ⇓
⊗r, ⊤r

coin, P[[m()]]; · ⇓ ! coffee ⊗ m() ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
Rl, ⊗l, !l, Dr

coin, P[[m()]]; m() ⇓ m() −◦ (! coin −◦ (! coffee ⊗ m())) ⊢ (! coffee ⊗ ! coin) ⊗ ⊤
−◦l, I

coin, P[[m()]]; m() ⇑ · ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤ Dl

P[[m()]]; · ⇑ ! coin ⊗ m() ⊢ · ⇑ (! coffee ⊗ ! coin) ⊗ ⊤
⊗l, !l, Sl

Bottom up, we introduce the tell process in the unfocused phase. Then, after focusing on
the encoding of the ask agents, the guard coin is deduced (left-most derivation), and the
token coin is stored into the classical context, thus reflecting the final configuration in the
execution of the process.

Unfortunately, even with focusing, the adequacy level continues to be FCP. In fact, the
focusing discipline causes that some CCP computations do not have a corresponding proof
in ILLF. To see that, consider the following process

P = tell(a ∧ b) ∥ ask a then ask b then tell(ok) ∥
ask b then ask a then tell(ok′)

We denote the two external ask agents in P as Q1 and Q2 respectively. The operational
semantics dictates that there are three possible transitions leading to the final store d =
a ∧ b ∧ ok ∧ ok′. All such transitions start by executing tell(a ∧ b):

Trace 1: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, ask b then tell(ok) ∥ Q2, a ∧ b⟩
−→ ⟨∅, tell(ok) ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q2, a ∧ b ∧ ok⟩ −→∗ ⟨∅, ·, d⟩ ̸−→

Trace 2: ⟨∅, P, true⟩ −→ ⟨∅, Q1 ∥ Q2, a ∧ b⟩ −→ ⟨∅, Q1 ∥ ask a then tell(ok′), a ∧ b⟩
−→ ⟨∅, Q1 ∥ tell(ok′), a ∧ b⟩ −→ ⟨∅, Q1, a ∧ b ∧ ok′⟩ −→∗ ⟨∅, ·, d⟩ ̸−→

Trace 3: ⟨∅; P ; true⟩ −→ ⟨∅; Q1 ∥ Q2; a ∧ b⟩ −→ ⟨∅; ask b then tell(ok) ∥ Q2; a ∧ b⟩
−→ ⟨∅, ask b then tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩
−→ ⟨∅, tell(ok) ∥ ask a then tell(ok′), a ∧ b⟩ −→ ⟨∅, tell(ok) ∥ tell(ok′), a ∧ b⟩
−→∗ ⟨∅, ·, d⟩

Trace 1 and Trace 2 correspond exactly to a different focused proof of the sequent
P[[P ]] ⊢ C[[d]]: one focusing first on P[[Q1]] and the other focusing first on P[[Q2]]. On the
other hand, Trace 3 corresponds to an interleaved execution of Q1 and Q2. We note that
such a trace does not have any correspondent derivation in ILLF. In fact, since ⊸ is a
negative connective, focusing on C[[Q1]] will decompose the formula !a ⊸!b ⊸!ok producing
the focused formula !b ⊸!ok, which is still negative. Hence focusing cannot be lost and the
inner ask has to be triggered.

This example shows something interesting: although the formulas F ⊗ G −◦ H and
F −◦ G −◦ H are logically equivalent, they are operationally different when concurrent
computations are considered. In fact, if we allow processes to consume constraints as the
linear version of CCP in [11], an interleaving execution as the one in Trace 3 may not output
the constraint ok, since the two agents are competing for the same resources.

In order to recover interleaving executions as the one in Trace 3, logical delays [28] can
be introduced.

▶ Definition 5. The positive and negative delay operators δ+(·), δ−(·) are defined as δ+(F ) =
F ⊗ 1 and δ−(F ) = 1 −◦ F respectively.

Observe that δ+(F ) ≡ δ−(F ) ≡ F , hence delays can be used in order to replace a formula
with a provably equivalent formula of a given polarity.
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We define the encoding P[[·]]+ as P[[·]] but replacing the following cases:

P[[
∑
i∈I

ask ci then Pi]]+ = &
i∈I

(C[[ci]] ⊸ δ+(P[[Pi]]+))

P[[p(x) ∆= P ]]+ = ∀x.p(x) ⊸ δ+(P[[P ]]+)

The use of delays forces the focused phase to end, e.g., once the guard of the ask agent is
entailed. In this encoding, we can prove a stronger adequacy theorem.

▶ Theorem 6 (Strong adequacy [34]). Let (C, |=∆) be a constraint system, P be a process
and Ψ be a set of process definitions. Then, for any constraint c,

P ⇓c iff there is a proof of the sequent P[[Ψ]]+, C[[∆]]; · ⇑ P[[P ]]+ ⊢ · ⇑ C[[c]] ⊗ ⊤

in ILLF. The adequacy level is FCD.

Now derivations in logic have a one-to-one correspondence with traces of a computation
in a CCP program.

It is possible to modify the encoding to introduce negative actions (tell, parallel and
local) during a focused phase (thus counting them as a focused step). For that, it suffices to
introduce, in the encoding, negative delays δ−(F ). By using a multi-focusing systems [38],
maximal parallelism semantics [9] - where all the enabled agents must all proceed in one
step - can be also captured. Finally, if recursive definitions are interpreted as fixed points,
more interesting properties of infinite computations can be specified and proved. See [34] for
further details.

4 LL with multi-modalities

A careful analysis of the rules for the exponential ! in Figure 1 reveals that this connective
has a differentiated behavior w.r.t. the other ones. In fact, ! is the only operator having a
positive/negative behavior: the application of the right rule (!r) immediately breaks focusing.
Also, this is the only rule in ILLF that is context dependent, in the sense that it demands the
linear context Γ to be empty in order to be applied.

This distinguished character of the exponential in linear logic is akin to the behavior
found in modal connectives. In particular, the connective ! is not canonical, in the sense
that, if we label ! with different colors, say b (for blue – !b) and r (for red – !r), but with
the same introduction rules, then it is not possible to prove, in the resulting proof system,
the equivalence !rA ≡ !bA for an arbitrary formula A, where H ≡ G denotes the formula
(H ⊸ G) & (G ⊸ H). Not surprisingly, this exercise would have a different outcome for
any other linear logic connective. For instance, if we construct a proof system with two
labeled connectives, e.g., ⊗r and ⊗b, together with their introduction rules, then it would be
possible to prove A ⊗b B ≡ A ⊗r B for any A and B. This opens the possibility of defining
new connectives: the colored exponentials, known as subexponentials [8].

4.1 Linear logic with subexponentials
Linear logic with subexponentials (SELL)4 shares with intuitionistic linear logic all its
connectives except the exponential: instead of having a single !, SELL may contain as many
subexponentials, written !a for a label (or color) a, as one needs.

4 Although in this paper we are mostly interested in the intuitionistic version of SELL, it was proven
in [3] that classical and intuitionistic subexponential logics are equally expressive. Hence we will abuse
the notation and use SELL for intuitionistic linear logic system with subexponentials.
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Such labels are organized in a pre-order, giving rise to a subexponential signature Σ =
⟨I, ⪯, U⟩, where I is a set of labels, U ⊆ I is a set specifying which subexponentials behave
classically (i.e., those labels that allow for weakening and contraction), and ⪯ is a pre-order
among the elements of I. We shall use a, b, . . . to range over elements in I, and we will
assume that ⪯ is upwardly closed with respect to U , i.e., if a ∈ U and a ⪯ b, then b ∈ U .

The division of unbounded (a ∈ U) and linear or bounded (a ̸∈ U) subexponentials induces
also a partition of the subexponential context Θ, which is split into two: a set Θu and a
multiset Θb of labeled formulas, having the form

Θu = {a1 : Θu
1 , . . . , an : Θu

n} Θb = {b1 : Θb
1, . . . , bm : Θb

m}

The formulas in Θu
i are under the scope of the unbounded subexponential !ai , and formulas

in Θb
j are under the scope of the bounded subexponential !bj . The linear context Γ continues

containing only negative or atomic formulas, as in ILLF.
The focused proof system SELLF [28] is constructed by adding all the rules for the

intuitionistic linear logic connectives as shown in Figure 1,5 except for the exponentials. The
rules for subexponentials are the following:

A formula F under the scope of !a is stored in the exponential context Θ accordingly: if
a is unbounded/bounded, then F is added to the set/multiset Θa, which is created if it
does not exist. This action is represented by Θ ⊎ {a : F}.

Θ ⊎ {a : F}; Γ ⇑ ∆ ⊢ R
Θ; Γ ⇑ !aF, ∆ ⊢ R !al

The unbounded decide rule in ILLF is split into bounded and unbounded versions,
depending of the nature of the subexponential.

Θu, Θb; Γ ⇓ F ⊢ R

Θu, Θb ⊎ {a : F}; Γ ⇑ · ⊢ · ⇑ R
Db

Θu ⊎ {a : F}, Θb; Γ ⇓ F ⊢ R

Θu ⊎ {a : F}, Θb; Γ ⇑ · ⊢ · ⇑ R
Du

The promotion rule has the form

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar

with the proviso that, for all bj : Θb
j in Θb, it must be the case that a ⪯ bj . In the premise

of the rule, Θu
≥a ⊆ Θu contains only elements of the form ai : Θu

i where a ⪯ ai (the other
contexts are weakened). That is, !aF is provable only if F can be proved in the presence
of subexponentials greater than a.

It is known that subexponentials greatly increase the expressiveness of the system when
compared to linear logic. For instance, subexponentials can be used to represent contexts
of proof systems [32], to mark the epistemic state of agents [27], or to specify locations
in sequential computations [28]. The key difference is that, while linear logic has only
seven logically distinct prefixes of bangs and question-marks (? is the dual of !), SELL
allows for an unbounded number of such prefixes, e.g., !i, or !i?j . As we show later, by
using different prefixes, we can interpret subexponentials in more creative ways, such as
linear constraints, epistemic modalities or preferences. The interested reader can also check
in [30, 35, 31] the interpretation of subexponentials as temporal units, and the study of
dynamical subexponentials in distributed systems.

5 Taking the extra-care of splitting the bounded context Θb for the multiplicative rules −◦l and ⊗r.
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The organization of subexponentials in pre-orders brings at least two interesting aspects
that can be further investigated: what kind of refinements of the proof system can be obtained
by adopting richer algebraic structures for subexponentials (Section 4.2 below); and what is
the proof-theoretic notion of quantification over modalities (Section 4.3 below).

Being able to quantify over subexponentials is important, e.g., for specifying properties
that are valid in an unbounded number of locations or agents. It is also crucial for establishing
a certain notion of mobility, or permissibility of resources, that can be available, e.g., iff they
are marked with a label of some specific sort. But one has to be careful here: the pre-order
structure is a minimal requirement in subexponential signatures in order to guarantee the
cut-elimination property [8]. Since, in the presence of quantifiers, proving cut-elimination
requires substitution lemmas, a naive approach of exchanging labels could invalidate such
results (see [31] for an extensive discussion on the topic).

On the other hand, if we move above the pre-order minimality and consider, e.g., ∧-semi-
lattices as subexponential structures, then the side condition in the promotion rule, a ⪯ ai

for all ai ∈ Θ≥a, is equivalent to a ⪯
∧

i ai. And this reflects certain kinds of preferences, as
explained next.

4.2 Richer subexponential signatures
We now explore a refinement of SELLF, where richer structures are considered as subexponen-
tial signatures. For that, we shall use an algebraic structure that defines a mean to compare
(⪯) and accumulate (•) values.

More precisely, a complete lattice monoid [12] is a tuple CLM = ⟨D, ⪯, •⟩ such that
⟨D, ⪯⟩ is a complete lattice, ⊥ and ⊤ are, respectively, the least and the greatest elements of
D and {D, •, ⊤} is a abelian monoid. Moreover, • distributes over lubs, i.e., for all v ∈ D and
X ⊆ D, v • ⊔X = ⊔{v • x | x ∈ X}. Due to distributivity, • is monotone and decreasing:
a • b ⪯ a.

Observe that, if the SELL signature structure is a lattice, then a ⪯ {b, c} is equivalent to
a ⪯ glb(b, c). Moreover, in the presence of •, promotion can be refined so to consider the
combination of values as follows.

Given a SELL signature Σ = ⟨D, ⪯, U⟩ with ⟨D, ⪯, •⟩ a CLM , the promotion rule !ar• is
defined as:

Θu
≥a, Θb; · ⇑ · ⊢ F ⇑
Θu, Θb; · ⊢ !aF ⇓

!ar•, provided a ⪯ •{ai, bj}

Note that, if the CLM is •-idempotent (i.e. a • a = a), then glb(a, b) = a • b, and the above
rule coincides with SELLF’s promotion rule.

▶ Example 7. Consider the signature Σ = ⟨D, ⪯, D⟩, with the following instances of CLM .
⟨{pub, sec}, ⪯, ∧⟩, where pub and sec represent public and private information, respect-
ively. The ordering is pub ≺ sec and a ∧ b = sec iff a = b = sec. Hence, any proof of
Θ; · ⊢ !secF ⇓ does not make use of any public information.
⟨[0, 1], ≤R, min⟩ (fuzzy), where [0, 1] ⊂ R, and ≤R is the usual order in R. In this case,
we can interpret !0.2c as “c is believed with preference 0.2”. Note that the sequent
!0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.2.
⟨[0, 1], ≤R, ×⟩ (probabilistic), where × is the multiplication operator in R. This is a non-
idempotent CLM , and the sequent !0.2c ⊗ !0.7d ⊢ !a(c ⊗ d) is provable only if a ≤R 0.14.
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In [39] we have showed that this new version of the promotion rule is not at all ad-hoc.
The resulting system, SELLS, is a smooth extension of ILLF and it is a closed subsystem of
SELLF, which is strict when non-idempotent CLMs are considered. Hence SELLS inherits
all SELLF good properties such as cut-elimination.

The SELLS system has inspired the development of new CCP-based calculi where processes
can tell and ask soft constraints, understood as formulas of the form !ac where a is an element
of a given CLM [39]. Also, since the underlying logic is the same, it is possible to obtain
adequate interpretations of processes as formulas as the ones in Section 3.2. More interestingly,
it is also possible to combine, in a uniform way, different modalities [35], all of them grounded
on linear logic principles. Some of these modalities will be explored in Section 5.

4.3 Subexponential Quantifiers
This section introduces the focused system SELLF⋒, containing two novel connectives ⋒ and
⋓, representing, respectively, a universal and existential quantifiers over subexponentials.6

As mentioned in Section 4.1, in order to guarantee cut-elimination of the resulting system,
the substitution of subexponentials in the rules for quantification should be done carefully.
As showed in [31], it is enough to require that labels are substituted, bottom-up, for smaller
ones. Also, the possibility of creating new labels dynamically implies that there should be
two sorts of labels: constants and variables. This justifies the next definition.

▶ Definition 8. Given a pre-order (I, ⪯) and a ∈ I, the ideal generated by a is the set
↓ a = {b ∈ I | b ⪯ a}.

The subexponential signature of SELL⋒ is the triple Σ = ⟨I, ⪯, U⟩, where I is a set of
subexponential constants, ⪯ is a pre-order over I and U ⊆ I is the upwardly closed set of
unbounded constants.

The sets of typed subexponential constants and typed subexponential variables are
denoted respectively by

TΣ = {b : a | b ∈↓ a} Tx = {lx1 : a1, . . . , lxn : an}

where {lx1 , . . . , lxn
} is a disjoint set of subexponential variables, and {a1, . . . , an} ⊆ I are

subexponential constants.

Formally, only these subexponential constants and variables may appear free in an index of
subexponential bangs and question marks.

Sequents in SELLF⋒ have the same form as in SELLF, with the difference that there is an
extra context T = TΣ ∪ Tx.

The rules for for ⋒ and ⋓ are the novelty with respect to the focused proof system for
SELLF. They behave exactly as the first-order quantifiers: the ⋒r and ⋓l belong to the
negative phase because they are invertible, while ⋒l and ⋓r are positive since they are not
invertible.

T ∪ {le : a}; Θ; Γ ⇑ ∆ ⊢ F [le/lx] ⇑
T ; Θ; Γ ⇑ ∆ ⊢ ⋒lx : a.F ⇑

⋒r
T ∪ {le : a}; Θ; Γ ⇑ ∆, F [le/lx] ⊢ R

T ; Θ; Γ ⇑ ∆,⋓lx : a.F ⊢ R
⋓l

T ; Θ; Γ ⇓ F [l/lx] ⊢ R

T ; Θ; Γ ⇓ ⋒lx : a.F ⊢ R
⋒l

T ; Θ; Γ ⊢ F [l/lx] ⇓
T ; Θ; Γ ⊢ ⋓lx : a.F ⇓

⋓r

6 Some motivation for the symbols ⋒ and ⋓. The former resembles the symbol for intersection, which
is the usual semantics assigned to for all quantifiers, namely, the intersection of all models, while the
latter is same for exists and union.
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In the left rule of ⋒ and the right rule of ⋓, lx is substituted with a subexponential of the
right type: l : b ∈ T , b ∈↓ a. In the rules ⋒r and ⋓l, a fresh variable le of type a is created
and added to the context T .

Next, we shall see that the quantifiers allows for encoding, in a modular way, systems
dealing with an unbounded number of modalities.

5 Parametric interpretations

This section illustrates how focusing, subexponentials and quantifiers in SELLF⋒ can be
used to give adequate interpretations to CCP calculi featuring different modalities. The
interpretation is modular: there is only one base logic – SELL⋒; and parametric: each modal
flavor of CCP is specified by a signature in SELL having a particular algebraic structure. In
this way, processes may be executed and add/query constraints in different locations, where
the meaning of such locations may vary, for example: spaces of computation, the epistemic
state of agents, time units, levels of preferences, etc. But the underline interpretation is the
same: locations in CCP become labels in SELL.

Another modular aspect of our process-as-formula interpretation is the organization of
the encodings of constraints, processes and process definitions, into non-comparable families
of subexponentials, so that focusing on an element of a family forces all elements of the
other families to be erased during proof search. This ensures the discipline necessary for
guaranteeing the highest level of adequacy (FCD).

Formally, let M be an underlying set of labels, with least and greatest elements represented
by nil and ∞ respectively, ordered with a pre-order ⪯M . The families of subexponentials
are built with marked copies of elements of M : c(·) for constraints, p(·) for processes, and
d(·) for process definitions. The subexponential signature Σ = ⟨I, ⪯, U⟩ is built from M in
the following way:

The set of labels is: I = {l, c(l), p(l), d(l) | l ∈ M}; that is, besides the elements in M ,
we consider three additional distinct copies of the labels, each of them marked with the
appropriate family.
The subexponential pre-order is: l ⪯ l′ iff l ⪯M l′ and f(l) ⪯ f(l′) iff l ⪯M l′ where
f ∈ {c, p, d}; note that subexponentials pertaining to different families are not related.
The set U of unbounded subexponentials will vary depending on the encoded system.

Constraints and CCP processes are encoded into SELLF⋒ by using the functions C[[·]]l and
P[[·]]l as in Definition 2, now parametric w.r.t. subexponentials l ∈ M as follows.7

▶ Definition 9 (General Encoding). Constraints and axioms of the constraint system are
encoded in SELL⋒ as:

C[[true]]l = 1 C[[A]]l = !c(l)A C[[c1 ∧ c2]]l = C[[c1]]l ⊗ C[[c2]]l

C[[∃x.c]]l = ∃x.C[[c]]l C[[∀x.(d ⊃ c)]] = ⋒lx : ∞.∀x.(C[[d]]lx −◦ C[[c]]lx)

7 We observe that, technically, the encoding functions should also consider subexponential variables.
However, the encoded processes/axioms are stored on left contexts, and the left introduction rule for
universal quantifiers does not create fresh variables.
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The encoding of processes and process definitions is:

P[[tell(c)]]l = !p(l)[⋒lx : l.(C[[c]]lx)]
P[[

∑
i∈I

ask c then P ]]l = !p(l)[⋒lx : l.(&
i∈I

[C[[ci]]lx −◦ P[[Pi]]lx ])]

P[[(local x) P ]]l = !p(l)[⋒lx : l.∃x.(P[[P ]]lx)]
P[[P ∥ Q]]l = P[[P ]]l ⊗ P[[Q]]l
P[[p(x)]]l = !d(l)p(x)
P[[p(x⃗) ∆= P ]] = ⋒lx : ∞.∀x.(!d(lx)p(x) −◦ P[[P ]]lx

)

The main difference between the encodings in SELL⋒ and ILL is the presence of mobility
of processes, given by the universal quantifier ⋒ over subexponentials. This enables the
specification of systems to govern an unbounded number of modalities.

Intuitively, when (left) focusing over a quantified clause of the form ⋒lx : l.!f(lx)F , a
location a ∈↓ l is chosen, and F becomes available in the location a, inside a family f, which
is totally determined by the nature of the encoded object: c for constraints, p for processes,
d for process definitions. In the special case of l = ∞, F can be allocated anywhere inside
the family. This is the case for example, of axioms and process definitions.

Let us now illustrate how the use of subexponentials and quantifiers allow for attaining
the highest level of adequacy. The first thing to note is that, due to the shape of the encoding,
the subexponential context can be divided into 3 zones: C, D and P , containing the formulas
marked, respectively, with subexponentials of the form c(·), d(·) and p(·).

Using simple logical equivalences, we can rewrite the encoding of a constraint C[[c]]l so
that it has the following shape ∃x.

(
!c(l1)A1 ⊗ · · · ⊗ !c(ln)An

)
, where A1, . . . , An are atomic

(positive) formulas. Whenever such a formula appears in the left-hand side, it is completely
decomposed and stored in the C context:

C ⊎ {c(l1) : A1, · · · , c(ln) : An}, D, P; · ⇑ ∆ ⊢ R

C, D, P; · ⇑ !c(l1)A1, · · · , !c(ln)An, ∆ ⊢ R
!al

C, D, P; · ⇑ !c(l1)A1 ⊗ · · · ⊗ !c(ln)An, ∆ ⊢ R
∃l, ⊗l

That is, in the negative phase, the atomic formulas A1, . . . , An appearing in the premise of
this derivation are moved to the contexts C.

Consider now a derivation that focuses on the encoding of a process. For instance, let
Q = ask c then P , and P [[Q]]l = !p(l)F , with F = ⋒lx : a.(C[[c]]lx −◦ P [[P ]]lx). Focusing on F

results necessarily in a focused derivation of the following shape:

π
C′; · ⊢ C[[c]]l′ ⇓

C′′, D, P ′ ⊎ {p(l′) : FP }; · ⇑ · ⊢ G ⇑
C′′, D, P ′; · ⇓ P[[P ]]l′ ⊢ G

Rl, !al

C, D, P ′; · ⇓ ⋒lx : a(C[[c]]lx −◦ P[[P ]]lx ) ⊢ G
⋒l,⊸l

C, D, P ⊎ {p(l) : F }; · ⇑ · ⊢ · ⇑ G
Du/Db

If p(l) ∈ U (resp. p(l) ̸∈ U) the rule Du (resp. Db is applied) and P ′ = P ⊎ {p(l) : F} (resp.
P ′ = P). Since C[[c]]l′ contains only positive formulas, it will be totally decomposed, and
every exponential context in π will be a C context. That is, only constraints and axioms
from the constraint system can be used in the proof π.

A similar analysis can be done when a process definition is selected: only the context D,
storing all the calls, can be used to entail the needed guard.

In the following, we instantiate the general definition of the encoding for different flavors
of CCP. The adequacy we obtain, in each case is at the FCD level.

FSCD 2021
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Classical and linear CCP
For encoding the language in Section 3, the set of modalities is the simplest one: M = {nil, ∞}.
All the subexponentials but p(nil) and d(·) are unbounded.

▶ Theorem 10. Let (C, |=∆) be a constraint system, P be a CCP process and Ψ be a set of
process definitions. Then, for any constraint c,

P ⇓c iff · ⇑!c(∞)C[[∆]],!p(∞)JΨK, P[[P ]]nil ⊢ C[[c]]nil ⊗ ⊤ ⇑

It is worth noticing that all the processes remain in the location nil (denoting “without
modality”) and then, the universal quantification in the encoding is always forced to instantiate
lx with nil.

Linear CCP. As we already know, the store in CCP increases monotonically: once a
constraint is added, it cannot be removed from the store. This can be problematic for
the specification of systems where resources can be consumed. In linear CCP (lcc) [11],
constraints are built from formulas in the following fragment of ILL:

F ::= A | 1 | F ⊗ F | ∃x.F |!F

In this setting, the empty store is 1 and constraints are accumulated using ⊗. The extra
case !F , as expected, is used to denote persistent constraints.

▶ Example 11. The vending coffee machine has the same CCP specification as the community
coffee machine presented in Example 4. However, as expected, linear asks consume constraints
when querying the store and the coin does not come back after delivering the coffee:

⟨∅, P, 1⟩ −→ ⟨∅, m(), coin⟩ −→ ⟨∅, tell(coffee) ∥ m(), 1⟩ −→ ⟨∅, m(), coffee⟩

In order to characterize the semantics of lcc, we configure the encoding in Definition 9 as
follows. We declare c(nil) /∈ U (i.e., constraints can be consumed) and c(∞) ∈ U . Moreover,
the encoding is extended for the case of unbounded constraints: C[[! c]]l = C[[c]]∞. In this
way, we obtain an adequacy theorem as the one in Theorem 10, also at the FCD level, in
contrast to the weakest level of adequacy (FCP) obtained originally in [11] (for linear logic
and without focusing).

It is important to note that the characterization in Theorem 6, that uses (vanilla)
linear logic, does not work for lcc at the FCD level. Take for instance the process
Q = ask c ⊗ d then P being executed in the store !(c ⊗ d). Clearly, Q reduces to P and the
store remains unchanged. If we were to use the encoding in Theorem 6, before focusing on
P [[Q]], we have to do an intermediary step without an operational counterpart: focus on c⊗d,
stored in the classical context, to produce a copy of c and d in the linear context. Only after
that, the implication in P [[Q]] is able to entail the guard c ⊗ d. In the encoding of the present
section, proving the query of Q results in focusing on !c(nil)c ⊗ !c(nil)d. After decomposing
the tensor, focusing is lost and only linear c(nil) and replicated (c(∞)) constraints and the
axioms of the constraint systems can be used to deduce the atoms c and d. This adequately
reflects the semantics of linear asks.

Epistemic CCP
Now let us consider a richer system where different modalities will play a fundamental role.
Epistemic CCP (eccp) [16] is a CCP-based language where systems of agents are considered
for distributed and epistemic reasoning. In eccp, the constraint system is extended to
consider space of agents, denoted as sa(c), and meaning “c holds in the space –store– of
agent a.” The function sa(·) satisfies certain conditions to reflect epistemic behaviors:
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nil

a b · · ·

a.a a.b . . .. . . b.a . . .

a.a.a . . . a.b.b . . .b.a.b. . .

. . . . . . . . .

∞

nil

a1 a2 a3

a{1,2} a{1,3} a{2,3}

∞

a{1,2,3}

Figure 3 Subexponential signature for eccp.

(X; P, Γ; c) −→ (X ′; P ′, Γ; d)
(X; [P ]a, Γ; c) −→ (X ′; [P ]a, P ′, Γ; d) RE

(X; P, Γ; da) −→ (X ′; P ′, Γ; d′)
(X; [P ]a, Γ; d) −→ (X ′; [P ′]a, Γ; d ∧ sa(d′)) RS

Figure 4 Operational rules for eccp and sccp.

1. sa(1) = 1 (bottom preserving)
2. sa(c ∧ d) = sa(c) ∧ sa(d) (lub preserving)
3. If d ⊢∆e

c then sa(d) ⊢∆e
sa(c) (monotonicity)

4. sa(c) ⊢∆e
c (believes are facts –extensiveness–)

5. sa(sa(c)) = sa(c) (idempotence)

In eccp, the language of processes is extended with the constructor [P ]a that represents
P running in the space of the agent a. The operational rules for [P ]a are specified in Figure 4.
In epistemic systems, agents are trustful, i.e., if an agent a knows some information c, then c

is necessarily true. Furthermore, if b knows that a knows c, then b also knows c. For example,
given a hierarchy of agents as in [[P ]a]b, it should be possible to propagate the information
produced by P in the space a to the outermost space b. This is captured exactly by the rule
RE, which allows a process P in [P ]a to run also outside the space of agent a. Notice that
the process P is contracted in this rule. The rule RS, on the other hand, allows us to observe
the evolution of processes inside the space of an agent. There, the constraint da represents
the information the agent a may see or have of d, i.e., da =

∧
{c | d ⊢∆e

sa(c)}. For instance,
a sees c from the store sa(c) ∧ sb(c′) but it does not see c′.

We now configure the encoding in Definition 9 so to capture the behavior of eccp
processes. We consider a possibly infinite set of agents A = {a1, a2, ...} and the set of
locations/modalities M , besides nil and ∞, contains the set A+ of non-empty strings of
elements in A; for example, if a, b ∈ A, then a, b, a.a, b.a, a.b.a, . . . ∈ A+. We use a, b, etc to
denote elements in A+ and nil will denote the empty string. The only linear subexponentials
are d(nil) and p(nil). This reflects the fact that both constraints and processes in the
space of an agent are unbounded, as specified by rule RE. Intuitively, !p(1.2.3) specifies a
process in the structure [[[·]3]2]1, denoting “agent 1 knows that agent 2 knows that agent
3 knows” expressions. The connective !c(1.2.3), on the other hand, specifies a constraint of
the form s1(s2(s3(·))). We thus extend the encoding accordingly: C[[si(c)]]l = C[[c]]l.i and
P[[[P ]i]]l = P[[P ]]l.i.

The pre-order ⪯ is as depicted in Figure 3 on the left. Note that for every two different
agent names a and b in A, the subexponentials a and b are unrelated. Moreover, a ≈ a.a

and b1.b2. . . . .bn ⪯ a1.b1.a2.b2. . . . .an.bn.an+1 where each ai is a possible empty string of
elements in A. The shape of the pre-order is key for our encoding. For instance, the formula
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⋒lx : a.b.b.P[[P ]]lx on the left, allows us to place P on the (outer) location a.b and b as
required by RE. In fact, we can show that the sequent P [[P ]]l.i ⊢ P [[P ]]l is provable in SELL⋒

for any process P and subexponentials l and i. We can also show that the encoding of
constraints satisfy the axioms of an epistemic constraint system. For instance, the sequent
C[[si(c)]]l ⊢ C[[c]]nil is provable, showing that believes are facts. Hence, a tailored version of
Theorem 10 applies for this language, with the same level of adequacy.

As an interesting example of epistemic behavior, it is possible to specify common knowledge
by extending the subexponential signature as in Figure 3 on the right, where for all S ⊆ A,
a ⪯ aS for any string a ∈ S+. Then, the announcement of c on the group of agents S can
be represented by !c(aS)c. Notice that the sequent !c(aS )c ⊢ !c(a)c ⊗ ⊤ can be proved for any
a ∈ S+. For instance, if S = {ai, aj}, from !c(aS )c one can prove that ai knows that aj knows
that ai knows that ai knows ... c, i.e., c is common knowledge between ai and aj .

Spatial CCP

Inconsistent information in CCP arises when considering theories containing axioms such
as c ∧ d ⊢∆ 0. Unlike epistemic scenarios, in spatial computations, a space can be locally
inconsistent and it does not imply the inconsistency of the other spaces (i.e., sa(0) does not
imply sb(0)). Moreover, the information produced by a process in a space is not propagated
to the outermost spaces (i.e., sa(sb(c)) does not imply sa(c)).

In [16], spatial computations are specified in spatial CCP (sccp) by considering processes
of the form [P ]a as in the epistemic case, but excluding the rule RE in the system shown in
Figure 4. Furthermore, some additional requirements are imposed on the representation of
agents’ spaces sa(·). In particular, sa(·) must satisfy false containment, i.e., if c ∧ d |=∆ 0, it
does not necessarily imply that sa(c) ∧ sb(d) |=∆ 0 if a ̸= b.

We build the subexponential signature as we did in the epistemic case but the pre-order
is much simpler: for any a ∈ A+, a ⪯ ∞. That is, two different elements of A+ are unrelated.
Moreover, since sccp does not contain the RE rule, processes in spaces are again treated
linearly. Thus: U = {c(a) | a ∈ I} ∪ {p(∞)}.

By modifying the pre-order we partially capture the behavior of spatial systems. However,
it is not enough to confine inconsistencies. In particular, note that !a0 ⊢ G for any a and G.
The solution for information confinement, as shown in [31], is to consider combinations of
bangs and question marks (the dual of bang). In this case, !a?a0 ⊢ !a?aG but !a?a0 ̸⊢ !b?bG

for a, b not related. Hence, the encoding remains the same, but for the base cases: atomic
propositions are encoded as !c(l)?c(l)A, and procedure calls as !d(l)?d(l)p(x⃗).

6 Conclusion and future work

We have shown that the process-as-formula interpretation can provide useful reasoning
techniques for process calculi, by faithfully capturing the behavior of processes. The inter-
pretations we have achieved are modular and parametric, and they can capture different
modal behaviors as Table 1 summarizes.

Other examples of processes-as-formulas interpretations, relating computation and proof
search, include linear logic-based models for the π-calculus [22], abstract transition systems
and operational semantics [20], CCS [10], Bigraphs [5], P-systems [33] and concurrent object
oriented programming languages [36]. Also, in [4] we have tailored the notion of fixed points
in linear logic [2] to the system SELL⋒, and this allowed the encoding of CTL (Computational
Tree Logic) formulas as SELL theories, thus opening the possibility of specifying and proving
temporal properties inside the same logical framework.
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Table 1 Encoding of CCP modalities in SELL⋒.

General Encoding
Connective Meaning`

s = !s !sP is located at s.`
s =!s?s !s?sP is confined to s.

⋒l : a P P can move to locations below (outside) a

Epistemic Modalities
Pre-order Meaning
a.a ∼ a Modalities are idempotent: [[P ]a]a ∼ [P ]a
a ⪯ a.b Processes can move outside [[P ]b]a −→ [P ∥ [P ]b]a

Spatial Modalities
Pre-order Meaning

a ̸⪯ b P does not communicate with Q in [P ]a ∥ [Q]b
a.a ̸∼ a Modalities are not necessarily idempotent.
a ̸⪯ a.b Processes are confined: [[P ]b]a ̸∼ [P ∥ [P ]b]a

Regarding future work, in [17] we have shown how to incorporate other modal behaviors
(besides the structural ones of weakening and contraction) in linear logic, thus extending
the multiplicative and additive fragment of LL with simply dependent multi-modalities. The
interpretations we have presented here have inspired new CCP-based calculi [35]. We foresee
that the finer control of modalities given in [17], as well as the extensions with non-normal
modalities [6, 18, 7], may contribute with other declarative models of concurrency with strong
logical foundations.
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