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Abstract
The sharp increase in demand for performance has prompted an explosion in the complexity of
modern multi-core embedded systems. This has lead to unprecedented temporal unpredictability
concerns in Cyber-Physical Systems (CPS). On-chip integration of programmable logic (PL) alongside
a conventional Processing System (PS) in modern Systems-on-Chip (SoC) establishes a genuine
compromise between specialization, performance, and reconfigurability. In addition to typical
use-cases, it has been shown that the PL can be used to observe, manipulate, and ultimately manage
memory traffic generated by a traditional multi-core processor.

This paper explores the possibility of PL-aided memory scheduling by proposing a Scheduler In-
the-Middle (SchIM). We demonstrate that the SchIM enables transaction-level control over the main
memory traffic generated by a set of embedded cores. Focusing on extensibility and reconfigurability,
we put forward a SchIM design covering two main objectives. First, to provide a safe playground
to test innovative memory scheduling mechanisms; and second, to establish a transition path from
software-based memory regulation to provably correct hardware-enforced memory scheduling. We
evaluate our design through a full-system implementation on a commercial PS-PL platform using
synthetic and real-world benchmarks.
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1 Introduction

It is undeniable that the massive increase in expectation on the performance of next-generation
cyber-physical systems has deeply impacted the way we design modern embedded and real-
time systems. High-resolution, high-bandwidth sensors such as lidars, and depth cameras on
the one hand, and data-intensive processing workload such as machine-learning applications
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on the other hand, have exacerbated the push for high-performance embedded platforms.
Following this performance moving target, chip manufactures have significantly scaled up
clock speeds, CPU count, and heterogeneity. For instance, the on-chip integration of powerful
graphic processing units (GPUs) has been the characterizing factor in the NVIDIA Tegra
series of embedded systems-on-a-chip (SoC).

In this context, an embedded architectural paradigm that is surging in popularity among
manufacturers, researchers, and industry practitioners is the PS-PL organization. This
class of embedded platforms integrates on the same die (1) traditional full-speed embedded
CPUs and (2) programmable logic constructed using field-programmable gate array (FPGA)
technology. This organization naturally defines two macro-domains, namely the Processing
System (PS) and the Programmable Logic (PL), hence the name. PS-PL platforms establish a
good trade-off between specialization, raw performance, and mission-specific re-configurability.
The current generation of commercially available PS-PL platforms is dominated by ARM-
based products offered by, most notably, Intel [12] and Xilinx [37]. A pilot large-scale,
high-performance PS-PL system is the Enzian platform [3] being rolled out by ETH Zurich2.
Furthermore, a RISC-V-based solution has been recently made available by Microsemi with
their PolarFire SoC [18].

From a real-time perspective, the co-existence of traditional CPUs and a tightly-coupled
block of PL has more profound implications than expected. Clearly, it is possible to define
custom accelerators in PL and to relieve the main CPUs of some of the heavy data-processing
workload. However, more interestingly, recent studies have highlighted the possibility of using
the PL also as a way to manage the memory traffic originated from the main CPUs [13, 29].
Such a possibility opens the doors for memory traffic inspection and control at the level
of individual transactions; which in turn promises to unlock provable determinism for the
real-time workload.

In this paper, we embrace the concept of PL-aided memory traffic management and propose
an infrastructure to develop, test and evaluate memory scheduling policies. Specifically, we
propose a component, called the Scheduler In-the-Middle– or SchIM, for short – that can
be instantiated in the PL to enforce a set of configurable scheduling policies on individual
memory transactions generated by the CPUs in the PS.

The overarching goal of the proposed SchIM is twofold. First, we want to provide a
playground for researches to test promising novel memory scheduling ideas for multi-core
platforms, much like LITMUSRT [7] fostered research on CPU scheduling techniques. Second,
we want our SchIM to act as an intermediate stepping stone for industrial applications where
strong determinism over memory performance is required. The SchIM can be used to analyze
the behavior of realistic workload in a multitude of what-if memory management use-cases.
We note that such kind of analysis was previously possible only through full-system simulation
or by synthesizing the entire SoC on FPGA – that is, with a soft-core implementation.

In short, this paper makes the following contributions. (1) We demonstrate that a
configurable module could be interposed between the cores and the memory controller to
perform transaction-level scheduling in commercial PS-PL platforms; (2) we propose a
design for a memory scheduling infrastructure that focuses on extensibility and runtime
reconfigurability; (3) we address important issues to correctly account and regulate CPU-
generated traffic when a shared last-level cache is present; (4) we design and implement two
pilot memory scheduling policies as a proof-of-concept on the potential of our SchIM; and (5)
we perform a full system integration and implementation on a commercial PS-PL embedded
platform to evaluate the behavior of the SchIM with synthetic and realistic workload.

2 Also see http://enzian.systems/
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2 Related Work

There is a broad consensus that memory resources represent the main performance bottleneck
in modern multi-core processors. The observation has sparked a host of research works
addressing the problem from multiple angles [17]. In this context, the works representing
the inspiration for our SchIM fall in two macro-categories, namely hardware-based and
software-based techniques for main memory traffic management.

The first category includes a large body of works aimed at achieving better and/or
more predictable performance by advancing novel hardware redesigns. The works in [22–24]
strive to construct high-performance and fair memory schedulers. The addition of software-
controlled memory deadlines and transactional semantics where explored in [33] and [10],
respectively. Next, the work by Åkesson et al. [1, 2] and Paolieri et al. [25] attains timing
predictability through careful scheduling of SDRAM commands. Finally, the MEDUSA
DRAM controller [9, 34] implements a two-tiers scheduler at the DRAM controller to ensure
predictability when accessing memory areas where access time strongly impact application
performance. Finally, the hardware designs proposed in [8, 26, 42] put their emphasis on
main memory bandwidth partitioning; clever dynamic pipelining is further explored in [20]
to better balance average performance and determinism.

Among the software-based techniques are the mechanisms that stemmed from MemGuard,
originally proposed in [41] and that rely on broadly available performance counters to regulate
the bandwidth extracted by individual CPUs. Later extensions to jointly consider regulation
and cache partitioning [38] and to expose control over memory bandwidth as a lockable
resource [39] were proposed. Software-based memory throttling has also been implemented at
the hypervisor-level [21, 30]. Remarkably, the work in [30] combines regulation mechanisms
for CPU and embedded accelerators through the ARM QoS extensions [4].

In addition to the two categories surveyed above, perhaps the most closely related works
are those that explored memory isolation techniques in PS-PL platforms. The work in [11]
demonstrated that the PL-side can be used to define private memory storage, control, and
bus units to strongly isolate high-criticality workload. A number of techniques developed
as part of the FRED framework [6] put an emphasis on memory traffic arbitration and
management for in-PL accelerators [27, 28]. The AXI HyperConnect [27] is perhaps the
component most similar to the SchIM in terms of high-level design. However, both are
substantially different as the SchIM is designed to manage embedded CPUs’ memory traffic.

Compared to the literature reviewed above, what sets this work apart are the following
aspects. (1) Our SchIM applies to existing PS-PL commercial systems without introducing
any hardware modification; (2) it allows management in the PL of memory traffic originated
by the embedded CPUs residing in the PS; (3) it provides the framework to test the feasibility
and performance of custom memory scheduling policies; and (4) it is designed such that
multiple schedulers can coexist, be activated, and configured at runtime.

3 Background Concepts

In this section, we introduce some fundamental concepts necessary to understand the overall
system design and the class of platforms targeted by this work.

3.1 Hybrid Multi-Core Platforms with Programmable Logic
This work targets the aforementioned class of embedded multi-core platforms with program-
mable logic – i.e., PS-PL platforms. In such platforms, the PS encompasses a multi-core
processor with a multi-level cache hierarchy and a main memory (DRAM) controller. A

ECRTS 2021
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Figure 1 PS-PL interconnect block diagram.

simplified block diagram for a reference PS-PL organization is illustrated in Fig. 1. The
figure considers a platform with four CPUs denoted as C0, C1, C2, and C3.

A key feature in PS-PL platforms is the presence of high-performance communication
channels between the two domains. These come in the form of data exchange interfaces
and interrupt lines. Data exchange channels follow a master-slave paradigm. Specifically,
high-performance masters (HPM, Fig. 1 1 ) and high-performance slaves (HPS, Fig. 1 2 )
send and receive transactions to and from the PL, respectively. Additionally, there exist
programmable interrupt request (IRQ) lines (see Fig. 1 3 ) that can be driven by the PL
and are connected to the interrupt controller (Fig. 1 4 ) inside the PS. As we discuss in
Section 5.7, the presence of PS-PL interrupt lines is crucial to building PL-assisted memory
traffic regulation.

Note also that there might exist PS-PL data ports that are routed through a secondary
interconnect (Fig. 1 8 ). These can generally sustain less throughput compared to HPS ports;
hence we refer to them as low-performance masters (LPM, Fig. 1 9 ). LPM ports are useful
to perform memory-mapped configuration of PL modules.

3.2 Programmable Logic In-the-Middle
In this work, we leverage the ability to route main memory traffic originated by the CPUs
through the PL. This technique is known as Programmable Logic In-the-Middle, or PLIM
for short. PLIM was originally proposed in [29]. To fully grasp how PLIM can be achieved,
one needs to understand how memory accesses are routed in PS-PL platforms.

Any CPU-generated memory access that results in an LLC miss is routed directly to
main memory if its physical address falls within the aperture, say the address range [A, B]
handled by the DRAM controller. We refer to this as the normal route, depicted in Fig. 1 5

and highlighted in yellow.
Conversely, generic memory access resulting from an LLC cache miss will be sent on an

HPM port if the corresponding physical address falls within another range, say [C, D]. One
can then insert (1) a lightweight layer of virtualization to map all the physical addresses
of a guest OS to the PL, i.e., to fall in the range [C, D]; and (2) an address translator in
the PL that re-bases request physical addresses to access main memory and relays back the
data payload to the requesting CPU(s). In other words, one can find a constant k such that
C = A + k. Then, the translator in the PL, upon receiving any request at address x ∈ [C, D]
will issue a main memory request at the address (x − k) through the HPS port and provide
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the response to the CPU. The PLIM technique introduces a secondary memory route for
reaching the DRAM, called the PL loop-back, or simply loop-back, which is highlighted in
blue in Fig. 1 6 . Memory transactions on the loop-back route typically traverse the main
interconnect, as depicted in Fig. 1 7 . The advantage of PLIM is that transactions on the
loop-back route can be inspected, blocked, re-routed, and in general managed by custom
re-programmable logic. Importantly, switching from the direct to the loop-back route can
be done dynamically at runtime so that the overhead of PLIM can be avoided if deemed
detrimental for the application under analysis.

In this paper, we leverage the PLIM approach to perform memory scheduling, hence, we
call our module the Scheduler In-the-Middle, or SchIM for short.

3.3 Advanced eXtensible Interface (AXI)

The vast majority of PS-PL platforms currently available are ARM-based. This is also the
case for the platform we used for our evaluation, namely the Xilinx Zynq UltraScale+ MPSoC.
Thus, we briefly introduce the communication protocol used for on-chip communication
in ARM-based SoCs, namely the Advanced eXtensible Interface (AXI). The AXI is an
open specification bus protocol [5] used for high-bandwidth data exchanges between on-chip
subsystems – such as cache controllers, memory controllers, DMAs, PL modules. It is also
used in the PS-PL platforms of reference to exchange data on the HPM and HPS ports.

The AXI protocol is based on the master-slave duality. A master AXI interface can
initiate transactions toward a connected slave interface. The latter responds master-initiated
requests. Masters and the slaves communicate with each other through five different channels
named AW (address write), W (write), B (write acknowledgment), AR (address read) and R
(read), as illustrated in Fig. 2a.

A write transaction begins with an address phase 1 where the channel AW is used to
transmit the transaction’s meta-data, such as the destination address, the transaction ID,
and the cacheability attributes the type/length of the burst, and so on. Upon completing
this phase, follows the data phase 2 , which consists of the transmission of the data payload
to be written through the W channel. The response phase 3 concludes a successful write
transaction and occurs on the B channel.

The transmission of a read transaction is carried out in a similar way. The address
phase 1’ is transmitted through the equivalent AR channel and is directly followed by the
data phase 2’ . A response initiated by the slave follows where the read data is transferred over
the R channel. The protocol is asynchronous because different phases of different transactions
can interleave on any AXI bus segment. Hence, multiple outstanding transactions can be
emitted by a single master and the receipt of out-of-order responses is possible.

ECRTS 2021
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Figure 3 SchIM internal organization connected to the PS via the HPM, LPM and HPS ports.

4 Design Goals and Overview

In this section, we introduce the proposed SchIM design and describe the overarching goals
of this work. We then provide a bird’s-eye view of the SchIM organization and principles
of operation.

4.1 Design Goals

As briefly surveyed in Section 2, there have been numerous proposals for better memory
controllers and approaches to manage memory traffic in modern multi-core embedded
platforms. With respect to the existing literature, the purpose of this work is twofold. First,
we want to demonstrate that scheduling CPU-originated memory traffic at the granularity
of individual transactions is possible in PS-PL platforms. Second, and more importantly,
we want to provide an infrastructure that is generic and extensible enough for the broader
research community to adopt and foster a new chapter on PL-assisted memory scheduling.
With this in mind, we establish the following goals.

Extensible memory scheduling infrastructure. First and foremost, the SchIM has been
designed with modularity and extensibility in mind. We separate the functionalities that con-
cern handling, queuing, selection, and forwarding of memory requests inside our infrastructure.
Moreover, we design our SchIM to be able to support multiple memory scheduling policies
simultaneously. A simple, standardized interface is provided to define new memory scheduling
policies without impacting the design of the rest of the SchIM. We discuss in Section 5.5 the
generic interface provided by the SchIM to implement a new memory scheduling policy.

Runtime configuration and transparency. We want the SchIM to be a robust supporting
infrastructure to evaluate, compare, and contrast memory scheduling policies. As such, we
strive to provide (1) runtime reconfigurability and (2) operational transparency. It is possible
to rapidly identify desirable configuration parameters by allowing memory scheduling policies
to be switched at runtime. Besides, an adopted policy can be tuned according to the workload
criticality and memory intensiveness. For this purpose, the SchIM exposes a memory-mapped
configuration interface where all the operational parameters can be changed at runtime. At
the same time, we want to ensure that the applications and the (real-time) operating system
under analysis do not need to be modified to use the SchIM. Hence, we propose using a thin
virtualization layer to selectively route memory traffic through the SchIM without changes
to the binary of OS kernel and applications.
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Realistic performance with experimental policies. One of the limiting factors of research on
memory scheduling policies is the ability to construct evidence of performance improvements
with the realistic workload. Proposing a new memory scheduling policy is traditionally done
with either a simulated setup or with a full-system soft-core implementation. Both cases have
their drawbacks. The former gives a great deal of flexibility but achieving clock-level accuracy
requires simulating many SoC components whose details might not be publicly available. In
addition, simulated setups that propose custom hardware designs cannot be directly adopted
on real platforms without being first synthesized in hardware. Full soft-core-based SoC
implementations suffer from two shortcomings. First, they run at relatively low frequencies
and thus can extract only a fraction of the available DRAM bandwidth. Secondly, they are
typically based on processor IPs that do not feature the same Instructions Set Architecture
(ISA) as widely available COTS, which further limits the practical impacts of these works.

As reported in [29], re-routing the traffic of the core cluster through the PL-side comes at
a cost in terms of extra latency and reduced bandwidth. Nonetheless, as PS-PL platforms
mature and the interplay of PL and memory resources improves, a SchIM-like design could
be the way to go for mission-reconfigurable, upgradable embedded systems.

4.2 Design Overview
As previously mentioned, the SchIM leverages the PLIM approach. CPU-originated main
memory transactions are re-routed through the programmable logic and scheduled by the
SchIM according to a flexible and configurable policy. The result is that the timing of
memory transactions generated by real-time applications can be carefully determined and
reasoned upon. Because the SchIM follows a PLIM approach, transactions can be selectively
sent to the SchIM for scheduling. However, it is always possible to dynamically exclude the
SchIM and route transactions directly to the main memory. Toward this paper’s incentive,
we consider a setup in which SchIM handles all the CPU-generated memory transactions.

Fig. 1 provides an overview of the location of the SchIM in the reference platform, while
its internal organization is visible in Fig. 3. Application memory requests reach the SchIM the
aforementioned HPM ports. Without loss of generality, we consider a SchIM instance with
two arrival lanes, which are labeled as HPM1 and HPM2 in Fig. 3. The SchIM then forwards the
received transactions towards main memory through the HPS interface. A more detailed view
of the SchIM module is provided in Fig. 3 where the same convention is used to identify input
and output ports. In addition, as shown in Fig. 3, a fourth LPM port is used to configure the
SchIM from the PS.

The SchIM is composed of a number of sub-modules grouped into three different domains,
namely (i) the interfacing domain, (ii) the queuing domain, and (iii) the scheduling domain.

The interfacing domain encompasses the sub-modules to interface the core logic of
the SchIM with the rest of the system using the AXI protocol. This is comprised of three
sub-modules. These are (i) the packetizer(s), (ii) the serializer, and (iii) the previously
mentioned configuration interface.

The PS-facing end of the packetizer offers an AXI slave port to accept new incoming
transactions. Upon receipt, this module transforms each transaction into an equivalent packet
that can be queued and scheduled by SchIM. Packetization of AXI transactions is necessary
to be able to store transactions that are serial by nature. A standard AXI transaction is
composed of one address phase (AR or AW channel) followed by a data phase (R or W
channel), which can be itself composed of multiple successive bursts.

In many ways, the serializer is the dual module of the packetizer. Its purpose is to
transform the packets that encode CPU-generated memory requests back into AXI-compliant
transactions. As such, the serializer offers a master port to the rest of the system to be
routed to the main memory controller.

ECRTS 2021
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The queuing domain handles how packets are stored between receipt and re-
trasnmission. This domain is comprised of (i) the dispatcher module, (ii) the transaction
queues, and (iii) the selector module.

The use of multiple transaction queues is necessary to differentiate the traffic of the
CPUs and perform scheduling. As such, the SchIM associates a queue to each of the active
cores – four in the platform of reference. The queues implemented in the SchIM not only act
as a holding space for in-flight memory transactions. They also (a) provide information to
the scheduling domain regarding their current state, and (b) they can generate a congestion
control signal to the associated CPU core.

Congestion control is vital because memory transactions originated at the LLC controller
follow the same route to the SchIM regardless of the originating CPU. The total number of
outstanding transactions that the cores can emit exceeds the queuing elements’ capacity on
the loop-back route. Hence, priority inversion arises if a low-priority CPU’s memory traffic
is (temporarily) held. Latter is due to the uncontrolled queue buildup, which provokes a
head-of-line blockage. Importantly, what described is true also for the normal route and it is
a direct consequence of the best-effort nature of traditional multi-core memory buses. The
SchIM allows the user to specify a configurable threshold on the occupancy of the queues
that, when reached, issues a regulation signal to the corresponding CPU. We describe in
greater detail how congestion control was implemented on the target platform in Section 5.7.

As suggested by Fig. 3, transactions are categorized and enqueued based on the source of
traffic. The dispatcher module performs the matching between an incoming transaction
and the destination queue. Similarly, transactions are dequeued by the selector module and
sent directly to the output of the SchIM following the scheduling domain’s resolutions.

The scheduling domain encompasses all the sub-modules that enable arbitration of
transactions issued by the different cores of the PS. The modules in this domain are intended
to be generic for extensibility, albeit the first set of two template schedulers is provided as
a proof of concept. The scheduling policies currently implemented in the SchIM are Fixed
Priority (FP) and Time Division Multiple Access (TDMA). Each of the parameters required
by the implemented policies – such as the priorities and the periods – can be adjusted at
runtime via the configuration interface.

The FP scheduler allows associating a priority value to each of the transaction queues.
Pending transactions at the queues are then forwarded out of the SchIM following the
user-defined priority order. The TDMA scheduler allows associating a transmission time slot
to each of the queues expressed in PL clock cycles. The module then builds a schedule by
concatenating the per-core slots so that only pending transactions from one queue at a time
are forwarded by the SchIM.

5 SchIM Design and Implementation

A full-system implementation was carried out on a Xilinx ZCU102 development system,
which is based on a Xilinx Zynq UltraScale+ XCZU9EG PS-PL SoC. The PS comprises four
ARM Cortex-A53 CPUs that share a unified 1 MB LLC. The PS includes a DDR4-2666
controller connected to a 4 GB DDR4 memory module. There are two high-performance
master interfaces (HPM1 and HPM2); and a third interface routed through the low power
domain (LPM). The PL is capable of driving up to 16 interrupt requests lines towards the
PS interrupt controller. We hereby provide key details on the operation of our SchIM in the
target platform. These include complementary software stack, memory traffic accounting,
regulation to prevent head-of-line blocking, and programming model.
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5.1 Software Stack
As mentioned in Section 4.1, we want to ensure that the SchIM can be used with no
modification to the OS and the applications under analysis. For this reason, we rely on a
thin virtualization layer that can be used to redirect memory traffic from the direct route to
the loop-back route (see Section 3.2). For this purpose, we use the open-source Jailhouse [16]
partitioning hypervisor3 Jailhouse does not boot the target machine. Instead, it relies on a
standard Linux kernel to perform the initial boot sequence. When enabled from a Linux
driver, Jailhouse dynamically virtualizes the original OS. In line with its partitioning-only
philosophy, Jailhouse has a small footprint and enforces virtualization-aided partitioning of
essential resources like CPUs, interrupts, main memory, I/O devices. It does not perform
any virtual-CPU scheduling.

Following Jailhouse’s nomenclature, a resource partition is called a cell, while guest OS’s
are referred to as inmates. An inmate can be either a bare-metal application, an RTOS
or a full-fledged OS like Linux. Jailhouse uses ARM hardware Virtualization Extensions
(VE) to offer a set of Intermediate Physical Address (IPA) to its inmates that is compatible
with the way they have been compiled. Jailhouse then maps IPA ranges of different cells
to configurable Physical Addresses (PAs) – stage-2 translation. By changing the configured
stage-2 mapping, it is possible to dynamically re-route via the loop-back the memory traffic
generated by each inmate.

As described below, some modifications were necessary to the mainline Jailhouse code for
our full system implementation4.

5.2 Altered communication scheme
In order to achieve the objective of re-ordering transactions, one must alter the standard AXI
communication scheme explained in the Section 3.3. To this end, the SchIM is interposed
between the master (HPM) and the slave (HPS) as depicted in Fig. 2b. As shown in Fig. 2b,
only the phases initiated by the masters (i.e., address phase on AW and AR and the data
phase on W) are intercepted for re-ordering by the SchIM. The introduction of the SchIM
has a direct consequence on the overall communication scheme. Unlike the response phases
on channels R and B that remain unchanged, the address and write data phases are handled
following a store-and-forward scheme. Consequently, a write transaction will start exactly
as in the standard AXI scheme with its address phase 1 and data phase 2 . These two
transactions are buffered within the SchIM’s queues ( 3 ) and only relayed following the
internal memory scheduler’s logic. This release of the transaction leads to the initialization
of two new addresses and data phase 4 , and 5 . Finally, the response phase 6 goes directly
from the slave to the master without being intercepted. For read transactions, the same
modifications apply to the address phase 1’ which is buffered ( 2’ ) for some time before being
re-emitted in 3’ . Just like for write acknowledgments writing, the read response phase 4’ is
not intercepted by the SchIM.

5.3 Queueing Domain
At the heart of the queueing domain, lies the queues. They work as FIFOs. However, instead
of inserting the new data at the back of the queue, the new data is always inserted as close
as possible to the front of the queue. This mechanism helps avoiding gaps within the queues
prevents the loss of few clock cycles that would be required to move the data from the back
to the front. From the authors’ experiments, saving clock cycles in SchIM is vital to keep
the final bandwidth as high as possible.

3 The source code is available at https://github.com/siemens/jailhouse.git.
4 The modified Jailhouse sources are available at https://github.com/rntmancuso/jailhouse-rt. ECRTS 2021
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Furthermore, the queues have been designed to deal with three constraints. Firstly, the
queues store both read and write packets such that the order at which transactions arrived
is guaranteed. This implies that all the queue slots have the same size regardless of whether
they contain read or write packets. Secondly, due to the altered communication scheme (see
Section 5.2), each slot needs to be large enough to store both the address phase payload and
the corresponding data of an AXI write transaction (678 bits). The depth of each queue is
determined by considering the worst-case scenario. The latter consists of having to handle
the maximum number of outstanding read and write transactions simultaneously. Our SchIM
instance on the considered Xilinx UltraScale+ platform was configured with queues that are
16 slots in-depth. Indeed, the HPM ports in this platform cannot handle more than eight
transactions of each type [37].

5.4 LLC-SchIM Interface and Traffic Accounting
As illustrated in Fig. 1, the considered system features an LLC shared between the four cores
of the PS. For a non-cacheable read (resp., write) memory access, which CPU represents
the source of the traffic is carried in the ID bits of the corresponding AR (resp., AW) AXI
transaction. But for cacheable memory accesses, which is the norm for application workload,
this is not the case. This is mainly because cache controllers typically use a write-back
strategy. In this case, a read or write cache miss causes up to two events: (1) a cache refill
and (2) a cache eviction. The cache refill is carried out with a read AXI transaction. If
the line being evicted was previously written (dirty), then the eviction causes a write AXI
transaction. It follows that, while read AXI transactions have an easily identifiable source,
write transactions do not. Indeed, a CPU x might be causing the eviction of a line previously
allocated and modified by CPU y. Hence, accounting (and scheduling) the resulting write
transaction as if it originated from CPU x would be incorrect.

To ensure fair accounting for both read and write traffic, we rely on cache partitioning
through coloring. As studied in a number of previous works, cache coloring is easy to
implement at the hypervisor level [15, 21,32]. In our system setup, we leverage the support
Jailhouse already provides. The standard support has been extended to support booting
a Linux inmate over colored memory. Cache partitioning allows us to establish a 1-to-1
relationship between any read/write transaction traversing the SchIM and the originating
CPU. Moreover, with cache coloring in place, the SchIM uses the color bits in the address
of the memory transactions (AR and AW channels) – instead of the AXI ID bits – to
differentiate between the traffic of the various cores.

Finally, recall that the SchIM forwards transactions between HPM and HPS ports. These
ports follow the asynchronous AXI protocol that allows issuing multiple outstanding AR and
AW transactions. The protocol dictates that any outstanding transaction must have a unique
AXI ID. This property is crucial to be able to match received responses with outstanding
requests. Unfortunately, a potential mismatch between the bit-width of the AXI ID emitted
at the HPM ports and the bit-width of AXI ID accepted by the HPS ports. For instance, in
the platform of reference, the HPMs emit 16-bit AXI IDs, while the HPS AXI ID bit-width
is 6 bits. Therefore, the SchIM also acts as an AXI ID translator.

5.5 Scheduling Interface and Implemented Policies
All the memory schedulers included in the scheduling domain share a common interface to
ease the integration of a new scheduler. In terms of input signals, a generic scheduler module
must define (1) a manual reset signal that can be triggered through the configuration port;
(2) a vector of bits where each bit indicates whether the associated queue is empty; and (3) a
signal indicating if the last scheduled transaction as been consumed. Alongside these inputs,
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the scheduling modules also have access to all the configuration registers listed in Table 1.
In terms of outputs a SchIM scheduler must define (1) a signal to the selector indicating
the queue considered for scheduling; and (2) a signal stating whether the current scheduling
decision is valid. We hereby review the initial set of memory scheduling policies implemented
in the SchIM.

5.5.1 Fixed Priority
The FP scheduling module aims at enforcing strict prioritization of cores’ memory traffic.
The priority ordering is explicitly defined by the user through the configuration port. While
the SchIM instance used in this paper only has four queues, 16 different levels of priority
are offered as the considered platform supports up to 16 different colors. This is useful if an
hypervisor that supports vCPU scheduling is used. In this case, the SchIM allows assigning
different priorities to different partitions sharing the same physical CPU. The core-to-priority
assignment must be strict, meaning that two cores cannot be assigned the same priority.

The FP scheduling module only needs two pieces of information. That is (1) the priority
associated with each queue and (2) whether a given queue contains at least one buffered
transaction. The module logic always selects the queue with the highest priority. Lower
priority queues are considered when higher priority queues do not have transactions. This is
done by internally setting the user-defined priority of a queue as 0 when the corresponding
queue is empty.

5.5.2 Time Division Multiple Access
The TDMA memory scheduler is a non-work conserving policy that operates by defining a
per-core time slot during which the core has exclusive access to main memory. The slots are
expressed in PL clock cycles, to maximize granularity. The configuration port can be used to
specify and change the slots specifications at runtime.

The implementation of the module uses a counter register to track the time elapsed in
the current TDMA primary frame – defined as the sum of all the cores’ slots. It is reset
to 0 at the beginning of a new major frame. Using the time-tracking register, the module
determines to which core the current slot belongs, and forwards the information to the queue
selector. This is done by summing up the length of all the previous slots, and determining if
the current time falls within the interval of the considered core’s slot.

5.6 Programming Model
The parameters that compose the programming interface of the SchIM are summarized in
Table 1. The base address referenced in the table can be set when the SchIM is deployed in
the PL. By default, this is set to 0x800000000. All the parameter registers are 32 bit wide,
except for the priorities of the FP scheduler. In this case, the priority values are encoded
using 8 bits. The last “Mode” register allows a user to select the active memory scheduler.

5.7 PL-to-PS Feedback
Each of the HPM ports interfacing the PS and the PL sides (HPM1 and HPM2) have two
dedicated queues for read and write transactions. Since transactions are being buffered inside
SchIM as well as in these port buffers, head-of-line blocking can happen. Head-of-the-line
blocking is harmful for performance; and can cancel out the benefits of transaction scheduling
performed by the SchIM. For instance, in the case of a non work-conserving policy (e.g.,
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Table 1 Available SchIM configuration registers.

Parameter Associated Core Address

TDMA slots

C0 base+0x00
C1 base+0x04
C2 base+0x08
C3 base+0x0C

User Thresholds

C0 base+0x10
C1 base+0x14
C2 base+0x18
C3 base+0x1C

FP Priorities C0 C1 C2 C3 base+0x20
Reserved

Mode N/A base+0x38

TDMA), if the HPM port queue gets filled with transaction coming for the same core, no
other transaction will be able to reach the SchIM and thus be considered for scheduling. This
implies that no transaction would be scheduled until the end of the active core’s TDMA slot.
On the other hand, for work-conserving policies (e.g., FP) in the presence of head-of-line
blocking, the decisions being taken by SchIM would directly depend on the order at which
transactions are emitted by the HPM port buffer.

In both cases, one must prevent the cores from saturating the HPM port buffers. In
order to avoid such situation, we implemented a feedback scheme aimed at slowing down
the cores when necessary. As we mentioned in the context of Fig. 3, the SchIM’s queues are
associated a programmable threshold. Whenever the queue occupancy reaches (or exceeds)
the associated threshold, a per-core interrupt line is asserted from the PL to the PS side.
When received, the interrupt is treated by the platform software as a fast interrupt request
(FIQ) and directly handled by the hypervisor – invisible to any guest OS. The advantage of
using FIQs instead of regular IRQs is the significantly reduced handling latency [31]. Minor
modifications to the TrustZone monitor were necessary to correctly configure FIQ handling.
To minimize overhead, the installed FIQ handler only executes two assembly instructions.
These are (1) a dsb memory barrier that stops the core until all the outstanding memory
transactions have been completed, and (2) a eret instruction to exit the FIQ context. There
is not need to save/restore any register because FIQs have banked syndrome/status registers
and because no general purpose register is modified in the handler.

Ideally, the available space in the HPM buffers should be shared evenly between the cores.
Since each HPM port has a buffer with a depth of 8+8 transactions, each core should occupy
at most 2 slots in each buffer. Unfortunately, our experiments highlighted that the control
over amount of transactions buffered by each core is imperfect. Often times, the selected
threshold is exceeded by up to two transactions. This is the main reason why we propose
a dual-ported SchIM which uses both the available HPM ports. Indeed, by assigning two
cores on each of the ports, the ideal threshold on maximum amount buffered transactions
can be doubled. The increase provides enough room to compensate for imperfections in the
micro-regulation performed with PL-to-PS FIQ delivery.
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6 Evaluation

The present section aims at evaluating the behavior of the SchIM on the target platform, its
overhead and benefits. First, in subsection 6.1, we review our experimental setup. Thereafter,
we assess the overhead introduced by the SchIM in Section 6.2. Section 6.3 explores the
impact of the PL-to-PS feedback on the control and the performance. In Section 6.4, an
in-depth analysis of the SchIM’s behavior is presented. Finally, an evaluation of the temporal
behavior of a set of real-world benchmarks operating through the SchIM is provided in
Section 6.5.

6.1 Experimental Setup

The SchIM has been evaluated using synthetic benchmarks (or Memory Bombs), real
benchmarks selected from the San Diego Vision Benchmark Suite (SD-VBS) [35] and a
combination of the two. Specifically, seven memory-intensive benchmarks have been selected,
i.e. stitch, texture synthesis, disparity, tracking, localization, mser and sift. For our runs, we
have considered all the intermediate input sizes ranging from SQCIF (128×196 pixels) to
VGA (640×480 pixels). When running any benchmark, we use the cache coloring mechanism
implemented in the Jailhouse hypervisor [32] to partition the LLC evenly amongst the 4 cores
and to prevent our measurements from being affected by inter-core cache interference. As a
result, each benchmark operates on 1/4 of the total cache space – 256 KB. As extensively
discussed in [14, 40], it is also important to avoid inter-core DRAM bank conflicts, which
can cause the arbitrary re-ordering of transactions originating from different cores. This is
accomplished by (1) configuring the DRAM controller to disable DRAM bank interleaving;
and (2) by performing static cache bleaching [11,29] at the SchIM’s output to re-compact
accesses to colored pages into contiguous DRAM accesses. In this platform, there are a
total of 16 DRAM banks of 256 MB each. Thanks to bleaching, we can assign the full size
of 4 banks (i.e., 1 GB) to each core, instead of being restricted to only 1/4 of that due to
non-overlapping color and bank address bits.

To evaluate the capabilities of the SchIM, two memory routes for the traffic generated
by the cores are compared. The first serves as baselines, whereas, the last one is the one
under analysis and involves the SchIM module. The first path consists in the cores directly
accessing the main memory. As illustrated in Fig. 1, the traffic simply goes through the
Main Interconnect before arriving at the DDR controller. This path is referred to as the
normal route. Secondly, we consider the case where the SchIM module is deployed and in use
to schedule memory traffic generated by the CPUs in the PL. Cores 0 and 1 target HPM1
aperture, while cores 2 and 3 target HPM2. In our analysis, the SchIM is used in all the
available modes, i.e., FP and TDMA.

Note that in the case of the normal route, combining both a strict cache partitioning and
strict bank partitioning could not be applied. In fact, as a direct consequence of the address
coloring and in the absence of a bleacher, only 1/16 of each 1 GB wide memory allocation
can be used by each core. The resulting reduced space of 64 MB is not enough for running
Linux. Consequently, in the case of the normal route, the cores have been split into two
groups of two, where each group targets independent sets of banks. This configuration allows
the cache to be partitioned using address coloring.
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Figure 4 Bandwidth in MBps for different path under increasing set of cores contending.

6.2 Platform Capabilities and performance degradation
Intuitively and as discussed in [29], redirecting the traffic coming from the cores to the PL
side incurs a performance hit. In spite of the lower frequency at which the SchIM operates
(250 MHz), the theoretical throughput when using both the HPM lanes should be around
8 GBps. We observe, however, that the achievable throughput through the HPM ports is
a fraction of what we measured by accessing the main memory through the normal route
(2116.5 MBps and 1207.41 MBps for solo and full contention by 3 other cores, respectively).
We further provide a discussion on the bandwidth drop when transactions are routed through
the PL in Section 7. For the sake of completeness, we quantify in Fig. 4 the maximum
bandwidth achieved through the PL – and hence through the SchIM. Nevertheless, it is
important to remember that the absolute figures are strictly platform dependent.

In Fig. 4, we have computed the throughput of one core under analysis, here core 0 (noted
C0) when a synthetic memory-intensive application is deployed on an increasing number
of cores denoted with the same notation. The first bar cluster (“Normal”) refers to the
throughput measured via the normal route. The other two clusters capture the observed
bandwidth when traffic is routed through and managed by the SchIM. One cluster is provided
for each of the implemented memory scheduling policies, namely – from left to right – FP
and TDMA. As expected, there is a sharp reduction (around 75%) in terms of absolute
bandwidth. Importantly, however, two aspects need to be highlighted. First, the bandwidth
achieved through the SchIM is still remarkably high and allows studying the behavior of the
realistic workload under custom memory scheduling policies, which is the primary goal of
this research. Second, it emerges that the implemented FP and TDMA policies are capable
of protecting the core under analysis from inter-core interference, while this is not the case
when going through the normal route.

6.3 PL-to-PS feedback performance impact
As mentioned in Section 5.7, the PL-to-PS feedback enables our SchIM to regulate the HPM
ports buffer occupancy to prevent head-of-line blocking. Since this feedback directly throttles
the desired core, the selection of an adequate threshold is important to preserve the balance
between control and performance. Therefore, in Fig. 5, we have explored the sensitivity to
the threshold for each of the proposed schedulers under different levels of contention. The
thresholds in use range from 1 to 8 and even include the case where the feedback mechanism
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Figure 5 Figures showing the impact of the threshold in use on the final bandwidth experinced
by the cores for the offered schedulers.

is disabled (noted NA). The contention is created by up to four co-running cores emitting
write transactions. For each parameter applied to a scheduler (i.e., fixed priority or TDMA
slot), the co-running cores are assigned the most demanding parameters available (i.e., the
highest priority for FP or the biggest TDMA slot).

In the case of the FP scheduler (Fig. 5a), one can observe that when running alone, the
threshold has no influence on the throughput. However, as soon as co-runners are added, the
cores start to experience a decrease in throughput. Fig. 5b shows that the TDMA scheduler
is not impacted considerably by the threshold with respect to the throughput. Globally, the
scheduler manages to preserve a constant throughput regardless of the contention and the
assigned slot.

Nonetheless, under high contention, one can observe that the throughput of each core is
affected. The fourth inset of Fig. 5a and Fig. 5b illustrate the importance of the threshold and
the PL-to-PL feedback mechanism as a a considerable drop of throughput can be observed
for the highest priority of FP and for a TDMA period of 32.

Considering these experiments, setting the threshold to four for all the schedulers seems
to bring the best trade-off between control and performance. However, this value cannot be
blindly applied to all cases as this experiment is performed for a sequential and contiguous
access pattern.

6.4 Internal Behaviour of SchIM
The next objective is to verify the correct behavior of the schedulers at the granularity of
a clock cycle by observing the inputs, the outputs and the internal signals and registers
of the SchIM module. This is made possible thanks to the Integrated Logic Analyzer (or
ILA) provided by Xilinx [36]. The latter IP can be directly implemented on the PL side,
alongside the SchIM, and is able to probe the signals and to store them in a local memory.
For this experiment, a group of relevant internal signals have been probed and captured
during a window of 16384 contiguous clock cycles. Then, the information has been extracted
by post-processing the data. To characterize the behavior of the two different policies, the
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Figure 6 Trace snapshots of SchIM for FP (6a), TDMA (6b).

ILA has been instrumented to collect (i) the amount of transactions being buffered in the
queues at each clock cycle (inset 1 in Fig. 6a and Fig. 6b) (ii) the rate at which queues receive
new transactions from the cores cluster (inset 2 in Fig. 6a and Fig. 6b) and (iii) the queues
ID of each transaction forwarded by the SchIM module (inset 3 in Fig. 6a and Fig. 6b).

For the Fixed Priority trace snapshot displayed in Fig. 6a, the following strict priority
ordering has been considered: C0 ≻ C1 ≻ C2 ≻ C3 where the ≻ operator means that the
left argument has a strictly higher priority than the right argument. In this experiment,
a regulation threshold of 3 for each core has been used. As emphasized by the inset 2 in
Fig. 6a, the FP scheduler is able to prioritize the traffic of one core at the expense of the
others according to the priorities assignment. Furthermore, one can observe that the rate at
which the queues receive new transactions from their associated core is proportional to the
priority level in the priority ordering. Finally, the third inset in Fig. 6a confirms the correct
behavior of the FP policy.One can see that the cores with the highest priority also feature
the highest density of transactions at the output of the SchIM.

The trace snapshot displayed in Fig. 6b has been obtained by configuring the SchIM
module in TDMA mode. For the sake of clarity, a slot of 256 clock cycles has been set for each
core. Besides, the threshold of each core has been set to 4 to create sharp transitions. The
insets 2 and 3 of Fig. 6b clearly show the behavior expected from a TDMA schedule. In fact,
one can clearly see in the latter that transactions originating from one core are only being
repeated out of the SchIM module during a well-defined and periodic time slot of 256 clock
cycles. In the inset 2 of Fig. 6b, we can observe a similar pattern, with transactions arriving
only during the TDMA slot associated with their queue (and indirectly core). Globally, the
rate at which queues receive transactions is steady and constant.

6.5 Memory Isolation
On the platform considered for this set of experiments, the Xilinx ZCU102 development board,
we denote three main sources of inter-core performance interference: (1) cache contention,
(2) DRAM bank conflicts, and (3) the congestion and saturation of the memory controller.
Despite their orthogonality, the two first sources are tackled respectively via the integration
of page coloring in the hypervisor and static bleaching in the SchIM. On the other hand,
since the SchIM provides fine-grained control over the timing and ordering of transactions
originating from the application cores as they reach the memory controller. Thus, the SchIM
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Figure 7 Normalized execution time for each benchmark and input size for Solo and Stress. Each
column denotes a given benchmark of the SD-VBS suite, while each row denotes a specific input
size (in increasing order from top to bottom).

brings memory bandwidth management into the PL, and provides not only regulation but a
generic infrastructure to experiment with custom bandwidth management techniques, both
work-conserving and non-work-conserving.

The evaluation setup considered for this experiment is identical to the one presented in
Section 6.1. The routes going through the PL and using our SchIM (i.e., FP and TDMA)
benefit from both cache partitioning and bank partitioning. On the other hand, the normal
route uses cache partitioning and sees its cores divided into two sets targeting each a different
group of private banks.

To evaluate the capability of our SchIM with respect to its ability to ensure performance
isolation between the cores, a set of experiments involving SD-VBS benchmarks were designed.
Here, we compare the execution time of an application on a given core when running alone
(referred to as Solo) and when running alongside interfering synthetic benchmarks (write
memory bombs) on all the other cores (referred to as Stress). For each combination of a
route to main memory (i.e., the normal route or the SchIM route) and scheduler, the result
obtained for Stress is normalized with respect to the equivalent configuration in Solo. The
results obtained on the considered benchmarks are listed in Fig. 7. The results in the Fig. 7
are the aggregation (arithmetic average) of 30 different runs in the same configuration. Each
bar cluster of the Fig. 7 insets represents one of the aforementioned configuration for Solo
and Stress. The height of each bar denotes its normalized execution time.

For this set of experiments, the FP scheduler was configured such that the core under
analysis (i.e., the one running the benchmark) has the highest priority and a threshold of 8.
The other cores are assigned lower priorities and thresholds matching their priority order
(i.e., 4, 2, 1). Under TDMA scheduling, the core under analysis has a slot of 512 clock cycles

ECRTS 2021



2:18 Memory Scheduling in Multi-Core Systems with FPGA

and a threshold of 14 while the co-runners are assigned slots of 32 and 16 clock cycles with
thresholds of 4 and 1.

The normal route is used as a baseline for this experiment because no scheduling is
performed in this configuration. The Fig. 7 highlights the sensitivity of both disparity and
mser to inter-core interference on the normal route. This is especially the case for large
input sizes such as cif and vga. On the other hand, texture synthesis and localization do
not suffer from inter-core interference. Globally, the TDMA scheduler always manages to
preserve the isolation of the core, having execution times under Stress similar or smaller than
the normal route. This is particularly visible for qcif, cif and vga input sizes of disparity
and mser. Similarly, the FP scheduler is also capable of ensuring sound isolation of the core
under analysis.

7 Discussion and Limitations

By design, the PLiM module proposed in this paper, the SchIM, centralizes the memory
traffic and its scheduling. A centralized design makes sense on the specific target platform
because there exist only one memory controller and thus a single path between the LLC and
the DRAM controller. In systems where multiple paths between the processing units and the
memory controllers exist, for instance when multiple controllers and channels are present, a
decentralized design is to be preferable to better exploit the available memory parallelism.
In such platforms, a possible avenue could be instantiating multiple SchIM modules, roughly
one per channel, and introducing appropriate out-of-band signaling between the modules for
coordination off the critical path.

As we mentioned in Section 6.1, our setup includes the Jailhouse partitioning hypervisor.
While the SchIM module does not strictly require the PS side to use a hypervisor, Jailhouse
has been extensively used for the evalution as it provides convenient features to control
physical memory allocation. For instance, the support for page coloring has been used to
both partition the LLC space and to easily identify the owner of each memory transactions
in the SchIM (as presented in Section 5.4). However, instead of enforcing cache partitioning,
one could instead identify the ownership of memory transactions by extracting a different
subset of address bits. For instance, if the physical memory allocated to different partitions
is not interleaved, then the most significant bits of the address can be used to perform
traffic accounting. In addition, the IPA address virtualization is convenient to transparently
redirect the memory traffic of the application partitions through the PL side, even if they
are initially booted through the normal route. Finally, the cores throttling mechanism (see
Section 5.7) via the FIQs can be implemented at EL3 (Secure Monitor) or in the individual
guest OS’s instead (EL1). Implementing FIQ handling in the hypervisor (EL2), however,
has the advantage of not requiring any change in the guest OS’s, as well as not requiring a
full switch into secure mode compared to an implementation at EL3.

On the same note, provided that the FIQ lines are not used by the inmates, the feedback
regulation mechanism is entirely transparent to the guest OS’s (or even for bare-metal
applications) and introduces minimum overhead. The Linux kernel do not use FIQs, and
the same goes for typical RTOS’s. Nonetheless, it must be acknowledged that defining a
FIQ handler to be used for CPU throttling might interfere with (and be interfered by) the
latency of FIQ handling in guest OS’s that rely on the same functionality. This is mainly
because FIQ handling is non-preemptive. We also recognize that the PL-to-PS feedback
mechanism is relatively coarse. Inset 1 of Fig. 6b highlights this problem. Even though
all the queues have been assigned a threshold of 4, the threshold is often exceeded. The
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worst-case being queue 3 exceeding the threshold by 2 on the right-hand side of the plot.
This problem can be attributed to the reaction time of the FIQ routine, and to the fact that
jumping to the FIQ handler itself might cause a few memory transactions depending on the
cache state. Currently, the thresholds used for FIQ-based regulation require to be fine-tuned
manually by the user. Future extensions of the SchIM will explore the implementation of
schedulers capable of dynamically adapting the thresholds to maximize performance and
improve isolation.

The loss in bandwidth caused by routing transactions through the PL is important and a
serious drawback against the adoption of the SchIM. Our experiments in Section 6.2 have
shown that rerouting the traffic through the PL has a cost. As illustrated in Fig. 4, up to
2100 MBps can be extracted from the normal route whereas any route through the PL only
achieves around 320 MBps. In contrast, a back-of-the-envelope calculation reveals that for
a PL operating at 250 MHz (the SchIM frequency), and with a bus width of 128 bits, a
full-duplex throughput of approximately 3.7 GBps can be sustained. This calculation is in
line with the reported throughput in an experiment conducted in [19], in which PL-originated
transactions targeting the DRAM passed through the one of the HP ports. This suggests
that the PL-to-DRAM route can sustain a much higher throughput than what has been
experimentally observed in our evaluation setup, where transactions originate from the PS
side. In light of these considerations, we can conclude that the source of the bandwidth
loss can be imputed to the bus segments connecting the CPU cluster to the HPM ports.
A focused study is necessary to narrow down the exact reason for the performance drop.
Nonetheless, vendor-imposed bandwidth throttling, PS-to-PL clock-domain crossing delays,
and shallow FIFOs at the HPM ports and/or at the main PS-side interconnect represent
plausible reasons. We anticipate that due to the platform-specific nature of this issue, the
raw performance of the SchIM will substantially vary across different SoCs.

8 Conclusion

In the present article we introduced the SchIM, a memory transactions scheduler framework
that can be integrated with commercially available platforms featuring a tightly coupled
processing system and programmable logic. A full-system implementation in a commercially
available PS-PL platform has been detailed, which encompasses the accompanying software
stack and the platform-specific integration steps.

Through a set of experiments, we assessed the capabilities of the framework and demon-
strated the correct behavior of the proposed scheduling policies, namely Fixed Priority and
Time Division Multiple Access. Finally, we showed using a suite of real-world benchmarks
that the SchIM is capable of enforcing strong temporal isolation despite heavy memory
contention.

The authors see the proposed SchIM as a stepping stone to propose, test and validate novel
memory scheduling policies to be tested on embedded platforms with realistic performance
and complex workload. For this reason, the SchIM has been designed to be open-source and
with extensibility in mind. Especially, we strongly envision that the SchIM could represent a
stepping-stone toward profile-based memory traffic scheduling.
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