33rd Euromicro Conference on

Real-Time Systems

ECRTS 2021, July 5-9, 2021, Virtual Conference

Edited by

Bjorn B. Brandenburg

\\v LIPICS

LIPlcs — Vol. 196 — ECRTS 2021

www.dagstuhl.de/lipics



Editor

Bjorn B. Brandenburg
Max Planck Institute for Software Systems, Kaiserslautern, Germany
bbb@mpi-sws.org

ACM Classitication 2012
Computer systems organization — Embedded and cyber-physical systems; Computer systems organization
— Real-time systems; Software and its engineering — Real-time systems software

ISBN 978-3-95977-192-4

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-192-4.

Publication date
July, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPlcs.ECRTS.2021.0

ISBN 978-3-95977-192-4 ISSN 1868-8969 https: / /www.dagstuhl.de/lipics


https://orcid.org/0000-0001-8254-3815
mailto:bbb@mpi-sws.org
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECRTS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

O:iii

LIPlcs — Leibniz International Proceedings in Informatics

LIPlcs is a series of high-quality conference proceedings across all fields in informatics. LIPlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, 1T)
Christel Baier (TU Dresden, DE)

Mikolaj Bojanczyk (University of Warsaw, PL)

Roberto Di Cosmo (Inria and Université de Paris, FR)

Faith Ellen (University of Toronto, CA)

Javier Esparza (TU Miinchen, DE)

Daniel Kral' (Masaryk University - Brno, CZ)

Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)

Chih-Hao Luke Ong (University of Oxford, GB)

Phillip Rogaway (University of California, Davis, US)

Eva Rotenberg (Technical University of Denmark, Lyngby, DK)

Raimund Seidel (Universitat des Saarlandes, Saarbriicken, DE and Schloss Dagstuhl — Leibniz-Zentrum
fur Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECRTS 2021


https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Bjérn B. Brandenburq .............. oo 0:vii

Organizers
................................................................................. 0:ix—0:xi

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor for Scalable Parallel
Computation
Michael Platzer and Peter PUuSChAner ........... ... .o 1:1-1:18

A Memory Scheduling Infrastructure for Multi-Core Systems with
Re-Programmable Logic
Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso ....................... 2:1-2:22

Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+
MPSoC
Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and
Francisco J. Cazorla ......... . 3:1-3:26

Governing with Insights: Towards Profile-Driven Cache Management of
Black-Box Applications
Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso ..................... 4:1-4:25

nDimNoC: Real-Time D-dimensional NoC
Yilian Ribot Gonzdlez, Geoffrey Nelissen, and Eduardo Tovar .................... 5:1-5:22

Light Reading: Optimizing Reader/Writer Locking for Read-Dominant
Real-Time Workloads
Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward .. ... 6:1-6:22

Schedulability Analysis for Multi-Core Systems Accounting for Resource Stress
and Sensitivity
Robert 1. Davis, David Griffin, and Iain Bate ........... ... . . cciiiiiiiiiiii... 7:1-7:26

Response Time Bounds for DAG Tasks with Arbitrary Intra-Task Priority
Assignment
Qinggiang He, Mingsong Lv, and Nan Guan ................cuiiiiiiiniiiniina. 8:1-8:21

Graceful Degradation in Semi-Clairvoyant Scheduling
Sanjoy Baruah and Pontus EKberg ..... ... i 9:1-9:21

Hard Real-Time Stationary GANG-Scheduling
Niklas Ueter, Mario Giinzel, Georg von der Briiggen, and Jian-Jia Chen ......... 10:1-10:19

Tight Tardiness Bounds for Pseudo-Harmonic Tasks Under Global-EDF-Like
Schedulers
Shareef Ahmed and James H. Anderson ......... ... .. i 11:1-11:24

Feasibility Analysis of Conditional DAG Tasks
Sanjoy Baruah and Alberto Marchetti-Spaccamela ............. ... .. ... ........ 12:1-12:17

Scheduling Replica Voting in Fixed-Priority Real-Time Systems
Pietro Fara, Gabriele Serra, Alessandro Biondi, and Ciro Donnarumma .......... 13:1-13:21

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi

Contents

A Residual Service Curve of Rate-Latency Server Used by Sporadic Flows
Computable in Quadratic Time for Network Calculus
Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille .............. 14:1-14:21

Stability and Performance Analysis of Control Systems Subject to Bursts of
Deadline Misses
Nils Vreman, Anton Cervin, and Martina Maggio ............. ..., 15:1-15:23

On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems
Filip Markovié, Alessandro Vittorio Papadopoulos, and Thomas Nolte ............ 16:1-16:22



Preface

Message from the Chairs

It is our pleasure to welcome you to ECRTS 2021, the second — and hopefully last — fully
virtual instance of the conference. ECRTS is the premier European conference series in the
area of real-time systems and, alongside RTSS and RTAS, ranks as one of the top three
international conferences on this topic.

As we all wait for travel and life in general to normalize again, we are delighted to have
you join us for an exciting online program consisting of both scientific talks and opportunities
for socializing and networking. The centerpiece of the program will be a series of live
presentations introducing new results spanning the entire domain of real-time systems, from
algorithmic foundations to applied systems.

ECRTS 2021 received a total of 84 submissions from Asia, Europe, and North America.
FEach submission was reviewed by at least three expert members of the program committee
(PC) and discussed at a virtual PC meeting that took place on April 19 and 20, 2021.
Ultimately, the PC decided to accept 16 papers for publication and presentation, which
translates to an acceptance rate of 19%.

ECRTS has been at the forefront of recent innovations in the real-time systems community
such as artifact evaluation and open-access proceedings. Continuing its tradition of innovation,
ECRTS trialed a flexible page limit this year. We believe that scientists should focus on the
content of their papers, and not worry too much about formatting tricks and layout micro-
optimizations to squeeze the last few paragraphs under a given hard page limit. Authors
should invest their time into making their manuscripts more compelling and more appealing
to readers, not into fighting LaTeX to comply with ultimately somewhat arbitrary page limits.
In this spirit, rather than policing formatting violations “with an iron fist,” the flexible page
limit introduced this year aimed at reducing the incentive for space hacks in the first place
by giving authors the option to submit manuscripts exceeding the typical length of 15-18
pages of content.

As the flexible page limit is a “new feature” without precedent in the community, cautious
rules were put in place. These rules required authors to provide a short justification of their
need for extra pages, and to obtain a priori permission from the PC Chair to submit a
manuscript exceeding the 18-page soft limit. Similarly, the policy allowed authors to request
additional pages for the camera-ready versions of their papers. This allowed reviewers and
shepherds to ask for expanded discussions, and gave authors the liberty to address reviewer
feedback fully even if it required additional space. The resulting variation in paper lengths is
reflected in these proceedings.

Ultimately, 9 out of 84 submissions made use of the flexible page policy to submit
manuscripts exceeding 18 pages of content (10.7%). Among the 16 papers accepted for
publication, 2 comprised more than 18 pages of content at the time of submission (12.5%).
It should be noted that the flexible page limit did not result in excessive amounts of content
that would have exceeded the limits or nature of a conference paper, which is perhaps not
surprising as concision is of course a hallmark of good academic writing.

Overall, we believe that the flexible page policy is a success in two ways: the PC was freed
from concerning itself with formatting minutiae and the policy made a positive difference for
some of the authors who opted to make use of it. However, uptake by the community was

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii

Preface

more subdued than expected. As of now, it is still undecided whether the page limit will
remain flexible (in a revised manner) in future years, or wether the conference series will
revert to a more traditional hard limit.

Double-blind peer reviewing is another innovation successfully adopted in 2021, meaning
that authors submitted blinded manuscripts that left reviewers unaware of the names and
affiliations of the authors. As a result, all major conferences of the real-time systems
community now follow a largely similar double-blind peer-reviewing process, which we
welcome as significant community-wide change for the better that has been accomplished in
just a few short years, thanks to the efforts by many in the community. We are thankful to
have had the opportunity to play a small role in this transition and are hopeful that it will
promote the fairness and the meritocratic nature of the evaluation process.

A major conference such as ECRTS rests on many shoulders. First of all, we thank the
PC members for their hard work and outstanding service, and in particular for delivering
high-quality reviews on time despite a very tight timeline and all the burdens of a strange
and difficult year. Similarly, we are grateful to all external and secondary reviewers, who
provided many valuable perspectives and important feedback. We are especially grateful
to those PC members and additional reviewers who went “above and beyond” serving as
anonymous shepherds — you know who you are. We would also like to extend our thanks to
the Artifact Evaluation Chairs Alessandro Biondi and Angeliki Kritikakou and their board
of Artifact Evaluators for running the AE process. Finally, we thank the new Euromicro
Real-Time Technical Committee (TC) for its trust in us and their valuable guidance along
the way.

Our very special thanks go to the former, long-serving Euromicro Real-Time TC Chair
Gerhard Fohler for making ECRTS what it is today. Thank you, Gerhard! You have built
and nurtured something very special here. The new TC will have to work hard to live up to
the example you set.

Last but not least, we thank all authors for submitting their work to ECRTS 2021.
Whether or not it was ultimately accepted for publication, we deeply appreciate your fine
work and the tremendous effort and care that has gone into it; this conference would not be
possible without you.

Thanks to the authors, we are looking forward to an inspiring, high-quality program.
Please join us in enjoying both the science and everything around it — not just despite, but
especially in these trying times.

Marcus Volp Bjorn Brandenburg
General Chair, ECRTS 2021 Program Chair, ECRTS 2021



Organizers

Euromicro Real-Time Technical Committee

Sebastian Altmeyer, University of Augsburg, Germany
Sophie Quinton, INRIA Grenoble Rhone-Alpes, France
Marcus Volp, SnT, University of Luxembourg

General Chair

Marcus Volp, SnT, University of Luxembourg

Program Chair

Bjorn B. Brandenburg, Max Planck Institute for Software Systems (MPI-SWS), Germany

Artifact Evaluation Chairs

Alessandro Biondi, Scuola Superiore Sant’Anna — Pisa, Italy
Angeliki Kritikakou, IRISA, Rennes, France

Program Committee

Benny Akesson, University of Amsterdam / TNO, The Netherlands
Sebastian Altmeyer, University of Augsburg, Germany

Jim Anderson, University of North Carolina at Chapel Hill, USA
Sanjoy Baruah, Washington University in St. Louis, USA

Enrico Bini, Universita degli Studi di Torino, Italy

Konstantinos Bletsas, CISTER, ISEP, Polytechnic Institute of Porto, Portugal
Florian Brandner, Télécom Paris, France

Giorgio Buttazzo, Scuola Superiore Sant’Anna — Pisa, Italy
Marco Caccamo, TU Munich, Germany

Daniel Casini, Scuola Superiore Sant’Anna — Pisa, Italy
Francisco Cazorla, Barcelona Supercomputing Center, Spain
Thidapat Chantem, Virginia Tech, USA

Jian-Jia Chen, TU Dortmund, Germany

Dakshina Dasari Robert Bosch GmbH, Germany

Robert Davis University of York, UK

Pontus Ekberg, Uppsala University, Sweden

Rolf Ernst, TU Braunschweig, Germany

Nathan Fisher, Wayne State University, USA

Gerhard Fohler, TU Kaiserslautern, Germany

Joél Goossens, Université libre de Bruxelles ULB, Belgium
Giovani Gracioli, Federal University of Santa Catarina, Brazil
Mohamed Hassan, McMaster University, Canada

Angeliki Kritikakou, Univ Rennes, Inria, IRISA, France

Martina Maggio, Saarland University, Germany

Renato Mancuso, Boston University, USA

Ahlem Mifdaoui, University of Toulouse, France

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Preface

Mitra Nasri, Eindhoven University of Technology, The Netherlands

Claire Pagetti, ONERA, France
Alessandro Papadopoulos, Mélardalen University, Sweden

Gabriel Parmer, George Washington University, USA
Risat Mahmud Pathan, Zenseact AB, Sweden
Rodolfo Pellizzoni, University of Waterloo, Canada

Isabelle Puaut, Université de Rennes 1/ IRISA, France

Christine Rochange, University of Toulouse, France
Selma Saidi, TU Dortmund, Germany

Simon Schliecker, Volkswagen AG, Germany

Corey Tessler, Towson University, USA

Marcus Volp, University of Luxembourg

Georg von der Briiggen, Max Planck Institute for Software Systems (MPI-SWS), Germany
Peter Wagemann, Friedrich-Alexander University Erlangen-Niirnberg, Germany

Heechul Yun, University of Kansas, USA

Artifact Evaluators

Tanya Amert, University of North Carolina at Chapel Hill, USA

Matthias Becker, KTH, Sweden
Bryan Donyanavard, San Diego State University, USA

Romain Jacob, ETH Zurich, Switzerland

Leonidas Kosmidis, Barcelona Supercomputing Center, Spain

Paolo Pazzaglia, Saarland University, Germany

Benjamin Rouxel, University of Amsterdam, The Netherlands

Fernando Fernandes dos Santos, Universidade Federal do Rio Grande do Sul, Brazil
Lea Schonberger, TU Dortmund, Germany
Stefanos Skalistis, Collins Aerospace, Ireland

Additional Reviewers

Jaume Abella
Abderaouf Nassim Amalou
Zhenyu Bai
Antoine Bertout
Tobias Blass
Marc Boyer
Hugues Cassé
Mitchell Duncan
Gautam Gala
Mario Giinzel
Florian Heilmann
Jeff Ichnowski
Kristin Kriiger
Claudio Mandrioli
Reza Mirosanlou
Geoffrey Nelissen
Luiz Neto

Runyu Pan

Shareef Ahmed
Mihail Asavoae
Joshua Bakita
Benjamin Binder
Frédéric Boniol
Sergey Bozhko
Pierre-Julien Chaine
Bssel El Mabsout
Adrien Gauffriau
Arne Hamann
Denis Hoornaert
Tomasz Kloda
Ching-Chi Lin
Sean McBride
Tanmaya Mishra
Catherine Nemitz
Sims Osborne
Paolo Pazzaglia

Ibrahim Alkoudsi
Muhammad Ali Awan
Nicolas Bellec
Alessandro Biondi
Etienne Borde
Thomas Carle
Kuan-Hsun Chen
Tan Elmor Lang
Golsana Ghaemi
Xinyu Han

Mehdi Hosseinzadeh
Leonidas Kosmidis
Felipe Lisboa
Enrico Mezzetti
Naresh Nayak
Federico Nesti
Marco Pagani
Sophie Quinton



Preface

Fatima Raadia

Carlos Rodriguez

Gero Schwéricke

Junjie Shi

Parul Sohal

Stephen Tang

Sergey Voronov
Patrick Meumeu Yomsi

Jan Reineke

Shahin Roozkhosh
Alejandro Serrano
Jayati Singh

Pascal Sotin
Dharmesh Tarapore
Aaron Willcock

0:xi

Tim Rheinfels
Debayan Roy
Wenyuan Shao
Stefanos Skalistis
Hamid Tabani
Niklas Ueter
Tyler Yandrofski

ECRTS 2021






Vicuna: A Timing-Predictable RISC-V Vector
Coprocessor for Scalable Parallel Computation

Michael Platzer =
TU Wien, Institute of Computer Engineering, Austria

Peter Puschner =
TU Wien, Institute of Computer Engineering, Austria

—— Abstract

In this work, we present Vicuna, a timing-predictable vector coprocessor. A vector processor
can be scaled to satisfy the performance requirements of massively parallel computation tasks,
yet its timing behavior can remain simple enough to be efficiently analyzable. Therefore, vector
processors are promising for highly parallel real-time applications, such as advanced driver assistance
systems and autonomous vehicles. Vicuna has been specifically tailored to address the needs
of real-time applications. It features predictable and repeatable timing behavior and is free of
timing anomalies, thus enabling effective and tight worst-case execution time (WCET) analysis
while retaining the performance and efficiency commonly seen in other vector processors. We
demonstrate our architecture’s predictability, scalability, and performance by running a set of
benchmark applications on several configurations of Vicuna synthesized on a Xilinx 7 Series FPGA
with a peak performance of over 10 billion 8-bit operations per second, which is in line with existing
non-predictable soft vector-processing architectures.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture
Keywords and phrases Real-time Systems, Vector Processors, RISC-V

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.1

Supplementary Material Software: https://github.com/vproc/vicuna

1 Introduction

Worst-Case Execution Time (WCET) analysis, which is essential to determine the maximum
execution time of tasks for real-time systems [46], has struggled to keep up with the advances
in processor design. Numerous optimizations such as caches, branch prediction, out-of-order
execution, and speculative execution have made the timing analysis of processing architectures
increasingly complex [45]. As a result, the performance of processors suitable for real-time
systems usually lags behind platforms optimized for average computational throughput at
the cost of predictability. Yet, the performance requirements of real-time applications are
growing, particularly in domains such as advanced driver assistance systems and self-driving
vehicles [23], thus forcing system architects to use multi-core architectures and hardware
accelerators such as Graphics Processing Units (GPUs) in real-time systems [13]. Analyzing
the timing behavior of such complex heterogeneous systems poses additional challenges as it
requires a timing analysis of the complex interconnection network in addition to analyzing
the individual processing cores of different types and architectures [36, 9].

However, current trends motivated by the quest for improved energy-efficiency and the
emergence of massively data-parallel workloads [8] have revived the interest in architectures
that might be more amenable to WCET analysis [29]. In particular, vector processors are
promising improved energy efficiency for data-parallel workloads [7] and have the potential
to reduce the performance gap between platforms suitable for time-critical applications and
mainline processors [29].

© Michael Platzer and Peter Puschner;

licensed under Creative Commons License CC-BY 4.0
33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 1; pp. 1:1-1:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:michael.platzer@tuwien.ac.at
https://orcid.org/0000-0002-5103-8848
mailto:peter@vmars.tuwien.ac.at
https://orcid.org/0000-0002-2495-0778
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://github.com/vproc/vicuna
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Vector processors are single-instruction multiple-data (SIMD) architectures, operating on
vectors of elements instead of individual values. The vector elements are processed simultan-
eously across several processing elements as well as successively over several cycles [2]. A single
vector instruction can operate on a very large vector, thus amortizing the overhead created
by fetching and decoding the instruction, which does not only increase its efficiency [4] but
also means that complex hardware-level optimizations become less effective [29]. Therefore,
vector processors can drop some of these optimizations and thus improve timing predictability
without notable performance degradation.

While vector processors have the potential to greatly simplify timing analysis compared to
other parallel architectures, existing vector processing platforms retain features that impact
timing-predictability, such as out-of-order execution or banked register files [5]. Even if some
vector architectures have simple in-order pipelines, they still exhibit timing anomalies (i.e.,
undesired timing phenomena which threaten timing predictability). Timing anomalies occur,
for instance, when memory accesses are not performed in program order [16], such as when
memory accesses by the vector unit interfere with accesses from the main core.

In this paper, we present a novel vector coprocessor addressing the needs of time-critical
applications without sacrificing performance. Our key contributions are as follows:

1. We present a timing-predictable 32-bit vector coprocessor implemented in SystemVerilog
that is fully compliant with the version 0.10 draft of the RISC-V vector extension [34].
All integer and fixed-point vector arithmetic instructions, as well as the vector reduction,
mask, and permutation instructions described in the specification, have been implemented.
Vicuna is open-source and available at https://github.com/vproc/vicuna.

2. We integrate our proposed coprocessor with the open-source RISC-V core Ibex [37] and
show that this combined processing system is free of timing anomalies while retaining a
peak performance of 128 8-bit multiply-accumulate (MAC) operations per cycle. The
combined processing system runs at a clock frequency of 80 MHz on Xilinx 7 Series
FPGAs, thus achieving a peak performance of 10.24 billion operations per second.

3. We evaluate the effective performance of our design on data-parallel benchmark ap-
plications, reaching over 90 % efficiency for compute-bound tasks. The evaluation also
demonstrates the predictability of our architecture as each benchmark program always
executes in the exact same number of CPU cycles.

This work is organized as follows. Section 2 introduces prior work in the domains of
parallel processing and vector architectures. Then, Section 3 presents the design of our
vector coprocessor Vicuna and Section 4 analyzes the timing behavior of our processing
system. Section 5 evaluates its performance on several benchmark algorithms, and Section 6
concludes this article.

2 Background and Related Work

This section gives an overview of existing parallelized computer architectures and vector
processors in particular and compares them to our proposed timing-predictable vector
coprocessor Vicuna. Table 1 summarizes the main aspects.

2.1 Parallel Processing Architectures

In the mid-2000s, power dissipation limits put an end to the acceleration of processor clock
frequencies, and computer architects were forced to exploit varying degrees of parallelism
in order to further enhance computational throughput. A relatively simple approach is to


https://github.com/vproc/vicuna

M. Platzer and P. Puschner

Table 1 Performance and timing predictability of parallel computer architectures.

Multi- General- Domain- Existing Timing- Vicuna
Processor . .
Architecture Core purpose Specific Vector Predictable (Our
CPU GPU Accelerators Processors Platforms work)
General- v v v Y Y
purpose
Efﬁmen‘F v v v v
parallelism
Timing-
predictable v v v
Max. OPs
2.2 / 3.27 ) 5000% / : "
10° 15% /12855 | 249 /4979 | 10/ —
per sec (107) | ogg= | 350001 | 45000 5" /128 /49 0/
FPGA / ASIC
# 16-core Cobham LEON3 1 Srinivasan et al. [42] 9 15-core T-CREST Patmos [38]
#x 344-core Ambric Am2045B 1t Google TPU [21] 99 8-core ARM Cortex-R82
t FlexGrip soft GPU [1] § 32-lane VEGAS [6]
++ NVIDIA RTX 3090 §§ 16-lane PULP Ara [5]

replicate a processor core several times, thus creating an array of independent cores each
executing a different stream of instructions. This multiple-instruction, multiple-data (MIMD)
paradigm [11] is ubiquitous in today’s computer architectures and has allowed a continued
performance increase. Timing-predictable multi-core processors have been proposed for
time-critical parallel workloads, most notably the parMERASA [43] and the T-CREST [38]
architectures, which demonstrated systems with up to 64 and 15 cores, respectively. A
similar timing-predictable multi-core architecture utilizing hard processing cores connected
by programmable logic has been implemented recently on an Multiprocessor System-on-
Chip (MPSoC) platform [14]. However, several of the workloads capable of efficiently
exploiting this parallelism are actually highly data-parallel, and as a consequence, the many
cores in such a system frequently all execute the same sequence of instructions [7]. The
fetching and decoding of identical instructions throughout the cores represent a significant
overhead and increase the pressure on the underlying network infrastructure connecting
these cores to the memory system [28, 41]. Consequently, the effective performance of a
multi-core system does not scale linearly as more cores are added. For the T-CREST platform,
Schoeberl et al. report that the worst-case performance for parallel benchmark applications
scales only logarithmically with the number of cores [38]. As an alternative to multi-core
architectures, some timing-predictable single-core processors exploit parallelism by executing
multiple independent hardware threads [26, 50], thus avoiding the overhead of a complex
interconnection network. Yet, the scalability of this approach is limited since it does not
increase the available computational resources.

An architecture that overcomes many of the limitations of multi- and many-core systems
for highly parallel workloads are general-purpose GPUs (also referred to as GPGPUs) [31].
GPUs utilize data-parallel multithreading, referred to as the single-instruction multiple-
threads (SIMT) paradigm [27], to achieve unprecedented energy-efficiency and performance.
GPUs are used as data-parallel accelerators in various domains and have found their way
into safety-critical areas such as autonomous driving [23, 13]. However, their use in hard
real-time systems still poses challenges [9]. GPUs are usually non-preemptive, i.e., tasks

cannot be interrupted, which requires software-preemption techniques to be used instead [13].

Also, contention among tasks competing for resources is typically resolved via undisclosed
arbitration schemes that do not account for task priorities [10].

1:3

ECRTS 2021



1:4

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Recently, special-purpose accelerators emerged as another type of highly parallel platform
that sacrifices flexibility and often precision [42] to achieve impressive performance for domain-
specific tasks. For instance, the Tensor Processing Unit (TPU) [21] is capable of 65536
8-bit MAC operations in one cycle, achieving a peak performance of 45 - 10'2 operations per
second at a clock frequency of 700 MHz. Due to their simple application-specific capabilities,
the timing behavior of these accelerators is generally much easier to analyze [29]. While
domain-specific accelerators achieve impressive performance for a small subset of applications,
they are very inefficient at or even incapable of running other important algorithms, such
as Fourier Transforms, motion estimation, or encryption with the Advanced Encryption
Standard (AES). By contrast, a vector processor can execute any task that can be run on a
conventional processor.

As an alternative to parallelizing tasks across several cores or threads, single-instruction
multiple-data (SIMD) arrays have been added to several Instruction Set Architectures (ISAs).
These are usually fixed-size arrays using special functional units, one for each element in the
array, to apply the same operation to the entire array at once. However, array processors
require that the computational resources are replicated for each element of the longest
supported array [5].

2.2 Vector Processors

Vector processors are a time-multiplexed variant of array processors. Instead of limiting the
vector length by the number of processing elements, a vector processor has several specialized
execution units that process elements of the same vector across multiple cycles, thus enabling
the dynamic configuration of the vector length [7]. Fig. 1 shows how an instruction stream
with interleaved scalar and vector instructions executes on an array processor and a vector
processor, respectively. In an array processor, the entire vector of elements is processed at
once, and the processing elements remain idle during the execution of scalar instructions. In
the vector processor, functionality is distributed among several functional units, which can
execute in parallel with each other as well as concurrently with the scalar units.

Vector processors provide better energy-efficiency for data-parallel workloads than MIMD
architectures [7] and promise to address the van Neumann bottleneck very effectively [4]. A
single vector instruction can operate on a very large vector, which amortizes the overhead
created by fetching and decoding the instruction. In this regard, vector processors even
surpass GPUs, which can only amortize the instruction fetch over the number of parallel
execution units in a processing block [5].

Several supercomputers of the 1960s and 1970s were vector processors, such as the
Iliac IV [19] or the Cray series [35]. These early vector processors had functional units spread
across several modules containing thousands of ICs in total. At the end of the century, they

Instructions  Scalar units  Array processing elements Instructions  Scalar units Vector units
, PEo.PE{, K PE2 6 PE3 , VLSU . VMUL
vid v [y [ g, [ v, |{ vid, vid
1d I 1d b, |[vids !
ymu | | [t ]

o O
add ¢ add

(a) Array processor. (b) Vector processor.

o

Figure 1 Comparison of the execution patterns of array and vector processors. Instructions
prefixed with a v operate on a vector of elements, while the rest are regular scalar instructions.



M. Platzer and P. Puschner

were superseded by integrated microprocessor systems, which surpassed their performance
and were significantly cheaper [2]. While disappearing from the high-performance computing
domain, vector processors have continued their existence as general-purpose accelerators
in Field-Programmable Gate Arrays (FPGAs). Several soft vector processors have been
presented, such as VESPA [48], which adds a vector coprocessor to a 3-stage MIPS-I pipeline,
VIPERS [49], a single-threaded core with a vector processing unit, VEGAS [6], a vector
coprocessor using a cacheless scratchpad memory, VENICE [39], an area-efficient improved

version of VEGAS, or MXP [40], which added additional support for fixed-point computation.

In addition to FPGA-based accelerators, vector processors have also been explored as
energy-efficient parallel computing platforms. Lee et al. [25] proposed a vector architecture
named Hwacha, which is based on the open RISC-V ISA. The instruction set for Hwacha has
been implemented as a custom extension. Despite sharing some features, it is incompatible
with the more recent official RISC-V vector extension. One of the first vector processors
based on the new RISC-V V extension is Ara, developed by Cavalcante et al. [5], as a
coprocessor for the RISC-V core Ariane. Another recent architecture implementing the
RISC-V V extension named RISC-V? has been proposed by Patsidis et al. [32].

While existing vector processors are less complex and easier to analyze than other parallel
architectures, they still use speed-up mechanisms which are a source of timing anomalies,
such as run-time decisions for choosing a functional unit [44], banked register files, and greedy
memory arbitration [16]. By contrast, our proposed vector processor avoids such mechanisms,
with negligible impact on its performance thanks to the vector processing paradigm’s inherent
effectiveness. Vicuna is free of timing anomalies and hence suitable for compositional timing
analysis.

3 Architecture of Vicuna

This section introduces the architecture of Vicuna, a highly configurable, fully timing-
predictable 32-bit in-order vector coprocessor implementing the integer and fixed-point
instructions of the RISC-V vector extension. The RISC-V instruction set is an open standard
ISA developed by the RISC-V foundation. It consists of a minimalist base instruction set
supported by all compliant processors and several optional extensions. The V extension
adds vector processing capabilities to the instruction set. RISC-V and the V extension are
supported by the GNU Compiler Collection (GCC) and the LLVM compiler.

Vicuna is a coprocessor and must be paired with a main processor. We use the 32-bit
in-order RISC-V core Ibex, developed initially as part of the PULP platform under the
name Zero-riscy [37], as the main processor. Ibex is a small core with only two pipeline
stages: an instruction fetch stage and a combined decode and execute stage. Ibex executes
all non-vector instructions, which we refer to as scalar instructions.

Vicuna is connected to the main core with a coprocessor interface through which instruc-
tion words and the content of registers are forwarded from the main core to the coprocessor,
and results can be read back. We added a coprocessor interface to Ibex to extend it with
Vicuna. Instruction words are forwarded to the vector core via this interface if the major
opcode indicates that it is a vector instruction. In addition to the instruction word, scalar
operands from the main core’s register file are also transmitted to the coprocessor since these
are required by some vector instructions which use the scalar registers as source registers,
such as for instance, a variant of the vector addition which adds a scalar value to every
element of a vector or the vector load and store instructions which read the memory address
from a scalar register.

1:5

ECRTS 2021



1:6

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

An overview of the architecture of Vicuna and its integration with Ibex as the main core
is shown in Fig. 2. Vicuna comprises a decoder for RISC-V vector instructions, which parses
and acknowledges valid vector instructions. Once Vicuna’s decoder has successfully decoded
a vector instruction, it acknowledges its receipt and informs the main core whether it needs
to wait for a scalar result. If the vector instruction produces no scalar result but instead
only writes to a vector register or memory, then the main core can proceed with further
instructions in parallel with the vector instruction’s execution on the coprocessor. However,
when a vector instruction writes back to a register in the main core, then the main core stalls
until the coprocessor has completed that instruction. Only four RISC-V vector instructions
produce a scalar result. Hence this scenario occurs rarely. Decoded vector instructions
are placed in an instruction queue where they await execution on one of the vector core’s
functional units. Vicuna is a strictly in-order coprocessor: Vector instructions from the
instruction queue are issued in the order they are received from the main core. A vector
instruction is issued as soon as any data hazards have been cleared (i.e., any instructions
producing data required by that instruction are complete) and the respective functional unit
becomes available.

Since our main goal is to design a timing-predictable vector processor, we refrain from
any features that cause timing anomalies, such as run-time decisions for choosing functional
units [44]. Both cores share a common 2-way data cache with a least recently used (LRU)
replacement policy, which always gives precedence to accesses by the vector core. Once a
vector instruction has been issued for execution on one of the functional units, it completes
within a fixed amount of time that depends only on the instruction type, the throughput of
the unit, and the current vector length setting. For vector loads and stores, the execution
time additionally depends on the state of the data cache, which is the only source of timing
variability. However, in-order memory access is guaranteed for scalar and vector memory

[
! —

VLSU VALU VMUL VSLDU VIDXU

+=

i IF Stage ID + EX Stage
I V-l
> | 1$ % Prefetch SN % ALl
] ' 0 buffer »
2 I 8 Wait
5| |2
= : i D$ 32 ™ rsi Red Fi
g | ! g File
£ S rs2
| |8 Ibex —
gl |3 RV32IMC
S0 [ 2 ‘
! Pending vector load / store
1
|
l -
| Vicuna . T
| RV32V | VReg File | | V-Decoder I_.I = |
1
1
1
1
1
1
1

Figure 2 Overview of Vicuna’s architecture and its integration with the main core Ibex. Both
cores share a common data cache. To guarantee in-order memory access, the memory arbiter delays
any access following a cache miss by the main core until pending vector load and store operations
are complete. When accessing the data cache, the vector core always takes precedence.



M. Platzer and P. Puschner

operations by delaying any access following a cache miss in the main core until pending vector
load and stores are complete. Note that vector load and store instructions stall the main core
for a deterministic, bounded number of cycles since no additional vector instructions can
be forwarded to the vector core while the main core is stalled. This method is an extension

of the technique introduced by Hahn and Reineke [15] for the strictly in-order core SIC.

Due to the simple 2-stage pipeline of Ibex, conflicting memory accesses between its two
stages become visible simultaneously. In that situation, the memory arbiter maintains strict
ordering by serving the data access first.

Vicuna comprises several specialized functional units, each responsible for executing
a subset of the RISC-V vector instructions, which allows executing multiple instructions
concurrently. The execution units do not process an entire vector register at once. Instead,
during each clock cycle, only a portion of the vector register is processed, which may contain
several elements that are processed in parallel. Most array processors and several vector
processors are organized in lanes. Each lane replicates the computational resources required
to process one vector element at a time. In such a system, the number of lanes determines
the number of elements that can be processed in parallel, regardless of the type of operation.
By contrast, Vicuna uses dedicated execution units for different instruction types that each
process several elements at once. The ability to individually configure the throughput for
each unit improves the performance of heavily used operations by increasing the respective
unit’s data-path width (e.g., widening the data-path of the multiplier unit).

Some of the RISC-V vector instructions do not process the vector registers on a regular
element-wise basis. Instead, they feature an irregular access pattern, such as indexed
instructions, which use one vector register’s values as indices for reading elements from
another register, or the slide instructions, which slide all elements in a vector register up
or down that register. Vicuna uses different functional units for each vector register access
pattern, which allows us to implement regular access patterns more efficiently and hence to
improve the throughput of the respective unit, while complex access patterns require more
cycles.

Vicuna comprises the following execution units:

A Vector Load and Store Unit (VLSU) interfaces the memory and implements the vector

memory access instructions.

The Vector Arithmetic and Logical Unit (VALU) executes most of the arithmetic and

logical vector instructions.

A dedicated Vector Multiplier (VMUL) is used for vector multiplications.

The Vector Slide Unit (VSLDU) handles vector slide instructions that move all vector

elements up or down that vector synchronously.

A Vector Indexing Unit (VIDXU) takes care of the indexing vector instructions. It is the

only unit capable of writing back to a scalar register in the main core.

The VALU uses a fracturable adder for addition and subtraction, that consists of a series
of 8-bit adders whose carry chains can be cascaded for wider operations. Four cascaded
8-bit adders perform four 8-bit, two 16-bit, or one 32-bit operation depending on the current
element width. Similarly, the VMUL unit uses a fracturable multiplier to perform 8-bit,
16-bit, and 32-bit multiplications on the same hardware. Fracturable adders and multipliers
are commonly used for FPGA-based vector processors. We base our implementation on the
resource-efficient design that Chou et al. proposed for the VEGAS vector processor [6].

Selecting a relatively large sub-word from a large vector register consumes a substantial
amount of logic resources. Therefore, we avoid sub-word selection logic for all functional
units with a regular vector register access pattern. Instead, these units read the whole source

1:7

ECRTS 2021



1:8

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

vector registers into shift registers, as shown in Fig. 3 (a). The content of these is then shifted
by the number of elements that can simultaneously be processed by the unit each cycle, thus
making the next elements of the source vector register available to the processing pipeline.
Similarly, the results are aggregated into another shift register that saves the computed
elements until the entire vector is complete, upon which the whole vector register is written
back to the register file. The amount of combinatorial logic resources consumed by the shift
registers is less than those that are required by an index-based subword selection (they do,
however, require some extra flip-flops for buffering the whole vector register).

Vicuna’s vector register file contains 32 vector registers of configurable width. Multiple
read and write ports are required in order to supply the execution units operating in parallel
with operands and consume their results. We take advantage of the functional unit’s shift
registers, which fetch entire vector registers at once and accumulate results before storing a
whole register, to implement both read and write port multiplexing. Each functional unit
has a dedicated read port used to fetch the operand registers sequentially, storing them in
shift registers from where they are consumed iteratively. This adds one extra cycle when
fetching two operand registers but avoids the need for two read ports on each unit. As the
only exception, the VMUL unit has two read ports to better support the fused multiply-add
instruction, which uses three operands. Also, write ports are shared between units using
the circuitry shown in Fig. 3 (b). Due to the accumulation of results in shift registers
prior to write-back, a unit cannot write to the vector register file for two subsequent cycles.
Hence, whenever a collision between two units occurs on a shared write port, one unit
takes precedence and writes its result back first while the other unit writes its result into
a temporary buffer, from where it is stored to the register file in the subsequent cycle. A
second write request from the first unit cannot immediately follow the previous write. Hence
this delayed write-back is guaranteed to succeed. Regardless of whether the write-back is
delayed by one cycle or not, any data hazards of operations on units not taking precedence
on their shared write port are cleared one cycle after the operation completes to maintain
predictable instruction timings while accounting for a potentially delayed write-back.

¢Vreg read j:-i
I write enable B

|> Operand Shift Registers LJ VALU | VREG addr & data
b Operand A| pOperand B | write enable :I
>|$$<I VLSU  [VREG addr & data

)
)
I

9 9D .

write

enable <21S@
Vegtor VREG addr & data
furth Register
. . urt e(; :: File k— \ further
|> Result Shift Register | prgf_‘ts Dl k— | write ports
# Vreg write

(a) Organization of the vector ALU. Oper-  (b) The VALU and VLSU share a common write port,
and registers are read sequentially into shift with the VLSU always taking precedence. In case of a

registers and consumed over several cycles collision, the value and address of the VALU write request
by processing a fixed-width portion each are temporarily saved and written to the vector register file
cycle. Results are again accumulated into a in the next cycle. Neither unit can write for two subsequent
shift register before write-back. cycles. Hence the delayed write always succeeds.

Figure 3 Reading and writing whole registers from the vector register file avoids subword selection
logic and allows multiplexing of read and write ports without affecting timing predictability.



M. Platzer and P. Puschner

Although multiplexing of both read and write ports is used to reduce the required number
of ports, the vector register file must still provide several concurrent ports. We decided
against banked registers, which allow concurrent access to registers of different banks but
introduce interdependencies between execution units which are a potential source of timing
anomalies in case two registers within the same bank are accessed simultaneously. Since a
large flip-flop-based register file does not scale well, we implemented it as multi-ported RAM.
The design has been inspired by work from Laforest et al. [24], who investigated ways of
constructing efficient multi-ported RAMs in FPGAs. We implemented it as an XOR-based
RAM since this allows selectively updating individual elements of a vector register for masked
operations.

4  Timing-Predictability

In this section, we analyze the timing-predictability of Vicuna and argue that it is free of
timing anomalies, thus enabling compositional timing analysis.

Timing predictability and timing compositionality are both essential properties to avoid
the need for exhaustively exploring all possible timing behaviors for a safe WCET bound
estimation. In particular, timing compositionality is necessary to safely decompose a timing
analysis into individual components and derive a global worst case based on local worst-case
behavior [18]. The presence of timing anomalies can violate both timing predictability and
compositionality.

A timing anomaly can either be a counterintuitive timing effect or a timing amplification.

Counterintuitive timing anomalies occur whenever the locally better case leads to a globally
worse case, such as a cache hit leading to increased global timing, thus inverting the expected
behavior. Amplification timing anomalies occur when a local timing variation induces a
larger global timing variation. While counterintuitive timing anomalies threaten the timing
predictability, amplification timing anomalies affect the timing compositionality [20].

Counterintuitive timing anomalies can occur, for instance, when an execution unit is
selected at run-time rather than statically [44]. In-order pipelines can also be affected by this
kind of anomalies for instructions with multi-cycle latencies [3]. While vector instructions
executed within Vicuna can occupy the respective functional unit for several cycles, there is
only one unit for each type of instruction, and hence there is no run-time decision involved
in the choice of that unit. The execution time of all vector instructions is completely
deterministic, thus avoiding counterintuitive timing anomalies.

Amplification timing anomalies can be more subtle to discover, as recently shown by
Hahn et al. [17], who identified the reordering of memory accesses on the memory bus as
another source for timing anomalies. The presence of amplification timing anomalies is due
to the non-monotonicity of the timing behavior w.r.t. the progress order of the processor
pipeline [15].

We show that Vicuna is free of amplification timing anomalies by extending the formalism
introduced by Hahn and Reineke [15] for their timing-predictable core SIC to our vector

processing system. A program consists of a fixed sequence of instructions Z = {ig, i1, 42, . .. }.

During the program’s execution, the pipeline state is a mapping of each instruction to its
current progress. The progress P := S x Ny of an instruction is given by the pipeline stage
s € § in which it currently resides, as well as the number n € Ny of cycles remaining in that
stage. For our processing system, comprising the main core Ibex and the vector coprocessor
Vicuna, we define the following set of pipeline stages:

S = {pre, IF, ID+EX, VQ, VEU, postg, posty }

1:9

ECRTS 2021



1:10

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Analogous to the pipeline model used by Hahn and Reineke [15], we use the abstract
stages pre and post to model instructions that have not yet entered the pipeline or have
already left the pipeline, respectively. However, we distinguish between completed regular
(scalar) instructions and completed vector instruction by dividing the post stage into postg
and posty, respectively. IF is the main core’s fetch, while ID+EX denotes its combined
decode and execute stage. The vector coprocessor is divided into two abstract stages: V@Q
represents the vector instruction queue, and VEU comprises all the vector execution units.
Vector instructions awaiting execution in the vector queue remain in program order, and
once a vector instruction has started executing on one of the vector core’s functional units, it
is no longer dependent on any other instruction since there are no interdependencies between
the individual vector units. Hence we do not need to explicitly model each of the concrete
stages in the vector core.

Guaranteeing the strict ordering of instructions requires the following ordering Cgs of
these pipeline stages:

s postg
pre Cs IF Cs ID+EX
S VQ Cs VEU Cs posty,

Non-vector instructions exit the pipeline after the ID+FEX stage, while vector instructions
enter the vector queue and eventually start executing on a vector execution unit. An
instruction that has fewer remaining cycles in a stage or is in a later stage than another
instruction has made more progress. Hence, for two instruction with current progress
(s,n),(s’,n') € P respectively, an order on the progress is defined as:

(s,n)Cp (s'\n) & sCss V(s=s An>n)

The cycle behavior of a pipeline is monotonic w.r.t. the progress order Cp, if an instruc-
tion’s execution cannot be delayed by other instructions making more progress. For this
property to hold, an instruction’s progress must depend on previous instructions only and
never on a subsequent instruction [20]. Instructions are delayed by stalls in the pipeline.
Hence any pipeline stage must only be stalled by a subsequent stage.

The vector execution units cannot stall, except for the vector load and store unit in case
of a cache miss. Due to the strict ordering of memory accesses, the vector core cannot be
delayed by a memory access of the main core. Hence the VEU stage cannot be stalled by
any other stage. The vector queue holds instructions that await execution on a vector unit.
Thus the V@ stage can only be stalled by the VEU stage. The ID+EX stage, in turn, can
be stalled by an ongoing memory access of the vector core (the VEU stage), by a vector
instruction writing back to a scalar register, when a vector instruction has been decoded, but
the vector queue is full, or during memory loads and stores. Loads and stores are executed
while the IF stage fetches the next instruction. Hence in case of an instruction cache miss
on the subsequent instruction, a memory access by the ID+FEX takes precedence over the
IF stage. Finally, the IF stage can be stalled by the ID+FEX or by a memory access of
the vector core. Therefore, any pipeline stage of our processing system can only be stalled
by a subsequent stage. Hence, the progress order Cp of instructions is always maintained,
and instructions can only be delayed by previous instructions, but not by subsequent ones.
Consequently, the cycle behavior of our architecture is monotonic and hence free of timing
anomalies, which in turn is a sufficient condition for timing compositionality [20].



M. Platzer and P. Puschner

5 Evaluation

This section evaluates our vector coprocessor’s performance by measuring the execution
time of parallel benchmark applications on a Xilinx 7 Series FPGA with an external SRAM
with a 32-bit memory interface and five cycles of access latency. We evaluate a small,
medium, and fast configuration of Vicuna with vector register lengths of 128, 512, and 2048
bits, respectively. Table 2 lists the parameters for each configuration, along with the peak
multiplier performance and the maximum clock frequency.

The performance of parallel computer architectures on real-world applications is often
degraded by various bottlenecks, such as the memory interface. While a large number of
parallel cores or execution units might yield an impressive theoretical performance figure,
efficiently utilizing these computing resources can be challenging. The roofline model [47]
visualizes the performance effectively achieved by application code w.r.t. a processor’s peak
performance and memory bandwidth. The model shows the theoretical peak performance in
operations per cycle in function of the arithmetic intensity, which is the ratio of operations
per byte of memory transfer of an application. According to the roofline model, an algorithm
can be either compute-bound or memory-bound [30], depending on whether the memory
bandwidth or the computational performance limits the effectively achievable performance.
The computational capability of a core can only be fully utilized if the algorithmic intensity
of an application is larger than the core’s performance per memory bandwidth.

Fig. 4 shows the roofline performance model of each of the three configurations of Vicuna,
along with the effectively achieved performance for three benchmark applications, namely
weighted vector addition, matrix multiplication, and the 3 x 3 image convolution. The
dashed lines show each configuration’s performance boundary, i.e., the maximum theoretical
performance in function of arithmetic intensity. The horizontal part of these boundaries
corresponds to the compute-bound region, where the throughput of the multipliers limits
the performance. The diagonal portion of the performance boundary shows the memory-
bound region, where the memory bandwidth limits the performance. Applications with
a high arithmetic intensity are compute-bound, while memory-intensive applications with
a low arithmetic intensity are memory-bound. Markers indicate the effectively achieved
performance for each benchmark program.

The first benchmark is AXPY, a common building block of many Basic Linear Algebra
Subroutine (BLAS). AXPY is defined as Y < aX + Y, where X and Y are two vectors, and
« is a scalar. Hence, this algorithm adds the vector X weighted by « to the vector Y. We
implement AXPY for vectors of 8-bit elements. For a vector of length n, it requires n 8-bit
MAC operations and 3n bytes of memory transfer, which gives the algorithm an arithmetic
intensity of 1/3, thus placing it in the memory-bound region for all three configurations.

Table 2 Configurations of Vicuna for evaluation on a Xilinx 7 Series FPGA. Note that for larger
configurations, the maximum clock frequency decreases slightly as these require more resources
which complicates the routing process.

Config. Configuration Parameters 8-bit Clock
N Vector Reg. Multiplier Data- Data-Cache MACs frequency
ame per cycle (MHz)

Width (bit) Path Width (bit) Size (kB)
Small 128 32 8 4 100
Medium 512 128 64 16 90
Fast 2048 1024 128 128 80

1:11

ECRTS 2021



1:12

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

128 E © B 0912 %
7
4 , ©59.7 %
64 <o
7
7
—_ Ve
T 32 S
S ’
© g 1 Vicuna configuration
o 16 y ®88.7%  99.0% 9
o / — & - Small
g 8 // ®419% - : - i’leiilum
S / 337 % as
g S I I S it Rt ¥ A IR I R $881%  1995%
€ 463.8%
¥ 2
a <
> =8 =S
1 ©342% Z 7 =% =5
5 65/4 % Om ihe s,
@) O« (GIFS
4392 % -

0.25 0.5 1 2 4 8 16 32 64
Arithmetic intensity (OP / byte)

128 256 512

Figure 4 Roofline plot of the performance results for the benchmark algorithms for each of
Vicuna’s three configurations listed in Table 2. The dashed lines are the performance boundaries
of each configuration, and the markers show the measured effective performance. The percentages
indicate the ratio of effective vs. theoretical performance.

The next benchmark program that we consider is the generalized matrix multiplication
(GEMM) C + AB+ C, which adds the product of two matrices, A and B, to a third matrix,
C. The arithmetic intensity of this algorithm depends on the size n x n of the matrices. It
requires loading each of the matrices A, B, and C and storing the result, which corresponds
to a minimum of 4n? values that must be transferred between the core and memory. The
matrix multiplication itself requires n® MAC operations. We again use 8-bit values, which
gives an arithmetic intensity of n/4 MACs per byte transferred. We evaluate Vicuna’s
performance for two matrix sizes, 256 x 256 and 1024 x 1024, with an arithmetic intensity of
64 and 256, respectively, which are heavily compute-bound.

Finally, we use the 3 x 3 image convolution, which is at the core of many convolutional
neural networks (CNNs). This algorithm loads an input image, applies a 3 x 3 convolution
kernel, and then stores the result back to memory. Hence, each pixel of the image must be
transferred through the memory interface twice, once for loading and once for storing. A
total of 9 MACs are applied per pixel. Thus the arithmetic intensity is 4.5.

The benchmark programs have been executed on all three configurations of Vicuna, and
the execution times were measured with performance counters. Table 3 lists the recorded
execution times. For all measurements, both data and instruction caches were initially cleared.
The results show that the performance of Vicuna scales almost linearly w.r.t. the maximum
throughput of its functional units, which is consistent with the capabilities observed in
high-performance vector processors. For highly compute-bound applications, such as the
matrix multiplication of size 1024 x 1024, the multipliers are utilized over 90 % of the time
for the fast configuration and over 99 % of the time for the smaller variants.

The resource usage of Vicuna is similar to that of other FPGA-based vector processors.
Fig. 5 shows a radar chart that compares the fast configuration of Vicuna to the VESPA [48]
and the VEGAS [6] architectures (we compare configurations that have the same theoretical
peak performance of 128 8-bit operations). Other FPGA-based vector architectures, such



M. Platzer and P. Puschner

Table 3 Execution time measurements of the benchmark applications for each configuration.

Execution time in CPU cycles on the respective configuration
Benchmark
Small Medium Fast
AXPY 108985 58693 41989
CONV 214 486 92852 61719
GEMM 256 x 256 4758824 1164797 665 596
GEMM 1024 x 1024 268 277942 67467224 9182492

as VIPERS or VENICE, have only demonstrated smaller configurations and thus are not
included in this comparison. While the amount of logic resources consumed by Vicuna is
similar to that of the other soft vector processors, its minimum clock period is larger. This is
primarily due to the latency of the vector register file’s read and write ports. VESPA can
only execute one operation at a time and does not support a fused multiply-add instruction,
thus requiring much fewer register file ports than Vicuna. VEGAS replaces the vector register
file with a scratchpad memory with only two read and write ports. Despite its lower clock
frequency, Vicuna achieves a higher effective performance than VESPA and VEGAS because
of its ability to execute several operations in parallel, which allows it to better utilize its
computational resources. For VEGAS, Chou et al. report an execution time of 4.377 billion
cycles for a 4096 x 4096 matrix multiplication on a 32-lane configuration, which corresponds
to a multiplier utilization of only 49 %. Vicuna achieves an efficiency of over 90 % for
compute-bound workloads.

The efficiency of Vicuna is more in line with recent ASIC-based vector architectures, such
as Cavalcante et al’s Ara [5] and Lee et al’s Hwacha [25]. Both of these architectures achieve
over 90 % utilization of computational units, with Ara reaching close to 98 % for a 256 x 256

Clock period Lookup Tables
(ns) (x103)

—— 32-lane VESPA

Multiplier —— 32-lane VEGAS
idle time for 45 o .
compute-bound F'(')F:IL;F))S Vicuna

workload (%)

(fast config.)

Lower values are
better for all
parameters.

1500 180

DSP blocks
(hardware multipliers)

On-chip RAM
(kbit)

Figure 5 Resource utilization and performance of the FPGA-based vector processors Vicuna,
VESPA, and VEGAS (each configured for a peak performance of 128 8-bit operations per cycle).

1:13

ECRTS 2021



1:14

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

matrix multiplication on a configuration with 16 64-bit lanes. Yet, both Ara and Hwacha
use features that are a source of timing anomalies. Ara resolves banking conflicts for its
banked vector register file dynamically with a weighted round-robin arbiter that prioritizes
arithmetic operations over memory operations. Therefore, run-time decisions are involved
in the progress of instructions, and slow memory operations can be delayed by subsequent
arithmetic instructions. Hence, Ara likely exhibits both counterintuitive and amplification
timing anomalies [44]. While Hwacha sequences the accesses of vector register elements
in a way that avoids banking conflicts, it uses an out-of-order write-back mechanism and
consequently also suffers from timing anomalies. In addition, none of the existing vector
processors that we investigated maintains the ordering of memory accesses, particularly when
the main core and the vector core both access the same memory. Thus all these architectures
are plagued by amplification timing anomalies [16].

A feature distinguishing Vicuna from other vector processors is its timing-predictability
and compositionality. Vicuna is free of timing anomalies, enabling compositional timing
analysis required for efficient WCET estimation in real-time systems. While the performance
figures for Vicuna were obtained via measurements instead of a timing analysis, the predictable
nature and low timing variability of Vicuna, as well as the absence of data-dependent control-
flow branches in the benchmark programs, implies that their execution time is constant
(assuming that the cache is initially idle). Hence, the measured execution times in Table 3
are equal to the respective WCET. Repeating the measurements with varying input data
does not alter the timing and always yields the same execution times.

In contrast to timing-predictable multi-core architectures, Vicuna’s performance scales
significantly better. The performance of multi- and many-core systems typically does not
scale linearly with the number of cores since contention on the underlying network connecting
these cores to the memory interface becomes a limiting factor [28, 41]. This is particularly
true in real-time systems where tasks require guarantees regarding the bandwidth and latency
available to them [22, 33]. Schoeberl et al. found that the worst-case performance of the
T-CREST platforms scales only logarithmically with the number of cores [38]. Similar results
have been reported for the parMERASA multi-core architecture [12]. By contrast, the
fast configuration of Vicuna achieves over 90 % multiplier utilization for compute-bound
workloads, thus scaling almost linearly with the theoretical peak performance.

The combination of timing-predictability, efficiency, and scalability for parallel workloads
makes Vicuna a prime candidate for time-critical data-parallel applications. Besides, Vicuna
uses the RISC-V V extension as its instruction set, rather than custom extensions, as do
most vector processors, which eases its adoption.

6 Conclusion

The performance-enhancing features in modern processor architectures impede their timing-
predictability. Therefore, the performance of architectures suited for time-critical systems lags
behind processors optimizing for high computational throughput. However, the increasingly
demanding tasks in real-time applications require more powerful platforms to handle complex
parallel workloads.

In this work, we presented Vicuna, a timing-predictable, efficient, and scalable 32-bit
RISC-V vector coprocessor for massively parallel computation. We have integrated Vicuna
with the Ibex processor as the main core and demonstrated that the combined processing
system is free of timing anomalies, thus enabling compositional timing analysis.



M. Platzer and P. Puschner

The inherent efficiency of the vector processing paradigm allows us to drop common

micro-architectural optimizations that complicate WCET analysis without giving rise to a

significant performance loss. Despite its timing predictability, the effective performance of

Vicuna scales almost linearly w.r.t. the maximum throughput of its functional units, in line

with other high-performance vector processing platforms. Therefore, our vector coprocessor is

better suited for time-critical data-parallel computation than the current timing-predictable

multi-core architectures.

—— References

1

10

11

12

13

K. Andryc, M. Merchant, and R. Tessier. FlexGrip: A soft GPGPU for FPGAs. In 2013
International Conference on Field-Programmable Technology (FPT), pages 230-237, December
2013. doi:10.1109/FPT.2013.6718358.

Krste Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley, CA,
USA, 1998.

Mihail Asavoae, Belgacem Ben Hedia, and Mathieu Jan. Formal Executable Models for
Automatic Detection of Timing Anomalies. In Florian Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018), volume 63 of OpenAccess
Series in Informatics (OASIcs), pages 2:1-2:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl—-
Leibniz-Zentrum fuer Informatik. doi:10.4230/0ASIcs.WCET.2018.2.

S. F. Beldianu and S. G. Ziavras. Performance-energy optimizations for shared vec-
tor accelerators in multicores. IEEE Transactions on Computers, 64(3):805-817, 2015.
doi:10.1109/TC.2013.2295820.

Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, and Luca Benini.
Ara: A 1 GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOI. IEEFE Transactions on Very Large Scale Integration
(VLSI) Systems, PP:1-14, December 2019. doi:10.1109/TVLSI.2019.2950087.

Christopher H. Chou, Aaron Severance, Alex D. Brant, Zhiduo Liu, Saurabh Sant, and
Guy G.F. Lemieux. VEGAS: Soft vector processor with scratchpad memory. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’11, page 15-24, New York, NY, USA, 2011. Association for Computing Machinery.
do0i:10.1145/1950413.1950420.

Daniel Dabbelt, Colin Schmidt, Eric Love, Howard Mao, Sagar Karandikar, and Krste Asanovic.
Vector processors for energy-efficient embedded systems. In Proceedings of the Third ACM
International Workshop on Many-Core Embedded Systems, MES ’16, page 10-16, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2934495.2934497.

J. Dean. The deep learning revolution and its implications for computer architecture and chip
design. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC), pages 8-14,
February 2020. doi:10.1109/ISSCC19947.2020.9063049.

G. A. Elliott and J. H. Anderson. Real-world constraints of GPUs in real-time systems. In
2011 IEEFE 17th International Conference on Embedded and Real-Time Computing Systems
and Applications, volume 2, pages 4854, 2011. doi:10.1109/RTCSA.2011.46.

Glenn A. Elliott and James H. Anderson. Globally scheduled real-time multiprocessor systems
with GPUs. Real-Time Systems, 48:34-74, 2012. doi:10.1007/s11241-011-9140-y.

Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput.,
21(9):948-960, September 1972. doi:10.1109/TC.1972.5009071.

Martin Frieb, Ralf Jahr, Haluk Ozaktas, Andreas Hugl, Hans Regler, and Theo Ungerer. A par-
allelization approach for hard real-time systems and its application on two industrial programs.
Int. J. Parallel Program., 44(6):1296-1336, December 2016. doi:10.1007/s10766-016-0432-7.
V. Golyanik, M. Nasri, and D. Stricker. Towards scheduling hard real-time image processing
tasks on a single GPU. In 2017 IEEE International Conference on Image Processing (ICIP),
pages 43824386, 2017. doi:10.1109/ICIP.2017.8297110.

1:15

ECRTS 2021


https://doi.org/10.1109/FPT.2013.6718358
https://doi.org/10.4230/OASIcs.WCET.2018.2
https://doi.org/10.1109/TC.2013.2295820
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1145/1950413.1950420
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1109/ISSCC19947.2020.9063049
https://doi.org/10.1109/RTCSA.2011.46
https://doi.org/10.1007/s11241-011-9140-y
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1007/s10766-016-0432-7
https://doi.org/10.1109/ICIP.2017.8297110

1:16

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

14

15

16

17

18

19

20

21

22

23

24

25

Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and
Marco Caccamo. Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC
Platforms. In Sophie Quinton, editor, 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages
27:1-27:25, Dagstuhl, Germany, May 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECRTS.2019.27.

S. Hahn and J. Reineke. Design and analysis of sic: A provably timing-predictable pipelined
processor core. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 469-481, 2018.
doi:10.1109/RTSS.2018.00060.

Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS ’16, page 299-308, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2997465.2997471.

Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Toward Compact Abstractions for
Processor Pipelines, pages 205-220. Springer International Publishing, 2015. doi:10.1007/
978-3-319-23506-6_14.

Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: Definition and challenges. SIGBED Rev., 12(1):28-36, 2015. doi:10.1145/
2752801.2752805.

R. M. Hord. The Illiac IV: The First Supercomputer. Springer-Verlag Berlin Heidelberg
GmbH, 1982.

M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee. Formal semantics of predictable pipelines:
a comparative study. In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 103-108, 2020. doi:10.1109/ASP-DAC47756.2020.9045351.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Can-
tin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad
Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News, 45(2):1-12,
June 2017. doi:10.1145/3140659.3080246.

Nassima Kadri and Mouloud Koudil. A survey on fault-tolerant application mapping techniques
for network-on-chip. Journal of Systems Architecture, 92:39-52, 2019. doi:10.1016/j.sysarc.
2018.10.001.

Junsung Kim, Ragunathan (Raj) Rajkumar, and Shinpei Kato. Towards adaptive gpu
resource management for embedded real-time systems. SIGBED Rev., 10(1):14-17, 2013.
doi:10.1145/2492385.2492387.

Charles Eric Laforest, Zimo Li, Tristan O’rourke, Ming G. Liu, and J. Gregory Steffan.
Composing multi-ported memories on fpgas. ACM Trans. Reconfigurable Technol. Syst., 7(3),
September 2014. doi:10.1145/2629629.

Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovié¢, and K. Asanovi¢. A 45nm
1.3ghz 16.7 double-precision gflops/w risc-v processor with vector accelerators. In ESSCIRC
2014 - 40th European Solid State Circuits Conference (ESSCIRC), pages 199-202, September
2014. doi:10.1109/ESSCIRC.2014.6942056.


https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1145/2492385.2492387
https://doi.org/10.1145/2629629
https://doi.org/10.1109/ESSCIRC.2014.6942056

M. Platzer and P. Puschner

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A.
Lee. Predictable programming on a precision timed architecture. In Proceedings of the 2008
International Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES ’08, page 137-146, New York, NY, USA, 2008. Association for Computing Machinery.
do0i:10.1145/1450095.1450117.

Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
unified graphics and computing architecture. IEEE Micro, 28(2):39-55, March 2008. doi:
10.1109/MM.2008.31.

Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and Yatin
Hoskote. Outstanding research problems in noc design: System, microarchitecture, and
circuit perspectives. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(1):3-21, January 2009.
doi:10.1109/TCAD.2008.2010691.

Tulika Mitra. Time-predictable computing by design: Looking back, looking forward. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3316781.3323489.

G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Piischel. Applying the
roofline model. In 2014 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 76-85, March 2014. doi:10.1109/ISPASS.2014.6844463.
John Owens, Mike Houston, David Luebke, Simon Green, John Stone, and James Phillips.

GPU computing. Proceedings of the IEEE, 96:879-899, May 2008. doi:10.1109/JPR0OC.2008.

917757.

Kariofyllis Patsidis, Chrysostomos Nicopoulos, Georgios Ch. Sirakoulis, and Giorgos Di-
mitrakopoulos. RISC-V2: A scalable RISC-V vector processor. In 2020 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 1-5, September 2020. doi:
10.1109/ISCAS45731.2020.9181071.

Behnaz Pourmohseni, Stefan Wildermann, Michael Glaf}; and Jiirgen Teich. Hard real-time
application mapping reconfiguration for NoC-based many-core systems. Real-Time Systems,
55:433-469, 2019. doi:10.1007/s11241-019-09326-y.

RISC-V International. Working draft of the proposed RISC-V V vector extension, January
2021. Version 0.10. URL: https://github.com/riscv/riscv-v-spec.

Richard M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63-72, January
1978. doi:10.1145/359327.359336.

S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin. The shift to mul-
ticores in real-time and safety-critical systems. In 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 220-229, 2015.
do0i:10.1109/CODESISSS.2015.7331385.

P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and L. Benini.
Slow and steady wins the race? a comparison of ultra-low-power RISC-V cores for internet-of-
things applications. In 2017 27th International Symposium on Power and Timing Modeling,

Optimization and Simulation (PATMOS), pages 1-8, September 2017. doi:10.1109/PATMOS.

2017.8106976.

Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffacle Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp,
Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha, Claudio Silva, Jens Sparsg, and
Alessandro Tocchi. T-CREST: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture, 61(9):449-471, 2015. doi:10.1016/j.sysarc.2015.04.002.
Aaron Severance and Guy Lemieux. VENICE: A compact vector processor for FPGA
applications. In 2011 IEEE Hot Chips 23 Symposium (HCS), pages 1-5, 2011. doi:
10.1109/HOTCHIPS.2011.7477515.

Aaron Severance and Guy Lemieux. Embedded supercomputing in FPGAs with the vectorblox
MXP matrix processor. In 2013 International Conference on Hardware/Software Codesign

1:17

ECRTS 2021


https://doi.org/10.1145/1450095.1450117
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/TCAD.2008.2010691
https://doi.org/10.1145/3316781.3323489
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/ISCAS45731.2020.9181071
https://doi.org/10.1109/ISCAS45731.2020.9181071
https://doi.org/10.1007/s11241-019-09326-y
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1145/359327.359336
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/HOTCHIPS.2011.7477515
https://doi.org/10.1109/HOTCHIPS.2011.7477515

1:18

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

41

42

43

44

45

46

47

48

49

50

and System Synthesis (CODES+ISSS), pages 1-10, 2013. doi:10.1109/CODES-ISSS.2013.
6658993.

Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Leandro Soares
Indrusiak. A survey and comparative study of hard and soft real-time dynamic resource
allocation strategies for multi-/many-core systems. ACM Comput. Surv., 50(2), 2017. doi:
10.1145/3057267.

Sudarshan Srinivasan, Pradeep Janedula, Saurabh Dhoble, Sasikanth Avancha, Dipankar
Das, Naveen Mellempudi, Bharat Daga, Martin Langhammer, Gregg Baeckler, and Bharat
Kaul. High performance scalable FPGA accelerator for deep neural networks, 2019. URL:
https://arxiv.org/abs/1908.11809.

Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jérg Mische, Alexander
Stegmeier, Ralf Jahr, Mike Gerdes, Pavel Zaykov, Lucie Matusova, Zai Jian Jia Li, Zlatko
Petrov, Bert Boddeker, Sebastian Kehr, Hans Regler, Andreas Hugl, Christine Rochange,
Haluk Ozaktas, Hugues Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay, David George, Ian
Broster, Eduardo Quinones, Milos Panic, Jaume Abella, Carles Hernandez, Francisco Cazorla,
Sascha Uhrig, Mathias Rohde, and Arthur Pyka. Parallelizing industrial hard real-time
applications for the parmerasa multicore. ACM Trans. Embed. Comput. Syst., 15(3), May
2016. doi:10.1145/2910589.

I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in superscalar
processors. In Fifth International Conference on Quality Software (QSIC’05), pages 295-303,
2005. doi:10.1109/QSIC.2005.49.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7):966—
978, 2009. doi:10.1109/TCAD.2009.2013287.

Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenstrom. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3), 2008. doi:10.1145/1347375.1347389.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65-76, April 2009.
doi:10.1145/1498765.1498785.

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. VESPA: Portable, scalable, and
flexible FPGA-based vector processors. In Proceedings of the 2008 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES 08, page 61-70, New
York, NY, USA, 2008. Association for Computing Machinery. doi:10.1145/1450095.1450107.
Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector processing as a soft-core CPU
accelerator. In Proceedings of the 16th International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, FPGA 08, page 222-232, New York, NY, USA, 2008. Association
for Computing Machinery. doi:10.1145/1344671.1344704.

M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. Flexpret: A processor platform for mixed-
criticality systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 101-110, 2014. doi:10.1109/RTAS.2014.6925994.


https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1145/3057267
https://doi.org/10.1145/3057267
https://arxiv.org/abs/1908.11809
https://doi.org/10.1145/2910589
https://doi.org/10.1109/QSIC.2005.49
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1450095.1450107
https://doi.org/10.1145/1344671.1344704
https://doi.org/10.1109/RTAS.2014.6925994

A Memory Scheduling Infrastructure for Multi-Core
Systems with Re-Programmable Logic

Denis Hoornaert!' &
TU Miinchen, Germany

Shahin Roozkhosh! =
Boston University, MA, USA

Renato Mancuso &
Boston University, MA, USA

—— Abstract

The sharp increase in demand for performance has prompted an explosion in the complexity of
modern multi-core embedded systems. This has lead to unprecedented temporal unpredictability
concerns in Cyber-Physical Systems (CPS). On-chip integration of programmable logic (PL) alongside
a conventional Processing System (PS) in modern Systems-on-Chip (SoC) establishes a genuine
compromise between specialization, performance, and reconfigurability. In addition to typical
use-cases, it has been shown that the PL can be used to observe, manipulate, and ultimately manage
memory traffic generated by a traditional multi-core processor.

This paper explores the possibility of PL-aided memory scheduling by proposing a Scheduler In-
the-Middle (SchIM). We demonstrate that the SchIM enables transaction-level control over the main
memory traffic generated by a set of embedded cores. Focusing on extensibility and reconfigurability,
we put forward a SchIM design covering two main objectives. First, to provide a safe playground
to test innovative memory scheduling mechanisms; and second, to establish a transition path from
software-based memory regulation to provably correct hardware-enforced memory scheduling. We
evaluate our design through a full-system implementation on a commercial PS-PL platform using
synthetic and real-world benchmarks.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture

Keywords and phrases Memory Scheduling, PLIM, FPGA, Memory Management, Bandwidth
Regulation, MemGuard, Coloring, Bank Partitioning, Real-time, Multicore, Safety-critical

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.2

Supplementary Material The SchIM sources are available at
Software: https://github.com/denishoornaert/MemorEDF

Funding Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems
in Production Engineering at TUM and the Alexander von Humboldt Foundation.

Renato Mancuso: The material presented in this paper is based upon work supported by the
National Science Foundation (NSF) under grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do not

necessarily reflect the views of the NSF.

1 Introduction

It is undeniable that the massive increase in expectation on the performance of next-generation
cyber-physical systems has deeply impacted the way we design modern embedded and real-
time systems. High-resolution, high-bandwidth sensors such as lidars, and depth cameras on
the one hand, and data-intensive processing workload such as machine-learning applications

! These authors contributed equally.

© Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso;
37 licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).

Editor: Bjorn B. Brandenburg; Article No. 2; pp. 2:1-2:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:denis.hoornaert@tum.de
mailto:shahin@bu.edu
mailto:rmancuso@bu.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.2
https://github.com/denishoornaert/MemorEDF
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2

Memory Scheduling in Multi-Core Systems with FPGA

on the other hand, have exacerbated the push for high-performance embedded platforms.
Following this performance mowving target, chip manufactures have significantly scaled up
clock speeds, CPU count, and heterogeneity. For instance, the on-chip integration of powerful
graphic processing units (GPUs) has been the characterizing factor in the NVIDIA Tegra
series of embedded systems-on-a-~chip (SoC).

In this context, an embedded architectural paradigm that is surging in popularity among
manufacturers, researchers, and industry practitioners is the PS-PL organization. This
class of embedded platforms integrates on the same die (1) traditional full-speed embedded
CPUs and (2) programmable logic constructed using field-programmable gate array (FPGA)
technology. This organization naturally defines two macro-domains, namely the Processing
System (PS) and the Programmable Logic (PL), hence the name. PS-PL platforms establish a
good trade-off between specialization, raw performance, and mission-specific re-configurability.
The current generation of commercially available PS-PL platforms is dominated by ARM-
based products offered by, most notably, Intel [12] and Xilinx [37]. A pilot large-scale,
high-performance PS-PL system is the Enzian platform [3] being rolled out by ETH Zurich?.
Furthermore, a RISC-V-based solution has been recently made available by Microsemi with
their PolarFire SoC [18].

From a real-time perspective, the co-existence of traditional CPUs and a tightly-coupled
block of PL has more profound implications than expected. Clearly, it is possible to define
custom accelerators in PL and to relieve the main CPUs of some of the heavy data-processing
workload. However, more interestingly, recent studies have highlighted the possibility of using
the PL also as a way to manage the memory traffic originated from the main CPUs [13,29].
Such a possibility opens the doors for memory traffic inspection and control at the level
of individual transactions; which in turn promises to unlock provable determinism for the
real-time workload.

In this paper, we embrace the concept of PL-aided memory traffic management and propose
an infrastructure to develop, test and evaluate memory scheduling policies. Specifically, we
propose a component, called the Scheduler In-the-Middle— or SchIM, for short — that can
be instantiated in the PL to enforce a set of configurable scheduling policies on individual
memory transactions generated by the CPUs in the PS.

The overarching goal of the proposed SchIM is twofold. First, we want to provide a
playground for researches to test promising novel memory scheduling ideas for multi-core
platforms, much like LITMUSRT [7] fostered research on CPU scheduling techniques. Second,
we want our SchIM to act as an intermediate stepping stone for industrial applications where
strong determinism over memory performance is required. The SchIM can be used to analyze
the behavior of realistic workload in a multitude of what-if memory management use-cases.
We note that such kind of analysis was previously possible only through full-system simulation
or by synthesizing the entire SoC on FPGA — that is, with a soft-core implementation.

In short, this paper makes the following contributions. (1) We demonstrate that a
configurable module could be interposed between the cores and the memory controller to
perform transaction-level scheduling in commercial PS-PL platforms; (2) we propose a
design for a memory scheduling infrastructure that focuses on extensibility and runtime
reconfigurability; (3) we address important issues to correctly account and regulate CPU-
generated traffic when a shared last-level cache is present; (4) we design and implement two
pilot memory scheduling policies as a proof-of-concept on the potential of our SchIM; and (5)
we perform a full system integration and implementation on a commercial PS-PL embedded
platform to evaluate the behavior of the SchIM with synthetic and realistic workload.

2 Also see http://enzian.systems/


http://enzian.systems/

D. Hoornaert, S. Roozkhosh, and R. Mancuso

2 Related Work

There is a broad consensus that memory resources represent the main performance bottleneck
in modern multi-core processors. The observation has sparked a host of research works
addressing the problem from multiple angles [17]. In this context, the works representing
the inspiration for our SchIM fall in two macro-categories, namely hardware-based and
software-based techniques for main memory traffic management.

The first category includes a large body of works aimed at achieving better and/or
more predictable performance by advancing novel hardware redesigns. The works in [22-24]
strive to construct high-performance and fair memory schedulers. The addition of software-
controlled memory deadlines and transactional semantics where explored in [33] and [10],
respectively. Next, the work by Akesson et al. [1,2] and Paolieri et al. [25] attains timing
predictability through careful scheduling of SDRAM commands. Finally, the MEDUSA
DRAM controller [9,34] implements a two-tiers scheduler at the DRAM controller to ensure
predictability when accessing memory areas where access time strongly impact application
performance. Finally, the hardware designs proposed in [8,26,42] put their emphasis on
main memory bandwidth partitioning; clever dynamic pipelining is further explored in [20]
to better balance average performance and determinism.

Among the software-based techniques are the mechanisms that stemmed from MemGuard,
originally proposed in [41] and that rely on broadly available performance counters to regulate
the bandwidth extracted by individual CPUs. Later extensions to jointly consider regulation
and cache partitioning [38] and to expose control over memory bandwidth as a lockable
resource [39] were proposed. Software-based memory throttling has also been implemented at
the hypervisor-level [21,30]. Remarkably, the work in [30] combines regulation mechanisms
for CPU and embedded accelerators through the ARM QoS extensions [4].

In addition to the two categories surveyed above, perhaps the most closely related works
are those that explored memory isolation techniques in PS-PL platforms. The work in [11]
demonstrated that the PL-side can be used to define private memory storage, control, and
bus units to strongly isolate high-criticality workload. A number of techniques developed
as part of the FRED framework [6] put an emphasis on memory traffic arbitration and
management for in-PL accelerators [27,28]. The AXI HyperConnect [27] is perhaps the
component most similar to the SchIM in terms of high-level design. However, both are
substantially different as the SchIM is designed to manage embedded CPUs’ memory traffic.

Compared to the literature reviewed above, what sets this work apart are the following
aspects. (1) Our SchIM applies to existing PS-PL commercial systems without introducing
any hardware modification; (2) it allows management in the PL of memory traffic originated
by the embedded CPUs residing in the PS; (3) it provides the framework to test the feasibility
and performance of custom memory scheduling policies; and (4) it is designed such that
multiple schedulers can coexist, be activated, and configured at runtime.

3 Background Concepts

In this section, we introduce some fundamental concepts necessary to understand the overall
system design and the class of platforms targeted by this work.

3.1 Hybrid Multi-Core Platforms with Programmable Logic

This work targets the aforementioned class of embedded multi-core platforms with program-
mable logic — i.e., PS-PL platforms. In such platforms, the PS encompasses a multi-core
processor with a multi-level cache hierarchy and a main memory (DRAM) controller. A

2:3

ECRTS 2021



2:4

Memory Scheduling in Multi-Core Systems with FPGA

® CPU Cluster Programm. Logic

IRQ Lines

Secondary
Interconnect

Fabric (CCI)

Interconnect

Main Memory Controller (DRAM)

Figure 1 PS-PL interconnect block diagram.

simplified block diagram for a reference PS-PL organization is illustrated in Fig. 1. The
figure considers a platform with four CPUs denoted as Cy, Cy,Cs, and Cs.

A key feature in PS-PL platforms is the presence of high-performance communication
channels between the two domains. These come in the form of data exchange interfaces
and interrupt lines. Data exchange channels follow a master-slave paradigm. Specifically,
high-performance masters (HPM, Fig. 1(®) and high-performance slaves (HPS, Fig. 1)
send and receive transactions to and from the PL, respectively. Additionally, there exist
programmable interrupt request (IRQ) lines (see Fig. 1(®) that can be driven by the PL
and are connected to the interrupt controller (Fig. 1(®) inside the PS. As we discuss in
Section 5.7, the presence of PS-PL interrupt lines is crucial to building PL-assisted memory
traffic regulation.

Note also that there might exist PS-PL data ports that are routed through a secondary
interconnect (Fig. 1(®). These can generally sustain less throughput compared to HPS ports;
hence we refer to them as low-performance masters (LPM, Fig. 1(©®). LPM ports are useful
to perform memory-mapped configuration of PL modules.

3.2 Programmable Logic In-the-Middle

In this work, we leverage the ability to route main memory traffic originated by the CPUs
through the PL. This technique is known as Programmable Logic In-the-Middle, or PLIM
for short. PLIM was originally proposed in [29]. To fully grasp how PLIM can be achieved,
one needs to understand how memory accesses are routed in PS-PL platforms.

Any CPU-generated memory access that results in an LLC miss is routed directly to
main memory if its physical address falls within the aperture, say the address range [A, B]
handled by the DRAM controller. We refer to this as the normal route, depicted in Fig. 1%
and highlighted in yellow.

Conversely, generic memory access resulting from an LLC cache miss will be sent on an
HPM port if the corresponding physical address falls within another range, say [C, D]. One
can then insert (1) a lightweight layer of virtualization to map all the physical addresses
of a guest OS to the PL, i.e., to fall in the range [C, D]; and (2) an address translator in
the PL that re-bases request physical addresses to access main memory and relays back the
data payload to the requesting CPU(s). In other words, one can find a constant &k such that
C = A+ k. Then, the translator in the PL, upon receiving any request at address x € [C, D]
will issue a main memory request at the address (x — k) through the HPS port and provide



D. Hoornaert, S. Roozkhosh, and R. Mancuso

AW [ABO AW AW AP0 [AB@] aw
w [D[-[PP>® w w [ [p[~[ppP® SchIM [D[-[PP® | w
§ B O] B ‘f E AR LBO ©© [AP>@)| ar ﬁ
AR [AP® AR B ©=<]B] B
R @<p[-p[B] R R @<p[-]p[B] R
(a) Standard AXI communication Scheme. (b) AXI communication mediated with SchIM.

the response to the CPU. The PLIM technique introduces a secondary memory route for
reaching the DRAM, called the PL loop-back, or simply loop-back, which is highlighted in
blue in Fig. 1(6). Memory transactions on the loop-back route typically traverse the main
interconnect, as depicted in Fig. 1 (@). The advantage of PLIM is that transactions on the
loop-back route can be inspected, blocked, re-routed, and in general managed by custom
re-programmable logic. Importantly, switching from the direct to the loop-back route can
be done dynamically at runtime so that the overhead of PLIM can be avoided if deemed
detrimental for the application under analysis.

In this paper, we leverage the PLIM approach to perform memory scheduling, hence, we
call our module the Scheduler In-the-Middle, or SchIM for short.

3.3 Advanced eXtensible Interface (AXI)

The vast majority of PS-PL platforms currently available are ARM-based. This is also the

case for the platform we used for our evaluation, namely the Xilinx Zynq UltraScale+ MPSoC.

Thus, we briefly introduce the communication protocol used for on-chip communication
in ARM-based SoCs, namely the Advanced eXtensible Interface (AXI). The AXI is an
open specification bus protocol [5] used for high-bandwidth data exchanges between on-chip
subsystems — such as cache controllers, memory controllers, DMAs, PL modules. It is also
used in the PS-PL platforms of reference to exchange data on the HPM and HPS ports.

The AXI protocol is based on the master-slave duality. A master AXI interface can
initiate transactions toward a connected slave interface. The latter responds master-initiated
requests. Masters and the slaves communicate with each other through five different channels
named AW (address write), W (write), B (write acknowledgment), AR (address read) and R
(read), as illustrated in Fig. 2a.

A write transaction begins with an address phase (1) where the channel AW is used to
transmit the transaction’s meta-data, such as the destination address, the transaction ID,
and the cacheability attributes the type/length of the burst, and so on. Upon completing
this phase, follows the data phase (2), which consists of the transmission of the data payload
to be written through the W channel. The response phase (3) concludes a successful write
transaction and occurs on the B channel.

The transmission of a read transaction is carried out in a similar way. The address
phase (1) is transmitted through the equivalent AR channel and is directly followed by the
data phase @). A response initiated by the slave follows where the read data is transferred over
the R channel. The protocol is asynchronous because different phases of different transactions
can interleave on any AXI bus segment. Hence, multiple outstanding transactions can be
emitted by a single master and the receipt of out-of-order responses is possible.

2:5

ECRTS 2021



2:6

Memory Scheduling in Multi-Core Systems with FPGA

Packetizer 1 Dispatcher Queues Selector Senalizer

@ 020, [ Queueo]
1 1 >
HPW1 @—» . D=1 Queue 1 IEI HPS
3 3 1
- | D=2 [] Queue 2 I—'
! A

Packetizer 2 5
IDE [] Queue 3 I—-

Olefo] | |1 ] Y |
HPMZ2 @—» VN ! . Scheduler
| D ‘ ‘ Threshold detection | fi ~
AXl PE

T TDNA s A

Py A

IRQ

LPI @—x Configuration User Thresholds Mode Sched. Parameters

Figure 3 SchIM internal organization connected to the PS via the HPM, LPM and HPS ports.

4 Design Goals and Overview

In this section, we introduce the proposed SchIM design and describe the overarching goals
of this work. We then provide a bird’s-eye view of the SchIM organization and principles
of operation.

4.1 Design Goals

As briefly surveyed in Section 2, there have been numerous proposals for better memory
controllers and approaches to manage memory traffic in modern multi-core embedded
platforms. With respect to the existing literature, the purpose of this work is twofold. First,
we want to demonstrate that scheduling CPU-originated memory traffic at the granularity
of individual transactions is possible in PS-PL platforms. Second, and more importantly,
we want to provide an infrastructure that is generic and extensible enough for the broader
research community to adopt and foster a new chapter on PL-assisted memory scheduling.
With this in mind, we establish the following goals.

Extensible memory scheduling infrastructure. First and foremost, the SchIM has been
designed with modularity and extensibility in mind. We separate the functionalities that con-
cern handling, queuing, selection, and forwarding of memory requests inside our infrastructure.
Moreover, we design our SchIM to be able to support multiple memory scheduling policies
simultaneously. A simple, standardized interface is provided to define new memory scheduling
policies without impacting the design of the rest of the SchIM. We discuss in Section 5.5 the
generic interface provided by the SchIM to implement a new memory scheduling policy.

Runtime configuration and transparency. We want the SchIM to be a robust supporting
infrastructure to evaluate, compare, and contrast memory scheduling policies. As such, we
strive to provide (1) runtime reconfigurability and (2) operational transparency. It is possible
to rapidly identify desirable configuration parameters by allowing memory scheduling policies
to be switched at runtime. Besides, an adopted policy can be tuned according to the workload
criticality and memory intensiveness. For this purpose, the SchIM exposes a memory-mapped
configuration interface where all the operational parameters can be changed at runtime. At
the same time, we want to ensure that the applications and the (real-time) operating system
under analysis do not need to be modified to use the SchIM. Hence, we propose using a thin
virtualization layer to selectively route memory traffic through the SchIM without changes
to the binary of OS kernel and applications.



D. Hoornaert, S. Roozkhosh, and R. Mancuso

Realistic performance with experimental policies. One of the limiting factors of research on
memory scheduling policies is the ability to construct evidence of performance improvements
with the realistic workload. Proposing a new memory scheduling policy is traditionally done
with either a simulated setup or with a full-system soft-core implementation. Both cases have
their drawbacks. The former gives a great deal of flexibility but achieving clock-level accuracy
requires simulating many SoC components whose details might not be publicly available. In
addition, simulated setups that propose custom hardware designs cannot be directly adopted
on real platforms without being first synthesized in hardware. Full soft-core-based SoC
implementations suffer from two shortcomings. First, they run at relatively low frequencies
and thus can extract only a fraction of the available DRAM bandwidth. Secondly, they are
typically based on processor IPs that do not feature the same Instructions Set Architecture
(ISA) as widely available COTS, which further limits the practical impacts of these works.

As reported in [29], re-routing the traffic of the core cluster through the PL-side comes at
a cost in terms of extra latency and reduced bandwidth. Nonetheless, as PS-PL platforms
mature and the interplay of PL and memory resources improves, a SchIM-like design could
be the way to go for mission-reconfigurable, upgradable embedded systems.

4.2 Design Overview

As previously mentioned, the SchIM leverages the PLIM approach. CPU-originated main
memory transactions are re-routed through the programmable logic and scheduled by the
SchIM according to a flexible and configurable policy. The result is that the timing of
memory transactions generated by real-time applications can be carefully determined and
reasoned upon. Because the SchIM follows a PLIM approach, transactions can be selectively
sent to the SchIM for scheduling. However, it is always possible to dynamically exclude the
SchIM and route transactions directly to the main memory. Toward this paper’s incentive,
we consider a setup in which SchIM handles all the CPU-generated memory transactions.

Fig. 1 provides an overview of the location of the SchIM in the reference platform, while
its internal organization is visible in Fig. 3. Application memory requests reach the SchIM the
aforementioned HPM ports. Without loss of generality, we consider a SchIM instance with
two arrival lanes, which are labeled as HPM; and HPM, in Fig. 3. The SchIM then forwards the
received transactions towards main memory through the HPS interface. A more detailed view
of the SchIM module is provided in Fig. 3 where the same convention is used to identify input
and output ports. In addition, as shown in Fig. 3, a fourth LPM port is used to configure the
SchIM from the PS.

The SchIM is composed of a number of sub-modules grouped into three different domains,

namely (i) the interfacing domain, (ii) the queuing domain, and (iii) the scheduling domain.

The interfacing domain encompasses the sub-modules to interface the core logic of
the SchIM with the rest of the system using the AXI protocol. This is comprised of three
sub-modules. These are (i) the packetizer(s), (ii) the serializer, and (iii) the previously
mentioned configuration interface.

The PS-facing end of the packetizer offers an AXI slave port to accept new incoming
transactions. Upon receipt, this module transforms each transaction into an equivalent packet
that can be queued and scheduled by SchIM. Packetization of AXI transactions is necessary
to be able to store transactions that are serial by nature. A standard AXI transaction is
composed of one address phase (AR or AW channel) followed by a data phase (R or W
channel), which can be itself composed of multiple successive bursts.

In many ways, the serializer is the dual module of the packetizer. Its purpose is to
transform the packets that encode CPU-generated memory requests back into AXI-compliant
transactions. As such, the serializer offers a master port to the rest of the system to be
routed to the main memory controller.

2:7

ECRTS 2021



2:8

Memory Scheduling in Multi-Core Systems with FPGA

The queuing domain handles how packets are stored between receipt and re-
trasnmission. This domain is comprised of (i) the dispatcher module, (ii) the transaction
queues, and (iii) the selector module.

The use of multiple transaction queues is necessary to differentiate the traffic of the
CPUs and perform scheduling. As such, the SchIM associates a queue to each of the active
cores — four in the platform of reference. The queues implemented in the SchIM not only act
as a holding space for in-flight memory transactions. They also (a) provide information to
the scheduling domain regarding their current state, and (b) they can generate a congestion
control signal to the associated CPU core.

Congestion control is vital because memory transactions originated at the LLC controller
follow the same route to the SchIM regardless of the originating CPU. The total number of
outstanding transactions that the cores can emit exceeds the queuing elements’ capacity on
the loop-back route. Hence, priority inversion arises if a low-priority CPU’s memory traffic
is (temporarily) held. Latter is due to the uncontrolled queue buildup, which provokes a
head-of-line blockage. Importantly, what described is true also for the normal route and it is
a direct consequence of the best-effort nature of traditional multi-core memory buses. The
SchIM allows the user to specify a configurable threshold on the occupancy of the queues
that, when reached, issues a regulation signal to the corresponding CPU. We describe in
greater detail how congestion control was implemented on the target platform in Section 5.7.

As suggested by Fig. 3, transactions are categorized and enqueued based on the source of
traffic. The dispatcher module performs the matching between an incoming transaction
and the destination queue. Similarly, transactions are dequeued by the selector module and
sent directly to the output of the SchIM following the scheduling domain’s resolutions.

The scheduling domain encompasses all the sub-modules that enable arbitration of
transactions issued by the different cores of the PS. The modules in this domain are intended
to be generic for extensibility, albeit the first set of two template schedulers is provided as
a proof of concept. The scheduling policies currently implemented in the SchIM are Fixed
Priority (FP) and Time Division Multiple Access (TDMA). Each of the parameters required
by the implemented policies — such as the priorities and the periods — can be adjusted at
runtime via the configuration interface.

The FP scheduler allows associating a priority value to each of the transaction queues.
Pending transactions at the queues are then forwarded out of the SchIM following the
user-defined priority order. The TDMA scheduler allows associating a transmission time slot
to each of the queues expressed in PL clock cycles. The module then builds a schedule by
concatenating the per-core slots so that only pending transactions from one queue at a time
are forwarded by the SchIM.

5 SchiM Design and Implementation

A full-system implementation was carried out on a Xilinx ZCU102 development system,
which is based on a Xilinx Zynq UltraScale+ XCZU9EG PS-PL SoC. The PS comprises four
ARM Cortex-Ab53 CPUs that share a unified 1 MB LLC. The PS includes a DDR4-2666
controller connected to a 4 GB DDR4 memory module. There are two high-performance
master interfaces (HPM1 and HPM2); and a third interface routed through the low power
domain (LPM). The PL is capable of driving up to 16 interrupt requests lines towards the
PS interrupt controller. We hereby provide key details on the operation of our SchIM in the
target platform. These include complementary software stack, memory traffic accounting,
regulation to prevent head-of-line blocking, and programming model.



D. Hoornaert, S. Roozkhosh, and R. Mancuso

5.1 Software Stack

As mentioned in Section 4.1, we want to ensure that the SchIM can be used with no
modification to the OS and the applications under analysis. For this reason, we rely on a
thin virtualization layer that can be used to redirect memory traffic from the direct route to
the loop-back route (see Section 3.2). For this purpose, we use the open-source Jailhouse [16]
partitioning hypervisor® Jailhouse does not boot the target machine. Instead, it relies on a
standard Linux kernel to perform the initial boot sequence. When enabled from a Linux
driver, Jailhouse dynamically virtualizes the original OS. In line with its partitioning-only
philosophy, Jailhouse has a small footprint and enforces virtualization-aided partitioning of
essential resources like CPUs; interrupts, main memory, I/O devices. It does not perform
any virtual-CPU scheduling.

Following Jailhouse’s nomenclature, a resource partition is called a cell, while guest OS’s
are referred to as inmates. An inmate can be either a bare-metal application, an RTOS
or a full-fledged OS like Linux. Jailhouse uses ARM hardware Virtualization Extensions
(VE) to offer a set of Intermediate Physical Address (IPA) to its inmates that is compatible
with the way they have been compiled. Jailhouse then maps IPA ranges of different cells
to configurable Physical Addresses (PAs) — stage-2 translation. By changing the configured
stage-2 mapping, it is possible to dynamically re-route via the loop-back the memory traffic
generated by each inmate.

As described below, some modifications were necessary to the mainline Jailhouse code for
our full system implementation?.

5.2 Altered communication scheme

In order to achieve the objective of re-ordering transactions, one must alter the standard AXI
communication scheme explained in the Section 3.3. To this end, the SchIM is interposed
between the master (HPM) and the slave (HPS) as depicted in Fig. 2b. As shown in Fig. 2b,
only the phases initiated by the masters (i.e., address phase on AW and AR and the data
phase on W) are intercepted for re-ordering by the SchIM. The introduction of the SchIM
has a direct consequence on the overall communication scheme. Unlike the response phases
on channels R and B that remain unchanged, the address and write data phases are handled
following a store-and-forward scheme. Consequently, a write transaction will start exactly
as in the standard AXI scheme with its address phase () and data phase 2). These two
transactions are buffered within the SchIM’s queues (®) and only relayed following the
internal memory scheduler’s logic. This release of the transaction leads to the initialization
of two new addresses and data phase @, and (. Finally, the response phase (6) goes directly
from the slave to the master without being intercepted. For read transactions, the same
modifications apply to the address phase (1) which is buffered (@) for some time before being
re-emitted in (). Just like for write acknowledgments writing, the read response phase @) is
not intercepted by the SchIM.

5.3 Queueing Domain

At the heart of the queueing domain, lies the queues. They work as FIFOs. However, instead
of inserting the new data at the back of the queue, the new data is always inserted as close
as possible to the front of the queue. This mechanism helps avoiding gaps within the queues
prevents the loss of few clock cycles that would be required to move the data from the back
to the front. From the authors’ experiments, saving clock cycles in SchIM is vital to keep
the final bandwidth as high as possible.

3 The source code is available at https://github.com/siemens/jailhouse.git.
4 The modified Jailhouse sources are available at https://github.com/rntmancuso/jailhouse-rt.

2:9

ECRTS 2021


https://github.com/siemens/jailhouse.git
https://github.com/rntmancuso/jailhouse-rt

2:10

Memory Scheduling in Multi-Core Systems with FPGA

Furthermore, the queues have been designed to deal with three constraints. Firstly, the
queues store both read and write packets such that the order at which transactions arrived
is guaranteed. This implies that all the queue slots have the same size regardless of whether
they contain read or write packets. Secondly, due to the altered communication scheme (see
Section 5.2), each slot needs to be large enough to store both the address phase payload and
the corresponding data of an AXI write transaction (678 bits). The depth of each queue is
determined by considering the worst-case scenario. The latter consists of having to handle
the maximum number of outstanding read and write transactions simultaneously. Our SchIM
instance on the considered Xilinx UltraScale+ platform was configured with queues that are
16 slots in-depth. Indeed, the HPM ports in this platform cannot handle more than eight
transactions of each type [37].

5.4 LLC-SchIM Interface and Traffic Accounting

As illustrated in Fig. 1, the considered system features an LLC shared between the four cores
of the PS. For a non-cacheable read (resp., write) memory access, which CPU represents
the source of the traffic is carried in the ID bits of the corresponding AR (resp., AW) AXI
transaction. But for cacheable memory accesses, which is the norm for application workload,
this is not the case. This is mainly because cache controllers typically use a write-back
strategy. In this case, a read or write cache miss causes up to two events: (1) a cache refill
and (2) a cache eviction. The cache refill is carried out with a read AXI transaction. If
the line being evicted was previously written (dirty), then the eviction causes a write AXI
transaction. It follows that, while read AXI transactions have an easily identifiable source,
write transactions do not. Indeed, a CPU x might be causing the eviction of a line previously
allocated and modified by CPU y. Hence, accounting (and scheduling) the resulting write
transaction as if it originated from CPU z would be incorrect.

To ensure fair accounting for both read and write traffic, we rely on cache partitioning
through coloring. As studied in a number of previous works, cache coloring is easy to
implement at the hypervisor level [15,21,32]. In our system setup, we leverage the support
Jailhouse already provides. The standard support has been extended to support booting
a Linux inmate over colored memory. Cache partitioning allows us to establish a 1-to-1
relationship between any read/write transaction traversing the SchIM and the originating
CPU. Moreover, with cache coloring in place, the SchIM uses the color bits in the address
of the memory transactions (AR and AW channels) — instead of the AXI ID bits — to
differentiate between the traffic of the various cores.

Finally, recall that the SchIM forwards transactions between HPM and HPS ports. These
ports follow the asynchronous AXI protocol that allows issuing multiple outstanding AR and
AW transactions. The protocol dictates that any outstanding transaction must have a unique
AXI ID. This property is crucial to be able to match received responses with outstanding
requests. Unfortunately, a potential mismatch between the bit-width of the AXI ID emitted
at the HPM ports and the bit-width of AXI ID accepted by the HPS ports. For instance, in
the platform of reference, the HPMs emit 16-bit AXI IDs, while the HPS AXI ID bit-width
is 6 bits. Therefore, the SchIM also acts as an AXI ID translator.

5.5 Scheduling Interface and Implemented Policies

All the memory schedulers included in the scheduling domain share a common interface to
ease the integration of a new scheduler. In terms of input signals, a generic scheduler module
must define (1) a manual reset signal that can be triggered through the configuration port;
(2) a vector of bits where each bit indicates whether the associated queue is empty; and (3) a
signal indicating if the last scheduled transaction as been consumed. Alongside these inputs,



D. Hoornaert, S. Roozkhosh, and R. Mancuso

the scheduling modules also have access to all the configuration registers listed in Table 1.
In terms of outputs a SchIM scheduler must define (1) a signal to the selector indicating
the queue considered for scheduling; and (2) a signal stating whether the current scheduling
decision is valid. We hereby review the initial set of memory scheduling policies implemented
in the SchIM.

5.5.1 Fixed Priority

The FP scheduling module aims at enforcing strict prioritization of cores” memory traffic.
The priority ordering is explicitly defined by the user through the configuration port. While
the SchIM instance used in this paper only has four queues, 16 different levels of priority
are offered as the considered platform supports up to 16 different colors. This is useful if an
hypervisor that supports vCPU scheduling is used. In this case, the SchIM allows assigning
different priorities to different partitions sharing the same physical CPU. The core-to-priority
assignment must be strict, meaning that two cores cannot be assigned the same priority.

The FP scheduling module only needs two pieces of information. That is (1) the priority
associated with each queue and (2) whether a given queue contains at least one buffered
transaction. The module logic always selects the queue with the highest priority. Lower
priority queues are considered when higher priority queues do not have transactions. This is
done by internally setting the user-defined priority of a queue as 0 when the corresponding
queue is empty.

5.5.2 Time Division Multiple Access

The TDMA memory scheduler is a non-work conserving policy that operates by defining a
per-core time slot during which the core has exclusive access to main memory. The slots are
expressed in PL clock cycles, to maximize granularity. The configuration port can be used to
specify and change the slots specifications at runtime.

The implementation of the module uses a counter register to track the time elapsed in
the current TDMA primary frame — defined as the sum of all the cores’ slots. It is reset
to 0 at the beginning of a new major frame. Using the time-tracking register, the module
determines to which core the current slot belongs, and forwards the information to the queue
selector. This is done by summing up the length of all the previous slots, and determining if
the current time falls within the interval of the considered core’s slot.

5.6 Programming Model

The parameters that compose the programming interface of the SchIM are summarized in
Table 1. The base address referenced in the table can be set when the SchIM is deployed in
the PL. By default, this is set to 0x800000000. All the parameter registers are 32 bit wide,
except for the priorities of the FP scheduler. In this case, the priority values are encoded
using 8 bits. The last “Mode” register allows a user to select the active memory scheduler.

5.7 PL-to-PS Feedback

Each of the HPM ports interfacing the PS and the PL sides (HPM1 and HPM2) have two
dedicated queues for read and write transactions. Since transactions are being buffered inside
SchIM as well as in these port buffers, head-of-line blocking can happen. Head-of-the-line
blocking is harmful for performance; and can cancel out the benefits of transaction scheduling
performed by the SchIM. For instance, in the case of a non work-conserving policy (e.g.,

2:11

ECRTS 2021



2:12

Memory Scheduling in Multi-Core Systems with FPGA

Table 1 Available SchIM configuration registers.

Parameter H Associated Core Address
Co base+0x00
C b +0x04
TDMA slots ! aservx
Cy base+0x08
Cs base+0x0C
Co base+0x10
C base+0x14
User Thresholds ! aserox
Cso base+0x18
Cs base+0x1C
FP Priorities Co | Ci | Ca | C5 | base+0x20
Reserved
Mode H N/A ‘ base+0x38

TDMA), if the HPM port queue gets filled with transaction coming for the same core, no
other transaction will be able to reach the SchIM and thus be considered for scheduling. This
implies that no transaction would be scheduled until the end of the active core’s TDMA slot.
On the other hand, for work-conserving policies (e.g., FP) in the presence of head-of-line
blocking, the decisions being taken by SchIM would directly depend on the order at which
transactions are emitted by the HPM port buffer.

In both cases, one must prevent the cores from saturating the HPM port buffers. In
order to avoid such situation, we implemented a feedback scheme aimed at slowing down
the cores when necessary. As we mentioned in the context of Fig. 3, the SchIM’s queues are
associated a programmable threshold. Whenever the queue occupancy reaches (or exceeds)
the associated threshold, a per-core interrupt line is asserted from the PL to the PS side.
When received, the interrupt is treated by the platform software as a fast interrupt request
(FIQ) and directly handled by the hypervisor — invisible to any guest OS. The advantage of
using FIQs instead of regular IRQs is the significantly reduced handling latency [31]. Minor
modifications to the TrustZone monitor were necessary to correctly configure FIQ handling.
To minimize overhead, the installed FIQ handler only executes two assembly instructions.
These are (1) a dsb memory barrier that stops the core until all the outstanding memory
transactions have been completed, and (2) a eret instruction to exit the FIQ context. There
is not need to save/restore any register because FIQs have banked syndrome/status registers
and because no general purpose register is modified in the handler.

Ideally, the available space in the HPM buffers should be shared evenly between the cores.
Since each HPM port has a buffer with a depth of 848 transactions, each core should occupy
at most 2 slots in each buffer. Unfortunately, our experiments highlighted that the control
over amount of transactions buffered by each core is imperfect. Often times, the selected
threshold is exceeded by up to two transactions. This is the main reason why we propose
a dual-ported SchIM which uses both the available HPM ports. Indeed, by assigning two
cores on each of the ports, the ideal threshold on maximum amount buffered transactions
can be doubled. The increase provides enough room to compensate for imperfections in the
micro-regulation performed with PL-to-PS FIQ delivery.



D. Hoornaert, S. Roozkhosh, and R. Mancuso

6 Evaluation

The present section aims at evaluating the behavior of the SchIM on the target platform, its
overhead and benefits. First, in subsection 6.1, we review our experimental setup. Thereafter,
we assess the overhead introduced by the SchIM in Section 6.2. Section 6.3 explores the
impact of the PL-to-PS feedback on the control and the performance. In Section 6.4, an
in-depth analysis of the SchIM’s behavior is presented. Finally, an evaluation of the temporal
behavior of a set of real-world benchmarks operating through the SchIM is provided in
Section 6.5.

6.1 Experimental Setup

The SchIM has been evaluated using synthetic benchmarks (or Memory Bombs), real
benchmarks selected from the San Diego Vision Benchmark Suite (SD-VBS) [35] and a
combination of the two. Specifically, seven memory-intensive benchmarks have been selected,
i.e. stitch, texture synthesis, disparity, tracking, localization, mser and sift. For our runs, we
have considered all the intermediate input sizes ranging from SQCIF (128 x196 pixels) to
VGA (640x480 pixels). When running any benchmark, we use the cache coloring mechanism
implemented in the Jailhouse hypervisor [32] to partition the LLC evenly amongst the 4 cores
and to prevent our measurements from being affected by inter-core cache interference. As a
result, each benchmark operates on 1/4 of the total cache space — 256 KB. As extensively
discussed in [14,40], it is also important to avoid inter-core DRAM bank conflicts, which
can cause the arbitrary re-ordering of transactions originating from different cores. This is
accomplished by (1) configuring the DRAM controller to disable DRAM bank interleaving;
and (2) by performing static cache bleaching [11,29] at the SchIM’s output to re-compact
accesses to colored pages into contiguous DRAM accesses. In this platform, there are a
total of 16 DRAM banks of 256 MB each. Thanks to bleaching, we can assign the full size
of 4 banks (i.e., 1 GB) to each core, instead of being restricted to only 1/4 of that due to
non-overlapping color and bank address bits.

To evaluate the capabilities of the SchIM, two memory routes for the traffic generated
by the cores are compared. The first serves as baselines, whereas, the last one is the one
under analysis and involves the SchIM module. The first path consists in the cores directly
accessing the main memory. As illustrated in Fig. 1, the traffic simply goes through the
Main Interconnect before arriving at the DDR controller. This path is referred to as the
normal route. Secondly, we consider the case where the SchIM module is deployed and in use
to schedule memory traffic generated by the CPUs in the PL. Cores 0 and 1 target HPM1
aperture, while cores 2 and 3 target HPM2. In our analysis, the SchIM is used in all the
available modes, i.e., FP and TDMA.

Note that in the case of the normal route, combining both a strict cache partitioning and
strict bank partitioning could not be applied. In fact, as a direct consequence of the address
coloring and in the absence of a bleacher, only 1/16 of each 1 GB wide memory allocation
can be used by each core. The resulting reduced space of 64 MB is not enough for running
Linux. Consequently, in the case of the normal route, the cores have been split into two
groups of two, where each group targets independent sets of banks. This configuration allows
the cache to be partitioned using address coloring.

2:13

ECRTS 2021



2:14

Memory Scheduling in Multi-Core Systems with FPGA

mm {Co,Cy, G, G5}
2000 - mm {Co, Gy, G}
mm {Co,Cr}
1750 mm {Co}
. 1500
@
=3
o
Z 1250
5
2
S 1000
3
3
=
F 7504
5004
N ._I
o4
Normal FP TDMA

Scheduler under analysis

Figure 4 Bandwidth in MBps for different path under increasing set of cores contending.

6.2 Platform Capabilities and performance degradation

Intuitively and as discussed in [29], redirecting the traffic coming from the cores to the PL
side incurs a performance hit. In spite of the lower frequency at which the SchIM operates
(250 MHz), the theoretical throughput when using both the HPM lanes should be around
8 GBps. We observe, however, that the achievable throughput through the HPM ports is
a fraction of what we measured by accessing the main memory through the normal route
(2116.5 MBps and 1207.41 MBps for solo and full contention by 3 other cores, respectively).
We further provide a discussion on the bandwidth drop when transactions are routed through
the PL in Section 7. For the sake of completeness, we quantify in Fig. 4 the maximum
bandwidth achieved through the PL — and hence through the SchIM. Nevertheless, it is
important to remember that the absolute figures are strictly platform dependent.

In Fig. 4, we have computed the throughput of one core under analysis, here core 0 (noted
Cp) when a synthetic memory-intensive application is deployed on an increasing number
of cores denoted with the same notation. The first bar cluster (“Normal”) refers to the
throughput measured via the normal route. The other two clusters capture the observed
bandwidth when traffic is routed through and managed by the SchIM. One cluster is provided
for each of the implemented memory scheduling policies, namely — from left to right — FP
and TDMA. As expected, there is a sharp reduction (around 75%) in terms of absolute
bandwidth. Importantly, however, two aspects need to be highlighted. First, the bandwidth
achieved through the SchIM is still remarkably high and allows studying the behavior of the
realistic workload under custom memory scheduling policies, which is the primary goal of
this research. Second, it emerges that the implemented FP and TDMA policies are capable
of protecting the core under analysis from inter-core interference, while this is not the case
when going through the normal route.

6.3 PL-to-PS feedback performance impact

As mentioned in Section 5.7, the PL-to-PS feedback enables our SchIM to regulate the HPM
ports buffer occupancy to prevent head-of-line blocking. Since this feedback directly throttles
the desired core, the selection of an adequate threshold is important to preserve the balance
between control and performance. Therefore, in Fig. 5, we have explored the sensitivity to
the threshold for each of the proposed schedulers under different levels of contention. The
thresholds in use range from 1 to 8 and even include the case where the feedback mechanism



D. Hoornaert, S. Roozkhosh, and R. Mancuso

Contention: 1 core (Solo) Contention: 2 cores Contention: 3 cores Contention: 4 cores

o
=}
S

=
3

12 3 4 5 6 7 8NA 1 2 3 4 5 6 7 8N 1 2 3 4 5 6 7 8NA 1 2 3 4 5 6 7 8 NA
Threshold Threshold Threshold Threshold

Bandwidth (MBps)
BN W oa
S 9o
s S

o
S

o

—— Lowest priority Third highest priority —— Second highest priority —— Highest priority

(a) Threshold-Bandwidth relationship curves for the FP scheduler.

Contention: 1 core (Solo) Contention: 2 cores Contention: 3 cores Contention: 4 cores

o
=)
)

1=
3

153
3

4 —

Bandwidth (MBps)
BN W oa
=]
S

[ —

o
s

o

12 3 4 5 6 7 8NA 1 2 3 4 5 6 7 8 N 1 2 3 4 5 6 7 8NA 1 2 3 4 5 6 7 8 NA
Threshold Threshold Threshold Threshold

—— Period = 4 Period =8 —— Period =16 —— Period = 32

(b) Threshold-Bandwidth relationship curves for the TDMA scheduler.

Figure 5 Figures showing the impact of the threshold in use on the final bandwidth experinced
by the cores for the offered schedulers.

is disabled (noted NA). The contention is created by up to four co-running cores emitting
write transactions. For each parameter applied to a scheduler (i.e., fixed priority or TDMA
slot), the co-running cores are assigned the most demanding parameters available (i.e., the
highest priority for FP or the biggest TDMA slot).

In the case of the FP scheduler (Fig. 5a), one can observe that when running alone, the
threshold has no influence on the throughput. However, as soon as co-runners are added, the
cores start to experience a decrease in throughput. Fig. 5b shows that the TDMA scheduler
is not impacted considerably by the threshold with respect to the throughput. Globally, the
scheduler manages to preserve a constant throughput regardless of the contention and the
assigned slot.

Nonetheless, under high contention, one can observe that the throughput of each core is
affected. The fourth inset of Fig. ba and Fig. 5b illustrate the importance of the threshold and
the PL-to-PL feedback mechanism as a a considerable drop of throughput can be observed
for the highest priority of FP and for a TDMA period of 32.

Considering these experiments, setting the threshold to four for all the schedulers seems
to bring the best trade-off between control and performance. However, this value cannot be
blindly applied to all cases as this experiment is performed for a sequential and contiguous
access pattern.

6.4 Internal Behaviour of SchiM

The next objective is to verify the correct behavior of the schedulers at the granularity of
a clock cycle by observing the inputs, the outputs and the internal signals and registers
of the SchIM module. This is made possible thanks to the Integrated Logic Analyzer (or
ILA) provided by Xilinx [36]. The latter IP can be directly implemented on the PL side,

alongside the SchIM, and is able to probe the signals and to store them in a local memory.

For this experiment, a group of relevant internal signals have been probed and captured
during a window of 16384 contiguous clock cycles. Then, the information has been extracted
by post-processing the data. To characterize the behavior of the two different policies, the

2:15

ECRTS 2021



2:16

Memory Scheduling in Multi-Core Systems with FPGA

Subplot 1 - Amount of transactions buffered Subplot 1 - Amount of transactions buffered

] r "8

S6 56

g4 g4

52 52

"o o

Subplot 2 - Cumulative amount of input transactions Subplot 2 - Cumulative amount of input transactions
------- “l w Lpatet
1000 mrme = 3 100 TTICLL
b4 e I3 aperenetet”
< el c parperete’’
s e s ceeranit
= 04" oot a- F o "
Subplot 3 - Queue scheduled at the master output Subplot 3 - Queue scheduled at the master output
3 . 3

o o

021 2

3 ]

$1+- S1

¢ &

0 04
— Qo Q1 — Q2 — Q3 Sum — Qo Q1 — Q2 — Q3 Sum

(a) FP with ordering Co = C1 > C2 > Cs. (b) TDMA with slots of 256 clock cycles.

Figure 6 Trace snapshots of SchIM for FP (6a), TDMA (6b).

ILA has been instrumented to collect (i) the amount of transactions being buffered in the
queues at each clock cycle (inset 1 in Fig. 6a and Fig. 6b) (ii) the rate at which queues receive
new transactions from the cores cluster (inset 2 in Fig. 6a and Fig. 6b) and (iii) the queues
ID of each transaction forwarded by the SchIM module (inset 3 in Fig. 6a and Fig. 6b).

For the Fixed Priority trace snapshot displayed in Fig. 6a, the following strict priority
ordering has been considered: Cy >~ Cy >~ C5 > C3 where the >~ operator means that the
left argument has a strictly higher priority than the right argument. In this experiment,
a regulation threshold of 3 for each core has been used. As emphasized by the inset 2 in
Fig. 6a, the FP scheduler is able to prioritize the traffic of one core at the expense of the
others according to the priorities assignment. Furthermore, one can observe that the rate at
which the queues receive new transactions from their associated core is proportional to the
priority level in the priority ordering. Finally, the third inset in Fig. 6a confirms the correct
behavior of the FP policy.One can see that the cores with the highest priority also feature
the highest density of transactions at the output of the SchIM.

The trace snapshot displayed in Fig. 6b has been obtained by configuring the SchIM
module in TDMA mode. For the sake of clarity, a slot of 256 clock cycles has been set for each
core. Besides, the threshold of each core has been set to 4 to create sharp transitions. The
insets 2 and 3 of Fig. 6b clearly show the behavior expected from a TDMA schedule. In fact,
one can clearly see in the latter that transactions originating from one core are only being
repeated out of the SchIM module during a well-defined and periodic time slot of 256 clock
cycles. In the inset 2 of Fig. 6b, we can observe a similar pattern, with transactions arriving
only during the TDMA slot associated with their queue (and indirectly core). Globally, the
rate at which queues receive transactions is steady and constant.

6.5 Memory Isolation

On the platform considered for this set of experiments, the Xilinx ZCU102 development board,
we denote three main sources of inter-core performance interference: (1) cache contention,
(2) DRAM bank conflicts, and (3) the congestion and saturation of the memory controller.
Despite their orthogonality, the two first sources are tackled respectively via the integration
of page coloring in the hypervisor and static bleaching in the SchIM. On the other hand,
since the SchIM provides fine-grained control over the timing and ordering of transactions
originating from the application cores as they reach the memory controller. Thus, the SchIM



D. Hoornaert, S. Roozkhosh, and R. Mancuso

disparity mser localization stitch texture_synthesis  tracking sift

=
=
=
=
=
=
E::

=
EE'.
=
=
=
=
E:.

5 1.0

oo NI LI IO IO I

2.0

=

1.5 1

agddgiwngingenEninn g
ALERBNEEREEPRNNENPNEEENE D

mm solo - stress

Figure 7 Normalized execution time for each benchmark and input size for Solo and Stress. Each
column denotes a given benchmark of the SD-VBS suite, while each row denotes a specific input
size (in increasing order from top to bottom).

brings memory bandwidth management into the PL, and provides not only regulation but a
generic infrastructure to experiment with custom bandwidth management techniques, both
work-conserving and non-work-conserving.

The evaluation setup considered for this experiment is identical to the one presented in
Section 6.1. The routes going through the PL and using our SchIM (i.e., FP and TDMA)
benefit from both cache partitioning and bank partitioning. On the other hand, the normal
route uses cache partitioning and sees its cores divided into two sets targeting each a different
group of private banks.

To evaluate the capability of our SchIM with respect to its ability to ensure performance

isolation between the cores, a set of experiments involving SD-VBS benchmarks were designed.

Here, we compare the execution time of an application on a given core when running alone
(referred to as Solo) and when running alongside interfering synthetic benchmarks (write
memory bombs) on all the other cores (referred to as Stress). For each combination of a
route to main memory (i.e., the normal route or the SchIM route) and scheduler, the result
obtained for Stress is normalized with respect to the equivalent configuration in Solo. The
results obtained on the considered benchmarks are listed in Fig. 7. The results in the Fig. 7
are the aggregation (arithmetic average) of 30 different runs in the same configuration. Each
bar cluster of the Fig. 7 insets represents one of the aforementioned configuration for Solo
and Stress. The height of each bar denotes its normalized execution time.

For this set of experiments, the FP scheduler was configured such that the core under

analysis (i.e., the one running the benchmark) has the highest priority and a threshold of 8.

The other cores are assigned lower priorities and thresholds matching their priority order
(i.e., 4, 2, 1). Under TDMA scheduling, the core under analysis has a slot of 512 clock cycles

2:17

ECRTS 2021



2:18

Memory Scheduling in Multi-Core Systems with FPGA

and a threshold of 14 while the co-runners are assigned slots of 32 and 16 clock cycles with
thresholds of 4 and 1.

The normal route is used as a baseline for this experiment because no scheduling is
performed in this configuration. The Fig. 7 highlights the sensitivity of both disparity and
mser to inter-core interference on the normal route. This is especially the case for large
input sizes such as cif and vga. On the other hand, texture synthesis and localization do
not suffer from inter-core interference. Globally, the TDMA scheduler always manages to
preserve the isolation of the core, having execution times under Stress similar or smaller than
the normal route. This is particularly visible for qcif, cif and vga input sizes of disparity
and mser. Similarly, the FP scheduler is also capable of ensuring sound isolation of the core
under analysis.

7 Discussion and Limitations

By design, the PLiM module proposed in this paper, the SchIM, centralizes the memory
traffic and its scheduling. A centralized design makes sense on the specific target platform
because there exist only one memory controller and thus a single path between the LLC and
the DRAM controller. In systems where multiple paths between the processing units and the
memory controllers exist, for instance when multiple controllers and channels are present, a
decentralized design is to be preferable to better exploit the available memory parallelism.
In such platforms, a possible avenue could be instantiating multiple SchIM modules, roughly
one per channel, and introducing appropriate out-of-band signaling between the modules for
coordination off the critical path.

As we mentioned in Section 6.1, our setup includes the Jailhouse partitioning hypervisor.
While the SchIM module does not strictly require the PS side to use a hypervisor, Jailhouse
has been extensively used for the evalution as it provides convenient features to control
physical memory allocation. For instance, the support for page coloring has been used to
both partition the LLC space and to easily identify the owner of each memory transactions
in the SchIM (as presented in Section 5.4). However, instead of enforcing cache partitioning,
one could instead identify the ownership of memory transactions by extracting a different
subset of address bits. For instance, if the physical memory allocated to different partitions
is not interleaved, then the most significant bits of the address can be used to perform
traffic accounting. In addition, the IPA address virtualization is convenient to transparently
redirect the memory traffic of the application partitions through the PL side, even if they
are initially booted through the normal route. Finally, the cores throttling mechanism (see
Section 5.7) via the FIQs can be implemented at EL3 (Secure Monitor) or in the individual
guest OS’s instead (EL1). Implementing FIQ handling in the hypervisor (EL2), however,
has the advantage of not requiring any change in the guest OS’s, as well as not requiring a
full switch into secure mode compared to an implementation at EL3.

On the same note, provided that the FIQ lines are not used by the inmates, the feedback
regulation mechanism is entirely transparent to the guest OS’s (or even for bare-metal
applications) and introduces minimum overhead. The Linux kernel do not use FIQs, and
the same goes for typical RTOS’s. Nonetheless, it must be acknowledged that defining a
FIQ handler to be used for CPU throttling might interfere with (and be interfered by) the
latency of FIQ handling in guest OS’s that rely on the same functionality. This is mainly
because FIQ handling is non-preemptive. We also recognize that the PL-to-PS feedback
mechanism is relatively coarse. Inset 1 of Fig. 6b highlights this problem. Even though
all the queues have been assigned a threshold of 4, the threshold is often exceeded. The



D. Hoornaert, S. Roozkhosh, and R. Mancuso

worst-case being queue 3 exceeding the threshold by 2 on the right-hand side of the plot.
This problem can be attributed to the reaction time of the FIQ routine, and to the fact that
jumping to the FIQ handler itself might cause a few memory transactions depending on the
cache state. Currently, the thresholds used for FIQ-based regulation require to be fine-tuned
manually by the user. Future extensions of the SchIM will explore the implementation of
schedulers capable of dynamically adapting the thresholds to maximize performance and
improve isolation.

The loss in bandwidth caused by routing transactions through the PL is important and a
serious drawback against the adoption of the SchIM. Our experiments in Section 6.2 have
shown that rerouting the traffic through the PL has a cost. As illustrated in Fig. 4, up to
2100 MBps can be extracted from the normal route whereas any route through the PL only
achieves around 320 MBps. In contrast, a back-of-the-envelope calculation reveals that for
a PL operating at 250 MHz (the SchIM frequency), and with a bus width of 128 bits, a
full-duplex throughput of approximately 3.7 GBps can be sustained. This calculation is in
line with the reported throughput in an experiment conducted in [19], in which PL-originated
transactions targeting the DRAM passed through the one of the HP ports. This suggests
that the PL-to-DRAM route can sustain a much higher throughput than what has been
experimentally observed in our evaluation setup, where transactions originate from the PS
side. In light of these considerations, we can conclude that the source of the bandwidth
loss can be imputed to the bus segments connecting the CPU cluster to the HPM ports.
A focused study is necessary to narrow down the exact reason for the performance drop.
Nonetheless, vendor-imposed bandwidth throttling, PS-to-PL clock-domain crossing delays,
and shallow FIFOs at the HPM ports and/or at the main PS-side interconnect represent
plausible reasons. We anticipate that due to the platform-specific nature of this issue, the
raw performance of the SchIM will substantially vary across different SoCs.

8 Conclusion

In the present article we introduced the SchIM, a memory transactions scheduler framework
that can be integrated with commercially available platforms featuring a tightly coupled
processing system and programmable logic. A full-system implementation in a commercially
available PS-PL platform has been detailed, which encompasses the accompanying software
stack and the platform-specific integration steps.

Through a set of experiments, we assessed the capabilities of the framework and demon-
strated the correct behavior of the proposed scheduling policies, namely Fixed Priority and
Time Division Multiple Access. Finally, we showed using a suite of real-world benchmarks
that the SchIM is capable of enforcing strong temporal isolation despite heavy memory
contention.

The authors see the proposed SchIM as a stepping stone to propose, test and validate novel
memory scheduling policies to be tested on embedded platforms with realistic performance
and complex workload. For this reason, the SchIM has been designed to be open-source and
with extensibility in mind. Especially, we strongly envision that the SchIM could represent a
stepping-stone toward profile-based memory traffic scheduling.

2:19

ECRTS 2021



2:20

Memory Scheduling in Multi-Core Systems with FPGA

—— References

1

10

11

12

13

14

15

16

B. Akesson. Predictable and composable system-on-chip memory controllers. PhD thesis,
Technische Universiteit Eindhoven, School of Electrical Engineering, 2010. doi:10.6100/
IR658012.

B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory
controller. In Proceedings of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, pages 251-256, 2007.

G. Alonso, T. Roscoe, D. Cock, M. Ewaida, Kaan Kara, Dario Korolija, D. Sidler, and
Ze ke Wang. Tackling hardware/software co-design from a database perspective. In Conference
on Innovative Data Systems Research (CIDR), Amsterdam, Netherlands, January 2020.
ARM. ARM® CoreLink™ QoS-400 Network Interconnect Advanced Quality of Service, 2013.
Accessed on 09.01.2020.

ARM. AMBA AXI and ACE Protocol Specification. Technical report, ARM, 2019. URL:
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf.

A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A framework for
supporting real-time applications on dynamic reconfigurable FPGAs. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 1-12, 2016. doi:10.1109/RTSS.2016.010.

J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. LITMUSFT
: A testbed for empirically comparing real-time multiprocessor schedulers. In 2006 27th
IEEF International Real-Time Systems Symposium (RTSS’06), pages 111-126, 2006. doi:
10.1109/RTSS.2006.27.

F. Farshchi, Qijing Huang, and H. Yun. BRU: Bandwidth regulation unit for real-time
multicore processors. 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 364-375, 2020.

F. Farshchi, P. Kumar, R. Mancuso, and H. Yun. Deterministic Memory Abstraction and
Supporting Multicore System Architecture. In Sebastian Altmeyer, editor, 30th Euromicro Con-
ference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 1:1-1:25, Barcelona, Spain, July 2018. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2018.1.

C. Ferri, A. Marongiu, B. Lipton, R. Bahar, T. Moreshet, L. Benini, and M. Herlihy. SoC-TM:
integrated HW /SW support for transactional memory programming on embedded MPSoCs. In
Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 39—-48, 2011.

G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
mixed criticality applications on modern heterogeneous MPSoC platforms. In 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

Intel, Corp. Intel’s Stratix 10 FPGA: Supporting the smart and connected revolution,
October 2016. Accessed on 09.01.2020. URL: https://newsroom.intel.com/editorials/
intels-stratix-10-fpga-supporting-smart-connected-revolution/.

A. K. Jain, S. Lloyd, and M. Gokhale. Microscope on memory: MPSoC-enabled computer
memory system assessments. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 173-180, 2018. doi:10.1109/
FCCM.2018.00035.

H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 145-154, 2014. doi:10.
1109/RTAS.2014.6925998.

H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In 2016
International Conference on Embedded Software (EMSOFT), pages 1-10, 2016.

J. Kiszka, V. Sinitsin, H. Schild, and contributors. Jailhouse Hypervisor. Accessed on
09.01.2020. URL: ttps://github.com/siemens/jailhouse.


https://doi.org/10.6100/IR658012
https://doi.org/10.6100/IR658012
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://doi.org/10.1109/RTSS.2016.010
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.4230/LIPIcs.ECRTS.2018.1
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://doi.org/10.1109/FCCM.2018.00035
https://doi.org/10.1109/FCCM.2018.00035
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/RTAS.2014.6925998
ttps://github.com/siemens/jailhouse

D. Hoornaert, S. Roozkhosh, and R. Mancuso

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing
Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3), 2019.
doi:10.1145/3323212.

Microsemi — Microchip Technology Inc. PolarFire SoC - Lowest Power, Multi-Core RISC-
V SoC FPGA, July 2020. Accessed on 09.01.2020. URL: https://www.microsemi.com/
product-directory/soc-fpgas/5498-polarfire-soc-fpga.

S. Min, S. Huan, M. El-Hadedy, J. Xiong, D. Chen, and W. Hwu. Analysis and optimization of
I/O cache coherency strategies for SOC-FPGA device. In 2019 29th International Conference
on Field Programmable Logic and Applications (FPL), pages 301-306, 2019. doi:10.1109/
FPL.2019.00055.

R. Mirosanlou, M. Hassan, and R. Pellizzoni. DRAMbulism: balancing performance and
predictability through dynamic pipelining. In 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 82-94, 2020. doi:10.1109/RTAS48715.2020.

00-15.

P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial isolation
in a hypervisor for ARM multicore platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651-1657, 2018.

O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors.
In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007),
pages 146-160. IEEE, 2007.

O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both performance
and fairness of shared DRAM systems. In 2008 International Symposium on Computer
Architecture, pages 63-74. IEEE, 2008.

K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair queuing memory systems. In 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06), pages
208-222. TEEE, 2006.

M. Paolieri, E. Quinones, F. Cazorla, and M. Valero. An analyzable memory controller for
hard real-time CMPs. IEEE Embedded Systems Letters, 1(4):86-90, 2009.

N. Rafique, W. Lim, and M. Thottethodi. Effective management of DRAM bandwidth in
multicore processors. In 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), pages 245-258. IEEE, 2007.

F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo. AXI HyperConnect: A
predictable, hypervisor-level interconnect for hardware accelerators in FPGA SoC. In 2020
5Tth ACM/IEEE Design Automation Conference (DAC), pages 1-6, 2020. doi:10.1109/
DAC18072.2020.9218652.

F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo. Is your bus arbiter really
fair? restoring fairness in AXI interconnects for FPGA SoCs. ACM Trans. Embed. Comput.
Syst., 18(5s), 2019. doi:10.1145/3358183.

S. Roozkhosh and R. Mancuso. The potential of programmable logic in the middle: Cache
bleaching. In 26th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2020), Sydney, Australia, April 2020.

P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: a system-wide framework for
memory bandwidth profiling and management. In 41st IEEE Real-Time Systems Symposium
(RTSS 2020), Houston, TX, USA, December 2020.

ST Microelectronics Inc. Real-time performance using FIQ interrupt handling in SPEAr
MPUs, January 2010. Accessed on 10.01.2020.

M. Solieri T. Kloda, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 25th
IEEFE Real-Time and Embedded Technology and Applications Symposium (RTAS 2019), pages
1-14, Montreal, Canada, April 2019. doi:10.1109/RTAS.2019.00009.

2:21

ECRTS 2021


https://doi.org/10.1145/3323212
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://doi.org/10.1109/FPL.2019.00055
https://doi.org/10.1109/FPL.2019.00055
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/DAC18072.2020.9218652
https://doi.org/10.1109/DAC18072.2020.9218652
https://doi.org/10.1145/3358183
https://doi.org/10.1109/RTAS.2019.00009

2:22

Memory Scheduling in Multi-Core Systems with FPGA

33

34

35

36

37

38

39

40

41

42

H. Usui, L. Subramanian, K. Chang, and O. Mutlu. Dash: Deadline-aware high-performance
memory scheduler for heterogeneous systems with hardware accelerators. ACM Transactions
on Architecture and Code Optimization (TACO), 12(4):1-28, 2016.

P. Valsan and H. Yun. MEDUSA: A predictable and high-performance DRAM controller
for multicore based embedded systems. In 2015 IEEE 3rd International Conference on
Cyber-Physical Systems, Networks, and Applications, pages 86-93. IEEE, 2015.

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 55-64, 2009.

Xilinx. Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide. Technical report, Xilinx,
2016. URL: https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_
2/pgl72-ila.pdf.

Xilinx.  Zynq UltraScale+ Device Technical Reference Manual.  Technical report,
Xilinx, 2019. URL: https://www.xilinx.com/support/documentation/user_guides/
ugl085-zynq-ultrascale-trm.pdf.

M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and 1. Lee. Holistic resource allocation
for multicore real-time systems. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 345-356, 2019. doi:10.1109/RTAS.2019.00036.

H. Yun, W. Ali, S. Gondi, and S. Biswas. BWLOCK: A Dynamic Memory Access Control
Framework for Soft Real-Time Applications on Multicore Platforms. IEEE Transactions on
Computers, 66(7):1247-1252, 2017.

H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. Palloc: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 155-166, 2014. doi:
10.1109/RTAS.2014.6925999.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55—64,
2013.

Y. Zhou and D. Wentzlaff. MITTS: Memory inter-arrival time traffic shaping. ACM SIGARCH
Computer Architecture News, 44(3):532-544, 2016.


https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://doi.org/10.1109/RTAS.2019.00036
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2014.6925999

Leveraging Hardware QoS to Control Contention
in the Xilinx Zynq UltraScale4+ MPSoC

Alejandro Serrano-Cases &
Barcelona Supercomputing Center (BSC), Spain

Juan M. Reina &
Barcelona Supercomputing Center (BSC), Spain

Jaume Abella &

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Enrico Mezzetti =
Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Francisco J. Cazorla &
Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

—— Abstract

The interference co-running tasks generate on each other’s timing behavior continues to be one of the
main challenges to be addressed before Multi-Processor System-on-Chip (MPSoCs) are fully embraced
in critical systems like those deployed in avionics and automotive domains. Modern MPSoCs like
the Xilinx Zynq UltraScale+ incorporate hardware Quality of Service (QoS) mechanisms that can
help controlling contention among tasks. Given the distributed nature of modern MPSoCs, the route
a request follows from its source (usually a compute element like a CPU) to its target (usually a
memory) crosses several QoS points, each one potentially implementing a different QoS mechanism.
Mastering QoS mechanisms individually, as well as their combined operation, is pivotal to obtain
the expected benefits from the QoS support. In this work, we perform, to our knowledge, the first
qualitative and quantitative analysis of the distributed QoS mechanisms in the Xilinx UltraScale+
MPSoC. We empirically derive QoS information not covered by the technical documentation, and
show limitations and benefits of the available QoS support. To that end, we use a case study building
on neural network kernels commonly used in autonomous systems in different real-time domains.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture
Keywords and phrases Quality of Service, Real-Time Systems, MPSoC, Multicore Contention

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.3

Funding This work has been partially supported by the Spanish Ministry of Science and Innovation
under grant PID2019-107255GB; the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 878752 (MASTECS) and the European Research Council
(ERC) grant agreement No. 772773 (SuPerCom).

1 Introduction

Satisfying the increasing computing performance demands of critical software applications
requires Multi-Processor System-on-Chip (MPSoC) devices that incorporate diverse com-
puting elements [42, 59]. Distributed interconnects are also required on the MPSoC for fast
communication between masters (e.g. CPUs) and slaves (e.g. on-chip memories and memory
controllers). For instance, the Zynq UltraScale+ MPSoC [59], which we refer to as ZUS+ in

© Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla;
37 licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 3; pp. 3:1-3:26

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:alejandro.serrano@bsc.es
https://orcid.org/0000-0001-9794-8495
mailto:juan.reina@bsc.es
https://orcid.org/0000-0003-4058-5886
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:enrico.mezzetti@bsc.es
https://orcid.org/0000-0002-1886-2931
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.4230/LIPIcs.ECRTS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2

Leveraging QoS to Control Multicore Contention in the ZUS+

this work, comprises two CPU clusters, with CPUs with different power and performance
points, a Graphics Processing Unit (GPU), a Field Programmable Gate Array (FPGA) that
allows synthesizing specific accelerators, and an AXI4-based distributed interconnect.

Complex MPSoCs accentuate the problem of multicore contention, i.e. controlling the
interference co-running tasks generate on each other. In an MPSoC, tasks can interact in
many hardware resources and controlling how such resources are shared becomes a necessary
precondition to derive useful timing bounds. This can be achieved via software-controlled
hardware mechanisms like cache partitioning (e.g. provided in the NXP T2080 [27]) to
prevent tasks from evicting each other’s cache data, and hardware-thread prioritization
in simultaneous multithreading (SMT) IBM [15] and Intel [31] processors. Hardware QoS
mechanisms like these help controlling multicore contention: by properly configuring the
hardware QoS mechanisms, the system software (RTOS or hypervisor) can favor the execution
of specific tasks, reducing the slowdown they suffer due to contention, at the cost of increasing
the impact of contention on (less time-constrained) co-runner tasks. This offers a rich set of
platform configurations that allow the end-user to better adapt to the criticality and timing
constraints of the running application workload.

In this paper, we analyze the hardware support for QoS in the ZUS+, which is assessed
for on-board computing in avionics [58]. The ZUS+ offers a rich set of QoS mechanisms
implemented in different hardware IP blocks of the interconnect and the memory controller.
The number, diversity, and complexity of those mechanisms are, at a first sight, simply
overwhelming: up to 4 different hardware IP components in the ZUS+ are QoS improved.
Some of those components are instantiated several times resulting in (i) over 30 different
QoS points that control the flow of traffic in the interconnect and the access to the slaves;
and (ii) millions of possible QoS configurations. However, QoS can only work effectively if
the QoS points work coordinately. Otherwise, a QoS point down the path from the source
to the destination can cancel out all the prioritization benefits achieved through previous
QoS points. This calls for a detailed analysis of the different QoS mechanisms and their
dependencies to reach a global predictability goal. In this line, our contributions are:

Individual QoS mechanisms. (Section 3) We analyze several QoS-enabled IP components
from 2 different IP providers instantiated in the ZUS+: the Arm NIC-400 [4], and its QoS-
400 [5] and QVN-400 [6] extensions, the Arm CCI-400 [9], and the Synopsys uMCTL2 [55]
DDR memory controller. We describe the main QoS features in each of these components as
building blocks of the analysis performed in the rest of this work.

Coordinated QoS mechanisms. (Section 4) Following the individual analysis of QoS-enabled
IP blocks, we analyze how QoS mechanisms can work coordinately to achieve a global goal, e.g.
favoring the traffic of the Real-time Processing Unit (RPU) over the Application Processing
Unit (APU). This analysis, which is not provided in the ZUS+ or its IP blocks’ technical
reference manuals, presents key insights to fully master the QoS support in the ZUS+. In
particular, (i) we show that some QoS features, especially when provisioned by different
IP providers, can be fundamentally incompatible and hence, cannot be deployed together
towards reaching a common predictability goal; (ii) for compatible QoS features in different TP
blocks, we show the particular range of QoS configuration values that can be used to prevent
that one feature cancels out the benefits brought by another. In doing so, we introduce the
new concepts of QoS domain and QoS domain mapping; and (iii) we also show the missing
information about QoS mechanisms in the technical manuals of the ZUS+.



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

Characterization. (Section 5) Driven by the analysis in Section 4, we perform controlled
experiments to characterize QoS mechanisms in different IP blocks, with a view to determining
some of the design choices made by Xilinx when instantiating Arm IP blocks as they are
not documented in the corresponding technical manuals. Also, we note that all four A53
cores in the APU share a single QoS-enabled port to the interconnect that allows controlling
the aggregated traffic but not per-core traffic, which in practice prevents having several
applications in the APU if they have different QoS needs. We unveil how QoS and packet
routing can be combined to overcome this limitation, allowing two applications to run in the
APU with heterogeneous QoS requirements.

Case Study. (Section 6) We focus on a composite deployment scenario comprising several
applications, each one potentially subject to different predictability requirements, to show
how hardware QoS configuration is a central element of the platform configuration to ensure
applications meet their timing constraints. We use representative neural network kernels to
show that, by deploying specific QoS setups, the time constraints of the different applications
can be accommodated while other metrics, like average performance, can be improved. This
is very useful in different domains for platform configuration selection, referred to as intended
final configuration (IFC) in CAST-32A [18] in the avionics domain.

The rest of this work is organized as follows. Section 2 introduces the most relevant
related works. Section 3 to Section 6 cover the main technical contributions of this work, as
described above. Last but not least, Section 7 provides the main conclusions of this work
and discusses future research directions.

2 Background and Related Works

Multicore contention is at the heart of the complexities for the adoption of MPSoCs in
high-integrity systems (e.g. avionics and automotive). This has impacted domain-specific
safety standards and support documents [18, 2, 32] and led to the proliferation of academic
and industrial studies on modeling multicore interference [46].

Contention Modelling. Contention Modelling is one of the main multicore-contention
related research lines covering COTS chips for avionics [40] and automotive [22]. Analytical
approaches aim at bounding the contention impact on shared hardware resources, initially
focusing on the timing interference in shared on-chip buses [52, 19, 20] and later extended
to include other shared resources. Solutions have been proposed to make Advanced Micro-
controller Bus Architecture (AMBA) protocols time-composable [33], and to achieve a fair
bandwidth allocation across cores considering requests with different durations [50]. Other
works target more complex interconnects, bounding their worst-case traversal time [35, 26],
focusing on Network on Chips (NoCs) specifically [49, 21, 17, 57, 13], and modeling contention
with network calculus [34, 47]. For the DDR memory, some authors build on static analyses to
derive bounds to the latencies of memory requests considering other potential requests in the
memory controller [29], as well as information about tasks and requests simultaneously [30].
For cache memories, contention has been modeled statically, as surveyed in [36], as well as
analyzed with measurements on COTS multicores, targeting the coherence protocol [53].
The tightness and precision of analytical approaches are challenged by the complexity of the
hardware and software under analysis. For this reason, other approaches are proposed to
exploit specific application semantics or dedicated hardware and software support.

3:3

ECRTS 2021



3:4

Leveraging QoS to Control Multicore Contention in the ZUS+

Application Semantics. Several works have been advocating the enforcement of predictable
application semantics where task memory operations are only allowed to happen in dedicated
phases (e.g., read-compute-write). This enables the computation of tighter contention bounds
and the formulation of contention-aware co-scheduling approaches [45, 44, 12, 14]. While
unquestionably effective, not all applications can support an execution semantics allowing a
reasonable and clear separation into phases.

Exploiting hardware support for QoS in COTS. For simultaneous multi-threading pro-
cessors some authors have exploited existing fetch policies to allocate core resources to
threads in the context of HPC applications running for IBM POWER- processors [15] and
Intel processors [31]. In real-time systems, other authors have focused on an individual
Arm QoS element and a specific example (memory traffic from accelerators) to show that
QoS mechanisms could be effectively leveraged for a better application consolidation [54].
Other authors evaluate the throughput of DDR memory on a ZUS+, including the impact
of one QoS parameter in the memory controller [37]. In our work, we analyze/characterize
the specific realization of Arm QoS IPs in the ZUS+ SoC and consider how to orchestrate
multiple QoS mechanisms for an effective QoS management. In the short and mid term, we
foresee chip providers will further support advanced QoS features and mechanisms such as,
for instance, the Memory System Resource Partitioning and Monitoring (MPAM) in Arm-V8
architectures [8], which is under evaluation by industry in the real-time domain [23].

Software-only solutions. Software-only solutions for contention control do not require
specific hardware support for either enforcing task segregation or providing a given level
of QoS guarantees. These techniques leverage information on set and bank indexing in
caches and memory, and hypervisor/RTOS allocation support to force different tasks to be
mapped to different cache sets and DDR memory banks/ranks [28, 38]. Other solutions
focus on controlling the access to shared resources (e.g. memory) as a way to control the
maximum contention an offending task can generate on its co-runners [60] and also to
guarantee performance of critical tasks while dynamically minimizing the impact on best
effort tasks [1].

Specific hardware proposals. Specific hardware proposals for contention control include
some general resource management policies [39]. The number of resource-specific propos-
als is high and covers a wide variety of mechanisms including changes in the arbitration
and communication protocols [33], memory bandwidth regulation [24], support for cache
partitioning [38] (in some cases building on existing programmable logic in the SoC [51]),
control contention bounds [16], exploit AMBA AXI bandwidth regulation for accelerators in
FPGAs [43].

In this work, we do not propose hardware support for contention control, but build on
that provided by default by the MPSoC integrator. Unlike previous works that focus on
centralized QoS control, we address the challenge of understanding, characterizing, and
showing the limitations and benefits of a distributed QoS system like the one in the ZUS+.

3 Analysis of the QoS Mechanisms in the Zynq UltraScale+ MPSoC

The ZUS+ integrates several computing and memory components, all connected by a
distributed interconnect fabric, see Figure 1. The main computing elements are the quad-core
Arm Cortex-A53 APU, the dual-core Arm Cortex-R5 RPU, the Arm Mali-400 GPU, and



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

Table 1 Main QoS-related terms used in this work.

Term Definition
QoS mechanism | Specific hardware mechanisms in a QoS-enabled block to control QoS
QoS slot (point) | Refers to the instantiation of a QoS-enabled block or mechanism

QoS feature Specific QoS characteristic implemented by a QoS mechanism
QoS value Specific value given to a QoS feature
QoS setup Set of values for the QoS features of all QoS points under evaluation

17-22, 25, 28, 29

“Jajjonu0d WIN

Figure 1 Simplified ZUS+ block diagram emphasizing APU/RPU/PL and OCM/DDRC.

the accelerators that can be implemented in the Programmable Logic (PL). The memory
system comprises several on-chip units like the On-Chip Memory (OCM) and the controller
of the DDR SDRAM, which is the main off-chip memory. The interconnect comprises
top-level switches, namely, the Cache Coherent Interconnect (CCI), the low-power domain
(LPD) switch, full-power domain (FPD) switch, and the OCM switch; and a high number of
second-level switches, highlighted as “x” in Figure 1. In this work, we focus on communication
from the APU, RPU, and the PL to the OCM and the DDR DRAM. Other blocks that are
not the focus of this work are not developed in the figure, e.g., IP blocks related to I/O are
abstracted as “Other Switches” and “I/O”. APM are the Xilinx AXI performance monitoring
point blocks used to collect statistics on the packets sent over an AXI link (reads, writes,
amount of data transferred, etc.).

In terms of third party IPs, the ZUS+ equips a distributed AMBA AXI4 [11] interconnect,
with switches based on the Arm NIC-400 [4] and its QoS-400 extension [5]. The CCI, instead,
is based on the Arm CCI-400 [9] and equips similar features to the Arm QVN-400 [6] IPs.
The memory controller builds on the Synopsys uMCTL2 [55]. Each block provides hardware
support for QoS, which we analyze here. To support our discussion, Table 1 introduces the
main terms we use in this work.

3.1 QoS support per IP-block

The ZUS+ technical documentation [59] provides very limited information about the func-
tional behavior of the underlying IP blocks on which it builds. Hence, we start by analyzing
the information on supported QoS features that can be obtained from each IP’s technical
specification. How each IP is instantiated in the ZUS+ is covered in Section 4.3.

3:5

ECRTS 2021



3:6

Leveraging QoS to Control Multicore Contention in the ZUS+

AXIr/w reques(s AXIr/w requests AXIr/w requests

i 5 % g EEE ggg g g
N 3 % v v v AXIrq to Aan )
CD DDRcm DDRem
QoS QoS
rela Q rela 9 % [} ] o
é 3 § [ Port Arbiter ] e ;UU
3 3 [ T o
3
< o« 2
]
2| =
(@os dyn] (Qos dyn) (aos dyn] s T s dn) ﬁ-Mg
3 2
L =
( Arl;_)irter )( Arb‘iter ) ( Arb‘iter ) ( Arbiter ) :
v v v v ( DFI ]
Mo My My M,

Figure 2 Arm QoS-400 Figure 3 QoS features in the Figure 4 Block Diagram of the
QoS relay and dynamic QoS. Arm CCI-400. DDR memory controller.

Arm AXI4 [11]. AXI4 presents 5 communications channels, three from master to slave
(address read, address write, and write data) and two from slave to master (read data
and write response). In the read address and write address channels, AXI4 implements
QoS-specific signals by supporting two 4-bit QoS identifiers for read (ARQOS) and write
(AWQOS) transactions, indistinctly referred to as AXQOS. Transaction initiators (masters)
set the QoS value for each read/write request. QoS values range from 0 (default or neutral
QoS) to 15, with higher values meaning higher priority. We refer to this feature as static QoS.

Arm NIC-400 [4]. On arrival to a NIC-400, every transaction allocates a QoS value by
assigning (i) a fixed value statically defined when the NIC-400 IP is integrated into the
SoC; (ii) a programmable value provided via NIC-400 control registers; or (iii) the QoS
value received from the attached master. We call this feature QoS relay. As the transaction
traverses internal switches in the NIC-400, static QoS values are used to decide which
transaction has to be served first. In these arbitration points, the transaction with the
highest value is prioritized using Least Recently Granted (LRG) as a tie-breaker.

Arm QoS-400 [5]. Arm QoS-400 is an extension to the NIC-400 that provides additional QoS
features, remarkably three dynamic QoS regulation mechanisms: outstanding transaction
that limits the maximum number of read, write, or read+write in-flight transactions allowed;
transaction rate that dynamically increases QoS value of transactions if the latency is
greater than the target and vice versa; and transaction latency that controls the period
between successive request handshakes dynamically increasing/decreasing QoS values when
the observed period is greater/lower than the target [5] . The regulation builds on three
parameters: the Peak, Burstiness and Average. The average controls how many transactions
need to be made within a period of time. When not achieved this amount of transactions due
to the system congestion, then the regulator allows performing a limited set of transactions
(burstiness) to restore the average. In addition, the control can be configured to limit this
transactions issue to not overuse the shared resources (Peak). As an illustrative example,
Figure 2 shows a block diagram of the QoS features in a Arm NIC-400 interconnect block
encompassing QoS extensions with 3 slaves and 2 master ports, and 3 arbiters.

Arm QVN-400 [6]. Arm QVN-400 is an extension to the CoreLink NIC-400. The QVN
protocol creates virtual networks by using tokens to control transaction flows. QVN extends
the common AXI channels with extra signals ensuring that a transaction can always be



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

accepted at its destination before a source sends it. The number of VN (virtual network) is
defined during the IP implementation. QVN enables transactions on virtual networks with
different QoS values to avoid a blocking (less priority) transaction in a queue (Head-Of-Line).

Arm CCI-400 [9]. Arm CCI-400 has similar features to the QoS relay, QoS dynamic and
QoS static features in the QoS-400, and QVN in the QVN-400. A unique feature of the
CCI-400 is that each master interface implements a read queue with several slots reserved for
high priority requests, other for high+medium priority requests and the rest for low-priority
requests (see Figure 3). The QoS values considered as high, medium, low are configurable.
So is the number of reserved entries medium and high priority requests. We call this feature

CClIrq.

Memory Controller. It comprises the DDR-controller (DDRC) that schedules and converts
AXT requests (AXIrq in Figure 4) into DDR commands (DDRCm in Figure 4) and the
DDR-PHY (DFI) that translates the requests into specific signals to the target DDR device.
The DDRC dynamic scheduling optimizes both bandwidth and latency using a programmable
QoS controller to prioritize the DFI requests, allowing out-of-order execution.

Six AXT ports (XPI) receive traffic, i.e. flow of AXI requests, going to the DDRC. XPIs
are referred to as P0-P5 in Figure 1. In each XPI, the DDRC translates and classifies
AXI transactions into a set of DDR commands. In each port, different queues temporarily
store transactions depending on their type (read/write and request/data), see Figure 4.
Read transactions are classified into low, high, and video traffic classes (LPR, HPR, and
VPR, respectively), while write transactions are classified into low (or normal) and video
(LPW/NPW and VPW, respectively) traffic classes. Commands with VPR/VPW behave as
low priority when the command has not expired (i.e. there is not a transaction timeout). Once
expired, the command are promoted to a priority higher than the HPR/NPW commands.

Once the transactions make their entry on the DDRC and their translation into DRAM
commands are generated, those commands are stored into the counter addressable memories
(CAMs). A read CAM and a write CAM are shared by all ports in a way that the maximum
number of entries that can be allocated to a traffic class can be limited.

The Port Arbiter (PA), which is shared among all ports, selects the command to be sent
to the CAMs based on several levels of arbitration, as shown next. Operation type: reads
are prioritized while there are VPR expired or there are reads and no expired VPW. Writes
are executed when there are no reads and if there are expired VPW and no expired VPR.
The expiration period can be configured via setting timeouts for VPR/VPW 1. Also, ports
can be individually flagged as “urgent” to force all its request to be processed immediately.
Channel: the PA prioritizes commands from higher priority classes: HPR, has higher priority
than LPR/VPR on the read channel and NPW/VPW has the same initial priority on the
write channel, with VPR/VPW prioritized if they time out. AXQOS: in the next layer,
priorities are given per command based on AXQOS signals. Tie breaker: in the bottom tier
conflicts are resolved using round-robin arbitration.

This nominal behavior is affected by port throttling based on the occupancy of CAMs.
When the available entries for HPR/LPR in the read CAM is below an HPR/LPR threshold,
low-latency (HPR) /best-effort ports can be throttled. Likewise, if the available entries for
NPW in the write CAM is below a threshold best-effort ports can be throttled.

1 Note that there is a port “aging” feature that is set at boot time and is explicitly recommended not to
be used with AXQOS: “aging counters cannot be used to set port priorities when external dynamic
priority inputs (arqos) are enabled”. Hence, we do not enable this feature in our experiments.

3:7

ECRTS 2021



3:8

Leveraging QoS to Control Multicore Contention in the ZUS+

When issuing commands from CAMs to the DFI, command reordering is allowed to favor
page hits, potentially causing out-of-order execution of the commands. A regulator limits
the issue to up to 4 out-of-order commands. When it is disabled, no restriction is applied,

resulting in no control in the number of out-of-order command executed. In our setup for
predictability reasons, we limit it to its minimum value, 4. Also, HPR and LPR partitions in
read CAM and the write CAM can enter a “critical” state if they spend more than a given
number of cycles without issuing a command to the DFI.

4 Interaction Among QoS-enabled IP Blocks

We faced two main challenges in our attempt to orchestrate the different and distributed
QoS mechanisms implemented in the ZUS+.

1. Xilinx provides very limited information about the QoS-enabled blocks it integrates into
the ZUS+ and, instead, refers the reader to the technical manuals of each IP provider.
However, the latter provides implementation-independent descriptions rather than details
on the particular implementation options selected for the ZUS+ IP blocks. As a result,
we could not find the specific implementation options for some IP blocks (Section 4.3)
and had to derive them empirically instead (Section 5).

2. Xilinx provides almost no information on how the different QoS mechanisms — coming
from different IP providers — can work coordinately. However, to effectively exploit all
QoS features in view of a common predictability goal, it is necessary to properly configure
all the QoS points from the different masters to the slave. For instance, in the ZUS+ a
request from the RPU to the DDR, see Figure 1, crosses: a static QoS point in the RPU
switch; read queue priority, QoS relay, and dynamic QoS in the CCI; QVN between the
DDRC and the DRAM controller; and the multilayer arbitration in the DRAM controller
which involves XPI, Port Arbiter, and CAMs.

This section tackles those issues by providing key insights and unveiling details, not
documented in any technical reference manual, about the instantiation of QoS-enabled blocks
in the ZUS+ and the interaction among them. This required cross-matching information in
the technical manuals of the different IP providers and covering the conceptual holes found
in the documentation by analyzing dozens of processor registers that control the operation of
the QoS. The outcome of the analysis is the central element to guide the experimental part 2.

Overall, this section encompasses two well-differentiated parts. First, an engineering
effort to derive missing information on QoS-enabled IP blocks, which is complemented with
specific characterization and reverse-engineering experiments in Section 5. And second, a
structured attempt to orchestrate the different QoS mechanisms by introducing concepts like
QoS domains and QoS domain mapping. The former is more ZUS+ dependent, while the
latter sets the basis for a methodology for analyzing the QoS support in other MPSoCs.

4.1 QoS domains and mappings

In order to capture the interactions between different QoS-enabled IP blocks, we define the
concept of QoS domain as a set of QoS-enabled IP devices, or elements thereof, under which
request prioritization is carried out using the same QoS abstraction (i.e. QoS values that vary

2 Tt is worth noting that the analysis in this section required several months of effort by hardware experts.
In fact, deriving the information in this section has taken longer than the experimentation part itself.



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

over the same range and have the same meaning). We also define the QoS domain mapping
abstraction to capture the interaction among QoS domains and how the priorities levels in
different domains are related. In the ZUS+, we differentiate the following QoS domains.
AXQOS. Prioritization of AXI requests based on AXI QoS (ARQOS and AWQOS),
classified in the previous Section as static QoS.
CClIrq. Prioritization of read requests arriving at the slave interfaces, based on three
levels (high, medium, low), with requests in the high tier being reserved some entries
in the read queue, high+medium being reserved another set of entries, and low-priority
requests using the rest of the entries in the queues.
QVN. Prioritization using the virtual network ID. The master id determines for each
transaction the virtual network it is mapped to.
DDRCreg. Prioritization over traffic regions. On every port of the DDR controller
(PO-P5) two regions ® are defined, respectively referred to as region0 and regionl.
DDRCtc. Prioritization over traffic classes. The read channel is associated one traffic
class: high-priority (HPR), low priority (LPR), or video priority (VPR). For the write
channel the traffic class is normal write priority (NPW) or video priority write (VPW).

From these QoS domains, we define the following QoS domain mappings:
AXQOS-CClIrq allows defining the set of static QoS values assigned to the high, medium,
and low priorities. QoS values from 0 to ¢ mapped to the low priority, from ¢ to j mapped

to the medium priority, and from j to 15 mapped to the high priority (with 0 < i < 5 < 15).

As this is defined per slave port, the same static QoS of requests arriving via different
slave interfaces will be assigned to different priorities.

AXQOS-DDRCreg. On every port, AXI requests are mapped to regions based on
AXQOS, i.e. those lower than a threshold are mapped to region0 and the rest to regionl.
DDRCreg-DDRCtc. In each DDRC port, one traffic class (HPR, LPR, VPR) can be
assigned to read channel in region0/regionl and one traffic class (NPW/VPW) can be
associated to write channel in region0/regionl.

AXQOS-DDRCtc. It combines the previous two. For the read channel the static QoS
(AXQOS) values are mapped to region0/1, which are then mapped to HPR/LPR/VPR
traffic classes. For the write channel, also the static QoS (AXQOS) values are mapped to
region0/1, which are mapped to either NPW or VPW.

There is no explicit mapping for AXQOS-QVN, CCIrg-QVN, DDRCreg-QVN, and
DDRCtc-QVN, as we capture later in this section. As a result, if both QoS domains in those
pairs are activated, different QoS features could be working towards opposing objectives,
thus defying the potential benefits of hardware support for QoS.

4.2 Incompatible QoS features and Incongruous QoS Values

We have detected several QoS features, either in the same or different QoS domains, that are
simply incompatible given their nature. As a result, simultaneously enabling them can result
in unknown results in terms of predictability and isolation.

INCOMP1 Arm’s dynamic QoS mechanisms transaction rate and transaction latency are
incompatible with the QoS mechanisms in the DDR controller by Synopsis. Both QoS-400
and CCI-400 implement these dynamic QoS mechanisms. The source of the problem

3 As explained later in this section regions help mapping static QoS, which ranges from 0 to 15, and
Traffic Classes (low priority, high priority, and video).

3:9

ECRTS 2021



3:10

Leveraging QoS to Control Multicore Contention in the ZUS+

lies in that these mechanisms change per-request static QoS priorities dynamically by
overwriting static priority (AXQOS) settings. Hence, the hardware, without any software
guidance, determines the QoS value of each request. This confronts with the use made of
static QoS priority to split requests into classes or groups in the DDR controller: a given
flow of requests that leaves the master with a given static QoS value can arrive at the
target — after crossing a dynamic QoS mechanism — with requests having different and
variable priorities. Despite a QoS range register controls the range of variation allowed
for the dynamic QoS mechanisms, for this feature to be effective, the range must be so
that the requests to be prioritized get higher priority than requests from other flows.
Otherwise, dynamic QoS would have no effect. The net result, however, is that requests
from the flow being prioritized can arbitrarily take different static QoS values, and hence
they can be mapped to any region and traffic class in the memory controller. This makes
dynamic QoS and the memory controller QoS fundamentally incompatible.
INCOMP2 The QoS relay for an IP block in the path from a master to a destination can
overwrite the QoS set by the master. This can be done either with an IP integration time
value in the QoS-400/CCI-400 block or a configurable value set in the control registers
causing that all mappings and prioritization based on AXQOS can be lost regardless of
the QoS set by the master. When the QoS value is hardwired at IP integration time, it
can effectively become an incompatible feature with other QoS mechanisms that vary
AXQOS values. Instead, when configurable via a control register, it becomes a feature to
be properly set to avoid incongruities.

For compatible QoS features, there are a set of mutually incongruous QoS configurations
whose combined effect can heavily affect or even cancel out the expected QoS behavior. This,
in turn, can prevent achieving an overall predictability goal.

INCONGT1 The lack of explicit mapping for AXQOS-QVN, CCIrq-QVN, DDRCreg-
QVN, and DDRCtc-QVN makes that requests arriving at the CCI can have high AXI QoS
priority while being assigned to a low-priority virtual channel (and vice versa). Likewise,
requests from different sources going to the CCI can be mapped to different VNs; however,
they can be mapped to the same CAMs in the DDRC so one flow with lower VN priority
can stall the other, as the VN control is done at the port (XPI) level.

INCONG?2 Traffic class in ports and channels. When the number of entries for HPR/LPR
in the read CAM is below a HPR/LPR, threshold, low-latency/best-effort ports (respect-
ively) can be throttled. Likewise, when write CAM entries for NPW is below a threshold,
best-effort ports can be throttled. However, nothing prevents ports to be setup as video
while they issue HPR/LPR/NPW requests, causing CAM-based port throttling not to
achieve its expected effect.

INCONGS3 On arrival to a CCI slave port, read requests can be assigned few read queue
entries (e.g. they are assigned to the low priority), while they are prioritized with QVN.
INCONGA4 In the DDR controller, requests arriving via the two ports connected to the
CCI, can be mapped to VPR/HPR hence being prioritized, while on the CCI the same
requests can be assigned a low priority in the read queue, which will ultimately result in
a low priority assignation.

4.3 QoS-Enabled IP Block Instantiation

The descriptions of the QoS features of each IP block in Section 3 come from IP providers and
are agnostic to the particular instantiation of the IP block on a specific SoC. Those IP blocks
have configuration options to be fixed at integration time, which hence are not described in



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

Table 2 Main QoS points in the path from the APU/RPU to the DDRC/OCM.

’Type ‘IDs ‘Description ‘
Qo0S-400 |2, 3 Prioritizes requests from PL ports HP1 and HP2

QoS-400 |12, 13, 14|Prioritizes requests from HPO (mem. port P3), HP1-HP2 (P4), & HP3 (P5)
QoS-400 |30, 32, 33|Prioritizes requests from the APU, HPCO-HPC1, & ACE

QoS-400 |23, 26, 27|Prioritizes requests from the 2 RPUs and the FPDswitch to the OCM
QVN-400{QVN1/2 |Prioritizes requests to the DDR that pass through the CCI

CCI-400 |CCI-400 |Handles requests traversing the CCI-400

DDRC |MC-QoS |Handles ports, CAMs, and other QoS mechanisms in the mem. controller

the IP provider information. Unfortunately, nor they are in the Xilinx documentation [59].

This section describes the instantiation of QoS-enabled IP blocks in the ZUS+, capitalizing
on the missing (unknown) information and observed limitations in QoS control.

There are more than 30 QoS points in the ZUS+. Table 2 lists those related to the access
to the OCM and DDR from the APU, RPU, and PL. The first four rows correspond to
static QoS mechanisms. QoS points based on AXI QoS are identified with numbers in the
Figure 1, with values in light grey showing QoS-400 points that do not control the access to
the DDR/OCM from the APU/RPU/PL and hence we do not cover. Static QoS points are
referred to as “QoSpi” in the text where “i’ is the QoS point id. For instance, QoSp8 controls
the traffic generated from the display port and QoSp9 the traffic from FPD DMA. The types
of QoS-enabled IP blocks are identified as “CCI-400”, “QVN” (QoS virtual networks), and
“MC-QoS” (DDRC with QoS from Synopsis).

QoS missing information. A subset of the QoS features of some IP blocks are to be fixed
at IP integration time by the integrator (Xilinx). However, several of these decisions are
not described in Xilinx documentation and hence must be assessed empirically, as we do in
Section 5 for the first two below.

UNKNO1 There is no control register to select the behavior of QoS relay feature for
NIC-400 second-level switches, that is, all switches but the FPD switch, the OCM switch,
and the LPD switch. Nor is it documented whether there is some default behavior.
UNKNO02 AXI3 FIFO queues are used to connect the PL with the Processing System
(PS) and dealing with the clock and power region conversion. These FIFOs are 16-entry
deep and independent for reads and write transactions. The implementation is AXI3
compliant and hence does not provide some of the AXI4 protocol signals, like the QoS
signals. The ZUS+ documentation does not clarify whether and how the requests from the
PL to memory keep the static QoS set in the PL ports. However, the field FABRIC_QOS_EN
in the registers RDCTRL and WRCTRL in the AFIFM module seems to control this feature.
UNKNO03 The CCI-400 provides no feature to control the number of slots to reserve to
high and medium priority requests in the read queue of each slave. We conclude that
either this feature is not implemented or the split of the queue is carried out with default,
not controllable values. In any case, it is not a configurable QoS feature.

QoS limitations. From the instantiation of QoS-enabled blocks in the ZUS+ we derive the
following limitation.

LIMITO1 All requests from the four A53 cores are routed via the only port between

the APU and the CCI. Hence, the same QoS is assigned to requests from all 4 cores.
QoSp32 helps controlling the aggregated traffic from all cores but not per-core traffic.

3:11

ECRTS 2021



3:12

Leveraging QoS to Control Multicore Contention in the ZUS+

Table 3 QoS features analyzed and fixed to deal with inconsistencies and incongruities.

Feature

[Description

(1) Static QoS

Enabled. All requests in the same flow have the same static QoS.

Disabled as it is incompatible with the QoS domains in the DDRC (INCOMP1)

Outst. Transact.

Enabled

EZ) Dynamic QoS
(

3)
1) QVN

Disabled as it was not possible to relate it to other QoS domains: AXQOS,
DDRC, ... (INCONG1 and INCONG3)

(5) CCI read queue

It is not configurable. It is either not implemented or configurable (preventing
INCONG4, and UNKNO02)

(6) Urgent Port

Disabled not to override traffic class prioritization

(7) DDRC QoS

Enabled as it is central to achieve predictability goals. The particular parameters
used are described later in Section 6 (Table 5).

(8) Traffic Class in
ports & channels

We keep the same traffic class in the read/write channels and keep it congruent
with the port type. We use: (VR/VW,V), (HPR/NPW,LL), (LPW/NPW BE).

(9) Command
reordering

DRAM command reordering is limited to the minimum value (4) to limit
the impact on predictability

(10) CAM exhaustion

Fixed to the default value in the Xilinx provided setup

The same limitation has been identified for other NXP SoCs integrating Arm IPs [54]. In
this work, we show how such limitation can be pragmatically overcome through other

routing mechanism since there are two ports (PO and P1) the A53 can use to access the
DDR.

4.4 Putting it All Together: Key Insights of the Analysis

The main outcomes of the analysis performed in this section relate to:

1. the particular QoS setups that make sense to experimentally evaluate, i.e. for which it
has not been determined that they are fundamentally incompatible;

2. the range of values to prevent incongruities in the expected QoS behavior;

3. a set of QoS mechanisms that require empirical evidence to be validated/rejected as, from
the analysis, it was not possible to determine the particular setup (values) selected in
their instantiation in the ZUS+; and

4. a set of QoS-related open challenges that cannot be solved from the analysis, e.g. dealing
with the fact that all A53 cores share a single port to the CCI (QoSp32 in Figure 1).

A decision we take for this work is to set static QoS priorities at the level of requests
flows, see (1) in Table 3. For instance, we keep the same QoS for all requests from a source
like the APU to the destination like the DDRC. This is in contrast to changing static
QoS at the request level that, although possible, it would heavily complicate modeling and
characterization usually performed in real-time systems. We also disable the urgent feature
as it disruptively overwrites the nominal behavior based on traffic classes (6).

We discard for our evaluation the dynamic QoS features transaction rate and latency (2)
in the CCI-400, NIC-400 as we conclude they are incompatible with the QoS features in the
DDR, hence preventing INCOMP1 from arising. We analyze the outstanding transaction
(3) dynamic QoS feature, but we conclude it provides limited benefits as the R5 cores are
in-order and hence allow one in-flight load/store [10] and the A53 [7] ones allow a maximum
of 3 loads in flight. The QVN feature (4) is disabled as we cannot map it to other QoS
domains, which can have unexpected results, affecting the predictability/isolation goals
(effectively preventing INCONG1 and INCONG3). The CClIrq feature is not configurable or
not implemented (5), so we cannot set incongruous QoS values for it, preventing INCONG3
and INCONG4. The multi-layer arbitration in the DDRC is evaluated maintaining the type



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

[N

Table 4 Routing in the CCI.
§ 08 B APU1
Setup APM4.1 APM4.2 E e mAPU2
ReadTC WriteTC|ReadTC WriteTC s o :r:zz
Default | 64 64 64 64 :
ForceP1| 128 128 0 0 202 .[
ForceP2| 0 0 128 128 0
HPR/HPW - VPR/VPW LPR/LPW - VPR/VPW

Figure 5 QoS among APU cores.

of port and QoS-traffic class mapping per port congruent (8) preventing INCONG2; fixing
reordering to its minimum value of 4 (9); and using the default CAM exhaustion (critical)
mechanism.

The features to be empirically assessed include how to provide different QoS to different
A53 cores (LIMIT1), and the determination of the QoS relay mechanism in second level
switches (UNKNO1 and INCOMP2) in the AXI3 FIFO queues (UNKNO02).

5 QoS mechanisms characterization

Next, we characterize some QoS mechanisms by addressing undocumented design choices
made by Xilinx when instantiating Arm IP blocks, and the limitation of the distributed QoS
mechanisms in the ZUS+ introduced in Section 4.3.

5.1 Experimental Environment

We perform experiments on a Xilinx ZCU102 board that is equipped with a Zynq Ultrascale
EG+ MPSoC. We run no operating system (bare-metal) or any external code, except for the
First Stage Boot Loader (FSBL) provided by Xilinx toolchain (Vitis-2019.2), reducing non-
hardware sources of interference. In fact, when executing several time the same experiments,
we observe negligible execution time variability.

We run a low-overhead software configurator and a software collector. The former
configures at boot time and during operation more than 60 SoC registers controlling the
operation of the distributed QoS mechanisms. The latter provides measurements from several
internal counters, including A53 and R5 performance counters and counters in the AXI
Performance Monitors (APM).

Benchmarks. In this section, we use a set of benchmarks that generate intense read/write
traffic to the OCM/DDR from the R5 and A53 cores by missing in each core’s cache(s). The
PL has been customized using the Xilinx Vivado tool to synthesize HDL designs, integrate
multiples IPs, and generate the platform bitstream. We build on the AXI Traffic Generators
(ATG) provided by Xilinx to generate read/write traffic to stress the target slave devices
(OCM and DDR). To that end, we instantiate one or several ATGs per PL port so that we
can vary the intensity of the generated read/write traffic.

5.2 Unveiling QoS features in the ZUS+

We empirically unveil relevant undocumented QoS features in the ZUS+. The same features
will be further exploited in Section 6 to support the deployment scenario in our case study.

3:13

ECRTS 2021



3:14

100%

@ 00
=] S
ES ES

Port Distribution
8
2

20%

0%

Leveraging QoS to Control Multicore Contention in the ZUS+

‘IHPO mHP1 m HP2 Hps\

[mHPO W HP1 W HP2 m HP3]

0.33

0.19
0.19

1

0.29

0.15

2

0.17

3

# ATGs per HP port (no QoS)

Port Distribution

100%

80%

2]
=]
ES

i~
=]
=

20%

0%

0.02
0.35

0.00
0.36

0.18
0.18

1 2 3
# ATGs per HP port (QoS)

Figure 6 DDR transaction distribution under the same and different QoS setups.

A53 prioritization (LIMIT1). As introduced in Section 4, the APU has a single port to
the CCI that acts as the master for all requests from all four A53 cores to the CCI. This, in
theory, prevents different QoS for the A53 cores, only allowing controlling their aggregated
traffic. This challenges the use of the ZUS+ in critical systems since all applications in the
APU are forced to have the same priority.

We circumvent this limitation by exploiting a characteristic that we have discovered
empirically in our default configuration: while the traffic from the APU to the DDR uses
ports P1 and P2 of the DDR, addresses in the same 8KB boundary are mapped to the same
DDR controller port (P1 or P2), with P1 and P2 8KB address segments interleaved. We
validated this feature by developing a benchmark that performs 128,000 read accesses and
128,000 write accesses to addresses mapped to different SKB regions. We used the monitoring
counters in APM 4.1 and 4.2, see Figure 1. As shown in Table 4, in the default setup accesses
evenly distribute on P1 and P2. If we force the benchmark to use 8KB chunks mapped to P1
(ForceP1) requests are sent only to P1. The same happens if we force the benchmark to use
address regions mapped to P2 (ForceP2).

In order to assess whether we can achieve different service for two A53 cores, we run
four copies of a read benchmark, each of which runs in a A53 core (APU1-4). The first
two are mapped to P1 and the other two to P2 as described above. In this experiment,
all 4 benchmarks miss systematically in all data cache levels, so interference occurs almost
exclusively in the access to DDR memory, i.e. benchmarks suffer almost no extra L2 miss
when run simultaneously. In a first experiment, we put traffic class for read/write requests
on P1 and P2 as HPR/HPW and VPR/VPW, respectively, with the latter having a high
timeout. In a second experiment, we put traffic class as LPR/LPW - VPR/VPW, respectively.
As shown in Figure 5, for the former experiment (left bars) APU1-APU2 get high relative
performance (execution time in the 4-core experiment vs. execution time when each pair
of benchmarks runs in isolation). This occurs since APU3-APU4 get priority only when
their timeout expires every 1024 cycles. In the latter experiment (right bars), APU1-APU2
first compete with APU3-APU4 with the same priority, and whenever the timeout of the
latter expires, APU3-APU4 get prioritized. Overall, the APUs mapped to the same port get
the same relative performance, whereas those in different ports can have different relative
performance. This confirms that our solution combining routing and QoS can offer different
predictability guarantees to two different A53 cores.

PL priorities (UNKNO1 and UNKNO3). In these experiments, we aim at confirming (i)
that FIFO queues in the PL, which use AXI3, effectively forward the static QoS value we
set in each PL port (UNKNO03), and (ii) that the QoS relay approach in the second level



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

switches, which connect the ports to the memory, effectively forwards the input’s AXQOS
provided by the master (UNKNO1). To that end, we configure from 1 to 3 of ATGs per
each PL port: HPO (mapped to memory port P3), HP1 and HP2 (mapped to P4), and HP3
(mapped to P5). Increasing the number of ATGs per port also increases the traffic to the
DDR until reaching saturation. The traffic from HPO and the display port (not shown in
Figure 1) go to the same switch; so does the traffic of HP1 and HP2; and the traffic of HP3
and the FPD DMA (not shown in Figure 1). In this experiment, we focus on QoSp2 and
QoSp3 that control HP1 and HP2, respectively; and QoSpl2, QoSpl3, and QoSpl4 that
control the traffic from the three switches to the OCM or the DDR. In ports P3, P4, and P5
we map static QoS priorities 0-3 to region0 and 4-15 to regionl. We also map region0 to
LPR/NPW traffic class and regionl to VPR/VPW and enable a request timeout for VPX
requests so that they get prioritized.

As it can be seen in Figure 6 (left plot), under the same QoS setup (0,0,0,0), as we increase
the ATGs per port from 1 to 3, the bandwidth usage increases, achieving the expected
bandwidth allocation for the latter scenario: even bandwidth distribution with 1/3 of the
bandwidth for HPO (memory port P3) and HP3 (memory port P5) and 1/6 for HP1 and
HP2 as they share the same port to memory (P4). Figure 6 (right plot) shows results for
the setup (3,7,7,3), i.e. lower priority for HPO and HP3. For 1 ATG per port, we see no
impact of the QoS mechanism as each ATG can send as many requests per unit of time as in
an isolation setup. With 2 or 3 ATGs per port, we see how effectively HP1 and HP2 get
more bandwidth than HPO and HP3. Both tasks contending for the central DDR get most
of the bandwidth (35% each), which matches their maximum bandwidth usage when run in
isolation. For 2 and 3 ATGs per port, we also see that the ports with lower priority, HP0/P3
and HP3/P5, enjoy an uneven bandwidth despite both receive the same type of traffic and
the configuration for both ports is the same. Our hypothesis is that HP1+2/P4 improves
its performance due to a change of region from NPW to VPW. In contrast, HP0/P3 and
HP3/P5 get unbalanced traffic due to the round-robin arbiter, which seems to arbitrate
HPO0/P3 before HP3/P5 and by the time it has to grant access to HP3/P5 a request in
HP1+2/P4 gains higher priority, hence delaying HP3/P5 requests systematically.

APU and RPU to OCM. In our deployment scenario (Section 6), the APU and the RPU
issue read/writes requests to the OCM to handle control variables. While this is unlikely
to cause performance issues, we empirically show the impact of sharing the OCM and the
potential benefits of using QoS hardware support to control it. In this experiment, the APU
and RPU perform transactions to the OCM. RPU1 and RPU2 are first prioritized in the
RPU switch (QoSp26 and QoSp27) and the request winning that arbitration competes with
the requests arriving from the APU — when active — in the OCM switch (QoSp23).

The left chart in Figure 7 shows that, for reads, the APU suffers a maximum slowdown of

1.03x (i.e. 3%) due to the contention in the OCM, whereas RPU1/RPU2 suffer no slowdown.

This occurs because the R5 [10] implements an in-order pipeline and the A53 [7] allows at
most 3 loads in flight. Hence, since tasks run almost as in isolation, QoS has no room for
improvement. For writes (right chart), when running the two RPUs alone without the APU
(referred to as RPUx2), we observe that RPUs do not generate enough pressure on the OCM,
as for loads. When adding the APU (RPUx2,APU), the APU suffers a 1.5x slowdown. This
occurs because A53 cores are out-of-order cores that, thanks to the use of store/write buffers,
support in-flight write requests, increasing the pressure on the target. However, this also
makes APU’s high-frequency write requests to be more sensitive to contention. Increasing
the static priority of any of the RPUs, setups (7,0,0) and (0,7,0), reduces the slowdown

3:15

ECRTS 2021



3:16

Leveraging QoS to Control Multicore Contention in the ZUS+

1.04 1.6

£1.03 ——RPU1 g, ||~RPUL

1§1.02 ——RPU2 § ——RPU2

3101 APU 212 APU V4
1 po—or—oro—o—o— 10 b e e

RPUx2, - | RPUx2, APU RPUx2,-| RPUx2, APU

Figure 7 Impact of static QoS when the RPU/APU target the OCM.

on the APU down to 1.3x. When both RPUs have low priority, (0,0,7) the APU reduces
its slowdown to zero (1.0x). This also causes a non-homogeneous impact on RPU1/RPU2,
suffering a slowdown of 1.2x and 1.05x, respectively. As before, it seems that RPU1 and
RPU2 are arbitrated using a round-robin arbiter that arbitrates RPU2 before RPU1 after
APU accesses are served, and since the access patterns repeat, this small difference magnifies
and leads to those different slowdowns for each RPU.

Overall, despite some contention can occur in some corner situations (RPUs and APUs
making writes to the OCM), the OCM is not a bottleneck in our deployment scenario as
it is used mainly for control/synchronization variables. Hence, the potential slowdown is
minimum and no QoS mechanism is needed to control contention.

Summary. We unveiled how to combine routing and QoS so that up to two A53 cores can
be provided different QoS service. We also showed that FIFO queues in the PL and the
second-level switches relay the static QoS received from the master starting the transaction.
Finally, we showed that QoS is not needed for the OCM in our deployment scenario.

6 Case Study: IFC selection

In this section we build on the analysis and characterization in previous sections to show the
benefits of the hardware QoS support of the ZUS+ to increase the chances of finding valid
platform setups. In avionics, this is referred to as selection of the intended final configuration
(IFC) in CAST-32A [18]. In our case, the IFC includes the setting of QoS mechanisms so
that time constraints of each process are met as required by CAST-32A.

Deployment Scenario. We address a deployment scenario in which the MPSoC is configured
to host a set of mixed-criticality applications, organized into several software partitions
(SWP). Such scenario is representative, for example, of multicore partitioned systems in
the avionics domain [3, 41, 18]. Depending on the specific resource and time partitioning
approach, SWPs may be allowed to execute in one or multiple computing elements, either
exclusively or in parallel with other partitions. In this respect, we focus on a relatively
flexible, performance-oriented deployment configuration where three SWPs are executed in
parallel on the ZUS+. Each software partition comprises several processes that execute in
the RPU, APU and PL. The OCM is used for exchanging control data while the DDR is used
as main memory for sharing compute data. SWP1 runs one process on a R5 core, another in
a A53 core, and uses the PL for acceleration. We refer to them as RPU1, APU1, and PL1,
respectively. The processes of SWP2 are mapped in the same manner and are referred to as
RP2, APU2, and PL2. Finally, SWP3 basically runs on the PL (PL3) though it has a small
control process that runs on an A53 core.



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

RPU1
ALA%02 17-22, 25, 28,29

13]]043U02 A i

HPMO |HPM1
FPD || FPD

Figure 8 Routing and port mapping in our deployment scenario.

Providing Guaranteed Service. The specific QoS configuration is meant to meet the
diverse predictability requirements of each SWPs. We focus on three hierarchically ordered
predictability goals. First, provide guaranteed service to SWP1, i.e. preventing that SWP1
receives no service due to the load generated by other SWPs. Second, provide guaranteed
service to SWP2 as long as SWP1 leaves enough resources to that end. And third, in all
scenarios SWP3 is provided best effort (average performance centric setup). We achieve the
required guarantees by deploying QoS setups with specific values fixed for some QoS features
while factoring in the outcome of the analysis (Table 3).

1. The traffic of different SWPs does not share the same memory port. As it can be seen
in Figure 8, APU1/RPU1 share memory port P1 and PL1 uses P3 (solid blue line);
APU2/RPU2 share P2 and PL2 uses P5 (green dotted line), whereas PL3 uses P4. Note
that, as PL3 is assumed to be a number crunching accelerator, it uses two ports in the
PL (HP1 and HP2) to support more traffic from/to memory.

2. Requests from SWP1 have the highest static QoS or the same as SWP2 (in the latter
case, round-robin is used for arbitration, ensuring that both SWPs get service).

3. We map SWP1 requests to video traffic class (VPR and VPW) and all the ports it uses,
P1 and P3, are also set as video traffic class. For SWP2, we use high priority traffic class
for reads/writes (HPR/NPW) and low-latency type for P2 and P5. SWP3 is mapped to
the low priority traffic class and the port it uses, namely P4, is set as best effort.

Under this set of constraints in the QoS setup, SWP1 requests have the highest priority
when their associated timeout expires. When they are not expired, SWP2 requests have the
highest priority. The values for other QoS parameters can be varied to adjust the service
provided to the needs of the particular processes. This includes the following, see Table 5:
The number of entries in the CAMs for each traffic class: (i) high-priority and low-priority
thresholds for the read CAM and the (ii) normal priority threshold for the write CAM. (iii)
The timeout for VPR/VPW traffic class on each port that can be increased when tasks have

low utilization, i.e. the ratio between their execution time and deadline is low and vice versa.

(iv) The traffic class of port/channels. (v) The static QoS of APU/RPU in each SWP. While
they both remain mapped to the same traffic class, we can assign either APUi or RPUi
higher static QoS to adjust their latency as needed. We explore 3 different QoS values to

provide three different prioritization levels. In particular, we use QoS values 3, 7, and 10.

Any other three different values can be used. And (vi) the outstanding transactions.

3:17

ECRTS 2021



3:18

Leveraging QoS to Control Multicore Contention in the ZUS+

Table 5 QoS values explored in this work.

Feature \ Description

read CAM High/Low priority threshold [0, 1, 2, ..., 32][0, 1, 2, ..., 32]

write CAM Normal priority threshold [0, 1, 2, ... , 32]

Timeout (1, 8, 16, 32... 1024]

Traffic Class 3 classes available for each channel/port

Channels/Ports SWP1 always at highest priorities and SWP3 at relative lowest ones
Static QoS 3 values so that SWP1 has the highest priority and SWP3 the lowest
oT Outstanding Transactions: 4-16

Kernels. We create several workloads from kernels used in many applications in critical
systems. These kernels, which run in the APU and the RPU, are: (i) Matrix Multiplication
(MM) is one of the most common kernels for many functionalities like object detection or path
planning in autonomous navigation #; (i) Matrix Transpose (MT) is another quite common
matrix operator and often used along with MM; (iii) Rectifier (ReLu) is an activation function
in neural networks defined as the positive value of its argument; (iv) the Image-to-Columns
(12C) function for transforming raw RGB images into matrices in the format needed by neural
networks; and (v) vector-multiply-add (VMA) that is a type of linear algebra operator. In
the PL we run several instances of the ATG performing reads or write bursted transactions
(ATGr and ATGw) to match burst-oriented accelerators transfers. PL1 instantiates 1 ATG,
PL2 2 ATGs, and PL3 4 ATGs to generate asymmetric traffic demands.

We focus on the setup presented above with three SWPs. We compose several workloads
from the kernels: WRKLD1 (MM, VMA,ATGr) (MT,I2C,ATGr) (ATGr) that runs MM, VAM as
APUI1 and RPU1 respectively; MT and 12C as APU2 and RPU2, respectively; and ATGr
used as PL1/2/3; and WRKLD2 (MM, I2C,ATGw) (ReLu,I2C,ATGw) (ATGw). When creating
a workload, we allocate memory of these kernels properly to ensure they use either P1 or P2,
see Section 5.2. Also, note that these workloads put high pressure on DDR memory, with 7
ATGs in the PL (1, 2, and 4 respectively instantiated for PL1, PL2, PL3), 2 A53 cores, and
2 Rb5 cores sending requests simultaneously to the DDR memory system.

6.1 Malleability

We start assessing the malleability of the QoS mechanisms in the ZUS+ for several workloads.
Malleability measures whether the used QoS setups effectively bias the execution of those
tasks with higher priority, though this causes the other tasks to suffer more contention
interference. Without this property, the use of QoS would be ineffective. For two different
workloads Figure 9 reports the relative performance of each process with respect to the
scenario in which its SWP runs in isolation. A relative performance of X% means a slowdown
of (100/X), e.g. 50% relative performance means 2x slowdown. In particular, Figure 9 shows
the impact of changing the timeout for video requests (VPR/VPW) when both SWP1 and
SWP2 are mapped to the video traffic class, while SWP3 is mapped to the low-priority
class. As we decrease the timeout of all video ports from 1024 by half until reaching 2, the
performance of SWP1/SWP2 (RPU1/APU1/PL1 and RPU2/APU2/PL2) processes increases
at a similar pace, while PL3 relative performance sharply decreases when the timeout goes
from 1024 to 256 and remains around 10% for lower VPR/VPW timeout values.

4 Matrix multiplication is the central part of machine learning libraries like YOLOv3 [56] and account for
67% of YOLO’s execution time [25].



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

3 0.60

f=

©

£ 0.50 —
8 040

> —6—APU1 =#=RPU1 PL1

g

= 030 APU2 —=RPU2 —e—PL2

]

o

—e—PL3

— o —

1024 512 256 128 64 32 16 8 4 2
Timeout

Figure 9 Impact of changing the duration of the timeout period

1.00

0.90 —e—APU1 —e—RPU1 PL1

0.80 APU2 =#=RPU2 =#=PL2

—e—PL3

g 0.70

=y

s

£ 0.60

£

S 050

g

2 040

£

& 030
0.20

0.10

0.00

6432168 4 2 1r432168 42 1r432168 42 1’6432168 42 1r432168 42 1’6432168 421

256 128 64 32 16 8

read CAM HP threshold (64-1); Timeout (256-8)

Figure 10 Malleability for different QoS setups varying read CAM entries for HPR and timeout.

Figure 10 captures a scenario in which the processes of the workload vary their relative
performance under the combined effect of decreasing the timeout and decreasing the number
of read CAM entries for HPR (where SWP3 is mapped to). For each group of 7 configurations,

we see increased performance for all computing units except PL3 when decreasing CAMs.

Timeouts for VPR/VPW, on which SWP1/SWP2 are mapped to, decrease across 7-setup
groups from left to right, bringing the combined effect in which SWP1/SWP2 relative
performances increase within each 7-setup group and across groups. In both figures, we see
how QoS in the ZUS+ achieves both (1) a good range of variation in the relative performance
of the processes; and (2) smooth variations in relative performance across different QoS setups.
These are fundamental traits for malleability and the main building block in our study.

6.2 QoS for Improved Platform Setup

In this section, we explore over 30,000 different QoS setups that (i) already factor in the
outcome of our analysis (see Table 3), and (ii) provide guaranteed service to SWP1, also
to SWP2 if there are enough resources left by SWP1 to achieve it, while SWP3 receives
best-effort service. The values for the rest of the QoS parameters are explored to adapt
to the timing constraints of the different tasks, as summarized in Table 5. The difference
between guarantees and real-time requirements is better explained with an example. For
some scenarios RPU1, which receives guaranteed service, might have a loose deadline so it
requires achieving reduced, yet guaranteed, relative performance (e.g. 20%); while in others
RPU1 has a tight deadline requiring high relative performance (e.g. 80%).

3:19

ECRTS 2021



3:20 Leveraging QoS to Control Multicore Contention in the ZUS+

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

RPU1

RPU1-APU1
RPU1-RPU2

RPU1-APU1-RPU2-APU2
RPU1

RPU1-APU1
RPU1-RPU2

RPU1-APU1-RPU2-APU2

RPU1

RPU1-APU1
RPU1-RPU2

~ RPU1-APU1-RPU2-APU2

RPU1
RPU1-APU1
RPU1-RPU2

RPU1-APU1-RPU2-APU2

SWP1
SWP1-SWP2
SWP1
SWP1-SWP2
RPU1-APU1
RPU1-RPU2
SWP1
SWP1-SWP2
SWP1
SWP1-SWP2
SWP1
SWP1-SWP2

RPU1-APU1-RPU2-APU2

VT-VT-VT

_.
o
4
g
e
<
T
o

VL-VL-VL

Figure 11 Ratio of accepted QoS setups with uniform thresholds for Workload 1.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

RPU1

RPU1-APU1
RPU1-RPU2

RPU1-APU1-RPU2-APU2
RPU1

RPU1-APU1
RPU1-RPU2

o RPU1-APU1-RPU2-APU2
RPU1

RPU1-APU1
RPU1-RPU2

< RPU1-APU1-RPU2-APU2
RPUT

RPU1

n
i
.
L
-

RPU1

RPU1-APU1

RPU1-RPU2
RPU1

RPU1-APU1
RPU1-RPU2

£ RPU1-APU1-RPU2-APU2

=

SWP1

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

T RPU1-RPU2
71 RPU1-APU1-RPU2-APU2
SWP1

SWP1-SWP2

SWP1-SWP2

RPU1-APU1

RPU1-RPU2

= RPUI-APU1-RPU2-APU2
RPU1-APU1

RPU1-RPU2

+ RPU1-APU1-RPU2-APU2
* RPU1-APU1-RPU2-APU2

<
3
4
<
-
I
<
~
<
In
=
+
4
-
<
~
I
=
~
-
=

Figure 12 Ratio of accepted QoS setups with heterogeneous thresholds for Workload 1.

We set different thresholds for the maximum slowdown admissible for the processes in a
SWP with respect to the performance obtained when the SWP executes in isolation. We
explored 5 minimum relative performance scenarios: VeryTight or VT (80%) Tight or T
(60%), Moderate or M (40%), Loose or L (20%), and VeryLoose or VL (1%). Note that
VL allows an almost unbounded performance degradation. These thresholds can be set
homogeneously for all processes in a SWP or heterogeneously, e.g. (VT, T, L) meaning that
all involved APUs, RPUs, and PLs can sustain different maximum performance degradation.

Workload 1. Figure 11 summarizes the ratio of accepted QoS setups for WRKLD1, when
uniform thresholds are applied across computing elements, in the set of experiments. An
accepted QoS setup meets the performance thresholds considered for the specific scenario.
The cutoff criteria are applied to different subsets of computing elements, corresponding
to the scenario where performance guarantees are extended from cores (e.g. APU1 only,
referred to as APU1) to SWP1 (that includes RPU1/APU1/PL1) and SWP1-SWP2 that
sets the VT/T/M/L/VL in all processes (RPU1/APU1/PL1 and RPU2/APU2/PL2).

Even under the tightest constraints, VeryTight (set of bars VI-VT-VT), around 30%
of the QoS setups meet the constraints for RPUL. If constraints are also to be met for
APU1 (RPU1-APU1), still 26% of the QoS setups are accepted. If RPU2 constraints are
considered (RPU1-RPU2), 1.3% of the QoS setups are successful, and 1.1% if APU1 and
APU2 constraints also need being met (RPU1-APU1-RPU2-APU2). When considering
the PLs, only 1 setup (0.003%) meets all SWP1 constraints, and none SWP1 and SWP2
constraints simultaneously. If we relax the constraints (from VT to T, M, L and VL), the fraction



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

100% { . 100% — - N — —
o 90% ‘ ‘ ‘ | 90% ‘
] g Il | ‘ o
S g% [ ‘ g s0%
E 70% £ 70% i |
€ eo% threshold & 0% |- NTE al A | T_SRLemrn_y_
£ 2
S so% RPU1 2 50%
$ oy | L oL g 40%
2 a0% ER s ik Rl (0 (| ——— m— 1 (A
T 30% - < 30%
20% 20% e e e e e
10% B g 10% [ s
ol pooil 0T Ty o
QoS setups QoS setups
Figure 13 RPU1 > 80%. Figure 14 RPU1 > 60% and APU1 > 20%.

of successful QoS setups increases in all cases except when SWP1 and SWP2 constraints need
to be met simultaneously, which is only doable with loose (L) or very loose (VL) constraints
for 12% and 95% of the QoS setups respectively. This occurs because ATGs in the PL are
highly bandwidth demanding and hence, under those QoS setups where one ATG gets higher
priority than another computing unit systematically, the latter can experience starvation.

Figure 12 analyzes heterogeneous scenarios where RPU constraints are VT/T, and APU
and PL constraints are relaxed. For instance, the second group of columuns, (VT-T-M) imposes
VT constraints on RPUs, T on APUs and M on PLs. If we compare each group w.r.t. their
homogeneous counterpart with identical RPU constraints (e.g. four leftmost groups of
bars VT - T/M - T/M/L in Figure 12 and VT-VT-VT in Figure 11), the fraction of successful
QoS setups increases. This shows that we can exploit QoS to accommodate the timing
requirements of the different processes. Similar conclusions are achieved comparing the four
right-most groups of bars in Figure 12 and T-T-T in Figure 11, with the number of successful
QoS setups increasing as the time constraints on some computing elements relax.

The presence of several accepted QoS setups in every configuration offers the possibility
of satisfying different timing requirements. This, in turn, enables the system developer to
apply and optimize any relevant metric to the set of valid QoS setups. As an illustrative
example, Figure 13 shows how it is possible to meet the stringent performance constraints of a
critical SWP while still maximizing the throughput of best effort functionalities. Specifically,
Figure 13 considers QoS setups selected to preserve 80% of the reference performance for
the critical software mapped to RPU1l in WRKLD1, and orders them according to the
performance guaranteed for the best effort functions deployed to SWP3 (i.e., PL3). We see
how the performance exhibited by PL3 under a conservative setting for RPU1 still covers a
wide range of values, while the relative performance of RPU1 is always above the threshold
(80%) represented with a black horizontal line. Even for a larger sets of constraints, a
non-negligible number of QoS setups is able to meet them, offering optimization options. For
instance, in Figure 14 we set the constraint that RPU1 relative performance must be above
60% and APU1 above 20%. In this scenario, PL3 shows a range of variation of around 40
percentage points. Overall, we see how smartly deploying hardware QoS support allows the
system designer to optimize different metrics, while fulfilling timing requirements.

Workload 2. Figures 15 and 16 show results for WRKLD2. We observe the same trends as
those for WRKLDI1. The most significant difference is that WRKLD1 includes ATGr (so
intensive PL read operations), whereas WRKLD2 includes ATGw (so intensive PL write
operations) for both SWP1 and SWP2. The first consequence is that RPU and APU kernels
are successful in a much larger fraction of setups, as kernels running in the RPUs and APUs

are more sensitive to interference in their read operations than in their write operations (e.g.

writes tolerate delays in store buffers), and DDR channels for read and write operations are
decoupled to a large extent. Hence, ATGr in WRKLD1 creates much higher interference
than ATGw in WRKLD2 on RPU and APU kernels, and therefore, the first four columns for

3:21

ECRTS 2021



3:22

Leveraging QoS to Control Multicore Contention in the ZUS+

RPU1

RPU1-APU1
RPU1-RPU2

RPU1-APU1-RPU2-APU2
RPU1

RPU1-APU1
RPU1-RPU2

Yy RPU1-APU1-RPU2-APU2
RPU1

RPU1-APUL
RPU1-RPU2

~ RPUI1-APU1-RPU2-APU2
SWP1

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2

SWP1
SWP1-SWP2
SWP1-SWP2

RPU1-APU1
RPU1-RPU2
RPU1-APU1
RPU1-RPU2

. RPU1-APU1-RPU2-APU2
RPU1-APU1-RPU2-APU2

_‘
I
I
g
=
=
-
o

VL-VL-VL

Figure 15 Ratio of accepted QoS setups with uniform thresholds for WRKLD?2.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

oA N NN AN NN NN NN SN AlH NN
juo o o B Y Y 27 jo o o B < Y o jo o o B o Y o o o B Buw Y 2 oD0Doa jmj pj o jo o B J Y < ¥ o B B J 2 o}
cooo=2=2aacacaoIIoaacazacaans aaa= aaa= aaoo=3aacaoc I3
R S e e e e e L S L e it
doa 4 oOda &4 dg9a o ooo oo o e o oo
22D o] 22D o] 22D o DODD 222 22D 22D o D2ODO o
aaca 3z caoa 3z aza | aaa aoo aoo aaa 3z coa 3

oo oo e =34 e el e oo
7 RZ RZ T T T T Ol 7

= = = - = = = o

] ] ] ] pu} =} =l >

o o o o o o o o

< < < < < < < <

= = = - = = = o

> ] ] ] ] =} =} 2

o o o o o o o o

o o« 3 o« < 3 o o

VT-T-T VT-T-M VT-T-L VT-M-L T-T-M T-M-L T-L-L T-L-VL

Figure 16 Ratio of accepted QoS setups with heterogeneous thresholds for WRKLD2.

each set of constraints has a much larger fraction of successful QoS setups when compared
with WRKLD1. On the other hand, when PLs are considered, the fraction of successful QoS
setups for SWP1 only, or both SWP1 and SWP2, is much larger for WRKLD2. For instance,
VT-M-L has 5.4% and 0% successful setups for SWP1 and SWP1+SWP2 respectively for
WRKLDI1, and 64.5% and 2.7% for WRKLD2.

7 Conclusions and Future Work

Hardware support for QoS is increasingly becoming a seamless technology. In a MPSoC
this will be realized by a distributed QoS mechanism with QoS-enabled IP blocks (likely)
coming from different providers, which calls for mechanisms to orchestrate them. In this
work, we analyzed the nominal behavior of individual QoS mechanisms in the Xilinx Zynq
UltraScale+ MPSoC as well as their combined behavior. We capitalize on their combined
behavior including incompatible mechanisms, compatible mechanisms under specific setups,
and limitations. We empirically show how to circumvent some of the limitations (e.g. using
routing to allow several A53 cores to have different QoS) and provide insights on unknown
features (e.g. QoS relay mechanism in second-level switches). Building on the gained
knowledge, we expose a wide set of QoS setups that help providing guarantees to certain
processes while allowing adapting to processes timing constraints. Indeed, we show that the
QoS mechanisms in the Zynq UltraScale+ are very powerful and can successfully adapt to
different constraints, offering great flexibility to the system designer to optimize the system
configuration along different metrics.



A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

From the analysis performed, it also follows that, in order to consolidate the use of QoS
in critical domains, technical reference manuals should provide more focused information.
In particular, IP integrators should better describe the options selected for each IP block
instantiated. Also, clear examples describing how to coordinate several QoS mechanisms to
achieve higher-level isolation and predictability goals will significantly reduce the effort of
the software/system integrator in using hardware support for QoS.

In terms of future research directions we aim at formalizing a more generic process for
orchestrating the QoS features in other MPSoCs. This includes (i) the identification of QoS
domains; (ii) mapping of QoS domains; and (iii) finding compatible QoS features. We envision
the definition of a set of QoS rules whose validation involves passing a set of (potentially
automated) tests, assessing the validity of any QoS setup and its benefits towards achieving
different isolation/predictability goals. This is in line with current practice in avionics and
automotive that builds on formulating test designs to produce evidence that serves to accept

or reject a hypothesis set over a specific functional or non-functional system behavior [48].

We also plan to develop more advanced search algorithms to make an efficient exploration of
the QoS configuration space. Such algorithms are needed since, in the general case, with
more complex workloads and different predictability constraints, the number of potential
QoS setups is too large to allow an exhaustive space exploration.

—— References

1 Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni. Dynamic Memory
Bandwidth Allocation for Real-Time GPU-Based SoC Platforms. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):3348-3360, November 2020.
doi:10.1109/tcad.2020.3012210.

2 Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J. Cazorla. On the
tailoring of CAST-32A certification guidance to real COTS multicore architectures. In 2017
12th IEEE International Symposium on Industrial Embedded Systems (SIES), pages 1-8. IEEE,
June 2017. doi:10.1109/sies.2017.7993376.

3 ARINC. Specification 653: Avionics Application Standard Software Interface. Aeronautical
Radio, Inc, 1996.

Arm. ARM CoreLink NIC-400 Network Interconnect Technical Reference Manual.

5 Arm. ARM CoreLink Qo0S-400 Network Interconnect Advanced Quality of Service Supplement
to ARM CoreLink NIC-400 Network Interconnect Technical Reference Manual.

6 Arm. ARM CoreLink QVN-400 Network Interconnect Advanced Quality of Service using
Virtual Networks Supplement to ARM CoreLink NIC-400 Network Interconnect Technical
Reference Manual.

7 Arm. ARM Cortex-A58 MPCore Processor Technical Reference Manual. Version rOp4. URL:
https://developer.arm.com/documentation/ddi0500/j/.

8 Arm. Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning
and Monitoring (MPAM), for Armv8-A.

9 Arm. ARM® CoreLink™ CCI-400 Cache Coherent Interconnect. Revision: rip3. Technical
Reference Manual.

10  Arm. Cortez-R5 and Cortex-R5F Technical Reference Manual. Version r1pl. URL: https:
//developer.arm.com/documentation/ddi0460/c/.

11 Arm. AMBA AXI and ACE Protocol Specification AXI3, AX1j, and AXI4-Lite ACE and
ACE-Lite. ARM IHI 0022E (ID033013), 2013.

12 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core

platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages 14-24.

IEEE, July 2016. doi:10.1109/ecrts.2016.14.

3:23

ECRTS 2021


https://doi.org/10.1109/tcad.2020.3012210
https://doi.org/10.1109/sies.2017.7993376
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0460/c/
https://developer.arm.com/documentation/ddi0460/c/
https://doi.org/10.1109/ecrts.2016.14

3:24

Leveraging QoS to Control Multicore Contention in the ZUS+

13

14

15

16

17

18
19

20

21

22

23

24

25

26

27

Matthias Becker, Borislav Nikolic, Dakshina Dasari, Benny Akesson, Vincent Nelis, Moris
Behnam, and Thomas Nolte. Partitioning and analysis of the network-on-chip on a COTS
many-core platform. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 101-112. IEEE, April 2017. doi:10.1109/rtas.2017.32.

Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of
automotive applications using the LET paradigm. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 240-250. IEEE, April 2018. doi:
10.1109/rtas.2018.00032.

Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Alper Buyuktosunoglu, Chen-Yong
Cher, and Mateo Valero. Software-controlled priority characterization of POWERS5 processor.
In 2008 International Symposium on Computer Architecture, pages 415-426. IEEE, June 2008.
doi:10.1109/isca.2008.8.

Jordi Cardona, Carles Herndndez, Jaume Abella, and Francisco J. Cazorla. Maximum-
contention control unit (MCCU): resource access count and contention time enforcement. In
Design, Automation & Test in FEurope Conference & Ezhibition, DATE, pages 710-715. IEEE,
2019. doi:10.23919/DATE.2019.8715155.

Jordi Cardona, Carles Hernandez, Enrico Mezzetti, Jaume Abella, and Francisco J. Cazorla.
NoCo: ILP-based worst-case contention estimation for mesh real-time manycores. In 2018
IEEE Real-Time Systems Symposium (RTSS), pages 265-276. IEEE, December 2018. doi:
10.1109/rtss.2018.00043.

Certification Authorities Software Team. CAST-32A Multi-core Processors, 2016.

Dakshina Dasari and Vincent Nelis. An analysis of the impact of bus contention on the WCET
in multicores. In 2012 IEEFE 1/th International Conference on High Performance Computing
and Communication € 2012 IEEE 9th International Conference on Embedded Software and
Systems, pages 1450-1457. IEEE, June 2012. doi:10.1109/hpcc.2012.212.

Dakshina Dasari, Vincent Nelis, and Benny Akesson. A framework for memory contention
analysis in multi-core platforms. Real-Time Systems, 52(3):272-322, May 2016. doi:10.1007/
s11241-015-9229-9.

Dakshina Dasari, Borislav Nikolic, Vincent Nelis, and Stefan M. Petters. NoC contention
analysis using a branch-and-prune algorithm. ACM Transactions on Embedded Computing
Systems, 13(3s):113:1-113:26, March 2014. doi:10.1145/2567937.

Enrique Diaz, Enrico Mezzetti, Leonidas Kosmidis, Jaume Abella, and Francisco J. Cazorla.
Modelling multicore contention on the AURIX™ TC27x. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, June 2018. doi:10.1109/dac.2018.8465780.

Falk Rehm and Jorg Seitter. Software Mechanisms for Controlling QoS. In 2021 Design,
Automation & Test in Europe Conference € Exhibition, DATE 2021, Virtual Conference,
February 01-05, 2021, pages 1485-1488, 2016.

Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: bandwidth regulation unit for real-time
multicore processors. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 364-375. IEEE, April 2020. doi:10.1109/RTAS48715.2020.00011.

Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro, Philippe Navaux,
and Paolo Rech. Evaluation and mitigation of soft-errors in neural network-based object
detection in three gpu architectures. In 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 169-176. IEEE, June 2017.
doi:10.1109/dsn-w.2017.47.

Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. A sensitivity analysis of two worst-
case delay computation methods for SpaceWire networks. In 2012 24th Euromicro Conference
on Real-Time Systems, pages 47-56. IEEE, July 2012. doi:10.1109/ecrts.2012.35.
Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also supports T2081. Doc.
No.: T2080RM. Rev. 3, 11/2016.


https://doi.org/10.1109/rtas.2017.32
https://doi.org/10.1109/rtas.2018.00032
https://doi.org/10.1109/rtas.2018.00032
https://doi.org/10.1109/isca.2008.8
https://doi.org/10.23919/DATE.2019.8715155
https://doi.org/10.1109/rtss.2018.00043
https://doi.org/10.1109/rtss.2018.00043
https://doi.org/10.1109/hpcc.2012.212
https://doi.org/10.1007/s11241-015-9229-9
https://doi.org/10.1007/s11241-015-9229-9
https://doi.org/10.1145/2567937
https://doi.org/10.1109/dac.2018.8465780
https://doi.org/10.1109/RTAS48715.2020.00011
https://doi.org/10.1109/dsn-w.2017.47
https://doi.org/10.1109/ecrts.2012.35

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Anténio Augusto Fréhlich, and Rodolfo
Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM
Computing Surveys, 48(2):32:1-32:36, 2015. doi:10.1145/2830555.

Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS het-
erogeneous MPSoCs for mixed criticality systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(11):2323-2336, November 2018. doi:
10.1109/tcad.2018.2857379.

Mohamed Hassan and Rodolfo Pellizzoni. Analysis of memory-contention in heterogeneous
cots mpsocs. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume
165 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1-23:24. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2020. doi:10.4230/LIPIcs.ECRTS.2020.23.
Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt Merten, and Martin Dixon.
SMT QoS: Hardware Prototyping of Thread-level Performance Differentiation Mechanisms.
In HotPar 12, Berkeley, CA, June 2012. USENIX Association.

International Organization for Standardization. ISO/DIS 26262. Road Vehicles — Functional
Safety, 2009.

Javier Jalle, Jaume Abella, Eduardo Quiniones, Luca Fossati, Marco Zulianello, and Francisco J.
Cazorla. AHRB: A high-performance time-composable AMBA AHB bus. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 225-236.
IEEE, 2014. doi:10.1109/rtas.2014.6926005.

Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag, 2001. doi:10.1007/3-540-45318-0.

Sunggu Lee. Real-time wormhole channels. Journal Of Parallel And Distributed Computing,
63(3):299-311, March 2003. doi:10.1016/S0743-7315(02)00055-2.

Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05-1—
05:48, 2016. doi:10.4230/LITES-v003-1001-a005.

Kristiyan Manev, Anuj Vaishnav, and Dirk Koch. Unexpected Diversity: Quantitative
Memory Analysis for Zynq UltraScale+ Systems. In 2019 International Conference on Field-
Programmable Technology (ICFPT), pages 179-187. IEEE, 2019. doi:10.1109/ICFPT47387.
2019.00029.

Sparsh Mittal. A survey of techniques for cache partitioning in multicore processors. ACM
Computing Surveys, 50(2):27:1-27:39, 2017. doi:10.1145/3062394.

Kyle J. Nesbit, Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Mateo Valero, and
James E. Smith. Multicore resource management. IEEE Micro, 28(3):6-16, 2008. doi:
10.1109/mm.2008.43.

Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity
enforcement. In 2014 26th Euromicro Conference on Real-Time Systems, pages 109118, 2014.
doi:10.1109/ecrts.2014.20.

Diniz Nuno and Jose Rufino. ARINC 653 in Space. In DASIA - Data Systems in Aerospace,
ESA Special Publication, 2005.

nVIDIA. Technical Reference Manual. Xavier Series SoC. DP-09253-002. Version 1.1, 2018.
Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and
Giorgio C. Buttazzo. A Bandwidth Reservation Mechanism for AXI-Based Hardware
Accelerators on FPGAs. In 81st Euromicro Conference on Real-Time Systems (ECRTS
2019), volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1-24:24, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECRTS.2019.24.

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
269-279. IEEE, April 2011. doi:10.1109/rtas.2011.33.

3:25

ECRTS 2021


https://doi.org/10.1145/2830555
https://doi.org/10.1109/tcad.2018.2857379
https://doi.org/10.1109/tcad.2018.2857379
https://doi.org/10.4230/LIPIcs.ECRTS.2020.23
https://doi.org/10.1109/rtas.2014.6926005
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1016/S0743-7315(02)00055-2
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1109/ICFPT47387.2019.00029
https://doi.org/10.1109/ICFPT47387.2019.00029
https://doi.org/10.1145/3062394
https://doi.org/10.1109/mm.2008.43
https://doi.org/10.1109/mm.2008.43
https://doi.org/10.1109/ecrts.2014.20
https://doi.org/10.4230/LIPIcs.ECRTS.2019.24
https://doi.org/10.1109/rtas.2011.33

3:26

Leveraging QoS to Control Multicore Contention in the ZUS+

45

46

47

48

49

50

51

52

53

54

55
56

57

58

59
60

Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha. Coscheduling of CPU and
I/0 transactions in COTS-based embedded systems. In 2008 Real-Time Systems Symposium,
pages 221-231. IEEE, November 2008. doi:10.1109/rtss.2008.42.

Jon Pérez-Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Cazorla, Kim Griittner,
Irune Agirre, Hamidreza Ahmadian, and Imanol Allende. Multi-core devices for safety-critical
systems: A survey. ACM Computing Surveys, 53(4):79:1-79:38, 2020. doi:10.1145/3398665.
Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay bounds for best-
effort communication in wormhole networks on chip. In 2009 3rd ACM/IEEE International
Symposium on Networks-on-Chip, pages 44-53. IEEE Computer Society, 2009. doi:10.1109/
nocs.2009.5071444.

David Radack, Harold Jr, and Paul Parkinson. Civil certification of multi-core processing
systems in commercial avionics. In 2019 27th Safety-critical Systems Symposium, February
2019.

Dara Rahmati, Srinivasan Murali, Luca Benini, Federico Angiolini, Giovanni De Micheli, and
Hamid Sarbazi-Azad. Computing accurate performance bounds for best effort networks-on-chip.
IEEE Transactions on Computers, 62(3):452-467, March 2013. doi:10.1109/tc.2011.240.
Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo.
Is your bus arbiter really fair? restoring fairness in AXI interconnects for FPGA SoCs. ACM
Trans. on Embedded Computer Systems, 18(5s):51:1-51:22, 2019. doi:10.1145/3358183.
Shahin Roozkhosh and Renato Mancuso. The potential of programmable logic in the middle:
Cache bleaching. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 296-309. IEEE, April 2020. doi:10.1109/rtas48715.2020.00006.
Simon Schliecker, Mircea Negrean, and Rolf Ernst. Bounding the shared resource load for the
performance analysis of multiprocessor systems. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 759-764, 2010.

Nathanaél Sensfelder, Julien Brunel, and Claire Pagetti. On How to Identify Cache Coherence:
Case of the NXP QorlQ T4240. In 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1-13:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
doi:10.4230/LIPIcs.ECRTS.2020.13.

Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-WarP: A system-wide
framework for memory bandwidth profiling and management. In 2020 IEEE Real-Time
Systems Symposium (RTSS), pages 345-357. IEEE, December 2020. doi:10.1109/rtss49844.
2020.00039.

Synopsis. DesignWare Enhanced Universal DDR Memory Controller.

Hamid Tabani, Roger Pujol, Jaume Abella, and Francisco J. Cazorla. A cross-layer review of
deep learning frameworks to ease their optimization and reuse. In 2020 IEEFE 23rd International
Symposium on Real-Time Distributed Computing (ISORC), pages 144-145. IEEE, May 2020.
doi:10.1109/is0rc49007.2020.00030.

Sebastian Tobuschat and Rolf Ernst. Real-time communication analysis for networks-on-chip
with backpressure. In Design, Automation & Test in Europe Conference € Exhibition (DATE),
2017, pages 590-595. IEEE, March 2017. doi:10.23919/date.2017.7927055.

XILINX. Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices in Revolutionizing How
Arrays are Produced and Fielded: Powered by Xilinx, 2018. URL: https://www.xilinx.com/
video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.
html.

XILINX. Zyngq UltraScale+ Device. Technical Reference Manual. UG1085 (v2.1), 2019.
Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In 2018 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 55-64. IEEE, April 2013. doi:10.1109/rtas.2013.6531079.


https://doi.org/10.1109/rtss.2008.42
https://doi.org/10.1145/3398665
https://doi.org/10.1109/nocs.2009.5071444
https://doi.org/10.1109/nocs.2009.5071444
https://doi.org/10.1109/tc.2011.240
https://doi.org/10.1145/3358183
https://doi.org/10.1109/rtas48715.2020.00006
https://doi.org/10.4230/LIPIcs.ECRTS.2020.13
https://doi.org/10.1109/rtss49844.2020.00039
https://doi.org/10.1109/rtss49844.2020.00039
https://doi.org/10.1109/isorc49007.2020.00030
https://doi.org/10.23919/date.2017.7927055
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://doi.org/10.1109/rtas.2013.6531079

Governing with Insights: Towards Profile-Driven
Cache Management of Black-Box Applications

Golsana Ghaemi =
Boston University, MA, USA

Dharmesh Tarapore &
Boston University, MA, USA

Renato Mancuso &
Boston University, MA, USA

—— Abstract

There exists a divide between the ever-increasing demand for high-performance embedded systems

and the availability of practical methodologies to understand the interplay of complex data-intensive
applications with hardware memory resources. On the one hand, traditional static analysis approaches
are seldomly applicable to latest-generation multi-core platforms due to a lack of accurate micro-
architectural models. On the other hand, measurement-based methods only provide coarse-grained
information about the end-to-end execution of a given real-time application.

In this paper, we describe a novel methodology, namely Black-Box Profiling (BBProf), to gather
fine-grained insights on the usage of cache resources in applications of realistic complexity. The
goal of our technique is to extract the relative importance of individual memory pages towards
the overall temporal behavior of a target application. Importantly, BBProf does not require the
semantics of the target application to be known — i.e., applications are treated as black-boxes — and
it does not rely on any platform-specific hardware support. We provide an open-source full-system
implementation and showcase how BBProf can be used to perform profile-driven cache management.

2012 ACM Subject Classification Computer systems organization — Real-time system architecture

Keywords and phrases Cache Profiling, WSS Estimation, Cache Interference, Real-time, Multicore,
Contention-induced Instruction Stall, C2IS, Coloring, Cache Management, Cacheability

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.4

Supplementary Material

Software (Kernel Sources): https://github.com/rntmancuso/linux-x1lnx-prof
archived at swh:1:dir:995dd657183233e05£30£4d5755cca46e01dd7ch

Software (BU Black-box Profiler): https://github.com/rntmancuso/black-box-profiler [11]
archived at swh:1:dir:2cc5a9264901e43157967138ac50a2700feb963c

Funding Renato Mancuso: The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do

not necessarily reflect the views of the NSF.

1 Introduction

The evolution of multi-core architectures and the ever-widening gap between the performance
of processor and memory has rendered the adoption of system-level management strategies for
shared memory resources a must. Indeed, inter-core interference is a fundamental challenge
for the practical adoption of multi-core systems in safety-critical real-time applications, as
extensively surveyed in [25]. In a nutshell, the problem of inter-core interference arises due
to priority- and criticality-agnostic arbitration for the allocation of and access to shared
memory components of application workload deployed in parallel on multiple cores. Important
achievements have been accomplished by the research community in the design of practical
memory management techniques to mitigate inter-core interference.

© Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso;

licensed under Creative Commons License CC-BY 4.0
33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 4; pp. 4:1-4:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:golsana@bu.edu
mailto:dharmesh@bu.edu
mailto:rmancuso@bu.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.4
https://github.com/rntmancuso/linux-xlnx-prof
https://archive.softwareheritage.org/swh:1:dir:995dd657183233e05f30f4d5755cca46e01dd7c5;origin=https://github.com/rntmancuso/linux-xlnx-prof;visit=swh:1:snp:8e9224b13d520135b01cee45ce51125142d22de9;anchor=swh:1:rev:d5fd0a5b92fee21e905a9b557b6eefb499c35256
https://github.com/rntmancuso/black-box-profiler
https://archive.softwareheritage.org/swh:1:dir:2cc5a9264901e43157967138ac50a2700feb963c;origin=https://github.com/rntmancuso/black-box-profiler;visit=swh:1:snp:0edff23363f0d8c7f5bbb5258dd3870f8a61087f;anchor=swh:1:rev:95722975fc945cbe6d971140caf680bcd13156cd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Profile-Driven Cache Management of Black-Box Appl.

Unfortunately, however, the most widely used techniques rely on the enforcement of strict
resource partitioning — e.g., shared cache space coloring [22], sustainable memory bandwidth
partitioning [39, 37]. Often times, the rigidity of strict resource partitioning results in
what is known as the one-out-of-m multi-core problem [19]. That is, the performance loss
resulting from enacting strict partitioning outweighs its benefits. We argue that at the
core of the problem is a fundamental lack of methodologies to analyze exactly how realistic,
data-intensive applications interact with and benefit from the complex hierarchy of memory
resources in modern high-performance embedded systems.

The goal of this paper is to provide one such methodology that goes under the name of
Black-Boz Profiling, or BBProf for short. Specifically, we propose a profiling strategy that
can be used to accurately understand how an application’s temporal behavior is affected by
the presence/absence in the cache of individual memory pages. This sets our work apart
from other profiling strategies that compute only end-to-end metrics such as the total cache
hit/miss rate, number of bus accesses, resulting runtime when adopting a given resource
partitioning scheme, and so on. The BBProf methodology is designed to operate without
requiring a micro-architectural model, which is often unavailable (or just too complex) for
high-performance systems. The proposed BBProf adopts a measurement-based approach
that does not rely on any platform-specific hardware support, and can be ported to virtually
any platform.

With this paper, we make the following contributions. First, we propose a novel profiling
methodology that requires no special hardware support to produce insights about the relative
importance of each memory page towards the overall timing of a target application. Second,
we describe how said methodology can be applied to profile realistic, pre-compiled black-box
applications without requiring any source-level or compile-time modifications. Third, we
propose a proof-of-concept, open-source, full-system implementation and show its capability
of profiling real-world vision applications. Fourth, we demonstrate that profile-driven shared
cache management is enabled by our BBProf methodology and highlight its benefit in
two scenarios: (1) to enact flexible interference mitigation with absolute guarantees that
are comparable to strict partitioning; and (2) as an efficient solution to the previously
undocumented problem of Contention-Induced Instruction Stall (C2IS).

2 Related Work

Research interest for workload-aware cache management has been spurred a large body of
works targeting real-time systems and general-purpose systems alike. A number of works
have proposed techniques to estimate the working-set size (WSS) of applications for the
purpose of performing informed cache management. One such work is [6], where the WSS of
a periodic application is estimated by computing the average per-activation number of cache
misses. This information, albeit coarse, is proven useful to avoid concurrently scheduling
applications with incompatible WSS. In a spirit quite similar to our BBProf, the work in [40]
proposes a technique to detect hot memory pages and to dynamically perform re-coloring to
improve average performance. Hot pages detection is performed by periodically scanning
the accessed-bit in all the page-table entries that belong to the target application. This
methodology, however, only provides an indirect estimation of the importance of each page
that depends on the frequency of sampling. It also relies on the presence of the accessed-bit,
which is an Intel-specific hardware feature. The work in [32] uses a similar approach that
relies on PowerPC-specific sampled-address data registers (SDAR).



G. Ghaemi, D. Tarapore, and R. Mancuso

Several works [18, 16, 4] propose scheduling models where the balance between loss
of performance due to smaller cache partitions and performance improvements thanks to
reduced cache interference is studied. Generally, these model assume that certain intrinsic
properties — e.g. their characteristic miss rates — of the applications under analysis are known.
In this case, the BBProf methodology proposed hereby could be used to determine key
behavioral parameters required to instantiate such and similar analytical frameworks. More
recently, a seminal piece of work has proposed an approach to jointly profile an application’s
sensitivity to cache size and resulting increase/decrease in the requirement for main memory
bandwidth [37]. In many ways, the information collected through the sensitivity study
represent an experimentally driven profile. Yet, the workload characterization is quite coarse
grained and cannot be directly used, for instance, to determine which specific pages of an
application need to be shielded from interference.

BBProf shares many similarities, at least in terms of the end goal, with a number of
well-established performance analysis toolkits. The survey in [3] provides a good overview of
popular toolkits such as Oprofile [7], Dprof [29], Zoom [31], DynamoRIO [5], Valgrind [27],
and Pin [23]. The latter three employ dynamic binary instrumentation (DBI), i.e. the ability
to translate and instrument on the fly a target binary. DBI-based tools require extensive
platform-specific porting. Translation layers for multiple platforms are already provided in
Valgrind and DynamoRIO. DBI heavily impacts the timing of an application, so profiling of
memory pages has to be performed by instrumenting all the memory references and then
conducting a frequency analysis. To the best of our knowledge, the only work that uses one
of these tools — the Lackey sub-tool in Valgrind — in this manner is [24]. In [24], a list of
hot memory pages to be locked in cache is constructed via meomory tracing, but due to
extreme performance degradation incurred, the evaluation is limited to small benchmarks.
Lastly, DBI frameworks meant for general-purpose systems seldomly work out of the box
on embedded systems due to the complex tree of library dependencies that they rely on, as
also reported in [21]. Oprofile, Dprof, and Zoom rely on hardware performance counters to
collect information. Oprofile records a variety of statistics such as the mix of hit/miss for
L1/L2 caches. It relies on runtime sampling and provides a configurable trade-off between
accuracy and overhead. Zoom and Dprof operate on similar principles but the development

of Zoom has been discontinued in 2015, while Dprof relies on AMD-specific debug registers.

Similarly, the profiling approach proposed in the recently published CacheFlow toolkit [34]
relies on the hardware-specific ability, available in a subset of Aarch64 CPUs, to snapshot
the full content of CPU caches.

Since BBProf follows a measurement-based approach, it shares some similarities with the
vast literature on measurement-based WCET estimation tools. For instance, the work in [30]
aims at producing more accurate WCET estimates by designing synthetic benchmarks that
stress different hardware resources in the target system. The purpose of BBProf is not to
construct WCET estimates, but rather to extract the importance of each page for the timing
of an application. This information can then be used to perform more fine-grained cache
management. WCET analysis should be performed after a given management strategy has
been applied, and it thus represents an orthogonal goal.

In light of the discussion above, what sets the proposed BBProf methodology apart is its
unique capability of extracting fine-grained statistics on the contribution of each memory
page to the overall runtime of an application under analysis. It does so without leveraging
any hardware-specific support, by requiring no source- or compiler-level manipulation, and
by operating directly on the black-box binary of the target application. Moreover, we
demonstrate that the profile acquired through our BBProf can be used to enact advanced
cache management techniques beyond strict task-level or core-level cache partitioning.

4:3

ECRTS 2021



4:4

Profile-Driven Cache Management of Black-Box Appl.

3 Background

In this section, we summarize the inner workings of the system components utilized by our
tool for unfamiliar readers. We first present a brief overview of multi-level set-associative
caches. Next, we review the notion of cache coloring, before concluding with a conspectus on
memory representation and management in modern computing architectures.

Multi-Level Set-Associative Caches. Modern computing architectures implement several
levels of caching. The L1 cache resides closest to the CPU and is private to a specific core. A
cache miss in L1 triggers a lookup in the level below (L2, in this instance). Some architectures
restrict the L2 cache to specific cores, making them private similar to the L1. A miss in the
L2 cache may trigger a lookup in the level below (L3 and subsequently, L4) if it exists or
failing that, a memory lookup. We constrain our discussion here to a normative ARM-based
cache, with private L1 caches and a globally shared, last-level L2 cache.

At all levels, caches adhere to a set-associative modality where a set-associative cache
with associativity W consists of W identically-structured ways. Blocks of consecutive bytes
are stored in lines referred to as cache blocks. The constant Lg denotes the number of bytes
in a cache line, with most line sizes being 32 or 64 bytes. Memory addresses in the cache are
divided into three groups of bits: the offset, index, and tag bits that affect the specifics of
a cache lookup. Shared cache levels are physically indexed and physically tagged (PIPT),
meaning all addresses used for cache lookups must be physical addresses.

Memory Abstractions in Operating Systems. Most modern operating systems employ a
combination of hardware and software features to effectively encapsulate physical addresses
into virtual addresses. Virtual addressing allows each process an exclusive view of the system’s
memory, alleviating problems such as memory fragmentation or the limited availability of
physical memory. The OS maps virtual and physical addresses using page tables. When a
process references a virtual address, the Memory Management Unit (MMU) performs a page
table walk to locate the entry (PTE) — if any — that points to the corresponding physical
memory page. If the walk is successful, the accessed virtual address is resolved into a physical
address and the result of the translation is stored in the Translation Lookaside Buffer (TLB).
If the address is not found, a page fault is triggered by the MMU and handled by the OS. If
the access is legitimate, a new physical memory page is allocated and mapped to the process
(demand paging); if it falls outside any valid range of virtual addresses, a segmentation fault
(SIGSEGYV) signal is delivered to the offending application.

Linux defines and manages the layout of legitimate contiguous regions of virtual memory
by representing them as virtual memory areas or VMAs. VMASs consist of a range of start
and end addresses, allowing for fine-grained control of virtual memory regions on a per-VMA
basis. They have been a part of the Linux kernel since version 2.6 [8].

Cache Coloring. A major source of interference in multicore systems is LLC contention.
One of the solutions to this problem is cache coloring, a purely software-based partitioning
technique. With cache coloring, memory pages are assigned “colors” based on the cache sets
they map to, which is determined by the value of the index bits. It is possible to allocate
virtually-contiguous memory pages to physically discontiguous pages that have the same color.
By doing this on a per-application or per-core basis, one can achieve strict cache partitioning,
which is a well-known mitigation strategy for cache interference [12]. In multicore embedded
SoCs that support two-stage address translations, the OS entirely manages the translation of



G. Ghaemi, D. Tarapore, and R. Mancuso

the first layer address (user virtual address) into the intermediate physical address (IPA).
The second stage of translation, however, is controlled by the hypervisor [28, 9] which maps
IPAs to physical addresses. Hypervisor-level coloring is advantageous to transparently color
entire guest OS’s, as demonstrated in [26, 20, 13].

4 Design

In this section, we describe the main principles that comprise the design of the proposed
BBProf. We describe the operational approach and functional components that allow it to
carry out a fine-grained experiment-driven memory analysis of generic applications. While
we advocate for the benefits of the proposed BBProf as a methodology for memory analysis,
we have also carried out a proof-of-concept open-source implementation [11]. As we show in
Section 7, the information extracted by our BBProf toolkit opens new avenues to perform
fine-tuned management of shared memory resources.

In a nutshell, the main goal of the proposed BBProf toolkit can be formulated as follows.
To consider a target application’s memory footprint decomposed into its smallest manageable
entities — individual memory pages. And with that, to produce a ranking that captures and
quantifies how crucial is each page for the temporal behavior of the application. In other
words, BBProf allows extracting the relative importance of memory pages towards the overall
temporal behavior of a target application. Importantly, our BBProf should be able to handle
applications of realistic complexity, while requiring minimum knowledge and understanding
of the application itself — i.e., by largely treating the application as a black-box.

4.1 Core Principles

The core principles that have driven the design of the BBProf methodology can be summarized
as follows.

Model-free Operation. Modern high-performance embedded systems are soaring in com-
plexity. Additionally, manufacturers are often wary of providing exhaustive platform im-
plementation details, as many of them constitute corporate intellectual property. Even if
a formal micro-architectural model can be constructed, the high degree of complexity — in
both software and hardware layers — can result in a state-space explosion even with simple
workloads. It follows that, unfortunately, traditional static analysis methods might not be
easily applicable to the considered class of embedded systems. In light of this, we aim to
design a methodology that can be used in an arbitrarily complex system without the need
for a micro-architectural model.

Platform Independence. A key design-time constraint we impose is for our BBProf meth-
odology to be feasible regardless of the specific target platform. In other words, our BBProf
should not rely on hardware support that exists only in a fraction of existing and future
platforms. Instead, it should leverage widely available hardware features that are exposed by
embedded and general-purpose platforms alike, and that are unlikely to be phased out in
future generations.

Usable for Realistic, Unknown Workload. There exists a fundamental lack of practically
viable toolkits that are industry-ready and capable of carrying out the memory analysis
of complex applications in complex embedded platforms. The proposed BBProf aims that
bridging such a gap with a solution that can be immediately adopted to better characterize

4:5

ECRTS 2021



4:6

Profile-Driven Cache Management of Black-Box Appl.

mode: mode;
= =
l [profilel l [ranking]
4 profile (binary) ranking (text)
@L [VMA #1: 5 pages] Pages Time
#| of fset| time min,max,avg 0->0 100000
ELF 2| i3 150.250.200 931 | swono
: 1 : e 032 70000
[~ ] binary i 3 mo ioo,mo.aso 053 65000
| 1 [VMA #2: 4 pages] 0->4 62500
f(x) : # of fset| time min,max,avg g z g g;é;’g
N 1 +3 50 ,100,75
C function 12| +1 90 ,120,110
name : 3[ +2 100,150,120
; 4l +0 120,190,140
Kprofiler
__________ s -prof

(a) Profiling mode workflow. (b) Ranking mode workflow.

Figure 1 High-level workflow of BBProf in two of the main modes of operation.

the behavior of realistic applications. This implies that not only a minimal understanding of
the target application should be required to perform profiling; but also that BBProf should
be capable of handling widely used system-level features such as dynamically linked libraries
and dynamic virtual memory allocation.

Linear-time Profiling. To be practically useful, we impose our BBProf methodology to be
able to operate in linear time with respect to the memory footprint of the application under
analysis. Because our strategy is centered around a runtime measurement-based approach,
we deem as viable an analysis strategy with a linear time complexity that is impacted by
(1) the runtime of the core logic of the application under analysis; and (2) the size of the
memory footprint of the target application.

4.2 High-level BBProf Workflow

The proposed BBProf methodology pivots around the idea that it is possible to manipulate
the memory allocation policy on a per-memory page basis. Thus, for a target application, it
is possible to understand the importance of individual pages towards application timing by
changing the allocation policy one page at a time. Albeit this idea is generic, the specific
set of memory allocation policies depends on the type of analysis to be conducted. For the
remainder of this paper we direct our focus to shared CPU cache analysis, which is a primary
target of this work. Therefore, cacheability is the memory policy of choice to isolate the
impact of a single memory page on the timing of an application.

Figure 1 provides a high-level overview of the logical workflow of BBProf in its two
main modes of operation. In the profile mode described in greater detail in Section 4.3 and
depicted in Figure la, the required inputs to BBProf are (1) the path to the binary of the
ELF executable to be profiled; and (2) the name of the C function whose timing needs to be
profiled. This function corresponds to the observation segment defined below. The full list of
optional operational parameters are described in [11]. The output produced in this mode is a
binary file! encoding the relative importance recorded for each page of each considered VMA.
BBProf allows performing multiple profiling runs and will aggregate the result of all the
runs into the same file keeping track of max, min, and average statistics on a per-page basis.

L The binary profile can be translated into human-readable format using the -t parameter as described
in [11].



G. Ghaemi, D. Tarapore, and R. Mancuso

Uprofiler 0. Detect VMAs & find M d __ Targetprocess
______ (child)

Kprofiler

(loadable module)

——
-----
-

intmain (...) {
init():

user-space

| Resume target & wait

kernel-space

~ Set exit breakpoint #--———-—--- "™ 3 target_func() {
A. Resolve pages I le | ca—r
B. Modify cacheability | observation
| Resume target & wait segment
- Get end time sample g===—cccccamaaaaaodl 3 i3
breakpoint reached de_init();

| Resume (or kill) target

Figure 2 Logical interplay between modules of BBProf in profile mode.

BBProf includes a number of other analysis modes described in Section 4.4. These modes
require a profile file previously obtained on the target application. For instance, Figure 1b
depicts the high-level workflow of the ranking mode which produces a human-readable output
describing the runtime of the target function as an increasing number of most important
pages are made cacheable.

We base our analysis on the presence of a single aforementioned observation segment,
which represents a segment of logic whose temporal behavior is of interest. Although the
observation segment can be extended to cover the entire application’s logic, in practice this is
often not the case. Realistic applications are typically characterized into three main phases:
(1) an initialization phase where parameters and inputs are parsed and pre-processed; (2) the
main computational payload, which might be executed multiple times in a periodic fashion;
and (3) a teardown phase where any acquired resource is released. The observation segment
corresponds to the main computational payload of the target application. For the sake of
simplicity, we assume that such a phase is encapsulated into a single function called the
target_func, and hence that the target application has a structure similar to what depicted
in the right-hand side of Figure 2. Any initialization and de-initialization logic is excluded
from the analysis.

4.3 Profiling Strategy

When operating in profiling mode, the adopted strategy is visualized in Figure 2 and described
in the following. (1) Perform a first run of the target application to identify its virtual memory
layout; (2) re-execute the target application as many times as the number of memory pages
M that comprise its memory footprint; (3) at each re-execution and before the invocation of
the target_func, switch memory allocation policy for all the pages except the one under
analysis; and (4) collect the impact of the selected policy over the execution time of the
target_func. It is crucial that the profiling of an application is conducted in isolation, i.e.,
with the lowest possible amount of noise in the target system.

For instance, consider an application whose memory footprint is comprised of 4 pages
and assume that its runtime when all the pages are marked as non-cacheable is some time
T, BBProf first detects the footprint of the application. Next, it performs 4 iterations. In
the first iteration, only the first page is marked as cacheable, while all the others are marked
as non-cacheable. Then, it measures the runtime of the target_func which will be of the
form (T — 1), with 21 being the performance gain that arises from having the first page
in cache. We then repeat the same steps for the remaining three pages to extract the terms
To,x3, and x4 in the same way.

4:7

ECRTS 2021



4:8

Profile-Driven Cache Management of Black-Box Appl.

To accomplish the strategy outlined above, our methodology relies on the definition
of two components, as also depicted in Figure 1: a user-space driver and a kernel-space
driver, which we refer to as UProfiler and KProfiler, respectively. Intuitively, the UProfiler
is responsible for launching and collecting data about the temporal behavior of the target
application, while the KProfiler is used to enforce the selected memory allocation policy. The
main key design principles for the two components are reviewed in the following.

4.3.1 User-Space Driver (UProfiler)

The design of the UProfiler component shares a number of similarities with a typical debugger.
Indeed, it operates by taking in two pieces of information — which are the only ones strictly
required to launch profiling. These are (1) the location of the executable binary (and any
parameters it requires) of the target application; and (2) the name of the target function
that corresponds to the observation segment.

First, UProfiler parses the provided binary executable to translate the name of the
function into the address that corresponds to the first instruction of the target function —
i.e., the beginning of the observation segment. With this information at hand, UProfiler can
launch the target application and set a breakpoint, called the entry breakpoint right at the
beginning of its computational payload (Figure 2, step 1). As soon as the entry breakpoint
is reached, UProfiler pauses the target application and performs a sequence of preparatory
actions, called the entry sequence. The actions performed in the entry sequence depend on
the type of analysis being carried out.

As part of the entry sequence, UProfiler always detects the end of the observation segment.
This is done by inspecting the return address of the target function. With this information,
an exit breakpoint is installed by UProfiler (Figure 2, step 2). Before resuming the execution
of the target application, UProfiler removes the entry breakpoint and snapshots the current
start timestamp (Figure 2, step 3). In a similar way, as soon as the exit breakpoint is
reached, UProfiler immediately snapshots the current end timestamp (Figure 2, step 4);
removes the exit breakpoint, and performs a variable sequence of actions — the exit sequence.

During the very first run of the target application (iteration 0), UProfiler detects its
layout and the number of memory pages M that comprise its footprint. This information is
collected during the entry sequence and double-checked during the exit sequence. Additional
implementation-specific details about this step are provided in Section 5.

In the generic profiling iteration ¢, the entry sequence is used by UProfiler to prepare
a descriptor that determines the memory policy to be applied to each of the pages subject
to profiling. Given the current focus on cache analysis, the descriptor prepared at profiling
iteration ¢ instructs the KProfiler to turn all the considered pages non-cacheable except for
the i-th page. In the exit sequence, the difference between start and end timestamp is
recorded and associated to page i.

Here, the use of timestamps represents the preferred metric for two main reasons. First,
it allows UProfiler to be a valid methodology regardless of the target platform, since time
sampling primitives are commonplace in (modern) hardware platforms. Second, it allows
UProfiler to directly correlate the impact of the selected memory policy on the timing of the
observation segment. Nonetheless, UProfiler can be easily extended to capture additional
platform-specific performance metrics such as number of cache references, hits, misses, number
of retired instructions, instructions-per-cycles, and so on.



G. Ghaemi, D. Tarapore, and R. Mancuso

4.3.2 Kernel-side Driver (KProfiler)

The KProfiler encapsulates all the logic that requires elevated kernel-level privileges to
manipulate the properties of the memory pages mapped to the target application.

Following the proposed design, the KProfiler defines a communication interface exposed
to the UProfiler (Figure 2, step 3). As needed — usually during the entry sequence — the
interface is used to pass a descriptor with the list of changes to be applied to the target
memory pages. Because absolute memory addresses change from run to run, UProfiler and
KProfiler use relative addressing to uniquely identify memory pages across runs. Pages are
grouped by the memory policy modification to be carried out over them.

It is responsibility of the KProfiler module to leverage appropriate kernel-level APIs to
apply the requested memory policy modifications for the target pages. So far we have only
discussed the most basic operation mode of the proposed BBProf. In this case, the descriptor
passed by the UProfiler always follows the same structure. Only one page is selected to be
kept cacheable, while all the others are requested to be made uncacheable.

4.4 Additional Operational Modes

So far we have described the design of UProfiler and KProfiler with respect to the main
operational mode, which is page-level cache profiling. Our current design includes two
additional modes that are briefly described in the following.

Page Ranking Analysis. Once per-page statistics have been extracted, it is possible to
globally rank all the memory pages that comprise an application’s footprint. Intuitively,
those pages that led to the best time improvements will be ranked as more important towards
the temporal behavior of our target. The page ranking analysis allows to understand the
cumulative benefit of selecting the top-ranked %k pages to be cacheable, where 0 < k < M.
Notably, the case k = M corresponds to the default case where all the memory pages are
considered cacheable. Expectedly, as we increase k, the observed runtime of the observed
segment will generally decrease. Importantly, however, if a threshold of k* < M is found
where the resulting runtime already approaches the case k = M, then k* corresponds to the
working-set size (WSS) of the target application.

Page Migration Analysis. A final useful operation provided in our design is the possibility
of changing the physical location of a group of pages based on the information collected
during profiling and ranking. For instance, consider a platform that includes a block of
scratchpad memory. First profiling and ranking is performed to identify the pages that
comprise the working-set of the target application. Next, our BBProf toolkit can be used to
test what-if scenarios where all or a part of this group of pages is migrated to scratchpad
memory. We will demonstrate two concrete use-cases where page migration can be used to
efficiently mitigate inter-core cache interference.

5 Implementation

We hereby review the main details concerning a proof-of-concept Linux implementation of
the proposed BBProf toolkit.

5.1 UProfiler Implementation

As we mentioned in Section 4, the UProfiler component is designed to act akin to a de-
bugger. For this purpose, it leverages the ptrace family of system calls to manipulate
the flow of a child process. Indeed, launch a new run of the target application, UProfiler

4:9

ECRTS 2021



4:10

Profile-Driven Cache Management of Black-Box Appl.

performs the following sequence: (1) a fork system call to spawn a new child process, (2)
a ptrace (PTRACE_TRACEME) in the spawned child allowing the parent to trace the child’s
execution, (3) an exec system call to execute the target application under tracing.

The ptrace system call represents a standard Linux interface. Albeit it is Linux-specific,
it is possible to achieve a similar behavior even in a bare-metal system or RTOS by relying
on basic debugging features. Indeed, the only features used by UProfiler are (1) the ability
to set/remove breakpoints, and (2) the ability to read the content of CPU registers. These
capabilities are available even in simple microcontrollers.

Breakpoint Handling. To set a breakpoint in an architecture-independent way via the
ptrace interface, one can replace (PTRACE_POKETEXT) the instruction at the desired break-
point address with any illegal opcode. This way, when the execution of the tracee reaches
the modified instruction, the process is paused by a SIGILL POSIX signal and a SIGCHLD
signal is delivered to the parent process — i.e., to our UProfiler. Before setting the breakpoint,
UProfiler records the value of the instruction being replaced (PTRACE_PEEKTEXT) so that it
can be restored once the breakpoint is reached. As soon as the breakpoint is hit, UProfiler
records the value of the tracee’s program-counter (PC) register. To allow the tracee to resume
from the breakpoint, UProfiler (1) restores the original instruction at the breakpoint address
and (2) rewinds the PC of the tracee to the recorded address. Accessing the tracee’s CPU
registers can be done via a combination of PTRACE_GETREGS/PTRACE_SETREGS operations?.

As discussed in Section 4, UProfiler only sets two breakpoints. The entry breakpoint is
set upon launching the target application and at the first instruction of the target function.
The exit breakpoint is installed at the address to which the target function is set to return.
To find the address of the entry breakpoint, UProfiler accepts as a command-line parameter
the name of the target function whose body corresponds to the observation segment. It then
uses the LibELF? library to translate the provided function name into the corresponding
instruction address by performing a lookup in the target ELF’s symbols table (SHT_SYMTAB).
The address of the exit breakpoint is only known once the tracee hits the entry breakpoints.
In ARM32 and ARM64, it is enough to read the content of the link register (LR) to retrieve the
return address of the target function.

Layout Detection and Enforcement. In a generic POSIX-compliant application, there is a
number of system calls that can dynamically modify the memory layout of an application.
Most notably, sbrk is internally used by the libc to implement functions that perform
dynamic memory (de)allocation, such as malloc and free. Calling the sbrk can affect the
size of the heap virtual memory area (VMA). Similarly, the mmap and unmap system calls can
cause the addition, deletion, or modification of VMAs in the tracee’s layout. Importantly,
the 1libc uses mmap instead of performing a heap extension when applications allocate large
buffers. For the final output of our BBProf to be valid, it is crucial that no memory layout
changes occur during the execution of the observation segment. This is not a concern with
applications written for embedded/safety-critical systems where memory is always statically
allocated. Nonetheless, UProfiler includes logic to enforce a deterministic memory layout
even on applications that use dynamic memory allocation primitives.

2 Note: this is true for many platforms, including x86, x86_64 and ARM32. Equivalent operations can be
carried out in ARM64 through PTRACE_GETREGSET and PTRACE_SETREGSET.

3 LibELF is part of the elfutils open-source project which is a toolkit to read, create and modify
Executable and Linkable Format (ELF) binaries.



G. Ghaemi, D. Tarapore, and R. Mancuso

To achieve that, when the tracee is spawned for the first time, UProfiler runs the tracee a
first time and records the peak amount (VmPeak) of data that was used during the target
function. Once the maximum amount of memory required by the observation segment
is known, all the subsequent runs of the target application are performed by setting two

environmental variables that modify the behavior of the 1ibc memory allocation routines.

These are (1) the MALLOC_TOP_PAD_ and (2) the MALLOC_MMAP_MAX_ variables. The former
allows setting an initial size for the heap and is set to the peak memory size detected by
UProfiler in the first run. The latter is set to 0 to disable the use of mmap to handle dynamic
memory allocations.

All the subsequent runs of the target application can be used to perform profiling. In the
first of such runs, UProfiler further detects the actual memory layout that results from setting
the aforementioned environmental variables. It does so by querying the /proc/PID/maps
interface as soon as the entry breakpoint is reached. Additional launch parameters are
accepted by UProfiler to include/exclude certain types of VMAs in the profiling. For instance,
in order to make profiling faster, one might want to exclude VM As that belong to shared
libraries and that are not used during the observation segment.

Single-page Profiling. Once UProfiler has computed the number of pages M in the target
VMAs, the single-page profiling phase can be initiated. Of course, the M pages can be
distributed across multiple VMAs (e.g. text, heap, stack). Moreover, their absolute address
will change from run to run due to address space layout randomization (ASLR). To operate
even with ASLR in place, UProfiler uses a run-independent relative encoding to express
the coordinate of memory pages. Specifically, we use two indices to identify each page: (1)
the index v of the VMA that contains the page; and (2) the offset o of the page from the
beginning of the VMA.

To profile a generic page ¢ € {1,..., M} with coordinates (v, o), the UProfiler prepares a
descriptor to instruct the KProfiler module to modify the cacheability of the pages in the
target VMAs. In profiling mode, this descriptor contains the list of all the VMAs under
analysis. For each of them, a list of pages whose cacheability attributes need to be modified
is included, with an opcode field that determines how the cacheability attributes should be
altered. In this case, the cacheability of page i is unchanged, but that of all the other pages
is the target VMAS is set to become non-cacheable. The descriptor prepared as mentioned
above is then passed to KProfiler to apply the necessary changes once the entry breakpoint
is reached. The target application is resumed only once all the pending changes are effective.
Note that any timestamp acquisition is performed after the cacheability changes have been
applied, so that the overhead required to switch the cacheability attributes is excluded from
the time measurements.

Time Measurements. Albeit extensible, the current use of the BBProf toolkit is to analyze
the relative importance of individual memory pages toward the overall temporal behavior
of the observation segment. The most direct and platform-independent way to extract this
information is by acquiring timing samples of the target function as we vary which page is
allowed to be allocated in cache. In order to be as precise as possible, UProfiler directly
reads CPU cycle counters instead of relying on system primitives.

Time measurements are acquired right before resuming the application from the entry
breakpoint and right after it reaches the exit breakpoint. Moreover, since timestamps can
be affected by random system noise, UProfiler allows specifying an arbitrary number of
samples to be collected for the same profiled page. System noise originates from workload

4:11

ECRTS 2021



4:12

Profile-Driven Cache Management of Black-Box Appl.

on other cores, interrupt handlers, non-deterministic hardware behavior, and inaccuracy of
time sampling instructions. Various mitigations strategies can be adopted to reduce the
magnitude of system noise, such as turning off other cores and disabling peripherals. The
only mitigation strategy used by BBProf is running UProfiler and the target process with the
SCHED_FIF0 Linux policy and with a high real-time priority. As we evaluate in Section 7.2,
the observed degree of noise was negligible and did not impact the validity of our profiles.
The final profile stores, for each page, the maximum, minimum, and average runtime of
the observed segment across all the acquired samples. Note that with this infrastructure in
place, it is straightforward to extend UProfiler to collect additional metrics such as hardware
counters for micro-architectural events — e.g. cache references, misses, hits, bus accesses,
to name a few. This can be done in a platform-agnostic fashion by leveraging the perf
infrastructure [10].

Page Ranking and Migration. The implementation of the other two modes of operation
is similar to what has been discussed above, hence much of the details are omitted. To
perform page ranking and migration, it is assumed that a profile has been previously acquired
for the target application. The pages in the profile are then arranged in a sorted set in
descending order of their impact on the timing of the target application. Examples of the
output produced by a ranking experiment are provided in Figure 8.

In the ranking phase, UProfiler performs M runs where in run k, the top k pages in the
sorted set are requested to be kept cacheable by the KProfiler, while all the remaining pages
in the set are turned non-cacheable. The timing of the M runs is collected and stored for
later analysis.

In a similar way, a page migration experiment requires a pre-acquired profile. The M
pages in the target VMAs are sorted according to the same criterion described above. In this
case, however, a single run is performed where the UProfiler instructs the KProfiler module to
migrate the top k pages in the sorted set to a new location in physical memory. The value of
k represents a parameter supplied by the user. The destination of the migration is determined
by the KProfiler, as we discuss below. The support to conduct page migration directly from
the profiler allows quick testing of what-if scenarios for the allocation of important pages.
As part of our future work, we plan to directly modify the way applications are launched to
take advantage of profiling information without the need to go through the profiler.

5.2 KProfiler Implementation

The KProfiler component is implemented as a Linux kernel module. Our current implementa-
tion targets Linux 5.4. At startup, a communication channel with the UProfiler is created in
the form of a file in the proc pseudo-file system. Whenever the UProfiler needs to trigger a
kernel-side operation, the write system call is used to pass the content of the aforementioned
operation descriptor. The descriptor also contains the PID of the tracee that will be targeted
for the current operation. A combination of find_get_pid and get_pid_task kernel APIs
is used to retrieve the descriptor of the tracee’s process given the provided PID. Moreover,
the descriptor contains redundant information about the structure of the memory layout of
the tracee as detected by UProfiler. This is used to perform a sanity-check in the KProfiler
and ensure that the desired operations are performed on the right VMAs and pages.

Cacheability Modification. For the profiling and ranking phases in which only the cacheab-
ility of the target page(s) is changed, no changes to the source code of the Linux kernel
are required.



G. Ghaemi, D. Tarapore, and R. Mancuso

For each VMA in the passed descriptor, the KProfiler retrieves the corresponding

vm_area_struct descriptor by scanning the kernel-maintained linked list of tracee’s VMAs.

It then ensures that any page that will be affected by the current operation is present in
physical memory. This is done by faulting-in the target pages that can be achieved via
the kernel API revget_user_pages_remote and with flags FOLL_POPULATE, FOLL_TOUCH
and FOLL_MLOCK. Next, the kernel API apply_to_page_range is used to invoke a custom
function for each page on which a change in cacheability attributes needs to be carried out.
Such a function already invokes our custom routine with a pointer to the Page Table Entry
(PTE) that needs to be manipulated to change the cacheability attributes of the page.

Given a page that is set to be made non-cacheable, the following steps are performed.

First, a new PTE is prepared to mirror the same exact value of the existing PTE, but where
the page attributes have been switched to encode for normal, non-cacheable memory. Next,
we clean and invalidate data and instruction caches to make sure that any dirty line is written
back to main memory. Then, we install the newly created PTE to replace the previous entry.
Finally, we invalidate any TLB entry (if any) for the current page on all the online CPUs.

Page Migration. Being able to support page migration requires some changes to the
kernel sources*. A total of around 200 lines have been modified to implement the required
changes. Specifically, we have generalized the existing support for the migration of physical
memory pages across NUMA nodes used to implement the move_pages system call. We have
introduced a new exported kernel API with the following prototype:

int move_pages_to_pvtpool(struct mm_struct *mm, unsigned long nr_pages,
unsigned long * vaddrs, new_page_t get_new_page,
unsigned long private);

Here mm is the virtual address space descriptor of the process targeted for page migration,
nr_pages is the number of pages to be migrated, vaddrs is an array of nr_pages virtual
addresses of pages to be migrated, get_new_page is a function pointer used by the internal
routines to allocate destination pages, and private is a parameter to be passed to the
allocation function.

At load time, the KProfiler module internally maps an area of memory reserved at boot
for page migration. The reservation is performed via a modified Device Tree Blob (DTB).
Here we use the reserved-memory attribute 5 to exclude a given range of physical addresses
from the default Linux allocator — the Buddy System. We do not mark this region with the
no-map attribute to allow the kernel to initialize the necessary page descriptors to correctly
map kernel virtual addresses and physical addresses in the reserved region.

If a valid reservation is found by the KProfiler at load time, the module uses a combination
of memremap and gen_pool_create kernel APIs to instantiate a new general-purpose memory
allocator over the reserved memory region °. The former produces a valid kernel virtual
address that can be used to access the reserved memory region, while the latter enables the
allocation of new pages from the region.

With our custom allocator in place, whenever UProfiler requests the migration of a set of
pages, a set of initial steps similar to those required to change the cacheability attributes is
performed. But instead of manipulating the cacheability attribute of the exiting pages, a

4 The modified kernel sources are available at https://github.com/rntmancuso/linux-xlnx-prof.

5 See https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/
reserved-memory.txt.

5 See https://www.kernel.org/doc/html/v6.4/core-api/genalloc.html.

4:13

ECRTS 2021


https://github.com/rntmancuso/linux-xlnx-prof
https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://www.kernel.org/doc/html/v5.4/core-api/genalloc.html

4:14

Profile-Driven Cache Management of Black-Box Appl.

list of pages to be migrated is compiled and the newly introduced move_pages_to_pvtpool
API is invoked. When doing so, a wrapper to a gen_pool_alloc call is passed as the
get_new_page function pointer to allow internal book-keeping.

We describe in Section 7.4 how profile-driven page migration can be used to enact
advanced techniques to manage inter-core interference in the shared cache. Nonetheless, the
implications of profile-driven page migration are deeper than what presented in Section 7.4.
Indeed, this support allows defining a distinct memory pool for each heterogeneous memory
component available in the system, e.g. scratchpad memory, in-FPGA block RAM, non-
volatile memory, reduced-latency DRAM blocks (RL-DRAM) [14], to name a few. By
leveraging profiling information, one can then decide which pages need to be mapped to the
various memory resources.

6 System Instantiation

In this section, we review the full-system setup that was carried out to evaluate the potential
of the proposed BBProf approach and proof-of-concept implementation.We have deployed
the implemented UProfiler and KProfiler modules on an ARM64 platform that we also use for
all our experiments. Specifically, we use a Xilinx-ZCU102 development platform featuring
a Zynq UltraScale+ XCZU9EG MPSoC [36] with a quad-core ARM Cortex-A53 [2] 64-bit
CPU operating at 1.5 GHz and implementing the ARMv8-A [15] architecture profile. The
L1 cache consists of a split cache with a 32 KB 2-way instruction (I) cache plus a 32 KB
4-way data cache. The L2, which is also the last-level cache (LLC) is unified and 1 MB in
size; it has associativity 16, and it is shared among all the A53 cores. The cache line size is
64 bytes for both L1 and L2.

Profiling and ranking analysis can be carried out directly under Linux. Conversely, to
evaluate the ability to enact advanced memory management via profile-driven page migration,
we additionally deploy a thin partitioning hypervisor, namely Jailhouse [1]. Jailhouse is
used to perform cache coloring [38, 18, 26, 20] in a way that remains transparent to the
Linux environment where we conduct our experiments. Our goal is to conduct a series of
experiments centered around the problem of shared cache management. To achieve this,
we have reproduced the setup described in [20] on the ZCU102 system, where dynamic
re-coloring of the Linux environment is available. We use coloring in two ways. First, in a
traditional way to statically restrict the applications running in the Linux environment to
only a subset of the available colors — we vary this amount from two to 15, with 16 being the
maximum value and corresponding to no partitioning. In this case, Linux is restricted to use
only one CPU. Moreover, when strict coloring is used, interfering workload (INTERF) consists
of bare-metal memory-intensive synthetic applications deployed on all the other cores as
stand-alone virtual machines (VM).

We then use Jailhouse and page coloring to illustrate a new technique enabled by the
profiler to mitigate the problem of shared cache interference. The setup, illustrated in
Figure 3, essentially defines two contiguous ranges of intermediate physical addresses (IPA).
The first corresponds to all the memory that Linux uses for legacy memory allocations
through the Buddy System and is mapped by Jailhouse to 12/16 = 3/4 of the available colors.
The second TPA range is mapped to pages with the remaining 4/16 = 1/4 of the available
colors. The latter is then used by the KProfiler to instantiate a privately managed allocation
pool. It follows that pages can be allocated in the pool only through explicit profiler-driven
page migration. We refer to this setup with the PVT+SH short-hand notation. Note also
that this setup provides page-level granularity over memory allocated in the private cache
pool. This sets this work apart from the large literature on colored page allocators proposed
in the past that assign colors at the process or core granularity [17, 19, 18, 22].



G. Ghaemi, D. Tarapore, and R. Mancuso

—— Observed, Runtime —— Interfering, Bandwidth
Runtime max/min var. Bandwidth max/min var.
3.0 F3.0
=1
2.5 253
direction of migrations 'g
X a
L <20 20%
i Shared/Default (SH) Private (PVT) z 5
(IPAS) visible at boot reserved ° =
3 1.5 1539
» N
Stage-2 E
IPASPA
1.0 1.0 5
Mapping S
Physical 0.5 Fo.5
Memory . . . . . :
(PAs) 0 200 400 600 800 1000
16 pages Interf. Task WSS (KB)
Figure 3 Overview of PVT+SH setup. Figure 4 Interference as a function of WSS.

In terms of workload, apart from the aforementioned INTERF workload, an equivalent
synthetic memory-intensive application, namely bandwidth from the IsolBench suite’, is
used to generate cache contention when no other VMs are active in the system and Linux is
used in SMP mode on all the cores. For the purposes of building confidence in the ability of
the profiler to characterize the importance of memory pages, we use the STAIRCASE synthetic
benchmark described more in detail in Section 7.2. For our observed realistic workload,
we used the San Diego Vision Benchmark (SD-VBS) suite [35]. While we conducted all
our experiments on all the benchmarks, due to space constraints we only include a subset
of the results that capture the more interesting cases. We also limit our discussion to the
input sizes SQCIF, QCIF, CIir, and VGA. We exclude the FULLHD sizes as the runtime of
the benchmarks on the target platform is excessively high. As we mentioned in Section 5,
the observed system noise was quite negligible which resulted in the timing of the profiled
applications to be remarkably deterministic. Thus, five independent runs were sufficient to
acquire each profile. For production systems with worse signal-to-noise ratios, we expect that
a much larger number of runs might be needed to construct meaningful profiles.

7 Evaluation

In this section, we describe the evaluation that we have carried out on the system setup
described in the previous section. We focus our attention on four main aspects. First,
in Section 7.1 we evaluate the amount of shared cache contention that can be suffered by
applications in this platform and understand the ability of strict cache coloring to mitigate such
interference. Next, we show in Section 7.2 that our proof-of-concept BBProf implementation
is capable of extracting useful profiling information for the considered synthetic and real-world
applications. Third, we discuss how profile-driven migration can be used efficiently to solve
the problem of contention-induced instruction stall in Section 7.3. Finally, we evaluate in
Section 7.4 how profile-driven page migration can be used to controllably mitigate shared
cache contention in real-world applications.

4:15

ECRTS 2021



Profile-Driven Cache Management of Black-Box Appl.

----- No Col. (max) ===== No Col. (min) —— No Col. (avg) mm Solo + Col B Interf. + Col
dispar [sqcif] dispar [qcif] dispar [cif] dispar [vgal
pt 1.4
2
8 12.
2 .
o
@ . # 1
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
mser [sqcif] mser [qcif] mser [cif] mser [vga]
% J ] [ e ogeeereiieeerieiiieiiiiiie »
g 2.01
1.5 1.5
O 1.5 A
; hﬂumm - JJJ
o
Y10 1.0 1.0 . 1.0
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
stitch [cif] stitch [vgal svm [cif] synth [sqcif]
= [ ] Y e, L
£11 1.2
o
°
3
K
“ 10 1.0 odpr e o dgg
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
# of Cache Colors # of Cache Colors # of Cache Colors # of Cache Colors

Figure 5 Performance of SD-VBS benchmarks under strict partitioning with (orange) and without
(blue) cache contention.

7.1 Interference and Mitigation via Strict Partitioning

In the experiments presented in this section, we focus on cache contention. Generating
cache contention for an application under analysis is done by deploying a set of interfering
synthetic memory-intensive applications on all the other cores. In order to set the WSS of
the interfering workload with the goal of maximizing contention, we have conducted the
experiment depicted in Figure 4. In this experiment, the application under analysis is MSER
from the SD-VBS suite with input size SQCIF. Three interfering applications deployed on
the remaining cores continuously perform cache-allocate store operations over a buffer of
increasing size (z-axis). We plot on the left y-axis (red) the runtime normalized to the case in
which MSER runs in isolation (solo case) in the system. We display the memory bandwidth
observed by the interfering workload on the right y-axis (blue). A clear trend emerges that
highlights how the cache interference is maximized (both in average and maximum terms)
when each interfering application accesses a buffer of around 420 KB, i.e. access in a total of
about 1.23 MB.

In light of the results highlighted above, we have set our interfering tasks to have a
WSS of 420 KB. With this in mind, we want to understand how well strict coloring is able
to mitigate cache interference. We have conducted a study where all the strict coloring
configurations described in Section 6 are explored for all of our SD-VBS benchmarks and
considered input sizes. The most interesting nine cases are presented in Figure 5. In all
the sub-plots, the vertical bars represent the slowdown of the application under analysis
when no cache partitioning is performed. The blue bars (resp., orange) report the runtime
of the application under analysis in the solo case (resp., under interference). It emerges
that partitioning leads to significant improvements in certain circumstances, especially for
workload with L2-sensitive footprint such as DISPARITY and MSER with input sizes QCIF

7 See https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c.


https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c

G. Ghaemi, D. Tarapore, and R. Mancuso

Profile: staircase

0.00%

-0.20%

-0.40%

-0.60%

-0.80%

-1.00%

Runtime Reduction (%)

-1.20% max

min

-1.40% B average heap

+0 +20 +40 +60 +80 +100
Ranked VMA Page

Figure 6 Profile of STAIRCASE benchmark.

and SQCIF, and for STITCH with input size CiF. However, the ability to mitigate cache
contention with coloring alone is limited in some cases. This is due to contention over memory
bandwidth which exacerbates as larger partitions are given to large-footprint applications —
see DISPARITY and MSER with input sizes CIF and VGA. Indeed, the stress over the main
memory subsystem placed by the interfering workload increases as it is confined to a smaller
cache partition. Traditionally, bandwidth throttling techniques are used to solve this problem,
such as MemGuard [39, 33].

But an important takeaway from this study is that strict partitioning is just too rigid to
(1) be able to efficiently mitigate cache contention for a wide variety of tasks deployed on
the same core. And (2) that over-throttling of the interfering workload might be required to
compensate for the lack of flexibility in coloring-based cache partitioning. Conversely, as
shown in the following, the proposed BBProf toolkit can be used to strike a balance between
strict partitioning and unregulated interference.

7.2 Profiling of Staircase and SD-VBS benchmarks

The first step toward profile-driven cache management is to use the proposed BBProf toolkit
to acquire the page-level profile about the applications to be managed. As a first step to
build confidence on the correctness of BBProf, we have designed the STAIRCASE benchmark®
to exhibit a well-recognizable behavior in terms of memory accesses that can serve as the
ground truth on the extracted profile. Specifically, the benchmark allocates a buffer of 100
heap memory pages. It then performs a total of 1000 iterations reading over the buffer. In
the first 200 iterations, the buffer is read entirely; in the next 200 iterations, the first 20 pages
are skipped; after 200 additional iterations, the first 40 pages are skipped and so on. The
result is that the second group of 20 pages is accessed 2x more than those at the beginning
of the buffer. The third 20-pages group 3x more, and so on. Thus if we were to plot the
importance of each page from beginning to end, the resulting plot would resemble a staircase,
hence the name. Figure 6 provides a visualization of the extracted profile focused on the
heap VMA. In the figure, the z-axis represents the index of the page under profiling. The
blue bars from the top of the plot visualize by how much (in percentage) the runtime of
the benchmark is reduced when each page is kept cacheable while all the others are not. A
taller bar signifies a page with relatively higher importance for the temporal behavior of the

8 The code of the STAIRCASE benchmark is available in the project repository [11].

4:17

ECRTS 2021



4:18

Profile-Driven Cache Management of Black-Box Appl.

Profile: disparity [qcif] Profile: mser [qcif] Profile: stitch [cif]

0.00% 0.00% 0.00% 0.00%

0.50% 0.25%
-2.00%

-10.00%

-0.50%

%)

£ -20.00% -1.00%
-0.75%

-30.00% $1.0% -1.50% -4.00%

-1.00%

-40.00% 1 | -2.00%

-6.00% -1.25%

-50.00% -2.50%

Runtime Reduction (%)
Runtime Reduction (
Runtime Reduction (%)

-1.50%
-3.00% -8.00% -1.75%

-60.00%
7000%_ -3.50% 10.00% 200%
- 1% +

+0 +50 +100 +150 +0 +25 +0 +50 +100 +0 +25 +0 +200 +400 +600 +800 +0 +25
Ranked VMA Page Ranked VMA Page Ranked VMA Page

Figure 7 Profile of DISPARITY (left), MSER (center), and STITCH (right) — heap, stack pages only.

application under analysis. For all the bars, the normalization baseline is always taken as the
application’s runtime when none of the pages in the target VM As is made cacheable. The
pages are sorted based on their importance rather than their offset in the VMA. Because of
the by-importance sorting, the most-accessed pages appear to the left-hand side of the plot,
with the recognizable staircase characterization having been reconstructed by BBProf. One
can also note that the gap between min and max in each profile sample is quite small, thus
leading to the conclusion that the overall measurement noise is negligible.

Next, we have acquired a profile for all the benchmarks in the SD-VBS suite, one for
each of the considered input sizes. Due to space constraints we only visualize the three most
representative profiles, namely those for DISPARITY, MSER with input size QCIF, and for
SVM with input size CiF. These are displayed in Figure 7, where we limit the plots only
to the heap and stack VMAs. The style of the sub-plots in Figure 7 is identical to that of
Figure 6, with the only difference that the bars of stack pages are color-coded in red and
that we have omitted max/min error bars to avoid over-plotting. From the figure it emerges
that in all the cases there exists a small group (1-3 pages) of heap pages that has a large
impact on the runtime of the application. From left to right, these alone cause a reduction
of around 1.8%, 69%, and 7.9% when kept cacheable. Moreover, the temporal behavior of
MSER and STITCH is more heavily impacted by stack pages; the DISPARITY benchmark has
a core set of around 65 heap pages that comprise its working-set. Taken individually, the
presence in cache of each of these pages alone contributes to a runtime reduction between
1.25% and 1.5%.

To further understand the relationship between important pages and overall application
runtime, we conduct a ranking analysis (see Section 4.4) given the profiles obtained at
the previous step. In Figure 8 we depict the result of the ranking analysis conducted on
DISPARITY, MSER, LOCALIZATION, and STITCH. In each subplot, the z-axis reports the
number of pages, sorted in order of importance, that are made cacheable. The y-axis reports
the resulting normalized runtime of the application under analysis. The normalization
baseline is the runtime when only the most important page is made cacheable. A stark
contrast emerged in the behavior of the considered applications. Specifically, DISPARITY
features a block of pages with comparable importance that produces a constant slope in
the runtime reduction as more pages are made cacheable. It is also possible to appreciate
how the WSS size increases as the input size goes from SQCIF to VGA. Conversely, the
WSS of MSER is concentrated in a very small set of pages for the SQCIF and QCIF case,
and increases rapidly for input sizes CIF and VGA. Next, LOCALIZATION is characterized
by quantized temporal improvements unlocked only when a certain threshold of pages is
allocated in cache. Finally, STITCH appears to be relatively insensitive to caching as long as
a core set of about 10 pages is allocated.

Once the profile has been acquired, it is important to understand if the set of memory



G. Ghaemi, D. Tarapore, and R. Mancuso

Ranking: disparity Ranking: mser Ranking: localization Ranking: stitch
1.0

=
o

— sqcif oo cif
-==- qcif —-= vga 1.04 k.

— sqcif e cif
-=- qcif —-= vga

— sqcif e cif — sqcif e cif
—== qcif
0.81

o
3

0.8 I\

0.8 0.6

0.6 |

0.44

Normalized Runtime
o
o

0.4 ) 0.6 0.4 :
| H
i 0.2 =N
0.2 0.4 024 T ~ . SR
——.—e @ e, °
0 200 400 600 800 0 200 400 600 0 25 50 75 100 0 200 400 600 800
# of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages

Figure 8 From left to right, ranking analysis of DISPARITY, MSER, LOCALIZATION, and STITCH.

pages deemed important remains the same as when the content of the input images changes
while their size remains the same. In the general case, this might not be true while for some
applications the profile might transcend the specific data input. We hereby conduct a sample
evaluation to understand in which category the considered benchmarks fall. Note that this
is not meant to represent an exhaustive evaluation. For this experiment, we consider the
profiles acquired on the default (“def”) input images provided with the SD-VBS suite. In
terms of benchmarks, we limit ourselves to DISPARITY, MSER, TRACKING, and STITCH.
Compared to Figure 8, we have replaced LOCALIZATION with TRACKING because the latter
uses images as input while the former takes as input a text file with an unknown format.
The selected input size is VGA for DISPARITY, MSER, and TRACKING and CIF for STITCH
because the latter runs for too long over the VGA input size. For each benchmark, we have
produced four additional input images. The first two called “norl” and “nor2” are meaningful
(normal) scenes, while the last two, namely “degl” and “deg2” are scenes that correspond to
corner (degenerative) cases. Specifically, “degl” corresponds to random noise while “deg2” to
a solid-color frame. Due to space contraints, we refer the reader to the project repository [11]
for the full list of images used in this experiment.

Figure 9 provides the same type of analysis used to construct Figure 8. The key difference
here is that for each of the considered benchmarks we construct the displayed ranking curves
using the profile originally acquired with the “def” input images. To more clearly appreciate
the difference in absolute runtimes as we vary the images supplied in input, the runtimes
are not normalized and are instead expressed in CPU cycles. Among the four considered
benchmarks, the runtime of MSER is the most heavily affected by the content of the input
data. Nonetheless, the general trend in terms of runtime reduction as an increasing number
of ranked pages is made cacheable is consistent across experiments. In the DISPARITY case,
all the curves remain quite consistent. This suggests that the benchmark remains quite
insensitive to the input image and that the profile acquired with the default input captures
well the relative importance of individual memory pages regardless of the supplied input
images. The TRACKING case is quite similar to the DISPARITY case, with the trend of the
curve remaining consistent across experiments. Conversely, STITCH shows visible variations
in the relative importance of memory pages, especially when comparing between the “degl”
and “deg2” cases. In this case, the profile obtained with the “def” input images does not
generalize well. We can conclude that what captured by BBProf remains mostly accurate for
three out of the four benchmarks considered in this experiment. The fourth case (STITCH)
displays important dependencies between input images and memory usage, in which case the
profile constructed by BBProf does not generalize.

4:19

ECRTS 2021



4:20

Profile-Driven Cache Management of Black-Box Appl.

1es  Ranking: disparity 1e7 Ranking: mser 1e9 Ranking: tracking 1e9 Ranking: stitch
1.75
3591\ —— def —- degl | 8 Twmem
g \ -=- norl deg2 | .| T o 1.50
$30{ \ nor2 1.251
¢} 64
2 S 1.00 4
©2s 54 DR DS
€ 0501 =
S 2.01 \
& \ 34
\ 0.25
0 200 400 600 800 0 200 400 600 0 500 1000 0 200 400 600 800
# of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages # of Ranked Cacheable Pages

Figure 9 From left to right, ranking analysis of DISPARITY, MSER, TRACKING, and STITCH with
profiles acquired under “def” and varying input images.

7.3 Mitigation of Contention-induced Instruction Stall

We hereby want to bring to the attention of the community a previously understudied
problem, namely the problem of contention-induced instruction stall, or C2IS, for short.
We also demonstrate that profile-driven page migration represents an effective strategy to
mitigate the problem.

In a nutshell, C2IS can occur in platforms with small L1 caches and shared, unified
L2/LLC caches. The problem manifests itself when a process operates in a periodic fashion
over a large block of instructions (e.g. a long function) that spans more pages than the size
of the L1 instruction cache. For instance, in the target ZCU102 platform, the size of the
L1 cache can hold up to eight pages. When such a threshold is crossed, instruction pages
spill over L1 and are allocated in L2. But when the L2 is shared, these instruction pages
are subject to be evicted by data fetched by any interfering workload. Unlike with missed
over data items, an L1 and L2 miss during an instruction fetch cannot be hidden by the
micro-architecture, which causes an immediate pipeline stall. The resulting impact on the
runtime of the application under analysis can be dramatic.

We observed this effect in the wild and created a synthetic benchmark, namely C2ISBM,
to isolate and study the C2IS problem. Our C2ISBM is a process that invokes a long function
that spans through 65 text pages — i.e., it performs around 64,000 nops. Using as a baseline
its solo performance, the runtime increases by a factor of 6.5x when INTERF workload is
activated on all the other cores. We extract a profile of the C2ISBM benchmark, where the
instruction pages are identified as important. We then configure our system in the PVT+SH
mode (see Section 6), and progressively select the instruction pages to be migrated to the
PVT pool. Recall that in the PVT+SH configuration, the PVT pool is exclusively allocated
to 1/4 of the L2 cache. Gradually migrating the profiled instruction pages to the private
pool allows us to gradually de-conflict these pages and to create an equivalent L2 instruction
cache with a size that is proportional to the number of migrated pages. The resulting impact
on the runtime of the C2ISBM process is plotted in Figure 10. A sharp improvement in
runtime can be observed until around 43 pages are migrated. After that, the benchmark
becomes unaffected by the interfering workload as around 51 (43 + 8 in the I-cache) of the
65 instruction pages are deterministically present in the cache. It can be noted that a slight
runtime increase is visible when more than 64 pages are migrated because the private pool
can hold up to 1/4 of the L2 cache size, i.e. 64 pages.

In the presented use-case, being able to identify those pages that are crucial for the
application’s performance and selectively migrate them to a reserved portion of the cache,
space is an efficient solution to the C2IS problem. By contrast, strict coloring would force all
the pages of the application to share the same color, which would require the allocation of a
much larger cache partition to achieve the same degree of interference mitigation.



G. Ghaemi, D. Tarapore, and R. Mancuso

= =
© 7 = X
% -=-- LLCSize Thresho!d g 1.8 i ——- LLC Size Threshold
. i £
£ = 401 1
£ 51 g H
E4 2149 '
b 1
< 3 & 1.2 !
el
527 8 |
o © R 1
E 1 pLo !
o ’5 1
0 10 20 30 40 50 60 0 20 40 60 80 100
# of Migrated Text Pages # of Migrated Interf. Pages
Figure 10 Inteference mitigation via migra- Figure 11 Interference mitigation via migra-
tion of instruction pages. tion of data pages.
= Solo mmm Solo+Col.12 m Interf.+Col.4 Interf.+Migration
o 20 = Solo+Col.4 M Interf.+No Col W Interf.+Col.12
E
€15
o
o
(7]
N 10
©
£
o
Z 0.5
0.0

O DD > O

LSEEL & SEEL @ S EE SEL LS SLL & &S S &E
SFF R LT E L O FF N FFE FFeF g FFE LT FE S F
N FE S FEE & NAE & VI ST P TS FEE

KT T F & NECHES NI S T e )

Figure 12 Mitigation of cache interference with profile-driven migration of interfering data pages.

7.4 Controllable Mitigation of Cache Interference

In the last set of experiments, we use our BBProf toolkit and PVT+SH setup to demonstrate
that (1) profile-driven interference mitigation is effective for real-world applications, and
(2) that, albeit more flexible, its effectiveness is comparable to strict partitioning. For this
experiment, we leverage the fact that we can profile the interfering workload and progressively
migrate to the private pool the pages that are responsible for the generated cache contention,
while we keep the pages of the application under analysis in their original location. Doing
this allows cache-sensitive applications to benefit from 12/16 of the LLC space. First, we
study the temporal behavior of the MSER benchmark with input size SQCIF in Figure 11.
On the z-axis we track the number of pages migrated to the private pool for each of the three
INTERF benchmarks — hence the total size of migrated pages is three times this value. The
timing behavior of MSER starts to improve after 123 pages from the INTERF benchmarks are
migrated away. That is because each INTERF process accesses a total of 315 pages (420 KB
each, see Section 7.1), meaning that only 192 pages are left to migrate, which is exactly
12/16 of the total LLC size.

Lastly, Figure 12 summarizes the behavior of the most interesting benchmarks when a full
migration of interfering pages is performed — see last bar of each cluster (“Interf.+Migration”).
The resulting runtime is compared against a number of notable cases: (1) the “Solo” case
where no INTERF is deployed and no cache partitioning is performed. This is also the
normalization baseline for all the other cases; (2) and (3) the solo runtime where only four
(“Solo+Col.4”) or 12 (“Solo4Col.12”) cache colors are assigned to the application under

4:21

ECRTS 2021



4:22

Profile-Driven Cache Management of Black-Box Appl.

analysis; (4) the “Interf.+No Col” case where INTERF is deployed on all the other cores
and no partitioning is enforced; (5) and (6) the cases “Interf.+Col.4” and “Interf.+Col.12”
that correspond to (2) and (3) but with INTERF active on all the other cores. Profile-driven
migration has comparable performance to the case where 12 page colors are dedicated to
the application under analysis. In a few cases (see MSER with input sizes SQCIF and QCIF)
migration does worse. The reason is likely interference over shared Linux meta-data (e.g.
page tables, kernel code and data structures). This kind of contention does not occur with
strict partitioning because the INTERF workload operates in a different, fully colored VM.

8 Known Limitations

The proposed method and current implementation present a number of limitations. First (i),
BBProf is not designed to handle multithreaded applications, or applications comprised by
multiple processes with complex data sharing, synchronization and dependencies. Second
(ii), for applications that that exhibit strong dependencies between inputs and memory
usage, the profile produced by BBProf on a given input might not generalize well to the
entire input space. Third (iii), the only piece of information used by BBProf to construct
profiles is timing. While this is a deliberate choice that allows BBProf to better generalize
on many COTS platforms, we envision that being able to integrate additional metrics (e.g.
L1/L2 cache/miss count, consumed main memory bandwidth, energy consumption) might
be useful to characterize page importance along additional dimensions beyond timing. In
our current implementation, we only provide sample code to integrate calls to Perf [10]
APIs during the entry/exit protocols, but more comprehensive handling of the additional
metrics that can be collected is required. Fourth (iv), our current implementation relies on a
number of Linux-specific features, such as PTRACE and the proc filesystem. Thus, while
porting to other non-Linux OS’s or even bare-metal environments is possible, some heavy
re-engineering is required. We expect that PTRACE might need to be replaced with direct
interaction with platform-specific debug registers, while memory layout information currently
collected via proc interfaces might need to be exported at compile-time. Next (v), BBProf
does not rely on any hardware features that are not widely available. Nonetheless, a few
architecture-dependent features are leveraged, requiring some porting effort when moving
to different architectures. These are (1) cacheability manipulation, (2) sampling of CPU
clock cycles, and (3) cache maintenance operations. Lastly (vi), the time required to carry
out profiling is strictly dependent on the WSS of the target application and on the runtime
of the observation segment. Thus, BBProf might become impractically slow at profiling
large-footprint and/or long-running applications. Operating on groups of adjacent pages
instead of individual pages might mitigate this problem, but the trade-off between loss in
granularity and speed-up needs to be investigated.

9 Concluding Remarks

In this work, we introduced BBProf, a methodology and toolkit to extract the importance of
individual memory pages towards the runtime of a target application. The proposed BBProf
does not rely by design on any hardware-specific feature, and thus it can be implemented
on any platform where (1) it is possible to change cacheability attributes at a single-page
granularity; and (2) it is possible to acquire time samples. Additionally, BBProf can operate
on the unmodified, pre-compiled binaries of complex applications, and includes strategies
to cope with the use of dynamic memory allocation primitives. We have performed and



G. Ghaemi, D. Tarapore, and R. Mancuso

described an open-source full system implementation and setup on a state-of-the-art high-
performance embedded platform. With this setup, we have shown three main aspects. First,
that BBProf is capable of extracting the profile of real-world complex vision applications.
Second, that the extracted page-level profiles can be used to enact fine-grained shared cache
management. Third, that a previously undocumented variant of inter-core interference,
namely contention-induced instruction stall can arise in multi-core embedded platforms; in
which case profile-driven selective page migration represents an efficient mitigation strategy.

As part of our future work, we intend to relax some of the limitations described above.
For instance, we aim at expanding the capabilities of BBProf to capture additional per-page
properties. Moreover, we plan to develop strategies to use profiling information for OS-driven
mapping of pages to heterogeneous memory resources — e.g., scratchpad memory, FPGA
BRAM. Finally, we plan to further improve the level of detail of the collected information by
identifying how each page impacts the runtime of multiple code sub-segments.

—— References

1 Siemens AG. Jailhouse, 2014. URL: https://github.com/siemens/jailhouse.

2 ARM Holdings. Cortex-A53 MPCore technical reference manual (rOp4), 2018. URL: https:
//developer.arm.com/documentation/ddi0500/j/.

3 I Ashraf, M. Taouil, and K. Bertels. Memory profiling for intra-application data-communication
quantification: A survey. In 2015 10th International Design Test Symposium (IDT), pages
32-37, 2015. doi:10.1109/IDT.2015.7396732.

4  F. Bouquillon, C. Ballabriga, G. Lipari, and S. Niar. A wcet-aware cache coloring technique for
reducing interference in real-time systems. CoRR, abs/1903.09310, 2019. arXiv:1903.09310.

5 D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optim-
ization. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’03, page 265-275, USA, 2003. IEEE
Computer Society.

6 J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In 2009 21st Furomicro Conference on Real-Time Systems,
pages 194-204, 2009. doi:10.1109/ECRTS.2009.13.

7 W. Cohen. Multiple Architecture Characterization of the Build Process with OProfile, 2003.
URL: http://oprofile.sourceforge.net.

8 J. Corbet, J. Edge, and R. Sobol. Kernel Development. Linux Weekly News — https:
//lwn.net/Articles/74295/, 2004. [Online; accessed 7-May-2019].

9 C. Dall and J. Nieh. Kvim/arm: The design and implementation of the linux arm hypervisor.
In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 14, page 333-348, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2541940.2541946.

10 The Linux Foundation. perf: Linux profiling with performance counters. URL: https:
//perf .wiki.kernel.org/index.php/Main_Page.

11 R. Mancuso G. Ghaemi, D. Tarapore. BU Black-box Profiler. https://github.com/
rntmancuso/black-box-profiler, 2021.

12 G. Gracioli, A. Alhammad, R. Mancuso, A. A. Frohlich, and R. Pellizzoni. A survey on cache
management mechanisms for real-time embedded systems. ACM Comput. Surv., 48(2), 2015.
doi:10.1145/2830555.

13  G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In Sophie
Quinton, editor, 31th Euromicro Conference on Real-Time Systems (ECRTS 2019), volume
107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:25, Stuttgart,
Germany, July 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ECRTS.2019.27.

4:23

ECRTS 2021


https://github.com/siemens/jailhouse
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0500/j/
https://doi.org/10.1109/IDT.2015.7396732
http://arxiv.org/abs/1903.09310
https://doi.org/10.1109/ECRTS.2009.13
http://oprofile.sourceforge.net
https://lwn.net/Articles/74295/
https://lwn.net/Articles/74295/
https://doi.org/10.1145/2541940.2541946
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/rntmancuso/black-box-profiler
https://github.com/rntmancuso/black-box-profiler
https://doi.org/10.1145/2830555
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27

4:24

Profile-Driven Cache Management of Black-Box Appl.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

M. Hassan. On the off-chip memory latency of real-time systems: Is ddr dram really the
best option? In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 495-505, 2018.
doi:10.1109/RTSS.2018.00062.

ARM Holdings. ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile (version G.a), 2011.

H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical os-level cache
management in multi-core real-time systems. In 2018 25th Euromicro Conference on Real-Time
Systems, pages 80-89, 2013. doi:10.1109/ECRTS.2013.19.

H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In
2016 International Conference on Embedded Software (EMSOFT), pages 1-10, 2016. doi:
10.1145/2968478.2968480.

H. Kim and R. (Raj) Rajkumar. Predictable shared cache management for multi-core real-time
virtualization. ACM Trans. Embed. Comput. Syst., 17(1), 2017. doi:10.1145/3092946.

N. Kim, B. C. Ward, M. Chisholm, C. Fu, J. H. Anderson, and F. D. Smith. Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-criticality
provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1-12, 2016. doi:10.1109/RTAS.2016.7461323.

T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
memory hierarchy and virtualization for modern multi-core embedded systems. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1-14, 2019.
doi:10.1109/RTAS.2019.00009.

Y. Kwon, X. Zhang, and D. Xu. Pietrace: Platform independent executable trace. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
48-58, 2013. doi:10.1109/ASE.2013.6693065.

J. Liedtke, H. Haertig, and M. Hohmuth. Os-controlled cache predictability for real-time
systems. In Proceedings of the 8rd IEEE Real-Time Technology and Applications Symposium
(RTAS ’97), RTAS ’97, page 213, USA, 1997. IEEE Computer Society.

C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190-200, June 2005. doi:10.1145/1064978.1065034.

R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 45-54, 2013. doi:
10.1109/RTAS.2013.6531078.

S. Mittal. A survey of techniques for cache partitioning in multicore processors. ACM Comput.
Surv., 50(2), 2017. doi:10.1145/3062394.

P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial isolation
in a hypervisor for arm multicore platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651-1657, 2018. doi:10.1109/ICIT.2018.8352429.

N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89-100, June 2007. doi:10.1145/1273442.1250746.
A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi. Embedded hypervisor xvisor: A
comparative analysis. In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 682—691, 2015. doi:10.1109/PDP.2015.108.

A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache performance bottlenecks using
data profiling. In Proceedings of the 5th European Conference on Computer Systems, EuroSys
’10, page 335-348, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1755913.1755947.

P. Radojkovié, S. Girbal, A. Grasset, E. Quifiones, S. Yehia, and F.J. Cazorla. On the
evaluation of the impact of shared resources in multithreaded cots processors in time-critical
environments. ACM Trans. Archit. Code Optim., 8(4), 2012. doi:10.1145/2086696.2086713.
RotateRight. Zoom Performance Analysis Tool. URL: http://www.rotateright.com/.


https://doi.org/10.1109/RTSS.2018.00062
https://doi.org/10.1109/ECRTS.2013.19
https://doi.org/10.1145/2968478.2968480
https://doi.org/10.1145/2968478.2968480
https://doi.org/10.1145/3092946
https://doi.org/10.1109/RTAS.2016.7461323
https://doi.org/10.1109/RTAS.2019.00009
https://doi.org/10.1109/ASE.2013.6693065
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1145/3062394
https://doi.org/10.1109/ICIT.2018.8352429
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1109/PDP.2015.108
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1145/2086696.2086713
http://www.rotateright.com/

G. Ghaemi, D. Tarapore, and R. Mancuso

32

33

34

35

36

37

38

39

40

L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level cache pol-
luters with an os-level, software-only pollute buffer. In 2008 /1st IEEE/ACM International
Symposium on Microarchitecture, pages 258269, 2008. doi:10.1109/MICR0.2008.4771796.
P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-warp: A system-wide framework for
memory bandwidth profiling and management. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 345-357, Los Alamitos, CA, USA, December 2020. IEEE Computer Society.
doi:10.1109/RTSS49844.2020.00039.

D. Tarapore, S. Roozkhosh, S. Brzozowski, and R. Mancuso. Observing the invisible: Live
cache inspection for high-performance embedded systems. IEEE Transactions on Computers,
pages 1-1, 2021. doi:10.1109/TC.2021.3060650.

S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium on

Workload Characterization (IISWC), pages 55-64, October 2009. doi:10.1109/IISWC.2009.

5306794.
Xilinx, Inc. Zynq ultrascale+ mpsoc data  sheet: Overview  (v1.8),
2019. URL: https://www.xilinx.com/support/documentation/data_sheets/

ds891-zynq-ultrascale-plus-overview.pdf.

M. Xu, R. Gifford, and L.T. Xuan Phan. Holistic multi-resource allocation for multicore
real-time virtualization. In Proceedings of the 56th Annual Design Automation Conference
2019, DAC ’19, New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3316781.3317840.

Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache partitioning system using page
coloring. In 2014 23rd International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 381-392, 2014. doi:10.1145/2628071.2628104.

H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEFE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55—64,
2013. doi:10.1109/RTAS.2013.6531079.

X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European Conference on Computer Systems,
EuroSys ’09, page 89-102, New York, NY, USA, 2009. Association for Computing Machinery.
d0i:10.1145/1519065.1519076.

4:25

ECRTS 2021


https://doi.org/10.1109/MICRO.2008.4771796
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1109/TC.2021.3060650
https://doi.org/10.1109/IISWC.2009.5306794
https://doi.org/10.1109/IISWC.2009.5306794
https://www.xilinx.com/support/documentation/data_sheets/ds891 -zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891 -zynq-ultrascale-plus-overview.pdf
https://doi.org/10.1145/3316781.3317840
https://doi.org/10.1145/3316781.3317840
https://doi.org/10.1145/2628071.2628104
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1145/1519065.1519076




nDimNoC: Real-Time D-dimensional NoC

Yilian Ribot Gonzalez &=
CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

Geoffrey Nelissen &
Eindhoven University of Technology, The Netherlands

Eduardo Tovar &
CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

—— Abstract

The growing demand of powerful embedded systems to perform advanced functionalities led to a
large increase in the number of computation nodes integrated in Systems-on-chip (SoC). In this
context, network-on-chips (NoCs) emerged as a new standard communication infrastructure for
multi-processor SoCs (MPSoCs). In this work, we present nDimNoC, a new D-dimensional NoC
that provides real-time guarantees for systems implemented upon MPSoCs. Specifically, (1) we
propose a new router architecture and a new deflection-based routing policy that use the properties
of circulant topologies to ensure bounded worst-case communication delays, and (2) we develop a
generic worst-case communication time (WCCT) analysis for packets transmitted over nDimNoC. In
our experiments, we show that the WCCT of packets decreases when we increase the dimensionality
of the NoC using nDimNoC’s topolgy and routing policy. By implementing nDimNoC in Verilog and
synthesizing it for an FPGA platform, we show that a 3D-nDimNoC requires ~5-times less silicon
than routers that use virtual channels (VC). We computed the maximum operating frequency of a
3D-nDimNoC with Xilinx Vivado. Increasing the number dimensions in the NoC improves WCCT
at the cost of a more complex routing logic that may result in a reduced operating clock frequency.

2012 ACM Subject Classification Computer systems organization — Real-time systems; Networks
— Network on chip

Keywords and phrases Real-Time Embedded Systems, Systems-on-Chips, Network-on-Chips, Worst-
Case Communication Time

Digital Object Identifier 10.4230/LIPIcs. ECRTS.2021.5

Funding This work was partially supported by National Funds through FCT/MCTES (Por-
tuguese Foundation for Science and Technology), within the CISTER, Research Unit (UIDP/UIDB
04234/2020); also by FCT and the ESF (European Social Fund) through the Regional Operational
Programme (ROP) Norte 2020, under PhD grant 2020.06898.BD.

1 Introduction

These days, SoCs include more and more heterogeneous processing elements that execute
dedicated functions in parallel. Traditional shared communication buses, which used to
connect all the computation nodes together, are a major performance bottleneck of modern
SoCs. Therefore, NoCs emerged as a new standard communication infrastructure for SoC as
they present a scalable and versatile solution for systems with a high level of parallelism [2, 15].

The literature on NoCs is extensive. However, real-time systems add new constraints on
the NoC infrastructures. In addition to ensure that messages arrive at their destination in
a correct fashion, real-time NoCs must guarantee that packet transmissions respect strong
timing constraints [16]. Over the years, there have been several attempts to design real-
time NoCs by considering different approaches. A large body of solutions consider a mesh
topology and rely on wormhole switching with VCs. That strategy leads to powerful NoC
infrastructures with bounded WCCT but they rely extensively on buffers and virtual channels
to provide timing guarantees. This makes them expensive to implement in terms of silicon
footprint, and increases their power consumption.
? Yilia(;l Ri(l:i)ot goniélez&}Geoﬂrey Iljelissené%r}ngciugrdo Tovar;

icensed under reative ommons icense .

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Bjorn B. Brandenburg; Article No. 5; pp. 5:1-5:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:ribot@isep.ipp.pt
https://orcid.org/0000-0002-4089-7794
mailto:g.r.r.j.p.nelissen@tue.nl
https://orcid.org/0000-0003-4141-6718
mailto:emt@isep.ipp.pt
https://doi.org/10.4230/LIPIcs.ECRTS.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2

nDimNoC: Real-Time D-dimensional NoC

These last years, buffer-less NoCs have gain popularity as an alternative to VC-based
NoCs. Buffer-less NoCs are compact; their implementation cost and power consumption are
lower than traditional approaches. Therefore, they are more suitable to (embedded) systems
with area and/or power consumption constraints. In [39] and [31] two novel buffer-less
deflection-based real-time NoCs called HopliteRT and HopliteRT* were proposed. They
ensure predictable timing behaviors, accommodates dynamic workload and have an extremely
low hardware consumption footprint. Noticeably, HopliteRT* uses the characteristics of a
circulant topology to ensure bounded worst-case communication delays.

NoCs are an attractive and promising alternative for the traditional shared-buses. Yet,
most of the existing literature for real-time systems focuses on 2-Dimensional NoCs (2D-
NoCs), i.e., where routers are connected according to a mesh or torus topology for example.
However, in a non-real-time setting, Romanov [32] shows that circulant topologies possess
better characteristics over traditional mesh and torus topologies. Circulant topologies are a
type of n-dimensional topologies for networks. Thus, in this work, we explore the design of
n-dimensional NoCs architectures compatible with real-time systems requirements.

This line of research is also motivated by the recent evolution in the integrated circuit
(IC) industry. Indeed, three-dimensional integrated circuits (3D-ICs) seem to be the future
of ICs [19, 5, 20, 33, 29]. 3D-ICs achieve higher performance, while reducing average
interconnection length; provide higher packing density thanks to the added third dimension;
reduce power consumption; and enhance computation bandwidth. Hence, there is currently
a drive towards creating new powerful NoCs solutions that meet the requirements of future
large-scale MPSoCs by combining the advantages of 3D integration and NoC architecture.

Contribution. We propose nDimNoC, a new D-dimensional NoC that provides real-time
guarantees for systems implemented upon MPSoCs, reduces average network communication
latency and provides greater flexibility compared to more traditional 2D NoCs. The main
contributions of our work are: (1) to design a new buffer-less router architecture that allows
synthesizing D-dimensional NoCs; (2) to propose a new deflection-based routing policy that
uses the characteristics of D-dimensional circulant topologies to ensure bounded worst-case
communication delays; (3) to develop a generic WCCT analysis for packets transmitted over
nDimNoC; (4) to implement a 3D version of nDimNoC in Verilog (a hardware description
language) that can be instantiated on a real FPGA platform; and (5) to assess our new design
against related works in terms of computed WCCT bounds and hardware requirements.

2 Related work

Most 2D-NoC solutions rely on wormhole switching with virtual channels (VCs) (e.g.,
CONNECT [27], IDAMC [37]). In [34], Shi et al. propose an analysis of the worst-case
network latency for a new real-time fixed priority preemptive wormhole NoC in which each
priority level is assigned its own VC. Several variations of that approach were proposed over
the years [36, 7, 37, 6, 30], for instance, handling the case where several flows share the
same priority [21], changing the routing policy to EDF [25] or supporting communication
flows with different criticality levels [3, 18]. The complexity of those designs and their
routing policies led to complex WCCT analyses inspired by both the classic real-time system
theory [41, 42, 17, 26] and Network Calculus [10, 11].

In [24], a new type of NoC called SBT-NoC was proposed. In this work, Nikolic et al.
introduced a global arbitration protocol inspired by the CAN protocol. Theoretical results
are promising but this NoC solution has not been implemented in a real platform yet.



Y. Ribot, G. Nelissen, and E. Tovar

Recently, Wasly et al. in [39] proposed a new buffer-less NoC for real-time systems. Their
NoC is called HopliteRT. The design of HopliteRT ensures that the WCCT of packets is
upper-bounded. HopliteRT* is an evolution of HopliteRT proposed in [31]. It introduces a
notion of quality of service in the routing policy and uses a circulant topology in order to
improve the packets’ WCCT in comparison to HopliteRT.

In [32], various routing strategies, i.e., table routing, Clockwise routing and Adaptive
routing, were studied for two-dimensional ring circulant networks. The author shows that
several characteristics of NoCs are improved in comparison to mesh and torus topologies
when circulant graphs are used as a topological basis.

From a 3D-NoC perspective, Park et al. [28] proposed a Multi-layered on-chip Interconnect
Router Architecture (MIRA). Their approach assumes 3D processor designs (i.e., processor
cores partitioned into multiple layers), and is therefore inadequate for existing highly optimized
2D processor designs. In [9], Ghidini et al. presented a 3D-NoC mesh architecture called Lasio
relying on wormhole switching with FIFO queues. In order to minimize packet communication
latency and NoC area, Tiny 3D mesh NoC was later proposed in [22]. Tiny NoC reduces the
number of routers and links in the network by connecting multiple programming elements to
the same router. This solution minimizes the total NoC area as compared to Lasio NoC,
however, average packets latency improves only when there are few flows and/or under a low
packet injection rate. In [4], a 3D NoC architecture based on De-Bruijn graph was proposed.
Tree-based interconnect architectures have been also considered in some works [13, 14, 12].
However, they are very complex to implement due to their irregular and complex network
topologies. In [8], a NoC/Bus-based hybrid 3D architecture was proposed, but the approach
suffers from low throughput due to inefficient hybridization between the NoC and bus media.

To the best of our knowledge, none of the 3D-NoC solutions developed so far targets
real-time systems. Therefore, they do not provide guaranteed upper-bounds on the packets
WCCT, and do not come with a WCCT analysis. In this work, we develop a new real-time
D-dimensional NoC (with D > 2) and its associated timing analysis.

3 System model

In this paper, we assume a system composed of N programming elements {71, ..., mx}. Each
programming element 7, is connected to a different router R, of a D-dimensional NoC. The co-
ordinates of a router R, in the D-dimensional network are noted (r{,r4,...,7%). Each program-
ming element 7, injects a set of n9 communication flows F'7 = {f{, f3, ..., f4} into the network.
A communication flow f; is defined by the parameters {(5]1, sg, cey s%), (d{, dé, cey d{D), C;,T;}.
A communication flow f; generates a potentially infinite number of packets that are injected
at coordinates (sjl, sé, e SJD) of the NoC and must reach the programming element at co-
ordinates (d{, dé, e d]b). f; respects a minimum inter-arrival time 7; between the generation
of every two packets. Each packet sent by flow f; is divided in Cj flits that are sequentially
injected in the network. Each flit has a size Sy;;; (in bits). We assume that all the routing
information is encoded in each flit of the packet, i.e., there is no distinction between header,
body or tail flits. The routing information is the coordinates of the destination programming
element of the associated flow.

In the rest of this paper, we use the notations Roig(f;) and Rges:(f;) to refer to the
origin and destination router of flow f;, respectively. That is, Rorig(f;) has coordinates
(81,83, ...,87) and Rgest(f;) has coordinates (d},d3, ..., d%).

5:3

ECRTS 2021



5:4 nDimNoC: Real-Time D-dimensional NoC

—D
@ G850 (000 _1721 or®
=== —D; L — 0,
< N\ s 3 IPE_>
(3:1:0) a’l’.“*\\‘i‘ (0;1;0) '
" {7 X ‘\
(3:0:1) %V \\\‘. (0:131) L 0%E
2
"‘ i IPE—> 02
oo | X G 2
A
2:1:1) %\\ GER)
\‘\\ 0%F
@0 [K{ S
.‘; ID — 1PE — OD
@01 gy (1) b
(a) Circulant topology C(16;1,2,4). (b) Equiv. 4x2x2 grid- (c) nDimNoc router archi-
based 3D-network. tecture.

Figure 1 nDimNoc’s topology and router architecture.

4 nDimNoC architecture

In this section, we present nDimNoC. More specifically, we describe: (1) the network topology,
(2) the router architecture, and (3) the routing policy. We later provide the timing analysis
for nDimNoC in Section 5.

4.1 NoC topology

Consider a network composed of N routers Ry to Ry_1. In nDimNoC, the routers are
connected together according to a ring circulant topology C(N; g1, g2, ..., gp) where g = 1, N
is the total number of routers, D indicates the dimensionality of the network, and ¢1, g2, ..., gp
are the generatrices of the network. We assume that the generatrices follow the following
properties: 1 =¢1 < g3 < ... < gp < N, and that their values are harmonic (i.e., for any pair
of generatrices g; and g; such that ¢ < j, g; is a divider of g;). Under the circulant topology
C(N;1,g2,...,9p), all routers have D inputs I1, I, ..., Ip and D outputs O1,Oa,...,Op for
inter-routers communications. All routers are connected by a single unidirectional ring using
one of their inputs and one of their outputs (see blue line in Figure 1a). Then, each router
is also connected to the routers that are go, gs, ..., gp hops away on the ring (see red, green
and black lines in Figure 1a). Formally stated, for each router R, (with 0 < ¢ < N), its u®
output port O, (1 <u < N) is connected to the u** input port I, of the router R44g.) mod N-

A circulant network C'(N;1,¢s,...,gp) may also be represented as a S1xS9x...xSp grid-
based D—dimeniign_al) network, where Sy, 59, ...5p correspond to the number of routers on

the dimension D1,Ds,...,Dp, respectively. The size of the network on each dimension can
be computed as follows Sy = &, Sy = 42 G, = =L G, — 92 The coordinates
9o 9dD-1 9gpD-—2 g1

(ri,rd,...,r}) of a router R, defines the position of the router R, in the grid representation.

As an example, Fig. 1a shows the circulant network C(16;1,2,4). In Fig. 1b, we provide
the equivalent representation as a 4x2x2 grid-based 3-Dimensional network of the circulant
network shown in Fig. 1la. The red, green, and blue links in Fig. la correspond to the red,
green, and blue links in Fig. 1b, respectively.



Y. Ribot, G. Nelissen, and E. Tovar

In the rest of this paper, we often reason about the position pos? of a router R, on the
main unidirection ring of the circulant topology. That position can be inferred from the
coordinates of the router in the grid topology as follows

D

pos? = Zrz X gD—k+1 (1)
k=1

To simplify some of our further discussions, we define the helping function dist(R,, R.,)
as the distance between routers R, and R, on the main ring, i.e.,

dist(Rg, Rim) = (pos™ — pos? + N) mod N (2)
Note that the following properties hold for circulant topologies.

_>
» Property 1. Let Ry be a router at which flit p is located. After one hop on dimension D,
of the network, flit p reaches a router R, located gp_,+1 steps further on the main ring of
the network, i.e., dist(R;, Rm) = gp—ut1-

Finally, we define ring, (R,) as the set of routers that are on the same ring of dimension
H
D, as Ry. That is,

ring,(Ry) ={R; | Vb€ [u+1,D], ré =ri} (3)

As an example, let Ry be the router at coordinates (0;0;0) in Figure la, then all the
routers connected by the green links are in ring; (Rp), and all the routers connected by red
links are in ring,(Rp).

4.2 Router architecture

In order to reduce implementation cost in terms of hardware resources utilization and network
analysis complexity, nDimNoC does not use VCs and does not rely on extensive buffer.

As we discuss in the previous section, nDimNoC routers have D inputs (i.e., I, I, ...,
Ip) and D output ports (i.e., O1, Oa, ..., Op) connected to neighboring routers to allow for
inter-routers communication (see Fig. 1c). In addition, all routers also have D input ports
(i.e., IPE IPE . IEF) that may be used by the programming element to inject packets

into the network. Therefore, in total, each router has 2 x D input ports a_n)d D output ports.

A programming element can inject packets on any of the D dimensions Dq,Ds,...,Dp of the
network by using the input ports I{% IFE . IEF respectively. Therefore, several packets
may be injected to different dimensions simultaneously. Thus, the waiting times suffered by
the packets inside the programming elements decreases. Indeed, in solutions that support a
single input port to inject packets into the network, all packets compete for the same input
port. In nDimNoc, however, a packet that is waiting to be injected into the network only
conflicts with the subset of packets that must be injected to the same input port I7F.

» Property 2. In this paper, we assume that a flit of a flow f; with origin and destination
coordinates (3{., 3, o s7,) and (di,d}, ...7de) is injected in the network using port IF'F if
and only if s/, # d), andVz |u <z < D,sl =dl.

From Property 2, we get that all the packets of a given flow will be injected using the
same input port.

The ports Oy, Oas,..., Op of a router are connected to the ports I, Is,..., Ip of its
neighboring routers, but also serve as inputs to the programming elements. That is, the
programming element connected to a router can reads packets from all the output ports

5:5

ECRTS 2021



5:6

nDimNoC: Real-Time D-dimensional NoC

Table 1 Generic routing policy table of nDimNoC with D dimensions.

Rule | Flows Conflicting | Routing Explanation

requests requests decisions

1 Ip — Op None Ip — Op No contention over Op.

2 Ip — O Any Ip — O Ip — O always wins.

3 None I, — Oy, No contention over O,,.

L, — O,

4 I,—1 deflec- | I, = Oy41 | Flows coming from the I,—; and I, ports

ted to O, conflict over O,. I,—1 — O, always wins
over I, = O,. The flow coming from the I,
port is deflected to the O, 41 port.

5 None or I, — O1 No flow entering by a port on a higher dimen-

Ly, — O Tycuw — O1 sion than I, requests O1. I, — O1 wins.

6 Ty>u I, — Ouy41 | A flow entering by a port on a higher dimen-
sion than [, wins O;. The flow coming from
the I, port is deflected to the O,41 port.

7 PE None IPE — O, | There is no flow coming from another port

L™ = Ou that requests Oy. The flow on ITF is injected
in the network via O,.

8 I, — Oy None The flow waiting on the Lf’ E port conflicts
and/or I,—1 over the O, port with flows coming from
deflected to neighboring routers. Since flows from IFF
Oy have the lowest priority, the flow waiting on

the ITP port is not injected in the network.

O1, Os,..., Op. We show this property (i.e., that the programming element has read-access
to all output ports of the router) using the notations OF? OL® ...) OFF in Fig. lc. We
assume that a programming element can read packets from several different output ports
simultaneously. This may be done by considering that each programming element has a
FIFO queue connected to each port OFF (with 1 < u < D). We assume that those FIFO
