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Abstract
We prove Church’s lambda calculus semigroup is sq-universal.
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1 Introduction

In 1937 ([2]) Church formulated lambda calculus as a semigroup. His ideas were pursued by
Curry and Feys ([3]), and later by Bohm (Barendregt [1, 532]) and Dezani ([4]). If lambda
terms in some way represent functions, then such a presentation based on composition is a
quite natural complement to the presentation based on application. Of course, it is widely
held that lambda calculus, therefore this semigroup, is an important part of the foundation
of functional programming.

In 1968 Peter Neumann [6] introduced the notion of an sq-universal group. Many results
in classical group theory can be interperted as saying that a particular group (or class of
groups) is sq-universal. The notion of sq-universal makes perfectly good sense for semigroups
as well as groups. A countable semigroup O is sq-universal if every countable semigroup is a
subsemigroup of a homomorphic image (quotient) of O (“sq” stands for “sub . . . of quotient
. . .”).

We shall show that Church’s semigroup is sq-universal. We shall also characterize lambda
theories as special kinds of quotients of the semigroup (there are quotients which do not
correspond to lambda theories) at least when I = 1 (eta).

2 Church’s semigroup

Some notation will be useful. We adopt for the most part the notation and terminology
of [1].

I := λx. x

1 := λxy. xy

B := λxyz. x(yz)
K := λxy. x

C := λxyz. xzy.

∼ := beta conversion
→ := beta reduction
↠ := beta reduction multistep.

Both Church and Curry observed that the combinators form a semigroup under multi-
plication B and beta conversion. The same is true for addition λxyuv. xu(yuv) and beta
conversion. Since these satisfy the right distributive law

(λxyz. x(yz))((λxyuv. xu(yuv))ab)c ∼ (λxyuv. xu(yuv))((λxyz. x(yz))ac)(((λxyz. x(yz))bc)

they form a near semiring.
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Many years ago I noticed a generalization of this near semiring structure to a hierarchy
of semigroups. Define

An := λxyu1 · · · unv. xu1 · · · un(yu1 · · · unv)

so A0 := B and A1 is Church’s addition. Then combinators form a semigroup with multiplic-
ation An with beta conversion. Again the right distributive law holds. More precisely we
have

(associativity) Am(Anxy) ∼ A0(Anx)(Any) if m = n,

(distributivity) Am(Anxy) ∼ An+1(Amx)(Amy) if m < n.

and in addition,

(i) Amx ∼ Am+1(Kx)I
(ii) K(Amxy) ∼ Am+1(Kx)(Ky).

Let On be the semigroup of all combinators with multiplication An. Let J = λx. xI (J is
usually written C∗∗). Now we adopt the infix notation ∗ for the prefixing of B.

(iii) J ∗ K ∼ I

(iv) J(Am+1xy) ∼ Am(Jx)(Jy).

3 Homomorphisms

A homomorphism h of On induces a congruence relation H defined by M H N iff h(M) =
h(N). Here we identify h with the map that takes M to its congruence class {N | M H N},
so h is a set valued map.

▶ Example 1. h(M) := BM defines a homomorphism of O0.

▶ Definition 2. h is said to be “entire” if
(a) h(KM) = K(h(M))
(b) h(JM) contains J(h(M))
(c) h(1M) = h(M)

▶ Example 3. h(M) := the beta-eta congruence class of M is entire. For, if KM beta-eta
converts to N there exists P s.t. N beta converts to KP . This follows from Church-Rosser
and eta postponement.

Now if h is an entire homomorphism for On then h is a homomorphism for every Om

with m < n, for we have

K(h(An−1xy)) ∼
h(K(An−1xy)) ∼
h(An(Kx)(Ky)) ∼
An(h(Kx))(h(Ky)) ∼
An(K(h(x)))(K(h(y))) ∼
K(An−1(h(x))(h(y)))

so by (iii) h(An−1xy) ∼ An−1(h(x))(h(y)).
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Lambda theories are defined as in [1] 4.1.1. Each lambda theory T over beta conversion
induces a homomorphism for each On where H is defined by M H N iff T ⊢ M = N . Each
lambda theory T over beta- eta conversion induces an entire homomorphism for each On

where H is defined by M H N iff T ⊢ M = N . Now there are O0 homomorphisms which
are not induced by theories. For example, the Rees factor monoid induced by the ideal
{KM | all M}. However we shall show that this is essentially the only example.

▶ Theorem 4. Let h be an entire homomorphism for O1. Then T = {M = N | M H N} is
closed under logical consequence over beta conversion.

Proof. We suppose that T ⊢ M = N over beta conversion. For what follows we will use a
theorem of Jacopini [5] in the form exposited and marginally improved in [8].

By Jacopini’s theorem, there exist Mi = Ni in T for i = 1, . . . , n and closed terms
P1, . . . , Pn such that

M ∼ P1M1N1

P1N1M1 ∼ P2M2N2

P2N2M2 ∼ P3M3N3

...
PnNnMn ∼ N.

Thus by Church’s theorem ([1, 531]), which uses eta in one spot,

M H CIN1 ∗ CIM1 ∗ CIP1 ∗ B ∗ B ∗ CI

CIM1 ∗ CIN1 ∗ CIP1 ∗ B ∗ B ∗ CI H CIN2 ∗ CIM2 ∗ CIP2 ∗ B ∗ B ∗ CI

CIM2 ∗ CIN2 ∗ CIP2 ∗ B ∗ B ∗ CI H CIN3 ∗ CIM3 ∗ CIP3 ∗ B ∗ B ∗ CI

...
CIMn ∗ CINn ∗ CIPn ∗ B ∗ B ∗ CI H N.

Now let us write # for A1 infixed. We have

KM H K(CIN1) # K(CIM1) # K(CIP1) # KB # KB # K(CI)
K(CIM1) # K(CIN1) # K(CIP1) # KB # KB # K(CI) H

K(CIN2) # K(CIM2) # K(CIP2) # KB # KB # K(CI)
K(CIM2) # K(CIN2) # K(CIP2) # KB # KB # K(CI) H

K(CIN3) # K(CIM3) # K(CIP3) # KB # KB # K(CI)
...
K(CIMn) # K(CINn) # K(CIPn) # KB # KB # K(CI) H KN

by (ii). Now K(CIx) ∼ CI ∗ Kx so since h is entire

h(K(CIMi)) = h(K(CINi)) for i = 1, . . . , n.

Thus, since h is a # homomorphism, h(KM) = h(KN). But h is entire so h(M) = h(N). ◀

▶ Corollary 5. Let h be an entire homomorphism for O1. Then T = {M = N | M H N} is
closed under logical consequence over beta-eta conversion.

▶ Corollary 6. If h is an entire homomorphism for O1 then it is an entire homomorphism
for all On.
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4 SQ universality

▶ Definition 7. A set $ of order zero lambda-I terms is said to be independent if for every
member M of $ no beta reduct of M contains a beta reduct of any member of $ as a proper
subterm.

▶ Example 8. The set of terms (λx. xx)(λx. xx)N , where N is a non-zero Church numeral
is independent.

Curiously, independent sets must exist for recursion theoretic reasons.

▶ Lemma 9. There must be an infinite independent set.

Proof. We construct an increasing sequence of finite independent sets by induction.
Basis: {(λx. xx)(λx. xx)} is independent.
Induction step; we suppose that $ is a finite independent set. Now the following sets of

lambda-I terms are RE and closed under beta reduction
(i) the set of combinators with positive order
(ii) the set of combinators M s.t. there is a beta reduct of a member of $ ∪ {M} which is a

proper subterm of a beta reduct of M .
In addition, both of these sets have non-empty complements. Thus by Visser’s theorem (as
modified in [7] and adapted to lambda-I) the intersection of the complements of these two
sets is infinite (modulo beta-conversion). Thus one element can be added to $. ◀

▶ Definition 10. The B polynomials over $ are defined as follows. Any variable or member
of $ is a B polynomial. If F and G are B polynomials then so is F ∗ G.

▶ Lemma 11. Let $ be an independent set. Let P, P1, . . . , Pk be products of the members of $.
Then if P ∼ MP1 · · · Pk there exists a B polynomial F (x1, . . . , xk) over $ s.t. Mx1 · · · xk ∼
F (x1, . . . , xk).

Proof. Wlog we can assume that P = λx. J1(· · · (Jlx) · · · ) for the Ji members of $ where if
l = 1 then P = J1. When l = 1 consider a standard reduction of MP1 · · · Pk to P . Now if
one of the Pj comes to the head of the head reduction part of the standard reduction we have

Pj ↠ J1

and Mx1 · · · xk ↠ xj . Otherwise since the members of $ are independent Mx1 · · · xk ↠ J1.
Let l > 1, and let

MP1 · · · Pk ↠ λx. J1(· · · (Jlx) · · · )

by a standard beta reduction. Now if one of the Pj comes to the head of the head reduction part
let @ be the substitution [P1/x1, . . . , Pk/xk]. We have for some X, Pj = λx. J1(· · · (Jmx) · · · )
or J1

λx. Pj(@ X) ↠ P

(λx1 · · · xkx. X)P1 · · · Pk ↠ λx. Jm+1(· · · (Jlx) · · · ).

In this case the proposition follows by induction on l. If no Pj comes to the head then at the
end of the head reduction we have a term

λx. @((λy. Y )Y1 · · · Ym)
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which reduces to P by internal reductions. Thus m = 2 and @((λy. Y )Y1) ↠ J1 by internal
reductions, and

(λx1 · · · xkx. Y2)P1 · · · Pk ↠ λx. J2(· · · (Jlx) · · · ).

Since the Ji are independent (λy. Y )Y1 ↠ J1 and the case follows by induction. ◀

Now if T is any set of equations between products of members of the independent set
$ then the lambda theory generated by T is certainly consistent since all these terms are
unsolvables. Now these equations can be thought of as the presentation of a semigroup on
the alphabet $. If P = Q is an equation between products of members of $ then we may
have T ⊢ P = Q where T is a lambda calculus theory, or T ⊢ P = Q where T is thought of
as the presentation of a semigroup. It will be convenient to use the terminology T ⊨ P = Q

for the semigroup case. Clearly if T ⊨ P = Q then T ⊢ P = Q.

▶ Lemma 12. If T ⊢ P = Q then T ⊨ P = Q.

Proof. Suppose that T ⊢ P = Q. By Jacopini’s theorem ([5]) there exist M1, . . . , Mm, and
P1 = Q1, . . . , Pm = Qm in T s.t.

P ∼ M1P1Q1

M1Q1P1 ∼ M2P2Q2

M2Q2P2 ∼ M3P3Q3

...
MmQmPm ∼ Q,

The proof is by induction on m. Wlog we can assume that P = λx. J1(· · · (Jlx) · · · ). By
lemma 11 there exists a B polynomial F (x1, x2) over $ s.t.

M1x1x2 ∼ F (x1, x2)

so

P ∼ F (P1, Q1)
T ⊨ P = F (P1, Q1)
T ⊨ P = F (Q1, P1)

F (Q1, P1) ∼ M2P2Q2

and we can apply the induction hypothesis to

F (Q1, P1) ∼ M2P2Q2

M2Q2P2 ∼ M3P3Q3

...
MmQmPm ∼ Q. ◀

▶ Theorem 13. O0 is sq-universal.

Proof. Suppose that the countable semigroup S is given. We take a set of generators and
a presentation of S on these generators. Using lemma 9, we construct an independent set,
which we identify with these generators, and we construct a lambda theory T , which encodes
the presentation of S. By lemma 12 T ⊢ P = Q if and only if P = Q is true in S. But by
section 2 there is a homomorphism h of O0 s.t. T ⊢ P = Q if and only if h(P ) = h(Q). ◀
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