Response Time Bounds for DAG Tasks with
Arbitrary Intra-Task Priority Assighment

Qingqgiang He &
Department of Computing, The Hong Kong Polytechnic University, Hong Kong
Mingsong Lv! &
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Nan Guan &
Department of Computing, The Hong Kong Polytechnic University, Hong Kong

—— Abstract

Most parallel real-time applications can be modeled as directed acyclic graph (DAG) tasks. Intra-task
priority assignment can reduce the nondeterminism of runtime behavior of DAG tasks, possibly
resulting in a smaller worst-case response time. However, intra-task priority assignment incurs
dependencies between different parts of the graph, making it a challenging problem to compute
the response time bound. Existing work on intra-task task priority assignment for DAG tasks is
subject to the constraint that priority assignment must comply with the topological order of the
graph, so that the response time bound can be computed in polynomial time. In this paper, we
relax this constraint and propose a new method to compute response time bound of DAG tasks with
arbitrary priority assignment. With the benefit of our new method, we present a simple but effective
priority assignment policy, leading to smaller response time bounds. Comprehensive evaluation with
both single-DAG systems and multi-DAG systems demonstrates that our method outperforms the
state-of-the-art method with a considerable margin.

2012 ACM Subject Classification Software and its engineering — Real-time schedulability

Keywords and phrases real-time systems, response time bound, DAG tasks, intra-task priority
assignment

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.8

1 Introduction

Multi-cores are becoming the mainstream of real-time systems for performance and energy
efficiency. To utilize the power of multi-cores, software must be parallelized. Many parallel
real-time applications can be modeled as directed acyclic graph (DAG) tasks. The DAG task
model has gained much attention in the past few years [6,22,23,25]. In real-time community,
researchers studied how to derive safe upper bounds for the response time of DAG tasks,
which is a crucial characteristic for schedulability test.

When scheduling a DAG task, the execution order of eligible vertices has a large impact
on the system schedulability [17,26]. A recent work [17] proposed to assign different priorities
to vertices of a DAG task (i.e., intra-task priority assignment) to control the execution
order of eligible vertices of a DAG task, and developed efficient algorithms to calculate safe
response time bound of the DAG task in polynomial time. However, the approach in [17]
is subject to the constraint that the intra-task priority must comply with the topological
order of the graph (i.e., a vertex’s priority cannot be higher than any of its ancestors). In
general, allowing priority orders not complying with the topological order can lead to smaller
response time bounds. The target of this work is to get rid of this constraint and further
improve the schedulability of DAG tasks. More precisely, we develop algorithms to compute
response time bounds of DAG tasks with arbitrary intra-task priority assignment.

1 corresponding author

© Qinggiang He, Mingsong Lv, and Nan Guan,;

37 licensed under Creative Commons License CC-BY 4.0
33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 8; pp. 8:1-8:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:qiang.he@connect.polyu.hk
mailto:mingsong.lyu@polyu.edu.hk
mailto:nan.guan@polyu.edu.hk
https://doi.org/10.4230/LIPIcs.ECRTS.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2

Response Time Bounds for DAG Tasks

The major challenge we face is how to deal with dependencies between different parts
of the graph incurred by intra-task priority assignment when it does not comply with the
topological order (see Example 4). We explore insights into these dependencies and the
structure of the problem, and propose solving the problem by abstracting the graph in a
context-free manner. An essential observation is that vertices with lower priorities can serve
to isolate dependencies. With our computing method unleashing possibilities for arbitrary
priority assignment, we devise a quite simple but effective priority assignment policy, leading
to a much smaller bound. Experiments with both single-DAG systems and multi-DAG
systems show that our method outperforms the previous method in [17] with a considerable
margin.

2 Preliminary

2.1 Task Model

The parallel real-time task is modeled as a DAG G = (V, E), where V is the set of vertices
and E C V x V is the set of edges. Each vertex v; € V represents a piece of sequential
workload with worst-case execution time (WCET) ¢(v;) (for brevity, also denoted as ¢;). An
edge (v;,v;) € E represents the precedence relation between v; and vj, i.e., vj can only start
execution after vertex v; finishes its execution. A vertex with no incoming (outgoing) edges
is called a source vertex (sink vertex). Without loss of generality, we assume that G has
exactly one source (denoted as vg..), and one sink (denoted as vg;nk). In case G has multiple
source/sink vertices, a dummy source/sink vertex with zero WCET can be added to comply
with our assumption.

A path X starting from vertex my and ending at vertex 7 (# 7o) is a sequence of vertices
(7o, -+, k) such that Vi € [0, k), (m;, 7i+1) € E, where m, 7, are the start verter and end
verter of path \ respectively. We also use A to denote the set of vertices which are in the
path A. The length of a path A is defined as len(\) = > .y c(mi). A complete path is a
path (g, - - ,7) such that mp = vgp. and T, = vVgink, i-e., a complete path is a path starting
from the single source vertex and ending at the single sink vertex.

If there is an edge (u,v) € F, u is a predecessor of v, and v is a successor of u. If there is
a path in G from u to v, u is an ancestor of v and v is a descendant of u. We use pred(v),
suce(v), ance(v) and desc(v) to denote the set of predecessors, successors, ancestors and
descendants of v, respectively.

For any vertex set V' C V, we define vol(V') = 3 i ¢i;. The volume of a DAG G
denoted as vol(G) is defined as vol(V), i.e., >, <y ¢i, which is the total WCET of all vertices
in G. The longest path is a complete path with largest len(\) in G. len(G) is defined as the
length of the longest path.

2.2 Scheduling Model

We consider vertices of DAG G scheduled on a multi-core platform with m identical cores.
The approach is divided into two phases:
Analysis phase. In this phase, first, priorities are assigned to vertices (different vertices
with identical priority are allowed). Formally, we assign a priority p(v;) to each vertex
v; of the DAG, and say vertex v; has a higher priority than vertex v;, if p(v;) < p(v;).
Second, response time bound is computed (the focus of this paper), and schedulability
test is applied (not the focus of this paper).

Q. He, M. Lv, and N. Guan

Scheduling phase. The scheduling algorithm for one DAG task with priority assignment
is prioritized list scheduling [17], which is work-conserving and preemptive and always
chooses at most m highest-priority eligible vertices for execution.

2.3 Problem Formulation

We first state some notations to present the problem. The parallel set of a vertex v € V' is
defined as para(v) = {u € V \ {v}u ¢ ance(v) A u ¢ desc(v)}.

» Definition 1 (Interference Set [17]). The interference set of a vertex v € V is defined as
I(v) = {u € Vl]u € para(v) A p(u) < p(v)}. The interference set of a path X is defined as
1) = Uz, ex 1(m)-

» Definition 2. For a path A\, R(\) is defined in [17] as

vol(I(X))

m

R(\) =len(\) +

R(\) can be think of as the response time bound of this path A\. A response time bound
for a DAG task was derived in [17] as stated in the following. The response time R of a DAG
G with priority assignment scheduled by prioritized list scheduling on a platform with m
cores is bounded by:

R< max {R(V) (1)
where TI(G) is the set of all complete paths of G.

It can be easily checked that this bound is timing-anomaly free or sustainable [8], thus
providing a safe bound if some vertices execute for less than its WCET and self-sustainable [2],
thus the bound not increasing if the number of cores increases. Actually, when some vertices
execute for less than its WCET, for a path), its inference set I(\) being not change, len(\)
and vol(I(\)) do not increase. As a result, the computed R in Equation 1 does not increase.

For a DAG task, the bound defined above varies for different priority assignments. In the
computation of Equation 1, first, for a path, its interference set is computed which includes
vertices that may interfere with the execution of this path. Second, the response time bound
of the graph can be computed by searching all paths in this graph.

Although the bound is clearly defined in Equation 1, the computation of it can be a
challenging task. Since the number of paths can be exponential in the size of the DAG,
it is impractical to enumerate all the paths to compute the bound. Moreover, since the
interference sets of two vertices in a path may contain the same vertex (see Example 4),
which means dependencies exist among different parts of the graph, or different subproblems

of the whole problem, it can be challenging to find a clear abstraction to compute the bound.

We call the computation of Equation 1 as graph interference problem formulated as follows:

Graph Interference Problem. For a DAG G with priority assignment and the number of
cores m, the objective of this problem is to compute the bound defined in Equation 1.

2.4 An lllustrating Example

An example is given to explain concepts introduced in Section 2.

8:3

ECRTS 2021

8:4

Response Time Bounds for DAG Tasks

» Example 3. Figure 2b shows a DAG task with a priority assignment. The number inside
the circles (representing vertices) is the WCET of vertices, and the red number besides
vertices is its priority. vg, vs are the single source vertex and the single sink vertex respectively
(both are dummy vertices with zero WCET). The longest path is A\; = (vg, v1,v4,v5), and
path Ay = (vg, v, v4,v5) is a complete path. We can compute vol(G) = 18 and len(G) = 9.
For vertex vy, pred(vy) = {v1,v2}, succ(vy) = {vs}, ance(vs) = {vo, v1,v2}, desc(vy) = {vs}.
The priority of vy is higher than that of vy with p(vy) = 1, p(va) = 5. para(ve) = {v1,v3},
I(UQ) = {Ul,vg}. len(/\g) = 4, I()\Q) = {’01,1}3}.

Suppose that the number of cores is m = 2. R(\2) = len(A2) +vol(I(A2))/m = 4+14/2 =
11. The graph has three complete paths. We can compute the bound defined in Equation 1
being 11 by searching all three complete paths exhaustively, and path Ao = (vg, v2, v4, v5)
leads to this bound.

3 Motivation

3.1 Discussion on Existing Work

In [17], a dynamic programming algorithm was proposed to compute the bound defined in
Equation 1, alongside its response time analysis. But its computing method assumes the
intra-task priority assignment should comply with the topological order of the DAG. In the
following, we briefly introduce the computing method of [17] given in Algorithm 1, and use
an example to show that its method may not produce a correct bound for a DAG with a
priority assignment not complying with the topological order.

Algorithm 1 Bound Computation in [17].

o + TopologicalOrder(G)

Avare & {Vsre}

for v; € o from vgpe t0 Vging do
if v; # vgp. then

1
2

3

4

5 u* 4= arg maxXyepred(v,) 11en(Au) + ¢ + M}
6

7

8

9

m

)\vi — Ay U {’Ui}
end

end
return R(\, .)

The Algorithm first computes a topological order of the graph G (Line 1), then searches
through the topological order for a path with max R(A). In Line 5, whenever two paths join
at a vertex v;, it search through the predecessors of v; to find a path with maximum R(A) in
the subgraph consisting of ancestors of v;. This path is stored in A,,. In Line 9, the searching
reaches vsink, and R(A,,,) is returned as the response time bound of the whole graph.

The following example shows that Algorithm 1 may not compute a correct bound defined
in Equation 1.

» Example 4. Figure 1 presents a DAG with a priority assignment. Red numbers besides
vertices are priorities, and the sets above vertices are interference sets. Suppose that the
number of cores is m = 2. We can compute the bound being 8 by searching all three complete
paths exhaustively, and path (vg, v1, v4, v5,v6) leads to this bound. However, according to
Algorithm 1, the computed bound is 7.5 and path (vg,v2,v4,v5,v6) leads to this bound,
which is wrong and not the bound in Equation 1.

Q. He, M. Lv, and N. Guan

(a) With topology constraint. (b) Without topology constraint.

Figure 2 A motivational example.

During Algorithm 1 for Example 4, when computing v4 (v4 as v; in Line 5), it chooses path
A1 = (vo,v2,v4) as A, because Ay suffers interference from vs, thus \; having a larger R(\)
than that of path (vg, v1,v4). When computing vs in Line 5, it chooses path (vg, ve,v4,v5) as
Ay because vs has only one predecessor vy and the path stored in Ay, is (vo, vz, v4). However,
this choice leads to a wrong result as shown in Example 4.

The reason why Algorithm 1 produces a wrong bound for the above example is that
vertex vz, being in the interference sets of both vy and vs, incurs dependencies between
subgraph {vg, v1,v2, v4} and subgraph {vy, vs}. In fact, priority assignment, when it becomes
arbitrary, may incur dependencies between different parts of the graph, which the method
in [17] cannot resolve. Actually, the computing method in [17] is only valid when the priority
assignment satisfies topology constraint, i.e., a vertex’s priority is not higher than any of its
ancestors.

3.2 Motivation of this Work

Two reasons motivate us to study the problem of computing response time bound for DAG
tasks with arbitrary intra-task priority assignment.

First, there are situations where priorities are predetermined (e.g, by industry practition-
ers) before the schedulability analysis phase. For example, in OpenMP [1], practitioners can
use the priority clause to specify a priority for a task construct. It is not necessary that
these priority assignments satisfy topology constraint. In these cases, the computing method
in [17] cannot be applied.

Second, for priority assignment determined during analysis phase as the scheduling model
in Section 2.2 assumes, it is possible that much smaller response time bounds can be achieved
by relaxing topology constraint and allowing arbitrary priority assignment. Example 5 is an
illustration of this finding.

» Example 5. Figure 2 shows a DAG with two priority assignments (red numbers besides
vertices are priorities). Figure 2a is the priority assignment according to [17] with topology
constraint, while the priority assignment in Figure 2b is without this constraint (because vs,

8:5

ECRTS 2021

8:6

Response Time Bounds for DAG Tasks

as an ancestor of v4, has a priority lower than that of v4). Suppose that the number of cores
is m = 2. In Figure 2a, we can compute the bound being 12 by searching all three complete
paths exhaustively, and path A; = (vo, vs, v5) leads to this bound. In Figure 2b, as shown in
Example 3, the computed bound is 11, and path Ay = (vg, v2, v4,v5) leads to it.

As shown in [17], assigning higher priorities to vertices in a longer path may lead to a
smaller response time. However, in Figure 2a, under topology constraint without which the
method in [17] is invalid, v3 in a path with length 6 has a priority lower (i.e., p(v3) > p(v2))
than that of vy in a path with length 4, leading to a larger bound than that of Figure 2b.

With the two motivations, this paper focuses on solving the graph interference problem
with arbitrary priority assignment, thus unleashing the possibilities for a better (possibly
optimal) priority assignment policy without topology constraint.

4 Computing Response Time Bound

In this section, we solve the graph interference problem precisely through abstraction of the
graph in a context-free manner, assuming priority assignment is arbitrary.

We first give an overview of our abstraction framework. A DAG with priority assignment
is treated as a sentence of a formal language, and the graph interference problem is how to
parse the graph to compute an abstraction of the graph (i.e., the bound in Equation 1) under
a context-free grammar [18]. The abstraction of (part of) the graph is represented as tuple
(Definition 6). Starting from edges represented as simple tuples, through tuples connecting
into new tuples, the abstraction of the whole graph (i.e. the bound) is constructed gradually.
On one hand, the context-free grammar is expressed by the connection principle (Definition
9), which functions to identify the context-free parts of the graph to isolate dependencies
on other parts in the graph. On the other hand, why these parts of graph are context-free
and can be computed independently without having to consider the other parts of the graph
connecting to them is explained in Lemma 13, which states that these tuple connections
only depend on a limited number of vertices, whose information is included in these tuples
themselves, not the other parts of the graph. An illustrative example of the above concepts
is shown in Figure 3 located after the computing algorithm (Algorithm 2).

Next, we will go into the details of our abstraction framework.

» Definition 6 (Tuple). For a path A = (o, - ,7g), we define a tuple
<7TOv Tk R(A»
where mg, T are the start vertex, end vertex of path \.

We say the tuple defined above corresponds to path A, or path A corresponds to this
tuple. We also call mg, 7 as the start vertex, end vertex of this tuple.

» Definition 7 (Connection Vertex). For a tuple (u,v, R()\)), the connection vertex (denoted
as k(u,v)) of this tuple is defined as:

L Uu=vs5c ANV = Vgink
VU= Vsre AU F Usink
KU, 0) = U U F# Vgpe ANV = Vsink
U UFE Vsre NV F Using AP(u) < p(v)
VU FE Vsgpe ANV F Ugink A p(u) > p(v)

where L means no connection vertex.

Q. He, M. Lv, and N. Guan

Although the equation for connection vertex seems complex, actually only two guidelines need
to be kept in mind: (1) never choose a terminate vertex (i.e., Vspe, Usink); (2) always choose
the vertex with a higher priority (i.e., p(v) with a smaller value). According to Definition 7,
except for tuples corresponding to a complete path, there is exactly one connection vertex
in a tuple. For a tuple (u,v, R(\)) with u # vspe V U # Vgink, we denote the priority of the
connection vertex of this tuple as p(x(u,v))(for brevity, also denoted as p(u,v)).

Two paths g, A1 can be connected into a new path), if the end vertex of \g is the same
as the start vertex of \;, denoted as A = A\g U \;. Similarly, two tuples can be connected
into a new tuple, if the end vertex of the first tuple is the same as the start vertex of the
second tuple.

» Example 8. For the graph in Figure 2b, path A\g = (v2,v4) corresponds to a tuple
ap = (v2,v4, R(A0)), and path Ay = (v4,v5) corresponds to a tuple a; = (vy, vs, R(A1)).
K(v2,v4) = v4, K(vg,v5) = vg4. Since vy is the end vertex of ag and the start vertex of a,
tuple ap and «; can be connected into a new tuple o = (vo, v5, R(\)), where A = A\gU A =

(U27 V4, U5)'
With respect to tuple connection, we introduce the following connection principle.

» Definition 9 (Connection Principle). For two tuples (u,v, R(A)), (v, w, R(A1)), if vertex v
is the connection vertex of these two tuples, then they can be connected into a new tuple.

We call these two tuples are connected under the connection principle denoted by
<u7U7R(>‘0)> + <U,w,R(>\1)> ~ <U,U},R()\)> (2)

where A = A\g U Aq.

Note that since R(\g) is just a value, the detailed information of a path is not stored in
a tuple, which means R(\) cannot be computed by the above equation. Later in Lemma 14,
the formula of computing the resulting tuple will be given.

For an edge (u,v) € E, there is a path A = (u,v) and a tuple (u,v, R(A)). A simple tuple
is defined as a tuple (u,v, R()\)), where A is actually an edge.

» Definition 10 (Tuple under Connection Principle). The definition is given by the following
two recursive rules:
A simple tuple is under connection principle;
A tuple, which is computed according to Equation 2 by tuples under connection principle,
is also under connection principle.

» Example 11. In Example 8, since g, o1 are simple tuples, these two tuples are under
connection principle. Since vy is the connection vertex of ag, aq, this tuple connection is

also under connection principle, thus the resulting tuple a being under connection principle.

For the rest of this paper, unless explicitly specified, all tuples and tuple connections are
under connection principle.

» Lemma 12 (Connection Property). For a tuple (u,w, R(\)) with u # Vspe V W # Vgink
under connection principle, the following holds:

Vﬂ-i S A \ {U,U}},p(ﬂ'i) S p(u’ ’U})
Proof. We prove it by induction.

Base case: For a simple tuple, since A\ {u,v} = &, the lemma holds trivially.
Induction step: For a tuple o = (u,w, R(A)) that is not a simple tuple. Since « is under

8:7

ECRTS 2021

8:8

Response Time Bounds for DAG Tasks

connection principle, by Definition 10, there exist two tuples ag = (u,v, R(A\g)), a1 =
(v,w, R(\1)), both being under connection principle, satisfying ag + a; ~ a. Since ag, ay
are under connection principle, by induction hypothesis, both ag and «; satisfy connection

property.
It is clear that v # vgre A U # Vgink, and we already have k(u,v) = v, k(v,w) = v, which

means p(u, v) = p(v), p(v, w) = p(v).

There are three cases: (1) 4 = Vgre A W # Vsink; (2) U # Vgpe AW = Vgink; (3) u #
Vgre AW # Vgink. For the first case, according to Definition 7, we have x(u,w) = w, which
means p(u,w) = p(w). Since k(v, w) = v, we have p(v) < p(w), which means p(v) < p(u, w).
For the second case, according to similar reasons, we have p(v) < p(u,w). For the third
case, since k(u,v) = v, £(v,w) = v, according to Definition 7, we have p(v) < p(u) and
p(v) < p(w), which means p(v) < p(u,w). In summary, for the three cases, p(v) < p(u, w).

Since ag satisfies connection property, we have

Vi € Ao \ {u, v}, p(m) < p(u,v)
Note that p(u,v) = p(v) and p(v) < p(u, w), we have
Vi € Ao \ {u, v}, p(m;) < p(u, w)
For the same reason, we have
Vi € M\ {v, w}, p(m;) < p(u,w)
Note that A = A\g U A1, we have
Vi € A\ {u, w, p(mi) < p(u, w)
which means that tuple « satisfies connection property. The lemma follows. |

Under the principle, a key observation for the connection of tuples is that the computation
does not depend on the whole path necessarily, actually only depends on a limited number
of vertices on this path, as stated in the following lemma.

» Lemma 13. If two tuples {u,v,R(\o)), (v,w, R(\1)) under connection principle are
connected into a new tuple (u,w, R(\)) according to Equation 2, then

IAo)NI(A) =TI(v)U I (u)NI(w)) (3)

Proof. We use LHS and RHS to represent the left-hand side and right-hand side of Equation 3.
Next, we shall prove the lemma by showing that both RHSCLHS and LHSCRHS hold.
(1) RHSCLHS. Since v € A\g and v € A1, we have

I(v) CTI(No)NI(A)
Since u € A\g and w € A1, we have
I(w)NI(w) CI(Mg)NI(A)
In summary, we reach that

I(w) U (I(w) N I(w)) € I(Ao) N I(\1)

Q. He, M. Lv, and N. Guan

(2) LHSCRHS. Obviously, x(u,v) = v, (v, w) = v, p(u,v) = p(v), p(v,w) = p(v). According
to Definition 1, Vo € I(Xg) N I(A1), Im; € Ao and Im; € Ay, such that vertex x € I(m;)
and = € I(m;), which means p(z) < p(m;) and p(x) < p(7;).

Next, we shall prove that « € para(v). If « € ance(v), since v € ance(m;) V v = 7}, then

x € ance(r;), which contradicts « € I(mj). We have = ¢ ance(v). By similar reasons,

x ¢ desc(v). In summary, = € para(v).

In the following, we prove by exhaustion. There are three cases:

(a) m # w. Since x(u,v) = v, by Lemma 12, we have p(m;) < p(v). Note that
p(z) < p(m;), so p(z) < p(v). Together with = € para(v), we have x € I(v), which
means ¢ € I(v) U (I(u) N I(w)).

(b) 7; # w. For similar reasons to the first case, z € I(v), so x € I(v) U (I(u) N I(w)).

(c) m =uAm; =w. Since z € I(m;) and = € I(m;), we have z € I(u) and z € I(w),
which means z € I(u) N I(w). We reach that x € I(v) U (I(u) N I(w)).

Summarizing these three cases, we have Va € I(Ag) N I(\1), z € I(v) U (I(u) N I(w)).

In conclusion, the lemma follows. |

» Lemma 14. If two tuples (u,v, R(Xo)), (v,w, R(A\1)) under connection principle are
connected into a new tuple (u,w, R(\)) according to Equation 2, then

vol(I(v) U (I(u) NI(w)))

m

R(N\) = R(Xo) + R(M\) — c(v) — (4)

Proof. By Definition 2,

vol(I(X))

R(N\) =len()) + =

Since A = Ao U A1, we have len(\) = len(Ag) + len(A1) — c(v) and I(X) = I(Ao) U I(A1).

Further,

vol(I(Ao)) + vol(I(A1)) — vol(I(N))

R(X) = R(Xo) + R(A1) — c(v) — -

Since I(X) = I(Ao) UI(A;), we have
vol(I(Xo)) + vol(I(A1)) — vol(I(N)) = vol(I(Ae) N I(A1))

By Lemma 13, we have
vol(I(Ao)) + vol(I(Ay)) — vol(I(X)) = vol(I(v) U (I(u) N I(w)))

Together, we reach the conclusion. <

The meaning of the above lemma is twofold. First, it gives a formula to compute the
connection of tuples iteratively. Second, it implies that for two paths with the same start
and end vertex, the path with a smaller R(\) cannot result in a path with a larger R()), as
stated in Lemma 16 formally.

» Definition 15 (Domination). Given two paths with the same start and end vertex, there are
two tuples (u,v, R(A)), (u,v, R(N)). We say (u,v, R(\)) dominates (u,v, R(X)), denoted by

(u,v, R(AN)) = (u,v, R(\))
if and only if R(A) > R(\).

8:9

ECRTS 2021

8:10

Response Time Bounds for DAG Tasks

Iteration 3

Iteration 2

Figure 3 An example illustrating Algorithm 2.

» Lemma 16. Under connection principle, given
(u, v, R(Xo)) + (v, w, R(A1)) ~ (u, w, R(A))
and
(u,0, R(XG)) + (v, w, R(A1)) ~ (u, w, R(N))
If
(u, v, R(X0)) = (u, v, R(AH))
then
(u,w, R(N)) 3 (u, w, R(X))
Proof. According to Definition 15, we have R(A\g) > R(\})

= R(\) + RO) — cfv) — 22U @)V U(w) O I(w))

zR@w+Run—4m—”“U@Nﬂﬁwﬁfw»>
= R(\) = R(X)
= (u,w, R(\)) = (u,w, R(\))
The conclusion is reached.)

The above lemma means when computing Equation 1, tuples with a smaller R can be
discarded safely, since in future computation they cannot result in a tuple with a larger R.
We summarize the above discussion into Algorithm 2 to compute the response time bound of
a DAG as defined in Equation 1.

Figure 3 provides an illustrative example of Algorithm 2 to show the steps of abstraction
of the graph. The graph is at the bottom of Figure 3 where the number inside each vertex
is its priority (The WCET of each vertex is irrelevant to the example, and we omit such

Q. He, M. Lv, and N. Guan

Algorithm 2 Computing graph interference problem.

Input :DAG G = (V, E); every vertex v; € V is with its WCET ¢; and its priority
p(v;); the number of cores m

Output :the response time bound defined in Equation 1
1 TS+ {{(u,v, R(\)) | A= (u,v) € E}
2 repeat

3 for each (o,) € TS x TS do
4 if oy, o can be connected by Definition 9 then
5 o < o; + a; by Equation 2, 4
6 if 38 € TS such that B = a then
7 ‘ continue
8 else if 45 € TS such that o = 5 then
0 | TS (TS\ {B}) U{a}
10 else
11 ‘ TS < TSU{a}
12 end
13 end
14 end

15 until nothing changes in TS
16 return R such that (Vgre, Vsink, R) € TS

information in the figure). In the example, since each vertex has a unique priority, we also use
the priority to identify the vertex. After the first iteration of the loop in Line 2-15, with tuple
connections under the connection principle, the original graph is transformed as illustrated
in the figure. After three iterations of the loop, the tuple with start vertex and end vertex
being v, and vg;nk respectively appears, which means the bound in Equation 1 is computed.
It is easy to observe that all tuple connections in Figure 3 follow the connection principle
in Definition 9. The context-free parts of the graph are indicated as colored rectangles in
Figure 3. The relations between the context-free parts of the graph and their abstractions
during each iteration are indicated as dashed arrows, which form an abstract syntax tree of
the original graph.

Note that for clear and concise presentation of the principle behind Algorithm 2, the
illustration of Figure 3 is not exactly the same as Algorithm 2. In Algorithm 2, during one
iteration, plenty of tuples are connected, much of them being redundant and having been
connected in the previous iterations. Since these redundant tuple connections are irrelevant
to the correctness and theoretical computational complexity of Algorithm 2, we do not show
these connections in Figure 3.

Next, we introduce the concept of abstract path, which is useful for proving the correctness
of Algorithm 2.

» Definition 17 (Abstract Path). An abstract path A\ = (mg,--- ,7,) (k> 0) is a sequence
of vertices such that Vi € [0,k), there is a path \; with start and end vertex being ;,
mit1 respectively. Further, for an abstract path X\ = (mo,--- ,7), we define TS(\) =
{{mi,mix1, R(N)) | 1 € [0,k)} as the set of tuples corresponding to A;.

Note that an abstract path is always an abstraction of a concrete path(i.e., Ujc[o,r)Ai by using
the above notation). To compute T'S()), the concrete path behind the abstract path A should
be given. Since TS(A) only serves as an intermediate concept when proving the correctness
of Algorithm 2, for brevity, we will omit this concrete path. According to the definition of
abstract path, a path is an abstract path, while an abstract path is not necessarily a path.

8:11

ECRTS 2021

8:12

Response Time Bounds for DAG Tasks

» Lemma 18 (Connection Lemma). For an arbitrary abstract path A\ = (mo,- - ,mg) with
k> 1Ay = Vspe N T = Vsink, 3o, B € TS(N), such that tuple o, B can be connected under
connection principle.

Proof. Since k > 1, there are at least two tuples in T'S(\). In the following, we prove
this by contradiction. Assume that there are not two tuples which can be connected under
connection principle, next we will consider the priority assignment along this abstract path
starting from my = vs... There are four cases.

(1) p(’ﬂ'o) > p(ﬂ'l) /\p(’/Tl) S p(’/TQ). Since /<;(7r0,7T1) = KZ(’/T1,7T2) = T, then <7T0,7T1,R(>\0)>,
(71,72, R(A1)) can be connected under connection principle, which is a contradiction.
Note that the reasoning in this case does not rely on my = vg.., which means if mg is an
arbitrary vertex in A, the above reasoning is valid.

(2) p(mo) > p(m1) A p(m1) > p(mz). The reasoning in this case does not rely on my = vspe
either.

(2a) If w3 = vgink, then k(m,m) = k(m1, m2) = 71, which means a contradiction.

(2b) If 7y # Vsink, consider p(ms). If p(me) < p(ms3), we have the pattern p(mi) > p(ma) A
p(ma) < p(ms). Since case (1) does not rely on 7y = vsy¢, this pattern is the same as case
(1) and finally leads to a contradiction. Actually in this case, to ensure two tuples cannot
be connected under connection principle as indicated in the assumption, by the above
reasoning, the priority of the next vertex m;;1 must be higher than that of the previous
vertex m;, formally p(m;) > p(m;41). Considering all vertices along A, finally we reach
Tk = Usink, and we have p(mg_2) > p(mp—1) A p(mk—1) > P(Vsink), which is the case in
(2a) and finally leads to a contradiction.

(3) p(mo) < p(m) Ap(m) < p(ms). Since Ty = Vgre, then k(m, m1) = K(m1, m2) = 71, which
means a contradiction.

(4) p(mo) < p(m1) Ap(m1) > p(ma).

(4a) If mo = vgink, since Ty = Vgpe, then k(mp,m) = k(m,m) = m, which means a
contradiction.

(4b) If w3 # vsink, consider p(ms). If p(ma) < p(7s), we have p(m1) > p(m2) A p(m2) < p(7s3),
which is the case in (1) and finally leads to a contradiction. If p(ma) > p(73), we have
p(m1) > p(m2) Ap(me) > p(ms), which is the case in (2) and finally leads to a contradiction.

In summary, all cases lead to a contradiction, therefore the initial assumption must be

false. We reach the conclusion. |

For an abstract path A = (mg, -+, T, Tit1, Tit2, -, Tk), tuple a = {(m;, w11, R(\;)),
B = (Tit1, Tit2, R(Aix1)) € TS(N), suppose «, § can be connected under connection principle,
this connection will result in a new abstract path X = (mg, -+, 7, Tit2, - ,7) and a new

TS(N) with |TS(N)| = | TS(A)| — 1.

» Example 19. For the graph in Figure 2b, for path A = (vg,v2,v4,v5) (which is also an
abstract path by definition), T'S(\) = {ag = (vo,v2, Ro), a1 = (v2,v4, R1), a2 = (v4,v5, R2)}.
From Example 8, by Lemma 18, we know in T'S()), there exist a1, ag that can be connected
under connection principle. This tuple connection results in a new abstract path A =

{vo,v2,vs} and TS(N') = {(vg, va, Rp), (v2,v5, R])}. It is obvious that | TS(A)| = | T'S(\)|—1.

Concerning the correctness and complexity of Algorithm 2, two aspects need to be
considered. On one hand, according to connection principle in Definition 9, if two tuples
are to be connected, first the end vertex of a tuple should be the start vertex of another
tuple; second the connection vertex of these two tuples should be the same. Since we do not
make any assumption about priority assignment, which is different from [17] where priority

Q. He, M. Lv, and N. Guan

assignment should comply with topological order, is it possible that after the loop in Line
2-15 finishes, there is not a tuple (u,v, R) with u = vgpe A U = vUging in TS as required by
Line 16?7 On the other hand, since the loop in Line 2-15 does not exit until nothing changes
in TS, how can we guarantee that the loop will be completed within a reasonable number of
iterations? By using Lemma 18, we address these concerns in the following theorem.

» Theorem 20. The return value of Algorithm 2 equals the bound in FEquation 1.

Proof. We define T'S 0 = {{u,v, R) € TS|t = vgpe AU = VUsink ;. The theorem is proved by

the following three steps:

(1) In Line 16 of Algorithm 2, | T'Spaz| = 1.

a. |TSmaz| > 1. For VA € TI(G), if only two vertices in this path (i.e., [A| = 2), then these
two vertices must be vgr. and vging, which means o = (Vgye, Vsink, R(A)) is added to
TS in Line 1. Although a might be removed from TS in Line 9, this only happens
when « is dominated by a new tuple with start vertex and end vertex being vg,c, Vsink
respectively. If |A| > 2, according to Lemma 18, after one iteration of the loop in
Line 2-15, at least two tuples in T.S(A) must be connected under connection principle,
resulting in a new abstract path A with |TS(\)| < |TS(A)] — 1. This fact means
after at most |V| iterations of the loop in Line 2-15, a tuple with start vertex being
vsre and end vertex being vg;,i corresponding to A (or a tuple dominating the tuple
corresponding to A) will be eventually computed. Since II(G) # &, | TSmaz| > 1.

b. | TSmaz| < 1. According to Definition 15, It is sufficient to show that in any step of
the algorithm, Bo, § € TS, such that a = 3V 8 = a. First, obviously in Line 1, the
statement is true. Second, during the loop in Line 2-15, according to the conditions
in Line 6, 8, it is evident that Line 9, 11 will not lead to domination between tuples
in TS.

We denote the only tuple in T'S,42 as Qynaz-

(2) There is a complete path A4 € II(G) corresponding to qunaz. It is sufficient to show
that Va € TS, there is a path corresponding to a. First, in Line 1, all simple tuples are
added to TS. It is evident that a simple tuple corresponds to an edge, which is also a
path. Second, in Line 5, according to Equation 2, for every tuple connection, two paths
are connected into a new path corresponding to the newly computed tuple.

(3) There is no complete path A € II(G) such that R(A) > R(Apmqz). We prove this statement
by showing that VA € II(G), (Vsre, Vsinks B(Amaz)) = (Usre, Usink, R(A)). First, in Line 1,
all simple tuples are added to T'S. We have VA € II(G), TS(\) C TS, which means all
complete paths have a representation (i.e. T.S(A)) in T'S. Second, it is obvious that all
tuples in T'S are under connection principle. According to Definition 15, together with
the discussion in 1(a), VA € II(G), after at most |V| iterations of the loop in Line 2-15,
(Vsres Vsink, R(A)) will either be computed in T'S (in this case, R(A) = R(Amaz)), or be
dominated (in this case, R(A\) < R(Amaz)). We reach the conclusion.

Summarizing above three steps, the theorem is proved. <

» Theorem 21. The time complexity of Algorithm 2 is polynomially bounded in |V|.

In the above proof, from (1a), the number of iterations of the loop in Line 2-15 will not
exceed |V]; from (1b), since no tuple domination in 7S, the number of tuples in TS will
not exceed |V|2. In Line 3, there is T'S x TS. So the number of iterations of the loop in
Line 3-14 will not exceed |V|*. The time complexity of Algorithm 2 is O(|V'|?). However, in
Line 4, when tuple a; is determined, the end vertex of «; being determined, actually only
|V| number of a; in T'S need to be examined. Consequently, the algorithm can be easily
implemented with time complexity being O(|V[*).

8:13

ECRTS 2021

8:14

Response Time Bounds for DAG Tasks

p(vy) =

1(vy) =

Figure 4 An example illustrating priority assignment.

5 Priority Assignment

To illustrate the performance of arbitrary priority assignment supported by our computing
method in Section 4, we devise a priority assignment policy without topology constraint,
leading to a much smaller bound as shown in Section 7. The guideline is to assign higher
priorities to vertices in a longer path as indicated in Section 3.2. We first introduce a concept
to identify vertices in a longer path.

» Definition 22 (Vertex Length). The vertex length of v (denoted as l(v)) is defined as
I(v) = maz{len(A) | A € II(G) Av € A} (5)

Intuitively, vertex length is the longest path length among all the paths which go through
the vertex. Vertex length can be computed by a straightforward dynamic programming
in polynomial time with respect to the size of the graph (Algorithm 3 in [17]). The fixed
priorities of vertices are assigned based on vertex length as follows.
A vertex with a larger length is assigned a higher priority, formally p(v;) < p(v;) if
L(vi) > U(v);
If two vertices have the same length, the vertex with a smaller index in the graph is given
a higher priority, formally p(v;) < p(v;) if {(v;) = l(vj) AT < j.
The vertex index does not necessarily follow topological order. Ties can be broken by any
other rules. The second rule is introduced to make the priority assignment policy determinate
and make the evaluation in Section 7 reproducible.

» Example 23. For the graph in Figure 2b, the length (the blue number below vertices) of
each vertex is labelled in Figure 4, and a priority assignment (the red number above vertices)
according to the proposed policy is also illustrated.

In Figure 4, the priority of v4 is higher (smaller priority value means higher priority) than
the priority of vo (note that vy is an ancestor of vy), which does not comply with topology
constraint (i.e., a vertex’s priority is not higher than any of its ancestors). In consequence, the
proposed priority policy is without topology constraint. As an illustrative specific example,
the proposed priority assignment policy indeed relies on some topological characteristics
(e.g., the vertex length in Definition 22). However, the claim and the main contribution of
this paper is that our computing method is valid for arbitrary priority assignment, thus not
limited to topology constraint required in [17].

We note that the proposed priority assignment policy does not strictly dominate the
policy in [17], i.e., not always producing a bound smaller than the bound of the policy in [17].
However, the proposed policy is much simpler, and leads to a smaller bound in general cases
(actually, only in very rare cases with a larger bound, see Section 7.1).

Q. He, M. Lv, and N. Guan

6 Extension to Multi-DAG Systems

The proposed method for computing response time bound for single DAG task can also
be applied to multi-DAG sporadic systems. The approach of utilizing intra-task priority
to improve the schedulability of multi-DAG systems was introduced in [17]. Although the
intra-task priority studied in this work is without topology constraint, thus the computing
method and priority assignment policy being completely different, the response time analysis
behind the bound in Equation 1 is still the same. Therefore, the approach of [17] can be
used directly to extend our method to multi-DAG systems. We briefly introduce it to help
understanding the experiments in Section 7.2.

The scheduling algorithm for multi-DAG systems is global prioritized list scheduling [17],
which has two levels: task level and vertex level. In task level, a priority policy, e.g., early
deadline first (EDF) and rate monotonic (RM), is employed to determine the highest-priority
ready DAG task; in vertex level, prioritized list scheduling is used. After priorities between
tasks and further between vertices are determined, the scheduling behavior is unchanged,
which is global, work-conserving, preemptive, and always chooses at most m (the core number)
highest-priority eligible vertices for execution.

» Theorem 24 ([17]). For a multi-DAG sporadic system with constrained deadlines scheduled
by global prioritized list scheduling on a platform with m cores, a bound R; on the response

time of a task 7; can be derived by the fized-point iteration of the following ‘equation, starting
with R; = len(G,):

I TR
R; = max {len()) + vol(()‘))} + 2izj Li(R))
AETI(G5) m -

(6)

where I}(Rj) is the upper bound of the interference of task 7; to 7; during an interval of
length R;.

In Equation 6, I;: (R;) is related to task level priority policies and is computed by the
method in [25]. The computation of this term for EDF and RM is detailed in Lemma V.2
and Lemma V.1 of [25], respectively. For details of Theorem 24, please refer to [17].

7 Performance Evaluation

In this section, the performance of the proposed method is evaluated. During the evaluation,
we conduct experiments of both scheduling single-DAG systems and scheduling multi-DAG
systems using randomly generated task graphs.

7.1 Evaluation of Single-DAG Systems

In this section, the following methods are compared:
B-OUR. The bound in Equation 1 computed by our method with priority assignment
policy introduced in Section 5.
B-ZHAO. The bound proposed in [29] with explicit execution order developed alongside
its analysis.
B-HE. The bound proposed in [17] with its priority assignment policy.
These three bounds are normalized with respect to B-HE as the metric for comparison. So
in the figures with respect to normalized bound, B-HFE is always one. The bounds computed
by other priority assignment algorithms [21], [19] are shown dominated by [17], thus not
included in the evaluation.

8:15

ECRTS 2021

8:16

Response Time Bounds for DAG Tasks

Table 1 The percentage of inferior cases com-
paring with B-HE and B-ZHAO.

m B-HE B-ZHAO
4-10 0.11% 77.69%
11-16 0% 17.38%
17-22 0% 1%
23-32 0.01% 1.44%

Figure 5 Normalized bound with different pf.

Task Generation. The DAG tasks are generated using the Erdos-Renyi method [10], where
the number of vertices |V| is randomly chosen in a specified interval. For each pair of vertices,
the method generates a random value in [0, 1] and adds the edge to the graph if the generated
value is less than a predefined parallelism factor pf. The larger pf, the more sequential the
graph is. If the generated graph has multiple source/sink vertices, a dummy source/sink
vertex with zero WCET is added to the graph.

For experiments, we first give a default parameter setting, then tune different parameters
for evaluation. The default setting is as follows. The vertex number |V| and the WCET of
vertices ¢; are randomly chosen in [50, 250] and [50, 100] respectively. For each configuration,
we randomly generate 1000 DAG tasks to compute the average normalized bound.

Evaluation with Task Parallelism. We conduct experiments by changing parallelism factor
pf with core number m = 16. The results are presented in Figure 5. Since the normalized
bound is always smaller than one, our method consistently outperforms B-HE on average,
especially when the DAG task has high parallelism (when pf is small), which is the typical case
as benchmarks (such as [11,15]) and practical applications generally possess high parallelism.
This is because paths of a DAG with higher parallelism suffer more interference. The priority
assignment enabled by our computing method can balance such interference among different
paths better, thus reducing the response time bound. From experimental results, compared
with B-HE, the improvement of response time bound is up to 18.1%. For pf less than 0.2,
the performance of our method is better than B-ZHAO on average, which further shows our
method can balance interference among different paths effectively for DAG tasks with high
parallelism. When pf becomes larger, the DAG being more sequential, both bounds becomes
closer to B-HE, and finally approach to the length of the longest path in the graph. This
observation is also obtained in [17,29].

In the following experiments, we randomly choose pf in [0.01, 0.1] to better represent
real world applications which generally possess high parallelism as mentioned above.

Evaluation with Core Number. The objective of this experiment is to demonstrate how
sensitive the evaluated method is to core number. Figure 6 shows that our method always
produces smaller bounds than B-HE on average and outperforms B-HE by up to 13.3%
with m = 12. With core number being smaller and larger, B-OUR is close to B-HE. This is
because for core number being smaller, both bounds approach vol(G); for core number being
larger, both bounds approach len(G).

When core number is small, B-ZHAQ performs better than our method. This is because,
for a small core number, the computing resource for non-critical vertices (vertices not in the
longest path) becomes scarce, which results in non-critical vertices having a large impact
on the response time bound. The method for B-ZHAO can delicately adjust the execution

Q. He, M. Lv, and N. Guan

N
-

g -6-B-OUR

3 1.05 —+B-ZHAO

m

‘O 1

8

5 0.95

£ ;

s 09

z 3
0.85

0 50 100 150 200 250
VI

Figure 6 Normalized bound with different m. Figure 7 Normalized bound with different |V|.

order of non-critical vertices, which is utilized by its analysis method subsequently, finally
leading to a smaller bound. With core number increasing, our method, being able to balance
interference among different paths effectively, outperforms B-ZHAO (e.g., by up to 7.5% with
m = 20). Real world applications, generally possessing high parallelism [17], may require
executing on computing platforms with a larger core number to meet their deadlines. What’s

more, nowadays mainstream computing platforms generally have a large number of cores.

These facts render our method more useful and effective in practice.

Table 1 reports the percentage of inferior cases (cases where the bound B-OUR is larger
than B-HE or B-ZHAQ) during experiments of Figure 6. For example, in Table 1, for m in
[11, 16], no inferior case with respect to B-HE is observed and there are 17.38% cases where
bounds computed by our method are larger than that of B-ZHAQO. Table 1 is consistent with
Figure 6: for small core numbers, B-ZHAQO performs better; with core number increasing,
our method becomes more effective. We observe that during experiments of Figure 6, the
overall inferior cases are less than 0.04% with respect to B-HE and less than 24.38% with
respect to B-ZHAQ. This observation further demonstrates the effectiveness of the proposed
method.

In the following experiments, we choose core number m = 16 as the representative to
evaluate the performance.

Evaluation with Vertex Number. This experiment evaluates the sensitivity of the proposed
analysis to the vertex number, and results are shown in Figure 7. For |V| < 30, the proposed
method provides similar results to B-HF, which is because the parallelism of the DAG is
relatively low when vertex number is small. As analysed above, our method is more effective
when parallelism is relatively higher. With vertex number increasing, our method becomes
more effective and outperforms B-HE more than 10% on average and up to 13.1% and
|[V| = 240. For almost all vertex numbers in this experiment, our method outperforms
B-ZHAO. We also observe that for small vertex numbers, B-ZHAQO may produce a bound
larger than B-HE.

7.2 Evaluation of Multi-DAG Systems

This section evaluates the performance of our method for multi-DAG systems with constrained
deadlines. All three methods in Section 7.1 extended their bounds for single DAG task to
multi-DAG systems. For task level priority policy, B-OUR and B-HE can be applied to
both dynamic priority (e.g., EDF) and static priority (e.g., RM), denoted as EDF-OUR,
RM-OUR, EDF-HE, RM-HE respectively; B-ZHAQO can only be applied to static priority,
denoted as RM-ZHAQO. These five methods are compared in this section.

8:17

ECRTS 2021

8:18

Response Time Bounds for DAG Tasks

T 1
3 -6-EDF-OUR D
@ .95} —*—RM-OUR
T 0.9
£
]
Z0.85
0 02 04 06 08 1
Normalized Utilization
Figure 8 Acceptance ratio with different Figure 9 Normalized bound with different
normalized utilization (m = 16). normalized utilization (m = 16).

Task Set Generation. DAG tasks are generated by the same method as Section 7.1 with
pf, |V] and ¢; in [0.01, 0.1], [50, 250] and [50, 100] respectively. The period T' (which is
also the deadline in the experiment) of a DAG task is randomly chosen in [L,6L], where
L is the length of the longest path of the task graph. To generate a task set with specific
utilization, we randomly generate a DAG task and add it to the task set until the total
utilization reaches the required value.

Evaluation Using Acceptance Ratio. We first test the schedulability of multi-DAG systems
using acceptance ratio to evaluate our method. For configuration, we randomly generate
1000 task sets. From the results reported in Figure 8, the proposed method offers better
schedulability than that of the state-of-the-art under all settings, especially when normalized
utilization is in [0.4, 0.7]. Compared with methods in [17], the improvement of acceptance
ratio for EDF and RM is up to 22.2% and 32.0% respectively. RM-ZHAO performs worse
than RM-HE, the reason of which is explained in the following. First, the scheduling
for task set in [29] is not work-conserving. Only when a DAG task finishes its execution
completely, it can schedule another DAG task to execute. However, before a DAG task
finishes its execution completely, some cores may be idle and available to execute tasks (this
behavior is fundamental to its underlying response time analysis), which wastes a lot of
computing resources. Second, the (o,)-pair analysis for one DAG task proposed in [29] is
not incorporated into its analysis for task set, which makes its performance even worse. The
acceptance ratio for RM-ZHAO reported in our experiments is consistent with the results
reported in [29].

Evaluation Using Normalized Bound. The normalized bound of a task set is the average
value among normalized bounds of its tasks. Even if a task set is deemed to be unschedulable,
we still try to iterate until all tasks reach a fixed point to compute the response time bound
for all tasks. If a task set cannot reach a fixed point, it will be discarded. As reported in
Figure 8, the performance of RM-ZHAO is relatively poor, which results in that the response
time bound cannot be computed for lots of task sets (in our experiment, the fixed point
iteration procedure for computing bounds cannot converge before the iterated bounds reach
thirty times of its deadlines). Therefore, RM-ZHAO is not included in the result of this
experiment. For each configuration, we have at least 1000 task sets to compute the average
normalized bound. As shown in Figure 9, since the normalized bound is always smaller than
1, our method completely dominates B-HF for both EDF and RM, reducing the response
time bound by up to 12.3% for EDF and up to 12.4% for RM. The results are consistent
with the evaluation of single-DAG systems.

Q. He, M. Lv, and N. Guan

Summary. Experiments in this section show that our computing method and priority
assignment can reduce response time bound, improve system schedulability compared to
the state-of-the-art by a considerable margin. Specifically, compared to [17], our method
reduces response time bound by more than 10% on average and improves schedulability up
to 20%. The effectiveness of the method is also supported by the number of DAG tasks with
a smaller bound than the state-of-the-art.

8 Related Work

He et al. [17] proposed a dynamic programming algorithm to compute response time bound
for DAG tasks with intra-task priority assignment, alongside its response time analysis, which
is the most relevant work to this paper. Their computing method assumed that priority
assignment should comply with topology constraint. For a wide range of priority assignment
without this constraint, their algorithm may produce a wrong bound.

The response time analysis for multi-DAG systems has been intensively studied in recent
years, with different scheduling strategies including global scheduling [3,7,12,13,22,25] and
federated scheduling [4-6,23,24]. All the above works involve using the response time bound
of a single DAG to bound the intra-task interference, which is the focus of this paper. Fonseca
et al. [14] proposed a partitioned scheduling for sporadic DAG tasks.

For response time bound of a single DAG task, zhao et al. [29] explored parallelism and
dependencies in DAG structure, and proposed a priority assignment policy and response
time bounds based on its CPC (concurrent provider and consumer) model. Han et al. [16]
studied typed DAG task for heterogeneous multi-core platform. Sun et al. [27] proposed a
method to compute the exact worst case response time with exponential time complexity
while being efficient for DAG tasks with small number of vertices. Chen et al. [9] proposed a
bound for a DAG with conditional branches by simulating the DAG task with a predefined
execution order. The bound in [9] was proved to be timing-anomaly free.

For intra-task priority assignment, in real-time community, Voudouris et al. [28] computed
response time bound by simulating the timing-anomaly free scheduler. Pathan et al. [26]
proposed a method to utilize intra-task priority assignment to improve resource utilization,

and used the idea of ready time and response time of vertices to reduce intra-task interference.

Besides research work from real-time community, there are plenty of techniques concerning

scheduling task graphs on multiprocessor platform with intra-task priority assignment.
Their objective is to reduce the response time on average, not the response time bound.
Works [19, 21] considered priority assignment for static scheduling algorithms for DAGs.

Kwok and Ahmad proposed a static scheduling algorithm for allocating task graphs to fully
connected multiprocessor based on the critical path of task graphs [20].

9 Conclusion, Limitations and Future Work

Computing response time bound of DAG tasks is one of the most important problems in the
real-time community. In this paper, we address a serious constraint of the previous result, and
propose a method capable of computing response time bound for DAG tasks with arbitrary
intra-task priority assignment. Experiments show that our method can greatly reduce the
response time bound. In the future, we plan to formulate the graph interference problem
into a formal language, clearly identify the context-free grammar inherently associated with
this problem, and utilize the automata theory [18] to compute it within a constant number
of iterations (the method of this paper computing within |V iterations) and further improve
efficiency. Another direction is searching for an optimal priority assignment with respect to
the bound in Equation 1.

8:19

ECRTS 2021

8:20

Response Time Bounds for DAG Tasks

—— References

1

10

11

12

13

14

15

16

17

Openmp-api-specification-5.0.pdf. https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf. (Accessed on 03/01/2021).

Theodore P Baker and Sanjoy K Baruah. Sustainable multiprocessor scheduling of sporadic
task systems. In 2009 21st Euromicro Conference on Real-Time Systems, pages 141-150.
IEEE, 2009.

Sanjoy Baruah. Improved multiprocessor global schedulability analysis of sporadic dag task
systems. In 2014 26th Euromicro conference on real-time systems, pages 97-105. IEEE, 2014.
Sanjoy Baruah. The federated scheduling of constrained-deadline sporadic dag task systems. In
2015 Design, Automation & Test in Europe Conference & Ezhibition (DATE), pages 1323-1328.
TIEEE, 2015.

Sanjoy Baruah. Federated scheduling of sporadic dag task systems. In 2015 IEEE International
Parallel and Distributed Processing Symposium, pages 179-186. IEEE, 2015.

Sanjoy Baruah. The federated scheduling of systems of conditional sporadic dag tasks. In
Proceedings of the 12th International Conference on Embedded Software, pages 1-10. IEEE
Press, 2015.

Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese.
Feasibility analysis in the sporadic dag task model. In 20138 25th Euromicro conference on
real-time systems, pages 225-233. IEEE, 2013.

Alan Burns and Sanjoy Baruah. Sustainability in real-time scheduling. Journal of Computing
Science and Engineering, 2(1):74-97, 2008.

Peng Chen, Weichen Liu, Xu Jiang, Qingqgiang He, and Nan Guan. Timing-anomaly free
dynamic scheduling of conditional dag tasks on multi-core systems. ACM Transactions on
Embedded Computing Systems (TECS), 18(5s):1-19, 2019.

Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vincent, and
Frédéric Wagner. Random graph generation for scheduling simulations. In Proceedings of the
3rd international ICST conference on simulation tools and techniques, page 60. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2010.
Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade. Bar-
celona openmp tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In Parallel Processing, 2009. ICPP’09. International Conference on, pages 124-131.
IEEE, 2009.

José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved response time analysis of
sporadic dag tasks for global fp scheduling. In Proceedings of the 25th international conference
on real-time networks and systems, pages 28-37, 2017.

José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability analysis of dag tasks with
arbitrary deadlines under global fixed-priority scheduling. Real-Time Systems, 55(2):387-432,
2019.

José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luis Miguel Pinho. Response time
analysis of sporadic dag tasks under partitioned scheduling. In 2016 11th IEEE Symposium
on Industrial Embedded Systems (SIES), pages 1-10. IEEE, 2016.

Vladimir Gajinov, Srdan Stipié, Igor Eri¢, Osman S Unsal, Eduard Ayguadé, and Adridn
Cristal. Dash: a benchmark suite for hybrid dataflow and shared memory programming
models: with comparative evaluation of three hybrid dataflow models. In Proceedings of the
11th ACM conference on computing frontiers, page 4. ACM, 2014.

Meiling Han, Nan Guan, Jinghao Sun, Qinggiang He, Qingxu Deng, and Weichen Liu. Response
time bounds for typed dag parallel tasks on heterogeneous multi-cores. IEEE Transactions on
Parallel and Distributed Systems, 30(11):2567-2581, 2019.

Qinggiang He, Xu Jiang, Nan Guan, and Zhishan Guo. Intra-task priority assignment in
real-time scheduling of dag tasks on multi-cores. IEEE Transactions on Parallel and Distributed
Systems, 30(10):2283-2295, 2019.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Q. He, M. Lv, and N. Guan

18

19

20

21

22

23

24

25

26

27

28

29

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60-65, 2001.

H KASAHARA and S NARITA. Practical multiprocessor scheduling algorithms for efficient
parallel processing. IEEE transactions on computers, 33(11):1023-1029, 1984.

Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An effective technique
for allocating task graphs to multiprocessors. IFEFE transactions on parallel and distributed
systems, 7(5):506-521, 1996.

Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406-471, 1999.

Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Outstanding paper award:
Analysis of global edf for parallel tasks. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 3—13. IEEE, 2013.

Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah.
Analysis of federated and global scheduling for parallel real-time tasks. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 85-96. IEEE, 2014.

Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and Chenyang Lu.
Mixed-criticality federated scheduling for parallel real-time tasks. Real-time systems, 53(5):760—
811, 2017.

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C Buttazzo. Response-time analysis of conditional dag tasks in multiprocessor systems.
In 2015 27th Euromicro Conference on Real-Time Systems, pages 211-221. IEEE, 2015.
Risat Pathan, Petros Voudouris, and Per Stenstrom. Scheduling parallel real-time recurrent
tasks on multicore platforms. IEEE Transactions on Parallel and Distributed Systems, 29(4):915—
928, 2017.

Jinghao Sun, Feng Li, Nan Guan, Wentao Zhu, Minjie Xiang, Zhishan Guo, and Wang Yi. On
computing exact wert for dag tasks. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1-6. IEEE, 2020.

Petros Voudouris, Per Stenstréom, and Risat Pathan. Timing-anomaly free dynamic scheduling
of task-based parallel applications. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017 IEEE, pages 365-376. IEEE, 2017.

Shuai Zhao, Xiaotian Dai, Tain Bate, Alan Burns, and Wanli Chang. Dag scheduling and
analysis on multiprocessor systems: Exploitation of parallelism and dependency. In IEEE
Real-Time Systems Symposium. IEEE, 2020.

8:21

ECRTS 2021

	1 Introduction
	2 Preliminary
	2.1 Task Model
	2.2 Scheduling Model
	2.3 Problem Formulation
	2.4 An Illustrating Example

	3 Motivation
	3.1 Discussion on Existing Work
	3.2 Motivation of this Work

	4 Computing Response Time Bound
	5 Priority Assignment
	6 Extension to Multi-DAG Systems
	7 Performance Evaluation
	7.1 Evaluation of Single-DAG Systems
	7.2 Evaluation of Multi-DAG Systems

	8 Related Work
	9 Conclusion, Limitations and Future Work

