
33rd Euromicro Conference on
Real-Time Systems

ECRTS 2021, July 5–9, 2021, Virtual Conference

Edited by

Björn B. Brandenburg

LIPIcs – Vo l . 196 – ECRTS 2021 www.dagstuh l .de/ l ip i c s

Editor

Björn B. Brandenburg
Max Planck Institute for Software Systems, Kaiserslautern, Germany
bbb@mpi-sws.org

ACM Classification 2012
Computer systems organization → Embedded and cyber-physical systems; Computer systems organization
→ Real-time systems; Software and its engineering → Real-time systems software

ISBN 978-3-95977-192-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-192-4.

Publication date
July, 2021

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECRTS.2021.0

ISBN 978-3-95977-192-4 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0001-8254-3815
mailto:bbb@mpi-sws.org
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECRTS.2021.0
https://www.dagstuhl.de/dagpub/978-3-95977-192-4
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECRTS 2021

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Björn B. Brandenburg . 0:vii

Organizers
. 0:ix–0:xi

Vicuna: A Timing-Predictable RISC-V Vector Coprocessor for Scalable Parallel
Computation

Michael Platzer and Peter Puschner . 1:1–1:18

A Memory Scheduling Infrastructure for Multi-Core Systems with
Re-Programmable Logic

Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso . 2:1–2:22

Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+
MPSoC

Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and
Francisco J. Cazorla . 3:1–3:26

Governing with Insights: Towards Profile-Driven Cache Management of
Black-Box Applications

Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso . 4:1–4:25

nDimNoC: Real-Time D-dimensional NoC
Yilian Ribot González, Geoffrey Nelissen, and Eduardo Tovar . 5:1–5:22

Light Reading: Optimizing Reader/Writer Locking for Read-Dominant
Real-Time Workloads

Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward 6:1–6:22

Schedulability Analysis for Multi-Core Systems Accounting for Resource Stress
and Sensitivity

Robert I. Davis, David Griffin, and Iain Bate . 7:1–7:26

Response Time Bounds for DAG Tasks with Arbitrary Intra-Task Priority
Assignment

Qingqiang He, Mingsong Lv, and Nan Guan . 8:1–8:21

Graceful Degradation in Semi-Clairvoyant Scheduling
Sanjoy Baruah and Pontus Ekberg . 9:1–9:21

Hard Real-Time Stationary GANG-Scheduling
Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen 10:1–10:19

Tight Tardiness Bounds for Pseudo-Harmonic Tasks Under Global-EDF-Like
Schedulers

Shareef Ahmed and James H. Anderson . 11:1–11:24

Feasibility Analysis of Conditional DAG Tasks
Sanjoy Baruah and Alberto Marchetti-Spaccamela . 12:1–12:17

Scheduling Replica Voting in Fixed-Priority Real-Time Systems
Pietro Fara, Gabriele Serra, Alessandro Biondi, and Ciro Donnarumma 13:1–13:21

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

A Residual Service Curve of Rate-Latency Server Used by Sporadic Flows
Computable in Quadratic Time for Network Calculus

Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille 14:1–14:21

Stability and Performance Analysis of Control Systems Subject to Bursts of
Deadline Misses

Nils Vreman, Anton Cervin, and Martina Maggio . 15:1–15:23

On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems
Filip Marković, Alessandro Vittorio Papadopoulos, and Thomas Nolte 16:1–16:22

Preface

Message from the Chairs

It is our pleasure to welcome you to ECRTS 2021, the second — and hopefully last — fully
virtual instance of the conference. ECRTS is the premier European conference series in the
area of real-time systems and, alongside RTSS and RTAS, ranks as one of the top three
international conferences on this topic.

As we all wait for travel and life in general to normalize again, we are delighted to have
you join us for an exciting online program consisting of both scientific talks and opportunities
for socializing and networking. The centerpiece of the program will be a series of live
presentations introducing new results spanning the entire domain of real-time systems, from
algorithmic foundations to applied systems.

ECRTS 2021 received a total of 84 submissions from Asia, Europe, and North America.
Each submission was reviewed by at least three expert members of the program committee
(PC) and discussed at a virtual PC meeting that took place on April 19 and 20, 2021.
Ultimately, the PC decided to accept 16 papers for publication and presentation, which
translates to an acceptance rate of 19%.

ECRTS has been at the forefront of recent innovations in the real-time systems community
such as artifact evaluation and open-access proceedings. Continuing its tradition of innovation,
ECRTS trialed a flexible page limit this year. We believe that scientists should focus on the
content of their papers, and not worry too much about formatting tricks and layout micro-
optimizations to squeeze the last few paragraphs under a given hard page limit. Authors
should invest their time into making their manuscripts more compelling and more appealing
to readers, not into fighting LaTeX to comply with ultimately somewhat arbitrary page limits.
In this spirit, rather than policing formatting violations “with an iron fist,” the flexible page
limit introduced this year aimed at reducing the incentive for space hacks in the first place
by giving authors the option to submit manuscripts exceeding the typical length of 15-18
pages of content.

As the flexible page limit is a “new feature” without precedent in the community, cautious
rules were put in place. These rules required authors to provide a short justification of their
need for extra pages, and to obtain a priori permission from the PC Chair to submit a
manuscript exceeding the 18-page soft limit. Similarly, the policy allowed authors to request
additional pages for the camera-ready versions of their papers. This allowed reviewers and
shepherds to ask for expanded discussions, and gave authors the liberty to address reviewer
feedback fully even if it required additional space. The resulting variation in paper lengths is
reflected in these proceedings.

Ultimately, 9 out of 84 submissions made use of the flexible page policy to submit
manuscripts exceeding 18 pages of content (10.7%). Among the 16 papers accepted for
publication, 2 comprised more than 18 pages of content at the time of submission (12.5%).
It should be noted that the flexible page limit did not result in excessive amounts of content
that would have exceeded the limits or nature of a conference paper, which is perhaps not
surprising as concision is of course a hallmark of good academic writing.

Overall, we believe that the flexible page policy is a success in two ways: the PC was freed
from concerning itself with formatting minutiae and the policy made a positive difference for
some of the authors who opted to make use of it. However, uptake by the community was

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Preface

more subdued than expected. As of now, it is still undecided whether the page limit will
remain flexible (in a revised manner) in future years, or wether the conference series will
revert to a more traditional hard limit.

Double-blind peer reviewing is another innovation successfully adopted in 2021, meaning
that authors submitted blinded manuscripts that left reviewers unaware of the names and
affiliations of the authors. As a result, all major conferences of the real-time systems
community now follow a largely similar double-blind peer-reviewing process, which we
welcome as significant community-wide change for the better that has been accomplished in
just a few short years, thanks to the efforts by many in the community. We are thankful to
have had the opportunity to play a small role in this transition and are hopeful that it will
promote the fairness and the meritocratic nature of the evaluation process.

A major conference such as ECRTS rests on many shoulders. First of all, we thank the
PC members for their hard work and outstanding service, and in particular for delivering
high-quality reviews on time despite a very tight timeline and all the burdens of a strange
and difficult year. Similarly, we are grateful to all external and secondary reviewers, who
provided many valuable perspectives and important feedback. We are especially grateful
to those PC members and additional reviewers who went “above and beyond” serving as
anonymous shepherds — you know who you are. We would also like to extend our thanks to
the Artifact Evaluation Chairs Alessandro Biondi and Angeliki Kritikakou and their board
of Artifact Evaluators for running the AE process. Finally, we thank the new Euromicro
Real-Time Technical Committee (TC) for its trust in us and their valuable guidance along
the way.

Our very special thanks go to the former, long-serving Euromicro Real-Time TC Chair
Gerhard Fohler for making ECRTS what it is today. Thank you, Gerhard! You have built
and nurtured something very special here. The new TC will have to work hard to live up to
the example you set.

Last but not least, we thank all authors for submitting their work to ECRTS 2021.
Whether or not it was ultimately accepted for publication, we deeply appreciate your fine
work and the tremendous effort and care that has gone into it; this conference would not be
possible without you.

Thanks to the authors, we are looking forward to an inspiring, high-quality program.
Please join us in enjoying both the science and everything around it — not just despite, but
especially in these trying times.

Marcus Völp
General Chair, ECRTS 2021

Björn Brandenburg
Program Chair, ECRTS 2021

Organizers

Euromicro Real-Time Technical Committee

Sebastian Altmeyer, University of Augsburg, Germany
Sophie Quinton, INRIA Grenoble Rhône-Alpes, France
Marcus Völp, SnT, University of Luxembourg

General Chair

Marcus Völp, SnT, University of Luxembourg

Program Chair

Björn B. Brandenburg, Max Planck Institute for Software Systems (MPI-SWS), Germany

Artifact Evaluation Chairs

Alessandro Biondi, Scuola Superiore Sant’Anna – Pisa, Italy
Angeliki Kritikakou, IRISA, Rennes, France

Program Committee

Benny Akesson, University of Amsterdam / TNO, The Netherlands
Sebastian Altmeyer, University of Augsburg, Germany
Jim Anderson, University of North Carolina at Chapel Hill, USA
Sanjoy Baruah, Washington University in St. Louis, USA
Enrico Bini, Università degli Studi di Torino, Italy
Konstantinos Bletsas, CISTER, ISEP, Polytechnic Institute of Porto, Portugal
Florian Brandner, Télécom Paris, France
Giorgio Buttazzo, Scuola Superiore Sant’Anna – Pisa, Italy
Marco Caccamo, TU Munich, Germany
Daniel Casini, Scuola Superiore Sant’Anna – Pisa, Italy
Francisco Cazorla, Barcelona Supercomputing Center, Spain
Thidapat Chantem, Virginia Tech, USA
Jian-Jia Chen, TU Dortmund, Germany
Dakshina Dasari Robert Bosch GmbH, Germany
Robert Davis University of York, UK
Pontus Ekberg, Uppsala University, Sweden
Rolf Ernst, TU Braunschweig, Germany
Nathan Fisher, Wayne State University, USA
Gerhard Fohler, TU Kaiserslautern, Germany
Joël Goossens, Université libre de Bruxelles ULB, Belgium
Giovani Gracioli, Federal University of Santa Catarina, Brazil
Mohamed Hassan, McMaster University, Canada
Angeliki Kritikakou, Univ Rennes, Inria, IRISA, France
Martina Maggio, Saarland University, Germany
Renato Mancuso, Boston University, USA
Ahlem Mifdaoui, University of Toulouse, France
33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Preface

Mitra Nasri, Eindhoven University of Technology, The Netherlands
Claire Pagetti, ONERA, France
Alessandro Papadopoulos, Mälardalen University, Sweden
Gabriel Parmer, George Washington University, USA
Risat Mahmud Pathan, Zenseact AB, Sweden
Rodolfo Pellizzoni, University of Waterloo, Canada
Isabelle Puaut, Université de Rennes 1/ IRISA, France
Christine Rochange, University of Toulouse, France
Selma Saidi, TU Dortmund, Germany
Simon Schliecker, Volkswagen AG, Germany
Corey Tessler, Towson University, USA
Marcus Völp, University of Luxembourg
Georg von der Brüggen, Max Planck Institute for Software Systems (MPI-SWS), Germany
Peter Wägemann, Friedrich-Alexander University Erlangen-Nürnberg, Germany
Heechul Yun, University of Kansas, USA

Artifact Evaluators

Tanya Amert, University of North Carolina at Chapel Hill, USA
Matthias Becker, KTH, Sweden
Bryan Donyanavard, San Diego State University, USA
Romain Jacob, ETH Zurich, Switzerland
Leonidas Kosmidis, Barcelona Supercomputing Center, Spain
Paolo Pazzaglia, Saarland University, Germany
Benjamin Rouxel, University of Amsterdam, The Netherlands
Fernando Fernandes dos Santos, Universidade Federal do Rio Grande do Sul, Brazil
Lea Schönberger, TU Dortmund, Germany
Stefanos Skalistis, Collins Aerospace, Ireland

Additional Reviewers

Jaume Abella Shareef Ahmed Ibrahim Alkoudsi
Abderaouf Nassim Amalou Mihail Asavoae Muhammad Ali Awan
Zhenyu Bai Joshua Bakita Nicolas Bellec
Antoine Bertout Benjamin Binder Alessandro Biondi
Tobias Blass Frédéric Boniol Étienne Borde
Marc Boyer Sergey Bozhko Thomas Carle
Hugues Cassé Pierre-Julien Chaine Kuan-Hsun Chen
Mitchell Duncan Bssel El Mabsout Ian Elmor Lang
Gautam Gala Adrien Gauffriau Golsana Ghaemi
Mario Günzel Arne Hamann Xinyu Han
Florian Heilmann Denis Hoornaert Mehdi Hosseinzadeh
Jeff Ichnowski Tomasz Kloda Leonidas Kosmidis
Kristin Krüger Ching-Chi Lin Felipe Lisboa
Claudio Mandrioli Sean McBride Enrico Mezzetti
Reza Mirosanlou Tanmaya Mishra Naresh Nayak
Geoffrey Nelissen Catherine Nemitz Federico Nesti
Luiz Neto Sims Osborne Marco Pagani
Runyu Pan Paolo Pazzaglia Sophie Quinton

Preface 0:xi

Fatima Raadia Jan Reineke Tim Rheinfels
Carlos Rodriguez Shahin Roozkhosh Debayan Roy
Gero Schwäricke Alejandro Serrano Wenyuan Shao
Junjie Shi Jayati Singh Stefanos Skalistis
Parul Sohal Pascal Sotin Hamid Tabani
Stephen Tang Dharmesh Tarapore Niklas Ueter
Sergey Voronov Aaron Willcock Tyler Yandrofski
Patrick Meumeu Yomsi

ECRTS 2021

Vicuna: A Timing-Predictable RISC-V Vector
Coprocessor for Scalable Parallel Computation
Michael Platzer #

TU Wien, Institute of Computer Engineering, Austria

Peter Puschner #

TU Wien, Institute of Computer Engineering, Austria

Abstract
In this work, we present Vicuna, a timing-predictable vector coprocessor. A vector processor
can be scaled to satisfy the performance requirements of massively parallel computation tasks,
yet its timing behavior can remain simple enough to be efficiently analyzable. Therefore, vector
processors are promising for highly parallel real-time applications, such as advanced driver assistance
systems and autonomous vehicles. Vicuna has been specifically tailored to address the needs
of real-time applications. It features predictable and repeatable timing behavior and is free of
timing anomalies, thus enabling effective and tight worst-case execution time (WCET) analysis
while retaining the performance and efficiency commonly seen in other vector processors. We
demonstrate our architecture’s predictability, scalability, and performance by running a set of
benchmark applications on several configurations of Vicuna synthesized on a Xilinx 7 Series FPGA
with a peak performance of over 10 billion 8-bit operations per second, which is in line with existing
non-predictable soft vector-processing architectures.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Real-time Systems, Vector Processors, RISC-V

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.1

Supplementary Material Software: https://github.com/vproc/vicuna

1 Introduction

Worst-Case Execution Time (WCET) analysis, which is essential to determine the maximum
execution time of tasks for real-time systems [46], has struggled to keep up with the advances
in processor design. Numerous optimizations such as caches, branch prediction, out-of-order
execution, and speculative execution have made the timing analysis of processing architectures
increasingly complex [45]. As a result, the performance of processors suitable for real-time
systems usually lags behind platforms optimized for average computational throughput at
the cost of predictability. Yet, the performance requirements of real-time applications are
growing, particularly in domains such as advanced driver assistance systems and self-driving
vehicles [23], thus forcing system architects to use multi-core architectures and hardware
accelerators such as Graphics Processing Units (GPUs) in real-time systems [13]. Analyzing
the timing behavior of such complex heterogeneous systems poses additional challenges as it
requires a timing analysis of the complex interconnection network in addition to analyzing
the individual processing cores of different types and architectures [36, 9].

However, current trends motivated by the quest for improved energy-efficiency and the
emergence of massively data-parallel workloads [8] have revived the interest in architectures
that might be more amenable to WCET analysis [29]. In particular, vector processors are
promising improved energy efficiency for data-parallel workloads [7] and have the potential
to reduce the performance gap between platforms suitable for time-critical applications and
mainline processors [29].

© Michael Platzer and Peter Puschner;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 1; pp. 1:1–1:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.platzer@tuwien.ac.at
https://orcid.org/0000-0002-5103-8848
mailto:peter@vmars.tuwien.ac.at
https://orcid.org/0000-0002-2495-0778
https://doi.org/10.4230/LIPIcs.ECRTS.2021.1
https://github.com/vproc/vicuna
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Vector processors are single-instruction multiple-data (SIMD) architectures, operating on
vectors of elements instead of individual values. The vector elements are processed simultan-
eously across several processing elements as well as successively over several cycles [2]. A single
vector instruction can operate on a very large vector, thus amortizing the overhead created
by fetching and decoding the instruction, which does not only increase its efficiency [4] but
also means that complex hardware-level optimizations become less effective [29]. Therefore,
vector processors can drop some of these optimizations and thus improve timing predictability
without notable performance degradation.

While vector processors have the potential to greatly simplify timing analysis compared to
other parallel architectures, existing vector processing platforms retain features that impact
timing-predictability, such as out-of-order execution or banked register files [5]. Even if some
vector architectures have simple in-order pipelines, they still exhibit timing anomalies (i.e.,
undesired timing phenomena which threaten timing predictability). Timing anomalies occur,
for instance, when memory accesses are not performed in program order [16], such as when
memory accesses by the vector unit interfere with accesses from the main core.

In this paper, we present a novel vector coprocessor addressing the needs of time-critical
applications without sacrificing performance. Our key contributions are as follows:

1. We present a timing-predictable 32-bit vector coprocessor implemented in SystemVerilog
that is fully compliant with the version 0.10 draft of the RISC-V vector extension [34].
All integer and fixed-point vector arithmetic instructions, as well as the vector reduction,
mask, and permutation instructions described in the specification, have been implemented.
Vicuna is open-source and available at https://github.com/vproc/vicuna.

2. We integrate our proposed coprocessor with the open-source RISC-V core Ibex [37] and
show that this combined processing system is free of timing anomalies while retaining a
peak performance of 128 8-bit multiply-accumulate (MAC) operations per cycle. The
combined processing system runs at a clock frequency of 80 MHz on Xilinx 7 Series
FPGAs, thus achieving a peak performance of 10.24 billion operations per second.

3. We evaluate the effective performance of our design on data-parallel benchmark ap-
plications, reaching over 90 % efficiency for compute-bound tasks. The evaluation also
demonstrates the predictability of our architecture as each benchmark program always
executes in the exact same number of CPU cycles.

This work is organized as follows. Section 2 introduces prior work in the domains of
parallel processing and vector architectures. Then, Section 3 presents the design of our
vector coprocessor Vicuna and Section 4 analyzes the timing behavior of our processing
system. Section 5 evaluates its performance on several benchmark algorithms, and Section 6
concludes this article.

2 Background and Related Work

This section gives an overview of existing parallelized computer architectures and vector
processors in particular and compares them to our proposed timing-predictable vector
coprocessor Vicuna. Table 1 summarizes the main aspects.

2.1 Parallel Processing Architectures
In the mid-2000s, power dissipation limits put an end to the acceleration of processor clock
frequencies, and computer architects were forced to exploit varying degrees of parallelism
in order to further enhance computational throughput. A relatively simple approach is to

https://github.com/vproc/vicuna

M. Platzer and P. Puschner 1:3

Table 1 Performance and timing predictability of parallel computer architectures.

Processor
Architecture

Multi-
Core
CPU

General-
purpose

GPU

Domain-
Specific

Accelerators

Existing
Vector

Processors

Timing-
Predictable
Platforms

Vicuna
(Our
work)

General-
purpose ✓ ✓ ✓ ✓ ✓

Efficient
parallelism ✓ ✓ ✓ ✓

Timing-
predictable ✓ ✓ ✓

Max. OPs
per sec (·109)
FPGA / ASIC

2.2∗ /
1 200 ∗∗

3.2 † /
35 000 ††

5 000 ‡ /
45 000 ‡‡ 15 § / 128 §§ 2.4¶ / 49 ¶¶ 10 / —

∗ 16-core Cobham LEON3
∗∗ 344-core Ambric Am2045B

† FlexGrip soft GPU [1]
†† NVIDIA RTX 3090

‡ Srinivasan et al. [42]
‡‡ Google TPU [21]
§ 32-lane VEGAS [6]

§§ 16-lane PULP Ara [5]

¶ 15-core T-CREST Patmos [38]
¶¶ 8-core ARM Cortex-R82

replicate a processor core several times, thus creating an array of independent cores each
executing a different stream of instructions. This multiple-instruction, multiple-data (MIMD)
paradigm [11] is ubiquitous in today’s computer architectures and has allowed a continued
performance increase. Timing-predictable multi-core processors have been proposed for
time-critical parallel workloads, most notably the parMERASA [43] and the T-CREST [38]
architectures, which demonstrated systems with up to 64 and 15 cores, respectively. A
similar timing-predictable multi-core architecture utilizing hard processing cores connected
by programmable logic has been implemented recently on an Multiprocessor System-on-
Chip (MPSoC) platform [14]. However, several of the workloads capable of efficiently
exploiting this parallelism are actually highly data-parallel, and as a consequence, the many
cores in such a system frequently all execute the same sequence of instructions [7]. The
fetching and decoding of identical instructions throughout the cores represent a significant
overhead and increase the pressure on the underlying network infrastructure connecting
these cores to the memory system [28, 41]. Consequently, the effective performance of a
multi-core system does not scale linearly as more cores are added. For the T-CREST platform,
Schoeberl et al. report that the worst-case performance for parallel benchmark applications
scales only logarithmically with the number of cores [38]. As an alternative to multi-core
architectures, some timing-predictable single-core processors exploit parallelism by executing
multiple independent hardware threads [26, 50], thus avoiding the overhead of a complex
interconnection network. Yet, the scalability of this approach is limited since it does not
increase the available computational resources.

An architecture that overcomes many of the limitations of multi- and many-core systems
for highly parallel workloads are general-purpose GPUs (also referred to as GPGPUs) [31].
GPUs utilize data-parallel multithreading, referred to as the single-instruction multiple-
threads (SIMT) paradigm [27], to achieve unprecedented energy-efficiency and performance.
GPUs are used as data-parallel accelerators in various domains and have found their way
into safety-critical areas such as autonomous driving [23, 13]. However, their use in hard
real-time systems still poses challenges [9]. GPUs are usually non-preemptive, i.e., tasks
cannot be interrupted, which requires software-preemption techniques to be used instead [13].
Also, contention among tasks competing for resources is typically resolved via undisclosed
arbitration schemes that do not account for task priorities [10].

ECRTS 2021

1:4 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Recently, special-purpose accelerators emerged as another type of highly parallel platform
that sacrifices flexibility and often precision [42] to achieve impressive performance for domain-
specific tasks. For instance, the Tensor Processing Unit (TPU) [21] is capable of 65536
8-bit MAC operations in one cycle, achieving a peak performance of 45 · 1012 operations per
second at a clock frequency of 700 MHz. Due to their simple application-specific capabilities,
the timing behavior of these accelerators is generally much easier to analyze [29]. While
domain-specific accelerators achieve impressive performance for a small subset of applications,
they are very inefficient at or even incapable of running other important algorithms, such
as Fourier Transforms, motion estimation, or encryption with the Advanced Encryption
Standard (AES). By contrast, a vector processor can execute any task that can be run on a
conventional processor.

As an alternative to parallelizing tasks across several cores or threads, single-instruction
multiple-data (SIMD) arrays have been added to several Instruction Set Architectures (ISAs).
These are usually fixed-size arrays using special functional units, one for each element in the
array, to apply the same operation to the entire array at once. However, array processors
require that the computational resources are replicated for each element of the longest
supported array [5].

2.2 Vector Processors
Vector processors are a time-multiplexed variant of array processors. Instead of limiting the
vector length by the number of processing elements, a vector processor has several specialized
execution units that process elements of the same vector across multiple cycles, thus enabling
the dynamic configuration of the vector length [7]. Fig. 1 shows how an instruction stream
with interleaved scalar and vector instructions executes on an array processor and a vector
processor, respectively. In an array processor, the entire vector of elements is processed at
once, and the processing elements remain idle during the execution of scalar instructions. In
the vector processor, functionality is distributed among several functional units, which can
execute in parallel with each other as well as concurrently with the scalar units.

Vector processors provide better energy-efficiency for data-parallel workloads than MIMD
architectures [7] and promise to address the van Neumann bottleneck very effectively [4]. A
single vector instruction can operate on a very large vector, which amortizes the overhead
created by fetching and decoding the instruction. In this regard, vector processors even
surpass GPUs, which can only amortize the instruction fetch over the number of parallel
execution units in a processing block [5].

Several supercomputers of the 1960s and 1970s were vector processors, such as the
Illiac IV [19] or the Cray series [35]. These early vector processors had functional units spread
across several modules containing thousands of ICs in total. At the end of the century, they

vld

ld

vmul

add

vmul0 vmul1 vmul2 vmul3

vld0 vld1 vld2 vld3

ld

add

Instructions Scalar units Array processing elements
PE0 PE1 PE2 PE3

 t

(a) Array processor.

vld

ld

vmul

add

vmul0

vmul2

vld1

vld3ld

add

Instructions Scalar units Vector units
VLSU VMUL

 t

vld0

vld2

vmul1

vmul3

(b) Vector processor.

Figure 1 Comparison of the execution patterns of array and vector processors. Instructions
prefixed with a v operate on a vector of elements, while the rest are regular scalar instructions.

M. Platzer and P. Puschner 1:5

were superseded by integrated microprocessor systems, which surpassed their performance
and were significantly cheaper [2]. While disappearing from the high-performance computing
domain, vector processors have continued their existence as general-purpose accelerators
in Field-Programmable Gate Arrays (FPGAs). Several soft vector processors have been
presented, such as VESPA [48], which adds a vector coprocessor to a 3-stage MIPS-I pipeline,
VIPERS [49], a single-threaded core with a vector processing unit, VEGAS [6], a vector
coprocessor using a cacheless scratchpad memory, VENICE [39], an area-efficient improved
version of VEGAS, or MXP [40], which added additional support for fixed-point computation.

In addition to FPGA-based accelerators, vector processors have also been explored as
energy-efficient parallel computing platforms. Lee et al. [25] proposed a vector architecture
named Hwacha, which is based on the open RISC-V ISA. The instruction set for Hwacha has
been implemented as a custom extension. Despite sharing some features, it is incompatible
with the more recent official RISC-V vector extension. One of the first vector processors
based on the new RISC-V V extension is Ara, developed by Cavalcante et al. [5], as a
coprocessor for the RISC-V core Ariane. Another recent architecture implementing the
RISC-V V extension named RISC-V2 has been proposed by Patsidis et al. [32].

While existing vector processors are less complex and easier to analyze than other parallel
architectures, they still use speed-up mechanisms which are a source of timing anomalies,
such as run-time decisions for choosing a functional unit [44], banked register files, and greedy
memory arbitration [16]. By contrast, our proposed vector processor avoids such mechanisms,
with negligible impact on its performance thanks to the vector processing paradigm’s inherent
effectiveness. Vicuna is free of timing anomalies and hence suitable for compositional timing
analysis.

3 Architecture of Vicuna

This section introduces the architecture of Vicuna, a highly configurable, fully timing-
predictable 32-bit in-order vector coprocessor implementing the integer and fixed-point
instructions of the RISC-V vector extension. The RISC-V instruction set is an open standard
ISA developed by the RISC-V foundation. It consists of a minimalist base instruction set
supported by all compliant processors and several optional extensions. The V extension
adds vector processing capabilities to the instruction set. RISC-V and the V extension are
supported by the GNU Compiler Collection (GCC) and the LLVM compiler.

Vicuna is a coprocessor and must be paired with a main processor. We use the 32-bit
in-order RISC-V core Ibex, developed initially as part of the PULP platform under the
name Zero-riscy [37], as the main processor. Ibex is a small core with only two pipeline
stages: an instruction fetch stage and a combined decode and execute stage. Ibex executes
all non-vector instructions, which we refer to as scalar instructions.

Vicuna is connected to the main core with a coprocessor interface through which instruc-
tion words and the content of registers are forwarded from the main core to the coprocessor,
and results can be read back. We added a coprocessor interface to Ibex to extend it with
Vicuna. Instruction words are forwarded to the vector core via this interface if the major
opcode indicates that it is a vector instruction. In addition to the instruction word, scalar
operands from the main core’s register file are also transmitted to the coprocessor since these
are required by some vector instructions which use the scalar registers as source registers,
such as for instance, a variant of the vector addition which adds a scalar value to every
element of a vector or the vector load and store instructions which read the memory address
from a scalar register.

ECRTS 2021

1:6 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

An overview of the architecture of Vicuna and its integration with Ibex as the main core
is shown in Fig. 2. Vicuna comprises a decoder for RISC-V vector instructions, which parses
and acknowledges valid vector instructions. Once Vicuna’s decoder has successfully decoded
a vector instruction, it acknowledges its receipt and informs the main core whether it needs
to wait for a scalar result. If the vector instruction produces no scalar result but instead
only writes to a vector register or memory, then the main core can proceed with further
instructions in parallel with the vector instruction’s execution on the coprocessor. However,
when a vector instruction writes back to a register in the main core, then the main core stalls
until the coprocessor has completed that instruction. Only four RISC-V vector instructions
produce a scalar result. Hence this scenario occurs rarely. Decoded vector instructions
are placed in an instruction queue where they await execution on one of the vector core’s
functional units. Vicuna is a strictly in-order coprocessor: Vector instructions from the
instruction queue are issued in the order they are received from the main core. A vector
instruction is issued as soon as any data hazards have been cleared (i.e., any instructions
producing data required by that instruction are complete) and the respective functional unit
becomes available.

Since our main goal is to design a timing-predictable vector processor, we refrain from
any features that cause timing anomalies, such as run-time decisions for choosing functional
units [44]. Both cores share a common 2-way data cache with a least recently used (LRU)
replacement policy, which always gives precedence to accesses by the vector core. Once a
vector instruction has been issued for execution on one of the functional units, it completes
within a fixed amount of time that depends only on the instruction type, the throughput of
the unit, and the current vector length setting. For vector loads and stores, the execution
time additionally depends on the state of the data cache, which is the only source of timing
variability. However, in-order memory access is guaranteed for scalar and vector memory

ID + EX StageIF Stage

Prefetch
buffer

Decoder

Reg File

ALU
V-Inst

rs1

rs2

W VLSU

Ibex
RV32IMC

Vicuna
RV32V

V-DecoderVReg File

VALU VMUL VSLDU VIDXU

Ack

LSU

Wait

32

32

I$

D$

M
em

or
y

A
rb

ite
r

Pending vector load / storeE
xt

er
na

l M
em

or
y

Figure 2 Overview of Vicuna’s architecture and its integration with the main core Ibex. Both
cores share a common data cache. To guarantee in-order memory access, the memory arbiter delays
any access following a cache miss by the main core until pending vector load and store operations
are complete. When accessing the data cache, the vector core always takes precedence.

M. Platzer and P. Puschner 1:7

operations by delaying any access following a cache miss in the main core until pending vector
load and stores are complete. Note that vector load and store instructions stall the main core
for a deterministic, bounded number of cycles since no additional vector instructions can
be forwarded to the vector core while the main core is stalled. This method is an extension
of the technique introduced by Hahn and Reineke [15] for the strictly in-order core SIC.
Due to the simple 2-stage pipeline of Ibex, conflicting memory accesses between its two
stages become visible simultaneously. In that situation, the memory arbiter maintains strict
ordering by serving the data access first.

Vicuna comprises several specialized functional units, each responsible for executing
a subset of the RISC-V vector instructions, which allows executing multiple instructions
concurrently. The execution units do not process an entire vector register at once. Instead,
during each clock cycle, only a portion of the vector register is processed, which may contain
several elements that are processed in parallel. Most array processors and several vector
processors are organized in lanes. Each lane replicates the computational resources required
to process one vector element at a time. In such a system, the number of lanes determines
the number of elements that can be processed in parallel, regardless of the type of operation.
By contrast, Vicuna uses dedicated execution units for different instruction types that each
process several elements at once. The ability to individually configure the throughput for
each unit improves the performance of heavily used operations by increasing the respective
unit’s data-path width (e.g., widening the data-path of the multiplier unit).

Some of the RISC-V vector instructions do not process the vector registers on a regular
element-wise basis. Instead, they feature an irregular access pattern, such as indexed
instructions, which use one vector register’s values as indices for reading elements from
another register, or the slide instructions, which slide all elements in a vector register up
or down that register. Vicuna uses different functional units for each vector register access
pattern, which allows us to implement regular access patterns more efficiently and hence to
improve the throughput of the respective unit, while complex access patterns require more
cycles.

Vicuna comprises the following execution units:
A Vector Load and Store Unit (VLSU) interfaces the memory and implements the vector
memory access instructions.
The Vector Arithmetic and Logical Unit (VALU) executes most of the arithmetic and
logical vector instructions.
A dedicated Vector Multiplier (VMUL) is used for vector multiplications.
The Vector Slide Unit (VSLDU) handles vector slide instructions that move all vector
elements up or down that vector synchronously.
A Vector Indexing Unit (VIDXU) takes care of the indexing vector instructions. It is the
only unit capable of writing back to a scalar register in the main core.

The VALU uses a fracturable adder for addition and subtraction, that consists of a series
of 8-bit adders whose carry chains can be cascaded for wider operations. Four cascaded
8-bit adders perform four 8-bit, two 16-bit, or one 32-bit operation depending on the current
element width. Similarly, the VMUL unit uses a fracturable multiplier to perform 8-bit,
16-bit, and 32-bit multiplications on the same hardware. Fracturable adders and multipliers
are commonly used for FPGA-based vector processors. We base our implementation on the
resource-efficient design that Chou et al. proposed for the VEGAS vector processor [6].

Selecting a relatively large sub-word from a large vector register consumes a substantial
amount of logic resources. Therefore, we avoid sub-word selection logic for all functional
units with a regular vector register access pattern. Instead, these units read the whole source

ECRTS 2021

1:8 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

vector registers into shift registers, as shown in Fig. 3 (a). The content of these is then shifted
by the number of elements that can simultaneously be processed by the unit each cycle, thus
making the next elements of the source vector register available to the processing pipeline.
Similarly, the results are aggregated into another shift register that saves the computed
elements until the entire vector is complete, upon which the whole vector register is written
back to the register file. The amount of combinatorial logic resources consumed by the shift
registers is less than those that are required by an index-based subword selection (they do,
however, require some extra flip-flops for buffering the whole vector register).

Vicuna’s vector register file contains 32 vector registers of configurable width. Multiple
read and write ports are required in order to supply the execution units operating in parallel
with operands and consume their results. We take advantage of the functional unit’s shift
registers, which fetch entire vector registers at once and accumulate results before storing a
whole register, to implement both read and write port multiplexing. Each functional unit
has a dedicated read port used to fetch the operand registers sequentially, storing them in
shift registers from where they are consumed iteratively. This adds one extra cycle when
fetching two operand registers but avoids the need for two read ports on each unit. As the
only exception, the VMUL unit has two read ports to better support the fused multiply-add
instruction, which uses three operands. Also, write ports are shared between units using
the circuitry shown in Fig. 3 (b). Due to the accumulation of results in shift registers
prior to write-back, a unit cannot write to the vector register file for two subsequent cycles.
Hence, whenever a collision between two units occurs on a shared write port, one unit
takes precedence and writes its result back first while the other unit writes its result into
a temporary buffer, from where it is stored to the register file in the subsequent cycle. A
second write request from the first unit cannot immediately follow the previous write. Hence
this delayed write-back is guaranteed to succeed. Regardless of whether the write-back is
delayed by one cycle or not, any data hazards of operations on units not taking precedence
on their shared write port are cleared one cycle after the operation completes to maintain
predictable instruction timings while accounting for a potentially delayed write-back.

Operand Shift Registers

Result Shift Register

Operand A Operand B

Result

Vreg read

Vreg write

(a) Organization of the vector ALU. Oper-
and registers are read sequentially into shift
registers and consumed over several cycles
by processing a fixed-width portion each
cycle. Results are again accumulated into a
shift register before write-back.

VALU

VLSU

write enable

write enable

VREG addr & data

VREG addr & data

Vector
Register

File } further
write ports{further

read
ports

&

≥1
write
enable

VREG addr & data

(b) The VALU and VLSU share a common write port,
with the VLSU always taking precedence. In case of a
collision, the value and address of the VALU write request
are temporarily saved and written to the vector register file
in the next cycle. Neither unit can write for two subsequent
cycles. Hence the delayed write always succeeds.

Figure 3 Reading and writing whole registers from the vector register file avoids subword selection
logic and allows multiplexing of read and write ports without affecting timing predictability.

M. Platzer and P. Puschner 1:9

Although multiplexing of both read and write ports is used to reduce the required number
of ports, the vector register file must still provide several concurrent ports. We decided
against banked registers, which allow concurrent access to registers of different banks but
introduce interdependencies between execution units which are a potential source of timing
anomalies in case two registers within the same bank are accessed simultaneously. Since a
large flip-flop-based register file does not scale well, we implemented it as multi-ported RAM.
The design has been inspired by work from Laforest et al. [24], who investigated ways of
constructing efficient multi-ported RAMs in FPGAs. We implemented it as an XOR-based
RAM since this allows selectively updating individual elements of a vector register for masked
operations.

4 Timing-Predictability

In this section, we analyze the timing-predictability of Vicuna and argue that it is free of
timing anomalies, thus enabling compositional timing analysis.

Timing predictability and timing compositionality are both essential properties to avoid
the need for exhaustively exploring all possible timing behaviors for a safe WCET bound
estimation. In particular, timing compositionality is necessary to safely decompose a timing
analysis into individual components and derive a global worst case based on local worst-case
behavior [18]. The presence of timing anomalies can violate both timing predictability and
compositionality.

A timing anomaly can either be a counterintuitive timing effect or a timing amplification.
Counterintuitive timing anomalies occur whenever the locally better case leads to a globally
worse case, such as a cache hit leading to increased global timing, thus inverting the expected
behavior. Amplification timing anomalies occur when a local timing variation induces a
larger global timing variation. While counterintuitive timing anomalies threaten the timing
predictability, amplification timing anomalies affect the timing compositionality [20].

Counterintuitive timing anomalies can occur, for instance, when an execution unit is
selected at run-time rather than statically [44]. In-order pipelines can also be affected by this
kind of anomalies for instructions with multi-cycle latencies [3]. While vector instructions
executed within Vicuna can occupy the respective functional unit for several cycles, there is
only one unit for each type of instruction, and hence there is no run-time decision involved
in the choice of that unit. The execution time of all vector instructions is completely
deterministic, thus avoiding counterintuitive timing anomalies.

Amplification timing anomalies can be more subtle to discover, as recently shown by
Hahn et al. [17], who identified the reordering of memory accesses on the memory bus as
another source for timing anomalies. The presence of amplification timing anomalies is due
to the non-monotonicity of the timing behavior w.r.t. the progress order of the processor
pipeline [15].

We show that Vicuna is free of amplification timing anomalies by extending the formalism
introduced by Hahn and Reineke [15] for their timing-predictable core SIC to our vector
processing system. A program consists of a fixed sequence of instructions I = {i0, i1, i2, . . . }.
During the program’s execution, the pipeline state is a mapping of each instruction to its
current progress. The progress P := S × N0 of an instruction is given by the pipeline stage
s ∈ S in which it currently resides, as well as the number n ∈ N0 of cycles remaining in that
stage. For our processing system, comprising the main core Ibex and the vector coprocessor
Vicuna, we define the following set of pipeline stages:

S = {pre, IF , ID+EX , VQ, VEU , postS , postV }

ECRTS 2021

1:10 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Analogous to the pipeline model used by Hahn and Reineke [15], we use the abstract
stages pre and post to model instructions that have not yet entered the pipeline or have
already left the pipeline, respectively. However, we distinguish between completed regular
(scalar) instructions and completed vector instruction by dividing the post stage into postS

and postV , respectively. IF is the main core’s fetch, while ID+EX denotes its combined
decode and execute stage. The vector coprocessor is divided into two abstract stages: VQ
represents the vector instruction queue, and VEU comprises all the vector execution units.
Vector instructions awaiting execution in the vector queue remain in program order, and
once a vector instruction has started executing on one of the vector core’s functional units, it
is no longer dependent on any other instruction since there are no interdependencies between
the individual vector units. Hence we do not need to explicitly model each of the concrete
stages in the vector core.

Guaranteeing the strict ordering of instructions requires the following ordering ⊏S of
these pipeline stages:

pre ⊏S IF ⊏S ID+EX
⊏S

⊏
S

postS

VQ ⊏S VEU ⊏S postV

Non-vector instructions exit the pipeline after the ID+EX stage, while vector instructions
enter the vector queue and eventually start executing on a vector execution unit. An
instruction that has fewer remaining cycles in a stage or is in a later stage than another
instruction has made more progress. Hence, for two instruction with current progress
(s, n), (s′, n′) ∈ P respectively, an order on the progress is defined as:

(s, n) ⊑P (s′, n′)⇔ s ⊏S s′ ∨ (s = s′ ∧ n ≥ n′)

The cycle behavior of a pipeline is monotonic w.r.t. the progress order ⊑P , if an instruc-
tion’s execution cannot be delayed by other instructions making more progress. For this
property to hold, an instruction’s progress must depend on previous instructions only and
never on a subsequent instruction [20]. Instructions are delayed by stalls in the pipeline.
Hence any pipeline stage must only be stalled by a subsequent stage.

The vector execution units cannot stall, except for the vector load and store unit in case
of a cache miss. Due to the strict ordering of memory accesses, the vector core cannot be
delayed by a memory access of the main core. Hence the VEU stage cannot be stalled by
any other stage. The vector queue holds instructions that await execution on a vector unit.
Thus the VQ stage can only be stalled by the VEU stage. The ID+EX stage, in turn, can
be stalled by an ongoing memory access of the vector core (the VEU stage), by a vector
instruction writing back to a scalar register, when a vector instruction has been decoded, but
the vector queue is full, or during memory loads and stores. Loads and stores are executed
while the IF stage fetches the next instruction. Hence in case of an instruction cache miss
on the subsequent instruction, a memory access by the ID+EX takes precedence over the
IF stage. Finally, the IF stage can be stalled by the ID+EX or by a memory access of
the vector core. Therefore, any pipeline stage of our processing system can only be stalled
by a subsequent stage. Hence, the progress order ⊑P of instructions is always maintained,
and instructions can only be delayed by previous instructions, but not by subsequent ones.
Consequently, the cycle behavior of our architecture is monotonic and hence free of timing
anomalies, which in turn is a sufficient condition for timing compositionality [20].

M. Platzer and P. Puschner 1:11

5 Evaluation

This section evaluates our vector coprocessor’s performance by measuring the execution
time of parallel benchmark applications on a Xilinx 7 Series FPGA with an external SRAM
with a 32-bit memory interface and five cycles of access latency. We evaluate a small,
medium, and fast configuration of Vicuna with vector register lengths of 128, 512, and 2048
bits, respectively. Table 2 lists the parameters for each configuration, along with the peak
multiplier performance and the maximum clock frequency.

The performance of parallel computer architectures on real-world applications is often
degraded by various bottlenecks, such as the memory interface. While a large number of
parallel cores or execution units might yield an impressive theoretical performance figure,
efficiently utilizing these computing resources can be challenging. The roofline model [47]
visualizes the performance effectively achieved by application code w.r.t. a processor’s peak
performance and memory bandwidth. The model shows the theoretical peak performance in
operations per cycle in function of the arithmetic intensity, which is the ratio of operations
per byte of memory transfer of an application. According to the roofline model, an algorithm
can be either compute-bound or memory-bound [30], depending on whether the memory
bandwidth or the computational performance limits the effectively achievable performance.
The computational capability of a core can only be fully utilized if the algorithmic intensity
of an application is larger than the core’s performance per memory bandwidth.

Fig. 4 shows the roofline performance model of each of the three configurations of Vicuna,
along with the effectively achieved performance for three benchmark applications, namely
weighted vector addition, matrix multiplication, and the 3 × 3 image convolution. The
dashed lines show each configuration’s performance boundary, i.e., the maximum theoretical
performance in function of arithmetic intensity. The horizontal part of these boundaries
corresponds to the compute-bound region, where the throughput of the multipliers limits
the performance. The diagonal portion of the performance boundary shows the memory-
bound region, where the memory bandwidth limits the performance. Applications with
a high arithmetic intensity are compute-bound, while memory-intensive applications with
a low arithmetic intensity are memory-bound. Markers indicate the effectively achieved
performance for each benchmark program.

The first benchmark is AXPY, a common building block of many Basic Linear Algebra
Subroutine (BLAS). AXPY is defined as Y ← αX + Y , where X and Y are two vectors, and
α is a scalar. Hence, this algorithm adds the vector X weighted by α to the vector Y . We
implement AXPY for vectors of 8-bit elements. For a vector of length n, it requires n 8-bit
MAC operations and 3n bytes of memory transfer, which gives the algorithm an arithmetic
intensity of 1/3, thus placing it in the memory-bound region for all three configurations.

Table 2 Configurations of Vicuna for evaluation on a Xilinx 7 Series FPGA. Note that for larger
configurations, the maximum clock frequency decreases slightly as these require more resources
which complicates the routing process.

Config.
Name

Configuration Parameters 8-bit
MACs

per cycle

Clock
frequency

(MHz)
Vector Reg. Multiplier Data- Data-Cache
Width (bit) Path Width (bit) Size (kB)

Small 128 32 8 4 100
Medium 512 128 64 16 90
Fast 2048 1024 128 128 80

ECRTS 2021

1:12 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

2

1

4

8

16

1

32

64

128

2 4 8 160.50.25
 39.2 %

 65.4 %
 84.2 %

32 64 128

G
E
M

M
2

5
6

x
2

5
6

C
O

N
V

3
x
3

A
X

PY
6

5
5

3
6

Pe
rf

o
rm

a
n
ce

 (
O

P
 /

 c
y
cl

e
)

 41.9 %

 63.8 %

 33.7 %

Arithmetic intensity (OP / byte)

Small

Medium

Fast

Vicuna configuration

 59.7 %

 88.7 %

 88.1 %

256 512

G
E
M

M
1

0
2

4
x
1

0
2

4

 99.0 %

 91.2 %

 99.5 %

Figure 4 Roofline plot of the performance results for the benchmark algorithms for each of
Vicuna’s three configurations listed in Table 2. The dashed lines are the performance boundaries
of each configuration, and the markers show the measured effective performance. The percentages
indicate the ratio of effective vs. theoretical performance.

The next benchmark program that we consider is the generalized matrix multiplication
(GEMM) C ← AB + C, which adds the product of two matrices, A and B, to a third matrix,
C. The arithmetic intensity of this algorithm depends on the size n× n of the matrices. It
requires loading each of the matrices A, B, and C and storing the result, which corresponds
to a minimum of 4n2 values that must be transferred between the core and memory. The
matrix multiplication itself requires n3 MAC operations. We again use 8-bit values, which
gives an arithmetic intensity of n/4 MACs per byte transferred. We evaluate Vicuna’s
performance for two matrix sizes, 256× 256 and 1024× 1024, with an arithmetic intensity of
64 and 256, respectively, which are heavily compute-bound.

Finally, we use the 3× 3 image convolution, which is at the core of many convolutional
neural networks (CNNs). This algorithm loads an input image, applies a 3× 3 convolution
kernel, and then stores the result back to memory. Hence, each pixel of the image must be
transferred through the memory interface twice, once for loading and once for storing. A
total of 9 MACs are applied per pixel. Thus the arithmetic intensity is 4.5.

The benchmark programs have been executed on all three configurations of Vicuna, and
the execution times were measured with performance counters. Table 3 lists the recorded
execution times. For all measurements, both data and instruction caches were initially cleared.
The results show that the performance of Vicuna scales almost linearly w.r.t. the maximum
throughput of its functional units, which is consistent with the capabilities observed in
high-performance vector processors. For highly compute-bound applications, such as the
matrix multiplication of size 1024× 1024, the multipliers are utilized over 90 % of the time
for the fast configuration and over 99 % of the time for the smaller variants.

The resource usage of Vicuna is similar to that of other FPGA-based vector processors.
Fig. 5 shows a radar chart that compares the fast configuration of Vicuna to the VESPA [48]
and the VEGAS [6] architectures (we compare configurations that have the same theoretical
peak performance of 128 8-bit operations). Other FPGA-based vector architectures, such

M. Platzer and P. Puschner 1:13

Table 3 Execution time measurements of the benchmark applications for each configuration.

Benchmark Execution time in CPU cycles on the respective configuration
Small Medium Fast

AXPY 108 985 58 693 41 989
CONV 214 486 92 852 61 719
GEMM 256 × 256 4 758 824 1 164 797 665 596
GEMM 1024 × 1024 268 277 942 67 467 224 9 182 492

as VIPERS or VENICE, have only demonstrated smaller configurations and thus are not
included in this comparison. While the amount of logic resources consumed by Vicuna is
similar to that of the other soft vector processors, its minimum clock period is larger. This is
primarily due to the latency of the vector register file’s read and write ports. VESPA can
only execute one operation at a time and does not support a fused multiply-add instruction,
thus requiring much fewer register file ports than Vicuna. VEGAS replaces the vector register
file with a scratchpad memory with only two read and write ports. Despite its lower clock
frequency, Vicuna achieves a higher effective performance than VESPA and VEGAS because
of its ability to execute several operations in parallel, which allows it to better utilize its
computational resources. For VEGAS, Chou et al. report an execution time of 4.377 billion
cycles for a 4096× 4096 matrix multiplication on a 32-lane configuration, which corresponds
to a multiplier utilization of only 49 %. Vicuna achieves an efficiency of over 90 % for
compute-bound workloads.

The efficiency of Vicuna is more in line with recent ASIC-based vector architectures, such
as Cavalcante et al.’s Ara [5] and Lee et al.’s Hwacha [25]. Both of these architectures achieve
over 90 % utilization of computational units, with Ara reaching close to 98 % for a 256× 256

Lookup Tables
(×103)

Flip-flops
(×103)

DSP blocks
(hardware multipliers)

On-chip RAM
(kbit)

Multiplier
idle time for

compute-bound
workload (%)

Clock period
(ns)

30

60

90

15 30 45

60

120

180

500

1000

1500

204060

4

8

12

32-lane VESPA

32-lane VEGAS

Vicuna
(fast config.)

Lower values are
better for all
parameters.

Figure 5 Resource utilization and performance of the FPGA-based vector processors Vicuna,
VESPA, and VEGAS (each configured for a peak performance of 128 8-bit operations per cycle).

ECRTS 2021

1:14 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

matrix multiplication on a configuration with 16 64-bit lanes. Yet, both Ara and Hwacha
use features that are a source of timing anomalies. Ara resolves banking conflicts for its
banked vector register file dynamically with a weighted round-robin arbiter that prioritizes
arithmetic operations over memory operations. Therefore, run-time decisions are involved
in the progress of instructions, and slow memory operations can be delayed by subsequent
arithmetic instructions. Hence, Ara likely exhibits both counterintuitive and amplification
timing anomalies [44]. While Hwacha sequences the accesses of vector register elements
in a way that avoids banking conflicts, it uses an out-of-order write-back mechanism and
consequently also suffers from timing anomalies. In addition, none of the existing vector
processors that we investigated maintains the ordering of memory accesses, particularly when
the main core and the vector core both access the same memory. Thus all these architectures
are plagued by amplification timing anomalies [16].

A feature distinguishing Vicuna from other vector processors is its timing-predictability
and compositionality. Vicuna is free of timing anomalies, enabling compositional timing
analysis required for efficient WCET estimation in real-time systems. While the performance
figures for Vicuna were obtained via measurements instead of a timing analysis, the predictable
nature and low timing variability of Vicuna, as well as the absence of data-dependent control-
flow branches in the benchmark programs, implies that their execution time is constant
(assuming that the cache is initially idle). Hence, the measured execution times in Table 3
are equal to the respective WCET. Repeating the measurements with varying input data
does not alter the timing and always yields the same execution times.

In contrast to timing-predictable multi-core architectures, Vicuna’s performance scales
significantly better. The performance of multi- and many-core systems typically does not
scale linearly with the number of cores since contention on the underlying network connecting
these cores to the memory interface becomes a limiting factor [28, 41]. This is particularly
true in real-time systems where tasks require guarantees regarding the bandwidth and latency
available to them [22, 33]. Schoeberl et al. found that the worst-case performance of the
T-CREST platforms scales only logarithmically with the number of cores [38]. Similar results
have been reported for the parMERASA multi-core architecture [12]. By contrast, the
fast configuration of Vicuna achieves over 90 % multiplier utilization for compute-bound
workloads, thus scaling almost linearly with the theoretical peak performance.

The combination of timing-predictability, efficiency, and scalability for parallel workloads
makes Vicuna a prime candidate for time-critical data-parallel applications. Besides, Vicuna
uses the RISC-V V extension as its instruction set, rather than custom extensions, as do
most vector processors, which eases its adoption.

6 Conclusion

The performance-enhancing features in modern processor architectures impede their timing-
predictability. Therefore, the performance of architectures suited for time-critical systems lags
behind processors optimizing for high computational throughput. However, the increasingly
demanding tasks in real-time applications require more powerful platforms to handle complex
parallel workloads.

In this work, we presented Vicuna, a timing-predictable, efficient, and scalable 32-bit
RISC-V vector coprocessor for massively parallel computation. We have integrated Vicuna
with the Ibex processor as the main core and demonstrated that the combined processing
system is free of timing anomalies, thus enabling compositional timing analysis.

M. Platzer and P. Puschner 1:15

The inherent efficiency of the vector processing paradigm allows us to drop common
micro-architectural optimizations that complicate WCET analysis without giving rise to a
significant performance loss. Despite its timing predictability, the effective performance of
Vicuna scales almost linearly w.r.t. the maximum throughput of its functional units, in line
with other high-performance vector processing platforms. Therefore, our vector coprocessor is
better suited for time-critical data-parallel computation than the current timing-predictable
multi-core architectures.

References
1 K. Andryc, M. Merchant, and R. Tessier. FlexGrip: A soft GPGPU for FPGAs. In 2013

International Conference on Field-Programmable Technology (FPT), pages 230–237, December
2013. doi:10.1109/FPT.2013.6718358.

2 Krste Asanovic. Vector Microprocessors. PhD thesis, University of California, Berkeley, CA,
USA, 1998.

3 Mihail Asavoae, Belgacem Ben Hedia, and Mathieu Jan. Formal Executable Models for
Automatic Detection of Timing Anomalies. In Florian Brandner, editor, 18th International
Workshop on Worst-Case Execution Time Analysis (WCET 2018), volume 63 of OpenAccess
Series in Informatics (OASIcs), pages 2:1–2:13, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2018.2.

4 S. F. Beldianu and S. G. Ziavras. Performance-energy optimizations for shared vec-
tor accelerators in multicores. IEEE Transactions on Computers, 64(3):805–817, 2015.
doi:10.1109/TC.2013.2295820.

5 Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, and Luca Benini.
Ara: A 1 GHz+ scalable and energy-efficient RISC-V vector processor with multi-precision
floating point support in 22 nm FD-SOI. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, PP:1–14, December 2019. doi:10.1109/TVLSI.2019.2950087.

6 Christopher H. Chou, Aaron Severance, Alex D. Brant, Zhiduo Liu, Saurabh Sant, and
Guy G.F. Lemieux. VEGAS: Soft vector processor with scratchpad memory. In Proceedings
of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’11, page 15–24, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/1950413.1950420.

7 Daniel Dabbelt, Colin Schmidt, Eric Love, Howard Mao, Sagar Karandikar, and Krste Asanovic.
Vector processors for energy-efficient embedded systems. In Proceedings of the Third ACM
International Workshop on Many-Core Embedded Systems, MES ’16, page 10–16, New York,
NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2934495.2934497.

8 J. Dean. The deep learning revolution and its implications for computer architecture and chip
design. In 2020 IEEE International Solid- State Circuits Conference - (ISSCC), pages 8–14,
February 2020. doi:10.1109/ISSCC19947.2020.9063049.

9 G. A. Elliott and J. H. Anderson. Real-world constraints of GPUs in real-time systems. In
2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems
and Applications, volume 2, pages 48–54, 2011. doi:10.1109/RTCSA.2011.46.

10 Glenn A. Elliott and James H. Anderson. Globally scheduled real-time multiprocessor systems
with GPUs. Real-Time Systems, 48:34–74, 2012. doi:10.1007/s11241-011-9140-y.

11 Michael J. Flynn. Some computer organizations and their effectiveness. IEEE Trans. Comput.,
21(9):948–960, September 1972. doi:10.1109/TC.1972.5009071.

12 Martin Frieb, Ralf Jahr, Haluk Ozaktas, Andreas Hugl, Hans Regler, and Theo Ungerer. A par-
allelization approach for hard real-time systems and its application on two industrial programs.
Int. J. Parallel Program., 44(6):1296–1336, December 2016. doi:10.1007/s10766-016-0432-7.

13 V. Golyanik, M. Nasri, and D. Stricker. Towards scheduling hard real-time image processing
tasks on a single GPU. In 2017 IEEE International Conference on Image Processing (ICIP),
pages 4382–4386, 2017. doi:10.1109/ICIP.2017.8297110.

ECRTS 2021

https://doi.org/10.1109/FPT.2013.6718358
https://doi.org/10.4230/OASIcs.WCET.2018.2
https://doi.org/10.1109/TC.2013.2295820
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1145/1950413.1950420
https://doi.org/10.1145/2934495.2934497
https://doi.org/10.1109/ISSCC19947.2020.9063049
https://doi.org/10.1109/RTCSA.2011.46
https://doi.org/10.1007/s11241-011-9140-y
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1007/s10766-016-0432-7
https://doi.org/10.1109/ICIP.2017.8297110

1:16 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

14 Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni, and
Marco Caccamo. Designing Mixed Criticality Applications on Modern Heterogeneous MPSoC
Platforms. In Sophie Quinton, editor, 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019), volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages
27:1–27:25, Dagstuhl, Germany, May 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECRTS.2019.27.

15 S. Hahn and J. Reineke. Design and analysis of sic: A provably timing-predictable pipelined
processor core. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 469–481, 2018.
doi:10.1109/RTSS.2018.00060.

16 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems, RTNS ’16, page 299–308, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2997465.2997471.

17 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Toward Compact Abstractions for
Processor Pipelines, pages 205–220. Springer International Publishing, 2015. doi:10.1007/
978-3-319-23506-6_14.

18 Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution
time analysis: Definition and challenges. SIGBED Rev., 12(1):28–36, 2015. doi:10.1145/
2752801.2752805.

19 R. M. Hord. The Illiac IV: The First Supercomputer. Springer-Verlag Berlin Heidelberg
GmbH, 1982.

20 M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee. Formal semantics of predictable pipelines:
a comparative study. In 2020 25th Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 103–108, 2020. doi:10.1109/ASP-DAC47756.2020.9045351.

21 Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Can-
tin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,
C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron
Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad
Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,
Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay
Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter
performance analysis of a tensor processing unit. SIGARCH Comput. Archit. News, 45(2):1–12,
June 2017. doi:10.1145/3140659.3080246.

22 Nassima Kadri and Mouloud Koudil. A survey on fault-tolerant application mapping techniques
for network-on-chip. Journal of Systems Architecture, 92:39–52, 2019. doi:10.1016/j.sysarc.
2018.10.001.

23 Junsung Kim, Ragunathan (Raj) Rajkumar, and Shinpei Kato. Towards adaptive gpu
resource management for embedded real-time systems. SIGBED Rev., 10(1):14–17, 2013.
doi:10.1145/2492385.2492387.

24 Charles Eric Laforest, Zimo Li, Tristan O’rourke, Ming G. Liu, and J. Gregory Steffan.
Composing multi-ported memories on fpgas. ACM Trans. Reconfigurable Technol. Syst., 7(3),
September 2014. doi:10.1145/2629629.

25 Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanović, and K. Asanović. A 45nm
1.3ghz 16.7 double-precision gflops/w risc-v processor with vector accelerators. In ESSCIRC
2014 - 40th European Solid State Circuits Conference (ESSCIRC), pages 199–202, September
2014. doi:10.1109/ESSCIRC.2014.6942056.

https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://doi.org/10.1109/RTSS.2018.00060
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1007/978-3-319-23506-6_14
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1145/2752801.2752805
https://doi.org/10.1109/ASP-DAC47756.2020.9045351
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/10.1145/2492385.2492387
https://doi.org/10.1145/2629629
https://doi.org/10.1109/ESSCIRC.2014.6942056

M. Platzer and P. Puschner 1:17

26 Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and Edward A.
Lee. Predictable programming on a precision timed architecture. In Proceedings of the 2008
International Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES ’08, page 137–146, New York, NY, USA, 2008. Association for Computing Machinery.
doi:10.1145/1450095.1450117.

27 Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
unified graphics and computing architecture. IEEE Micro, 28(2):39–55, March 2008. doi:
10.1109/MM.2008.31.

28 Radu Marculescu, Umit Y. Ogras, Li-Shiuan Peh, Natalie Enright Jerger, and Yatin
Hoskote. Outstanding research problems in noc design: System, microarchitecture, and
circuit perspectives. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(1):3–21, January 2009.
doi:10.1109/TCAD.2008.2010691.

29 Tulika Mitra. Time-predictable computing by design: Looking back, looking forward. In
Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3316781.3323489.

30 G. Ofenbeck, R. Steinmann, V. Caparros, D. G. Spampinato, and M. Püschel. Applying the
roofline model. In 2014 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 76–85, March 2014. doi:10.1109/ISPASS.2014.6844463.

31 John Owens, Mike Houston, David Luebke, Simon Green, John Stone, and James Phillips.
GPU computing. Proceedings of the IEEE, 96:879–899, May 2008. doi:10.1109/JPROC.2008.
917757.

32 Kariofyllis Patsidis, Chrysostomos Nicopoulos, Georgios Ch. Sirakoulis, and Giorgos Di-
mitrakopoulos. RISC-V2: A scalable RISC-V vector processor. In 2020 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), pages 1–5, September 2020. doi:
10.1109/ISCAS45731.2020.9181071.

33 Behnaz Pourmohseni, Stefan Wildermann, Michael Glaß, and Jürgen Teich. Hard real-time
application mapping reconfiguration for NoC-based many-core systems. Real-Time Systems,
55:433–469, 2019. doi:10.1007/s11241-019-09326-y.

34 RISC-V International. Working draft of the proposed RISC-V V vector extension, January
2021. Version 0.10. URL: https://github.com/riscv/riscv-v-spec.

35 Richard M. Russell. The CRAY-1 computer system. Commun. ACM, 21(1):63–72, January
1978. doi:10.1145/359327.359336.

36 S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin. The shift to mul-
ticores in real-time and safety-critical systems. In 2015 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 220–229, 2015.
doi:10.1109/CODESISSS.2015.7331385.

37 P. D. Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, and L. Benini.
Slow and steady wins the race? a comparison of ultra-low-power RISC-V cores for internet-of-
things applications. In 2017 27th International Symposium on Power and Timing Modeling,
Optimization and Simulation (PATMOS), pages 1–8, September 2017. doi:10.1109/PATMOS.
2017.8106976.

38 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp,
Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, André Rocha, Cláudio Silva, Jens Sparsø, and
Alessandro Tocchi. T-CREST: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture, 61(9):449–471, 2015. doi:10.1016/j.sysarc.2015.04.002.

39 Aaron Severance and Guy Lemieux. VENICE: A compact vector processor for FPGA
applications. In 2011 IEEE Hot Chips 23 Symposium (HCS), pages 1–5, 2011. doi:
10.1109/HOTCHIPS.2011.7477515.

40 Aaron Severance and Guy Lemieux. Embedded supercomputing in FPGAs with the vectorblox
MXP matrix processor. In 2013 International Conference on Hardware/Software Codesign

ECRTS 2021

https://doi.org/10.1145/1450095.1450117
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/MM.2008.31
https://doi.org/10.1109/TCAD.2008.2010691
https://doi.org/10.1145/3316781.3323489
https://doi.org/10.1109/ISPASS.2014.6844463
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1109/ISCAS45731.2020.9181071
https://doi.org/10.1109/ISCAS45731.2020.9181071
https://doi.org/10.1007/s11241-019-09326-y
https://github.com/riscv/riscv-v-spec
https://doi.org/10.1145/359327.359336
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1109/PATMOS.2017.8106976
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.1109/HOTCHIPS.2011.7477515
https://doi.org/10.1109/HOTCHIPS.2011.7477515

1:18 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

and System Synthesis (CODES+ISSS), pages 1–10, 2013. doi:10.1109/CODES-ISSS.2013.
6658993.

41 Amit Kumar Singh, Piotr Dziurzanski, Hashan Roshantha Mendis, and Leandro Soares
Indrusiak. A survey and comparative study of hard and soft real-time dynamic resource
allocation strategies for multi-/many-core systems. ACM Comput. Surv., 50(2), 2017. doi:
10.1145/3057267.

42 Sudarshan Srinivasan, Pradeep Janedula, Saurabh Dhoble, Sasikanth Avancha, Dipankar
Das, Naveen Mellempudi, Bharat Daga, Martin Langhammer, Gregg Baeckler, and Bharat
Kaul. High performance scalable FPGA accelerator for deep neural networks, 2019. URL:
https://arxiv.org/abs/1908.11809.

43 Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jörg Mische, Alexander
Stegmeier, Ralf Jahr, Mike Gerdes, Pavel Zaykov, Lucie Matusova, Zai Jian Jia Li, Zlatko
Petrov, Bert Böddeker, Sebastian Kehr, Hans Regler, Andreas Hugl, Christine Rochange,
Haluk Ozaktas, Hugues Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay, David George, Ian
Broster, Eduardo Quiñones, Milos Panic, Jaume Abella, Carles Hernandez, Francisco Cazorla,
Sascha Uhrig, Mathias Rohde, and Arthur Pyka. Parallelizing industrial hard real-time
applications for the parmerasa multicore. ACM Trans. Embed. Comput. Syst., 15(3), May
2016. doi:10.1145/2910589.

44 I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in superscalar
processors. In Fifth International Conference on Quality Software (QSIC’05), pages 295–303,
2005. doi:10.1109/QSIC.2005.49.

45 R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory
hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(7):966–
978, 2009. doi:10.1109/TCAD.2009.2013287.

46 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3), 2008. doi:10.1145/1347375.1347389.

47 Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM, 52(4):65–76, April 2009.
doi:10.1145/1498765.1498785.

48 Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. VESPA: Portable, scalable, and
flexible FPGA-based vector processors. In Proceedings of the 2008 International Conference on
Compilers, Architectures and Synthesis for Embedded Systems, CASES ’08, page 61–70, New
York, NY, USA, 2008. Association for Computing Machinery. doi:10.1145/1450095.1450107.

49 Jason Yu, Guy Lemieux, and Christpher Eagleston. Vector processing as a soft-core CPU
accelerator. In Proceedings of the 16th International ACM/SIGDA Symposium on Field
Programmable Gate Arrays, FPGA ’08, page 222–232, New York, NY, USA, 2008. Association
for Computing Machinery. doi:10.1145/1344671.1344704.

50 M. Zimmer, D. Broman, C. Shaver, and E. A. Lee. Flexpret: A processor platform for mixed-
criticality systems. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 101–110, 2014. doi:10.1109/RTAS.2014.6925994.

https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1109/CODES-ISSS.2013.6658993
https://doi.org/10.1145/3057267
https://doi.org/10.1145/3057267
https://arxiv.org/abs/1908.11809
https://doi.org/10.1145/2910589
https://doi.org/10.1109/QSIC.2005.49
https://doi.org/10.1109/TCAD.2009.2013287
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1450095.1450107
https://doi.org/10.1145/1344671.1344704
https://doi.org/10.1109/RTAS.2014.6925994

A Memory Scheduling Infrastructure for Multi-Core
Systems with Re-Programmable Logic
Denis Hoornaert1 #

TU München, Germany

Shahin Roozkhosh1 #

Boston University, MA, USA

Renato Mancuso #

Boston University, MA, USA

Abstract
The sharp increase in demand for performance has prompted an explosion in the complexity of
modern multi-core embedded systems. This has lead to unprecedented temporal unpredictability
concerns in Cyber-Physical Systems (CPS). On-chip integration of programmable logic (PL) alongside
a conventional Processing System (PS) in modern Systems-on-Chip (SoC) establishes a genuine
compromise between specialization, performance, and reconfigurability. In addition to typical
use-cases, it has been shown that the PL can be used to observe, manipulate, and ultimately manage
memory traffic generated by a traditional multi-core processor.

This paper explores the possibility of PL-aided memory scheduling by proposing a Scheduler In-
the-Middle (SchIM). We demonstrate that the SchIM enables transaction-level control over the main
memory traffic generated by a set of embedded cores. Focusing on extensibility and reconfigurability,
we put forward a SchIM design covering two main objectives. First, to provide a safe playground
to test innovative memory scheduling mechanisms; and second, to establish a transition path from
software-based memory regulation to provably correct hardware-enforced memory scheduling. We
evaluate our design through a full-system implementation on a commercial PS-PL platform using
synthetic and real-world benchmarks.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Memory Scheduling, PLIM, FPGA, Memory Management, Bandwidth
Regulation, MemGuard, Coloring, Bank Partitioning, Real-time, Multicore, Safety-critical

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.2

Supplementary Material The SchIM sources are available at
Software: https://github.com/denishoornaert/MemorEDF

Funding Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems
in Production Engineering at TUM and the Alexander von Humboldt Foundation.
Renato Mancuso: The material presented in this paper is based upon work supported by the
National Science Foundation (NSF) under grant number CCF-2008799. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the NSF.

1 Introduction

It is undeniable that the massive increase in expectation on the performance of next-generation
cyber-physical systems has deeply impacted the way we design modern embedded and real-
time systems. High-resolution, high-bandwidth sensors such as lidars, and depth cameras on
the one hand, and data-intensive processing workload such as machine-learning applications

1 These authors contributed equally.

© Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:denis.hoornaert@tum.de
mailto:shahin@bu.edu
mailto:rmancuso@bu.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.2
https://github.com/denishoornaert/MemorEDF
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Memory Scheduling in Multi-Core Systems with FPGA

on the other hand, have exacerbated the push for high-performance embedded platforms.
Following this performance moving target, chip manufactures have significantly scaled up
clock speeds, CPU count, and heterogeneity. For instance, the on-chip integration of powerful
graphic processing units (GPUs) has been the characterizing factor in the NVIDIA Tegra
series of embedded systems-on-a-chip (SoC).

In this context, an embedded architectural paradigm that is surging in popularity among
manufacturers, researchers, and industry practitioners is the PS-PL organization. This
class of embedded platforms integrates on the same die (1) traditional full-speed embedded
CPUs and (2) programmable logic constructed using field-programmable gate array (FPGA)
technology. This organization naturally defines two macro-domains, namely the Processing
System (PS) and the Programmable Logic (PL), hence the name. PS-PL platforms establish a
good trade-off between specialization, raw performance, and mission-specific re-configurability.
The current generation of commercially available PS-PL platforms is dominated by ARM-
based products offered by, most notably, Intel [12] and Xilinx [37]. A pilot large-scale,
high-performance PS-PL system is the Enzian platform [3] being rolled out by ETH Zurich2.
Furthermore, a RISC-V-based solution has been recently made available by Microsemi with
their PolarFire SoC [18].

From a real-time perspective, the co-existence of traditional CPUs and a tightly-coupled
block of PL has more profound implications than expected. Clearly, it is possible to define
custom accelerators in PL and to relieve the main CPUs of some of the heavy data-processing
workload. However, more interestingly, recent studies have highlighted the possibility of using
the PL also as a way to manage the memory traffic originated from the main CPUs [13, 29].
Such a possibility opens the doors for memory traffic inspection and control at the level
of individual transactions; which in turn promises to unlock provable determinism for the
real-time workload.

In this paper, we embrace the concept of PL-aided memory traffic management and propose
an infrastructure to develop, test and evaluate memory scheduling policies. Specifically, we
propose a component, called the Scheduler In-the-Middle– or SchIM, for short – that can
be instantiated in the PL to enforce a set of configurable scheduling policies on individual
memory transactions generated by the CPUs in the PS.

The overarching goal of the proposed SchIM is twofold. First, we want to provide a
playground for researches to test promising novel memory scheduling ideas for multi-core
platforms, much like LITMUSRT [7] fostered research on CPU scheduling techniques. Second,
we want our SchIM to act as an intermediate stepping stone for industrial applications where
strong determinism over memory performance is required. The SchIM can be used to analyze
the behavior of realistic workload in a multitude of what-if memory management use-cases.
We note that such kind of analysis was previously possible only through full-system simulation
or by synthesizing the entire SoC on FPGA – that is, with a soft-core implementation.

In short, this paper makes the following contributions. (1) We demonstrate that a
configurable module could be interposed between the cores and the memory controller to
perform transaction-level scheduling in commercial PS-PL platforms; (2) we propose a
design for a memory scheduling infrastructure that focuses on extensibility and runtime
reconfigurability; (3) we address important issues to correctly account and regulate CPU-
generated traffic when a shared last-level cache is present; (4) we design and implement two
pilot memory scheduling policies as a proof-of-concept on the potential of our SchIM; and (5)
we perform a full system integration and implementation on a commercial PS-PL embedded
platform to evaluate the behavior of the SchIM with synthetic and realistic workload.

2 Also see http://enzian.systems/

http://enzian.systems/

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:3

2 Related Work

There is a broad consensus that memory resources represent the main performance bottleneck
in modern multi-core processors. The observation has sparked a host of research works
addressing the problem from multiple angles [17]. In this context, the works representing
the inspiration for our SchIM fall in two macro-categories, namely hardware-based and
software-based techniques for main memory traffic management.

The first category includes a large body of works aimed at achieving better and/or
more predictable performance by advancing novel hardware redesigns. The works in [22–24]
strive to construct high-performance and fair memory schedulers. The addition of software-
controlled memory deadlines and transactional semantics where explored in [33] and [10],
respectively. Next, the work by Åkesson et al. [1, 2] and Paolieri et al. [25] attains timing
predictability through careful scheduling of SDRAM commands. Finally, the MEDUSA
DRAM controller [9, 34] implements a two-tiers scheduler at the DRAM controller to ensure
predictability when accessing memory areas where access time strongly impact application
performance. Finally, the hardware designs proposed in [8, 26, 42] put their emphasis on
main memory bandwidth partitioning; clever dynamic pipelining is further explored in [20]
to better balance average performance and determinism.

Among the software-based techniques are the mechanisms that stemmed from MemGuard,
originally proposed in [41] and that rely on broadly available performance counters to regulate
the bandwidth extracted by individual CPUs. Later extensions to jointly consider regulation
and cache partitioning [38] and to expose control over memory bandwidth as a lockable
resource [39] were proposed. Software-based memory throttling has also been implemented at
the hypervisor-level [21, 30]. Remarkably, the work in [30] combines regulation mechanisms
for CPU and embedded accelerators through the ARM QoS extensions [4].

In addition to the two categories surveyed above, perhaps the most closely related works
are those that explored memory isolation techniques in PS-PL platforms. The work in [11]
demonstrated that the PL-side can be used to define private memory storage, control, and
bus units to strongly isolate high-criticality workload. A number of techniques developed
as part of the FRED framework [6] put an emphasis on memory traffic arbitration and
management for in-PL accelerators [27, 28]. The AXI HyperConnect [27] is perhaps the
component most similar to the SchIM in terms of high-level design. However, both are
substantially different as the SchIM is designed to manage embedded CPUs’ memory traffic.

Compared to the literature reviewed above, what sets this work apart are the following
aspects. (1) Our SchIM applies to existing PS-PL commercial systems without introducing
any hardware modification; (2) it allows management in the PL of memory traffic originated
by the embedded CPUs residing in the PS; (3) it provides the framework to test the feasibility
and performance of custom memory scheduling policies; and (4) it is designed such that
multiple schedulers can coexist, be activated, and configured at runtime.

3 Background Concepts

In this section, we introduce some fundamental concepts necessary to understand the overall
system design and the class of platforms targeted by this work.

3.1 Hybrid Multi-Core Platforms with Programmable Logic
This work targets the aforementioned class of embedded multi-core platforms with program-
mable logic – i.e., PS-PL platforms. In such platforms, the PS encompasses a multi-core
processor with a multi-level cache hierarchy and a main memory (DRAM) controller. A

ECRTS 2021

2:4 Memory Scheduling in Multi-Core Systems with FPGA

Figure 1 PS-PL interconnect block diagram.

simplified block diagram for a reference PS-PL organization is illustrated in Fig. 1. The
figure considers a platform with four CPUs denoted as C0, C1, C2, and C3.

A key feature in PS-PL platforms is the presence of high-performance communication
channels between the two domains. These come in the form of data exchange interfaces
and interrupt lines. Data exchange channels follow a master-slave paradigm. Specifically,
high-performance masters (HPM, Fig. 1 1) and high-performance slaves (HPS, Fig. 1 2)
send and receive transactions to and from the PL, respectively. Additionally, there exist
programmable interrupt request (IRQ) lines (see Fig. 1 3) that can be driven by the PL
and are connected to the interrupt controller (Fig. 1 4) inside the PS. As we discuss in
Section 5.7, the presence of PS-PL interrupt lines is crucial to building PL-assisted memory
traffic regulation.

Note also that there might exist PS-PL data ports that are routed through a secondary
interconnect (Fig. 1 8). These can generally sustain less throughput compared to HPS ports;
hence we refer to them as low-performance masters (LPM, Fig. 1 9). LPM ports are useful
to perform memory-mapped configuration of PL modules.

3.2 Programmable Logic In-the-Middle
In this work, we leverage the ability to route main memory traffic originated by the CPUs
through the PL. This technique is known as Programmable Logic In-the-Middle, or PLIM
for short. PLIM was originally proposed in [29]. To fully grasp how PLIM can be achieved,
one needs to understand how memory accesses are routed in PS-PL platforms.

Any CPU-generated memory access that results in an LLC miss is routed directly to
main memory if its physical address falls within the aperture, say the address range [A, B]
handled by the DRAM controller. We refer to this as the normal route, depicted in Fig. 1 5

and highlighted in yellow.
Conversely, generic memory access resulting from an LLC cache miss will be sent on an

HPM port if the corresponding physical address falls within another range, say [C, D]. One
can then insert (1) a lightweight layer of virtualization to map all the physical addresses
of a guest OS to the PL, i.e., to fall in the range [C, D]; and (2) an address translator in
the PL that re-bases request physical addresses to access main memory and relays back the
data payload to the requesting CPU(s). In other words, one can find a constant k such that
C = A + k. Then, the translator in the PL, upon receiving any request at address x ∈ [C, D]
will issue a main memory request at the address (x − k) through the HPS port and provide

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:5

M
A

ST
ER

SLAV
E

AW A AW1

W D ... D W2

B B B3

AR A AR1’

R D ... D B R2’

(a) Standard AXI communication Scheme.

M
A

ST
ER

SLA V
E

SchIM

3 2’

AW A 1 AW

W D ... D 2 W

AR A 1’ AR

A 4

D ... D 5

A 3’

B B6 B

R D ... D B4’ R

(b) AXI communication mediated with SchIM.

the response to the CPU. The PLIM technique introduces a secondary memory route for
reaching the DRAM, called the PL loop-back, or simply loop-back, which is highlighted in
blue in Fig. 1 6 . Memory transactions on the loop-back route typically traverse the main
interconnect, as depicted in Fig. 1 7 . The advantage of PLIM is that transactions on the
loop-back route can be inspected, blocked, re-routed, and in general managed by custom
re-programmable logic. Importantly, switching from the direct to the loop-back route can
be done dynamically at runtime so that the overhead of PLIM can be avoided if deemed
detrimental for the application under analysis.

In this paper, we leverage the PLIM approach to perform memory scheduling, hence, we
call our module the Scheduler In-the-Middle, or SchIM for short.

3.3 Advanced eXtensible Interface (AXI)

The vast majority of PS-PL platforms currently available are ARM-based. This is also the
case for the platform we used for our evaluation, namely the Xilinx Zynq UltraScale+ MPSoC.
Thus, we briefly introduce the communication protocol used for on-chip communication
in ARM-based SoCs, namely the Advanced eXtensible Interface (AXI). The AXI is an
open specification bus protocol [5] used for high-bandwidth data exchanges between on-chip
subsystems – such as cache controllers, memory controllers, DMAs, PL modules. It is also
used in the PS-PL platforms of reference to exchange data on the HPM and HPS ports.

The AXI protocol is based on the master-slave duality. A master AXI interface can
initiate transactions toward a connected slave interface. The latter responds master-initiated
requests. Masters and the slaves communicate with each other through five different channels
named AW (address write), W (write), B (write acknowledgment), AR (address read) and R
(read), as illustrated in Fig. 2a.

A write transaction begins with an address phase 1 where the channel AW is used to
transmit the transaction’s meta-data, such as the destination address, the transaction ID,
and the cacheability attributes the type/length of the burst, and so on. Upon completing
this phase, follows the data phase 2 , which consists of the transmission of the data payload
to be written through the W channel. The response phase 3 concludes a successful write
transaction and occurs on the B channel.

The transmission of a read transaction is carried out in a similar way. The address
phase 1’ is transmitted through the equivalent AR channel and is directly followed by the
data phase 2’ . A response initiated by the slave follows where the read data is transferred over
the R channel. The protocol is asynchronous because different phases of different transactions
can interleave on any AXI bus segment. Hence, multiple outstanding transactions can be
emitted by a single master and the receipt of out-of-order responses is possible.

ECRTS 2021

2:6 Memory Scheduling in Multi-Core Systems with FPGA

Figure 3 SchIM internal organization connected to the PS via the HPM, LPM and HPS ports.

4 Design Goals and Overview

In this section, we introduce the proposed SchIM design and describe the overarching goals
of this work. We then provide a bird’s-eye view of the SchIM organization and principles
of operation.

4.1 Design Goals

As briefly surveyed in Section 2, there have been numerous proposals for better memory
controllers and approaches to manage memory traffic in modern multi-core embedded
platforms. With respect to the existing literature, the purpose of this work is twofold. First,
we want to demonstrate that scheduling CPU-originated memory traffic at the granularity
of individual transactions is possible in PS-PL platforms. Second, and more importantly,
we want to provide an infrastructure that is generic and extensible enough for the broader
research community to adopt and foster a new chapter on PL-assisted memory scheduling.
With this in mind, we establish the following goals.

Extensible memory scheduling infrastructure. First and foremost, the SchIM has been
designed with modularity and extensibility in mind. We separate the functionalities that con-
cern handling, queuing, selection, and forwarding of memory requests inside our infrastructure.
Moreover, we design our SchIM to be able to support multiple memory scheduling policies
simultaneously. A simple, standardized interface is provided to define new memory scheduling
policies without impacting the design of the rest of the SchIM. We discuss in Section 5.5 the
generic interface provided by the SchIM to implement a new memory scheduling policy.

Runtime configuration and transparency. We want the SchIM to be a robust supporting
infrastructure to evaluate, compare, and contrast memory scheduling policies. As such, we
strive to provide (1) runtime reconfigurability and (2) operational transparency. It is possible
to rapidly identify desirable configuration parameters by allowing memory scheduling policies
to be switched at runtime. Besides, an adopted policy can be tuned according to the workload
criticality and memory intensiveness. For this purpose, the SchIM exposes a memory-mapped
configuration interface where all the operational parameters can be changed at runtime. At
the same time, we want to ensure that the applications and the (real-time) operating system
under analysis do not need to be modified to use the SchIM. Hence, we propose using a thin
virtualization layer to selectively route memory traffic through the SchIM without changes
to the binary of OS kernel and applications.

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:7

Realistic performance with experimental policies. One of the limiting factors of research on
memory scheduling policies is the ability to construct evidence of performance improvements
with the realistic workload. Proposing a new memory scheduling policy is traditionally done
with either a simulated setup or with a full-system soft-core implementation. Both cases have
their drawbacks. The former gives a great deal of flexibility but achieving clock-level accuracy
requires simulating many SoC components whose details might not be publicly available. In
addition, simulated setups that propose custom hardware designs cannot be directly adopted
on real platforms without being first synthesized in hardware. Full soft-core-based SoC
implementations suffer from two shortcomings. First, they run at relatively low frequencies
and thus can extract only a fraction of the available DRAM bandwidth. Secondly, they are
typically based on processor IPs that do not feature the same Instructions Set Architecture
(ISA) as widely available COTS, which further limits the practical impacts of these works.

As reported in [29], re-routing the traffic of the core cluster through the PL-side comes at
a cost in terms of extra latency and reduced bandwidth. Nonetheless, as PS-PL platforms
mature and the interplay of PL and memory resources improves, a SchIM-like design could
be the way to go for mission-reconfigurable, upgradable embedded systems.

4.2 Design Overview
As previously mentioned, the SchIM leverages the PLIM approach. CPU-originated main
memory transactions are re-routed through the programmable logic and scheduled by the
SchIM according to a flexible and configurable policy. The result is that the timing of
memory transactions generated by real-time applications can be carefully determined and
reasoned upon. Because the SchIM follows a PLIM approach, transactions can be selectively
sent to the SchIM for scheduling. However, it is always possible to dynamically exclude the
SchIM and route transactions directly to the main memory. Toward this paper’s incentive,
we consider a setup in which SchIM handles all the CPU-generated memory transactions.

Fig. 1 provides an overview of the location of the SchIM in the reference platform, while
its internal organization is visible in Fig. 3. Application memory requests reach the SchIM the
aforementioned HPM ports. Without loss of generality, we consider a SchIM instance with
two arrival lanes, which are labeled as HPM1 and HPM2 in Fig. 3. The SchIM then forwards the
received transactions towards main memory through the HPS interface. A more detailed view
of the SchIM module is provided in Fig. 3 where the same convention is used to identify input
and output ports. In addition, as shown in Fig. 3, a fourth LPM port is used to configure the
SchIM from the PS.

The SchIM is composed of a number of sub-modules grouped into three different domains,
namely (i) the interfacing domain, (ii) the queuing domain, and (iii) the scheduling domain.

The interfacing domain encompasses the sub-modules to interface the core logic of
the SchIM with the rest of the system using the AXI protocol. This is comprised of three
sub-modules. These are (i) the packetizer(s), (ii) the serializer, and (iii) the previously
mentioned configuration interface.

The PS-facing end of the packetizer offers an AXI slave port to accept new incoming
transactions. Upon receipt, this module transforms each transaction into an equivalent packet
that can be queued and scheduled by SchIM. Packetization of AXI transactions is necessary
to be able to store transactions that are serial by nature. A standard AXI transaction is
composed of one address phase (AR or AW channel) followed by a data phase (R or W
channel), which can be itself composed of multiple successive bursts.

In many ways, the serializer is the dual module of the packetizer. Its purpose is to
transform the packets that encode CPU-generated memory requests back into AXI-compliant
transactions. As such, the serializer offers a master port to the rest of the system to be
routed to the main memory controller.

ECRTS 2021

2:8 Memory Scheduling in Multi-Core Systems with FPGA

The queuing domain handles how packets are stored between receipt and re-
trasnmission. This domain is comprised of (i) the dispatcher module, (ii) the transaction
queues, and (iii) the selector module.

The use of multiple transaction queues is necessary to differentiate the traffic of the
CPUs and perform scheduling. As such, the SchIM associates a queue to each of the active
cores – four in the platform of reference. The queues implemented in the SchIM not only act
as a holding space for in-flight memory transactions. They also (a) provide information to
the scheduling domain regarding their current state, and (b) they can generate a congestion
control signal to the associated CPU core.

Congestion control is vital because memory transactions originated at the LLC controller
follow the same route to the SchIM regardless of the originating CPU. The total number of
outstanding transactions that the cores can emit exceeds the queuing elements’ capacity on
the loop-back route. Hence, priority inversion arises if a low-priority CPU’s memory traffic
is (temporarily) held. Latter is due to the uncontrolled queue buildup, which provokes a
head-of-line blockage. Importantly, what described is true also for the normal route and it is
a direct consequence of the best-effort nature of traditional multi-core memory buses. The
SchIM allows the user to specify a configurable threshold on the occupancy of the queues
that, when reached, issues a regulation signal to the corresponding CPU. We describe in
greater detail how congestion control was implemented on the target platform in Section 5.7.

As suggested by Fig. 3, transactions are categorized and enqueued based on the source of
traffic. The dispatcher module performs the matching between an incoming transaction
and the destination queue. Similarly, transactions are dequeued by the selector module and
sent directly to the output of the SchIM following the scheduling domain’s resolutions.

The scheduling domain encompasses all the sub-modules that enable arbitration of
transactions issued by the different cores of the PS. The modules in this domain are intended
to be generic for extensibility, albeit the first set of two template schedulers is provided as
a proof of concept. The scheduling policies currently implemented in the SchIM are Fixed
Priority (FP) and Time Division Multiple Access (TDMA). Each of the parameters required
by the implemented policies – such as the priorities and the periods – can be adjusted at
runtime via the configuration interface.

The FP scheduler allows associating a priority value to each of the transaction queues.
Pending transactions at the queues are then forwarded out of the SchIM following the
user-defined priority order. The TDMA scheduler allows associating a transmission time slot
to each of the queues expressed in PL clock cycles. The module then builds a schedule by
concatenating the per-core slots so that only pending transactions from one queue at a time
are forwarded by the SchIM.

5 SchIM Design and Implementation

A full-system implementation was carried out on a Xilinx ZCU102 development system,
which is based on a Xilinx Zynq UltraScale+ XCZU9EG PS-PL SoC. The PS comprises four
ARM Cortex-A53 CPUs that share a unified 1 MB LLC. The PS includes a DDR4-2666
controller connected to a 4 GB DDR4 memory module. There are two high-performance
master interfaces (HPM1 and HPM2); and a third interface routed through the low power
domain (LPM). The PL is capable of driving up to 16 interrupt requests lines towards the
PS interrupt controller. We hereby provide key details on the operation of our SchIM in the
target platform. These include complementary software stack, memory traffic accounting,
regulation to prevent head-of-line blocking, and programming model.

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:9

5.1 Software Stack
As mentioned in Section 4.1, we want to ensure that the SchIM can be used with no
modification to the OS and the applications under analysis. For this reason, we rely on a
thin virtualization layer that can be used to redirect memory traffic from the direct route to
the loop-back route (see Section 3.2). For this purpose, we use the open-source Jailhouse [16]
partitioning hypervisor3 Jailhouse does not boot the target machine. Instead, it relies on a
standard Linux kernel to perform the initial boot sequence. When enabled from a Linux
driver, Jailhouse dynamically virtualizes the original OS. In line with its partitioning-only
philosophy, Jailhouse has a small footprint and enforces virtualization-aided partitioning of
essential resources like CPUs, interrupts, main memory, I/O devices. It does not perform
any virtual-CPU scheduling.

Following Jailhouse’s nomenclature, a resource partition is called a cell, while guest OS’s
are referred to as inmates. An inmate can be either a bare-metal application, an RTOS
or a full-fledged OS like Linux. Jailhouse uses ARM hardware Virtualization Extensions
(VE) to offer a set of Intermediate Physical Address (IPA) to its inmates that is compatible
with the way they have been compiled. Jailhouse then maps IPA ranges of different cells
to configurable Physical Addresses (PAs) – stage-2 translation. By changing the configured
stage-2 mapping, it is possible to dynamically re-route via the loop-back the memory traffic
generated by each inmate.

As described below, some modifications were necessary to the mainline Jailhouse code for
our full system implementation4.

5.2 Altered communication scheme
In order to achieve the objective of re-ordering transactions, one must alter the standard AXI
communication scheme explained in the Section 3.3. To this end, the SchIM is interposed
between the master (HPM) and the slave (HPS) as depicted in Fig. 2b. As shown in Fig. 2b,
only the phases initiated by the masters (i.e., address phase on AW and AR and the data
phase on W) are intercepted for re-ordering by the SchIM. The introduction of the SchIM
has a direct consequence on the overall communication scheme. Unlike the response phases
on channels R and B that remain unchanged, the address and write data phases are handled
following a store-and-forward scheme. Consequently, a write transaction will start exactly
as in the standard AXI scheme with its address phase 1 and data phase 2 . These two
transactions are buffered within the SchIM’s queues (3) and only relayed following the
internal memory scheduler’s logic. This release of the transaction leads to the initialization
of two new addresses and data phase 4 , and 5 . Finally, the response phase 6 goes directly
from the slave to the master without being intercepted. For read transactions, the same
modifications apply to the address phase 1’ which is buffered (2’) for some time before being
re-emitted in 3’ . Just like for write acknowledgments writing, the read response phase 4’ is
not intercepted by the SchIM.

5.3 Queueing Domain
At the heart of the queueing domain, lies the queues. They work as FIFOs. However, instead
of inserting the new data at the back of the queue, the new data is always inserted as close
as possible to the front of the queue. This mechanism helps avoiding gaps within the queues
prevents the loss of few clock cycles that would be required to move the data from the back
to the front. From the authors’ experiments, saving clock cycles in SchIM is vital to keep
the final bandwidth as high as possible.

3 The source code is available at https://github.com/siemens/jailhouse.git.
4 The modified Jailhouse sources are available at https://github.com/rntmancuso/jailhouse-rt. ECRTS 2021

https://github.com/siemens/jailhouse.git
https://github.com/rntmancuso/jailhouse-rt

2:10 Memory Scheduling in Multi-Core Systems with FPGA

Furthermore, the queues have been designed to deal with three constraints. Firstly, the
queues store both read and write packets such that the order at which transactions arrived
is guaranteed. This implies that all the queue slots have the same size regardless of whether
they contain read or write packets. Secondly, due to the altered communication scheme (see
Section 5.2), each slot needs to be large enough to store both the address phase payload and
the corresponding data of an AXI write transaction (678 bits). The depth of each queue is
determined by considering the worst-case scenario. The latter consists of having to handle
the maximum number of outstanding read and write transactions simultaneously. Our SchIM
instance on the considered Xilinx UltraScale+ platform was configured with queues that are
16 slots in-depth. Indeed, the HPM ports in this platform cannot handle more than eight
transactions of each type [37].

5.4 LLC-SchIM Interface and Traffic Accounting
As illustrated in Fig. 1, the considered system features an LLC shared between the four cores
of the PS. For a non-cacheable read (resp., write) memory access, which CPU represents
the source of the traffic is carried in the ID bits of the corresponding AR (resp., AW) AXI
transaction. But for cacheable memory accesses, which is the norm for application workload,
this is not the case. This is mainly because cache controllers typically use a write-back
strategy. In this case, a read or write cache miss causes up to two events: (1) a cache refill
and (2) a cache eviction. The cache refill is carried out with a read AXI transaction. If
the line being evicted was previously written (dirty), then the eviction causes a write AXI
transaction. It follows that, while read AXI transactions have an easily identifiable source,
write transactions do not. Indeed, a CPU x might be causing the eviction of a line previously
allocated and modified by CPU y. Hence, accounting (and scheduling) the resulting write
transaction as if it originated from CPU x would be incorrect.

To ensure fair accounting for both read and write traffic, we rely on cache partitioning
through coloring. As studied in a number of previous works, cache coloring is easy to
implement at the hypervisor level [15, 21,32]. In our system setup, we leverage the support
Jailhouse already provides. The standard support has been extended to support booting
a Linux inmate over colored memory. Cache partitioning allows us to establish a 1-to-1
relationship between any read/write transaction traversing the SchIM and the originating
CPU. Moreover, with cache coloring in place, the SchIM uses the color bits in the address
of the memory transactions (AR and AW channels) – instead of the AXI ID bits – to
differentiate between the traffic of the various cores.

Finally, recall that the SchIM forwards transactions between HPM and HPS ports. These
ports follow the asynchronous AXI protocol that allows issuing multiple outstanding AR and
AW transactions. The protocol dictates that any outstanding transaction must have a unique
AXI ID. This property is crucial to be able to match received responses with outstanding
requests. Unfortunately, a potential mismatch between the bit-width of the AXI ID emitted
at the HPM ports and the bit-width of AXI ID accepted by the HPS ports. For instance, in
the platform of reference, the HPMs emit 16-bit AXI IDs, while the HPS AXI ID bit-width
is 6 bits. Therefore, the SchIM also acts as an AXI ID translator.

5.5 Scheduling Interface and Implemented Policies
All the memory schedulers included in the scheduling domain share a common interface to
ease the integration of a new scheduler. In terms of input signals, a generic scheduler module
must define (1) a manual reset signal that can be triggered through the configuration port;
(2) a vector of bits where each bit indicates whether the associated queue is empty; and (3) a
signal indicating if the last scheduled transaction as been consumed. Alongside these inputs,

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:11

the scheduling modules also have access to all the configuration registers listed in Table 1.
In terms of outputs a SchIM scheduler must define (1) a signal to the selector indicating
the queue considered for scheduling; and (2) a signal stating whether the current scheduling
decision is valid. We hereby review the initial set of memory scheduling policies implemented
in the SchIM.

5.5.1 Fixed Priority
The FP scheduling module aims at enforcing strict prioritization of cores’ memory traffic.
The priority ordering is explicitly defined by the user through the configuration port. While
the SchIM instance used in this paper only has four queues, 16 different levels of priority
are offered as the considered platform supports up to 16 different colors. This is useful if an
hypervisor that supports vCPU scheduling is used. In this case, the SchIM allows assigning
different priorities to different partitions sharing the same physical CPU. The core-to-priority
assignment must be strict, meaning that two cores cannot be assigned the same priority.

The FP scheduling module only needs two pieces of information. That is (1) the priority
associated with each queue and (2) whether a given queue contains at least one buffered
transaction. The module logic always selects the queue with the highest priority. Lower
priority queues are considered when higher priority queues do not have transactions. This is
done by internally setting the user-defined priority of a queue as 0 when the corresponding
queue is empty.

5.5.2 Time Division Multiple Access
The TDMA memory scheduler is a non-work conserving policy that operates by defining a
per-core time slot during which the core has exclusive access to main memory. The slots are
expressed in PL clock cycles, to maximize granularity. The configuration port can be used to
specify and change the slots specifications at runtime.

The implementation of the module uses a counter register to track the time elapsed in
the current TDMA primary frame – defined as the sum of all the cores’ slots. It is reset
to 0 at the beginning of a new major frame. Using the time-tracking register, the module
determines to which core the current slot belongs, and forwards the information to the queue
selector. This is done by summing up the length of all the previous slots, and determining if
the current time falls within the interval of the considered core’s slot.

5.6 Programming Model
The parameters that compose the programming interface of the SchIM are summarized in
Table 1. The base address referenced in the table can be set when the SchIM is deployed in
the PL. By default, this is set to 0x800000000. All the parameter registers are 32 bit wide,
except for the priorities of the FP scheduler. In this case, the priority values are encoded
using 8 bits. The last “Mode” register allows a user to select the active memory scheduler.

5.7 PL-to-PS Feedback
Each of the HPM ports interfacing the PS and the PL sides (HPM1 and HPM2) have two
dedicated queues for read and write transactions. Since transactions are being buffered inside
SchIM as well as in these port buffers, head-of-line blocking can happen. Head-of-the-line
blocking is harmful for performance; and can cancel out the benefits of transaction scheduling
performed by the SchIM. For instance, in the case of a non work-conserving policy (e.g.,

ECRTS 2021

2:12 Memory Scheduling in Multi-Core Systems with FPGA

Table 1 Available SchIM configuration registers.

Parameter Associated Core Address

TDMA slots

C0 base+0x00
C1 base+0x04
C2 base+0x08
C3 base+0x0C

User Thresholds

C0 base+0x10
C1 base+0x14
C2 base+0x18
C3 base+0x1C

FP Priorities C0 C1 C2 C3 base+0x20
Reserved

Mode N/A base+0x38

TDMA), if the HPM port queue gets filled with transaction coming for the same core, no
other transaction will be able to reach the SchIM and thus be considered for scheduling. This
implies that no transaction would be scheduled until the end of the active core’s TDMA slot.
On the other hand, for work-conserving policies (e.g., FP) in the presence of head-of-line
blocking, the decisions being taken by SchIM would directly depend on the order at which
transactions are emitted by the HPM port buffer.

In both cases, one must prevent the cores from saturating the HPM port buffers. In
order to avoid such situation, we implemented a feedback scheme aimed at slowing down
the cores when necessary. As we mentioned in the context of Fig. 3, the SchIM’s queues are
associated a programmable threshold. Whenever the queue occupancy reaches (or exceeds)
the associated threshold, a per-core interrupt line is asserted from the PL to the PS side.
When received, the interrupt is treated by the platform software as a fast interrupt request
(FIQ) and directly handled by the hypervisor – invisible to any guest OS. The advantage of
using FIQs instead of regular IRQs is the significantly reduced handling latency [31]. Minor
modifications to the TrustZone monitor were necessary to correctly configure FIQ handling.
To minimize overhead, the installed FIQ handler only executes two assembly instructions.
These are (1) a dsb memory barrier that stops the core until all the outstanding memory
transactions have been completed, and (2) a eret instruction to exit the FIQ context. There
is not need to save/restore any register because FIQs have banked syndrome/status registers
and because no general purpose register is modified in the handler.

Ideally, the available space in the HPM buffers should be shared evenly between the cores.
Since each HPM port has a buffer with a depth of 8+8 transactions, each core should occupy
at most 2 slots in each buffer. Unfortunately, our experiments highlighted that the control
over amount of transactions buffered by each core is imperfect. Often times, the selected
threshold is exceeded by up to two transactions. This is the main reason why we propose
a dual-ported SchIM which uses both the available HPM ports. Indeed, by assigning two
cores on each of the ports, the ideal threshold on maximum amount buffered transactions
can be doubled. The increase provides enough room to compensate for imperfections in the
micro-regulation performed with PL-to-PS FIQ delivery.

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:13

6 Evaluation

The present section aims at evaluating the behavior of the SchIM on the target platform, its
overhead and benefits. First, in subsection 6.1, we review our experimental setup. Thereafter,
we assess the overhead introduced by the SchIM in Section 6.2. Section 6.3 explores the
impact of the PL-to-PS feedback on the control and the performance. In Section 6.4, an
in-depth analysis of the SchIM’s behavior is presented. Finally, an evaluation of the temporal
behavior of a set of real-world benchmarks operating through the SchIM is provided in
Section 6.5.

6.1 Experimental Setup

The SchIM has been evaluated using synthetic benchmarks (or Memory Bombs), real
benchmarks selected from the San Diego Vision Benchmark Suite (SD-VBS) [35] and a
combination of the two. Specifically, seven memory-intensive benchmarks have been selected,
i.e. stitch, texture synthesis, disparity, tracking, localization, mser and sift. For our runs, we
have considered all the intermediate input sizes ranging from SQCIF (128×196 pixels) to
VGA (640×480 pixels). When running any benchmark, we use the cache coloring mechanism
implemented in the Jailhouse hypervisor [32] to partition the LLC evenly amongst the 4 cores
and to prevent our measurements from being affected by inter-core cache interference. As a
result, each benchmark operates on 1/4 of the total cache space – 256 KB. As extensively
discussed in [14, 40], it is also important to avoid inter-core DRAM bank conflicts, which
can cause the arbitrary re-ordering of transactions originating from different cores. This is
accomplished by (1) configuring the DRAM controller to disable DRAM bank interleaving;
and (2) by performing static cache bleaching [11,29] at the SchIM’s output to re-compact
accesses to colored pages into contiguous DRAM accesses. In this platform, there are a
total of 16 DRAM banks of 256 MB each. Thanks to bleaching, we can assign the full size
of 4 banks (i.e., 1 GB) to each core, instead of being restricted to only 1/4 of that due to
non-overlapping color and bank address bits.

To evaluate the capabilities of the SchIM, two memory routes for the traffic generated
by the cores are compared. The first serves as baselines, whereas, the last one is the one
under analysis and involves the SchIM module. The first path consists in the cores directly
accessing the main memory. As illustrated in Fig. 1, the traffic simply goes through the
Main Interconnect before arriving at the DDR controller. This path is referred to as the
normal route. Secondly, we consider the case where the SchIM module is deployed and in use
to schedule memory traffic generated by the CPUs in the PL. Cores 0 and 1 target HPM1
aperture, while cores 2 and 3 target HPM2. In our analysis, the SchIM is used in all the
available modes, i.e., FP and TDMA.

Note that in the case of the normal route, combining both a strict cache partitioning and
strict bank partitioning could not be applied. In fact, as a direct consequence of the address
coloring and in the absence of a bleacher, only 1/16 of each 1 GB wide memory allocation
can be used by each core. The resulting reduced space of 64 MB is not enough for running
Linux. Consequently, in the case of the normal route, the cores have been split into two
groups of two, where each group targets independent sets of banks. This configuration allows
the cache to be partitioned using address coloring.

ECRTS 2021

2:14 Memory Scheduling in Multi-Core Systems with FPGA

Normal FP TDMA
Scheduler under analysis

0

250

500

750

1000

1250

1500

1750

2000

Th
ro

ug
hp

ut
 (M

Bp
s)

{C0, C1, C2, C3}
{C0, C1, C2}
{C0, C1}
{C0}

Figure 4 Bandwidth in MBps for different path under increasing set of cores contending.

6.2 Platform Capabilities and performance degradation
Intuitively and as discussed in [29], redirecting the traffic coming from the cores to the PL
side incurs a performance hit. In spite of the lower frequency at which the SchIM operates
(250 MHz), the theoretical throughput when using both the HPM lanes should be around
8 GBps. We observe, however, that the achievable throughput through the HPM ports is
a fraction of what we measured by accessing the main memory through the normal route
(2116.5 MBps and 1207.41 MBps for solo and full contention by 3 other cores, respectively).
We further provide a discussion on the bandwidth drop when transactions are routed through
the PL in Section 7. For the sake of completeness, we quantify in Fig. 4 the maximum
bandwidth achieved through the PL – and hence through the SchIM. Nevertheless, it is
important to remember that the absolute figures are strictly platform dependent.

In Fig. 4, we have computed the throughput of one core under analysis, here core 0 (noted
C0) when a synthetic memory-intensive application is deployed on an increasing number
of cores denoted with the same notation. The first bar cluster (“Normal”) refers to the
throughput measured via the normal route. The other two clusters capture the observed
bandwidth when traffic is routed through and managed by the SchIM. One cluster is provided
for each of the implemented memory scheduling policies, namely – from left to right – FP
and TDMA. As expected, there is a sharp reduction (around 75%) in terms of absolute
bandwidth. Importantly, however, two aspects need to be highlighted. First, the bandwidth
achieved through the SchIM is still remarkably high and allows studying the behavior of the
realistic workload under custom memory scheduling policies, which is the primary goal of
this research. Second, it emerges that the implemented FP and TDMA policies are capable
of protecting the core under analysis from inter-core interference, while this is not the case
when going through the normal route.

6.3 PL-to-PS feedback performance impact
As mentioned in Section 5.7, the PL-to-PS feedback enables our SchIM to regulate the HPM
ports buffer occupancy to prevent head-of-line blocking. Since this feedback directly throttles
the desired core, the selection of an adequate threshold is important to preserve the balance
between control and performance. Therefore, in Fig. 5, we have explored the sensitivity to
the threshold for each of the proposed schedulers under different levels of contention. The
thresholds in use range from 1 to 8 and even include the case where the feedback mechanism

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:15

1 2 3 4 5 6 7 8 NA
Threshold

0

100

200

300

400

500

Ba
nd

wi
dt

h
(M

Bp
s)

Contention: 1 core (Solo)

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 2 cores

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 3 cores

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 4 cores

Lowest priority Third highest priority Second highest priority Highest priority

(a) Threshold-Bandwidth relationship curves for the FP scheduler.

1 2 3 4 5 6 7 8 NA
Threshold

0

100

200

300

400

500

Ba
nd

wi
dt

h
(M

Bp
s)

Contention: 1 core (Solo)

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 2 cores

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 3 cores

1 2 3 4 5 6 7 8 NA
Threshold

Contention: 4 cores

Period = 4 Period = 8 Period = 16 Period = 32

(b) Threshold-Bandwidth relationship curves for the TDMA scheduler.

Figure 5 Figures showing the impact of the threshold in use on the final bandwidth experinced
by the cores for the offered schedulers.

is disabled (noted NA). The contention is created by up to four co-running cores emitting
write transactions. For each parameter applied to a scheduler (i.e., fixed priority or TDMA
slot), the co-running cores are assigned the most demanding parameters available (i.e., the
highest priority for FP or the biggest TDMA slot).

In the case of the FP scheduler (Fig. 5a), one can observe that when running alone, the
threshold has no influence on the throughput. However, as soon as co-runners are added, the
cores start to experience a decrease in throughput. Fig. 5b shows that the TDMA scheduler
is not impacted considerably by the threshold with respect to the throughput. Globally, the
scheduler manages to preserve a constant throughput regardless of the contention and the
assigned slot.

Nonetheless, under high contention, one can observe that the throughput of each core is
affected. The fourth inset of Fig. 5a and Fig. 5b illustrate the importance of the threshold and
the PL-to-PL feedback mechanism as a a considerable drop of throughput can be observed
for the highest priority of FP and for a TDMA period of 32.

Considering these experiments, setting the threshold to four for all the schedulers seems
to bring the best trade-off between control and performance. However, this value cannot be
blindly applied to all cases as this experiment is performed for a sequential and contiguous
access pattern.

6.4 Internal Behaviour of SchIM
The next objective is to verify the correct behavior of the schedulers at the granularity of
a clock cycle by observing the inputs, the outputs and the internal signals and registers
of the SchIM module. This is made possible thanks to the Integrated Logic Analyzer (or
ILA) provided by Xilinx [36]. The latter IP can be directly implemented on the PL side,
alongside the SchIM, and is able to probe the signals and to store them in a local memory.
For this experiment, a group of relevant internal signals have been probed and captured
during a window of 16384 contiguous clock cycles. Then, the information has been extracted
by post-processing the data. To characterize the behavior of the two different policies, the

ECRTS 2021

2:16 Memory Scheduling in Multi-Core Systems with FPGA

0
2
4
6
8

Tr
an

sa
ct

io
ns

Subplot 1 - Amount of transactions buffered

0

1000

Tr
an

sa
ct

io
ns

Subplot 2 - Cumulative amount of input transactions

0
1
2
3

Qu
eu

e
ID

Subplot 3 - Queue scheduled at the master output

Q0 Q1 Q2 Q3 Sum

(a) FP with ordering C0 ≻ C1 ≻ C2 ≻ C3.

0
2
4
6
8

Tr
an

sa
ct

io
ns

Subplot 1 - Amount of transactions buffered

0

100

Tr
an

sa
ct

io
ns

Subplot 2 - Cumulative amount of input transactions

0
1
2
3

Qu
eu

e
ID

Subplot 3 - Queue scheduled at the master output

Q0 Q1 Q2 Q3 Sum

(b) TDMA with slots of 256 clock cycles.

Figure 6 Trace snapshots of SchIM for FP (6a), TDMA (6b).

ILA has been instrumented to collect (i) the amount of transactions being buffered in the
queues at each clock cycle (inset 1 in Fig. 6a and Fig. 6b) (ii) the rate at which queues receive
new transactions from the cores cluster (inset 2 in Fig. 6a and Fig. 6b) and (iii) the queues
ID of each transaction forwarded by the SchIM module (inset 3 in Fig. 6a and Fig. 6b).

For the Fixed Priority trace snapshot displayed in Fig. 6a, the following strict priority
ordering has been considered: C0 ≻ C1 ≻ C2 ≻ C3 where the ≻ operator means that the
left argument has a strictly higher priority than the right argument. In this experiment,
a regulation threshold of 3 for each core has been used. As emphasized by the inset 2 in
Fig. 6a, the FP scheduler is able to prioritize the traffic of one core at the expense of the
others according to the priorities assignment. Furthermore, one can observe that the rate at
which the queues receive new transactions from their associated core is proportional to the
priority level in the priority ordering. Finally, the third inset in Fig. 6a confirms the correct
behavior of the FP policy.One can see that the cores with the highest priority also feature
the highest density of transactions at the output of the SchIM.

The trace snapshot displayed in Fig. 6b has been obtained by configuring the SchIM
module in TDMA mode. For the sake of clarity, a slot of 256 clock cycles has been set for each
core. Besides, the threshold of each core has been set to 4 to create sharp transitions. The
insets 2 and 3 of Fig. 6b clearly show the behavior expected from a TDMA schedule. In fact,
one can clearly see in the latter that transactions originating from one core are only being
repeated out of the SchIM module during a well-defined and periodic time slot of 256 clock
cycles. In the inset 2 of Fig. 6b, we can observe a similar pattern, with transactions arriving
only during the TDMA slot associated with their queue (and indirectly core). Globally, the
rate at which queues receive transactions is steady and constant.

6.5 Memory Isolation
On the platform considered for this set of experiments, the Xilinx ZCU102 development board,
we denote three main sources of inter-core performance interference: (1) cache contention,
(2) DRAM bank conflicts, and (3) the congestion and saturation of the memory controller.
Despite their orthogonality, the two first sources are tackled respectively via the integration
of page coloring in the hypervisor and static bleaching in the SchIM. On the other hand,
since the SchIM provides fine-grained control over the timing and ordering of transactions
originating from the application cores as they reach the memory controller. Thus, the SchIM

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:17

0.0

0.5

1.0

1.5

2.0
sq

cif

disparity mser localization stitch texture_synthesis tracking sift

0.0

0.5

1.0

1.5

2.0

qc
if

0.0

0.5

1.0

1.5

2.0

cif

fp
tdm

a

main
-ro

ute
0.0

0.5

1.0

1.5

2.0

vg
a

fp
tdm

a

main
-ro

ute fp
tdm

a

main
-ro

ute fp
tdm

a

main
-ro

ute fp
tdm

a

main
-ro

ute fp
tdm

a

main
-ro

ute fp
tdm

a

main
-ro

ute

solo stress

Figure 7 Normalized execution time for each benchmark and input size for Solo and Stress. Each
column denotes a given benchmark of the SD-VBS suite, while each row denotes a specific input
size (in increasing order from top to bottom).

brings memory bandwidth management into the PL, and provides not only regulation but a
generic infrastructure to experiment with custom bandwidth management techniques, both
work-conserving and non-work-conserving.

The evaluation setup considered for this experiment is identical to the one presented in
Section 6.1. The routes going through the PL and using our SchIM (i.e., FP and TDMA)
benefit from both cache partitioning and bank partitioning. On the other hand, the normal
route uses cache partitioning and sees its cores divided into two sets targeting each a different
group of private banks.

To evaluate the capability of our SchIM with respect to its ability to ensure performance
isolation between the cores, a set of experiments involving SD-VBS benchmarks were designed.
Here, we compare the execution time of an application on a given core when running alone
(referred to as Solo) and when running alongside interfering synthetic benchmarks (write
memory bombs) on all the other cores (referred to as Stress). For each combination of a
route to main memory (i.e., the normal route or the SchIM route) and scheduler, the result
obtained for Stress is normalized with respect to the equivalent configuration in Solo. The
results obtained on the considered benchmarks are listed in Fig. 7. The results in the Fig. 7
are the aggregation (arithmetic average) of 30 different runs in the same configuration. Each
bar cluster of the Fig. 7 insets represents one of the aforementioned configuration for Solo
and Stress. The height of each bar denotes its normalized execution time.

For this set of experiments, the FP scheduler was configured such that the core under
analysis (i.e., the one running the benchmark) has the highest priority and a threshold of 8.
The other cores are assigned lower priorities and thresholds matching their priority order
(i.e., 4, 2, 1). Under TDMA scheduling, the core under analysis has a slot of 512 clock cycles

ECRTS 2021

2:18 Memory Scheduling in Multi-Core Systems with FPGA

and a threshold of 14 while the co-runners are assigned slots of 32 and 16 clock cycles with
thresholds of 4 and 1.

The normal route is used as a baseline for this experiment because no scheduling is
performed in this configuration. The Fig. 7 highlights the sensitivity of both disparity and
mser to inter-core interference on the normal route. This is especially the case for large
input sizes such as cif and vga. On the other hand, texture synthesis and localization do
not suffer from inter-core interference. Globally, the TDMA scheduler always manages to
preserve the isolation of the core, having execution times under Stress similar or smaller than
the normal route. This is particularly visible for qcif, cif and vga input sizes of disparity
and mser. Similarly, the FP scheduler is also capable of ensuring sound isolation of the core
under analysis.

7 Discussion and Limitations

By design, the PLiM module proposed in this paper, the SchIM, centralizes the memory
traffic and its scheduling. A centralized design makes sense on the specific target platform
because there exist only one memory controller and thus a single path between the LLC and
the DRAM controller. In systems where multiple paths between the processing units and the
memory controllers exist, for instance when multiple controllers and channels are present, a
decentralized design is to be preferable to better exploit the available memory parallelism.
In such platforms, a possible avenue could be instantiating multiple SchIM modules, roughly
one per channel, and introducing appropriate out-of-band signaling between the modules for
coordination off the critical path.

As we mentioned in Section 6.1, our setup includes the Jailhouse partitioning hypervisor.
While the SchIM module does not strictly require the PS side to use a hypervisor, Jailhouse
has been extensively used for the evalution as it provides convenient features to control
physical memory allocation. For instance, the support for page coloring has been used to
both partition the LLC space and to easily identify the owner of each memory transactions
in the SchIM (as presented in Section 5.4). However, instead of enforcing cache partitioning,
one could instead identify the ownership of memory transactions by extracting a different
subset of address bits. For instance, if the physical memory allocated to different partitions
is not interleaved, then the most significant bits of the address can be used to perform
traffic accounting. In addition, the IPA address virtualization is convenient to transparently
redirect the memory traffic of the application partitions through the PL side, even if they
are initially booted through the normal route. Finally, the cores throttling mechanism (see
Section 5.7) via the FIQs can be implemented at EL3 (Secure Monitor) or in the individual
guest OS’s instead (EL1). Implementing FIQ handling in the hypervisor (EL2), however,
has the advantage of not requiring any change in the guest OS’s, as well as not requiring a
full switch into secure mode compared to an implementation at EL3.

On the same note, provided that the FIQ lines are not used by the inmates, the feedback
regulation mechanism is entirely transparent to the guest OS’s (or even for bare-metal
applications) and introduces minimum overhead. The Linux kernel do not use FIQs, and
the same goes for typical RTOS’s. Nonetheless, it must be acknowledged that defining a
FIQ handler to be used for CPU throttling might interfere with (and be interfered by) the
latency of FIQ handling in guest OS’s that rely on the same functionality. This is mainly
because FIQ handling is non-preemptive. We also recognize that the PL-to-PS feedback
mechanism is relatively coarse. Inset 1 of Fig. 6b highlights this problem. Even though
all the queues have been assigned a threshold of 4, the threshold is often exceeded. The

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:19

worst-case being queue 3 exceeding the threshold by 2 on the right-hand side of the plot.
This problem can be attributed to the reaction time of the FIQ routine, and to the fact that
jumping to the FIQ handler itself might cause a few memory transactions depending on the
cache state. Currently, the thresholds used for FIQ-based regulation require to be fine-tuned
manually by the user. Future extensions of the SchIM will explore the implementation of
schedulers capable of dynamically adapting the thresholds to maximize performance and
improve isolation.

The loss in bandwidth caused by routing transactions through the PL is important and a
serious drawback against the adoption of the SchIM. Our experiments in Section 6.2 have
shown that rerouting the traffic through the PL has a cost. As illustrated in Fig. 4, up to
2100 MBps can be extracted from the normal route whereas any route through the PL only
achieves around 320 MBps. In contrast, a back-of-the-envelope calculation reveals that for
a PL operating at 250 MHz (the SchIM frequency), and with a bus width of 128 bits, a
full-duplex throughput of approximately 3.7 GBps can be sustained. This calculation is in
line with the reported throughput in an experiment conducted in [19], in which PL-originated
transactions targeting the DRAM passed through the one of the HP ports. This suggests
that the PL-to-DRAM route can sustain a much higher throughput than what has been
experimentally observed in our evaluation setup, where transactions originate from the PS
side. In light of these considerations, we can conclude that the source of the bandwidth
loss can be imputed to the bus segments connecting the CPU cluster to the HPM ports.
A focused study is necessary to narrow down the exact reason for the performance drop.
Nonetheless, vendor-imposed bandwidth throttling, PS-to-PL clock-domain crossing delays,
and shallow FIFOs at the HPM ports and/or at the main PS-side interconnect represent
plausible reasons. We anticipate that due to the platform-specific nature of this issue, the
raw performance of the SchIM will substantially vary across different SoCs.

8 Conclusion

In the present article we introduced the SchIM, a memory transactions scheduler framework
that can be integrated with commercially available platforms featuring a tightly coupled
processing system and programmable logic. A full-system implementation in a commercially
available PS-PL platform has been detailed, which encompasses the accompanying software
stack and the platform-specific integration steps.

Through a set of experiments, we assessed the capabilities of the framework and demon-
strated the correct behavior of the proposed scheduling policies, namely Fixed Priority and
Time Division Multiple Access. Finally, we showed using a suite of real-world benchmarks
that the SchIM is capable of enforcing strong temporal isolation despite heavy memory
contention.

The authors see the proposed SchIM as a stepping stone to propose, test and validate novel
memory scheduling policies to be tested on embedded platforms with realistic performance
and complex workload. For this reason, the SchIM has been designed to be open-source and
with extensibility in mind. Especially, we strongly envision that the SchIM could represent a
stepping-stone toward profile-based memory traffic scheduling.

ECRTS 2021

2:20 Memory Scheduling in Multi-Core Systems with FPGA

References
1 B. Akesson. Predictable and composable system-on-chip memory controllers. PhD thesis,

Technische Universiteit Eindhoven, School of Electrical Engineering, 2010. doi:10.6100/
IR658012.

2 B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory
controller. In Proceedings of the 5th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, pages 251–256, 2007.

3 G. Alonso, T. Roscoe, D. Cock, M. Ewaida, Kaan Kara, Dario Korolija, D. Sidler, and
Ze ke Wang. Tackling hardware/software co-design from a database perspective. In Conference
on Innovative Data Systems Research (CIDR), Amsterdam, Netherlands, January 2020.

4 ARM. ARM® CoreLink™ QoS-400 Network Interconnect Advanced Quality of Service, 2013.
Accessed on 09.01.2020.

5 ARM. AMBA AXI and ACE Protocol Specification. Technical report, ARM, 2019. URL:
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf.

6 A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A framework for
supporting real-time applications on dynamic reconfigurable FPGAs. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 1–12, 2016. doi:10.1109/RTSS.2016.010.

7 J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson. LITMUSRT

: A testbed for empirically comparing real-time multiprocessor schedulers. In 2006 27th
IEEE International Real-Time Systems Symposium (RTSS’06), pages 111–126, 2006. doi:
10.1109/RTSS.2006.27.

8 F. Farshchi, Qijing Huang, and H. Yun. BRU: Bandwidth regulation unit for real-time
multicore processors. 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 364–375, 2020.

9 F. Farshchi, P. Kumar, R. Mancuso, and H. Yun. Deterministic Memory Abstraction and
Supporting Multicore System Architecture. In Sebastian Altmeyer, editor, 30th Euromicro Con-
ference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 1:1–1:25, Barcelona, Spain, July 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2018.1.

10 C. Ferri, A. Marongiu, B. Lipton, R. Bahar, T. Moreshet, L. Benini, and M. Herlihy. SoC-TM:
integrated HW/SW support for transactional memory programming on embedded MPSoCs. In
Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 39–48, 2011.

11 G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
mixed criticality applications on modern heterogeneous MPSoC platforms. In 31st Euromicro
Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

12 Intel, Corp. Intel’s Stratix 10 FPGA: Supporting the smart and connected revolution,
October 2016. Accessed on 09.01.2020. URL: https://newsroom.intel.com/editorials/
intels-stratix-10-fpga-supporting-smart-connected-revolution/.

13 A. K. Jain, S. Lloyd, and M. Gokhale. Microscope on memory: MPSoC-enabled computer
memory system assessments. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 173–180, 2018. doi:10.1109/
FCCM.2018.00035.

14 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in COTS-based multi-core systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 145–154, 2014. doi:10.
1109/RTAS.2014.6925998.

15 H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In 2016
International Conference on Embedded Software (EMSOFT), pages 1–10, 2016.

16 J. Kiszka, V. Sinitsin, H. Schild, and contributors. Jailhouse Hypervisor. Accessed on
09.01.2020. URL: ttps://github.com/siemens/jailhouse.

https://doi.org/10.6100/IR658012
https://doi.org/10.6100/IR658012
https://static.docs.arm.com/ihi0022/g/IHI0022G_amba_axi_protocol_spec.pdf
https://doi.org/10.1109/RTSS.2016.010
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.1109/RTSS.2006.27
https://doi.org/10.4230/LIPIcs.ECRTS.2018.1
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://newsroom.intel.com/editorials/intels-stratix-10-fpga-supporting-smart-connected-revolution/
https://doi.org/10.1109/FCCM.2018.00035
https://doi.org/10.1109/FCCM.2018.00035
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/RTAS.2014.6925998
ttps://github.com/siemens/jailhouse

D. Hoornaert, S. Roozkhosh, and R. Mancuso 2:21

17 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A Survey of Timing
Verification Techniques for Multi-Core Real-Time Systems. ACM Comput. Surv., 52(3), 2019.
doi:10.1145/3323212.

18 Microsemi — Microchip Technology Inc. PolarFire SoC - Lowest Power, Multi-Core RISC-
V SoC FPGA, July 2020. Accessed on 09.01.2020. URL: https://www.microsemi.com/
product-directory/soc-fpgas/5498-polarfire-soc-fpga.

19 S. Min, S. Huan, M. El-Hadedy, J. Xiong, D. Chen, and W. Hwu. Analysis and optimization of
I/O cache coherency strategies for SoC-FPGA device. In 2019 29th International Conference
on Field Programmable Logic and Applications (FPL), pages 301–306, 2019. doi:10.1109/
FPL.2019.00055.

20 R. Mirosanlou, M. Hassan, and R. Pellizzoni. DRAMbulism: balancing performance and
predictability through dynamic pipelining. In 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 82–94, 2020. doi:10.1109/RTAS48715.2020.
00-15.

21 P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial isolation
in a hypervisor for ARM multicore platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651–1657, 2018.

22 O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling for chip multiprocessors.
In 40th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO 2007),
pages 146–160. IEEE, 2007.

23 O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both performance
and fairness of shared DRAM systems. In 2008 International Symposium on Computer
Architecture, pages 63–74. IEEE, 2008.

24 K. Nesbit, N. Aggarwal, J. Laudon, and J. Smith. Fair queuing memory systems. In 2006
39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06), pages
208–222. IEEE, 2006.

25 M. Paolieri, E. Quinones, F. Cazorla, and M. Valero. An analyzable memory controller for
hard real-time CMPs. IEEE Embedded Systems Letters, 1(4):86–90, 2009.

26 N. Rafique, W. Lim, and M. Thottethodi. Effective management of DRAM bandwidth in
multicore processors. In 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007), pages 245–258. IEEE, 2007.

27 F. Restuccia, A. Biondi, M. Marinoni, G. Cicero, and G. Buttazzo. AXI HyperConnect: A
predictable, hypervisor-level interconnect for hardware accelerators in FPGA SoC. In 2020
57th ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020. doi:10.1109/
DAC18072.2020.9218652.

28 F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo. Is your bus arbiter really
fair? restoring fairness in AXI interconnects for FPGA SoCs. ACM Trans. Embed. Comput.
Syst., 18(5s), 2019. doi:10.1145/3358183.

29 S. Roozkhosh and R. Mancuso. The potential of programmable logic in the middle: Cache
bleaching. In 26th IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS 2020), Sydney, Australia, April 2020.

30 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: a system-wide framework for
memory bandwidth profiling and management. In 41st IEEE Real-Time Systems Symposium
(RTSS 2020), Houston, TX, USA, December 2020.

31 ST Microelectronics Inc. Real-time performance using FIQ interrupt handling in SPEAr
MPUs, January 2010. Accessed on 10.01.2020.

32 M. Solieri T. Kloda, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In 25th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2019), pages
1–14, Montreal, Canada, April 2019. doi:10.1109/RTAS.2019.00009.

ECRTS 2021

https://doi.org/10.1145/3323212
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://www.microsemi.com/product-directory/soc-fpgas/5498-polarfire-soc-fpga
https://doi.org/10.1109/FPL.2019.00055
https://doi.org/10.1109/FPL.2019.00055
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/DAC18072.2020.9218652
https://doi.org/10.1109/DAC18072.2020.9218652
https://doi.org/10.1145/3358183
https://doi.org/10.1109/RTAS.2019.00009

2:22 Memory Scheduling in Multi-Core Systems with FPGA

33 H. Usui, L. Subramanian, K. Chang, and O. Mutlu. Dash: Deadline-aware high-performance
memory scheduler for heterogeneous systems with hardware accelerators. ACM Transactions
on Architecture and Code Optimization (TACO), 12(4):1–28, 2016.

34 P. Valsan and H. Yun. MEDUSA: A predictable and high-performance DRAM controller
for multicore based embedded systems. In 2015 IEEE 3rd International Conference on
Cyber-Physical Systems, Networks, and Applications, pages 86–93. IEEE, 2015.

35 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 55–64, 2009.

36 Xilinx. Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide. Technical report, Xilinx,
2016. URL: https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_
2/pg172-ila.pdf.

37 Xilinx. Zynq UltraScale+ Device Technical Reference Manual. Technical report,
Xilinx, 2019. URL: https://www.xilinx.com/support/documentation/user_guides/
ug1085-zynq-ultrascale-trm.pdf.

38 M. Xu, L. T. X. Phan, H. Choi, Y. Lin, H. Li, C. Lu, and I. Lee. Holistic resource allocation
for multicore real-time systems. In 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 345–356, 2019. doi:10.1109/RTAS.2019.00036.

39 H. Yun, W. Ali, S. Gondi, and S. Biswas. BWLOCK: A Dynamic Memory Access Control
Framework for Soft Real-Time Applications on Multicore Platforms. IEEE Transactions on
Computers, 66(7):1247–1252, 2017.

40 H. Yun, R. Mancuso, Z. P. Wu, and R. Pellizzoni. Palloc: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 155–166, 2014. doi:
10.1109/RTAS.2014.6925999.

41 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64,
2013.

42 Y. Zhou and D. Wentzlaff. MITTS: Memory inter-arrival time traffic shaping. ACM SIGARCH
Computer Architecture News, 44(3):532–544, 2016.

https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ila/v6_2/pg172-ila.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://doi.org/10.1109/RTAS.2019.00036
https://doi.org/10.1109/RTAS.2014.6925999
https://doi.org/10.1109/RTAS.2014.6925999

Leveraging Hardware QoS to Control Contention
in the Xilinx Zynq UltraScale+ MPSoC
Alejandro Serrano-Cases #

Barcelona Supercomputing Center (BSC), Spain

Juan M. Reina #

Barcelona Supercomputing Center (BSC), Spain

Jaume Abella #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Enrico Mezzetti #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Francisco J. Cazorla #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Abstract
The interference co-running tasks generate on each other’s timing behavior continues to be one of the
main challenges to be addressed before Multi-Processor System-on-Chip (MPSoCs) are fully embraced
in critical systems like those deployed in avionics and automotive domains. Modern MPSoCs like
the Xilinx Zynq UltraScale+ incorporate hardware Quality of Service (QoS) mechanisms that can
help controlling contention among tasks. Given the distributed nature of modern MPSoCs, the route
a request follows from its source (usually a compute element like a CPU) to its target (usually a
memory) crosses several QoS points, each one potentially implementing a different QoS mechanism.
Mastering QoS mechanisms individually, as well as their combined operation, is pivotal to obtain
the expected benefits from the QoS support. In this work, we perform, to our knowledge, the first
qualitative and quantitative analysis of the distributed QoS mechanisms in the Xilinx UltraScale+
MPSoC. We empirically derive QoS information not covered by the technical documentation, and
show limitations and benefits of the available QoS support. To that end, we use a case study building
on neural network kernels commonly used in autonomous systems in different real-time domains.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Quality of Service, Real-Time Systems, MPSoC, Multicore Contention

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.3

Funding This work has been partially supported by the Spanish Ministry of Science and Innovation
under grant PID2019-107255GB; the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 878752 (MASTECS) and the European Research Council
(ERC) grant agreement No. 772773 (SuPerCom).

1 Introduction

Satisfying the increasing computing performance demands of critical software applications
requires Multi-Processor System-on-Chip (MPSoC) devices that incorporate diverse com-
puting elements [42, 59]. Distributed interconnects are also required on the MPSoC for fast
communication between masters (e.g. CPUs) and slaves (e.g. on-chip memories and memory
controllers). For instance, the Zynq UltraScale+ MPSoC [59], which we refer to as ZUS+ in

© Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 3; pp. 3:1–3:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alejandro.serrano@bsc.es
https://orcid.org/0000-0001-9794-8495
mailto:juan.reina@bsc.es
https://orcid.org/0000-0003-4058-5886
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:enrico.mezzetti@bsc.es
https://orcid.org/0000-0002-1886-2931
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.4230/LIPIcs.ECRTS.2021.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Leveraging QoS to Control Multicore Contention in the ZUS+

this work, comprises two CPU clusters, with CPUs with different power and performance
points, a Graphics Processing Unit (GPU), a Field Programmable Gate Array (FPGA) that
allows synthesizing specific accelerators, and an AXI4-based distributed interconnect.

Complex MPSoCs accentuate the problem of multicore contention, i.e. controlling the
interference co-running tasks generate on each other. In an MPSoC, tasks can interact in
many hardware resources and controlling how such resources are shared becomes a necessary
precondition to derive useful timing bounds. This can be achieved via software-controlled
hardware mechanisms like cache partitioning (e.g. provided in the NXP T2080 [27]) to
prevent tasks from evicting each other’s cache data, and hardware-thread prioritization
in simultaneous multithreading (SMT) IBM [15] and Intel [31] processors. Hardware QoS
mechanisms like these help controlling multicore contention: by properly configuring the
hardware QoS mechanisms, the system software (RTOS or hypervisor) can favor the execution
of specific tasks, reducing the slowdown they suffer due to contention, at the cost of increasing
the impact of contention on (less time-constrained) co-runner tasks. This offers a rich set of
platform configurations that allow the end-user to better adapt to the criticality and timing
constraints of the running application workload.

In this paper, we analyze the hardware support for QoS in the ZUS+, which is assessed
for on-board computing in avionics [58]. The ZUS+ offers a rich set of QoS mechanisms
implemented in different hardware IP blocks of the interconnect and the memory controller.
The number, diversity, and complexity of those mechanisms are, at a first sight, simply
overwhelming: up to 4 different hardware IP components in the ZUS+ are QoS improved.
Some of those components are instantiated several times resulting in (i) over 30 different
QoS points that control the flow of traffic in the interconnect and the access to the slaves;
and (ii) millions of possible QoS configurations. However, QoS can only work effectively if
the QoS points work coordinately. Otherwise, a QoS point down the path from the source
to the destination can cancel out all the prioritization benefits achieved through previous
QoS points. This calls for a detailed analysis of the different QoS mechanisms and their
dependencies to reach a global predictability goal. In this line, our contributions are:

Individual QoS mechanisms. (Section 3) We analyze several QoS-enabled IP components
from 2 different IP providers instantiated in the ZUS+: the Arm NIC-400 [4], and its QoS-
400 [5] and QVN-400 [6] extensions, the Arm CCI-400 [9], and the Synopsys uMCTL2 [55]
DDR memory controller. We describe the main QoS features in each of these components as
building blocks of the analysis performed in the rest of this work.

Coordinated QoS mechanisms. (Section 4) Following the individual analysis of QoS-enabled
IP blocks, we analyze how QoS mechanisms can work coordinately to achieve a global goal, e.g.
favoring the traffic of the Real-time Processing Unit (RPU) over the Application Processing
Unit (APU). This analysis, which is not provided in the ZUS+ or its IP blocks’ technical
reference manuals, presents key insights to fully master the QoS support in the ZUS+. In
particular, (i) we show that some QoS features, especially when provisioned by different
IP providers, can be fundamentally incompatible and hence, cannot be deployed together
towards reaching a common predictability goal; (ii) for compatible QoS features in different IP
blocks, we show the particular range of QoS configuration values that can be used to prevent
that one feature cancels out the benefits brought by another. In doing so, we introduce the
new concepts of QoS domain and QoS domain mapping; and (iii) we also show the missing
information about QoS mechanisms in the technical manuals of the ZUS+.

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:3

Characterization. (Section 5) Driven by the analysis in Section 4, we perform controlled
experiments to characterize QoS mechanisms in different IP blocks, with a view to determining
some of the design choices made by Xilinx when instantiating Arm IP blocks as they are
not documented in the corresponding technical manuals. Also, we note that all four A53
cores in the APU share a single QoS-enabled port to the interconnect that allows controlling
the aggregated traffic but not per-core traffic, which in practice prevents having several
applications in the APU if they have different QoS needs. We unveil how QoS and packet
routing can be combined to overcome this limitation, allowing two applications to run in the
APU with heterogeneous QoS requirements.

Case Study. (Section 6) We focus on a composite deployment scenario comprising several
applications, each one potentially subject to different predictability requirements, to show
how hardware QoS configuration is a central element of the platform configuration to ensure
applications meet their timing constraints. We use representative neural network kernels to
show that, by deploying specific QoS setups, the time constraints of the different applications
can be accommodated while other metrics, like average performance, can be improved. This
is very useful in different domains for platform configuration selection, referred to as intended
final configuration (IFC) in CAST-32A [18] in the avionics domain.

The rest of this work is organized as follows. Section 2 introduces the most relevant
related works. Section 3 to Section 6 cover the main technical contributions of this work, as
described above. Last but not least, Section 7 provides the main conclusions of this work
and discusses future research directions.

2 Background and Related Works

Multicore contention is at the heart of the complexities for the adoption of MPSoCs in
high-integrity systems (e.g. avionics and automotive). This has impacted domain-specific
safety standards and support documents [18, 2, 32] and led to the proliferation of academic
and industrial studies on modeling multicore interference [46].

Contention Modelling. Contention Modelling is one of the main multicore-contention
related research lines covering COTS chips for avionics [40] and automotive [22]. Analytical
approaches aim at bounding the contention impact on shared hardware resources, initially
focusing on the timing interference in shared on-chip buses [52, 19, 20] and later extended
to include other shared resources. Solutions have been proposed to make Advanced Micro-
controller Bus Architecture (AMBA) protocols time-composable [33], and to achieve a fair
bandwidth allocation across cores considering requests with different durations [50]. Other
works target more complex interconnects, bounding their worst-case traversal time [35, 26],
focusing on Network on Chips (NoCs) specifically [49, 21, 17, 57, 13], and modeling contention
with network calculus [34, 47]. For the DDR memory, some authors build on static analyses to
derive bounds to the latencies of memory requests considering other potential requests in the
memory controller [29], as well as information about tasks and requests simultaneously [30].
For cache memories, contention has been modeled statically, as surveyed in [36], as well as
analyzed with measurements on COTS multicores, targeting the coherence protocol [53].
The tightness and precision of analytical approaches are challenged by the complexity of the
hardware and software under analysis. For this reason, other approaches are proposed to
exploit specific application semantics or dedicated hardware and software support.

ECRTS 2021

3:4 Leveraging QoS to Control Multicore Contention in the ZUS+

Application Semantics. Several works have been advocating the enforcement of predictable
application semantics where task memory operations are only allowed to happen in dedicated
phases (e.g., read-compute-write). This enables the computation of tighter contention bounds
and the formulation of contention-aware co-scheduling approaches [45, 44, 12, 14]. While
unquestionably effective, not all applications can support an execution semantics allowing a
reasonable and clear separation into phases.

Exploiting hardware support for QoS in COTS. For simultaneous multi-threading pro-
cessors some authors have exploited existing fetch policies to allocate core resources to
threads in the context of HPC applications running for IBM POWER- processors [15] and
Intel processors [31]. In real-time systems, other authors have focused on an individual
Arm QoS element and a specific example (memory traffic from accelerators) to show that
QoS mechanisms could be effectively leveraged for a better application consolidation [54].
Other authors evaluate the throughput of DDR memory on a ZUS+, including the impact
of one QoS parameter in the memory controller [37]. In our work, we analyze/characterize
the specific realization of Arm QoS IPs in the ZUS+ SoC and consider how to orchestrate
multiple QoS mechanisms for an effective QoS management. In the short and mid term, we
foresee chip providers will further support advanced QoS features and mechanisms such as,
for instance, the Memory System Resource Partitioning and Monitoring (MPAM) in Arm-V8
architectures [8], which is under evaluation by industry in the real-time domain [23].

Software-only solutions. Software-only solutions for contention control do not require
specific hardware support for either enforcing task segregation or providing a given level
of QoS guarantees. These techniques leverage information on set and bank indexing in
caches and memory, and hypervisor/RTOS allocation support to force different tasks to be
mapped to different cache sets and DDR memory banks/ranks [28, 38]. Other solutions
focus on controlling the access to shared resources (e.g. memory) as a way to control the
maximum contention an offending task can generate on its co-runners [60] and also to
guarantee performance of critical tasks while dynamically minimizing the impact on best
effort tasks [1].

Specific hardware proposals. Specific hardware proposals for contention control include
some general resource management policies [39]. The number of resource-specific propos-
als is high and covers a wide variety of mechanisms including changes in the arbitration
and communication protocols [33], memory bandwidth regulation [24], support for cache
partitioning [38] (in some cases building on existing programmable logic in the SoC [51]),
control contention bounds [16], exploit AMBA AXI bandwidth regulation for accelerators in
FPGAs [43].

In this work, we do not propose hardware support for contention control, but build on
that provided by default by the MPSoC integrator. Unlike previous works that focus on
centralized QoS control, we address the challenge of understanding, characterizing, and
showing the limitations and benefits of a distributed QoS system like the one in the ZUS+.

3 Analysis of the QoS Mechanisms in the Zynq UltraScale+ MPSoC

The ZUS+ integrates several computing and memory components, all connected by a
distributed interconnect fabric, see Figure 1. The main computing elements are the quad-core
Arm Cortex-A53 APU, the dual-core Arm Cortex-R5 RPU, the Arm Mali-400 GPU, and

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:5

Table 1 Main QoS-related terms used in this work.

Term Definition
QoS mechanism Specific hardware mechanisms in a QoS-enabled block to control QoS
QoS slot (point) Refers to the instantiation of a QoS-enabled block or mechanism
QoS feature Specific QoS characteristic implemented by a QoS mechanism
QoS value Specific value given to a QoS feature
QoS setup Set of values for the QoS features of all QoS points under evaluation

Figure 1 Simplified ZUS+ block diagram emphasizing APU/RPU/PL and OCM/DDRC.

the accelerators that can be implemented in the Programmable Logic (PL). The memory
system comprises several on-chip units like the On-Chip Memory (OCM) and the controller
of the DDR SDRAM, which is the main off-chip memory. The interconnect comprises
top-level switches, namely, the Cache Coherent Interconnect (CCI), the low-power domain
(LPD) switch, full-power domain (FPD) switch, and the OCM switch; and a high number of
second-level switches, highlighted as “x” in Figure 1. In this work, we focus on communication
from the APU, RPU, and the PL to the OCM and the DDR DRAM. Other blocks that are
not the focus of this work are not developed in the figure, e.g., IP blocks related to I/O are
abstracted as “Other Switches” and “I/O”. APM are the Xilinx AXI performance monitoring
point blocks used to collect statistics on the packets sent over an AXI link (reads, writes,
amount of data transferred, etc.).

In terms of third party IPs, the ZUS+ equips a distributed AMBA AXI4 [11] interconnect,
with switches based on the Arm NIC-400 [4] and its QoS-400 extension [5]. The CCI, instead,
is based on the Arm CCI-400 [9] and equips similar features to the Arm QVN-400 [6] IPs.
The memory controller builds on the Synopsys uMCTL2 [55]. Each block provides hardware
support for QoS, which we analyze here. To support our discussion, Table 1 introduces the
main terms we use in this work.

3.1 QoS support per IP-block

The ZUS+ technical documentation [59] provides very limited information about the func-
tional behavior of the underlying IP blocks on which it builds. Hence, we start by analyzing
the information on supported QoS features that can be obtained from each IP’s technical
specification. How each IP is instantiated in the ZUS+ is covered in Section 4.3.

ECRTS 2021

3:6 Leveraging QoS to Control Multicore Contention in the ZUS+

Figure 2 Arm QoS-400
QoS relay and dynamic QoS.

Figure 3 QoS features in the
Arm CCI-400.

Figure 4 Block Diagram of the
DDR memory controller.

Arm AXI4 [11]. AXI4 presents 5 communications channels, three from master to slave
(address read, address write, and write data) and two from slave to master (read data
and write response). In the read address and write address channels, AXI4 implements
QoS-specific signals by supporting two 4-bit QoS identifiers for read (ARQOS) and write
(AWQOS) transactions, indistinctly referred to as AXQOS. Transaction initiators (masters)
set the QoS value for each read/write request. QoS values range from 0 (default or neutral
QoS) to 15, with higher values meaning higher priority. We refer to this feature as static QoS.

Arm NIC-400 [4]. On arrival to a NIC-400, every transaction allocates a QoS value by
assigning (i) a fixed value statically defined when the NIC-400 IP is integrated into the
SoC; (ii) a programmable value provided via NIC-400 control registers; or (iii) the QoS
value received from the attached master. We call this feature QoS relay. As the transaction
traverses internal switches in the NIC-400, static QoS values are used to decide which
transaction has to be served first. In these arbitration points, the transaction with the
highest value is prioritized using Least Recently Granted (LRG) as a tie-breaker.

Arm QoS-400 [5]. Arm QoS-400 is an extension to the NIC-400 that provides additional QoS
features, remarkably three dynamic QoS regulation mechanisms: outstanding transaction
that limits the maximum number of read, write, or read+write in-flight transactions allowed;
transaction rate that dynamically increases QoS value of transactions if the latency is
greater than the target and vice versa; and transaction latency that controls the period
between successive request handshakes dynamically increasing/decreasing QoS values when
the observed period is greater/lower than the target [5] . The regulation builds on three
parameters: the Peak, Burstiness and Average. The average controls how many transactions
need to be made within a period of time. When not achieved this amount of transactions due
to the system congestion, then the regulator allows performing a limited set of transactions
(burstiness) to restore the average. In addition, the control can be configured to limit this
transactions issue to not overuse the shared resources (Peak). As an illustrative example,
Figure 2 shows a block diagram of the QoS features in a Arm NIC-400 interconnect block
encompassing QoS extensions with 3 slaves and 2 master ports, and 3 arbiters.

Arm QVN-400 [6]. Arm QVN-400 is an extension to the CoreLink NIC-400. The QVN
protocol creates virtual networks by using tokens to control transaction flows. QVN extends
the common AXI channels with extra signals ensuring that a transaction can always be

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:7

accepted at its destination before a source sends it. The number of VN (virtual network) is
defined during the IP implementation. QVN enables transactions on virtual networks with
different QoS values to avoid a blocking (less priority) transaction in a queue (Head-Of-Line).

Arm CCI-400 [9]. Arm CCI-400 has similar features to the QoS relay, QoS dynamic and
QoS static features in the QoS-400, and QVN in the QVN-400. A unique feature of the
CCI-400 is that each master interface implements a read queue with several slots reserved for
high priority requests, other for high+medium priority requests and the rest for low-priority
requests (see Figure 3). The QoS values considered as high, medium, low are configurable.
So is the number of reserved entries medium and high priority requests. We call this feature
CCIrq.

Memory Controller. It comprises the DDR-controller (DDRC) that schedules and converts
AXI requests (AXIrq in Figure 4) into DDR commands (DDRCm in Figure 4) and the
DDR-PHY (DFI) that translates the requests into specific signals to the target DDR device.
The DDRC dynamic scheduling optimizes both bandwidth and latency using a programmable
QoS controller to prioritize the DFI requests, allowing out-of-order execution.

Six AXI ports (XPI) receive traffic, i.e. flow of AXI requests, going to the DDRC. XPIs
are referred to as P0-P5 in Figure 1. In each XPI, the DDRC translates and classifies
AXI transactions into a set of DDR commands. In each port, different queues temporarily
store transactions depending on their type (read/write and request/data), see Figure 4.
Read transactions are classified into low, high, and video traffic classes (LPR, HPR, and
VPR, respectively), while write transactions are classified into low (or normal) and video
(LPW/NPW and VPW, respectively) traffic classes. Commands with VPR/VPW behave as
low priority when the command has not expired (i.e. there is not a transaction timeout). Once
expired, the command are promoted to a priority higher than the HPR/NPW commands.

Once the transactions make their entry on the DDRC and their translation into DRAM
commands are generated, those commands are stored into the counter addressable memories
(CAMs). A read CAM and a write CAM are shared by all ports in a way that the maximum
number of entries that can be allocated to a traffic class can be limited.

The Port Arbiter (PA), which is shared among all ports, selects the command to be sent
to the CAMs based on several levels of arbitration, as shown next. Operation type: reads
are prioritized while there are VPR expired or there are reads and no expired VPW. Writes
are executed when there are no reads and if there are expired VPW and no expired VPR.
The expiration period can be configured via setting timeouts for VPR/VPW 1. Also, ports
can be individually flagged as “urgent” to force all its request to be processed immediately.
Channel: the PA prioritizes commands from higher priority classes: HPR has higher priority
than LPR/VPR on the read channel and NPW/VPW has the same initial priority on the
write channel, with VPR/VPW prioritized if they time out. AXQOS : in the next layer,
priorities are given per command based on AXQOS signals. Tie breaker : in the bottom tier
conflicts are resolved using round-robin arbitration.

This nominal behavior is affected by port throttling based on the occupancy of CAMs.
When the available entries for HPR/LPR in the read CAM is below an HPR/LPR threshold,
low-latency(HPR)/best-effort ports can be throttled. Likewise, if the available entries for
NPW in the write CAM is below a threshold best-effort ports can be throttled.

1 Note that there is a port “aging” feature that is set at boot time and is explicitly recommended not to
be used with AXQOS: “aging counters cannot be used to set port priorities when external dynamic
priority inputs (arqos) are enabled”. Hence, we do not enable this feature in our experiments.

ECRTS 2021

3:8 Leveraging QoS to Control Multicore Contention in the ZUS+

When issuing commands from CAMs to the DFI, command reordering is allowed to favor
page hits, potentially causing out-of-order execution of the commands. A regulator limits
the issue to up to 4 out-of-order commands. When it is disabled, no restriction is applied,
resulting in no control in the number of out-of-order command executed. In our setup for
predictability reasons, we limit it to its minimum value, 4. Also, HPR and LPR partitions in
read CAM and the write CAM can enter a “critical” state if they spend more than a given
number of cycles without issuing a command to the DFI.

4 Interaction Among QoS-enabled IP Blocks

We faced two main challenges in our attempt to orchestrate the different and distributed
QoS mechanisms implemented in the ZUS+.

1. Xilinx provides very limited information about the QoS-enabled blocks it integrates into
the ZUS+ and, instead, refers the reader to the technical manuals of each IP provider.
However, the latter provides implementation-independent descriptions rather than details
on the particular implementation options selected for the ZUS+ IP blocks. As a result,
we could not find the specific implementation options for some IP blocks (Section 4.3)
and had to derive them empirically instead (Section 5).

2. Xilinx provides almost no information on how the different QoS mechanisms – coming
from different IP providers – can work coordinately. However, to effectively exploit all
QoS features in view of a common predictability goal, it is necessary to properly configure
all the QoS points from the different masters to the slave. For instance, in the ZUS+ a
request from the RPU to the DDR, see Figure 1, crosses: a static QoS point in the RPU
switch; read queue priority, QoS relay, and dynamic QoS in the CCI; QVN between the
DDRC and the DRAM controller; and the multilayer arbitration in the DRAM controller
which involves XPI, Port Arbiter, and CAMs.

This section tackles those issues by providing key insights and unveiling details, not
documented in any technical reference manual, about the instantiation of QoS-enabled blocks
in the ZUS+ and the interaction among them. This required cross-matching information in
the technical manuals of the different IP providers and covering the conceptual holes found
in the documentation by analyzing dozens of processor registers that control the operation of
the QoS. The outcome of the analysis is the central element to guide the experimental part 2.

Overall, this section encompasses two well-differentiated parts. First, an engineering
effort to derive missing information on QoS-enabled IP blocks, which is complemented with
specific characterization and reverse-engineering experiments in Section 5. And second, a
structured attempt to orchestrate the different QoS mechanisms by introducing concepts like
QoS domains and QoS domain mapping. The former is more ZUS+ dependent, while the
latter sets the basis for a methodology for analyzing the QoS support in other MPSoCs.

4.1 QoS domains and mappings
In order to capture the interactions between different QoS-enabled IP blocks, we define the
concept of QoS domain as a set of QoS-enabled IP devices, or elements thereof, under which
request prioritization is carried out using the same QoS abstraction (i.e. QoS values that vary

2 It is worth noting that the analysis in this section required several months of effort by hardware experts.
In fact, deriving the information in this section has taken longer than the experimentation part itself.

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:9

over the same range and have the same meaning). We also define the QoS domain mapping
abstraction to capture the interaction among QoS domains and how the priorities levels in
different domains are related. In the ZUS+, we differentiate the following QoS domains.

AXQOS. Prioritization of AXI requests based on AXI QoS (ARQOS and AWQOS),
classified in the previous Section as static QoS.
CCIrq. Prioritization of read requests arriving at the slave interfaces, based on three
levels (high, medium, low), with requests in the high tier being reserved some entries
in the read queue, high+medium being reserved another set of entries, and low-priority
requests using the rest of the entries in the queues.
QVN. Prioritization using the virtual network ID. The master id determines for each
transaction the virtual network it is mapped to.
DDRCreg. Prioritization over traffic regions. On every port of the DDR controller
(P0-P5) two regions 3 are defined, respectively referred to as region0 and region1.
DDRCtc. Prioritization over traffic classes. The read channel is associated one traffic
class: high-priority (HPR), low priority (LPR), or video priority (VPR). For the write
channel the traffic class is normal write priority (NPW) or video priority write (VPW).

From these QoS domains, we define the following QoS domain mappings:
AXQOS-CCIrq allows defining the set of static QoS values assigned to the high, medium,
and low priorities. QoS values from 0 to i mapped to the low priority, from i to j mapped
to the medium priority, and from j to 15 mapped to the high priority (with 0 < i < j < 15).
As this is defined per slave port, the same static QoS of requests arriving via different
slave interfaces will be assigned to different priorities.
AXQOS-DDRCreg. On every port, AXI requests are mapped to regions based on
AXQOS, i.e. those lower than a threshold are mapped to region0 and the rest to region1.
DDRCreg-DDRCtc. In each DDRC port, one traffic class (HPR, LPR, VPR) can be
assigned to read channel in region0/region1 and one traffic class (NPW/VPW) can be
associated to write channel in region0/region1.
AXQOS-DDRCtc. It combines the previous two. For the read channel the static QoS
(AXQOS) values are mapped to region0/1, which are then mapped to HPR/LPR/VPR
traffic classes. For the write channel, also the static QoS (AXQOS) values are mapped to
region0/1, which are mapped to either NPW or VPW.

There is no explicit mapping for AXQOS-QVN, CCIrq-QVN, DDRCreg-QVN, and
DDRCtc-QVN, as we capture later in this section. As a result, if both QoS domains in those
pairs are activated, different QoS features could be working towards opposing objectives,
thus defying the potential benefits of hardware support for QoS.

4.2 Incompatible QoS features and Incongruous QoS Values
We have detected several QoS features, either in the same or different QoS domains, that are
simply incompatible given their nature. As a result, simultaneously enabling them can result
in unknown results in terms of predictability and isolation.

INCOMP1 Arm’s dynamic QoS mechanisms transaction rate and transaction latency are
incompatible with the QoS mechanisms in the DDR controller by Synopsis. Both QoS-400
and CCI-400 implement these dynamic QoS mechanisms. The source of the problem

3 As explained later in this section regions help mapping static QoS, which ranges from 0 to 15, and
Traffic Classes (low priority, high priority, and video).

ECRTS 2021

3:10 Leveraging QoS to Control Multicore Contention in the ZUS+

lies in that these mechanisms change per-request static QoS priorities dynamically by
overwriting static priority (AXQOS) settings. Hence, the hardware, without any software
guidance, determines the QoS value of each request. This confronts with the use made of
static QoS priority to split requests into classes or groups in the DDR controller: a given
flow of requests that leaves the master with a given static QoS value can arrive at the
target – after crossing a dynamic QoS mechanism – with requests having different and
variable priorities. Despite a QoS range register controls the range of variation allowed
for the dynamic QoS mechanisms, for this feature to be effective, the range must be so
that the requests to be prioritized get higher priority than requests from other flows.
Otherwise, dynamic QoS would have no effect. The net result, however, is that requests
from the flow being prioritized can arbitrarily take different static QoS values, and hence
they can be mapped to any region and traffic class in the memory controller. This makes
dynamic QoS and the memory controller QoS fundamentally incompatible.
INCOMP2 The QoS relay for an IP block in the path from a master to a destination can
overwrite the QoS set by the master. This can be done either with an IP integration time
value in the QoS-400/CCI-400 block or a configurable value set in the control registers
causing that all mappings and prioritization based on AXQOS can be lost regardless of
the QoS set by the master. When the QoS value is hardwired at IP integration time, it
can effectively become an incompatible feature with other QoS mechanisms that vary
AXQOS values. Instead, when configurable via a control register, it becomes a feature to
be properly set to avoid incongruities.

For compatible QoS features, there are a set of mutually incongruous QoS configurations
whose combined effect can heavily affect or even cancel out the expected QoS behavior. This,
in turn, can prevent achieving an overall predictability goal.

INCONG1 The lack of explicit mapping for AXQOS-QVN, CCIrq-QVN, DDRCreg-
QVN, and DDRCtc-QVN makes that requests arriving at the CCI can have high AXI QoS
priority while being assigned to a low-priority virtual channel (and vice versa). Likewise,
requests from different sources going to the CCI can be mapped to different VNs; however,
they can be mapped to the same CAMs in the DDRC so one flow with lower VN priority
can stall the other, as the VN control is done at the port (XPI) level.
INCONG2 Traffic class in ports and channels. When the number of entries for HPR/LPR
in the read CAM is below a HPR/LPR threshold, low-latency/best-effort ports (respect-
ively) can be throttled. Likewise, when write CAM entries for NPW is below a threshold,
best-effort ports can be throttled. However, nothing prevents ports to be setup as video
while they issue HPR/LPR/NPW requests, causing CAM-based port throttling not to
achieve its expected effect.
INCONG3 On arrival to a CCI slave port, read requests can be assigned few read queue
entries (e.g. they are assigned to the low priority), while they are prioritized with QVN.
INCONG4 In the DDR controller, requests arriving via the two ports connected to the
CCI, can be mapped to VPR/HPR hence being prioritized, while on the CCI the same
requests can be assigned a low priority in the read queue, which will ultimately result in
a low priority assignation.

4.3 QoS-Enabled IP Block Instantiation
The descriptions of the QoS features of each IP block in Section 3 come from IP providers and
are agnostic to the particular instantiation of the IP block on a specific SoC. Those IP blocks
have configuration options to be fixed at integration time, which hence are not described in

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:11

Table 2 Main QoS points in the path from the APU/RPU to the DDRC/OCM.

Type IDs Description
QoS-400 2, 3 Prioritizes requests from PL ports HP1 and HP2
QoS-400 12, 13, 14 Prioritizes requests from HP0 (mem. port P3), HP1-HP2 (P4), & HP3 (P5)
QoS-400 30, 32, 33 Prioritizes requests from the APU, HPC0-HPC1, & ACE
QoS-400 23, 26, 27 Prioritizes requests from the 2 RPUs and the FPDswitch to the OCM
QVN-400 QVN1/2 Prioritizes requests to the DDR that pass through the CCI
CCI-400 CCI-400 Handles requests traversing the CCI-400
DDRC MC-QoS Handles ports, CAMs, and other QoS mechanisms in the mem. controller

the IP provider information. Unfortunately, nor they are in the Xilinx documentation [59].
This section describes the instantiation of QoS-enabled IP blocks in the ZUS+, capitalizing
on the missing (unknown) information and observed limitations in QoS control.

There are more than 30 QoS points in the ZUS+. Table 2 lists those related to the access
to the OCM and DDR from the APU, RPU, and PL. The first four rows correspond to
static QoS mechanisms. QoS points based on AXI QoS are identified with numbers in the
Figure 1, with values in light grey showing QoS-400 points that do not control the access to
the DDR/OCM from the APU/RPU/PL and hence we do not cover. Static QoS points are
referred to as “QoSpi” in the text where “i’ is the QoS point id. For instance, QoSp8 controls
the traffic generated from the display port and QoSp9 the traffic from FPD DMA. The types
of QoS-enabled IP blocks are identified as “CCI-400”, “QVN” (QoS virtual networks), and
“MC-QoS” (DDRC with QoS from Synopsis).

QoS missing information. A subset of the QoS features of some IP blocks are to be fixed
at IP integration time by the integrator (Xilinx). However, several of these decisions are
not described in Xilinx documentation and hence must be assessed empirically, as we do in
Section 5 for the first two below.

UNKN01 There is no control register to select the behavior of QoS relay feature for
NIC-400 second-level switches, that is, all switches but the FPD switch, the OCM switch,
and the LPD switch. Nor is it documented whether there is some default behavior.
UNKN02 AXI3 FIFO queues are used to connect the PL with the Processing System
(PS) and dealing with the clock and power region conversion. These FIFOs are 16-entry
deep and independent for reads and write transactions. The implementation is AXI3
compliant and hence does not provide some of the AXI4 protocol signals, like the QoS
signals. The ZUS+ documentation does not clarify whether and how the requests from the
PL to memory keep the static QoS set in the PL ports. However, the field FABRIC_QOS_EN
in the registers RDCTRL and WRCTRL in the AFIFM module seems to control this feature.
UNKN03 The CCI-400 provides no feature to control the number of slots to reserve to
high and medium priority requests in the read queue of each slave. We conclude that
either this feature is not implemented or the split of the queue is carried out with default,
not controllable values. In any case, it is not a configurable QoS feature.

QoS limitations. From the instantiation of QoS-enabled blocks in the ZUS+ we derive the
following limitation.

LIMIT01 All requests from the four A53 cores are routed via the only port between
the APU and the CCI. Hence, the same QoS is assigned to requests from all 4 cores.
QoSp32 helps controlling the aggregated traffic from all cores but not per-core traffic.

ECRTS 2021

3:12 Leveraging QoS to Control Multicore Contention in the ZUS+

Table 3 QoS features analyzed and fixed to deal with inconsistencies and incongruities.

Feature Description
(1) Static QoS Enabled. All requests in the same flow have the same static QoS.
(2) Dynamic QoS Disabled as it is incompatible with the QoS domains in the DDRC (INCOMP1)
(3) Outst. Transact. Enabled
(4) QVN Disabled as it was not possible to relate it to other QoS domains: AXQOS,

DDRC, ... (INCONG1 and INCONG3)
(5) CCI read queue It is not configurable. It is either not implemented or configurable (preventing

INCONG4, and UNKN02)
(6) Urgent Port Disabled not to override traffic class prioritization
(7) DDRC QoS Enabled as it is central to achieve predictability goals. The particular parameters

used are described later in Section 6 (Table 5).
(8) Traffic Class in We keep the same traffic class in the read/write channels and keep it congruent

ports & channels with the port type. We use: (VR/VW,V), (HPR/NPW,LL), (LPW/NPW,BE).
(9) Command DRAM command reordering is limited to the minimum value (4) to limit

reordering the impact on predictability
(10) CAM exhaustion Fixed to the default value in the Xilinx provided setup

The same limitation has been identified for other NXP SoCs integrating Arm IPs [54]. In
this work, we show how such limitation can be pragmatically overcome through other
routing mechanism since there are two ports (P0 and P1) the A53 can use to access the
DDR.

4.4 Putting it All Together: Key Insights of the Analysis
The main outcomes of the analysis performed in this section relate to:
1. the particular QoS setups that make sense to experimentally evaluate, i.e. for which it

has not been determined that they are fundamentally incompatible;
2. the range of values to prevent incongruities in the expected QoS behavior;
3. a set of QoS mechanisms that require empirical evidence to be validated/rejected as, from

the analysis, it was not possible to determine the particular setup (values) selected in
their instantiation in the ZUS+; and

4. a set of QoS-related open challenges that cannot be solved from the analysis, e.g. dealing
with the fact that all A53 cores share a single port to the CCI (QoSp32 in Figure 1).

A decision we take for this work is to set static QoS priorities at the level of requests
flows, see (1) in Table 3. For instance, we keep the same QoS for all requests from a source
like the APU to the destination like the DDRC. This is in contrast to changing static
QoS at the request level that, although possible, it would heavily complicate modeling and
characterization usually performed in real-time systems. We also disable the urgent feature
as it disruptively overwrites the nominal behavior based on traffic classes (6).

We discard for our evaluation the dynamic QoS features transaction rate and latency (2)
in the CCI-400, NIC-400 as we conclude they are incompatible with the QoS features in the
DDR, hence preventing INCOMP1 from arising. We analyze the outstanding transaction
(3) dynamic QoS feature, but we conclude it provides limited benefits as the R5 cores are
in-order and hence allow one in-flight load/store [10] and the A53 [7] ones allow a maximum
of 3 loads in flight. The QVN feature (4) is disabled as we cannot map it to other QoS
domains, which can have unexpected results, affecting the predictability/isolation goals
(effectively preventing INCONG1 and INCONG3). The CCIrq feature is not configurable or
not implemented (5), so we cannot set incongruous QoS values for it, preventing INCONG3
and INCONG4. The multi-layer arbitration in the DDRC is evaluated maintaining the type

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:13

Table 4 Routing in the CCI.

Setup APM4.1 APM4.2
ReadTC WriteTC ReadTC WriteTC

Default 64 64 64 64
ForceP1 128 128 0 0
ForceP2 0 0 128 128

Figure 5 QoS among APU cores.

of port and QoS-traffic class mapping per port congruent (8) preventing INCONG2; fixing
reordering to its minimum value of 4 (9); and using the default CAM exhaustion (critical)
mechanism.

The features to be empirically assessed include how to provide different QoS to different
A53 cores (LIMIT1), and the determination of the QoS relay mechanism in second level
switches (UNKN01 and INCOMP2) in the AXI3 FIFO queues (UNKN02).

5 QoS mechanisms characterization

Next, we characterize some QoS mechanisms by addressing undocumented design choices
made by Xilinx when instantiating Arm IP blocks, and the limitation of the distributed QoS
mechanisms in the ZUS+ introduced in Section 4.3.

5.1 Experimental Environment

We perform experiments on a Xilinx ZCU102 board that is equipped with a Zynq Ultrascale
EG+ MPSoC. We run no operating system (bare-metal) or any external code, except for the
First Stage Boot Loader (FSBL) provided by Xilinx toolchain (Vitis-2019.2), reducing non-
hardware sources of interference. In fact, when executing several time the same experiments,
we observe negligible execution time variability.

We run a low-overhead software configurator and a software collector. The former
configures at boot time and during operation more than 60 SoC registers controlling the
operation of the distributed QoS mechanisms. The latter provides measurements from several
internal counters, including A53 and R5 performance counters and counters in the AXI
Performance Monitors (APM).

Benchmarks. In this section, we use a set of benchmarks that generate intense read/write
traffic to the OCM/DDR from the R5 and A53 cores by missing in each core’s cache(s). The
PL has been customized using the Xilinx Vivado tool to synthesize HDL designs, integrate
multiples IPs, and generate the platform bitstream. We build on the AXI Traffic Generators
(ATG) provided by Xilinx to generate read/write traffic to stress the target slave devices
(OCM and DDR). To that end, we instantiate one or several ATGs per PL port so that we
can vary the intensity of the generated read/write traffic.

5.2 Unveiling QoS features in the ZUS+

We empirically unveil relevant undocumented QoS features in the ZUS+. The same features
will be further exploited in Section 6 to support the deployment scenario in our case study.

ECRTS 2021

3:14 Leveraging QoS to Control Multicore Contention in the ZUS+

Figure 6 DDR transaction distribution under the same and different QoS setups.

A53 prioritization (LIMIT1). As introduced in Section 4, the APU has a single port to
the CCI that acts as the master for all requests from all four A53 cores to the CCI. This, in
theory, prevents different QoS for the A53 cores, only allowing controlling their aggregated
traffic. This challenges the use of the ZUS+ in critical systems since all applications in the
APU are forced to have the same priority.

We circumvent this limitation by exploiting a characteristic that we have discovered
empirically in our default configuration: while the traffic from the APU to the DDR uses
ports P1 and P2 of the DDR, addresses in the same 8KB boundary are mapped to the same
DDR controller port (P1 or P2), with P1 and P2 8KB address segments interleaved. We
validated this feature by developing a benchmark that performs 128,000 read accesses and
128,000 write accesses to addresses mapped to different 8KB regions. We used the monitoring
counters in APM 4.1 and 4.2, see Figure 1. As shown in Table 4, in the default setup accesses
evenly distribute on P1 and P2. If we force the benchmark to use 8KB chunks mapped to P1
(ForceP1) requests are sent only to P1. The same happens if we force the benchmark to use
address regions mapped to P2 (ForceP2).

In order to assess whether we can achieve different service for two A53 cores, we run
four copies of a read benchmark, each of which runs in a A53 core (APU1-4). The first
two are mapped to P1 and the other two to P2 as described above. In this experiment,
all 4 benchmarks miss systematically in all data cache levels, so interference occurs almost
exclusively in the access to DDR memory, i.e. benchmarks suffer almost no extra L2 miss
when run simultaneously. In a first experiment, we put traffic class for read/write requests
on P1 and P2 as HPR/HPW and VPR/VPW, respectively, with the latter having a high
timeout. In a second experiment, we put traffic class as LPR/LPW - VPR/VPW, respectively.
As shown in Figure 5, for the former experiment (left bars) APU1-APU2 get high relative
performance (execution time in the 4-core experiment vs. execution time when each pair
of benchmarks runs in isolation). This occurs since APU3-APU4 get priority only when
their timeout expires every 1024 cycles. In the latter experiment (right bars), APU1-APU2
first compete with APU3-APU4 with the same priority, and whenever the timeout of the
latter expires, APU3-APU4 get prioritized. Overall, the APUs mapped to the same port get
the same relative performance, whereas those in different ports can have different relative
performance. This confirms that our solution combining routing and QoS can offer different
predictability guarantees to two different A53 cores.

PL priorities (UNKN01 and UNKN03). In these experiments, we aim at confirming (i)
that FIFO queues in the PL, which use AXI3, effectively forward the static QoS value we
set in each PL port (UNKN03), and (ii) that the QoS relay approach in the second level

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:15

switches, which connect the ports to the memory, effectively forwards the input’s AXQOS
provided by the master (UNKN01). To that end, we configure from 1 to 3 of ATGs per
each PL port: HP0 (mapped to memory port P3), HP1 and HP2 (mapped to P4), and HP3
(mapped to P5). Increasing the number of ATGs per port also increases the traffic to the
DDR until reaching saturation. The traffic from HP0 and the display port (not shown in
Figure 1) go to the same switch; so does the traffic of HP1 and HP2; and the traffic of HP3
and the FPD DMA (not shown in Figure 1). In this experiment, we focus on QoSp2 and
QoSp3 that control HP1 and HP2, respectively; and QoSp12, QoSp13, and QoSp14 that
control the traffic from the three switches to the OCM or the DDR. In ports P3, P4, and P5
we map static QoS priorities 0-3 to region0 and 4-15 to region1. We also map region0 to
LPR/NPW traffic class and region1 to VPR/VPW and enable a request timeout for VPX
requests so that they get prioritized.

As it can be seen in Figure 6 (left plot), under the same QoS setup (0,0,0,0), as we increase
the ATGs per port from 1 to 3, the bandwidth usage increases, achieving the expected
bandwidth allocation for the latter scenario: even bandwidth distribution with 1/3 of the
bandwidth for HP0 (memory port P3) and HP3 (memory port P5) and 1/6 for HP1 and
HP2 as they share the same port to memory (P4). Figure 6 (right plot) shows results for
the setup (3,7,7,3), i.e. lower priority for HP0 and HP3. For 1 ATG per port, we see no
impact of the QoS mechanism as each ATG can send as many requests per unit of time as in
an isolation setup. With 2 or 3 ATGs per port, we see how effectively HP1 and HP2 get
more bandwidth than HP0 and HP3. Both tasks contending for the central DDR get most
of the bandwidth (3̃5% each), which matches their maximum bandwidth usage when run in
isolation. For 2 and 3 ATGs per port, we also see that the ports with lower priority, HP0/P3
and HP3/P5, enjoy an uneven bandwidth despite both receive the same type of traffic and
the configuration for both ports is the same. Our hypothesis is that HP1+2/P4 improves
its performance due to a change of region from NPW to VPW. In contrast, HP0/P3 and
HP3/P5 get unbalanced traffic due to the round-robin arbiter, which seems to arbitrate
HP0/P3 before HP3/P5 and by the time it has to grant access to HP3/P5 a request in
HP1+2/P4 gains higher priority, hence delaying HP3/P5 requests systematically.

APU and RPU to OCM. In our deployment scenario (Section 6), the APU and the RPU
issue read/writes requests to the OCM to handle control variables. While this is unlikely
to cause performance issues, we empirically show the impact of sharing the OCM and the
potential benefits of using QoS hardware support to control it. In this experiment, the APU
and RPU perform transactions to the OCM. RPU1 and RPU2 are first prioritized in the
RPU switch (QoSp26 and QoSp27) and the request winning that arbitration competes with
the requests arriving from the APU – when active – in the OCM switch (QoSp23).

The left chart in Figure 7 shows that, for reads, the APU suffers a maximum slowdown of
1.03x (i.e. 3%) due to the contention in the OCM, whereas RPU1/RPU2 suffer no slowdown.
This occurs because the R5 [10] implements an in-order pipeline and the A53 [7] allows at
most 3 loads in flight. Hence, since tasks run almost as in isolation, QoS has no room for
improvement. For writes (right chart), when running the two RPUs alone without the APU
(referred to as RPUx2), we observe that RPUs do not generate enough pressure on the OCM,
as for loads. When adding the APU (RPUx2,APU), the APU suffers a 1.5x slowdown. This
occurs because A53 cores are out-of-order cores that, thanks to the use of store/write buffers,
support in-flight write requests, increasing the pressure on the target. However, this also
makes APU’s high-frequency write requests to be more sensitive to contention. Increasing
the static priority of any of the RPUs, setups (7,0,0) and (0,7,0), reduces the slowdown

ECRTS 2021

3:16 Leveraging QoS to Control Multicore Contention in the ZUS+

Figure 7 Impact of static QoS when the RPU/APU target the OCM.

on the APU down to 1.3x. When both RPUs have low priority, (0,0,7) the APU reduces
its slowdown to zero (1.0x). This also causes a non-homogeneous impact on RPU1/RPU2,
suffering a slowdown of 1.2x and 1.05x, respectively. As before, it seems that RPU1 and
RPU2 are arbitrated using a round-robin arbiter that arbitrates RPU2 before RPU1 after
APU accesses are served, and since the access patterns repeat, this small difference magnifies
and leads to those different slowdowns for each RPU.

Overall, despite some contention can occur in some corner situations (RPUs and APUs
making writes to the OCM), the OCM is not a bottleneck in our deployment scenario as
it is used mainly for control/synchronization variables. Hence, the potential slowdown is
minimum and no QoS mechanism is needed to control contention.

Summary. We unveiled how to combine routing and QoS so that up to two A53 cores can
be provided different QoS service. We also showed that FIFO queues in the PL and the
second-level switches relay the static QoS received from the master starting the transaction.
Finally, we showed that QoS is not needed for the OCM in our deployment scenario.

6 Case Study: IFC selection

In this section we build on the analysis and characterization in previous sections to show the
benefits of the hardware QoS support of the ZUS+ to increase the chances of finding valid
platform setups. In avionics, this is referred to as selection of the intended final configuration
(IFC) in CAST-32A [18]. In our case, the IFC includes the setting of QoS mechanisms so
that time constraints of each process are met as required by CAST-32A.

Deployment Scenario. We address a deployment scenario in which the MPSoC is configured
to host a set of mixed-criticality applications, organized into several software partitions
(SWP). Such scenario is representative, for example, of multicore partitioned systems in
the avionics domain [3, 41, 18]. Depending on the specific resource and time partitioning
approach, SWPs may be allowed to execute in one or multiple computing elements, either
exclusively or in parallel with other partitions. In this respect, we focus on a relatively
flexible, performance-oriented deployment configuration where three SWPs are executed in
parallel on the ZUS+. Each software partition comprises several processes that execute in
the RPU, APU and PL. The OCM is used for exchanging control data while the DDR is used
as main memory for sharing compute data. SWP1 runs one process on a R5 core, another in
a A53 core, and uses the PL for acceleration. We refer to them as RPU1, APU1, and PL1,
respectively. The processes of SWP2 are mapped in the same manner and are referred to as
RP2, APU2, and PL2. Finally, SWP3 basically runs on the PL (PL3) though it has a small
control process that runs on an A53 core.

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:17

Figure 8 Routing and port mapping in our deployment scenario.

Providing Guaranteed Service. The specific QoS configuration is meant to meet the
diverse predictability requirements of each SWPs. We focus on three hierarchically ordered
predictability goals. First, provide guaranteed service to SWP1, i.e. preventing that SWP1
receives no service due to the load generated by other SWPs. Second, provide guaranteed
service to SWP2 as long as SWP1 leaves enough resources to that end. And third, in all
scenarios SWP3 is provided best effort (average performance centric setup). We achieve the
required guarantees by deploying QoS setups with specific values fixed for some QoS features
while factoring in the outcome of the analysis (Table 3).

1. The traffic of different SWPs does not share the same memory port. As it can be seen
in Figure 8, APU1/RPU1 share memory port P1 and PL1 uses P3 (solid blue line);
APU2/RPU2 share P2 and PL2 uses P5 (green dotted line), whereas PL3 uses P4. Note
that, as PL3 is assumed to be a number crunching accelerator, it uses two ports in the
PL (HP1 and HP2) to support more traffic from/to memory.

2. Requests from SWP1 have the highest static QoS or the same as SWP2 (in the latter
case, round-robin is used for arbitration, ensuring that both SWPs get service).

3. We map SWP1 requests to video traffic class (VPR and VPW) and all the ports it uses,
P1 and P3, are also set as video traffic class. For SWP2, we use high priority traffic class
for reads/writes (HPR/NPW) and low-latency type for P2 and P5. SWP3 is mapped to
the low priority traffic class and the port it uses, namely P4, is set as best effort.

Under this set of constraints in the QoS setup, SWP1 requests have the highest priority
when their associated timeout expires. When they are not expired, SWP2 requests have the
highest priority. The values for other QoS parameters can be varied to adjust the service
provided to the needs of the particular processes. This includes the following, see Table 5:
The number of entries in the CAMs for each traffic class: (i) high-priority and low-priority
thresholds for the read CAM and the (ii) normal priority threshold for the write CAM. (iii)
The timeout for VPR/VPW traffic class on each port that can be increased when tasks have
low utilization, i.e. the ratio between their execution time and deadline is low and vice versa.
(iv) The traffic class of port/channels. (v) The static QoS of APU/RPU in each SWP. While
they both remain mapped to the same traffic class, we can assign either APUi or RPUi
higher static QoS to adjust their latency as needed. We explore 3 different QoS values to
provide three different prioritization levels. In particular, we use QoS values 3, 7, and 10.
Any other three different values can be used. And (vi) the outstanding transactions.

ECRTS 2021

3:18 Leveraging QoS to Control Multicore Contention in the ZUS+

Table 5 QoS values explored in this work.

Feature Description
read CAM High/Low priority threshold [0, 1, 2, ..., 32][0, 1, 2, ..., 32]
write CAM Normal priority threshold [0, 1, 2, ... , 32]
Timeout [1, 8, 16, 32... 1024]
Traffic Class 3 classes available for each channel/port
Channels/Ports SWP1 always at highest priorities and SWP3 at relative lowest ones
Static QoS 3 values so that SWP1 has the highest priority and SWP3 the lowest
OT Outstanding Transactions: 4-16

Kernels. We create several workloads from kernels used in many applications in critical
systems. These kernels, which run in the APU and the RPU, are: (i) Matrix Multiplication
(MM) is one of the most common kernels for many functionalities like object detection or path
planning in autonomous navigation 4; (ii) Matrix Transpose (MT) is another quite common
matrix operator and often used along with MM; (iii) Rectifier (ReLu) is an activation function
in neural networks defined as the positive value of its argument; (iv) the Image-to-Columns
(I2C) function for transforming raw RGB images into matrices in the format needed by neural
networks; and (v) vector-multiply-add (VMA) that is a type of linear algebra operator. In
the PL we run several instances of the ATG performing reads or write bursted transactions
(ATGr and ATGw) to match burst-oriented accelerators transfers. PL1 instantiates 1 ATG,
PL2 2 ATGs, and PL3 4 ATGs to generate asymmetric traffic demands.

We focus on the setup presented above with three SWPs. We compose several workloads
from the kernels: WRKLD1 (MM,VMA,ATGr)(MT,I2C,ATGr)(ATGr) that runs MM, VAM as
APU1 and RPU1 respectively; MT and I2C as APU2 and RPU2, respectively; and ATGr
used as PL1/2/3; and WRKLD2 (MM,I2C,ATGw)(ReLu,I2C,ATGw)(ATGw). When creating
a workload, we allocate memory of these kernels properly to ensure they use either P1 or P2,
see Section 5.2. Also, note that these workloads put high pressure on DDR memory, with 7
ATGs in the PL (1, 2, and 4 respectively instantiated for PL1, PL2, PL3), 2 A53 cores, and
2 R5 cores sending requests simultaneously to the DDR memory system.

6.1 Malleability
We start assessing the malleability of the QoS mechanisms in the ZUS+ for several workloads.
Malleability measures whether the used QoS setups effectively bias the execution of those
tasks with higher priority, though this causes the other tasks to suffer more contention
interference. Without this property, the use of QoS would be ineffective. For two different
workloads Figure 9 reports the relative performance of each process with respect to the
scenario in which its SWP runs in isolation. A relative performance of X% means a slowdown
of (100/X), e.g. 50% relative performance means 2x slowdown. In particular, Figure 9 shows
the impact of changing the timeout for video requests (VPR/VPW) when both SWP1 and
SWP2 are mapped to the video traffic class, while SWP3 is mapped to the low-priority
class. As we decrease the timeout of all video ports from 1024 by half until reaching 2, the
performance of SWP1/SWP2 (RPU1/APU1/PL1 and RPU2/APU2/PL2) processes increases
at a similar pace, while PL3 relative performance sharply decreases when the timeout goes
from 1024 to 256 and remains around 10% for lower VPR/VPW timeout values.

4 Matrix multiplication is the central part of machine learning libraries like YOLOv3 [56] and account for
67% of YOLO’s execution time [25].

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:19

Figure 9 Impact of changing the duration of the timeout period
.

Figure 10 Malleability for different QoS setups varying read CAM entries for HPR and timeout.

Figure 10 captures a scenario in which the processes of the workload vary their relative
performance under the combined effect of decreasing the timeout and decreasing the number
of read CAM entries for HPR (where SWP3 is mapped to). For each group of 7 configurations,
we see increased performance for all computing units except PL3 when decreasing CAMs.
Timeouts for VPR/VPW, on which SWP1/SWP2 are mapped to, decrease across 7-setup
groups from left to right, bringing the combined effect in which SWP1/SWP2 relative
performances increase within each 7-setup group and across groups. In both figures, we see
how QoS in the ZUS+ achieves both (1) a good range of variation in the relative performance
of the processes; and (2) smooth variations in relative performance across different QoS setups.
These are fundamental traits for malleability and the main building block in our study.

6.2 QoS for Improved Platform Setup
In this section, we explore over 30,000 different QoS setups that (i) already factor in the
outcome of our analysis (see Table 3), and (ii) provide guaranteed service to SWP1, also
to SWP2 if there are enough resources left by SWP1 to achieve it, while SWP3 receives
best-effort service. The values for the rest of the QoS parameters are explored to adapt
to the timing constraints of the different tasks, as summarized in Table 5. The difference
between guarantees and real-time requirements is better explained with an example. For
some scenarios RPU1, which receives guaranteed service, might have a loose deadline so it
requires achieving reduced, yet guaranteed, relative performance (e.g. 20%); while in others
RPU1 has a tight deadline requiring high relative performance (e.g. 80%).

ECRTS 2021

3:20 Leveraging QoS to Control Multicore Contention in the ZUS+

Figure 11 Ratio of accepted QoS setups with uniform thresholds for Workload 1.

Figure 12 Ratio of accepted QoS setups with heterogeneous thresholds for Workload 1.

We set different thresholds for the maximum slowdown admissible for the processes in a
SWP with respect to the performance obtained when the SWP executes in isolation. We
explored 5 minimum relative performance scenarios: VeryTight or VT (80%) Tight or T
(60%), Moderate or M (40%), Loose or L (20%), and VeryLoose or VL (1%). Note that
VL allows an almost unbounded performance degradation. These thresholds can be set
homogeneously for all processes in a SWP or heterogeneously, e.g. (VT, T, L) meaning that
all involved APUs, RPUs, and PLs can sustain different maximum performance degradation.

Workload 1. Figure 11 summarizes the ratio of accepted QoS setups for WRKLD1, when
uniform thresholds are applied across computing elements, in the set of experiments. An
accepted QoS setup meets the performance thresholds considered for the specific scenario.
The cutoff criteria are applied to different subsets of computing elements, corresponding
to the scenario where performance guarantees are extended from cores (e.g. APU1 only,
referred to as APU1) to SWP1 (that includes RPU1/APU1/PL1) and SWP1-SWP2 that
sets the VT/T/M/L/VL in all processes (RPU1/APU1/PL1 and RPU2/APU2/PL2).

Even under the tightest constraints, VeryTight (set of bars VT-VT-VT), around 30%
of the QoS setups meet the constraints for RPU1. If constraints are also to be met for
APU1 (RPU1-APU1), still 26% of the QoS setups are accepted. If RPU2 constraints are
considered (RPU1-RPU2), 1.3% of the QoS setups are successful, and 1.1% if APU1 and
APU2 constraints also need being met (RPU1-APU1-RPU2-APU2). When considering
the PLs, only 1 setup (0.003%) meets all SWP1 constraints, and none SWP1 and SWP2
constraints simultaneously. If we relax the constraints (from VT to T, M, L and VL), the fraction

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:21

Figure 13 RP U1 > 80%. Figure 14 RP U1 > 60% and AP U1 > 20%.

of successful QoS setups increases in all cases except when SWP1 and SWP2 constraints need
to be met simultaneously, which is only doable with loose (L) or very loose (VL) constraints
for 12% and 95% of the QoS setups respectively. This occurs because ATGs in the PL are
highly bandwidth demanding and hence, under those QoS setups where one ATG gets higher
priority than another computing unit systematically, the latter can experience starvation.

Figure 12 analyzes heterogeneous scenarios where RPU constraints are VT/T, and APU
and PL constraints are relaxed. For instance, the second group of columns, (VT-T-M) imposes
VT constraints on RPUs, T on APUs and M on PLs. If we compare each group w.r.t. their
homogeneous counterpart with identical RPU constraints (e.g. four leftmost groups of
bars VT - T/M - T/M/L in Figure 12 and VT-VT-VT in Figure 11), the fraction of successful
QoS setups increases. This shows that we can exploit QoS to accommodate the timing
requirements of the different processes. Similar conclusions are achieved comparing the four
right-most groups of bars in Figure 12 and T-T-T in Figure 11, with the number of successful
QoS setups increasing as the time constraints on some computing elements relax.

The presence of several accepted QoS setups in every configuration offers the possibility
of satisfying different timing requirements. This, in turn, enables the system developer to
apply and optimize any relevant metric to the set of valid QoS setups. As an illustrative
example, Figure 13 shows how it is possible to meet the stringent performance constraints of a
critical SWP while still maximizing the throughput of best effort functionalities. Specifically,
Figure 13 considers QoS setups selected to preserve 80% of the reference performance for
the critical software mapped to RPU1 in WRKLD1, and orders them according to the
performance guaranteed for the best effort functions deployed to SWP3 (i.e., PL3). We see
how the performance exhibited by PL3 under a conservative setting for RPU1 still covers a
wide range of values, while the relative performance of RPU1 is always above the threshold
(80%) represented with a black horizontal line. Even for a larger sets of constraints, a
non-negligible number of QoS setups is able to meet them, offering optimization options. For
instance, in Figure 14 we set the constraint that RPU1 relative performance must be above
60% and APU1 above 20%. In this scenario, PL3 shows a range of variation of around 40
percentage points. Overall, we see how smartly deploying hardware QoS support allows the
system designer to optimize different metrics, while fulfilling timing requirements.

Workload 2. Figures 15 and 16 show results for WRKLD2. We observe the same trends as
those for WRKLD1. The most significant difference is that WRKLD1 includes ATGr (so
intensive PL read operations), whereas WRKLD2 includes ATGw (so intensive PL write
operations) for both SWP1 and SWP2. The first consequence is that RPU and APU kernels
are successful in a much larger fraction of setups, as kernels running in the RPUs and APUs
are more sensitive to interference in their read operations than in their write operations (e.g.
writes tolerate delays in store buffers), and DDR channels for read and write operations are
decoupled to a large extent. Hence, ATGr in WRKLD1 creates much higher interference
than ATGw in WRKLD2 on RPU and APU kernels, and therefore, the first four columns for

ECRTS 2021

3:22 Leveraging QoS to Control Multicore Contention in the ZUS+

Figure 15 Ratio of accepted QoS setups with uniform thresholds for WRKLD2.

Figure 16 Ratio of accepted QoS setups with heterogeneous thresholds for WRKLD2.

each set of constraints has a much larger fraction of successful QoS setups when compared
with WRKLD1. On the other hand, when PLs are considered, the fraction of successful QoS
setups for SWP1 only, or both SWP1 and SWP2, is much larger for WRKLD2. For instance,
VT-M-L has 5.4% and 0% successful setups for SWP1 and SWP1+SWP2 respectively for
WRKLD1, and 64.5% and 2.7% for WRKLD2.

7 Conclusions and Future Work

Hardware support for QoS is increasingly becoming a seamless technology. In a MPSoC
this will be realized by a distributed QoS mechanism with QoS-enabled IP blocks (likely)
coming from different providers, which calls for mechanisms to orchestrate them. In this
work, we analyzed the nominal behavior of individual QoS mechanisms in the Xilinx Zynq
UltraScale+ MPSoC as well as their combined behavior. We capitalize on their combined
behavior including incompatible mechanisms, compatible mechanisms under specific setups,
and limitations. We empirically show how to circumvent some of the limitations (e.g. using
routing to allow several A53 cores to have different QoS) and provide insights on unknown
features (e.g. QoS relay mechanism in second-level switches). Building on the gained
knowledge, we expose a wide set of QoS setups that help providing guarantees to certain
processes while allowing adapting to processes timing constraints. Indeed, we show that the
QoS mechanisms in the Zynq UltraScale+ are very powerful and can successfully adapt to
different constraints, offering great flexibility to the system designer to optimize the system
configuration along different metrics.

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:23

From the analysis performed, it also follows that, in order to consolidate the use of QoS
in critical domains, technical reference manuals should provide more focused information.
In particular, IP integrators should better describe the options selected for each IP block
instantiated. Also, clear examples describing how to coordinate several QoS mechanisms to
achieve higher-level isolation and predictability goals will significantly reduce the effort of
the software/system integrator in using hardware support for QoS.

In terms of future research directions we aim at formalizing a more generic process for
orchestrating the QoS features in other MPSoCs. This includes (i) the identification of QoS
domains; (ii) mapping of QoS domains; and (iii) finding compatible QoS features. We envision
the definition of a set of QoS rules whose validation involves passing a set of (potentially
automated) tests, assessing the validity of any QoS setup and its benefits towards achieving
different isolation/predictability goals. This is in line with current practice in avionics and
automotive that builds on formulating test designs to produce evidence that serves to accept
or reject a hypothesis set over a specific functional or non-functional system behavior [48].
We also plan to develop more advanced search algorithms to make an efficient exploration of
the QoS configuration space. Such algorithms are needed since, in the general case, with
more complex workloads and different predictability constraints, the number of potential
QoS setups is too large to allow an exhaustive space exploration.

References
1 Homa Aghilinasab, Waqar Ali, Heechul Yun, and Rodolfo Pellizzoni. Dynamic Memory

Bandwidth Allocation for Real-Time GPU-Based SoC Platforms. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):3348–3360, November 2020.
doi:10.1109/tcad.2020.3012210.

2 Irune Agirre, Jaume Abella, Mikel Azkarate-Askasua, and Francisco J. Cazorla. On the
tailoring of CAST-32A certification guidance to real COTS multicore architectures. In 2017
12th IEEE International Symposium on Industrial Embedded Systems (SIES), pages 1–8. IEEE,
June 2017. doi:10.1109/sies.2017.7993376.

3 ARINC. Specification 653: Avionics Application Standard Software Interface. Aeronautical
Radio, Inc, 1996.

4 Arm. ARM CoreLink NIC-400 Network Interconnect Technical Reference Manual.
5 Arm. ARM CoreLink QoS-400 Network Interconnect Advanced Quality of Service Supplement

to ARM CoreLink NIC-400 Network Interconnect Technical Reference Manual.
6 Arm. ARM CoreLink QVN-400 Network Interconnect Advanced Quality of Service using

Virtual Networks Supplement to ARM CoreLink NIC-400 Network Interconnect Technical
Reference Manual.

7 Arm. ARM Cortex-A53 MPCore Processor Technical Reference Manual. Version r0p4. URL:
https://developer.arm.com/documentation/ddi0500/j/.

8 Arm. Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning
and Monitoring (MPAM), for Armv8-A.

9 Arm. ARM® CoreLink™ CCI-400 Cache Coherent Interconnect. Revision: r1p3. Technical
Reference Manual.

10 Arm. Cortex-R5 and Cortex-R5F Technical Reference Manual. Version r1p1. URL: https:
//developer.arm.com/documentation/ddi0460/c/.

11 Arm. AMBA AXI and ACE Protocol Specification AXI3, AXI4, and AXI4-Lite ACE and
ACE-Lite. ARM IHI 0022E (ID033013), 2013.

12 Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis, and
Thomas Nolte. Contention-free execution of automotive applications on a clustered many-core
platform. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS), pages 14–24.
IEEE, July 2016. doi:10.1109/ecrts.2016.14.

ECRTS 2021

https://doi.org/10.1109/tcad.2020.3012210
https://doi.org/10.1109/sies.2017.7993376
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0460/c/
https://developer.arm.com/documentation/ddi0460/c/
https://doi.org/10.1109/ecrts.2016.14

3:24 Leveraging QoS to Control Multicore Contention in the ZUS+

13 Matthias Becker, Borislav Nikolic, Dakshina Dasari, Benny Akesson, Vincent Nelis, Moris
Behnam, and Thomas Nolte. Partitioning and analysis of the network-on-chip on a COTS
many-core platform. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 101–112. IEEE, April 2017. doi:10.1109/rtas.2017.32.

14 Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of
automotive applications using the LET paradigm. In 2018 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 240–250. IEEE, April 2018. doi:
10.1109/rtas.2018.00032.

15 Carlos Boneti, Francisco J. Cazorla, Roberto Gioiosa, Alper Buyuktosunoglu, Chen-Yong
Cher, and Mateo Valero. Software-controlled priority characterization of POWER5 processor.
In 2008 International Symposium on Computer Architecture, pages 415–426. IEEE, June 2008.
doi:10.1109/isca.2008.8.

16 Jordi Cardona, Carles Hernández, Jaume Abella, and Francisco J. Cazorla. Maximum-
contention control unit (MCCU): resource access count and contention time enforcement. In
Design, Automation & Test in Europe Conference & Exhibition, DATE, pages 710–715. IEEE,
2019. doi:10.23919/DATE.2019.8715155.

17 Jordi Cardona, Carles Hernandez, Enrico Mezzetti, Jaume Abella, and Francisco J. Cazorla.
NoCo: ILP-based worst-case contention estimation for mesh real-time manycores. In 2018
IEEE Real-Time Systems Symposium (RTSS), pages 265–276. IEEE, December 2018. doi:
10.1109/rtss.2018.00043.

18 Certification Authorities Software Team. CAST-32A Multi-core Processors, 2016.
19 Dakshina Dasari and Vincent Nelis. An analysis of the impact of bus contention on the WCET

in multicores. In 2012 IEEE 14th International Conference on High Performance Computing
and Communication & 2012 IEEE 9th International Conference on Embedded Software and
Systems, pages 1450–1457. IEEE, June 2012. doi:10.1109/hpcc.2012.212.

20 Dakshina Dasari, Vincent Nelis, and Benny Akesson. A framework for memory contention
analysis in multi-core platforms. Real-Time Systems, 52(3):272–322, May 2016. doi:10.1007/
s11241-015-9229-9.

21 Dakshina Dasari, Borislav Nikolic, Vincent Nelis, and Stefan M. Petters. NoC contention
analysis using a branch-and-prune algorithm. ACM Transactions on Embedded Computing
Systems, 13(3s):113:1–113:26, March 2014. doi:10.1145/2567937.

22 Enrique Díaz, Enrico Mezzetti, Leonidas Kosmidis, Jaume Abella, and Francisco J. Cazorla.
Modelling multicore contention on the AURIX™ TC27x. In 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, June 2018. doi:10.1109/dac.2018.8465780.

23 Falk Rehm and Jörg Seitter. Software Mechanisms for Controlling QoS. In 2021 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2021, Virtual Conference,
February 01-05, 2021, pages 1485–1488, 2016.

24 Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: bandwidth regulation unit for real-time
multicore processors. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 364–375. IEEE, April 2020. doi:10.1109/RTAS48715.2020.00011.

25 Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro, Philippe Navaux,
and Paolo Rech. Evaluation and mitigation of soft-errors in neural network-based object
detection in three gpu architectures. In 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 169–176. IEEE, June 2017.
doi:10.1109/dsn-w.2017.47.

26 Thomas Ferrandiz, Fabrice Frances, and Christian Fraboul. A sensitivity analysis of two worst-
case delay computation methods for SpaceWire networks. In 2012 24th Euromicro Conference
on Real-Time Systems, pages 47–56. IEEE, July 2012. doi:10.1109/ecrts.2012.35.

27 Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also supports T2081. Doc.
No.: T2080RM. Rev. 3, 11/2016.

https://doi.org/10.1109/rtas.2017.32
https://doi.org/10.1109/rtas.2018.00032
https://doi.org/10.1109/rtas.2018.00032
https://doi.org/10.1109/isca.2008.8
https://doi.org/10.23919/DATE.2019.8715155
https://doi.org/10.1109/rtss.2018.00043
https://doi.org/10.1109/rtss.2018.00043
https://doi.org/10.1109/hpcc.2012.212
https://doi.org/10.1007/s11241-015-9229-9
https://doi.org/10.1007/s11241-015-9229-9
https://doi.org/10.1145/2567937
https://doi.org/10.1109/dac.2018.8465780
https://doi.org/10.1109/RTAS48715.2020.00011
https://doi.org/10.1109/dsn-w.2017.47
https://doi.org/10.1109/ecrts.2012.35

A. Serrano-Cases, J. M. Reina, J. Abella, E. Mezzetti, and F. J. Cazorla 3:25

28 Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo
Pellizzoni. A survey on cache management mechanisms for real-time embedded systems. ACM
Computing Surveys, 48(2):32:1–32:36, 2015. doi:10.1145/2830555.

29 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS het-
erogeneous MPSoCs for mixed criticality systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 37(11):2323–2336, November 2018. doi:
10.1109/tcad.2018.2857379.

30 Mohamed Hassan and Rodolfo Pellizzoni. Analysis of memory-contention in heterogeneous
cots mpsocs. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), volume
165 of Leibniz International Proceedings in Informatics (LIPIcs), pages 23:1–23:24. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ECRTS.2020.23.

31 Andrew Herdrich, Ramesh Illikkal, Ravi Iyer, Ronak Singhal, Matt Merten, and Martin Dixon.
SMT QoS: Hardware Prototyping of Thread-level Performance Differentiation Mechanisms.
In HotPar 12, Berkeley, CA, June 2012. USENIX Association.

32 International Organization for Standardization. ISO/DIS 26262. Road Vehicles – Functional
Safety, 2009.

33 Javier Jalle, Jaume Abella, Eduardo Quiñones, Luca Fossati, Marco Zulianello, and Francisco J.
Cazorla. AHRB: A high-performance time-composable AMBA AHB bus. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 225–236.
IEEE, 2014. doi:10.1109/rtas.2014.6926005.

34 Jean-Yves Le Boudec and Patrick Thiran. Network calculus: a theory of deterministic queuing
systems for the internet. Springer-Verlag, 2001. doi:10.1007/3-540-45318-0.

35 Sunggu Lee. Real-time wormhole channels. Journal Of Parallel And Distributed Computing,
63(3):299–311, March 2003. doi:10.1016/S0743-7315(02)00055-2.

36 Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey on static
cache analysis for real-time systems. Leibniz Transactions on Embedded Systems, 3(1):05–1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005.

37 Kristiyan Manev, Anuj Vaishnav, and Dirk Koch. Unexpected Diversity: Quantitative
Memory Analysis for Zynq UltraScale+ Systems. In 2019 International Conference on Field-
Programmable Technology (ICFPT), pages 179–187. IEEE, 2019. doi:10.1109/ICFPT47387.
2019.00029.

38 Sparsh Mittal. A survey of techniques for cache partitioning in multicore processors. ACM
Computing Surveys, 50(2):27:1–27:39, 2017. doi:10.1145/3062394.

39 Kyle J. Nesbit, Miquel Moreto, Francisco J. Cazorla, Alex Ramirez, Mateo Valero, and
James E. Smith. Multicore resource management. IEEE Micro, 28(3):6–16, 2008. doi:
10.1109/mm.2008.43.

40 Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity
enforcement. In 2014 26th Euromicro Conference on Real-Time Systems, pages 109–118, 2014.
doi:10.1109/ecrts.2014.20.

41 Diniz Nuno and Jose Rufino. ARINC 653 in Space. In DASIA - Data Systems in Aerospace,
ESA Special Publication, 2005.

42 nVIDIA. Technical Reference Manual. Xavier Series SoC. DP-09253-002. Version 1.1, 2018.
43 Marco Pagani, Enrico Rossi, Alessandro Biondi, Mauro Marinoni, Giuseppe Lipari, and

Giorgio C. Buttazzo. A Bandwidth Reservation Mechanism for AXI-Based Hardware
Accelerators on FPGAs. In 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), volume 133 of Leibniz International Proceedings in Informatics (LIPIcs), pages
24:1–24:24, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECRTS.2019.24.

44 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for COTS-based embedded systems. In
2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
269–279. IEEE, April 2011. doi:10.1109/rtas.2011.33.

ECRTS 2021

https://doi.org/10.1145/2830555
https://doi.org/10.1109/tcad.2018.2857379
https://doi.org/10.1109/tcad.2018.2857379
https://doi.org/10.4230/LIPIcs.ECRTS.2020.23
https://doi.org/10.1109/rtas.2014.6926005
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1016/S0743-7315(02)00055-2
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1109/ICFPT47387.2019.00029
https://doi.org/10.1109/ICFPT47387.2019.00029
https://doi.org/10.1145/3062394
https://doi.org/10.1109/mm.2008.43
https://doi.org/10.1109/mm.2008.43
https://doi.org/10.1109/ecrts.2014.20
https://doi.org/10.4230/LIPIcs.ECRTS.2019.24
https://doi.org/10.1109/rtas.2011.33

3:26 Leveraging QoS to Control Multicore Contention in the ZUS+

45 Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha. Coscheduling of CPU and
I/O transactions in COTS-based embedded systems. In 2008 Real-Time Systems Symposium,
pages 221–231. IEEE, November 2008. doi:10.1109/rtss.2008.42.

46 Jon Pérez-Cerrolaza, Roman Obermaisser, Jaume Abella, Francisco J. Cazorla, Kim Grüttner,
Irune Agirre, Hamidreza Ahmadian, and Imanol Allende. Multi-core devices for safety-critical
systems: A survey. ACM Computing Surveys, 53(4):79:1–79:38, 2020. doi:10.1145/3398665.

47 Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay bounds for best-
effort communication in wormhole networks on chip. In 2009 3rd ACM/IEEE International
Symposium on Networks-on-Chip, pages 44–53. IEEE Computer Society, 2009. doi:10.1109/
nocs.2009.5071444.

48 David Radack, Harold Jr, and Paul Parkinson. Civil certification of multi-core processing
systems in commercial avionics. In 2019 27th Safety-critical Systems Symposium, February
2019.

49 Dara Rahmati, Srinivasan Murali, Luca Benini, Federico Angiolini, Giovanni De Micheli, and
Hamid Sarbazi-Azad. Computing accurate performance bounds for best effort networks-on-chip.
IEEE Transactions on Computers, 62(3):452–467, March 2013. doi:10.1109/tc.2011.240.

50 Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo.
Is your bus arbiter really fair? restoring fairness in AXI interconnects for FPGA SoCs. ACM
Trans. on Embedded Computer Systems, 18(5s):51:1–51:22, 2019. doi:10.1145/3358183.

51 Shahin Roozkhosh and Renato Mancuso. The potential of programmable logic in the middle:
Cache bleaching. In 2020 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 296–309. IEEE, April 2020. doi:10.1109/rtas48715.2020.00006.

52 Simon Schliecker, Mircea Negrean, and Rolf Ernst. Bounding the shared resource load for the
performance analysis of multiprocessor systems. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, pages 759–764, 2010.

53 Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. On How to Identify Cache Coherence:
Case of the NXP QorIQ T4240. In 32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 13:1–13:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ECRTS.2020.13.

54 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-WarP: A system-wide
framework for memory bandwidth profiling and management. In 2020 IEEE Real-Time
Systems Symposium (RTSS), pages 345–357. IEEE, December 2020. doi:10.1109/rtss49844.
2020.00039.

55 Synopsis. DesignWare Enhanced Universal DDR Memory Controller.
56 Hamid Tabani, Roger Pujol, Jaume Abella, and Francisco J. Cazorla. A cross-layer review of

deep learning frameworks to ease their optimization and reuse. In 2020 IEEE 23rd International
Symposium on Real-Time Distributed Computing (ISORC), pages 144–145. IEEE, May 2020.
doi:10.1109/isorc49007.2020.00030.

57 Sebastian Tobuschat and Rolf Ernst. Real-time communication analysis for networks-on-chip
with backpressure. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, pages 590–595. IEEE, March 2017. doi:10.23919/date.2017.7927055.

58 XILINX. Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices in Revolutionizing How
Arrays are Produced and Fielded: Powered by Xilinx, 2018. URL: https://www.xilinx.com/
video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.
html.

59 XILINX. Zynq UltraScale+ Device. Technical Reference Manual. UG1085 (v2.1), 2019.
60 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:

Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 55–64. IEEE, April 2013. doi:10.1109/rtas.2013.6531079.

https://doi.org/10.1109/rtss.2008.42
https://doi.org/10.1145/3398665
https://doi.org/10.1109/nocs.2009.5071444
https://doi.org/10.1109/nocs.2009.5071444
https://doi.org/10.1109/tc.2011.240
https://doi.org/10.1145/3358183
https://doi.org/10.1109/rtas48715.2020.00006
https://doi.org/10.4230/LIPIcs.ECRTS.2020.13
https://doi.org/10.1109/rtss49844.2020.00039
https://doi.org/10.1109/rtss49844.2020.00039
https://doi.org/10.1109/isorc49007.2020.00030
https://doi.org/10.23919/date.2017.7927055
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://www.xilinx.com/video/corporate/rockwell-collins-rfsoc-revolutionizing-how-arrays-are-produced.html
https://doi.org/10.1109/rtas.2013.6531079

Governing with Insights: Towards Profile-Driven
Cache Management of Black-Box Applications
Golsana Ghaemi #

Boston University, MA, USA

Dharmesh Tarapore #

Boston University, MA, USA

Renato Mancuso #

Boston University, MA, USA

Abstract
There exists a divide between the ever-increasing demand for high-performance embedded systems
and the availability of practical methodologies to understand the interplay of complex data-intensive
applications with hardware memory resources. On the one hand, traditional static analysis approaches
are seldomly applicable to latest-generation multi-core platforms due to a lack of accurate micro-
architectural models. On the other hand, measurement-based methods only provide coarse-grained
information about the end-to-end execution of a given real-time application.

In this paper, we describe a novel methodology, namely Black-Box Profiling (BBProf), to gather
fine-grained insights on the usage of cache resources in applications of realistic complexity. The
goal of our technique is to extract the relative importance of individual memory pages towards
the overall temporal behavior of a target application. Importantly, BBProf does not require the
semantics of the target application to be known – i.e., applications are treated as black-boxes – and
it does not rely on any platform-specific hardware support. We provide an open-source full-system
implementation and showcase how BBProf can be used to perform profile-driven cache management.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Cache Profiling, WSS Estimation, Cache Interference, Real-time, Multicore,
Contention-induced Instruction Stall, C2IS, Coloring, Cache Management, Cacheability

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.4

Supplementary Material
Software (Kernel Sources): https://github.com/rntmancuso/linux-xlnx-prof

archived at swh:1:dir:995dd657183233e05f30f4d5755cca46e01dd7c5
Software (BU Black-box Profiler): https://github.com/rntmancuso/black-box-profiler [11]

archived at swh:1:dir:2cc5a9264901e43157967138ac50a2700feb963c

Funding Renato Mancuso: The material presented in this paper is based upon work supported by
the National Science Foundation (NSF) under grant number CCF-2008799. Any opinions, findings,
and conclusions or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the NSF.

1 Introduction

The evolution of multi-core architectures and the ever-widening gap between the performance
of processor and memory has rendered the adoption of system-level management strategies for
shared memory resources a must. Indeed, inter-core interference is a fundamental challenge
for the practical adoption of multi-core systems in safety-critical real-time applications, as
extensively surveyed in [25]. In a nutshell, the problem of inter-core interference arises due
to priority- and criticality-agnostic arbitration for the allocation of and access to shared
memory components of application workload deployed in parallel on multiple cores. Important
achievements have been accomplished by the research community in the design of practical
memory management techniques to mitigate inter-core interference.

© Golsana Ghaemi, Dharmesh Tarapore, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:golsana@bu.edu
mailto:dharmesh@bu.edu
mailto:rmancuso@bu.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.4
https://github.com/rntmancuso/linux-xlnx-prof
https://archive.softwareheritage.org/swh:1:dir:995dd657183233e05f30f4d5755cca46e01dd7c5;origin=https://github.com/rntmancuso/linux-xlnx-prof;visit=swh:1:snp:8e9224b13d520135b01cee45ce51125142d22de9;anchor=swh:1:rev:d5fd0a5b92fee21e905a9b557b6eefb499c35256
https://github.com/rntmancuso/black-box-profiler
https://archive.softwareheritage.org/swh:1:dir:2cc5a9264901e43157967138ac50a2700feb963c;origin=https://github.com/rntmancuso/black-box-profiler;visit=swh:1:snp:0edff23363f0d8c7f5bbb5258dd3870f8a61087f;anchor=swh:1:rev:95722975fc945cbe6d971140caf680bcd13156cd
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Profile-Driven Cache Management of Black-Box Appl.

Unfortunately, however, the most widely used techniques rely on the enforcement of strict
resource partitioning – e.g., shared cache space coloring [22], sustainable memory bandwidth
partitioning [39, 37]. Often times, the rigidity of strict resource partitioning results in
what is known as the one-out-of-m multi-core problem [19]. That is, the performance loss
resulting from enacting strict partitioning outweighs its benefits. We argue that at the
core of the problem is a fundamental lack of methodologies to analyze exactly how realistic,
data-intensive applications interact with and benefit from the complex hierarchy of memory
resources in modern high-performance embedded systems.

The goal of this paper is to provide one such methodology that goes under the name of
Black-Box Profiling, or BBProf for short. Specifically, we propose a profiling strategy that
can be used to accurately understand how an application’s temporal behavior is affected by
the presence/absence in the cache of individual memory pages. This sets our work apart
from other profiling strategies that compute only end-to-end metrics such as the total cache
hit/miss rate, number of bus accesses, resulting runtime when adopting a given resource
partitioning scheme, and so on. The BBProf methodology is designed to operate without
requiring a micro-architectural model, which is often unavailable (or just too complex) for
high-performance systems. The proposed BBProf adopts a measurement-based approach
that does not rely on any platform-specific hardware support, and can be ported to virtually
any platform.

With this paper, we make the following contributions. First, we propose a novel profiling
methodology that requires no special hardware support to produce insights about the relative
importance of each memory page towards the overall timing of a target application. Second,
we describe how said methodology can be applied to profile realistic, pre-compiled black-box
applications without requiring any source-level or compile-time modifications. Third, we
propose a proof-of-concept, open-source, full-system implementation and show its capability
of profiling real-world vision applications. Fourth, we demonstrate that profile-driven shared
cache management is enabled by our BBProf methodology and highlight its benefit in
two scenarios: (1) to enact flexible interference mitigation with absolute guarantees that
are comparable to strict partitioning; and (2) as an efficient solution to the previously
undocumented problem of Contention-Induced Instruction Stall (C2IS).

2 Related Work

Research interest for workload-aware cache management has been spurred a large body of
works targeting real-time systems and general-purpose systems alike. A number of works
have proposed techniques to estimate the working-set size (WSS) of applications for the
purpose of performing informed cache management. One such work is [6], where the WSS of
a periodic application is estimated by computing the average per-activation number of cache
misses. This information, albeit coarse, is proven useful to avoid concurrently scheduling
applications with incompatible WSS. In a spirit quite similar to our BBProf, the work in [40]
proposes a technique to detect hot memory pages and to dynamically perform re-coloring to
improve average performance. Hot pages detection is performed by periodically scanning
the accessed-bit in all the page-table entries that belong to the target application. This
methodology, however, only provides an indirect estimation of the importance of each page
that depends on the frequency of sampling. It also relies on the presence of the accessed-bit,
which is an Intel-specific hardware feature. The work in [32] uses a similar approach that
relies on PowerPC-specific sampled-address data registers (SDAR).

G. Ghaemi, D. Tarapore, and R. Mancuso 4:3

Several works [18, 16, 4] propose scheduling models where the balance between loss
of performance due to smaller cache partitions and performance improvements thanks to
reduced cache interference is studied. Generally, these model assume that certain intrinsic
properties – e.g. their characteristic miss rates – of the applications under analysis are known.
In this case, the BBProf methodology proposed hereby could be used to determine key
behavioral parameters required to instantiate such and similar analytical frameworks. More
recently, a seminal piece of work has proposed an approach to jointly profile an application’s
sensitivity to cache size and resulting increase/decrease in the requirement for main memory
bandwidth [37]. In many ways, the information collected through the sensitivity study
represent an experimentally driven profile. Yet, the workload characterization is quite coarse
grained and cannot be directly used, for instance, to determine which specific pages of an
application need to be shielded from interference.

BBProf shares many similarities, at least in terms of the end goal, with a number of
well-established performance analysis toolkits. The survey in [3] provides a good overview of
popular toolkits such as Oprofile [7], Dprof [29], Zoom [31], DynamoRIO [5], Valgrind [27],
and Pin [23]. The latter three employ dynamic binary instrumentation (DBI), i.e. the ability
to translate and instrument on the fly a target binary. DBI-based tools require extensive
platform-specific porting. Translation layers for multiple platforms are already provided in
Valgrind and DynamoRIO. DBI heavily impacts the timing of an application, so profiling of
memory pages has to be performed by instrumenting all the memory references and then
conducting a frequency analysis. To the best of our knowledge, the only work that uses one
of these tools – the Lackey sub-tool in Valgrind – in this manner is [24]. In [24], a list of
hot memory pages to be locked in cache is constructed via meomory tracing, but due to
extreme performance degradation incurred, the evaluation is limited to small benchmarks.
Lastly, DBI frameworks meant for general-purpose systems seldomly work out of the box
on embedded systems due to the complex tree of library dependencies that they rely on, as
also reported in [21]. Oprofile, Dprof, and Zoom rely on hardware performance counters to
collect information. Oprofile records a variety of statistics such as the mix of hit/miss for
L1/L2 caches. It relies on runtime sampling and provides a configurable trade-off between
accuracy and overhead. Zoom and Dprof operate on similar principles but the development
of Zoom has been discontinued in 2015, while Dprof relies on AMD-specific debug registers.
Similarly, the profiling approach proposed in the recently published CacheFlow toolkit [34]
relies on the hardware-specific ability, available in a subset of Aarch64 CPUs, to snapshot
the full content of CPU caches.

Since BBProf follows a measurement-based approach, it shares some similarities with the
vast literature on measurement-based WCET estimation tools. For instance, the work in [30]
aims at producing more accurate WCET estimates by designing synthetic benchmarks that
stress different hardware resources in the target system. The purpose of BBProf is not to
construct WCET estimates, but rather to extract the importance of each page for the timing
of an application. This information can then be used to perform more fine-grained cache
management. WCET analysis should be performed after a given management strategy has
been applied, and it thus represents an orthogonal goal.

In light of the discussion above, what sets the proposed BBProf methodology apart is its
unique capability of extracting fine-grained statistics on the contribution of each memory
page to the overall runtime of an application under analysis. It does so without leveraging
any hardware-specific support, by requiring no source- or compiler-level manipulation, and
by operating directly on the black-box binary of the target application. Moreover, we
demonstrate that the profile acquired through our BBProf can be used to enact advanced
cache management techniques beyond strict task-level or core-level cache partitioning.

ECRTS 2021

4:4 Profile-Driven Cache Management of Black-Box Appl.

3 Background

In this section, we summarize the inner workings of the system components utilized by our
tool for unfamiliar readers. We first present a brief overview of multi-level set-associative
caches. Next, we review the notion of cache coloring, before concluding with a conspectus on
memory representation and management in modern computing architectures.

Multi-Level Set-Associative Caches. Modern computing architectures implement several
levels of caching. The L1 cache resides closest to the CPU and is private to a specific core. A
cache miss in L1 triggers a lookup in the level below (L2, in this instance). Some architectures
restrict the L2 cache to specific cores, making them private similar to the L1. A miss in the
L2 cache may trigger a lookup in the level below (L3 and subsequently, L4) if it exists or
failing that, a memory lookup. We constrain our discussion here to a normative ARM-based
cache, with private L1 caches and a globally shared, last-level L2 cache.

At all levels, caches adhere to a set-associative modality where a set-associative cache
with associativity W consists of W identically-structured ways. Blocks of consecutive bytes
are stored in lines referred to as cache blocks. The constant LS denotes the number of bytes
in a cache line, with most line sizes being 32 or 64 bytes. Memory addresses in the cache are
divided into three groups of bits: the offset, index, and tag bits that affect the specifics of
a cache lookup. Shared cache levels are physically indexed and physically tagged (PIPT),
meaning all addresses used for cache lookups must be physical addresses.

Memory Abstractions in Operating Systems. Most modern operating systems employ a
combination of hardware and software features to effectively encapsulate physical addresses
into virtual addresses. Virtual addressing allows each process an exclusive view of the system’s
memory, alleviating problems such as memory fragmentation or the limited availability of
physical memory. The OS maps virtual and physical addresses using page tables. When a
process references a virtual address, the Memory Management Unit (MMU) performs a page
table walk to locate the entry (PTE) – if any – that points to the corresponding physical
memory page. If the walk is successful, the accessed virtual address is resolved into a physical
address and the result of the translation is stored in the Translation Lookaside Buffer (TLB).
If the address is not found, a page fault is triggered by the MMU and handled by the OS. If
the access is legitimate, a new physical memory page is allocated and mapped to the process
(demand paging); if it falls outside any valid range of virtual addresses, a segmentation fault
(SIGSEGV) signal is delivered to the offending application.

Linux defines and manages the layout of legitimate contiguous regions of virtual memory
by representing them as virtual memory areas or VMAs. VMAs consist of a range of start
and end addresses, allowing for fine-grained control of virtual memory regions on a per-VMA
basis. They have been a part of the Linux kernel since version 2.6 [8].

Cache Coloring. A major source of interference in multicore systems is LLC contention.
One of the solutions to this problem is cache coloring, a purely software-based partitioning
technique. With cache coloring, memory pages are assigned “colors” based on the cache sets
they map to, which is determined by the value of the index bits. It is possible to allocate
virtually-contiguous memory pages to physically discontiguous pages that have the same color.
By doing this on a per-application or per-core basis, one can achieve strict cache partitioning,
which is a well-known mitigation strategy for cache interference [12]. In multicore embedded
SoCs that support two-stage address translations, the OS entirely manages the translation of

G. Ghaemi, D. Tarapore, and R. Mancuso 4:5

the first layer address (user virtual address) into the intermediate physical address (IPA).
The second stage of translation, however, is controlled by the hypervisor [28, 9] which maps
IPAs to physical addresses. Hypervisor-level coloring is advantageous to transparently color
entire guest OS’s, as demonstrated in [26, 20, 13].

4 Design

In this section, we describe the main principles that comprise the design of the proposed
BBProf. We describe the operational approach and functional components that allow it to
carry out a fine-grained experiment-driven memory analysis of generic applications. While
we advocate for the benefits of the proposed BBProf as a methodology for memory analysis,
we have also carried out a proof-of-concept open-source implementation [11]. As we show in
Section 7, the information extracted by our BBProf toolkit opens new avenues to perform
fine-tuned management of shared memory resources.

In a nutshell, the main goal of the proposed BBProf toolkit can be formulated as follows.
To consider a target application’s memory footprint decomposed into its smallest manageable
entities – individual memory pages. And with that, to produce a ranking that captures and
quantifies how crucial is each page for the temporal behavior of the application. In other
words, BBProf allows extracting the relative importance of memory pages towards the overall
temporal behavior of a target application. Importantly, our BBProf should be able to handle
applications of realistic complexity, while requiring minimum knowledge and understanding
of the application itself – i.e., by largely treating the application as a black-box.

4.1 Core Principles
The core principles that have driven the design of the BBProf methodology can be summarized
as follows.

Model-free Operation. Modern high-performance embedded systems are soaring in com-
plexity. Additionally, manufacturers are often wary of providing exhaustive platform im-
plementation details, as many of them constitute corporate intellectual property. Even if
a formal micro-architectural model can be constructed, the high degree of complexity – in
both software and hardware layers – can result in a state-space explosion even with simple
workloads. It follows that, unfortunately, traditional static analysis methods might not be
easily applicable to the considered class of embedded systems. In light of this, we aim to
design a methodology that can be used in an arbitrarily complex system without the need
for a micro-architectural model.

Platform Independence. A key design-time constraint we impose is for our BBProf meth-
odology to be feasible regardless of the specific target platform. In other words, our BBProf
should not rely on hardware support that exists only in a fraction of existing and future
platforms. Instead, it should leverage widely available hardware features that are exposed by
embedded and general-purpose platforms alike, and that are unlikely to be phased out in
future generations.

Usable for Realistic, Unknown Workload. There exists a fundamental lack of practically
viable toolkits that are industry-ready and capable of carrying out the memory analysis
of complex applications in complex embedded platforms. The proposed BBProf aims that
bridging such a gap with a solution that can be immediately adopted to better characterize

ECRTS 2021

4:6 Profile-Driven Cache Management of Black-Box Appl.

(a) Profiling mode workflow. (b) Ranking mode workflow.

Figure 1 High-level workflow of BBProf in two of the main modes of operation.

the behavior of realistic applications. This implies that not only a minimal understanding of
the target application should be required to perform profiling; but also that BBProf should
be capable of handling widely used system-level features such as dynamically linked libraries
and dynamic virtual memory allocation.

Linear-time Profiling. To be practically useful, we impose our BBProf methodology to be
able to operate in linear time with respect to the memory footprint of the application under
analysis. Because our strategy is centered around a runtime measurement-based approach,
we deem as viable an analysis strategy with a linear time complexity that is impacted by
(1) the runtime of the core logic of the application under analysis; and (2) the size of the
memory footprint of the target application.

4.2 High-level BBProf Workflow
The proposed BBProf methodology pivots around the idea that it is possible to manipulate
the memory allocation policy on a per-memory page basis. Thus, for a target application, it
is possible to understand the importance of individual pages towards application timing by
changing the allocation policy one page at a time. Albeit this idea is generic, the specific
set of memory allocation policies depends on the type of analysis to be conducted. For the
remainder of this paper we direct our focus to shared CPU cache analysis, which is a primary
target of this work. Therefore, cacheability is the memory policy of choice to isolate the
impact of a single memory page on the timing of an application.

Figure 1 provides a high-level overview of the logical workflow of BBProf in its two
main modes of operation. In the profile mode described in greater detail in Section 4.3 and
depicted in Figure 1a, the required inputs to BBProf are (1) the path to the binary of the
ELF executable to be profiled; and (2) the name of the C function whose timing needs to be
profiled. This function corresponds to the observation segment defined below. The full list of
optional operational parameters are described in [11]. The output produced in this mode is a
binary file1 encoding the relative importance recorded for each page of each considered VMA.
BBProf allows performing multiple profiling runs and will aggregate the result of all the
runs into the same file keeping track of max, min, and average statistics on a per-page basis.

1 The binary profile can be translated into human-readable format using the -t parameter as described
in [11].

G. Ghaemi, D. Tarapore, and R. Mancuso 4:7

Figure 2 Logical interplay between modules of BBProf in profile mode.

BBProf includes a number of other analysis modes described in Section 4.4. These modes
require a profile file previously obtained on the target application. For instance, Figure 1b
depicts the high-level workflow of the ranking mode which produces a human-readable output
describing the runtime of the target function as an increasing number of most important
pages are made cacheable.

We base our analysis on the presence of a single aforementioned observation segment,
which represents a segment of logic whose temporal behavior is of interest. Although the
observation segment can be extended to cover the entire application’s logic, in practice this is
often not the case. Realistic applications are typically characterized into three main phases:
(1) an initialization phase where parameters and inputs are parsed and pre-processed; (2) the
main computational payload, which might be executed multiple times in a periodic fashion;
and (3) a teardown phase where any acquired resource is released. The observation segment
corresponds to the main computational payload of the target application. For the sake of
simplicity, we assume that such a phase is encapsulated into a single function called the
target_func, and hence that the target application has a structure similar to what depicted
in the right-hand side of Figure 2. Any initialization and de-initialization logic is excluded
from the analysis.

4.3 Profiling Strategy

When operating in profiling mode, the adopted strategy is visualized in Figure 2 and described
in the following. (1) Perform a first run of the target application to identify its virtual memory
layout; (2) re-execute the target application as many times as the number of memory pages
M that comprise its memory footprint; (3) at each re-execution and before the invocation of
the target_func, switch memory allocation policy for all the pages except the one under
analysis; and (4) collect the impact of the selected policy over the execution time of the
target_func. It is crucial that the profiling of an application is conducted in isolation, i.e.,
with the lowest possible amount of noise in the target system.

For instance, consider an application whose memory footprint is comprised of 4 pages
and assume that its runtime when all the pages are marked as non-cacheable is some time
Tnc. BBProf first detects the footprint of the application. Next, it performs 4 iterations. In
the first iteration, only the first page is marked as cacheable, while all the others are marked
as non-cacheable. Then, it measures the runtime of the target_func which will be of the
form (Tnc − x1), with x1 being the performance gain that arises from having the first page
in cache. We then repeat the same steps for the remaining three pages to extract the terms
x2, x3, and x4 in the same way.

ECRTS 2021

4:8 Profile-Driven Cache Management of Black-Box Appl.

To accomplish the strategy outlined above, our methodology relies on the definition
of two components, as also depicted in Figure 1: a user-space driver and a kernel-space
driver, which we refer to as UProfiler and KProfiler, respectively. Intuitively, the UProfiler
is responsible for launching and collecting data about the temporal behavior of the target
application, while the KProfiler is used to enforce the selected memory allocation policy. The
main key design principles for the two components are reviewed in the following.

4.3.1 User-Space Driver (UProfiler)

The design of the UProfiler component shares a number of similarities with a typical debugger.
Indeed, it operates by taking in two pieces of information – which are the only ones strictly
required to launch profiling. These are (1) the location of the executable binary (and any
parameters it requires) of the target application; and (2) the name of the target function
that corresponds to the observation segment.

First, UProfiler parses the provided binary executable to translate the name of the
function into the address that corresponds to the first instruction of the target function –
i.e., the beginning of the observation segment. With this information at hand, UProfiler can
launch the target application and set a breakpoint, called the entry breakpoint right at the
beginning of its computational payload (Figure 2, step 1). As soon as the entry breakpoint
is reached, UProfiler pauses the target application and performs a sequence of preparatory
actions, called the entry sequence. The actions performed in the entry sequence depend on
the type of analysis being carried out.

As part of the entry sequence, UProfiler always detects the end of the observation segment.
This is done by inspecting the return address of the target function. With this information,
an exit breakpoint is installed by UProfiler (Figure 2, step 2). Before resuming the execution
of the target application, UProfiler removes the entry breakpoint and snapshots the current
start timestamp (Figure 2, step 3). In a similar way, as soon as the exit breakpoint is
reached, UProfiler immediately snapshots the current end timestamp (Figure 2, step 4);
removes the exit breakpoint, and performs a variable sequence of actions – the exit sequence.

During the very first run of the target application (iteration 0), UProfiler detects its
layout and the number of memory pages M that comprise its footprint. This information is
collected during the entry sequence and double-checked during the exit sequence. Additional
implementation-specific details about this step are provided in Section 5.

In the generic profiling iteration i, the entry sequence is used by UProfiler to prepare
a descriptor that determines the memory policy to be applied to each of the pages subject
to profiling. Given the current focus on cache analysis, the descriptor prepared at profiling
iteration i instructs the KProfiler to turn all the considered pages non-cacheable except for
the i-th page. In the exit sequence, the difference between start and end timestamp is
recorded and associated to page i.

Here, the use of timestamps represents the preferred metric for two main reasons. First,
it allows UProfiler to be a valid methodology regardless of the target platform, since time
sampling primitives are commonplace in (modern) hardware platforms. Second, it allows
UProfiler to directly correlate the impact of the selected memory policy on the timing of the
observation segment. Nonetheless, UProfiler can be easily extended to capture additional
platform-specific performance metrics such as number of cache references, hits, misses, number
of retired instructions, instructions-per-cycles, and so on.

G. Ghaemi, D. Tarapore, and R. Mancuso 4:9

4.3.2 Kernel-side Driver (KProfiler)
The KProfiler encapsulates all the logic that requires elevated kernel-level privileges to
manipulate the properties of the memory pages mapped to the target application.

Following the proposed design, the KProfiler defines a communication interface exposed
to the UProfiler (Figure 2, step 3). As needed – usually during the entry sequence – the
interface is used to pass a descriptor with the list of changes to be applied to the target
memory pages. Because absolute memory addresses change from run to run, UProfiler and
KProfiler use relative addressing to uniquely identify memory pages across runs. Pages are
grouped by the memory policy modification to be carried out over them.

It is responsibility of the KProfiler module to leverage appropriate kernel-level APIs to
apply the requested memory policy modifications for the target pages. So far we have only
discussed the most basic operation mode of the proposed BBProf. In this case, the descriptor
passed by the UProfiler always follows the same structure. Only one page is selected to be
kept cacheable, while all the others are requested to be made uncacheable.

4.4 Additional Operational Modes
So far we have described the design of UProfiler and KProfiler with respect to the main
operational mode, which is page-level cache profiling. Our current design includes two
additional modes that are briefly described in the following.

Page Ranking Analysis. Once per-page statistics have been extracted, it is possible to
globally rank all the memory pages that comprise an application’s footprint. Intuitively,
those pages that led to the best time improvements will be ranked as more important towards
the temporal behavior of our target. The page ranking analysis allows to understand the
cumulative benefit of selecting the top-ranked k pages to be cacheable, where 0 ≤ k ≤ M .
Notably, the case k = M corresponds to the default case where all the memory pages are
considered cacheable. Expectedly, as we increase k, the observed runtime of the observed
segment will generally decrease. Importantly, however, if a threshold of k∗ < M is found
where the resulting runtime already approaches the case k = M , then k∗ corresponds to the
working-set size (WSS) of the target application.

Page Migration Analysis. A final useful operation provided in our design is the possibility
of changing the physical location of a group of pages based on the information collected
during profiling and ranking. For instance, consider a platform that includes a block of
scratchpad memory. First profiling and ranking is performed to identify the pages that
comprise the working-set of the target application. Next, our BBProf toolkit can be used to
test what-if scenarios where all or a part of this group of pages is migrated to scratchpad
memory. We will demonstrate two concrete use-cases where page migration can be used to
efficiently mitigate inter-core cache interference.

5 Implementation

We hereby review the main details concerning a proof-of-concept Linux implementation of
the proposed BBProf toolkit.

5.1 UProfiler Implementation
As we mentioned in Section 4, the UProfiler component is designed to act akin to a de-
bugger. For this purpose, it leverages the ptrace family of system calls to manipulate
the flow of a child process. Indeed, launch a new run of the target application, UProfiler

ECRTS 2021

4:10 Profile-Driven Cache Management of Black-Box Appl.

performs the following sequence: (1) a fork system call to spawn a new child process, (2)
a ptrace(PTRACE_TRACEME) in the spawned child allowing the parent to trace the child’s
execution, (3) an exec system call to execute the target application under tracing.

The ptrace system call represents a standard Linux interface. Albeit it is Linux-specific,
it is possible to achieve a similar behavior even in a bare-metal system or RTOS by relying
on basic debugging features. Indeed, the only features used by UProfiler are (1) the ability
to set/remove breakpoints, and (2) the ability to read the content of CPU registers. These
capabilities are available even in simple microcontrollers.

Breakpoint Handling. To set a breakpoint in an architecture-independent way via the
ptrace interface, one can replace (PTRACE_POKETEXT) the instruction at the desired break-
point address with any illegal opcode. This way, when the execution of the tracee reaches
the modified instruction, the process is paused by a SIGILL POSIX signal and a SIGCHLD
signal is delivered to the parent process – i.e., to our UProfiler. Before setting the breakpoint,
UProfiler records the value of the instruction being replaced (PTRACE_PEEKTEXT) so that it
can be restored once the breakpoint is reached. As soon as the breakpoint is hit, UProfiler
records the value of the tracee’s program-counter (PC) register. To allow the tracee to resume
from the breakpoint, UProfiler (1) restores the original instruction at the breakpoint address
and (2) rewinds the PC of the tracee to the recorded address. Accessing the tracee’s CPU
registers can be done via a combination of PTRACE_GETREGS/PTRACE_SETREGS operations2.

As discussed in Section 4, UProfiler only sets two breakpoints. The entry breakpoint is
set upon launching the target application and at the first instruction of the target function.
The exit breakpoint is installed at the address to which the target function is set to return.
To find the address of the entry breakpoint, UProfiler accepts as a command-line parameter
the name of the target function whose body corresponds to the observation segment. It then
uses the LibELF3 library to translate the provided function name into the corresponding
instruction address by performing a lookup in the target ELF’s symbols table (SHT_SYMTAB).
The address of the exit breakpoint is only known once the tracee hits the entry breakpoints.
In ARM32 and ARM64, it is enough to read the content of the link register (LR) to retrieve the
return address of the target function.

Layout Detection and Enforcement. In a generic POSIX-compliant application, there is a
number of system calls that can dynamically modify the memory layout of an application.
Most notably, sbrk is internally used by the libc to implement functions that perform
dynamic memory (de)allocation, such as malloc and free. Calling the sbrk can affect the
size of the heap virtual memory area (VMA). Similarly, the mmap and unmap system calls can
cause the addition, deletion, or modification of VMAs in the tracee’s layout. Importantly,
the libc uses mmap instead of performing a heap extension when applications allocate large
buffers. For the final output of our BBProf to be valid, it is crucial that no memory layout
changes occur during the execution of the observation segment. This is not a concern with
applications written for embedded/safety-critical systems where memory is always statically
allocated. Nonetheless, UProfiler includes logic to enforce a deterministic memory layout
even on applications that use dynamic memory allocation primitives.

2 Note: this is true for many platforms, including x86, x86_64 and ARM32. Equivalent operations can be
carried out in ARM64 through PTRACE_GETREGSET and PTRACE_SETREGSET.

3 LibELF is part of the elfutils open-source project which is a toolkit to read, create and modify
Executable and Linkable Format (ELF) binaries.

G. Ghaemi, D. Tarapore, and R. Mancuso 4:11

To achieve that, when the tracee is spawned for the first time, UProfiler runs the tracee a
first time and records the peak amount (VmPeak) of data that was used during the target
function. Once the maximum amount of memory required by the observation segment
is known, all the subsequent runs of the target application are performed by setting two
environmental variables that modify the behavior of the libc memory allocation routines.
These are (1) the MALLOC_TOP_PAD_ and (2) the MALLOC_MMAP_MAX_ variables. The former
allows setting an initial size for the heap and is set to the peak memory size detected by
UProfiler in the first run. The latter is set to 0 to disable the use of mmap to handle dynamic
memory allocations.

All the subsequent runs of the target application can be used to perform profiling. In the
first of such runs, UProfiler further detects the actual memory layout that results from setting
the aforementioned environmental variables. It does so by querying the /proc/PID/maps
interface as soon as the entry breakpoint is reached. Additional launch parameters are
accepted by UProfiler to include/exclude certain types of VMAs in the profiling. For instance,
in order to make profiling faster, one might want to exclude VMAs that belong to shared
libraries and that are not used during the observation segment.

Single-page Profiling. Once UProfiler has computed the number of pages M in the target
VMAs, the single-page profiling phase can be initiated. Of course, the M pages can be
distributed across multiple VMAs (e.g. text, heap, stack). Moreover, their absolute address
will change from run to run due to address space layout randomization (ASLR). To operate
even with ASLR in place, UProfiler uses a run-independent relative encoding to express
the coordinate of memory pages. Specifically, we use two indices to identify each page: (1)
the index v of the VMA that contains the page; and (2) the offset o of the page from the
beginning of the VMA.

To profile a generic page i ∈ {1, . . . , M} with coordinates ⟨v, o⟩, the UProfiler prepares a
descriptor to instruct the KProfiler module to modify the cacheability of the pages in the
target VMAs. In profiling mode, this descriptor contains the list of all the VMAs under
analysis. For each of them, a list of pages whose cacheability attributes need to be modified
is included, with an opcode field that determines how the cacheability attributes should be
altered. In this case, the cacheability of page i is unchanged, but that of all the other pages
is the target VMAs is set to become non-cacheable. The descriptor prepared as mentioned
above is then passed to KProfiler to apply the necessary changes once the entry breakpoint
is reached. The target application is resumed only once all the pending changes are effective.
Note that any timestamp acquisition is performed after the cacheability changes have been
applied, so that the overhead required to switch the cacheability attributes is excluded from
the time measurements.

Time Measurements. Albeit extensible, the current use of the BBProf toolkit is to analyze
the relative importance of individual memory pages toward the overall temporal behavior
of the observation segment. The most direct and platform-independent way to extract this
information is by acquiring timing samples of the target function as we vary which page is
allowed to be allocated in cache. In order to be as precise as possible, UProfiler directly
reads CPU cycle counters instead of relying on system primitives.

Time measurements are acquired right before resuming the application from the entry
breakpoint and right after it reaches the exit breakpoint. Moreover, since timestamps can
be affected by random system noise, UProfiler allows specifying an arbitrary number of
samples to be collected for the same profiled page. System noise originates from workload

ECRTS 2021

4:12 Profile-Driven Cache Management of Black-Box Appl.

on other cores, interrupt handlers, non-deterministic hardware behavior, and inaccuracy of
time sampling instructions. Various mitigations strategies can be adopted to reduce the
magnitude of system noise, such as turning off other cores and disabling peripherals. The
only mitigation strategy used by BBProf is running UProfiler and the target process with the
SCHED_FIFO Linux policy and with a high real-time priority. As we evaluate in Section 7.2,
the observed degree of noise was negligible and did not impact the validity of our profiles.
The final profile stores, for each page, the maximum, minimum, and average runtime of
the observed segment across all the acquired samples. Note that with this infrastructure in
place, it is straightforward to extend UProfiler to collect additional metrics such as hardware
counters for micro-architectural events – e.g. cache references, misses, hits, bus accesses,
to name a few. This can be done in a platform-agnostic fashion by leveraging the perf
infrastructure [10].

Page Ranking and Migration. The implementation of the other two modes of operation
is similar to what has been discussed above, hence much of the details are omitted. To
perform page ranking and migration, it is assumed that a profile has been previously acquired
for the target application. The pages in the profile are then arranged in a sorted set in
descending order of their impact on the timing of the target application. Examples of the
output produced by a ranking experiment are provided in Figure 8.

In the ranking phase, UProfiler performs M runs where in run k, the top k pages in the
sorted set are requested to be kept cacheable by the KProfiler, while all the remaining pages
in the set are turned non-cacheable. The timing of the M runs is collected and stored for
later analysis.

In a similar way, a page migration experiment requires a pre-acquired profile. The M

pages in the target VMAs are sorted according to the same criterion described above. In this
case, however, a single run is performed where the UProfiler instructs the KProfiler module to
migrate the top k pages in the sorted set to a new location in physical memory. The value of
k represents a parameter supplied by the user. The destination of the migration is determined
by the KProfiler, as we discuss below. The support to conduct page migration directly from
the profiler allows quick testing of what-if scenarios for the allocation of important pages.
As part of our future work, we plan to directly modify the way applications are launched to
take advantage of profiling information without the need to go through the profiler.

5.2 KProfiler Implementation
The KProfiler component is implemented as a Linux kernel module. Our current implementa-
tion targets Linux 5.4. At startup, a communication channel with the UProfiler is created in
the form of a file in the proc pseudo-file system. Whenever the UProfiler needs to trigger a
kernel-side operation, the write system call is used to pass the content of the aforementioned
operation descriptor. The descriptor also contains the PID of the tracee that will be targeted
for the current operation. A combination of find_get_pid and get_pid_task kernel APIs
is used to retrieve the descriptor of the tracee’s process given the provided PID. Moreover,
the descriptor contains redundant information about the structure of the memory layout of
the tracee as detected by UProfiler. This is used to perform a sanity-check in the KProfiler
and ensure that the desired operations are performed on the right VMAs and pages.

Cacheability Modification. For the profiling and ranking phases in which only the cacheab-
ility of the target page(s) is changed, no changes to the source code of the Linux kernel
are required.

G. Ghaemi, D. Tarapore, and R. Mancuso 4:13

For each VMA in the passed descriptor, the KProfiler retrieves the corresponding
vm_area_struct descriptor by scanning the kernel-maintained linked list of tracee’s VMAs.
It then ensures that any page that will be affected by the current operation is present in
physical memory. This is done by faulting-in the target pages that can be achieved via
the kernel API revget_user_pages_remote and with flags FOLL_POPULATE, FOLL_TOUCH
and FOLL_MLOCK. Next, the kernel API apply_to_page_range is used to invoke a custom
function for each page on which a change in cacheability attributes needs to be carried out.
Such a function already invokes our custom routine with a pointer to the Page Table Entry
(PTE) that needs to be manipulated to change the cacheability attributes of the page.

Given a page that is set to be made non-cacheable, the following steps are performed.
First, a new PTE is prepared to mirror the same exact value of the existing PTE, but where
the page attributes have been switched to encode for normal, non-cacheable memory. Next,
we clean and invalidate data and instruction caches to make sure that any dirty line is written
back to main memory. Then, we install the newly created PTE to replace the previous entry.
Finally, we invalidate any TLB entry (if any) for the current page on all the online CPUs.

Page Migration. Being able to support page migration requires some changes to the
kernel sources4. A total of around 200 lines have been modified to implement the required
changes. Specifically, we have generalized the existing support for the migration of physical
memory pages across NUMA nodes used to implement the move_pages system call. We have
introduced a new exported kernel API with the following prototype:

int move_pages_to_pvtpool(struct mm_struct *mm, unsigned long nr_pages,
unsigned long * vaddrs, new_page_t get_new_page,
unsigned long private);

Here mm is the virtual address space descriptor of the process targeted for page migration,
nr_pages is the number of pages to be migrated, vaddrs is an array of nr_pages virtual
addresses of pages to be migrated, get_new_page is a function pointer used by the internal
routines to allocate destination pages, and private is a parameter to be passed to the
allocation function.

At load time, the KProfiler module internally maps an area of memory reserved at boot
for page migration. The reservation is performed via a modified Device Tree Blob (DTB).
Here we use the reserved-memory attribute 5 to exclude a given range of physical addresses
from the default Linux allocator – the Buddy System. We do not mark this region with the
no-map attribute to allow the kernel to initialize the necessary page descriptors to correctly
map kernel virtual addresses and physical addresses in the reserved region.

If a valid reservation is found by the KProfiler at load time, the module uses a combination
of memremap and gen_pool_create kernel APIs to instantiate a new general-purpose memory
allocator over the reserved memory region 6. The former produces a valid kernel virtual
address that can be used to access the reserved memory region, while the latter enables the
allocation of new pages from the region.

With our custom allocator in place, whenever UProfiler requests the migration of a set of
pages, a set of initial steps similar to those required to change the cacheability attributes is
performed. But instead of manipulating the cacheability attribute of the exiting pages, a

4 The modified kernel sources are available at https://github.com/rntmancuso/linux-xlnx-prof.
5 See https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/

reserved-memory.txt.
6 See https://www.kernel.org/doc/html/v5.4/core-api/genalloc.html.

ECRTS 2021

https://github.com/rntmancuso/linux-xlnx-prof
https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt
https://www.kernel.org/doc/html/v5.4/core-api/genalloc.html

4:14 Profile-Driven Cache Management of Black-Box Appl.

list of pages to be migrated is compiled and the newly introduced move_pages_to_pvtpool
API is invoked. When doing so, a wrapper to a gen_pool_alloc call is passed as the
get_new_page function pointer to allow internal book-keeping.

We describe in Section 7.4 how profile-driven page migration can be used to enact
advanced techniques to manage inter-core interference in the shared cache. Nonetheless, the
implications of profile-driven page migration are deeper than what presented in Section 7.4.
Indeed, this support allows defining a distinct memory pool for each heterogeneous memory
component available in the system, e.g. scratchpad memory, in-FPGA block RAM, non-
volatile memory, reduced-latency DRAM blocks (RL-DRAM) [14], to name a few. By
leveraging profiling information, one can then decide which pages need to be mapped to the
various memory resources.

6 System Instantiation

In this section, we review the full-system setup that was carried out to evaluate the potential
of the proposed BBProf approach and proof-of-concept implementation.We have deployed
the implemented UProfiler and KProfiler modules on an ARM64 platform that we also use for
all our experiments. Specifically, we use a Xilinx-ZCU102 development platform featuring
a Zynq UltraScale+ XCZU9EG MPSoC [36] with a quad-core ARM Cortex-A53 [2] 64-bit
CPU operating at 1.5 GHz and implementing the ARMv8-A [15] architecture profile. The
L1 cache consists of a split cache with a 32 KB 2-way instruction (I) cache plus a 32 KB
4-way data cache. The L2, which is also the last-level cache (LLC) is unified and 1 MB in
size; it has associativity 16, and it is shared among all the A53 cores. The cache line size is
64 bytes for both L1 and L2.

Profiling and ranking analysis can be carried out directly under Linux. Conversely, to
evaluate the ability to enact advanced memory management via profile-driven page migration,
we additionally deploy a thin partitioning hypervisor, namely Jailhouse [1]. Jailhouse is
used to perform cache coloring [38, 18, 26, 20] in a way that remains transparent to the
Linux environment where we conduct our experiments. Our goal is to conduct a series of
experiments centered around the problem of shared cache management. To achieve this,
we have reproduced the setup described in [20] on the ZCU102 system, where dynamic
re-coloring of the Linux environment is available. We use coloring in two ways. First, in a
traditional way to statically restrict the applications running in the Linux environment to
only a subset of the available colors – we vary this amount from two to 15, with 16 being the
maximum value and corresponding to no partitioning. In this case, Linux is restricted to use
only one CPU. Moreover, when strict coloring is used, interfering workload (Interf) consists
of bare-metal memory-intensive synthetic applications deployed on all the other cores as
stand-alone virtual machines (VM).

We then use Jailhouse and page coloring to illustrate a new technique enabled by the
profiler to mitigate the problem of shared cache interference. The setup, illustrated in
Figure 3, essentially defines two contiguous ranges of intermediate physical addresses (IPA).
The first corresponds to all the memory that Linux uses for legacy memory allocations
through the Buddy System and is mapped by Jailhouse to 12/16 = 3/4 of the available colors.
The second IPA range is mapped to pages with the remaining 4/16 = 1/4 of the available
colors. The latter is then used by the KProfiler to instantiate a privately managed allocation
pool. It follows that pages can be allocated in the pool only through explicit profiler-driven
page migration. We refer to this setup with the PVT+SH short-hand notation. Note also
that this setup provides page-level granularity over memory allocated in the private cache
pool. This sets this work apart from the large literature on colored page allocators proposed
in the past that assign colors at the process or core granularity [17, 19, 18, 22].

G. Ghaemi, D. Tarapore, and R. Mancuso 4:15

Figure 3 Overview of PVT+SH setup.

0 200 400 600 800 1000
Interf. Task WSS (KB)

0.5

1.0

1.5

2.0

2.5

3.0

Sl
ow

do
wn

 (×
)

Observed, Runtime
Runtime max/min var.

Interfering, Bandwidth
Bandwidth max/min var.

0.5

1.0

1.5

2.0

2.5

3.0

No
rm

al
ize

d
M

em
. B

an
dw

id
th

Figure 4 Interference as a function of WSS.

In terms of workload, apart from the aforementioned Interf workload, an equivalent
synthetic memory-intensive application, namely bandwidth from the IsolBench suite7, is
used to generate cache contention when no other VMs are active in the system and Linux is
used in SMP mode on all the cores. For the purposes of building confidence in the ability of
the profiler to characterize the importance of memory pages, we use the Staircase synthetic
benchmark described more in detail in Section 7.2. For our observed realistic workload,
we used the San Diego Vision Benchmark (SD-VBS) suite [35]. While we conducted all
our experiments on all the benchmarks, due to space constraints we only include a subset
of the results that capture the more interesting cases. We also limit our discussion to the
input sizes SqCif, QCif, Cif, and Vga. We exclude the FullHD sizes as the runtime of
the benchmarks on the target platform is excessively high. As we mentioned in Section 5,
the observed system noise was quite negligible which resulted in the timing of the profiled
applications to be remarkably deterministic. Thus, five independent runs were sufficient to
acquire each profile. For production systems with worse signal-to-noise ratios, we expect that
a much larger number of runs might be needed to construct meaningful profiles.

7 Evaluation

In this section, we describe the evaluation that we have carried out on the system setup
described in the previous section. We focus our attention on four main aspects. First,
in Section 7.1 we evaluate the amount of shared cache contention that can be suffered by
applications in this platform and understand the ability of strict cache coloring to mitigate such
interference. Next, we show in Section 7.2 that our proof-of-concept BBProf implementation
is capable of extracting useful profiling information for the considered synthetic and real-world
applications. Third, we discuss how profile-driven migration can be used efficiently to solve
the problem of contention-induced instruction stall in Section 7.3. Finally, we evaluate in
Section 7.4 how profile-driven page migration can be used to controllably mitigate shared
cache contention in real-world applications.

ECRTS 2021

4:16 Profile-Driven Cache Management of Black-Box Appl.

2 4 6 8 10 12 14
1.0

1.2

1.4

Sl
ow

do
wn

 (×
)

dispar [sqcif]

2 4 6 8 10 12 14
1.0

1.2

1.4
dispar [qcif]

2 4 6 8 10 12 14
1.0

1.2

1.4

dispar [cif]

2 4 6 8 10 12 14
1.0

1.2

1.4

dispar [vga]

2 4 6 8 10 12 14
1.0

1.5

2.0

Sl
ow

do
wn

 (×
)

mser [sqcif]

2 4 6 8 10 12 14
1.0

1.5

2.0

mser [qcif]

2 4 6 8 10 12 14
1.0

1.5

mser [cif]

2 4 6 8 10 12 14
1.0

1.5

mser [vga]

2 4 6 8 10 12 14
of Cache Colors

1.0

1.1

Sl
ow

do
wn

 (×
)

stitch [cif]

2 4 6 8 10 12 14
of Cache Colors

1.0

1.2

stitch [vga]

2 4 6 8 10 12 14
of Cache Colors

1.0

1.2

1.4
svm [cif]

2 4 6 8 10 12 14
of Cache Colors

1.0

1.2

synth [sqcif]

No Col. (max) No Col. (min) No Col. (avg) Solo + Col Interf. + Col

Figure 5 Performance of SD-VBS benchmarks under strict partitioning with (orange) and without
(blue) cache contention.

7.1 Interference and Mitigation via Strict Partitioning

In the experiments presented in this section, we focus on cache contention. Generating
cache contention for an application under analysis is done by deploying a set of interfering
synthetic memory-intensive applications on all the other cores. In order to set the WSS of
the interfering workload with the goal of maximizing contention, we have conducted the
experiment depicted in Figure 4. In this experiment, the application under analysis is Mser
from the SD-VBS suite with input size SqCif. Three interfering applications deployed on
the remaining cores continuously perform cache-allocate store operations over a buffer of
increasing size (x-axis). We plot on the left y-axis (red) the runtime normalized to the case in
which Mser runs in isolation (solo case) in the system. We display the memory bandwidth
observed by the interfering workload on the right y-axis (blue). A clear trend emerges that
highlights how the cache interference is maximized (both in average and maximum terms)
when each interfering application accesses a buffer of around 420 KB, i.e. access in a total of
about 1.23 MB.

In light of the results highlighted above, we have set our interfering tasks to have a
WSS of 420 KB. With this in mind, we want to understand how well strict coloring is able
to mitigate cache interference. We have conducted a study where all the strict coloring
configurations described in Section 6 are explored for all of our SD-VBS benchmarks and
considered input sizes. The most interesting nine cases are presented in Figure 5. In all
the sub-plots, the vertical bars represent the slowdown of the application under analysis
when no cache partitioning is performed. The blue bars (resp., orange) report the runtime
of the application under analysis in the solo case (resp., under interference). It emerges
that partitioning leads to significant improvements in certain circumstances, especially for
workload with L2-sensitive footprint such as Disparity and Mser with input sizes QCif

7 See https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c.

https://github.com/CSL-KU/IsolBench/blob/master/bench/bandwidth.c

G. Ghaemi, D. Tarapore, and R. Mancuso 4:17

+0 +20 +40 +60 +80 +100
Ranked VMA Page

-1.40%

-1.20%

-1.00%

-0.80%

-0.60%

-0.40%

-0.20%

0.00%

Ru
nt

im
e

Re
du

ct
io

n
(%

)

heap

max
min
average

Profile: staircase

Figure 6 Profile of Staircase benchmark.

and SqCif, and for Stitch with input size Cif. However, the ability to mitigate cache
contention with coloring alone is limited in some cases. This is due to contention over memory
bandwidth which exacerbates as larger partitions are given to large-footprint applications –
see Disparity and Mser with input sizes Cif and Vga. Indeed, the stress over the main
memory subsystem placed by the interfering workload increases as it is confined to a smaller
cache partition. Traditionally, bandwidth throttling techniques are used to solve this problem,
such as MemGuard [39, 33].

But an important takeaway from this study is that strict partitioning is just too rigid to
(1) be able to efficiently mitigate cache contention for a wide variety of tasks deployed on
the same core. And (2) that over-throttling of the interfering workload might be required to
compensate for the lack of flexibility in coloring-based cache partitioning. Conversely, as
shown in the following, the proposed BBProf toolkit can be used to strike a balance between
strict partitioning and unregulated interference.

7.2 Profiling of Staircase and SD-VBS benchmarks
The first step toward profile-driven cache management is to use the proposed BBProf toolkit
to acquire the page-level profile about the applications to be managed. As a first step to
build confidence on the correctness of BBProf, we have designed the Staircase benchmark8

to exhibit a well-recognizable behavior in terms of memory accesses that can serve as the
ground truth on the extracted profile. Specifically, the benchmark allocates a buffer of 100
heap memory pages. It then performs a total of 1000 iterations reading over the buffer. In
the first 200 iterations, the buffer is read entirely; in the next 200 iterations, the first 20 pages
are skipped; after 200 additional iterations, the first 40 pages are skipped and so on. The
result is that the second group of 20 pages is accessed 2× more than those at the beginning
of the buffer. The third 20-pages group 3× more, and so on. Thus if we were to plot the
importance of each page from beginning to end, the resulting plot would resemble a staircase,
hence the name. Figure 6 provides a visualization of the extracted profile focused on the
heap VMA. In the figure, the x-axis represents the index of the page under profiling. The
blue bars from the top of the plot visualize by how much (in percentage) the runtime of
the benchmark is reduced when each page is kept cacheable while all the others are not. A
taller bar signifies a page with relatively higher importance for the temporal behavior of the

8 The code of the Staircase benchmark is available in the project repository [11].

ECRTS 2021

4:18 Profile-Driven Cache Management of Black-Box Appl.

+0 +50 +100 +150
Ranked VMA Page

-1.75%

-1.50%

-1.25%

-1.00%

-0.75%

-0.50%

-0.25%

0.00%
Ru

nt
im

e
Re

du
ct

io
n

(%
)

heap

+0 +25

-0.30%

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

stack

Profile: disparity [qcif]

+0 +50 +100
Ranked VMA Page

-70.00%

-60.00%

-50.00%

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

Ru
nt

im
e

Re
du

ct
io

n
(%

)

heap
-2.5%

-2.0%

-1.5%

-1.0%

-0.5%

0.0%

+0 +25
-3.50%

-3.00%

-2.50%

-2.00%

-1.50%

-1.00%

-0.50%

0.00%

stack

Profile: mser [qcif]

+0 +200 +400 +600 +800
Ranked VMA Page

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

Ru
nt

im
e

Re
du

ct
io

n
(%

)

heap

+0 +25

-2.00%

-1.75%

-1.50%

-1.25%

-1.00%

-0.75%

-0.50%

-0.25%

0.00%

stack

Profile: stitch [cif]

Figure 7 Profile of Disparity (left), Mser (center), and Stitch (right) – heap, stack pages only.

application under analysis. For all the bars, the normalization baseline is always taken as the
application’s runtime when none of the pages in the target VMAs is made cacheable. The
pages are sorted based on their importance rather than their offset in the VMA. Because of
the by-importance sorting, the most-accessed pages appear to the left-hand side of the plot,
with the recognizable staircase characterization having been reconstructed by BBProf. One
can also note that the gap between min and max in each profile sample is quite small, thus
leading to the conclusion that the overall measurement noise is negligible.

Next, we have acquired a profile for all the benchmarks in the SD-VBS suite, one for
each of the considered input sizes. Due to space constraints we only visualize the three most
representative profiles, namely those for Disparity, Mser with input size QCif, and for
SVM with input size Cif. These are displayed in Figure 7, where we limit the plots only
to the heap and stack VMAs. The style of the sub-plots in Figure 7 is identical to that of
Figure 6, with the only difference that the bars of stack pages are color-coded in red and
that we have omitted max/min error bars to avoid over-plotting. From the figure it emerges
that in all the cases there exists a small group (1-3 pages) of heap pages that has a large
impact on the runtime of the application. From left to right, these alone cause a reduction
of around 1.8%, 69%, and 7.9% when kept cacheable. Moreover, the temporal behavior of
Mser and Stitch is more heavily impacted by stack pages; the Disparity benchmark has
a core set of around 65 heap pages that comprise its working-set. Taken individually, the
presence in cache of each of these pages alone contributes to a runtime reduction between
1.25% and 1.5%.

To further understand the relationship between important pages and overall application
runtime, we conduct a ranking analysis (see Section 4.4) given the profiles obtained at
the previous step. In Figure 8 we depict the result of the ranking analysis conducted on
Disparity, Mser, Localization, and Stitch. In each subplot, the x-axis reports the
number of pages, sorted in order of importance, that are made cacheable. The y-axis reports
the resulting normalized runtime of the application under analysis. The normalization
baseline is the runtime when only the most important page is made cacheable. A stark
contrast emerged in the behavior of the considered applications. Specifically, Disparity
features a block of pages with comparable importance that produces a constant slope in
the runtime reduction as more pages are made cacheable. It is also possible to appreciate
how the WSS size increases as the input size goes from SqCif to Vga. Conversely, the
WSS of Mser is concentrated in a very small set of pages for the SqCif and QCif case,
and increases rapidly for input sizes Cif and Vga. Next, Localization is characterized
by quantized temporal improvements unlocked only when a certain threshold of pages is
allocated in cache. Finally, Stitch appears to be relatively insensitive to caching as long as
a core set of about 10 pages is allocated.

Once the profile has been acquired, it is important to understand if the set of memory

G. Ghaemi, D. Tarapore, and R. Mancuso 4:19

0 200 400 600 800
of Ranked Cacheable Pages

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ru

nt
im

e
Ranking: disparity

sqcif
qcif

cif
vga

0 200 400 600
of Ranked Cacheable Pages

0.4

0.6

0.8

1.0

Ranking: mser
sqcif
qcif

cif
vga

0 25 50 75 100
of Ranked Cacheable Pages

0.2

0.4

0.6

0.8

1.0
Ranking: localization

sqcif
qcif

cif
vga

0 200 400 600 800
of Ranked Cacheable Pages

0.2

0.4

0.6

0.8

1.0
Ranking: stitch

sqcif
qcif

cif

Figure 8 From left to right, ranking analysis of Disparity, Mser, Localization, and Stitch.

pages deemed important remains the same as when the content of the input images changes
while their size remains the same. In the general case, this might not be true while for some
applications the profile might transcend the specific data input. We hereby conduct a sample
evaluation to understand in which category the considered benchmarks fall. Note that this
is not meant to represent an exhaustive evaluation. For this experiment, we consider the
profiles acquired on the default (“def”) input images provided with the SD-VBS suite. In
terms of benchmarks, we limit ourselves to Disparity, Mser, Tracking, and Stitch.
Compared to Figure 8, we have replaced Localization with Tracking because the latter
uses images as input while the former takes as input a text file with an unknown format.
The selected input size is VGA for Disparity, Mser, and Tracking and CIF for Stitch
because the latter runs for too long over the VGA input size. For each benchmark, we have
produced four additional input images. The first two called “nor1” and “nor2” are meaningful
(normal) scenes, while the last two, namely “deg1” and “deg2” are scenes that correspond to
corner (degenerative) cases. Specifically, “deg1” corresponds to random noise while “deg2” to
a solid-color frame. Due to space contraints, we refer the reader to the project repository [11]
for the full list of images used in this experiment.

Figure 9 provides the same type of analysis used to construct Figure 8. The key difference
here is that for each of the considered benchmarks we construct the displayed ranking curves
using the profile originally acquired with the “def” input images. To more clearly appreciate
the difference in absolute runtimes as we vary the images supplied in input, the runtimes
are not normalized and are instead expressed in CPU cycles. Among the four considered
benchmarks, the runtime of Mser is the most heavily affected by the content of the input
data. Nonetheless, the general trend in terms of runtime reduction as an increasing number
of ranked pages is made cacheable is consistent across experiments. In the Disparity case,
all the curves remain quite consistent. This suggests that the benchmark remains quite
insensitive to the input image and that the profile acquired with the default input captures
well the relative importance of individual memory pages regardless of the supplied input
images. The Tracking case is quite similar to the Disparity case, with the trend of the
curve remaining consistent across experiments. Conversely, Stitch shows visible variations
in the relative importance of memory pages, especially when comparing between the “deg1”
and “deg2” cases. In this case, the profile obtained with the “def” input images does not
generalize well. We can conclude that what captured by BBProf remains mostly accurate for
three out of the four benchmarks considered in this experiment. The fourth case (Stitch)
displays important dependencies between input images and memory usage, in which case the
profile constructed by BBProf does not generalize.

ECRTS 2021

4:20 Profile-Driven Cache Management of Black-Box Appl.

0 200 400 600 800
of Ranked Cacheable Pages

1.5

2.0

2.5

3.0

3.5
Ru

nt
im

e,
 C

PU
 C

yc
le

s
1e8 Ranking: disparity

def
nor1
nor2

deg1
deg2

0 200 400 600
of Ranked Cacheable Pages

2

3

4

5

6

7

8
1e7 Ranking: mser

0 500 1000
of Ranked Cacheable Pages

0.25

0.50

0.75

1.00

1.25

1.50

1.75 1e9 Ranking: tracking

0 200 400 600 800
of Ranked Cacheable Pages

0.0

0.5

1.0

1.5

2.0

1e9 Ranking: stitch

Figure 9 From left to right, ranking analysis of Disparity, Mser, Tracking, and Stitch with
profiles acquired under “def” and varying input images.

7.3 Mitigation of Contention-induced Instruction Stall

We hereby want to bring to the attention of the community a previously understudied
problem, namely the problem of contention-induced instruction stall, or C2IS, for short.
We also demonstrate that profile-driven page migration represents an effective strategy to
mitigate the problem.

In a nutshell, C2IS can occur in platforms with small L1 caches and shared, unified
L2/LLC caches. The problem manifests itself when a process operates in a periodic fashion
over a large block of instructions (e.g. a long function) that spans more pages than the size
of the L1 instruction cache. For instance, in the target ZCU102 platform, the size of the
L1 cache can hold up to eight pages. When such a threshold is crossed, instruction pages
spill over L1 and are allocated in L2. But when the L2 is shared, these instruction pages
are subject to be evicted by data fetched by any interfering workload. Unlike with missed
over data items, an L1 and L2 miss during an instruction fetch cannot be hidden by the
micro-architecture, which causes an immediate pipeline stall. The resulting impact on the
runtime of the application under analysis can be dramatic.

We observed this effect in the wild and created a synthetic benchmark, namely C2ISbm,
to isolate and study the C2IS problem. Our C2ISbm is a process that invokes a long function
that spans through 65 text pages – i.e., it performs around 64,000 nops. Using as a baseline
its solo performance, the runtime increases by a factor of 6.5× when Interf workload is
activated on all the other cores. We extract a profile of the C2ISbm benchmark, where the
instruction pages are identified as important. We then configure our system in the PVT+SH
mode (see Section 6), and progressively select the instruction pages to be migrated to the
PVT pool. Recall that in the PVT+SH configuration, the PVT pool is exclusively allocated
to 1/4 of the L2 cache. Gradually migrating the profiled instruction pages to the private
pool allows us to gradually de-conflict these pages and to create an equivalent L2 instruction
cache with a size that is proportional to the number of migrated pages. The resulting impact
on the runtime of the C2ISbm process is plotted in Figure 10. A sharp improvement in
runtime can be observed until around 43 pages are migrated. After that, the benchmark
becomes unaffected by the interfering workload as around 51 (43 + 8 in the I-cache) of the
65 instruction pages are deterministically present in the cache. It can be noted that a slight
runtime increase is visible when more than 64 pages are migrated because the private pool
can hold up to 1/4 of the L2 cache size, i.e. 64 pages.

In the presented use-case, being able to identify those pages that are crucial for the
application’s performance and selectively migrate them to a reserved portion of the cache,
space is an efficient solution to the C2IS problem. By contrast, strict coloring would force all
the pages of the application to share the same color, which would require the allocation of a
much larger cache partition to achieve the same degree of interference mitigation.

G. Ghaemi, D. Tarapore, and R. Mancuso 4:21

0 10 20 30 40 50 60
of Migrated Text Pages

1

2

3

4

5

6

7

No
rm

al
ize

d
Ru

nt
im

e
(m

in
/a

vg
/m

ax
)

LLC Size Threshold

Figure 10 Inteference mitigation via migra-
tion of instruction pages.

0 20 40 60 80 100
of Migrated Interf. Pages

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
Ru

nt
im

e
(m

in
/a

vg
/m

ax
)

LLC Size Threshold

Figure 11 Interference mitigation via migra-
tion of data pages.

dis
pa

r[s
qci

f]

dis
pa

r[q
cif]

dis
pa

r[c
if]

dis
pa

r[v
ga

]

mser
[sq

cif]

mser
[qc

if]

mser
[ci

f]

mser
[vg

a]

loc
al[

sqc
if]

loc
al[

qci
f]

loc
al[

cif]

loc
al[

vg
a]

stit
ch[

sqc
if]

stit
ch[

qci
f]

stit
ch[

cif]

stit
ch[

vg
a]

sift
[sq

cif]

sift
[qc

if]

sift
[ci

f]

stit
ch[

sqc
if]

stit
ch[

qci
f]

stit
ch[

cif]

stit
ch[

vg
a]

svm
[sq

cif]

svm
[qc

if]

svm
[ci

f]

syn
th[

sqc
if]

syn
th[

qci
f]

syn
th[

cif]

syn
th[

vg
a]

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ru

nt
im

e

Solo
Solo+Col.4

Solo+Col.12
Interf.+No Col

Interf.+Col.4
Interf.+Col.12

Interf.+Migration

Figure 12 Mitigation of cache interference with profile-driven migration of interfering data pages.

7.4 Controllable Mitigation of Cache Interference

In the last set of experiments, we use our BBProf toolkit and PVT+SH setup to demonstrate
that (1) profile-driven interference mitigation is effective for real-world applications, and
(2) that, albeit more flexible, its effectiveness is comparable to strict partitioning. For this
experiment, we leverage the fact that we can profile the interfering workload and progressively
migrate to the private pool the pages that are responsible for the generated cache contention,
while we keep the pages of the application under analysis in their original location. Doing
this allows cache-sensitive applications to benefit from 12/16 of the LLC space. First, we
study the temporal behavior of the Mser benchmark with input size SqCif in Figure 11.
On the x-axis we track the number of pages migrated to the private pool for each of the three
Interf benchmarks – hence the total size of migrated pages is three times this value. The
timing behavior of Mser starts to improve after 123 pages from the Interf benchmarks are
migrated away. That is because each Interf process accesses a total of 315 pages (420 KB
each, see Section 7.1), meaning that only 192 pages are left to migrate, which is exactly
12/16 of the total LLC size.

Lastly, Figure 12 summarizes the behavior of the most interesting benchmarks when a full
migration of interfering pages is performed – see last bar of each cluster (“Interf.+Migration”).
The resulting runtime is compared against a number of notable cases: (1) the “Solo” case
where no Interf is deployed and no cache partitioning is performed. This is also the
normalization baseline for all the other cases; (2) and (3) the solo runtime where only four
(“Solo+Col.4”) or 12 (“Solo+Col.12”) cache colors are assigned to the application under

ECRTS 2021

4:22 Profile-Driven Cache Management of Black-Box Appl.

analysis; (4) the “Interf.+No Col” case where Interf is deployed on all the other cores
and no partitioning is enforced; (5) and (6) the cases “Interf.+Col.4” and “Interf.+Col.12”
that correspond to (2) and (3) but with Interf active on all the other cores. Profile-driven
migration has comparable performance to the case where 12 page colors are dedicated to
the application under analysis. In a few cases (see Mser with input sizes SqCif and QCif)
migration does worse. The reason is likely interference over shared Linux meta-data (e.g.
page tables, kernel code and data structures). This kind of contention does not occur with
strict partitioning because the Interf workload operates in a different, fully colored VM.

8 Known Limitations

The proposed method and current implementation present a number of limitations. First (i),
BBProf is not designed to handle multithreaded applications, or applications comprised by
multiple processes with complex data sharing, synchronization and dependencies. Second
(ii), for applications that that exhibit strong dependencies between inputs and memory
usage, the profile produced by BBProf on a given input might not generalize well to the
entire input space. Third (iii), the only piece of information used by BBProf to construct
profiles is timing. While this is a deliberate choice that allows BBProf to better generalize
on many COTS platforms, we envision that being able to integrate additional metrics (e.g.
L1/L2 cache/miss count, consumed main memory bandwidth, energy consumption) might
be useful to characterize page importance along additional dimensions beyond timing. In
our current implementation, we only provide sample code to integrate calls to Perf [10]
APIs during the entry/exit protocols, but more comprehensive handling of the additional
metrics that can be collected is required. Fourth (iv), our current implementation relies on a
number of Linux-specific features, such as PTRACE and the proc filesystem. Thus, while
porting to other non-Linux OS’s or even bare-metal environments is possible, some heavy
re-engineering is required. We expect that PTRACE might need to be replaced with direct
interaction with platform-specific debug registers, while memory layout information currently
collected via proc interfaces might need to be exported at compile-time. Next (v), BBProf
does not rely on any hardware features that are not widely available. Nonetheless, a few
architecture-dependent features are leveraged, requiring some porting effort when moving
to different architectures. These are (1) cacheability manipulation, (2) sampling of CPU
clock cycles, and (3) cache maintenance operations. Lastly (vi), the time required to carry
out profiling is strictly dependent on the WSS of the target application and on the runtime
of the observation segment. Thus, BBProf might become impractically slow at profiling
large-footprint and/or long-running applications. Operating on groups of adjacent pages
instead of individual pages might mitigate this problem, but the trade-off between loss in
granularity and speed-up needs to be investigated.

9 Concluding Remarks

In this work, we introduced BBProf, a methodology and toolkit to extract the importance of
individual memory pages towards the runtime of a target application. The proposed BBProf
does not rely by design on any hardware-specific feature, and thus it can be implemented
on any platform where (1) it is possible to change cacheability attributes at a single-page
granularity; and (2) it is possible to acquire time samples. Additionally, BBProf can operate
on the unmodified, pre-compiled binaries of complex applications, and includes strategies
to cope with the use of dynamic memory allocation primitives. We have performed and

G. Ghaemi, D. Tarapore, and R. Mancuso 4:23

described an open-source full system implementation and setup on a state-of-the-art high-
performance embedded platform. With this setup, we have shown three main aspects. First,
that BBProf is capable of extracting the profile of real-world complex vision applications.
Second, that the extracted page-level profiles can be used to enact fine-grained shared cache
management. Third, that a previously undocumented variant of inter-core interference,
namely contention-induced instruction stall can arise in multi-core embedded platforms; in
which case profile-driven selective page migration represents an efficient mitigation strategy.

As part of our future work, we intend to relax some of the limitations described above.
For instance, we aim at expanding the capabilities of BBProf to capture additional per-page
properties. Moreover, we plan to develop strategies to use profiling information for OS-driven
mapping of pages to heterogeneous memory resources – e.g., scratchpad memory, FPGA
BRAM. Finally, we plan to further improve the level of detail of the collected information by
identifying how each page impacts the runtime of multiple code sub-segments.

References
1 Siemens AG. Jailhouse, 2014. URL: https://github.com/siemens/jailhouse.
2 ARM Holdings. Cortex-A53 MPCore technical reference manual (r0p4), 2018. URL: https:

//developer.arm.com/documentation/ddi0500/j/.
3 I. Ashraf, M. Taouil, and K. Bertels. Memory profiling for intra-application data-communication

quantification: A survey. In 2015 10th International Design Test Symposium (IDT), pages
32–37, 2015. doi:10.1109/IDT.2015.7396732.

4 F. Bouquillon, C. Ballabriga, G. Lipari, and S. Niar. A wcet-aware cache coloring technique for
reducing interference in real-time systems. CoRR, abs/1903.09310, 2019. arXiv:1903.09310.

5 D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic optim-
ization. In Proceedings of the International Symposium on Code Generation and Optimization:
Feedback-Directed and Runtime Optimization, CGO ’03, page 265–275, USA, 2003. IEEE
Computer Society.

6 J. M. Calandrino and J. H. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In 2009 21st Euromicro Conference on Real-Time Systems,
pages 194–204, 2009. doi:10.1109/ECRTS.2009.13.

7 W. Cohen. Multiple Architecture Characterization of the Build Process with OProfile, 2003.
URL: http://oprofile.sourceforge.net.

8 J. Corbet, J. Edge, and R. Sobol. Kernel Development. Linux Weekly News – https:
//lwn.net/Articles/74295/, 2004. [Online; accessed 7-May-2019].

9 C. Dall and J. Nieh. Kvm/arm: The design and implementation of the linux arm hypervisor.
In Proceedings of the 19th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, page 333–348, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2541940.2541946.

10 The Linux Foundation. perf: Linux profiling with performance counters. URL: https:
//perf.wiki.kernel.org/index.php/Main_Page.

11 R. Mancuso G. Ghaemi, D. Tarapore. BU Black-box Profiler. https://github.com/
rntmancuso/black-box-profiler, 2021.

12 G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. A survey on cache
management mechanisms for real-time embedded systems. ACM Comput. Surv., 48(2), 2015.
doi:10.1145/2830555.

13 G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In Sophie
Quinton, editor, 31th Euromicro Conference on Real-Time Systems (ECRTS 2019), volume
107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:25, Stuttgart,
Germany, July 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ECRTS.2019.27.

ECRTS 2021

https://github.com/siemens/jailhouse
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/ddi0500/j/
https://doi.org/10.1109/IDT.2015.7396732
http://arxiv.org/abs/1903.09310
https://doi.org/10.1109/ECRTS.2009.13
http://oprofile.sourceforge.net
https://lwn.net/Articles/74295/
https://lwn.net/Articles/74295/
https://doi.org/10.1145/2541940.2541946
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/rntmancuso/black-box-profiler
https://github.com/rntmancuso/black-box-profiler
https://doi.org/10.1145/2830555
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27
https://doi.org/10.4230/LIPIcs.ECRTS.2019.27

4:24 Profile-Driven Cache Management of Black-Box Appl.

14 M. Hassan. On the off-chip memory latency of real-time systems: Is ddr dram really the
best option? In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 495–505, 2018.
doi:10.1109/RTSS.2018.00062.

15 ARM Holdings. ARM Architecture Reference Manual ARMv8, for ARMv8-A architecture
profile (version G.a), 2011.

16 H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical os-level cache
management in multi-core real-time systems. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 80–89, 2013. doi:10.1109/ECRTS.2013.19.

17 H. Kim and R. Rajkumar. Real-time cache management for multi-core virtualization. In
2016 International Conference on Embedded Software (EMSOFT), pages 1–10, 2016. doi:
10.1145/2968478.2968480.

18 H. Kim and R. (Raj) Rajkumar. Predictable shared cache management for multi-core real-time
virtualization. ACM Trans. Embed. Comput. Syst., 17(1), 2017. doi:10.1145/3092946.

19 N. Kim, B. C. Ward, M. Chisholm, C. Fu, J. H. Anderson, and F. D. Smith. Attacking the
one-out-of-m multicore problem by combining hardware management with mixed-criticality
provisioning. In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, 2016. doi:10.1109/RTAS.2016.7461323.

20 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
memory hierarchy and virtualization for modern multi-core embedded systems. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–14, 2019.
doi:10.1109/RTAS.2019.00009.

21 Y. Kwon, X. Zhang, and D. Xu. Pietrace: Platform independent executable trace. In 2013
28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
48–58, 2013. doi:10.1109/ASE.2013.6693065.

22 J. Liedtke, H. Haertig, and M. Hohmuth. Os-controlled cache predictability for real-time
systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications Symposium
(RTAS ’97), RTAS ’97, page 213, USA, 1997. IEEE Computer Society.

23 C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, and
K. Hazelwood. Pin: Building customized program analysis tools with dynamic instrumentation.
SIGPLAN Not., 40(6):190–200, June 2005. doi:10.1145/1064978.1065034.

24 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-time
cache management framework for multi-core architectures. In 2013 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013. doi:
10.1109/RTAS.2013.6531078.

25 S. Mittal. A survey of techniques for cache partitioning in multicore processors. ACM Comput.
Surv., 50(2), 2017. doi:10.1145/3062394.

26 P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting temporal and spatial isolation
in a hypervisor for arm multicore platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651–1657, 2018. doi:10.1109/ICIT.2018.8352429.

27 N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. SIGPLAN Not., 42(6):89–100, June 2007. doi:10.1145/1273442.1250746.

28 A. Patel, M. Daftedar, M. Shalan, and M. W. El-Kharashi. Embedded hypervisor xvisor: A
comparative analysis. In 2015 23rd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, pages 682–691, 2015. doi:10.1109/PDP.2015.108.

29 A. Pesterev, N. Zeldovich, and R. T. Morris. Locating cache performance bottlenecks using
data profiling. In Proceedings of the 5th European Conference on Computer Systems, EuroSys
’10, page 335–348, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1755913.1755947.

30 P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F.J. Cazorla. On the
evaluation of the impact of shared resources in multithreaded cots processors in time-critical
environments. ACM Trans. Archit. Code Optim., 8(4), 2012. doi:10.1145/2086696.2086713.

31 RotateRight. Zoom Performance Analysis Tool. URL: http://www.rotateright.com/.

https://doi.org/10.1109/RTSS.2018.00062
https://doi.org/10.1109/ECRTS.2013.19
https://doi.org/10.1145/2968478.2968480
https://doi.org/10.1145/2968478.2968480
https://doi.org/10.1145/3092946
https://doi.org/10.1109/RTAS.2016.7461323
https://doi.org/10.1109/RTAS.2019.00009
https://doi.org/10.1109/ASE.2013.6693065
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1145/3062394
https://doi.org/10.1109/ICIT.2018.8352429
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1109/PDP.2015.108
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1145/2086696.2086713
http://www.rotateright.com/

G. Ghaemi, D. Tarapore, and R. Mancuso 4:25

32 L. Soares, D. Tam, and M. Stumm. Reducing the harmful effects of last-level cache pol-
luters with an os-level, software-only pollute buffer. In 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pages 258–269, 2008. doi:10.1109/MICRO.2008.4771796.

33 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-warp: A system-wide framework for
memory bandwidth profiling and management. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 345–357, Los Alamitos, CA, USA, December 2020. IEEE Computer Society.
doi:10.1109/RTSS49844.2020.00039.

34 D. Tarapore, S. Roozkhosh, S. Brzozowski, and R. Mancuso. Observing the invisible: Live
cache inspection for high-performance embedded systems. IEEE Transactions on Computers,
pages 1–1, 2021. doi:10.1109/TC.2021.3060650.

35 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.
SD-VBS: The san diego vision benchmark suite. In 2009 IEEE International Symposium on
Workload Characterization (IISWC), pages 55–64, October 2009. doi:10.1109/IISWC.2009.
5306794.

36 Xilinx, Inc. Zynq ultrascale+ mpsoc data sheet: Overview (v1.8),
2019. URL: https://www.xilinx.com/support/documentation/data_sheets/
ds891-zynq-ultrascale-plus-overview.pdf.

37 M. Xu, R. Gifford, and L.T. Xuan Phan. Holistic multi-resource allocation for multicore
real-time virtualization. In Proceedings of the 56th Annual Design Automation Conference
2019, DAC ’19, New York, NY, USA, 2019. Association for Computing Machinery. doi:
10.1145/3316781.3317840.

38 Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: A dynamic cache partitioning system using page
coloring. In 2014 23rd International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 381–392, 2014. doi:10.1145/2628071.2628104.

39 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard: Memory bandwidth
reservation system for efficient performance isolation in multi-core platforms. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 55–64,
2013. doi:10.1109/RTAS.2013.6531079.

40 X. Zhang, S. Dwarkadas, and K. Shen. Towards practical page coloring-based multicore cache
management. In Proceedings of the 4th ACM European Conference on Computer Systems,
EuroSys ’09, page 89–102, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1519065.1519076.

ECRTS 2021

https://doi.org/10.1109/MICRO.2008.4771796
https://doi.org/10.1109/RTSS49844.2020.00039
https://doi.org/10.1109/TC.2021.3060650
https://doi.org/10.1109/IISWC.2009.5306794
https://doi.org/10.1109/IISWC.2009.5306794
https://www.xilinx.com/support/documentation/data_sheets/ds891 -zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891 -zynq-ultrascale-plus-overview.pdf
https://doi.org/10.1145/3316781.3317840
https://doi.org/10.1145/3316781.3317840
https://doi.org/10.1145/2628071.2628104
https://doi.org/10.1109/RTAS.2013.6531079
https://doi.org/10.1145/1519065.1519076

nDimNoC: Real-Time D-dimensional NoC
Yilian Ribot González #

CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

Geoffrey Nelissen #

Eindhoven University of Technology, The Netherlands

Eduardo Tovar #

CISTER Research Centre, ISEP, Polytechnic Institute of Porto, Portugal

Abstract
The growing demand of powerful embedded systems to perform advanced functionalities led to a
large increase in the number of computation nodes integrated in Systems-on-chip (SoC). In this
context, network-on-chips (NoCs) emerged as a new standard communication infrastructure for
multi-processor SoCs (MPSoCs). In this work, we present nDimNoC, a new D-dimensional NoC
that provides real-time guarantees for systems implemented upon MPSoCs. Specifically, (1) we
propose a new router architecture and a new deflection-based routing policy that use the properties
of circulant topologies to ensure bounded worst-case communication delays, and (2) we develop a
generic worst-case communication time (WCCT) analysis for packets transmitted over nDimNoC. In
our experiments, we show that the WCCT of packets decreases when we increase the dimensionality
of the NoC using nDimNoC’s topolgy and routing policy. By implementing nDimNoC in Verilog and
synthesizing it for an FPGA platform, we show that a 3D-nDimNoC requires ≈5-times less silicon
than routers that use virtual channels (VC). We computed the maximum operating frequency of a
3D-nDimNoC with Xilinx Vivado. Increasing the number dimensions in the NoC improves WCCT
at the cost of a more complex routing logic that may result in a reduced operating clock frequency.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Networks
→ Network on chip

Keywords and phrases Real-Time Embedded Systems, Systems-on-Chips, Network-on-Chips, Worst-
Case Communication Time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.5

Funding This work was partially supported by National Funds through FCT/MCTES (Por-
tuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB
04234/2020); also by FCT and the ESF (European Social Fund) through the Regional Operational
Programme (ROP) Norte 2020, under PhD grant 2020.06898.BD.

1 Introduction

These days, SoCs include more and more heterogeneous processing elements that execute
dedicated functions in parallel. Traditional shared communication buses, which used to
connect all the computation nodes together, are a major performance bottleneck of modern
SoCs. Therefore, NoCs emerged as a new standard communication infrastructure for SoC as
they present a scalable and versatile solution for systems with a high level of parallelism [2, 15].

The literature on NoCs is extensive. However, real-time systems add new constraints on
the NoC infrastructures. In addition to ensure that messages arrive at their destination in
a correct fashion, real-time NoCs must guarantee that packet transmissions respect strong
timing constraints [16]. Over the years, there have been several attempts to design real-
time NoCs by considering different approaches. A large body of solutions consider a mesh
topology and rely on wormhole switching with VCs. That strategy leads to powerful NoC
infrastructures with bounded WCCT but they rely extensively on buffers and virtual channels
to provide timing guarantees. This makes them expensive to implement in terms of silicon
footprint, and increases their power consumption.

© Yilian Ribot González, Geoffrey Nelissen, and Eduardo Tovar;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ribot@isep.ipp.pt
https://orcid.org/0000-0002-4089-7794
mailto:g.r.r.j.p.nelissen@tue.nl
https://orcid.org/0000-0003-4141-6718
mailto:emt@isep.ipp.pt
https://doi.org/10.4230/LIPIcs.ECRTS.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 nDimNoC: Real-Time D-dimensional NoC

These last years, buffer-less NoCs have gain popularity as an alternative to VC-based
NoCs. Buffer-less NoCs are compact; their implementation cost and power consumption are
lower than traditional approaches. Therefore, they are more suitable to (embedded) systems
with area and/or power consumption constraints. In [39] and [31] two novel buffer-less
deflection-based real-time NoCs called HopliteRT and HopliteRT* were proposed. They
ensure predictable timing behaviors, accommodates dynamic workload and have an extremely
low hardware consumption footprint. Noticeably, HopliteRT* uses the characteristics of a
circulant topology to ensure bounded worst-case communication delays.

NoCs are an attractive and promising alternative for the traditional shared-buses. Yet,
most of the existing literature for real-time systems focuses on 2-Dimensional NoCs (2D-
NoCs), i.e., where routers are connected according to a mesh or torus topology for example.
However, in a non-real-time setting, Romanov [32] shows that circulant topologies possess
better characteristics over traditional mesh and torus topologies. Circulant topologies are a
type of n-dimensional topologies for networks. Thus, in this work, we explore the design of
n-dimensional NoCs architectures compatible with real-time systems requirements.

This line of research is also motivated by the recent evolution in the integrated circuit
(IC) industry. Indeed, three-dimensional integrated circuits (3D-ICs) seem to be the future
of ICs [19, 5, 20, 33, 29]. 3D-ICs achieve higher performance, while reducing average
interconnection length; provide higher packing density thanks to the added third dimension;
reduce power consumption; and enhance computation bandwidth. Hence, there is currently
a drive towards creating new powerful NoCs solutions that meet the requirements of future
large-scale MPSoCs by combining the advantages of 3D integration and NoC architecture.

Contribution. We propose nDimNoC, a new D-dimensional NoC that provides real-time
guarantees for systems implemented upon MPSoCs, reduces average network communication
latency and provides greater flexibility compared to more traditional 2D NoCs. The main
contributions of our work are: (1) to design a new buffer-less router architecture that allows
synthesizing D-dimensional NoCs; (2) to propose a new deflection-based routing policy that
uses the characteristics of D-dimensional circulant topologies to ensure bounded worst-case
communication delays; (3) to develop a generic WCCT analysis for packets transmitted over
nDimNoC; (4) to implement a 3D version of nDimNoC in Verilog (a hardware description
language) that can be instantiated on a real FPGA platform; and (5) to assess our new design
against related works in terms of computed WCCT bounds and hardware requirements.

2 Related work

Most 2D-NoC solutions rely on wormhole switching with virtual channels (VCs) (e.g.,
CONNECT [27], IDAMC [37]). In [34], Shi et al. propose an analysis of the worst-case
network latency for a new real-time fixed priority preemptive wormhole NoC in which each
priority level is assigned its own VC. Several variations of that approach were proposed over
the years [36, 7, 37, 6, 30], for instance, handling the case where several flows share the
same priority [21], changing the routing policy to EDF [25] or supporting communication
flows with different criticality levels [3, 18]. The complexity of those designs and their
routing policies led to complex WCCT analyses inspired by both the classic real-time system
theory [41, 42, 17, 26] and Network Calculus [10, 11].

In [24], a new type of NoC called SBT-NoC was proposed. In this work, Nikolic et al.
introduced a global arbitration protocol inspired by the CAN protocol. Theoretical results
are promising but this NoC solution has not been implemented in a real platform yet.

Y. Ribot, G. Nelissen, and E. Tovar 5:3

Recently, Wasly et al. in [39] proposed a new buffer-less NoC for real-time systems. Their
NoC is called HopliteRT. The design of HopliteRT ensures that the WCCT of packets is
upper-bounded. HopliteRT* is an evolution of HopliteRT proposed in [31]. It introduces a
notion of quality of service in the routing policy and uses a circulant topology in order to
improve the packets’ WCCT in comparison to HopliteRT.

In [32], various routing strategies, i.e., table routing, Clockwise routing and Adaptive
routing, were studied for two-dimensional ring circulant networks. The author shows that
several characteristics of NoCs are improved in comparison to mesh and torus topologies
when circulant graphs are used as a topological basis.

From a 3D-NoC perspective, Park et al. [28] proposed a Multi-layered on-chip Interconnect
Router Architecture (MIRA). Their approach assumes 3D processor designs (i.e., processor
cores partitioned into multiple layers), and is therefore inadequate for existing highly optimized
2D processor designs. In [9], Ghidini et al. presented a 3D-NoC mesh architecture called Lasio
relying on wormhole switching with FIFO queues. In order to minimize packet communication
latency and NoC area, Tiny 3D mesh NoC was later proposed in [22]. Tiny NoC reduces the
number of routers and links in the network by connecting multiple programming elements to
the same router. This solution minimizes the total NoC area as compared to Lasio NoC,
however, average packets latency improves only when there are few flows and/or under a low
packet injection rate. In [4], a 3D NoC architecture based on De-Bruijn graph was proposed.
Tree-based interconnect architectures have been also considered in some works [13, 14, 12].
However, they are very complex to implement due to their irregular and complex network
topologies. In [8], a NoC/Bus-based hybrid 3D architecture was proposed, but the approach
suffers from low throughput due to inefficient hybridization between the NoC and bus media.

To the best of our knowledge, none of the 3D-NoC solutions developed so far targets
real-time systems. Therefore, they do not provide guaranteed upper-bounds on the packets
WCCT, and do not come with a WCCT analysis. In this work, we develop a new real-time
D-dimensional NoC (with D ≥ 2) and its associated timing analysis.

3 System model

In this paper, we assume a system composed of N programming elements {π1, ..., πN }. Each
programming element πq is connected to a different router Rq of a D-dimensional NoC. The co-
ordinates of a router Rq in the D-dimensional network are noted (rq

1, rq
2, ..., rq

D). Each program-
ming element πq injects a set of nq communication flows F q = {fq

1 , fq
2 , ..., f q

n} into the network.
A communication flow fj is defined by the parameters {(sj

1, sj
2, ..., sj

D), (dj
1, dj

2, ..., dj
D), Cj , Tj}.

A communication flow fj generates a potentially infinite number of packets that are injected
at coordinates (sj

1, sj
2, ..., sj

D) of the NoC and must reach the programming element at co-
ordinates (dj

1, dj
2, ..., dj

D). fj respects a minimum inter-arrival time Tj between the generation
of every two packets. Each packet sent by flow fj is divided in Cj flits that are sequentially
injected in the network. Each flit has a size Sflit (in bits). We assume that all the routing
information is encoded in each flit of the packet, i.e., there is no distinction between header,
body or tail flits. The routing information is the coordinates of the destination programming
element of the associated flow.

In the rest of this paper, we use the notations Rorig(fj) and Rdest(fj) to refer to the
origin and destination router of flow fj , respectively. That is, Rorig(fj) has coordinates
(sj

1, sj
2, ..., sj

D) and Rdest(fj) has coordinates (dj
1, dj

2, ..., dj
D).

ECRTS 2021

5:4 nDimNoC: Real-Time D-dimensional NoC

(a) Circulant topology C(16; 1, 2, 4). (b) Equiv. 4x2x2 grid-
based 3D-network.

(c) nDimNoc router archi-
tecture.

Figure 1 nDimNoc’s topology and router architecture.

4 nDimNoC architecture

In this section, we present nDimNoC. More specifically, we describe: (1) the network topology,
(2) the router architecture, and (3) the routing policy. We later provide the timing analysis
for nDimNoC in Section 5.

4.1 NoC topology

Consider a network composed of N routers R0 to RN−1. In nDimNoC, the routers are
connected together according to a ring circulant topology C(N ; g1, g2, ..., gD) where g1 = 1, N

is the total number of routers, D indicates the dimensionality of the network, and g1, g2, ..., gD

are the generatrices of the network. We assume that the generatrices follow the following
properties: 1 = g1 < g2 < ... < gD < N , and that their values are harmonic (i.e., for any pair
of generatrices gi and gj such that i < j, gi is a divider of gj). Under the circulant topology
C(N ; 1, g2, ..., gD), all routers have D inputs I1, I2, ..., ID and D outputs O1, O2, ..., OD for
inter-routers communications. All routers are connected by a single unidirectional ring using
one of their inputs and one of their outputs (see blue line in Figure 1a). Then, each router
is also connected to the routers that are g2, g3, ..., gD hops away on the ring (see red, green
and black lines in Figure 1a). Formally stated, for each router Rq (with 0 ≤ q < N), its uth

output port Ou (1 ≤ u ≤ N) is connected to the uth input port Iu of the router R(q+gu) mod N .
A circulant network C(N ; 1, g2, ..., gD) may also be represented as a S1xS2x...xSD grid-

based D-dimensional network, where S1, S2, ...SD correspond to the number of routers on
the dimension −→

D1,−→D2,...,−→
DD, respectively. The size of the network on each dimension can

be computed as follows S1 = N
gD

, S2 = gD

gD−1
, S3 = gD−1

gD−2
, ..., SD = g2

g1
. The coordinates

(rq
1, rq

2, ..., rq
D) of a router Rq defines the position of the router Rq in the grid representation.

As an example, Fig. 1a shows the circulant network C(16; 1, 2, 4). In Fig. 1b, we provide
the equivalent representation as a 4x2x2 grid-based 3-Dimensional network of the circulant
network shown in Fig. 1a. The red, green, and blue links in Fig. 1a correspond to the red,
green, and blue links in Fig. 1b, respectively.

Y. Ribot, G. Nelissen, and E. Tovar 5:5

In the rest of this paper, we often reason about the position posq of a router Rq on the
main unidirection ring of the circulant topology. That position can be inferred from the
coordinates of the router in the grid topology as follows

posq =
D∑

k=1
rq

k × gD−k+1 (1)

To simplify some of our further discussions, we define the helping function dist(Rq, Rm)
as the distance between routers Rq and Rm on the main ring, i.e.,

dist(Rq, Rm) = (posm − posq + N) mod N (2)

Note that the following properties hold for circulant topologies.

▶ Property 1. Let Rl be a router at which flit p is located. After one hop on dimension −→
Du

of the network, flit p reaches a router Rm located gD−u+1 steps further on the main ring of
the network, i.e., dist(Rl, Rm) = gD−u+1.

Finally, we define ringu(Rq) as the set of routers that are on the same ring of dimension
−→
Du as Rq. That is,

ringu(Rq) = {Rl | ∀b ∈ [u + 1, D], rl
b = rq

b} (3)

As an example, let R0 be the router at coordinates (0; 0; 0) in Figure 1a, then all the
routers connected by the green links are in ring1(R0), and all the routers connected by red
links are in ring2(R0).

4.2 Router architecture
In order to reduce implementation cost in terms of hardware resources utilization and network
analysis complexity, nDimNoC does not use VCs and does not rely on extensive buffer.

As we discuss in the previous section, nDimNoC routers have D inputs (i.e., I1, I2, ...,
ID) and D output ports (i.e., O1, O2, ..., OD) connected to neighboring routers to allow for
inter-routers communication (see Fig. 1c). In addition, all routers also have D input ports
(i.e., IP E

1 , IP E
2 , ..., IP E

D) that may be used by the programming element to inject packets
into the network. Therefore, in total, each router has 2 × D input ports and D output ports.
A programming element can inject packets on any of the D dimensions −→

D1,−→D2,...,−→
DD of the

network by using the input ports IP E
1 , IP E

2 , ...IP E
D , respectively. Therefore, several packets

may be injected to different dimensions simultaneously. Thus, the waiting times suffered by
the packets inside the programming elements decreases. Indeed, in solutions that support a
single input port to inject packets into the network, all packets compete for the same input
port. In nDimNoc, however, a packet that is waiting to be injected into the network only
conflicts with the subset of packets that must be injected to the same input port IP E

u .

▶ Property 2. In this paper, we assume that a flit of a flow fj with origin and destination
coordinates (sj

1, sj
2, ..., sj

D) and (dj
1, dj

2, ..., dj
D) is injected in the network using port IP E

u if
and only if sj

u ̸= dj
u and ∀x | u < x ≤ D, sj

x = dj
x.

From Property 2, we get that all the packets of a given flow will be injected using the
same input port.

The ports O1, O2,..., OD of a router are connected to the ports I1, I2,..., ID of its
neighboring routers, but also serve as inputs to the programming elements. That is, the
programming element connected to a router can reads packets from all the output ports

ECRTS 2021

5:6 nDimNoC: Real-Time D-dimensional NoC

Table 1 Generic routing policy table of nDimNoC with D dimensions.

Rule Flows
requests

Conflicting
requests

Routing
decisions

Explanation

1 ID → OD None ID → OD No contention over OD.

2 ID → O1 Any ID → O1 ID → O1 always wins.

3
Iu → Ou

None Iu → Ou No contention over Ou.

4 Iu−1 deflec-
ted to Ou

Iu → Ou+1 Flows coming from the Iu−1 and Iu ports
conflict over Ou. Iu−1 → Ou always wins
over Iu → Ou. The flow coming from the Iu

port is deflected to the Ou+1 port.

5
Iu → O1

None or
Iv<u → O1

Iu → O1 No flow entering by a port on a higher dimen-
sion than Iu requests O1. Iu → O1 wins.

6 Iv>u Iu → Ou+1 A flow entering by a port on a higher dimen-
sion than Iu wins O1. The flow coming from
the Iu port is deflected to the Ou+1 port.

7
IP E

u → Ou

None IP E
u → Ou There is no flow coming from another port

that requests Ou. The flow on IP E
u is injected

in the network via Ou.

8 Iv → Ou

and/or Iu−1

deflected to
Ou

None The flow waiting on the IP E
u port conflicts

over the Ou port with flows coming from
neighboring routers. Since flows from IP E

u

have the lowest priority, the flow waiting on
the IP E

u port is not injected in the network.

O1, O2,..., OD. We show this property (i.e., that the programming element has read-access
to all output ports of the router) using the notations OP E

1 , OP E
2 , ..., OP E

D in Fig. 1c. We
assume that a programming element can read packets from several different output ports
simultaneously. This may be done by considering that each programming element has a
FIFO queue connected to each port OP E

u (with 1 ≤ u ≤ D). We assume that those FIFO
queues are large enough to prevent back pressure in the network. Although this design
solution may lead to increased router programming logic complexity, it avoids the extra cost
of implementing expensive exit multiplexers.

We consider that each programming element has also a FIFO queue connected to each
port IP E

u . These queues store flits that are pending to be injected in the network. Note that,
the FIFO queues connected to each OP E

u and IP E
u port could be implemented in software or

hardware. Their specific implementation is irrelevant to the matter discussed in this work.
We assume that no traffic injection regulator exists at the programming elements. There-

fore, they can inject flits into the network as fast as possible. Nonetheless, we assume that
each flow fj can have a maximum of one packet in the FIFO queue pending to be injected in
the network at any moment in time. That is, only after a packet is injected, a new packet
from the same flow fj can be stored in the FIFO queue. The implicit assumption is that the
minimum inter-arrival time Tj between the generation of every two packets of fj is larger or
equal than the worst-case packet injection time wcitj of that flow, i.e., ∀fj , Tj ≥ wcitj . Note
that, the restriction is only related to the content of the FIFO queues at the injection ports

Y. Ribot, G. Nelissen, and E. Tovar 5:7

(a) Packet request to
use I1.

(b) Situation after rout-
ing arbitration and new
packet requests.

(c) Situation after rout-
ing arbitration and new
packet requests.

(d) Situation after rout-
ing arbitration.

Figure 2 nDimNoc’s routing policy example.

and does not limit the number of in-flight packets in the network. That is to say, several
packets from the same flow fj can be traveling around the network at the same time. Also
note that this assumption is less constraining than those made in many works on real-time
NoCs that assume periods larger than the worst-case communication time (of which the
injection time is just one component).

4.3 Routing policy
Consider a flit that must travel from router (0;0;0) to router (2;0;0) in the example network
of Figure 1a. It will reach its destination faster if it travels on the green link than if it hops
through the red or blue links. Since the green, red and blue links correspond to dimensions−→
D1,−→D2, and −→

D3, respectively, it is equivalent to say that it is faster for the flit to travel on
a dimension of lower order. nDimNoC’s routing policy simply builds upon that property.
Additionally, it uses the idea of deflection routing [1] to avoid the cost of packet buffering.
The approach is as follows.

Consider a flit of a flow fj that has been injected at the origin router (sj
1, sj

2, ..., sj
D) and

with destination (dj
1, dj

2, ..., dj
D). As mentioned in Section 4.2, the programming element

injects that flit on port IP E
u such that sj

u ̸= dj
u and ∀x | u < x ≤ D, sj

x = dj
x.

If the flit was transmitted in isolation (i.e., without any interfering flow), it would
travel along the dimension −→

Du of the network by entering in each router by input port Iu

and requesting output port Ou. Then, when it reaches the first router Rk with the same
coordinates rk

2 , rk
3 ,...,rk

D as its destination (i.e., rk
b = dj

b, ∀b ∈ [2, D]), it would request the
output port Ok

1 and travel along dimension −→
D1 until reaching its destination. It results that

flits entering by input port Iu (such that 2 ≤ u ≤ D) may only request the output port Ou

or O1. Flits entering by the input port I1 may only request the output port O1.
If there is interfering traffic, nDimNoC’s routing policy allows flits to be “deflected” to

make place for “higher priority” traffic. Two such scenarios may happen:
1. If multiple flits entering by different input ports request the output port O1 at the same

time, nDimNoC always gives the highest priority to the flit that entered by the input port
with highest dimension (i.e., ID wins over ID−1, which wins over ID−2, etc.). Consider

ECRTS 2021

5:8 nDimNoC: Real-Time D-dimensional NoC

two flits entering by ports Iu and Iv such that u < v and that request output port O1.
Then, the flit entering by Iv exists through O1, and the flit entering by Iu exists through
Ou+1. We say that the flit that entered by Iu is deflected to dimension −−−→

Du+1.

2. A flit entering by port Iu that was deflected to the output port Ou+1 may now conflict
for port Ou+1 with a flit coming from Iu+1 and that requests Ou+1 at the same time.
Under this contention scenario, the flit coming from Iu and that was deflected towards
Ou+1 wins the right to use Ou+1 and the flit coming from Iu+1 is deflected towards the
output port Ou+2.

Note that deflections redirect deflected flits on longer paths towards their destination.
However, the topology presented in Section 4.1 ensures that it still progresses towards its
destination router. Therefore, nDimNoC’s routing policy is deadlock-free and livelock-free.
Furthermore, after each deflection, a flit’s priority to request output port O1 in a future
router increases (since flits traveling on higher dimensions have higher priorities). Therefore,
its probability to be able to later travel on a shorter route increases too.

Finally, flits injected by the programming element (i.e., flits entering by any port IP E
u),

always have the lowest priority and must wait for the respective port Ou to be free. Table 1
summarizes the routing policy of a D-dimensional nDimNoC.

Example. Consider a 4x2x2 3-dimensional nDimNoC (i.e., D = 3) (see Figure 2a-2d). Each
3D-nDimNoC router has six input ports (I1, I2, I3, IP E

1 , IP E
2 , and IP E

3) and three output
ports (O1, O2, and O3). Consider also a flit of a flow fj (yellow flit in Figure 2a) with
origin and destination coordinates (0; 0; 1) and (3; 1; 0), respectively. Since sj

3 ≠ dj
3, the flit

is injected via input port IP E
3 (see Figure 2a). The flit then travels along the dimension

−→
D3 until it reaches router Rk with the same coordinates rk

2 , rk
3 ,...,rk

D as its destination, i.e.,
rk

2 = dj
2 = 1 and rk

3 = dj
3 = 0 (see Figure 2a). In Rk, the flit enters by input port I3 and

requests output port O1 to travel along the dimension −→
D1 until its destination (see Figure 2b).

According to rule 2 of nDimNoC’s routing policy (see Table 1), it has the highest priority to
use O1 and therefore enters the router (1; 1; 0) (next router to Rk on dimension −→

D1) by its
port I1, and requests port O1 (see Figure 2b). If a flit enters by the input I2 (blue flit in
Figure 2b) and/or I3 port (pink flit in Figure 2b) and request O1 at the same time as the
yellow flit, then the yellow flit is deflected to the output port O2 (see Figure 2c and rule 6
in Table 1). Thus, it must now travel along dimension −→

D2 until it reaches the same router
as it would have if it could have used the O1 port instead. Note that the yellow flit may
still suffer additional deflections to dimension −→

D3 in any router it reaches while traveling
along dimension −→

D2 as it is the case on Figure 2c where both a flit entering by the I1 port
(violet flit) and a flit entering by the I3 port (orange flit) request the O1 port. Then, the
request I3 → O1 wins over the other requests and the flits entering by the I1 and I2 ports
are deflected to the O2 and O3 ports, respectively (see Fig. 2d and rule 4 in Table 1).

5 Bound on the worst-case communication time

In Section 4, we presented nDimNoC’s design. In this section, we present an analysis for
the worst-case communication time (WCCT) between two processing elements connected
with nDimNoC. The WCCT of a packet is defined as the sum of the maximum amount of
time wcit during which the last flit of the packet must wait in the programming element
before to be injected into the network, and the maximum amount of time wctt taken by

Y. Ribot, G. Nelissen, and E. Tovar 5:9

any flit of the packet to traverse the network and reach its destination. We refer to those
as the worst-case injection time (wcitj) and the worst-case traversal time (wcttj) of flow fj ,
respectively. Then, the WCCT of a packet of a flow fj is defined as:

wcctj = wcitj + wcttj , (4)

5.1 Worst-case and best-case traversal time
In this section, we compute bounds on the worst- and best-case traversal time of a flit p

(abbreviated WCTT and BCTT, respectively). A bound on the WCIT is later derived in
Section 5.2.

As discussed in the previous section, a flit p of flow fj that travels through nDimNoC
can be deflected in any router on its path to its destination, but there is only a limited set
of routers in which it can actively request to change the dimension it travels along. Those
routers are (i) the origin router of the flit with coordinates (sj

1, sj
2, ..., sj

D), and (ii) every
router Rk on the path of p such that its coordinates respect rk

b = dj
b, ∀b ∈ [2, D]. We formally

denote this set of routers by R where

R = {Rk | ∀l ∈ [1, D], rk
l = sj

l ∨ ∀b ∈ [2, D], rk
b = dj

b}. (5)

Note that the destination router of flow fj is obviously in R since that router has the
coordinates (dj

1, dj
2, ..., dj

D).
As will be shown later in this section, the routing decisions in the routers in R are the

only ones that must be analyzed to get a bound on the BCTT and WCTT of a flit p.
We use a directed acyclic graph (DAG) G to compute the WCTT and BCTT of a flit of

a flow fj that traverses an D-dimensional nDimNoC. A DAG G = (V, E) is formed by a set
of vertices V and a set of edges E. Each edge e ∈ E connects two vertices u and v in E. We
note e = (u, v). Each edge is assigned a weight w(u, v).

The DAG compactly represents all the routes that the flit p may potentially follow (from
its origin to its destination) when it traverses nDimNoC. Each vertex v in the DAG G

represents one input port of a router in R. Let R(u) and I(u) be the router and the input
port of the router represented by vertex u in the graph, then we note u = (R(u), I(u)). Each
edge e = (u, v) ∈ E connecting vertices u and v represents a possible path taken by the flit
from input port I(u) of router R(u) to the input port I(v) of another router R(v) on its
path. The weight of the edge e = (u, v) is the maximum number of hops from I(u) to I(v)
according to that path. Additionally, we label each edge e = (u, v) with the specific output
port taken by the flit in router R(u).

Example. Figure 3 shows the DAG of the example of Section 4.3 (Figure 2). It shows
the potential paths that a flit of a flow fj may follow from the origin router (0; 0; 1) to the
destination router (3; 1; 0) when it traverses a 4x2x2 3-dimensional nDimNoC. The source
vertex v0 at level 0 of the graph represents the input port IP E

3 of the origin router Rs at
which the flit is injected by the programming element. Since the flit p is injected by IP E

3 ,
it can only exist by output port O3 of Rs. Rk is the first router p reaches after leaving Rs

where p may request output port O1. Flit p may only enter Rk by the input port I3. Vertex
v1 on Level 1 represents input port I3 of Rk. The weight w1 is the number of hops the flit p

does from the O3 port of Rs to the I3 port of Rk. In router Rk, the flit enters by the I3 port
and requests the O1 port to travel along dimension −→

D1. According to rule 2 of nDimNoC’s
routing policy (see Table 1), the routing decision for that request is always I3 → O1 (because
any flit entering by the I3 port has the highest priority to use the O1 port in a 3-dimensional

ECRTS 2021

5:10 nDimNoC: Real-Time D-dimensional NoC

Figure 3 DAG of the potential trajectories that a flit may take from the origin (0; 0; 1) to the
destination (3; 1; 0) when it traverses a 4x2x2 3-D nDimNoC.

nDimNoC). Therefore, p reaches router Rk+1 in one hop, and certainly enters Rk+1 by port
I1. Since Rk+1 is also in R, it is represented by vertex v2. According to Table 1, two different
routing decisions may be taken in Rk+1: (1) p is routed to the O1 port if there is no conflict
over O1 (see rule 5 in Table 1); or (2) p is deflected to the O2 port if there is one or more
flows coming from other ports that request the O1 port at the same time as p (see rule 6
in Table 1). If situation (1) happens (i.e., the flit under analysis is routed to the O1 port),
it enters the router Rk+2 using port I1. We represent the I1 port of Rk+2 as vertex v3 in
Level 3. If situation (2) occurs (i.e., the flit is deflected to the O2 port), it may enter router
Rk+2 from: (1) the I2 port if it suffer no further deflection to reaching Rk+2 (see rule 3 in
Table 1) or (2) the I3 port if it suffers more deflections on its path to Rk+2 (see rule 4 in
Table 1). We represent the I2 and I3 ports of Rk+2 as vertices v4 and v5 in the level 3 of the
graph, respectively. Considering the potential routing decisions to which the flit p may be
subjected after it enters Rk+2 by the ports I1, I2 or I3, p may reach its destination router
Rd by input ports I1, I2 or I3 (vertices v6, v7, and v8 on Level 4) in a maximum number of
hops represented by the weights of the edges connecting the vertices of level 3 to those of
level 4. Note that, the flit will always be received by the programming element regardless of
the routing decision taken in the destination router.

After building the graph G as exemplified above, the WCTT of flit p is the longest
weighted path in graph G, and its BCTT is the shortest weighted path in G. For the example
of Figure 3, the WCTT is thus equal to 8 and corresponds to the case where the flit p follows
the path represented by vertices v0, v1, v2, v4 and v8. Similarly, taking the shortest weighted
path, we get that the BCTT of p is 4 in that example. Note that the WCTT may not always
be obtained when the flit experiences its maximum number of deflection, hence the need for
building the full graph G.

Y. Ribot, G. Nelissen, and E. Tovar 5:11

Following the reasoning above, the graph G can systematically be built using Algorithm 1.
Algorithm 1 uses Lemmas 1 to 5 to compute the set of input and output ports to which the
flit p may be routed in each router in R, and to compute the weight of each edge. We now
present and prove those lemmas.

In the following, we denote by Rcur and Rnext any two routers in R such that Rnext is
the first router in R reached by p after leaving Rcur.

▶ Lemma 1. A flit p of a flow fj that enters router Rcur by port IP E
u will be routed to the

output port Ou.

Proof. By rule 7 of nDimNoC’s routing policy (Table 1). ◀

Algorithm 1 Building the DAG of the potential trajectories.
Input: flow fj ;
Output: V , E;

1 V ← ∅; E ← ∅;
2 Build set R according to Equation (5);
3 Rcur ← source router of fj ;
4 Iu ← input port by which fj is injected in its source router according to Property 2;
5 Create vertex vcur = (Rcur, Iu);
6 V ← V ∪ {vcur};
7 ΓI ← {Iu};
8 ΓI

new ← ∅;
9 while Rcur is not the destination router of fj do

10 Rnext ← first router in R reached by any flit of fj after it leaves Rcur;
11 foreach Icur ∈ ΓI do
12 vcur ← get vertex (Rcur, Icur) in V ;
13 ΓO ← Set of output ports to which the flit may be routed if it enters Rcur by the

input port Icur ; // use Lemmas 1 and 2
14 foreach Ocur ∈ ΓO do
15 ΓI

next ← Set of input ports by which the flit may enter Rnext if it exits Rcur by
the output port Ocur ; // use Lemmas 3 and 4

16 foreach Inext ∈ ΓI
next do

17 if Inext /∈ ΓI
new then

18 ΓI
new ← ΓI

new ∪ {Inext} ;
19 Create vertex vnext = (Rnext, Inext);
20 V ← V ∪ {vnext};
21 else
22 vnext ← get vertex (Rnext, Inext) in V ;
23 end
24 Create edge e = (vcur, vnext) with weight hRcur→Rnext

Ocur→Inext
; // use Lemma 5

25 E ← E ∪ {e};
26 end
27 end
28 end
29 ΓI ← ΓI

new ;
30 ΓI

new ← ∅ ;
31 Rcur ← Rnext;
32 end

ECRTS 2021

5:12 nDimNoC: Real-Time D-dimensional NoC

▶ Lemma 2. A flit p that enters router Rcur by port Iu may be routed to any of the output
ports belonging to the set ΓO

u , such that

ΓO
u =

{
{O1} when u = D

{O1} ∪ {Ou+1} when u ̸= D
(6)

Proof. According to rule 2 in Table 1, a flit entering by the ID port has the highest priority
to use the O1 port and will never be deflected to any other output port. This proves the first
case of Equation (6). If the flit enters the router by an input port Iu such that u < D and
requests output port O1, two scenarios may happen according to Table 1: (1) it wins port
O1 (see rule 5 in Table 1), or (2) it is deflected to port Ou+1 (see rule 6 in Table 1). This
proves the second case of Equation (6). ◀

▶ Lemma 3. Let Ou be the output port by which flit p exits the router Rcur. If Rnext is only
one hop further on dimension −→

Du, then flit p enters Rnext by its port Iu.

Proof. Since, according to the network topology defined in Section 4.1, the output port Ou

of Rcur is connected to the input port Iu of Rnext, and because flit p exits Rcur by port Ou,
the lemma follows. ◀

▶ Lemma 4. Let Ou be the output port by which flit p exits the router Rcur. If Rnext is
more than one hop away from Rcur on dimension −→

Du, then the flit p will enter Rnext by one
of the input ports belonging to the set ΓI

u, such that,

ΓI
u = {Iv | u ≤ v ≤ D} (7)

Proof. If Rnext is more than one hop away from Rcur on dimension −→
Du, flit p must hop

through at least one other router between Rcur and Rnext. First, we note that by definition,
Rnext is the first router after Rcur on flit p’s path where p may request output port O1.
Thus, according to nDimNoC’s routing policy (Section 4.3), p may only continue to travel
along the same dimension (see rule 3 in Table 1) or be deflected to a higher order dimension
while traveling between Rcur and Rnext (see rule 4 in Table 1).

If no deflection happens in the routers located between Rcur and Rnext, flit p will enter
Rnext by input port Iu. However, according to rule 4 of nDimNoC’s routing policy (Table 1),
if u < D, the flit p may also be deflected to dimension −−−→

Du+1 in one of those intermediate
routers. If no further deflection happen until reaching Rnext, p will then enter Rnext by the
input port Iu+1. Yet, if u + 1 < D, Table 1 states that the flit p may still be deflected to
dimension −−−→

Du+2 while traveling along dimension −−−→
Du+1. Repeating this reasoning, we get

that flit p may enter Rnext by any input port Iv such that u ≤ v ≤ D. ◀

▶ Lemma 5. The maximum number of hops from the output port Ou of Rcur to the input
port Iv of Rnext (with u ≤ v) is upper bounded by

hRcur→Rnext

Ou→Iv
= (v − u) + (posnext − poscur′ + N) mod N

gD−v+1
(8)

where

poscur′
= (poscur +

v−1∑
k=u

gD−k+1) (9)

and poscur and posnext are computed with Equation (1).

Y. Ribot, G. Nelissen, and E. Tovar 5:13

Proof. According to nDimNoC’s routing policy and following the same explanation as in
the proof of Lemma 4, a flit that exits Rcur by port Ou and enters Rnext by port Iv must
have been deflected exactly (v − u) times.

According to Property 1, flit p bypasses gD−k+1 routers on the main ring of the network
with every hop it does on dimension −→

Dk. Because, by definition of our circulant topology,
we have gD−k+1 > gD−k for all k, the flit p will make its maximum number of hops when it
suffers its (v − u) deflections as early as possible and thus travels as long as possible along
the highest order dimension, i.e., along −→

Dv.
In such scenario, the flit does exactly one hop on each dimension −→

Du, −−−→
Du+1, −−−→

Du+2, ...,−−−→
Dv−1 and bypasses

∑v−1
k=u gD−k+1 routers on the network’s main ring. Thus, after the (v − u)

initial hops, the flit reaches router Rcur′ situated
∑v−1

k=u gD−k+1 steps further than Rcur on
the main ring. That is, the position of Rcur′ on the main ring is given by Equation (9).

Since the network contain N routers on its main ring, the router R′
cur and Rnext are still

(posnext − poscur′ + N) mod N steps away from each other on that ring. However, since the
flit p only travels along dimension −→

Dv after it reached R′
cur, it bypasses gD−v+1 routers of

the main ring at each hop. Thus, it needs (posnext−poscur′
+N) mod N

gD−v+1
hops from port Ov of

Rcur′ to port Iv of Rnext. Therefore, in total, flit p does (v − u) hops to reach R′
cur and

(posnext−poscur′
+N) mod N

gD−v+1
additional hops to reach Rnext, hence proving Equation (8). ◀

▶ Corollary 6. If u = v, then hRcur→Rnext

Ou→Iv
is an exact bound on the number of hops between

the output port Ou of Rcur and the input port Iv of Rnext.

Proof. According to nDimNoC’s routing policy, any deflection of a flit p between Rcur and
Rnext would result in p entering Rnext by an input port Iv such that v > u. Therefore, if
u = v, flit p must not have suffered any deflection and must have travel along dimension −→

Du

only. Because (posnext − poscur + N) mod N is the distance between Rcur and Rnext on the
main ring of the network, and because for every hop on dimension −→

Du, packet p bypasses
gD−u+1 routers on the main ring (by Property 1), we have that p reaches Rnext in exactly
(posnext−poscur+N) mod N

gD−v+1
hops. Note that this last equation is equal to hRcur→Rnext

Ou→Iv
when

v = u, which proves the claim. ◀

We now prove that the WCTT and BCTT of a flit of flow fj are bounded by the longest
and the shortest weighted path of the graph G returned by Algorithm 1, respectively. To do
so, we first prove that the graph G built using Algorithm 1 contains all routes that may be
taken by packets of flow fj between its origin and destination.

▶ Lemma 7. The DAG built using Algorithm 1 contains one edge for each possible path
between any two routers in R that may be successively traversed by any flit of flow fj.

Proof. Algorithm 1 iterates over all routers in R that are on the path of fj from its origin
to its destination router (Lines 3, 9, 10 and 31). For each pair of routers Rcur, Rnext, the
algorithm computes the set ΓI of all input ports by which fj may enter Rcur. For each such
input, it uses Lemmas 1 and 2 to compute the set ΓO of all output ports by which fj may exit
Rcur (Line 13). For each output port Ocur ∈ ΓO, it then uses Lemmas 3 and 4 to compute
the set ΓI

next of all input ports by which fj may enter Rnext (Line 15). It finally creates an
edge for every path between Ocur and the input ports in ΓI

next (Line 24). Since Lemmas 1 to
4 were all proven correct, we have that Algorithm 1 creates an edge for every possible path
between any two routers Rcur and Rnext in R, i.e., one edge for any combination of output
and input port of Rcur and Rnext that may be successively traversed by a packet of fj . ◀

ECRTS 2021

5:14 nDimNoC: Real-Time D-dimensional NoC

Lemma 7 has the following corollary as direct consequence.

▶ Corollary 8. The DAG built using Algorithm 1 contains all possible paths taken by flow fj

from its origin to its destination router.

▶ Theorem 9. The longest weighted path of the DAG built with Algorithm 1 is an upper
bound on the WCTT of any flit of flow fj.

Proof. By Lemma 7 and Corollary 8, the DAG built with Algorithm 1 contains all possible
routes from the origin to the destination of fj encoded as a different path in the graph.
Furthermore, by Lemma 5 and Line 24 of Algorithm 1, the weight of every edge in the graph
is an upper bound on the number of hops on the longest path between the output and input
ports of the two routers represented by the vertices connected by that edge. Thus, the longest
weighted path in the graph is an upper bound on the number of hops between all routers on
the path of fj from its origin to its destination. This proves the Theorem. ◀

▶ Theorem 10. The shortest weighted path of the DAG built with Algorithm 1 is the BCTT
of any flit of flow fj.

Proof. According to nDimNoC’s routing policy and its discussion in Section 4.3, a flit p of
flow fj performs its minimum number of hops between its origin and destination router when
it does not suffer any deflection.

Since the DAG built with Algorithm 1 contains all possible routes from the origin to the
destination of fj encoded as a different path in the graph (by Lemma 7 and Corollary 8), it
also contains the path where the flit of fj does not suffer any deflection. Furthermore, by
Corollary 6 and Line 24 of Algorithm 1, the weight of every edge corresponding to a path
where p does not suffer deflection is equal to the exact number of hops performed by p on
that path. Therefore, the shortest weighted path in the graph is an exact bound on the
BCTT of fj from its origin to its destination. This proves the Theorem. ◀

5.2 Worst-case injection time
In the previous section, we explained how to compute bounds on the BCTT and WCTT of
any flit of a packet injected by a flow fj . In this section, we derive a bound on the worst-case
injection time WCIT of any packet of fj (see Theorem 12).

First, we recall a bound on the maximum number of packets that may be injected in the
network by any flow fj . This bound was already proven in [31].

▶ Lemma 11. In any time interval of length ∆t, the flow fj can inject in the network at
most λj(∆t) = min

{
∆t,

⌈
∆t+wcitj

Tj

⌉
Cj

}
flits.

Proof. The proof is similar to that of the maximum workload that can be executed by a task
with minimum inter-arrival time Tj and release jitter wcitj . The complete proof is provided
in Lemma 14 of [31]. ◀

Then, we prove an upper bound on the WCIT of any packet of fj using Theorem 12.
To prove that theorem, we use the following notation: flow fj is injected in router Rinj via
input port IP E

inj (i.e., Rinj is the origin router of fj). We define Finj as the set of all flows
(including fj) injected in the same input port IP E

inj of the same router Rinj as fj . Note that
this set of flows is a property of the system and thus we assume that it is given as an input
to the analysis. We also define Γconf

inj as the set of all flows originating from other routers
than Rinj and that may conflict with the injection of flow fj in router Rinj . The content of
Γconf

inj is computed using Lemmas 13 and 17 proven later in this section.

Y. Ribot, G. Nelissen, and E. Tovar 5:15

▶ Theorem 12. The WCIT wcitj of any packet of flow fj is given by the smallest positive
solution to the recursive equation

wcitj ≥

 ∑
∀fi∈Finj

Ci

 − 2 +
∑

∀fl∈Γconf
inj

λl(wcitj + 1 + Jl) (10)

where Jl = wctt′
l − bctt′

l is the difference between the worst-case and the best-case traversal
time of flow fl until router Rinj (computed with Theorems 9 and 10).

Proof. Let p be the last flit of any packet of flow fj . According to nDimNoC’s routing policy,
the flit p will be injected in the network as soon as : 1) all flits ahead of p in the FIFO queue
of the input port by which it is injected in the network have been injected, and 2) there is
one clock cycle during which no packet entering Rinj from other input ports conflicts for the
same output port as p.

Let nflits be the maximum number of flits ahead of p in the FIFO queue, and let Wu(∆t)
be the maximum number of flits entering into Rinj by another input port than p and
requesting the same output port as p in a time interval of length ∆t. Then, conditions 1)
and 2) are met as soon as

∆t + 1 ≥ nflits + Wu(∆t + 1) (11)

for ∆t ≥ 0. The solution to Equation (11) is thus equal to the WCIT wcitj of flow fj .
To solve the above equation, we first derive a bound on nflits, and then derive a bound

on Wu(∆t + 1).
Bound on nflits: Section 4.2 explains that each flow in Finj may have at most one

packet in the FIFO queue of the input port by which they are injected in the network.
Therefore, in the worst-case scenario, there is one packet of each other flow injected via the
same port IP E

inj as fj ahead of p in the FIFO queue. Since p is the last flit of fj ’s packet,
there must also be (Cj − 1) other flits of fj ahead of p in the FIFO queue. That is,

nflits ≤

 ∑
∀fi∈Finj

Ci

 − 1 (12)

Bound on Wu(∆t + 1): Let fl be a flow entering the router Rinj by another input
port than p but requesting the same output port as p (i.e., fl ∈ ΓC

inj). In the best and worst
case scenarios, a flit from fl takes bctt′

l and wctt′
l clock cycles to reach Rinj , respectively.

Therefore, the first flit of fl that may conflict with the injection of p must have been injected
no earlier than wctt′

l clock cycles before the beginning of the period during which p is
interfered with. Conversely, the last flit of fl that may conflict with the injection of p must
have been injected no later than bctt′

l clock cycles before the end of the interference with p.
Therefore, the length of the interval during which fl may inject flits that conflict with the
injection of p is

∆t + 1 + wctt′
l − bctt′

l = ∆t + 1 + Jl. (13)

Lemma 11 states that a flow fl may inject at most λl(∆t + 1 + Jl) flits in that time interval.
Therefore, the total number of flits from all conflicting flows fl ∈ ΓC

inj is upper bounded as

Wu(∆t + 1) ≤
∑

∀fl∈ΓC
inj

λl(∆t + 1 + Jl) (14)

Injecting Equations (12) and (14) in Equation (11), we prove the lemma. ◀

ECRTS 2021

5:16 nDimNoC: Real-Time D-dimensional NoC

Theorem 12 requires to know the set of all flows ΓC
inj that may conflict with the injection

of fj in router Rinj . The content of that set depends on the specific output port requested
by the packets of fj . Lemmas 13 and 17 below provide a means to compute the content of
ΓC

inj when fj request output port O1 or Ou (with u ̸= 1), respectively.

▶ Lemma 13. The set of flows coming from other routers than Rinj and that may be routed
to output port O1 of Rinj is given by

Γ1
inj = {fl | ∀b ∈ [2, D], dl

b = rinj
b ∧ dist(Rorig(fl), Rinj) ≤ dist(Rorig(fl), Rdest(fl))} (15)

Proof. According to nDimNoC’s routing policy, a flow fl may request the output port O1
of Rinj only if (i) fl may hop through router Rinj , and (ii) ∀b > 1, dl

b = rinj
b . Condi-

tion (i) requires that Rinj is located between the origin and destination router of fl, i.e.,
dist(Rorig(fl), Rinj) ≤ dist(Rorig(fl), Rdest(fl)). Combining both (i) and (ii) proves the
lemma. ◀

To compute the set ΓC
inj for the case where fj requests output port Ou (with u ̸= 1), we

must first prove some intermediate results using Lemmas 14 to 16.
To prove those lemmas, we define Fu

inj as the set of all flows that may enter router Rinj

by input port Iu. That set can easily be built by checking all paths that may be taken by
each flow in the network according to Table 1. All those that have at least one path in which
they enter Rinj by input port Iu are then added to the set Fu

inj .

▶ Lemma 14. The set of flows that may enter Rinj by input port Iu and request output port
Ou is given by Γu→u

inj = Fu
inj \ {fl | ∀b ∈ [2, D], rinj

b = dl
b}

Proof. According to Table 1, a flow entering by input port Iu and requesting output port O1
cannot be routed to output port Ou (only to O1 or Ou+1) (see rules 2, 5, and 6 in Table 1).
Therefore, the set of flows entering by Iu that may be routed to Ou is the set of flows that
enters Rinj by Iu (i.e., Fu

inj) minus those that request O1, i.e., all the flows fl that have
a destination such that ∀b ∈ [2, D], rinj

b = dl
b (see routing policy explained in Section 4.3).

This proves the lemma. ◀

▶ Lemma 15. Let defq be a boolean equal to true if a deflection may happen in router Rq,
and equal to false otherwise. Then, we have

defq =
{

true if ∃u, v with u ̸= v | ∃fl ∈ Fu
q , ∃fm ∈ Fv

q s.t. l ̸= m ∧ ∀b ∈ [2, D], dl
b = dm

b = rq
b

false otherwise.

(16)

Proof. According to Table 1, a deflection may happen in router Rq only if at least two
different flows compete to access the output port O1. For that situation to happen, there must
exist at least two different flows fl and fm entering by two different input ports (i.e., ∃u, v

with u ̸= v | ∃fl ∈ Fu
q , ∃fm ∈ Fv

q s.t. l ̸= m) that both request output port O1. According
to the routing policy explained in Section 4.3, this happens only if ∀b ∈ [2, D], dl

b = dm
b = rq

b .
This proves the lemma. ◀

▶ Lemma 16. The set of flows that may enter Rinj by input port Iu−1 and be routed to
output port Ou is given by

Γu−1→u
inj =

{
Fu−1

inj if definj = true
∅ if definj = false

(17)

Y. Ribot, G. Nelissen, and E. Tovar 5:17

Table 2 Resources utilization of different NoCs in Kirtex-7 FPGAs.

NoC LUTs % Resource utilization of the platform

8x8 ProNoC 100000 20%-150%

8x8 IDAMC 83000 18%-127%

8x8 CONNECT 96000 20%-147%

8x8 HopliteRT* 5632 1.1%-8.5%

4x4x4 3D-nDimNoC 18560 3.9%-28%

Proof. According to Table 1, all flows that enter router Rinj by input port Iu−1 (i.e., those in
Fu−1

inj) may be deflected to output port Ou (see rules 4 and 6 in Table 1). Thus, the set of flows
entering by Iu−1 and routed to Ou is given by all flows in Fu−1

inj if a deflection may happen
in Rinj , i.e., if definj = true. If no deflection may happen in Rinj (i.e., definj = false), then
Table 1 states that none of the flows entering by Iu−1 may be routed to Ou. This proves
both cases of Equation (17). ◀

▶ Lemma 17. The set of flows coming from other routers than Rinj and that may be routed
to output port Ou of Rinj (with u ̸= 1) is given by

Γu
inj = Γu→u

inj ∪ Γu−1→u
inj (18)

Proof. According to Table 1, only flows that enter a router by its input ports Iu or Iu−1
can be routed to output port Ou. Since, according to Lemmas 14 and 16, Γu→u

inj and Γu−1→u
inj

contain all the flows entering Rinj by input ports Iu and Iu−1, respectively, that may be
routed to output port Ou, their union contains all flows that may come from other routers
than Rinj and may be routed to output port Ou of Rinj . ◀

The content of ΓC
inj is thus equal to Γ1

inj if fj requests output port O1 (Lemma 13), and
to Γu

inj if it requests any other output port (Lemma 17). Using ΓC
inj in Theorem 12 we can

now bound the WCIT of fj .

6 Experimental results

6.1 Implementation of nDimNoC
We implemented a 3D-nDimNoC with the hardware description language Verilog. We
synthesized a single router of 3D-nDimNoC for flits of 64 bits. The target platform was a
Xilinx Virtex-7 485T FPGA. It required 290 LUTs and 202 Flip-Flops (FFs) in total. This
corresponds to only 0.1% and 0.03% of the total number of LUTs and FFs available in the
target FPGA, respectively.

We compared the hardware cost of a 3D-nDimNoC with HopliteRT* [31], as well as
to some other NoCs based on virtual channels (VCs): ProNoC [23], IDAMC [37], and
CONNECT [27]. The target platform was a Xilinx Kirtex-7 FPGA. Kirtex-7 is a mid-range
family of FPGAs that contains approximately between 65,600 and 477,760 LUTs depending
on which one you pick. Table 2 shows the synthesis results. A ProNoC router with two
VCs required 1574 LUTs, a HopliteRT* router required 88 LUTs, and according to [38]
and [27], an IDAMC and a CONNECT router require approximately 1300 and 1500 LUTs,

ECRTS 2021

5:18 nDimNoC: Real-Time D-dimensional NoC

(a) Max WCTT NoC. (b) Average WCTT NoC. (c) Max WCIT NoC.

(d) Average WCIT NoC. (e) Max WCCT NoC. (f) Avg WCCT NoC.

Figure 4 Experimental results for a random traffic pattern.

respectively. Then, as reported in Table 2, an 8x8 ProNoC, IDAMC, and CONNECT NoCs
require ≈100,000, ≈83,000, and ≈96,000 LUTs, respectively, eating up a big portion (if not
all in some cases) of the logic available in the FPGA. This leaves limited resources available
for any computation logic. Therefore, those solutions are not really suitable for systems
implemented over mid-range FPGAs. On the other hand, a 4x4x4 3D-nDimNoC requires
18,560 LUTs, i.e., between 3.9% to 28% of the Xilinx Kirtex-7 resources. It is three times
more expensive than HopliteRT* (which requires 5632 LUTs) but approximately 5-times
cheaper than ProNoC, IDAMC, and CONNECT NoCs in terms of LUTs utilization. We
thus conclude that 3D-nDimNoC is a suitable solution for such FPGA platforms.

Finally, we connected the nDimNoC router to a Microblaze soft-core and synthesized a
4x2x2 3D-network for a Virtex-7 485T using Xilinx Vivado. We computed the maximum
operating frequency of the network with Xilinx Vivado. We obtained ≈210 MHz for a 4x2x2
3D-nDimNoC against ≈275 MHz for an equivalent 4x4 HopliteRT* NoC. This degradation in
terms of maximum operating frequency may be explained by the fact that (1) an nDimNoC
router requires more complex logic to route packets from its input to its output ports, and
(2) the additinal dimensions increase the number of wires between routers, which increases
the complexity of the placement and routing during the logic synthesis.

6.2 Analyses results

In this section, we provide experimental results by computing the WCTT, WCIT, and WCCT
of sets of communication flows that traverse NoCs of different dimensionalities.

As a starting point, we generated sets of communication flows for a 16x16 2D-NoC
according to a random traffic pattern. The origin and destination coordinates of each flow
were randomly generated using a uniform probability distribution. The number of flits
of packets released by a communication flow was randomly chosen between 1 and 5, and
their inter-arrival times were generated as in [36]. Then, we made a one-to-one mapping

Y. Ribot, G. Nelissen, and E. Tovar 5:19

of the routers in the 16x16 2D-NoC to the routers of a 4x8x8 3D-nDimNoC, a 4x4x4x4
4D-nDimNoC, a 2x2x4x4x4 5D-nDimNoC, and a 2x2x2x2x4x4 6D-nDimNoC. The origin
and destination of each flow were accordingly updated for each network topology.

In Figs. 4a and 4b, we show the maximum and average packets WCTT for an increasing
number of flows in NoCs of different dimensionalities. The results were computed by using
the analysis of HopliteRT [39, 40] and HopliteRT* [31] (assuming a 16x16 2D-NoC), and the
analysis presented in Section 5.1 for the 2D, 3D, 4D, 5D and 6D-nDimNoC topology. To
establish a fair comparison, we assume one priority level (i.e., all flows were assigned the
highest priority) for the analysis proposed in [31]. Each point in the plot is the result of 100
repetitions (100 different random flow sets). We varied the number of generated flows from
10 to 300 by steps of 10.

In 4a, we observe that the maximum WCTT is slightly worse with nDimNoC as compared
to HopliteRT*. Nonetheless, Fig 4b) shows that the average traversal time improves with
nDimNoC as the dimensionality of the network increases. This can easily be explained by the
fact that new routes, possibly shorter and faster, are made available between pairs of routers
when a new dimension is added to the network. Moreover, the number of interfering flows,
and therefore, the number of deflections that flows may suffer on each link decreases since
the number of routers on each dimension decreases. Note that, the average packets WCTT is
reduced by ≈40% and ≈60% with a 5D-nDimNoC and a 6D-nDimNoC, respectively, against
HopliteRT*. We also show that the maximum and average worst-case traversal times are
noticeably reduced with nDimNoC as compared to HopliteRT.

In Fig. 4c and 4d, we show the maximum and average WCIT of flows using the analysis
of HopliteRT* and nDimNoC. We also computed the maximum and average WCIT by using
the analysis of HopliteRT, but we do not show them on the graphs as they are extremely
pessimistic and would render the plots unreadable by cluttering all other lines together.
As shown, the packets see their WCIT drastically reduced in nDimNoC in comparison to
HopliteRT*. This is expected since nDimNoC allows the programming element connected to
a router to inject packets simultaneously via as many input ports as there are dimensions
in the network. A router of HopliteRT*, on the other hand, can inject at most one flit per
cycle in the network (on either of the router output ports). Furthermore, the number of
communication flows that may interfere with the injection of a packet at a router decreases
since more routes are available in the network, and thus less traffic uses each individual route.

In Fig. 4e and 4f, we show the maximum and average packets WCCT (which we recall to
be equal to the sum of the WCTT and WCIT of those packets). We varied the number of
generated flows from 10 to 100 by steps of 10. The results were obtained by using the analysis
of nDimNoC, and the analyses proposed in [31] and [21] for HopliteRT* and a VC-based
real-time NoC, respectively. The analysis presented in [21] by Liu et al. is an improved
analysis of that proposed in [36, 35] by Shi and Burns. To establish a fair comparison, we
assume one VC (i.e., one priority level) for the analysis presented in [21]. As shown in
Figure 4e, for almost all configurations, the WCCT returned by the analysis of nDimNoC
outperforms that returned by the analysis of [31] and [21]. The average WCCT is only better
with the analysis by Liu et al. when the network is completely underloaded and very few
flows are traversing the network (i.e., less than 30 flows). Note also that, [21] considers
that each flow may only have one packet of each flow traveling across the network at the
same time, whilst nDimNoC supports the transmission of several packets from the same
communication flow simultaneously.

The average WCCT with nDimNoC improves when the network’s dimensionality increases
and is barely impacted by the number of flows. Therefore, we conclude that increasing the
dimensionality of nDimNoC has a positive impact from an average performance perspective
for a limited impact on the worst-case performance of the flows.

ECRTS 2021

5:20 nDimNoC: Real-Time D-dimensional NoC

7 Summary and conclusion

In this paper, we presented nDimNoC, a new and flexible real-time D-dimensional NoC
that uses the properties of circulant topologies to provide real-time guarantees to the flows
transmitted over that NoC. We proposed a timing analysis for nDimNoC. We also did
a complete implementation of 3D-nDimNoC in HDL Verilog. Experimental results show
improvements in terms of network communication latency in comparison to existing 2D
solutions.

References
1 P. Baran. On distributed communications networks. IEEE Transactions on Communications

Systems, 12(1):1–9, 1964. doi:10.1109/TCOM.1964.1088883.
2 L. Benini and G. De Micheli. Networks on chip: a new paradigm for systems on chip design.

In Design, Automation and Test in Europe Conference and Exhibition, pages 418–419, March
2002.

3 Alan Burns, James Harbin, and Leandro Soares Indrusiak. A wormhole NoC protocol for
mixed criticality systems. In IEEE Real-Time Systems Symposium, pages 184–195, 2014.

4 Yiou Chen, Jianhao Hu, Xiang Ling, and Tingting Huang. A novel 3d noc architecture based
on de bruijn graph. Computers & Electrical Engineering, 38(3):801–810, 2012.

5 Shamik Das, Andy Fan, Kuan-Neng Chen, Chuan Seng Tan, Nisha Checka, and Rafael
Reif. Technology, performance, and computer-aided design of three-dimensional integrated
circuits. In Proceedings of the 2004 International Symposium on Physical Design, ISPD
’04, page 108?115, New York, NY, USA, 2004. Association for Computing Machinery. doi:
10.1145/981066.981091.

6 Dakshina Dasari, Borislav Nikoli’c, Vincent N’elis, and Stefan M Petters. NoC contention
analysis using a branch-and-prune algorithm. ACM Transactions on Embedded Computing
Systems, 13(3s):113, 2014.

7 Jonas Diemer, Jonas Rox, Mircea Negrean, Steffen Stein, and Rolf Ernst. Real-time communic-
ation analysis for networks with two-stage arbitration. In 9th ACM International Conference
on Embedded Software. IEEE, 2011.

8 Feihui Li, C. Nicopoulos, T. Richardson, Yuan Xie, V. Narayanan, and M. Kandemir. Design
and management of 3d chip multiprocessors using network-in-memory. In 33rd International
Symposium on Computer Architecture (ISCA’06), pages 130–141, 2006. doi:10.1109/ISCA.
2006.18.

9 Yan Ghidini, Thais Webber, Edson Moreno, Fernando Grando, Rubem Fagundes, and César
Marcon. Buffer depth and traffic influence on 3d nocs performance. In 2012 23rd IEEE
International Symposium on Rapid System Prototyping (RSP), pages 9–15. IEEE, 2012.

10 Frédéric Giroudot and Ahlem Mifdaoui. Buffer-aware worst-case timing analysis of wormhole
NoCs using network calculus. In IEEE Real-Time and Embedded Technology and Applications
Symposium, 2018.

11 Frederic Giroudot and Ahlem Mifdaoui. Tightness and computation assessment of worst-case
delay bounds in wormhole networks-on-chip. In 27th International Conference on Real-Time
Networks and Systems, 2019.

12 C. Grecu, P. P. Pande, A. Ivanov, and R. Saleh. A scalable communication-centric soc
interconnect architecture. In International Symposium on Signals, Circuits and Systems.
Proceedings, SCS 2003. (Cat. No.03EX720), pages 343–348, 2004. doi:10.1109/ISQED.2004.
1283698.

13 R. I. Greenberg and Lee Guan. An improved analytical model for wormhole routed networks
with application to butterfly fat-trees. In Proceedings of the 1997 International Conference
on Parallel Processing (Cat. No.97TB100162), pages 44–48, 1997. doi:10.1109/ICPP.1997.
622554.

https://doi.org/10.1109/TCOM.1964.1088883
https://doi.org/10.1145/981066.981091
https://doi.org/10.1145/981066.981091
https://doi.org/10.1109/ISCA.2006.18
https://doi.org/10.1109/ISCA.2006.18
https://doi.org/10.1109/ISQED.2004.1283698
https://doi.org/10.1109/ISQED.2004.1283698
https://doi.org/10.1109/ICPP.1997.622554
https://doi.org/10.1109/ICPP.1997.622554

Y. Ribot, G. Nelissen, and E. Tovar 5:21

14 P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched interconnections.
In Proceedings Design, Automation and Test in Europe Conference and Exhibition 2000 (Cat.
No. PR00537), pages 250–256, 2000. doi:10.1109/DATE.2000.840047.

15 Jörg Henkel, Wayne Wolf, and Srimat Chakradhar. On-chip networks: A scalable,
communication-centric embedded system design paradigm. In 17th International Conference
on VLSI Design. IEEE, 2004.

16 S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany. Survey on real-time
networks-on-chip. IEEE Transactions on Parallel and Distributed Systems, 28(5):1500–1517,
May 2017. doi:10.1109/TPDS.2016.2623619.

17 Leandro Soares Indrusiak, Alan Burns, and Borislav Nikolić. Buffer-aware bounds to multi-
point progressive blocking in priority-preemptive nocs. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 219–224. IEEE, 2018.

18 Leandro Soares Indrusiak, James Harbin, and Alan Burns. Average and worst-case latency
improvements in mixed-criticality wormhole networks-on-chip. In 27th Euromicro Conference
on Real-Time Systems. IEEE, 2015.

19 J. W. Joyner, P. Zarkesh-Ha, and J. D. Meindl. A stochastic global net-length distribution for
a three-dimensional system-on-a-chip (3d-soc). In Proceedings 14th Annual IEEE International
ASIC/SOC Conference (IEEE Cat. No.01TH8558), pages 147–151, 2001. doi:10.1109/ASIC.
2001.954688.

20 C. C. Liu, I. Ganusov, M. Burtscher, and Sandip Tiwari. Bridging the processor-memory
performance gap with 3d ic technology. IEEE Design Test of Computers, 22(6):556–564, 2005.
doi:10.1109/MDT.2005.134.

21 Meng Liu, Matthias Becker, Moris Behnam, and Thomas Nolte. Tighter time analysis for
real-time traffic in on-chip networks with shared priorities. In 10th IEEE/ACM International
Symposium on Networks-on-Chip, 2016.

22 César Marcon, Ramon Fernandes, Rodrigo Cataldo, Fernando Grando, Thais Webber, Ana
Benso, and Letícia B Poehls. Tiny noc: A 3d mesh topology with router channel optimization
for area and latency minimization. In 2014 27th International Conference on VLSI Design
and 2014 13th International Conference on Embedded Systems, pages 228–233. IEEE, 2014.

23 Alireza Monemi, Jia Tang, Maurizio Palesi, and Muhammad Nadzir Marsono. ProNoC: A
low latency network-on-chip based many-core system-on-chip prototyping platform. Micropro-
cessors and Microsystems, 54, September 2017. doi:10.1016/j.micpro.2017.08.007.

24 B. Nikolic, Robin Hofmann, and R. Ernst. Slot-based transmission protocol for real-time nocs
- sbt-noc. In ECRTS, 2019.

25 B. Nikolić and S. M. Petters. Edf as an arbitration policy for wormhole-switched priority-
preemptive nocs-myth or fact? In International Conference on Embedded Software, pages
1–10, October 2014.

26 Borislav Nikolić, Sebastian Tobuschat, Leandro Soares Indrusiak, Rolf Ernst, and Alan Burns.
Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays.
Real-Time Systems, 55(1):63–105, 2019.

27 M. K. Papamichael and J. C. Hoe. CONNECT: Re-examining conventional wisdom for
designing Nocs in the context of FPGAs. In ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA ’12, pages 37–46, New York, NY, USA, 2012. ACM.

28 D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, N. Vijaykrishnan, and C. R. Das. Mira:
A multi-layered on-chip interconnect router architecture. In 2008 International Symposium on
Computer Architecture, pages 251–261, 2008. doi:10.1109/ISCA.2008.13.

29 Vasilis F Pavlidis, Ioannis Savidis, and Eby G Friedman. Three-dimensional integrated circuit
design. Newnes, 2017.

30 Eberle A Rambo and Rolf Ernst. Worst-case communication time analysis of networks-on-chip
with shared virtual channels. In Design, Automation & Test in Europe Conference & Exhibition,
2015.

ECRTS 2021

https://doi.org/10.1109/DATE.2000.840047
https://doi.org/10.1109/TPDS.2016.2623619
https://doi.org/10.1109/ASIC.2001.954688
https://doi.org/10.1109/ASIC.2001.954688
https://doi.org/10.1109/MDT.2005.134
https://doi.org/10.1016/j.micpro.2017.08.007
https://doi.org/10.1109/ISCA.2008.13

5:22 nDimNoC: Real-Time D-dimensional NoC

31 Y. Ribot González and G. Nelissen. Hoplitert*: Real-time noc for fpga. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3650–3661, 2020. doi:
10.1109/TCAD.2020.3012748.

32 Aleksandr Yu Romanov. Development of routing algorithms in networks-on-chip based on
ring circulant topologies. Heliyon, 5(4):e01516, 2019.

33 Abbas Sheibanyrad, Frédéric Pétrot, Axel Jantsch, et al. 3D integration for NoC-based SoC
Architectures. Springer, 2011.

34 Zheng Shi and Alan Burns. Real-time communication analysis for on-chip networks with
wormhole switching. In Second ACM/IEEE International Symposium on Networks-on-Chip,
2008.

35 Zheng Shi and Alan Burns. Improvement of schedulability analysis with a priority share policy
in on-chip networks. In 17th International Conference on Real-Time and Network Systems,
pages 75–84, 2009.

36 Zheng Shi and Alan Burns. Real-time communication analysis with a priority share policy in
on-chip networks. In 21st Euromicro Conference on Real-Time Systems, pages 3–12. IEEE,
2009.

37 S. Tobuschat, P. Axer, R. Ernst, and J. Diemer. IDAMC: A NoC for mixed criticality systems.
In IEEE 19th International Conference on Embedded and Real-Time Computing Systems and
Applications, 2013. doi:10.1109/RTCSA.2013.6732214.

38 Sebestian Tobuschat. Predictable and Runtime-Adaptable Network-On-Chip for Mixed-critical
Real-time Systems. PhD thesis, TU Braunschweig, 2019.

39 S. Wasly, R. Pellizzoni, and N. Kapre. HopliteRT: An efficient FPGA NoC for real-time
applications. In International Conference on Field Programmable Technology, pages 64–71,
December 2017.

40 Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. Worst case latency analysis for hoplite
FPGA-based NoC. Technical report, University of Waterloo, 2017.

41 Qin Xiong, Zhonghai Lu, Fei Wu, and Changsheng Xie. Real-time analysis for wormhole noc:
Revisited and revised. In Proceedings of the 26th edition on Great Lakes Symposium on VLSI,
pages 75–80, 2016.

42 Qin Xiong, Fei Wu, Zhonghai Lu, and Changsheng Xie. Extending real-time analysis for
wormhole nocs. IEEE Transactions on Computers, 66(9):1532–1546, 2017.

https://doi.org/10.1109/TCAD.2020.3012748
https://doi.org/10.1109/TCAD.2020.3012748
https://doi.org/10.1109/RTCSA.2013.6732214

Light Reading: Optimizing Reader/Writer Locking
for Read-Dominant Real-Time Workloads
Catherine E. Nemitz #

University of North Carolina at Chapel Hill, NC, USA

Shai Caspin #

University of North Carolina at Chapel Hill, NC, USA

James H. Anderson #

University of North Carolina at Chapel Hill, NC, USA

Bryan C. Ward #

MIT Lincoln Laboratory, Lexington, MA, USA

Abstract
This paper is directed at reader/writer locking for read-dominant real-time workloads. It is shown
that state-of-the-art real-time reader/writer locking protocols are subject to performance limitations
when reads dominate, and that existing schedulability analysis fails to leverage the sparsity of
writes in this case. A new reader/writer locking-protocol implementation and new inflation-free
schedulability analysis are proposed to address these problems. Overhead evaluations of the new
implementation show a decrease in overheads of up to 70% over previous implementations, leading to
throughput for read operations increasing by up to 450%. Schedulability experiments are presented
that show that the analysis results in schedulability improvements of up to 156.8% compared to the
existing state-of-the-art approach.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computing methodologies → Shared memory algorithms

Keywords and phrases Reader/writer, real-time, synchronization, spinlock, RMR complexity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.6

Supplementary Material Software (ECRTS 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.1.3

Funding Work was supported by NSF grants CNS 1563845, CNS 1717589, CPS 1837337, CPS
2038855, and CPS 2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698.
This material is based upon work supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGS-1650116. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. This work was also supported by a Dissertation
Completion Fellowship from the UNC Graduate School.

Acknowledgements DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Under Secretary of Defense for
Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Under Secretary of Defense for Research and Engineering. © 2021
Massachusetts Institute of Technology. Delivered to the U.S. Government with Unlimited Rights, as
defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as
detailed above. Use of this work other than as specifically authorized by the U.S. Government may
violate any copyrights that exist in this work.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Catherine E. Nemitz, Shai Caspin, James H. Anderson, and Bryan C. Ward;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nemitz@cs.unc.edu
mailto:shai@unc.edu
mailto:anderson@cs.unc.edu
mailto:bryan.ward@ll.mit.edu
https://orcid.org/0000-0001-7168-6693
https://doi.org/10.4230/LIPIcs.ECRTS.2021.6
https://doi.org/10.4230/DARTS.7.1.3
https://doi.org/10.4230/DARTS.7.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Light Reading

Figure 1 Throughput for red-black tree lookups. This read-only scenario is representative of use
cases where writes can occur but are so infrequent that over long intervals, only reads occur.

1 Introduction

In an ongoing project, our research group has been investigating real-time use cases where
shared resources exist that are much more frequently read than written. The importance of
such read-dominant use cases has been well documented by McKenney [24], who devised a
non-blocking synchronization solution called Read-Copy-Update (RCU) to support resource
sharing. As explained later, RCU can be problematic in real-time systems, so for our use
cases, a better option is reader/writer locks, a now-standard synchronization solution first
proposed five decades ago [16]. A reader/writer lock extends a mutex lock by distinguishing
between read accesses (non-modifying) and write accesses (potentially modifying) and seeks
to allow reads to execute concurrently with one another while supporting exclusive writing.

At the outset of our project, it was our belief that reader/writer locking was a solved
problem for real-time systems. This belief was rooted in the existence of reader/writer locking
protocols that are asymptotically optimal with respect to blocking times [12], and the apparent
ease with which such blocking times can be factored into schedulability analysis [3]. In delving
further, however, we found this belief to be wrong. In particular, for read-dominant use cases,
we found major deficiencies with respect to both state-of-the-art real-time reader/writer
locking protocols and the schedulability analysis needed to apply them.

These experiences motivated this paper, which is directed at the goal of efficiently
supporting read-dominant real-time workloads. Our contributions towards this goal include a
new reader/writer locking-protocol implementation and schedulability analysis. We expound
on these contributions below, after first elaborating on the deficiencies noted above.

Surprising performance limitations in existing reader/writer locks. In the real-time
literature, Brandenburg and Anderson presented a category of reader/writer locks called
phase-fair locks over a deacade ago [12] and established the optimality of such locks under
common definitions of priority-inversion blocking (pi-blocking). To our knowledge, phase-fair
locks stand as the state-of-the-art for spin-based (our focus) real-time reader/writer locking.

In our work on read-dominant workloads, we employed a phase-fair ticket lock (PF-T), one
of Brandenburg and Anderson’s proposed phase-fair variants [11]. In experiments involving
PF-Ts, we observed perplexing behavior, shown in Fig. 1: throughput did not scale beyond
four cores for a purely read-only workload. This was surprising as the phase-fair lock logic
should allow all reads to execute without ever blocking. So why then did the PF-T not scale
to match the case of having no synchronization at all (NO-SYNC)?

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:3

The answer relates to the overhead of the PF-T’s lock/unlock logic. In particular, every
lock and unlock call updates the shared lock state. Even under a read-only workload,
these updates invalidate cached lock state on other cores. Contention for this shared lock
state incurs significant overhead that severely hampers throughput. Additionally, many
shared-state updates require the use of an atomic instruction.

Analytically leveraging the sparsity of writes. In examining existing schedulability analysis
for phase-fair locks [11], we found that they do not exploit the sparsity of writes in read-
mostly workloads. In particular, reads are pessimistically assumed to always incur some
write blocking. Thus, even if lock performance close to NO-SYNC could be achieved, such
improvements would be lost analytically in checking schedulability. In recent years, holistic,
inflation-free blocking analysis has been developed for mutex locks that limits over-estimates
of blocking. However, such analysis has not been extended to apply to reader/writer locks.

Contributions. The contributions of this paper are four-fold. First, in Sec. 3, we present
the spin-based phase-fair with light reading ticket lock (PF-L), which is optimized for read-
dominant workloads. The PF-L achieves low read overhead by eliminating shared lock state
between readers (at the expense of forcing write requests to check additional state) and by
eliminating atomic instructions from read lock/unlock logic. It also enables sequences of
reads to access cached lock state exclusively if they are uninterrupted by writes.

Second, in Sec. 4, we present an experimental evaluation of the PF-L compared to other
alternatives on the basis of throughput and locking overheads. Across all of our experiments,
the PF-L enabled throughput increases over the state-of-the-art PF-T in the range 2–450%,
and overhead reductions for reading in the range 40–73% for read-dominant workloads.

Third, in Sec. 5, we extend prior inflation-free blocking analysis proposed for mutex
locks [9] to apply to reader/writer locks. This analysis involves modifying an integer linear
program (ILP), as the introduction of reads requires applying numerous additional constraints.

Fourth, in Sec. 6, we present the results of a schedulability study that we conducted to
compare our new PF-L implementation and inflation-free reader/writer blocking analysis to
prior alternatives. In this study, our new analysis improved schedulability by up to 159%
compared to previous state-of-the-art methods.

2 Background

In this section, we present our assumed models and relevant background and related work.

Task model. We consider a sporadic task system Γ comprised of n constrained-deadline tasks
scheduled by the Partitioned Earliest-Deadline-First (P-EDF) scheduler on a multiprocessor
platform with m cores. (We assume familiarity with the sporadic model and P-EDF.)
An arbitrary task is denoted τi. When conducting analysis, the partition (core) under
consideration is denoted P ∗, and an arbitrary partition is denoted Pk.

Resource model. We assume a set of nr shared resources, with an arbitrary resource
denoted ℓq. A job of a task can issue a request for only one resource at a time (no nesting).
Each request is either a read request (which may execute concurrently with other reads) or a
write request (which must be exclusive). We use Rr

i , Rw
i , and Ri to denote a read, write, or

arbitrary (read or write) request, respectively, issued by a job of τi. Once a request Ri for a
resource ℓq has been granted, Ri is satisfied, and the issuing job holds ℓq until Ri completes.

ECRTS 2021

6:4 Light Reading

R

τ4 on P3

τ0 on P0

τ1 on P0

τ2 on P1

τ3 on P2

task invocation

task deadline

task requires resource

R normal computationread access

spin blocking W write access

W

R

R

Wτ5 on P4

R

W

read read readwrite-1 write-0 write-1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

time
read

queue
write

queuearrival blocking

[0, 1)
[1, 2)
[2, 3)
[3, 4)
[4, 7)

[7, 10)
[10, 11)
[11, 12)
[12, 13)
[13, 16)
[16, 21)

-
-
R0
R0

R0, R4
-
-
-
R3
-
-

-
R2
R2

R2, R5
R2, R5

R5
-
R1
R1
R1
-

Figure 2 Phase-fair request satisfaction.

Phase-fair locks. Phase-fair (PF) reader/writer (RW) locks were proposed to improve
blocking bounds in real-time systems [12]. Some prior approaches to RW locking can starve
read (resp., write) requests by prioritizing writes (resp., reads) over them [16, 25]. PF locks
instead employ alternating read and write phases. Assuming non-preemptive spin-based
locking (as we do here), the orchestration of these phases is defined by four rules [12]:

PF1 reader phases and writer phases alternate;
PF2 writers are subject to FIFO ordering, but only with regard to other writers;
PF3 at the start of each reader phase, all currently unsatisfied reads are satisfied (exactly

one write request is satisfied at the start of a writer phase); and
PF4 during a reader phase, newly issued read requests are satisfied only if there are no

unsatisfied write requests pending.

▶ Example 1. Consider the six tasks depicted in Fig. 2. For simplicity, we assume that each
task requires access to the same resource; the type of access is indicated for each request. At
time t = 1, the first job of τ3 issues a read request, Rr

3, which is satisfied immediately. Just
after this, at t = 1 + ϵ, τ2 issues a write request Rw

2 , which must wait (Rule PF1). At t = 2
and t = 4, τ0 and τ4 issue read requests Rr

0 and Rr
4, respectively, which also must wait (Rule

PF4). At t = 3, τ5 issues a write request, which waits; it will not be satisfied before the write
request issued by τ2 (Rule PF2). When Rr

3 completes, Rw
2 is satisfied (Rule PF1). When

Rw
2 completes, both Rr

0 and Rr
4 are satisfied (Rule PF3). Read and write phases continue to

alternate, as shown. Note that the job of τ1 released at t = 2 does not preempt the currently
executing job of τ0 on P0 because the latter is executing non-preemptively.

Different implementation strategies can be applied to realize the phase-fair rules. Branden-
burg and Anderson presented several implementations, including a ticket-lock-based imple-
mentation (PF-T), a more compact version for embedded systems (PF-C), and a queue-based
implementation with O(1) RMR time complexity (PF-Q) [12]; as discussed more fully later,
RMR time complexity counts only operations that entail an interconnect traversal to access
memory. An alternative O(1) implementation has been given by Bhatt and Jayanti [8].

Blocking analysis. When checking schedulability, locking delays must be accounted for.
The simplest approach involves inflating execution times by per-request worst-case blocking
bounds. This approach is safe but pessimistic, as the worst case may not always occur.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:5

τ0 on P0

τ1 on P1

W

WW

W W W

Figure 3 Example of blocking between two tasks.

Recently, holistic, inflation-free analysis, which accounts for blocking over an analysis interval,
has been proposed for mutexes [9, 27, 30]. Such analysis seeks to avoid over-estimating
locking delays.

▶ Example 2. Fig. 3 depicts a schedule of two tasks, τ0 and τ1, that write a common
resource. Note that each request of τ0 can potentially be blocked by one request of τ1. Under
conventional inflation-based blocking analysis, the execution time of τ0 would thus be inflated
by the cost of four requests. However, only two requests may be issued by τ1 during one job
of τ0. Holistic analysis leverages such knowledge to more tightly bound total blocking, and
an inflation-free approach accounts for this blocking without inflating task execution times.

Related work. As mentioned in Sec. 1, RCU, like our PF-L implementation, was designed
for read-dominant workloads. However, RCU is not linearizable [19]. Furthermore, RCU
efficiently executes reads by requiring writes to copy shared-object state and this copying
results in a need for garbage collection. To our knowledge, no schedulability analysis exists
for RCU, in part due to the non-deterministic behavior of garbage collection.

In addition to the RW locks already mentioned, FIFO-based and reader-preference locks
have been developed for higher throughput [23], and reader-preference, writer-preference, and
no-preference RW locks with O(1) RMR time complexity (see Sec. 3) have been presented [7].

Of the PF variants by Brandenburg and Anderson mentioned earlier, the two ticket-
lock-based approaches, the PF-T and PF-C, have O(m) RMR time complexity, while the
queue-based PF-Q has O(1) RMR time complexity [12]. However, when measuring worst-case
overheads, the sub-optimal PF-T outperforms the asymptotically optimal PF-Q [12] due to
the lower frequency of atomic operations. Similarly, the O(1) implementation of Bhatt and
Jayanti [7] also includes multiple atomic instructions within the entry and exit sections of
both reads and writes. We therefore focus our experiments to compare with PF-Ts.

Brandenburg and Anderson also developed suspension-based phase-fair implementa-
tions for clustered-scheduled systems [13].1 Finally, Ward and Anderson applied phase-fair
reasoning to support nested reader/writer locking [28].

3 The PF-L: A New Phase-Fair Lock with Light Reading

Our proposed PF-L is shown in Alg. 1. In this section, we described its motivation, data
structures and how its code works, and analyze its RMR time complexity.

PF-L motivation. Recall from Fig. 1 that PF-T fails to scale for a read-only workload. We
conjectured this was due to overheads, particularly cache-line bouncing and interconnect
traffic triggered by updates to shared lock state. Therefore, we designed the PF-L to isolate,
with respect to caches, lock state where possible, especially among reads on different cores.

1 Clustered scheduling generalizes partitioned and global scheduling.

ECRTS 2021

6:6 Light Reading

 8 7 1 0

unused

PRES
PHID

WBITS

count of issued write requests

Figure 4 Usage of win.

rin rout win wout

win

wout

read_status[0]

read_status[1]

read_status[2]

read_status[3]

PF-T

PF-L

Figure 5 Distribution of locking protocol data structures across cache lines.

Data structures. Like the PF-T, the PF-L uses variables to count the number of write
requests “in” and “out” (i.e., the number issued and completed), win and wout, respectively.
In the lowest-order byte of win, the PF-L maintains two bits indicating if a write request is
present and the current write-phase – each write request is satisfied during either a 0-phase
or a 1-phase. (The alternation of these phases prevents a race condition in which read
requests could otherwise fail to distinguish the end of one write phase from the waiting of
the subsequent active write request.) WBITS refers to these two bits, with PRES being the
writer-present bit and PHID the write-phase bit, as illustrated in Fig. 4. The PF-T uses two
global counters for the number of read reqests issued (rin) and the number of read requests
completed (rout). In contrast, the PF-L uses a per-core variable, read_status, to maintain the
status of any read requests. This difference is illustrated for a four-core system in Fig. 5, in
which all of the variables for the PF-T are stored on the same cache line and each variable for
the PF-L is allocated a separate cache line. Even if rin and rout were separated in the PF-T,
all read requests would require updating those same locations. Instead, in the PF-L, a read
request only updates read_status for its processor, avoiding conflicts with other read requests.
This per-core definition enables isolating the variables to reduce cache interference (described
in depth below). Coordination of read and write phases is achieved by requests updating and
reading these variables. As such, this lock state is essential to ensuring linearizability [19].

Code description. We explain the code in Alg. 1 by walking through part of the example
illustrated in Fig. 2. We describe the execution of the code at several time instants.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:7

Algorithm 1 Phase-Fair with Light Reading (PF-L).

1: type res_state: record // all aligned on different cache lines
2: read_status: array of unsigned integer, each initially COMPLETED ▷ Cache aligned
3: win, wout: unsigned integer, initially 0

4: constant
5: WINC 0x100 // writer increment value
6: WBITS 0x3 // writer bits in win
7: PRES 0x2 // writer-present bit
8: PHID 0x1 // write-phase bit
9: PRESENT 0x3 // reader present indicator

10: COMPLETED 0x4 // reader completed indicator

11: procedure Read_Lock(ℓ: ptr to res_state, k: core index)
12: var w: unsigned int
13: ℓ �read_status[k] := PRESENT
14: w := ℓ�win & WBITS
15: ℓ �read_status[k] := w & PHID ▷ To wait on write phase (w & PHID), if active
16: await (w & PRES = 0) or (w ̸= (ℓ�win & WBITS)) ▷ Satisfied

17: procedure Read_Unlock(ℓ: ptr to res_state, k: core index)
18: ℓ �read_status[k] := COMPLETED

19: procedure Write_Lock(ℓ: ptr to res_state)
20: var wticket, read_waiting: unsigned int
21: wticket := fetch&add(ℓ�win, WINC) and ¬WBITS ▷ In write queue
22: await (wticket = ℓ�wout) ▷ Head of write queue
23: fetch&xor(ℓ�win, 0x3) ▷ Marked present and new phase for reads to see
24: read_waiting := ℓ�win & PHID
25: for k in core numbers do
26: await (read_status[k] = read_waiting) or (read_status[k] = COMPLETED)

27: procedure Write_Unlock(ℓ: ptr to res_state)
28: fetch&and(ℓ�win, 0xFFFFFF01) ▷ Clear PRES, but keep PHID
29: ℓ�wout := ℓ�wout + WINC

Time t = 1. When Rr
3 is issued on P2, it first marks read_status[2] = PRESENT (Line 13).

Then it reads the value in win (Line 14). This is the first request in the system, so w = 0.
Now, read_status[2] = 0, indicating that Rr

3 would wait for a satisfied write request in
Phase 0, if there is one, but none exists, so Rr

3 is satisfied immediately (Line 16).
Just as Rr

3 finishes executing Read_Lock, Rw
2 begins executing Write_Lock. Rw

2
increments win (Line 21), storing wticket = 0 and waits for wticket = wout (Line 22). This
serves as a ticket lock to ensure at most one write request is executing any of the following
lines of Write_Lock. Next, Rw

2 sets the writer-present bit and flips the write-phase bit
(Line 23), resulting in the last two bits of win holding 0b11. This is how the presence and
phase of an active write request is shared with read requests. Rw

2 then computes that a read
waiting for the completion of its write phase would display a read_status value of 1. Rw

2
next checks for active read requests on each core. For P0 and P1, it reads the read_status
as COMPLETED and proceeds. However, for P2, Rw

2 reads read_status[2] = 0. Thus, the read
request on P2 is not waiting for Rw

2 but is satisfied; Rw
2 waits for this request to complete.

Time t = 2. As illustrated in Fig. 2, while Rw
2 waits, Rr

0 is issued. At t = 2, the resource
is in a read phase, but the waiting write request requires Rr

0 to wait until the subsequent
read phase (by Rule PF4). This is accomplished in Read_Lock as follows. Rr

0 sets
read_status[0]=PRESENT, stores w = 3, and sets read_status[0] = 1. It then awaits a change
in the WBITS of win, which will not occur until Rw

2 completes. Note that from the perspective
of Rw

2 , P0 was already checked for active read requests, but the newly issued read request
will safely wait based on the check of win, so no additional checks are required.

ECRTS 2021

6:8 Light Reading

Time t = 4. Once Rr
3 completes, and Rw

2 becomes satisfied by the phase-fair rules.
We now illustrate how that is accomplished in the PF-L. When Rr

3 completes, it marks
read_status[2] = COMPLETED (Line 18). Then Rw

2 sees read_status[2] = COMPLETED and
resumes checking cores. Next, Rw

2 checks P3 and sees read_status[3] = PRESENT, as Rr
4 has

just been issued. However, like Rr
0, Rr

4 soon sets read_status[3] = 1, indicating that the
read request on P3 is waiting for the execution of a write Phase 1 (Rw

2 ’s write phase). Rw
2

proceeds, reads read_status[4] = COMPLETED, and becomes satisfied.

Time t = 7. Once Rw
2 completes, it clears the writer-present bit (Line 28); the last two

bits of win subsequently hold 0b01, indicating that there is not a writer present and that
the prior write phase was Phase 1. The waiting read requests, Rr

0 and Rr
4, observe this

change and are satisfied immediately. Next Rw
2 increments wout (Line 29), prompting Rw

5
to execute the remaining logic of Write_Lock.

RMR time complexity. The remote memory references (RMR) time-complexity measure
was proposed in work on spin-based synchronization algorithms [33]. Under this measure,
only operations that generate an interconnect traversal are counted; other operations are
ignored. In applying this measure, architectural details are dealt with somewhat abstractly.
In this work, we use a refined notion of RMR time complexity that incorporates such details.

Specifically, we assume a write-back, write-invalidate cache coherence protocol [17],
which is consistent with many commodity processors (e.g., x86 Intel and AMD processors).
Abstractly, a write-back cache is one in which a memory write is cached and not written
until later necessary (e.g., due to a cache eviction). In a write-invalidate cache, when a
memory write occurs, if that address is cached on a remote core, it is marked as invalid and
subsequent accesses must be re-read. Any communication among caches is performed over
an interconnect that all caches snoop or listen upon for any events that require updating
their state. This interconnect introduces latency into cache and memory operations. We
refer the reader to [18] for further discussion, but highlight the two most salient properties of
such caches that influence the PF-L’s design:
C1 When a cache block is written it becomes write hot. Any subsequent core-local reads or

writes of that block do not generate interconnect traffic while the block is write hot. The
block stays write hot until it is evicted, or read or written by another core.

C2 A cache block that is read that is not write hot becomes read hot. Any subsequent
core-local reads of that block do not generate interconnect traffic while the block is read
hot. The block stays read hot until it is evicted or modified by any core.

Given this model, we define a local memory reference (LMR) to be one in which no
interconnect traversal is generated from the L1 data cache. For simplicity, we assume that
atomic operations generate interconnect traffic, and are therefore not LMRs. Conversely,
remote memory references (RMRs) are ones that are not local.

When analyzing RMR time complexity, we assume there are no conflict misses, i.e., that
there is sufficient cache space for all lock state to be cached concurrently. Furthermore, we
assume cached lock state persists both during and between critical sections. Finally, we
assume there are no cache evictions due to preemptions or migrations, as such costs are
typically accounted for through separate analyses [6]. While in practice these assumptions
may not always hold, they enable analysis of RMRs inherent to the protocol over a sequence
of lock invocations, rather than on a per-invocation basis. This is relevant in cases where
there is high lock contention, and potentially many requests to the same lock by one task.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:9

RMR time complexity of the PF-L. Assuming the cache behavior defined above, the PF-L
has O(1) amortized RMR time complexity for an arbitrary sequence of r consecutive read
requests on the same core uninterrupted by a write request, instead of Ω(r) as in all prior
phase-fair approaches. Towards establishing this, we define a read interval to be an interval
[t, t′) in which there is no pending or completed write request. Note that read requests from
any and all cores may be issued and satisfied during a read interval. Now consider a read
interval [t, t′) and a sequence of read requests Rr

1, . . . , Rr
r on core P ∗ that are issued after t

and completed before t′. We make no assumption about the initial cache state at time t,
and therefore at Line 16, Rr

1 incurs an RMR to cache win. This leaves win read hot and
read_status[P ∗] write hot on P ∗ when Rr

1 completes. Rr
1 therefore incurs O(1) RMRs.

Continuing inductively, we show that each subsequent read request Rr
j where j ∈

{2, . . . , r}, incurs no RMRs, and leaves the cache in the same state. First, observe that win
is only modified by write requests (Lines 21, 23, and 28), which by definition do not occur in
a read interval. Therefore, win will not be invalidated by Rr

j , and will remain read hot (C2).
Thus, any access to win by Rr

j will be an LMR.
Next, observe that read_status[P ∗] is (i) only modified by read requests on P ∗ (Lines 13,

15, and 18), and (ii) only read by write requests, which by definition do not occur in the read
interval. Thus, the accesses to read_status[P ∗] are writes to a write-hot block, which are
LMRs, and leave read_status[P ∗] write hot (C1). Taken together, this reasoning inductively
proves O(1) amortized RMR time complexity as claimed.

We note that, in the presence of write requests, reads in the PF-L have O(m) RMR time
complexity. In particular, before a read request is satisfied, it spins on win, which may be
updated by at most m − 2 other newly issued write requests. Write requests in the PF-L
clearly have O(m) RMR time complexity. The spinning at Line 22 generates O(m) RMRs
(like any ticket lock), as does the for loop at Lines 25-26.

4 Evaluation of the PF-L

We empirically compared the PF-L to Brandenburg’s PF-T implementation [11]. The results
of this comparison include throughput graphs, including Fig. 1, as well as overhead data
measured as a function of varying workloads. We conducted all experiments on a two-socket,
18-cores-per-socket x86 machine running the Linux 4.9.30 LITMUSRT kernel [2], with two
Intel Xeon E5-2699 v3 CPUs @ 2.30 GHz, 128 GB of RAM, and three levels of cache: per-core
32 KB L1 data and instruction caches, 256 KB L2 caches shared by pairs of cores, and
46,080 KB L3 caches shared by all cores on the same socket. We performed each evaluation
on m ∈ {2, . . . , 36} cores and two sockets. For m ≤ 18, only one socket was used.

Recall that in the PF-L all lock-status variables are aligned to be cached on different
lines. This allows each read_status variable to exist in a core-local L1 cache and never be
invalidated by readers on other cores. Brandenburg’s PF-T variables are all packed into
a single cache line by design to minimize cache-line reloading costs [11]. All subsequent
references to the PF-T are to Brandenburg’s original implementation unless otherwise stated.

In conducting the following experiments, the contents of the cache were not protected.
However, these experiments were conducted in isolation, so the cache behavior can be entirely
attributed to the experiments. We did not conduct experiments in which another workload
was designed to evict cache lines, as our focus was on capturing the overhead of cache
evictions inherent to the execution of the protocol itself. There is prior work on protecting
caches lines in real-time systems [4, 14, 15, 20, 21, 22, 29, 31, 32, 34], and one of these
approaches could be applied to ensure competing workloads in a system do not evict the
data structures of the locking protocol from the cache.

ECRTS 2021

6:10 Light Reading

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

25

50

75

100

125

150
Th

ro
ug

hp
ut

 (1
00

K
op

s/
s) PF-T

PF-T (aligned)
PF-L

(a) 5% inserts, 95% lookups

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
Number of cores

10

15

20

25

30

Th
ro

ug
hp

ut
 (1

00
K

op
s/

s) PF-T
PF-T (aligned)
PF-L

(b) 50% inserts, 50% lookups

Figure 6 Red-black tree throughput.

Throughput. We evaluated throughput using a realistic workload of lookups (reads) and
inserts (writes) in a shared red-black tree, as this was the motivating use case that inspired
this paper. Throughput was measured holistically to include locking overheads, blocking,
and varying critical-section lengths based on whether an operation was a read or write. All
operations were partitioned evenly across cores executing a single task per core. For each
experiment, we averaged the throughput for ten unique random trees, each with a million
nodes. The results for an all-read workload are shown in Fig. 1, which includes a plot for the
same experimental setup with no synchronization. Fig. 6 presents throughput trends for a
read-dominant workload and a workload with evenly distributed reads and writes.

▶ Observation 3. The PF-L exhibited linear scaling with increasing core counts for an
all-read workload.

Fig. 1 highlights the pitfalls of the PF-T for an all-read workload. In comparison,
throughput under the PF-L scaled linearly with the core count as the read_status variable
was maintained write hot in the L1 data cache. Cache behavior enabled better scaling on
one-socket for read-dominant workloads, as shown in Fig. 6a. On two sockets, throughput
decreased with higher core counts due to more expensive interconnect operations. For more
balanced workloads of reads and writes, as shown in Fig. 6b, throughput did not increase for
either the PF-L or PF-T. This is because, with both reads and writes present, the RMR
complexity for all requests in the PF-L is O(m), as shown earlier. However, throughput was
still higher by up to 25% than for the PF-T due to overheads.

After observing the benefits of cache-aligned variables in the PF-L, we tested aligning
each PF-T variable in its own cache line. We discovered this version outperformed the
original PF-T– a useful contribution in its own right. Throughput for the cache-aligned
PF-T is also shown in Fig. 6; the cache-aligned PF-T actually performed similarly to the
PF-L in the evenly distributed workload of reads and writes on high core counts.

Overheads. In measuring overheads, it is necessary to distinguish time spent in operations
inherent to the algorithm (overheads) from those incurred while spinning (blocking). For
overhead-measurement purposes only, we instrumented both the PF-T and the PF-L to
measure overheads and blocking separately. We recorded blocking and overhead times
for 100,000 lock and unlock calls across an increasing number of cores. To simulate high
contention and record worst-case overheads, critical sections were empty. All figures present
the 99th percentile observed overheads to filter outliers due to interrupts and other jitter due
to userspace timing. Fig. 7 shows overhead trends for several different workloads. Overheads
were measured separately for reads and writes, each including both lock and unlock costs.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:11

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ov

er
he

ad
 (m

icr
os

ec
on

ds
)

PF-T reads
PF-L reads

(a) All reads

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-T reads
PF-L reads
PF-T writes
PF-L writes

(b) 5% writes

5 10 15 20 25 30 35
Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-T reads
PF-L reads
PF-T writes
PF-L writes

(c) 50% writes

5 10 15 20 25 30 35
Number of cores

0.0

0.2

0.4

0.6

0.8

Ov
er

he
ad

 (m
icr

os
ec

on
ds

)

PF-L 0
PF-L 5
PF-L 10
PF-L 50
PF-L 95

(d) the PF-L with varying write %

Figure 7 Total overheads for lock and unlock operations.

▶ Observation 4. The PF-L exhibited constant overheads for an all-read workload.

Fig. 7a shows that the PF-L exhibited constant lock and unlock overheads of about 0.1µs

across both sockets, while the PF-T overheads were on average 0.4µs on one socket, and up
to 1.3µs on two sockets. This is attributable to the fact that in the PF-L, read lock and
unlock operations only modify a single core-local variable. The PF-T read lock atomically
increments a shared variable, which in turn invalidates other caches and bounces the variable
across cores and sockets, yielding increased overhead.

As write percentages increase, read operations become more costly as read_status variables
are read by writers on other cores and the write-related variables are constantly updated
on all cores with read requests. This behavior also causes an increase in write overheads.
The PF-T experienced higher overheads for read-dominant (Fig. 7b) and evenly distributed
(Fig. 7c) workloads. Since all PF-T variables are on a single cache line, each update invalidates
cache-line values for all other cores, resulting in an RMR for every entry and exit section.

▶ Observation 5. For all workloads with some writes, overheads increased by up to 3× on
two sockets.

All insets in Fig. 7 show higher overheads on two sockets other than the PF-L for an all-read
workload. This is attributable to higher cross-socket RMR latencies for both the PF-T
and the PF-L for mixed workloads. Fig. 7a highlights the case in which reads in the PF-L
generate no RMRs (by design) and does not exhibit increased overheads when executing on
two sockets. This claim is further supported by throughput results in Fig. 6, where execution
on two sockets consistently yielded lower throughput.

▶ Observation 6. Reading under the PF-L incurred less overhead than reading under
the PF-T.

For all tested scenarios across varying write percentages and core counts, read operations
under the PF-L yielded lower overheads than the PF-T. Fig. 7d shows trends in read
overheads with varying write percentages. Beyond 50% writes, overheads were consistent for

ECRTS 2021

6:12 Light Reading

all read operations and at most 0.7µs. The PF-L overheads for write-dominant workloads
did not appreciably increase beyond 50% writes. With more writes, cache-line invalidations
become frequent and cause higher overheads.

5 Schedulability Analysis of Phase-Fair Reader-Writer Locks

Recent work [9] presented an analysis framework for P-EDF built around a prior schedulability
test [5]. Within this framework, each processor is analyzed in turn, incorporating the delays
caused to the execution of tasks on that processor due to waiting for access to shared
resources. In the discussion below, the processor under consideration is denoted P ∗. The
schedulability framework uses a fixed point iteration to bound the length of the analysis
interval on P ∗, which we denote I, by using the concept of an arrival curve (AC) [26] and
processor demand criterion (PDC) [5]. At each iteration, a bound on the delays over I
caused by shared resources is required; this bound is what we must provide. Along with the
original presentation of the analysis framework, an integer linear programming approach to
bounding delays for mutex locks was given [9]. In order to apply this analysis framework to
a system in which shared resources are instead managed by phase-fair reader/writer locks,
we must instead provide bounds for that locking protocol. The schedulability framework
is described in full detail in prior work [9], and the remainder of this section is devoted to
determining a bound on delays under phase-fair reader/writer locks.

We build on the previously presented inflation-free analysis for mutex locks [9] to obtain
such analysis. We begin by describing the types of delay, along with the constants and
variables used in the formulation of our optimization problem. The remainder of the section
is devoted to showing that the constraints we apply hold.

Types of delay. To check schedulability, analysis is required to bound synchronization delay,
which includes delays due to both spinning and non-preemptive execution. Spin delay is the
delay incurred on P ∗ when a task on P ∗ waits for a resource by spinning. Arrival delay is
the delay on P ∗ that is incurred when a job is unable to begin executing due to the non-
preemptive execution of a lower-priority job. Note that the job executing non-preemptively
may be either spinning or executing with a satisfied request. Both types of blocking are
illustrated in Fig. 2.

To constrain the computed arrival blocking, the inflation-free approach [9] leverages two
key observations that are derived from existing schedulability analysis [5], generalized here:

O1: Arrival blocking in an analysis interval I of length t is caused only by tasks with a
relative deadline larger than t.
O2: Only a single blocking request can cause arrival blocking.

In the rest of this section, we describe the creation of the optimization problem that
we define for I to compute the maximum synchronization delay (denoted B(P ∗, t)). This
problem can be solved with a linear-programming solver, such as GLPK [1]. While we build
on an existing framework, the assumptions that informed the construction of the approach
for mutex locks do not all hold for phase-fair locks, which require new reasoning.

We begin by describing the constants and variables of our optimization problem. Then,
we briefly describe the set of constraints that are straightforward modifications of the original
approach; the proofs of these constraints are given in App. A. Finally, we present the
constraints that require new reasoning unique to PF locks.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:13

Constants and variables. We conduct schedulability analysis for each partition separately.
Here, we focus on the analysis for partition P ∗. We denote the set of all partitions by P,
and the set of all tasks by Γ. We refer to the set of tasks partitioned to a remote processor
(any processor other than P ∗) as Γr, and the set of tasks on a given processor Pk as Γ(Pk).
We denote the period of an arbitrary task, τi, by Ti, and its relative deadline by Di. We
reason about an arbitrary resource ℓq in the set of all resources Q. We use constants for
the number of requests each job issues and the duration of requests by type; we denote the
maximum duration of a read (resp., write) request issued by a job of τi for a resource ℓq with
LR

i,q (resp., LW
i,q). A job of τi issues at most NR

i,q (resp., NW
i,q) read (resp., write) requests.

The following variables are used in our optimization problem to bound blocking:
XS,R

i,q is the spin delay caused by read requests issued by τi for ℓq.
XS,W

i,q is the spin delay caused by write requests issued by τi for ℓq.
XA,R

i,q is the arrival blocking caused by read requests issued by τi for ℓq.
XA,W

i,q is the arrival blocking caused by write requests issued by τi for ℓq.
AR

q is an indicator (i.e., binary) variable. AR
q = 1 indicates that arrival blocking is caused

by a read request for ℓq, whereas AR
q = 0 indicates that no arrival blocking is caused by a

read request for ℓq.
AW

q is similarly an indicator of arrival blocking caused by a write request for ℓq.

For the specification of the optimization problem given below, we are applying the PDC.
As such, the number of jobs τj on P ∗ (a local task) that must be considered during the
analysis interval I of length t is nljobs(τj , t) =

⌊
t+Tj−Dj

Tj

⌋
. The number of jobs of a remote

task τj that must be accounted for is nrjobs(τj , t) =
⌈

t+Dj

Tj

⌉
. The modifications described

previously [9] allow for simple changes to the specification of the optimization problem to
instead reason about the AC.

Optimization problem. The optimization problem we seek to solve is formulated to maximize
the computed blocking subject to a set of constraints that limit this blocking by considering
scenarios that cannot occur. This problem is as follows.
maximize B(t) =

∑
∀τi∈Γ

∑
ℓq∈Q[(XS,R

i,q + XA,R
i,q) · LR

i,q + (XS,W
i,q + XA,W

i,q) · LW
i,q]

subject to the constrains in Tbl. 1.

Foundational RW constraints. The first set of constraints builds directly on the inflation-
free analysis presented for mutex locks [9], with the distinction that we instead specify read-
and write-versions of each variable, as detailed above. We describe these constraints briefly
here and present the full versions in App. A.

Constraint (1) limits the computed arrival blocking terms for read and write requests
by comparing the relative deadline of each task to the length of the deadline busy-period.
Constraint (2) enforces that spin delay can be caused only by tasks remote to P ∗. Con-
straints (3) and (4) limit the contribution of each request (read and write requests, resp.) to
delays; each request can contribute to either arrival blocking or spin delay, but not both.

The next five constraints focus on arrival blocking. As arrival blocking can be caused
by only a single request (Observation O2), it can be caused by either a read request or a
write request (not both); this is enforced by Constraint (5). Constraints (6) and (7) leverage
the fact that resources for which there are no read (resp., write) requests cannot cause read
(resp., write) arrival blocking. Finally, Constraints (8) and (9) bound the total number of

ECRTS 2021

6:14 Light Reading

read (resp., write) requests that can cause arrival blocking by the binary variable indicating
if arrival blocking is caused by a read (resp. write) request for that resource.

Helper variables. We introduce four helper variables, XS,R-to-W
i,q , XS,R-to-R

i,q , XS,W-to-W
i,q , and

XS,W-to-R
i,q , to analyze the spin blocking caused by remote requests by cases. For example,

XS,R-to-W
i,q is the number of read requests issued by τi that delay write requests.

Constraints on spin blocking. The following constraints limit the spin blocking that can be
computed based on the possible interactions between read and write requests. These must
account for the access patterns that can occur under phase-fair locks. Constraints (10) and
(11) join the helper variables to those counting total read and write spin delay.

Proof of (10). Each read by a remote task τi can induce spin delay on a read request or
a write request, but not both, on P ∗, as all requests execute non-preemptively. Thus, the
number of read requests of τi for ℓq that cause spin delay (XS,R

i,q) is obtained by summing the
number that delay read requests (XS,R-to-R

i,q) and write requests (XS,R-to-W
i,q), respectively. ◀

Proof of (11). Similar to that of Constraint (10). ◀

Constraints (12) and (13) limit the contribution of write requests to spin delay by
considering the total number of read and write requests on P ∗ during I.

Proof of (12). By Rules PF1 and PF3, a given read request may be delayed by at most one
write phase. There are at most

∑
τi∈Γ(P ∗) nljobs(τi, t)·NR

i,q read requests for ℓq on P ∗ during I.
Thus, that number upper bounds the number of write requests from other processors that can
cause delay to read requests for ℓq on P ∗, which is

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

x,q . ◀

Proof of (13). There are at most
∑

τi∈Γ(P ∗) nljobs(τi, t) · NW
i,q write requests on P ∗ during

I. At most one write request per processor can delay the execution of each write request
on P ∗, because write requests are satisfied in FIFO order (by Rule PF2), requests execute
non-preemptively, and only one write request is satisfied during each write phase (by Rule
PF3). Thus, for each processor Pk, the number of write requests delaying write requests on
P ∗ (

∑
τx∈Γ(Pk) XS,W-to-W

x,q) is bounded by the number of write requests on P ∗ in I. ◀

Constraints (14) and (15) bound the impact of remote read requests on read requests on
P ∗. We use the following lemma and corollary in verifying them.

▶ Lemma 7. A read request Rr
i is blocked by at most one read phase and one write phase.

Proof. If there are no active requests when Rr
i is issued, it will be satisfied immediately.

If instead there are active read requests and no active write requests, Rr
i is satisfied

immediately upon issuance by Rule PF4.
If there are active write requests and no active read requests when Rr

i is issued, it will
be delayed by the current write phase and then satisfied after the currently satisfied write
request completes by Rules PF1 and PF3.

If there is at least one active write request and one active read request when Rr
i is issued,

then either a write request or a read request is currently satisfied. If a write request is
satisfied, then Rr

i will be satisfied upon the completion of that request by Rules PF1 and
PF3. If instead the resource is in a read phase, Rr

i must wait for the completion of this read
phase (by Rule PF4) and the completion of a single write phase (by Rules PF1 and PF3).

Thus, in all cases, Rr
i is blocked by at most one read phase and one write phase. ◀

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:15

Table 1 Linear-program constraints. Constraints (1)–(9) are described in App. A.

Number Constraint Specification
(1) ∀τ ∈ Γ(P ∗)|Di ≤ t, ∀ℓq ∈ Q, XA,R

i,q + XA,W
i,q = 0

(2)
∑

τi∈Γ(P ∗)
∑

ℓq∈Q XS,R
i,q + XS,W

i,q = 0

(3) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,R
i,q + XA,R

i,q ≤ nrjobs(τi, t) · NR
i,q

(4) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,W
i,q + XA,W

i,q ≤ nrjobs(τi, t) · NW
i,q

(5)
∑

ℓq∈Q AR
q + AW

q ≤ 1

(6) ∀ℓq ∈ Q, AR
q ≤

∑
τi∈Γ(P ∗)|Di>t NR

i,q

(7) ∀ℓq ∈ Q, AW
q ≤

∑
τi∈Γ(P ∗)|Di>t NW

i,q

(8) ∀ℓq ∈ Q,
∑

∀τi∈Γ(P ∗) XA,R
i,q ≤ AR

q

(9) ∀ℓq ∈ Q,
∑

∀τi∈Γ(P ∗) XA,W
i,q ≤ AW

q Constraints adapted from [9]

(10) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,R
i,q = XS,R-to-R

i,q + XS,R-to-W
i,q New Constraints

(11) ∀τi ∈ Γr, ∀ℓq ∈ Q, XS,W
i,q = XS,W-to-R

i,q + XS,W-to-W
i,q

(12) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-R
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NR

i,q

(13) ∀Pk ∈ P , ∀ℓq ∈ Q,
∑

τx∈Γ(Pk) XS,W-to-W
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NW

i,q

(14) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q ≤

∑
τi∈Γ(P ∗) nljobs(τi, t) · NR

i,q

(15) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q ≤

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

i,q

(16) ∀ℓq ∈ Q,
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-W
x,q

≤
∑

τi∈Γ(P ∗)(nljobs(τi, t) · NW
i,q) +

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-W

x,q

(17) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,W-to-W
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q)

(18) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,W-to-R
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NR

i,q)

(19) ∀τx ∈ ΓR, ∀ℓq ∈ Q, XS,R-to-R
x,q ≤ nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NR

i,q)

(20) ∀ℓq ∈ Q, AR
q + AW

q = 0 ⇒
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q + XA,W

x,q ≤ 0

(21) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q ≤ 1

(22) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,W

x,q ≤ 1

(23) ∀ℓq ∈ Q, AR
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q

≤
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q

(24) ∀ℓq ∈ Q, AW
q = 1 ⇒

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q

≤ 1 +
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q

(25) ∀Pk ̸= P ∗, ∀ℓq ∈ Q, AW
q = 1 ⇒

∑
τx∈Γ(Pk) XA,W

x,q ≤ 1

▶ Corollary 8. If a read request Rr
i is blocked by W write requests, it is blocked by at most

W read phases.

Proof. In the proof of Lemma 7, which enumerated all possible blocking scenarios for a read
request Rr

i , the only scenario in which a request Rr
i is blocked by a read request is when a

write request also blocks Rr
i . ◀

Proof of (14). During I, there are at most
∑

τi∈Γ(P ∗) nljobs(τi, t) · NR
i,q read requests

on P ∗. By Lemma 7, each read requests can be delayed by at most one read phase.
Thus the total number of read requests that cause spin blocking for read requests on P ∗

(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,R-to-R
x,q) is bounded by the number of read requests on P ∗. ◀

ECRTS 2021

6:16 Light Reading

Proof of (15). By Cor. 8, a read request can be delayed by a read phase only if it is also de-
layed by a write phase. Thus, the total number of read requests causing spin blocking for read
requests on P ∗ (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,R-to-R

x,q) is bounded by the total number of write
requests causing spin blocking for those requests (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,W-to-R

i,q). ◀

We now examine how read requests can delay write requests.

▶ Lemma 9. If W write phases block a write request Rw
i , at most W + 1 read phases block Rw

i .

Proof. By Rule PF1, read phases and write phases alternate. Before each of the W write
phases that block Rw

i , a read phase can occur. Additionally, after the last blocking write
phase and before the satisfaction of Rw

i , an additional read phase can occur. Therefore, at
most W + 1 read phases can block Rw

i . ◀

Constraint (16) limits read-to-write blocking and its proof leverages Lemma 9.

Proof of (16). There are
∑

τi∈Γ(P ∗)(nljobs(τi, t) · NW
i,q) write request to consider on P ∗

during I. For each of these requests individually, if some number W write phases block
the request, up to W + 1 read phases can also block that request, by Lemma 9. In total,∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-W
x,q write requests can block these write requests, by defini-

tion. As each write request can incur one additional blocking by a read request, an additional∑
τi∈Γ(P ∗)(nljobs(τi, t) ·NW

i,q) read requests can block write requests on P ∗. Thus, in total the
number of read requests that can delay write requests (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XS,R-to-W

x,q)
is bounded by

∑
τi∈Γ(P ∗)(nljobs(τi, t) · NW

i,q) +
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XS,W-to-W
x,q . ◀

Finally, we constrain the impact of each remote task on tasks on P ∗ by considering how
jobs may overlap based on their respective periods and deadlines. The next two lemmas are
used in verifying Constraints (17)–(19).

▶ Lemma 10. The requests for ℓq issued by a single job of a remote task τx ∈ Γr overlap
with at most nrjobs(τi, Dx) · Nw

i,q write requests for ℓq issued by jobs of τi ∈ Γ(P ∗).

Proof. The number of jobs of τi that overlap with a single job of τx is at most nrjobs(τi, Dx).
Each job of τi issues up to Nw

i,q write requests. Thus, the requests from a single job of τx ∈ Γr

overlap with at most nrjobs(τi, Dx) · Nw
i,q write requests for ℓq issued by jobs of τi. ◀

▶ Lemma 11. The requests for ℓq issued by a single job of a remote task τx ∈ Γr overlap
with at most nrjobs(τi, Dx) · Nr

i,q read requests for ℓq issued by jobs of τi ∈ Γ(P ∗).

Proof. Follows as above, but for read requests. ◀

Constraint (17) limits blocking caused by write requests.

Proof of (17). By Lemma 10, a single job of a task τx ∈ Γr overlaps with up to nrjobs(τi, Dx)·
Nw

i,q write requests of an arbitrary task τi ∈ Γ(P ∗). Thus, a single job of τx can overlap
with a total of

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q) write requests issued on P ∗. Because of the
non-preemptive execution and FIFO satisfaction order of write requests (Rule PF2), each
of these write requests on P ∗ can be delayed by at most one overlapping write request per
job of a remote task. During I, nrjobs(τx, t) jobs of τx must be considered. Thus, the total
number of write requests of τx that can cause spin delay on P ∗ (XS,W-to-W

x,q) is bounded by
nrjobs(τx, t) ·

∑
τi∈Γ(P ∗)(nrjobs(τi, Dx) · NW

i,q). ◀

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:17

Constraints (18) and (19) limit blocking caused to read requests on P ∗.

Proof of (18). Lemma 11 bounds the number of read requests that a job of τx ∈ Γr may
overlap with. By Lemma 7, at most one write phase can delay each read request, implying
that at most one write request per job can delay each read request. Thus, the constraint
follows similarly to Constraint (17). ◀

Proof of (19). Follows similarly to Constraint (18) by instead applying that each read
request can be blocked by at most one read request (by Lemma 7). ◀

Constraints on arrival blocking. A single request on P ∗ can cause arrival blocking by
its non-preemptive blocking and then execution. The duration of this arrival blocking is
impacted by the type of request that causes it.

The following constraints are indicator constraints; if a variable in the optimization
problem holds a specified value, an additional constraint is imposed. Some linear programming
solvers allow the direct specification of indicator constraints. Alternatively, each indicator
constraint can be converted to a set of linear constraints by using Big-M techniques [10].

Constraint (20) accounts for the case in which no requests for ℓq cause arrival blocking.

Proof of (20). If neither a read request nor a write request for ℓq can cause arrival blocking
(AR

q + AW
q = 0), the total number of remote requests that can contribute to arrival blocking

(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q + XA,W

x,q) is 0. ◀

Because any arrival blocking is caused by a single request on P ∗, we apply reasoning
based on request type to eliminate blocking that cannot possibly occur. Constraints (21)–(23)
apply if a read request causes arrival blocking. Recall that a single read request can be
blocked by at most one read request and one write request by Lemma 7.

Proof of (21). If a read request on P ∗ causes arrival blocking (AR
q = 1), at most one read

phase can contribute to its delay by Lemma 7. Thus, the total number of read requests
from remote processors that can cause arrival blocking (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,R

x,q) is
bounded by 1. ◀

Proof of (22). Similarly, the total number of write requests from remote processors that
can cause arrival blocking (

∑
Pk∈P|Pk ̸=P ∗

∑
τx∈Γ(Pk) XA,W

x,q) is bounded by 1. ◀

Proof of (23). If a read request on P ∗ causes arrival blocking (AR
q = 1), then by Cor. 8,

if it is blocked by W write requests, it will be blocked by at most W read requests. Be-
cause of the non-preemptive execution of requests, any requests that contribute to the
blocking of the read on P ∗ that causes arrival blocking are requests issued by tasks on
remote processors. Thus, the total number of write requests that block this read request
(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q) upper bounds the number of read requests that block this

read request (
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q). ◀

Constraints (24) and (25) consider arrival blocking that is caused by a write request.

Proof of (24). If a write request on P ∗ causes arrival blocking (AW
q = 1), the number of

read requests that can block it is bounded by one more than the write requests causing delay
(by Lemma 9). Thus, the total number of remote read requests that cause arrival blocking
(
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,R
x,q) is bounded by one more than the number write requests on

remote processors that cause arrival blocking (
∑

Pk∈P|Pk ̸=P ∗
∑

τx∈Γ(Pk) XA,W
x,q). ◀

ECRTS 2021

6:18 Light Reading

Table 2 Summary of percentage TSA improvement of LP:PF.

Min Q1 Median Q3 Max
Inflation:PF 0.383 10.1 28.5 54.5 158.6

Proof of (25). If a write request on P ∗ causes arrival blocking (AW
q = 1), by Rules PF2 and

PF3 and the non-preemptive execution of requests, at most one write request per remote
processor can delay that write request, as requests execute non-preemptively. Thus, the total
number of write requests that cause arrival blocking issued by tasks on Pk (

∑
τx∈Γ(Pk) XA,W

x,q)
is bounded by 1. ◀

6 Schedulability Evaluation

To explore the benefit of our new approaches we conducted a schedulability study by using
the SchedCAT toolkit [3] and building upon a prior implementation [9].

Schedulability improvements. We begin by comparing our inflation-free analysis for phase-
fair reader-writer locking protocols (labeled “LP:PF”) to the existing per-request inflation-
based PF analysis (labeled “Inflation:PF”). To reduce the time it took to compute schedulab-
ility, we applied our holistic analysis for phase-fair locks only if the per-request inflation-based
approach failed to be schedulable. The line labeled “NOLOCK” shows the computed
schedulability if the delays for resource accesses are ignored.

In this study, we computed schedulability for increasing task counts under different
scenarios, with 216 scenarios total. Each scenario is a different combination of certain system
parameters. We considered a system with eight processors. Task periods were selected from
a log-uniform distribution in [10ms, 100ms] or in [1ms, 1000ms]. Each task’s utilization was
chosen from an exponential distribution with a mean of 0.1. The number of resources (nr)
in a scenario was selected from {4, 8, 16}. For each resource, the probability that a task
requires that resource was chosen from {0.1, 0.25, 0.5}. The number of times a task accesses
a given resource was either 1 or was selected from {1, . . . , 5}. For a given access to be write
access (instead of a read access) was chosen with a probability selected from {0.01, 0.1, 0.5}.
Request durations were either short (selected uniformly from [1µs, 25µs]) or medium (selected
uniformly from [25µs, 100µs]). These parameters closely reflect those on which the original
holistic analysis framework [9] was analyzed.

This study resulted in 216 schedulability graphs (one per scenario), which show the
ratio of schedulable tasks systems out of the 1,000 systems generated for each data point.
Performance is evaluated on the basis of task schedulable area (TSA), the area under a given
curve as computed by a midpoint Riemann sum. In Tbl. 2, we summarize the data on the
percentage TSA improvement of LP:PF, and we highlight some key scenarios in Fig. 8.

▶ Observation 12. The LP:PF approach always resulted in a higher TSA than Inflation:PF.

This is illustrated in Fig. 8. The cases in which LP:PF resulted in the largest percentage
improvement (50.% to 158.6%) were primarily for scenarios with write probability of 0.1 or
0.5; 96.9% of these scenarios had write probability of 0.1 or 0.5.

▶ Observation 13. In some scenarios, the LP:PF resulted in only small increases in
schedulability.

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:19

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(a) Near Q1 (10.1% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(b) Near median (28.5% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(c) Near Q3 (54.5% improvement)

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
Inflation:PF
LP:PF

(d) Significant improvements (110%)

Figure 8 Comparisons against Inflation:PF.

This is illustrated in Tbl. 2 and Fig. 8a. For the scenarios with TSA improvements in the
first quartile, in which the LP:PF had a small percentage of improvement, both approaches
tended to yield a TSA close to that of NOLOCK.

Overhead-aware schedulability. We conducted an additional scheduability study in which
we incorporated protocol overheads. We inflated requests by the corresponding overhead
and analyzed the resulting systems with our PF analysis; “LP+PF-T” (resp., “LP+PF-L”)
represents the computed schedulability with the PF-T (resp., PF-L) overheads added. We
measured overheads as described in Sec. 4 with eight cores across two sockets for scenarios
with up to 10% write requests. For the PF-T, this resulted in read (resp., write) overhead of
2.2µs (resp., 1.7µs), and for the PF-L, read (resp., write) overhead of 0.5µs (resp., 0.9µs).

In our study of read-dominated workloads (write probability in {0.01, 0.1}), we observed
moderate differences, with an average TSA improvement for LP+PF-L of 1.01%. In some
scenarios, the overhead was negligible relative to the blocking. In others, generally those with
more resource accesses, the TSA difference was more pronounced. We observed scenarios
with up to a 10.4% improvement, as depicted in Fig. 9a. These results support the following.

▶ Observation 14. For read-dominant workloads, our new PF-L protocol and schedulability
analysis dominated prior state-of-the art approaches.

The schedulability improvements initially seemed modest relative to the impacts of lower
overhead on throughput. However, the task systems considered in Sec. 4 are quite different
(e.g., significant execution time spent in the execution of requests) from those detailed in
the schedulability study just discussed. Therefore, to assess the impact of overheads alone
(without blocking) in a system with significant resource requirements, we conducted an
additional overhead-aware schedulability study that focused on read-only workloads with
a variable number of requests for a single shared resource. Here, we applied overheads
measured from a system with 0% write requests; thus, we applied overheads of 1.2µs for

ECRTS 2021

6:20 Light Reading

8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80
Number of Tasks

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio
NOLOCK
LP+PF-L
LP+PF-T

(a) Periods selected from {1,1000}ms, 16 resources,
0.5 access probability, up to 5 requests per resource,
short request durations, and write probability of
0.01.

20 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of Requests

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sc
he

du
la

bi
lit

y
Ra

tio

NOLOCK
LP+PF-L
LP+PF-T

(b) 32 tasks with periods selected from {1,1000}ms,
one resource, access probability of 1.0, and write
probability of 0.

Figure 9 Schedulability with protocol overhead incorporated.

the PF-T and 0.2µs for the PF-L. Fig. 9b gives the schedulability graph that resulted from
this study. These findings are consistent with the throughput experiments (e.g., Fig. 1),
and confirm that small overheads can significantly affect throughput and schedulability for
synchronization-heavy read-dominant workloads.

7 Conclusion

We presented a new phase-fair reader/writer lock implementation and inflation-free PF
schedulability analysis that, taken together, can improve both throughput and schedulability
in comparison to prior alternatives when supporting read-mostly workloads. While this work
was motivated by heavily read-dominant workloads, our findings suggest that the presented
lock implementation may be competitive, if not superior, to previous RW locking protocols
in most applications. We have demonstrated these improvements via experiments on real
hardware and via a schedulability study. In future work, we intend to explore how other
concurrent algorithms can be adapted based on cache coherence and performance properties
to improve scalability similar to that we have demonstrated herein.

References

1 GLPK (GNU Linear Programming Kit). https://www.gnu.org/software/glpk/.
2 LITMUSRT home page. http://www.litmus-rt.org/.
3 SchedCAT: Schedulability test collection and toolkit. https://github.com/brandenburg/

schedcat, 2020. Accessed: 2020-06-21.
4 S. Altmeyer, R. Douma, W. Lunniss, and R. Davis. Evaluation of cache partitioning for hard

real-time systems. In Proceedings of the 26th Euromicro Conference on Real-Time Systems,
2014.

5 S. Baruah. Resource sharing in EDF-scheduled systems: A closer look. In Proceedings of the
27th IEEE International Real-Time Systems Symposium, 2006.

6 A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption and migration delays:
Empirical approximation and impact on schedulability. Proceedings of the 6th Workshop on
Operating Systems Platforms for Embedded Real-Time applications, 2010.

7 V. Bhatt and P. Jayanti. Constant RMR solutions to reader writer synchronization. In
Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, 2010.

https://www.gnu.org/software/glpk/
http://www.litmus-rt.org/
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

C. E. Nemitz, S. Caspin, J. H. Anderson, and B. C. Ward 6:21

8 V. Bhatt and P. Jayanti. Specification and constant RMR algorithm for phase-fair reader-
writer lock. In Proceedings of the 12th International Conference on Distributed Computing
and Networking, 2011.

9 A. Biondi and B. Brandenburg. Lightweight real-time synchronization under P-EDF on
symmetric and asymmetric multiprocessors. In Proceedings of the 28th Euromicro Conference
on Real-Time Systems, 2016.

10 S. Bradley, A. Hax, and T. Magnanti. Applied mathematical programming, Chapter 9
(Addison-Wesley, 1977). http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf, 2021.

11 B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems.
PhD thesis, University of North Carolina, Chapel Hill, NC, 2011.

12 B. Brandenburg and J. Anderson. Spin-based reader-writer synchronization for multiprocessor
real-time systems. Real-Time Systems, 46(1):25–87, 2010.

13 B. Brandenburg and J. Anderson. Real-time resource-sharing under clustered scheduling:
Mutex, reader-writer, and k-exclusion locks. In Proceedings of the 9th ACM International
Conference on Embedded Software, 2011.

14 M. Campoy, A.P. Ivars, and J.V. Busquets-Mataix. Static use of locking caches in multitask
preemptive real-time systems. In IEEE/IEE Real-Time Embedded Systems Workshop, 2001.

15 M. Chisholm, B. Ward, N. Kim, and J. Anderson. Cache sharing and isolation tradeoffs in
multicore mixed-criticality systems. In Proceedings of the 36th IEEE International Real-Time
Systems Symposium, December 2015.

16 P. Courtois, F. Heymans, and D. Parnas. Concurrent control with readers and writers.
Communications of the ACM, 14(10):667–668, 1971.

17 James R Goodman. Using cache memory to reduce processor-memory traffic. In Proceedings
of the 10th Annual International Symposium on Computer Architecture, 1983.

18 J. Hennessy and D. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.
19 M. Herlihy and J. Wing. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems, 12(3):463–492, 1990.
20 J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA: A predictable cache-aware

memory allocator. In Proceedings of the 23rd Euromicro Conference on Real-Time Systems,
2011.

21 H. Kim, A. Kandhalu, and R. Rajkumar. A coordinated approach for practical OS-level cache
management in multi-core real-time systems. In Proceedings of the 25th Euromicro Conference
on Real-Time Systems, 2013.

22 D. Kirk and J. Strosnider. SMART (strategic memory allocation for real-time) cache design
using the MIPS R3000. In Proceedings of the 11th Real-Time Systems Symposium, 1990.

23 Y. Lev, V. Luchangco, and M. Olszewski. Scalable reader-writer locks. In Proceedings of the
21st Annual Symposium on Parallelism in Algorithms and Architectures, 2009.

24 P. McKenney. Exploiting Deferred Destruction: An Analysis of Read-Copy-Update Techniques
in Operating System Kernels. PhD thesis, OGI School of Science and Engineering at Oregon
Health and Sciences University, Beaverton, OR, 2004.

25 J. Mellor-Crummey and M. Scott. Scalable reader-writer synchronization for shared-memory
multiprocessors. In Proceedings of the 3rd ACM Symposium on Principles and Practice of
Parallel Programming, 1991.

26 L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-time
systems. In Proceedings of the IEEE International Symposium on Circuits and Systems, 2000.

27 B. Ward. Relaxing resource-sharing constraints for improved hardware management and
schedulability. In Proceedings of the 36th International IEEE Real-Time Systems Symposium,
2015.

28 B. Ward and J. Anderson. Multi-resource real-time reader/writer locks for multiprocessors. In
Proceedings of the 28th IEEE International Parallel and Distributed Processing Symposium,
2014.

ECRTS 2021

http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf

6:22 Light Reading

29 B. Ward, J. Herman, C. Kenna, and J. Anderson. Making shared caches more predictable on
multicore platforms. In Proceedings of the 25th Euromicro Conference on Real-Time Systems,
2013.

30 A. Wieder and B. Brandenburg. On spin locks in AUTOSAR: Blocking analysis of FIFO,
unordered, and priority-ordered spin locks. In Proceedings of the 34th IEEE International
Real-Time Systems Symposium, 2013.

31 M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. Analysis and implementation of global
preemptive fixed-priority scheduling with dynamic cache allocation. In Proceedings of the 21st
IEEE Real-Time and Embedded Technology and Applications Symposium, 2016.

32 M. Xu, L. T. X. Phan, H.-Y. Choi, and I. Lee. vCAT: Dynamic cache management using
CAT virtualization. In Proceedings of the 22nd IEEE Real-Time and Embedded Technology
and Applications Symposium, 2017.

33 J.-H. Yang and J. Anderson. A fast, scalable mutual exclusion algorithm. Distributed
Computing, 9(1):51–60, August 1995.

34 H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore platforms. In Proceedings of the 19th IEEE
Real-Time and Embedded Technology and Applications Symposium, 2014.

A Additional Constraints

Constraints (1)-(9), proven here, are similar to constraints in prior inflation-free analysis [9].

Proof of (1). Follows directly from Observation O1. ◀

Proof of (2). In order to cause spin delay, a local task must have a satisfied request while
another request is blocked. However, because tasks spin and execute critical sections non-
preemptively, there can be at most one active request on P ∗ at any given time. Therefore,
tasks on P ∗ cannot cause spin delay; only remote tasks can cause spin delay. ◀

The following lemma can be proven using reasoning on the behavior of the PF lock similar
to that used to prove Lemmas 7 and 9.

▶ Lemma 15. Each remote request Rx can contribute to delaying requests on P ∗ at most
once, and that delay is realized as either arrival blocking or spin delay, but not both.

Proof of (3) and (4). Both follow from Lemma 15. ◀

Constraints (5)–(9) concern arrival blocking.

Proof of (5). Follows from Observation O2; only one request can cause arrival blocking, and
each request is only for a single resource and is either a read request or a write request. ◀

Proof of (6). Recall that AR
q is a binary indicator variable. By Observation O1, arrival

blocking is only caused by tasks with a relative deadline larger than t. If no read request for
ℓq is issued by any task with a deadline greater than t (i.e., the sum on the right-hand side
is 0), then is is not possible to have a read request for ℓq cause arrival blocking. ◀

Proof of (7). Similarly, we constrain arrival blocking due to a write request. ◀

Proof of (8). For each resource ℓq, the number of read requests that can cause arrival blocking
is upper-bounded by AR

q ; at most one request can cause arrival blocking (Observation O2),
and if AR

q = 0, no request for that resource can cause arrival blocking. ◀

Proof of (9). Similarly, the arrival blocking caused by write requests is constrained. ◀

Schedulability Analysis for Multi-Core Systems
Accounting for Resource Stress and Sensitivity
Robert I. Davis # Ñ

Department of Computer Science, University of York, UK

David Griffin #

Department of Computer Science, University of York, UK

Iain Bate # Ñ

Department of Computer Science, University of York, UK

Abstract
Timing verification of multi-core systems is complicated by contention for shared hardware resources
between co-running tasks on different cores. This paper introduces the Multi-core Resource Stress
and Sensitivity (MRSS) task model that characterizes how much stress each task places on resources
and how much it is sensitive to such resource stress. This model facilitates a separation of concerns,
thus retaining the advantages of the traditional two-step approach to timing verification (i.e. timing
analysis followed by schedulability analysis). Response time analysis is derived for the MRSS task
model, providing efficient context-dependent and context independent schedulability tests for both
fixed priority preemptive and fixed priority non-preemptive scheduling. Dominance relations are
derived between the tests, and proofs of optimal priority assignment provided. The MRSS task
model is underpinned by a proof-of-concept industrial case study.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases real-time, multi-core, scheduling, schedulability analysis, cross-core contention,
resource stress, resource sensitivity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.7

Funding Innovate UK HICLASS project (113213) and the ESPRC grants STRATA (EP/N023641/1)
and MARCH (EP/V006029/1). EPSRC Research Data Management: No new primary data was
created during this study.

Acknowledgements The authors would like to thank Rolls-Royce PLC for providing the object code
for one of their aero-engine controllers for use in real-time systems research.

1 Introduction

1.1 Background
The survey published by Akesson et al. in 2020 [1], shows that about 80% of industry
practitioners developing real-time systems are using multi-core processors, about twice the
number that are using single-cores. On a single-core processor, when a task executes without
interruption or pre-emption it has exclusive access to the hardware resources that it needs.
The execution time of the task therefore depends only on its own behavior and the initial state
of the hardware. This is in marked contrast to what happens when a task executes on one
core of a multi-core processor. Multi-core processors are typically designed to provide high
average-case performance at low cost, with hardware resources shared between cores. These
shared hardware resources typically include, the interconnect, caches, and main memory, as
well as other platform specific components. As a consequence, the execution time of a task
running on one core of a multi-core system can be extended by interference due to contention
for shared hardware resources emanating from co-running tasks on the other cores.

© Robert I. Davis, David Griffin, and Iain Bate;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 7; pp. 7:1–7:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rob.davis@york.ac.uk
https://www-users.cs.york.ac.uk/~robdavis/
https://orcid.org/0000-0002-5772-0928
mailto:david.griffin@york.ac.uk
mailto:iain.bate@york.ac.uk
https://www-users.cs.york.ac.uk/~ijb/
https://doi.org/10.4230/LIPIcs.ECRTS.2021.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Schedulability Analysis for Multi-Core Systems

This problem of cross-core contention and interference has led to timing verification of
multi-core systems becoming a hot topic of real-time systems research in the decade to 2020.
The survey published by Maiza et al. in 2019 [32] classifies approximately 120 research papers
in this area. Much of this research relies on detailed information about shared hardware
resources and the policies used to arbitrate access to them. This information is then used
to derive analytical bounds on the maximum interference possible due to contending tasks
running on the other cores. In practice, however, there can be substantial difficulties in
obtaining and using such detailed low-level information, since it is not typically disclosed by
hardware vendors. This is because the complex resource arbitration policies and low-level
hardware design features employed comprise valuable intellectual property. Further, even if
such information is available, then the overall behavior can be so complex as to preclude a
static analysis that provides meaningful bounds, as opposed to substantial overestimates.

The predominant industry practice is to use measurement-based timing analysis tech-
niques to estimate worst-case execution times1 (WCETs). However, the simple extension of
measurement-based techniques to multi-core systems cannot provide an adequate solution
that bounds the impact of cross-core interference. This is because cross-core interference is
highly dependent on the timing of accesses to shared hardware resources by both the task
under analysis and its co-runners. In practice, it is not possible to choose the worst-case
combination of behavior (inputs, paths, and timing) for co-running tasks that will result in
the maximum interference occurring [33]. A potential solution to this problem, which is being
taken up commercially [37], is to employ a more nuanced measurement-based approach using
micro-benchmarks [36, 16, 33, 24]. These micro-benchmarks sustain a high level of resource
accesses, ameliorating the timing alignment issues inherent in the naive approach discussed
above. Micro-benchmarks can be used to characterize tasks in terms of the interference that
they can cause, or be subject to, due to contention over a particular hardware resource.

The timing verification of single-core systems has traditionally been solved via a two-step
approach [32]. First context-independent WCET estimates are obtained, either via static or
measurement-based timing analysis. Second, these estimates are used as parameter values in
a task model, with schedulability analysis employed to determine if all of the tasks can meet
their timing constraints when executed under a specific scheduling policy. This separation of
concerns between timing analysis and schedulability analysis brings many benefits; however,
its effectiveness is greatly diminished in multi-core systems due to the fact that execution
times heavily depend on co-runner behavior and the cross-core interference that they bring.
Inflating individual task execution time estimates to account for the maximum amount of
context-independent interference that could potentially occur during the time interval in
which each task executes can result in gross over-estimates that are not viable in practice [27].
Rather, research [2, 10] has shown that it is more effective to consider contention over the
longer time frame of task response times.

1.2 Contribution and Organization

In Section 2, we introduce the Multi-core Resource Stress and Sensitivity (MRSS) task model
that characterizes how much each task stresses shared hardware resources and how much each
task is sensitive to such resource stress. The MRSS task model provides a simple interface and
a separation of concerns between timing analysis and schedulability analysis, thus retaining

1 About 66% of the industry practitioners surveyed by Akesson et al. [1] used some form of measurement-
based timing analysis, whereas only about 33% used some form of static timing analysis.

R. I. Davis, D. Griffin, and I. Bate 7:3

the advantages of the traditional two-step approach to overall timing verification. The MRSS
task model relies on timing analysis, either measurement-based or static, to provide task
parameter values characterizing stand-alone (i.e. no contention) WCETs, resource stresses,
and resource sensitivities. Thus, it provides the information needed by schedulability analysis
to integrate cross-core interference into the computation of bounds on task response times,
and hence determine the schedulability of tasks running on multi-core systems. The MRSS
task model is generic and versatile. It supports different types of interference that occur via
cross-core contention for shared hardware resources, as follows:

(i) Limited interference where contention for the resource is ameliorated by parallelism
in the hardware. Here, the interference is sub-additive, i.e. less than the time that the
co-running task on another core spends accessing the resource.

(ii) Direct interference where the bandwidth of the resource is shared between contending
cores, for example with Round-Robin bus. Here, the interference is additive, directly
matching the time that co-running tasks spend accessing the resource.

(iii) Indirect interference where contention causes additional interference, over and above
the bandwidth consumed by co-running tasks (i.e. a super-additive effect), due to
changes in the state of the resource that cause further delays to subsequent accesses.
An example of indirect interference occurs with main memory (DRAM) [22] when
interleaved accesses target different rows, resulting in additional row close and row open
operations, increasing memory access latency.

The MRSS task model is not however a panacea, it cannot support unbounded interference
where task execution is disproportionately impacted by contending accesses. This includes
cases where contenders can effectively lock a resource for an extended or unbounded amount
of time, or change the information stored in the resource in such a way that it needs to be
obtained from elsewhere. Problems of cache thrashing [36], cache coherence [17], and cache
miss status handling registers [41] can all cause effectively unbounded interference, and need
to be eliminated from systems aimed at providing real-time predictability.

Section 3 introduces schedulability analysis for the MRSS task model, considering task
sets scheduled according to partitioned fixed priority preemptive scheduling (pFPPS) and
partitioned fixed priority non-preemptive scheduling (pFPNS) policies2. Two types of
schedulability test are derived: (i) context-dependent tests that make use of information
about the co-running tasks on the other cores, and (ii) context-independent tests that use
only information about the tasks running on the same core. The latter are less precise, but
fully composable, meaning that if the tasks on one core are changed, then only those tasks
need have their schedulability re-assessed; task schedulability on the other cores is unaffected.
Composability is an important issue for industry, particularly when different companies or
departments are responsible for the sub-systems running on different cores.

In systems that use fixed priority scheduling, appropriate priority assignment is a cru-
cial aspect of achieving a schedulable system [14]. Section 4 investigates optimal priority
assignment, proving that Deadline Monotonic [31] priority ordering is optimal for both
the context-independent and the simpler context-dependent schedulability tests for pFPPS.
Similarly, Audsley’s optimal priority assignment algorithm [4] is proven to be applicable and
optimal for the equivalent tests for pFPNS. The more complex and precise context-dependent
tests are proven incompatible with Audsley’s algorithm [4].

2 The most commonly used real-time scheduling polices in industry practice [1].

ECRTS 2021

7:4 Schedulability Analysis for Multi-Core Systems

Section 5, provides a systematic evaluation of the effectiveness of the schedulability tests
derived in Section 3. The results of this evaluation follow the dominance relationships
demonstrated earlier, indicating the superiority of the more complex context-dependent
schedulability tests, while also highlighting the additional contention that adding further
cores brings. Section 6 concludes with a summary and directions for future work.

The appendix presents the findings from a case study examining 24 tasks from a Rolls-
Royce aero-engine control system. These tasks were assessed using measurement-based
timing analysis to obtain broad-brush estimates of their stand-alone WCETs, as well as
characterizing their resource stress and resource sensitivity parameters. The purpose of the
case study was not to try to determine definitive values for these parameters, in itself a
challenging research problem, rather our aim was to obtain proof-of-concept data to act as
an exemplar underpinning the MRSS task model and its analysis.

1.3 Related Work
Prior publications that relate to the research presented in this paper include work on micro-
benchmarks [36, 16, 33, 24, 37] that can be used to stress resources in multi-core systems,
and work on the integration of interference effects into schedulability analysis. Many of
the latter papers are summarized in Section 4 of the survey [32] by Maiza et al. Unlike
the analysis presented in this paper, which uses a generic task model that is applicable to
many different types of interference and a variety of different shared hardware resources,
most of these prior works focus on the details of one or more specific hardware resources.
They require detailed information about the resource arbitration policy used, the number
of resource accesses made by each task, and in some cases the timing of those accesses. By
contrast, this paper takes a more abstract, but nonetheless valid view, that interference can
be modeled in terms of its execution time impact via resource sensitivity and resource stress
parameters for each task. This approach requires less detail about the resource behavior,
and is more amenable to practical use, since it can still be used when full details of shared
resource behavior are not available from the hardware vendor.

Early work on the integration of interference effects into schedulability analysis by
Schliecker et al. [39] used arrival curves to model the resource accesses of each task, and hence
how resource access delays due to contention impact upon task response times. Schliecker’s
work focused on contention over the memory bus. Further work in this area by Schranzhofer
et al. [40], Pellizzoni et al. [35], Giannopoulou et al. [19], and Lampka et al. [28] used the
superblock model that divides each task into a sequence of blocks, and uses information
about the number of resource accesses within different phases of these blocks.

Dasari et al. [9] used a request function to model the maximum number of resource
accesses from each task in a given time interval, and integrated this request function into
response time analysis. Kim et al. [26] and Yun et al. [42] provided a detailed analysis of
contention caused by DRAM accesses, accounting for access scheduling and variations in
latencies due to differing states e.g. open and closed rows. The delays due to contention were
then integrated into response time analysis. Altmeyer et al. [2, 10] introduced a multi-core
response time analysis framework, aimed at combining the demands that tasks place on
difference types of resources (e.g. CPU, memory bus, and DRAM) with the resource supply
provided by those hardware resources. The resulting explicit interference was then integrated
directly into response time analysis. Rihani et al. [38] built on this framework, using it to
analyze complex bus arbitration policies on a many-core processor. Huang et al. [23] and
Cheng et al. [8] leveraged the symmetry between processing and resource access, viewing

R. I. Davis, D. Griffin, and I. Bate 7:5

tasks as executing and then suspending execution while accessing a shared resource. Using
this suspension model in the schedulability analysis, they obtained results that were broadly
comparable to those of Altmeyer et al. [2].

Paolieri et al. [34] proposed using a WCET-matrix and WCET-sensitivity values to
characterize the variation in task execution times in different execution environments (e.g. with
different numbers of contending cores, and different cache partition sizes). This information
was then used to determine efficient task partitioning and task allocation strategies. Andersson
et al. [3] presented a schedulability test where tasks have different execution times dependent
on their co-runners. Here, tasks are represented by a sequence of segments, each of which
has execution requirements and co-runner slowdown factors with respect to sets of other
segments that could execute in parallel with it. The schedulability test involves solving a
linear program to bound the longest response time given the possible ways in which different
segments could execute in parallel and the slowdown in execution that this would entail. The
method has significant scalability issues that effectively limit the total number of tasks it
can handle to approximately 32 tasks on a 4 core system (i.e. 8 tasks per core).

1.4 Inspiration
The research presented in this paper was inspired by the desire to combine a practical approach
to characterizing contention via micro-benchmarks and measurement-based techniques with
a generic form of schedulability analysis that can be applied to a wide range of homogeneous
multi-core systems with different types of shared hardware resources. The aim being to
provide an effective form of timing verification that, while retaining the traditional two-
step approach, is able to avoid undue pessimism by accounting for interference over long
time intervals equating to task response times rather than short time intervals equating to
task execution times. With industry practice in mind, the schedulability analysis derived
includes context-dependent (non-composable), context-independent (fully composable), and
partially composable schedulability tests. The overall method enables task timing behavior
on multi-cores to be assessed without necessitating recourse to detailed information about
the hardware behavior, something that most chip vendors do not make publicly available.

2 System Model and Assumptions

We assume a multi-core system with m homogeneous cores that executes tasks under either
partitioned fixed priority preemptive (pFPPS) or partitioned fixed priority non-preemptive
(pFPNS) scheduling. With partitioning, tasks are assigned to a specific core and do not
migrate. The tasks are assumed to be independent, but may access a set of shared hardware
resources r ∈ H, thus causing interference on the execution of tasks on other cores via
cross-core contention. We omit from consideration the effects of resource contention between
tasks on the same core, since they are executed sequentially rather than in parallel. We
assume that appropriate techniques are used to avoid substantial preemption effects when
preemptive scheduling is employed, for example cache partitioning can be used to eliminate
cache-related preemption delays. The costs of scheduling decisions and any context switching
are assumed to be subsumed into the task execution times. Each task τi is characterised
by: the minimum inter-arrival time or period between releases of its jobs, Ti, its relative
deadline, Di, and its WCET, Ci, when executing stand-alone, i.e. with no co-runners. All
task deadlines are assumed to be constrained i.e. Di ≤ Ti.

Further aspects of the model are based on the concept of resource sensitive contenders
and resource stressing contenders. A resource stressing contender maximizes the stress on
a resource r by repeatedly making accesses to it that cause the most contention. Hence,

ECRTS 2021

7:6 Schedulability Analysis for Multi-Core Systems

running a resource stressing contender in parallel with a task creates the maximum increase
in execution time for the task due to contention over resource r from any single co-runner.
A resource sensitive contender for a resource r, suffers the maximum possible interference
by repeatedly making accesses to the resource that suffer from the most contention. Hence,
running a resource sensitive contender in parallel with a task creates the maximum increase
in execution time for any single co-running contender due to contention over resource r from
the task. Note, resource stressing and resource sensitive contenders for a given resource are
not necessarily one and the same.

Each task is further characterised by its resource sensitivity Xr
i and resource stress Y r

i

for each shared hardware resource r ∈ H . Xr
i captures the increase in execution time of task

τi (from Ci to Ci + Xr
i) when it is executed in parallel with a resource stressing contender

for resource r. Thus Xr
i models how much task τi behaves like a resource sensitive contender.

Similarly, Y r
i captures the increase in execution time of a resource sensitive contender (from

C to C + Y r
i) for resource r, when it is executed in parallel with task τi. Hence Y r

i models
how much task τi behaves like a resource stressing contender. With this model, the execution
time of a task τi running on one core, subject to interference via shared hardware resource
r from task τk running in parallel on another core, is increased by at most min(Xr

i , Y r
k)

i.e. from Ci to Ci + min(Xr
i , Y r

k). The notation Γx is used to denote the set of tasks that
execute on the same core (with index x) as the task of interest τi. Similarly, Γy is used
to denote the set of tasks that execute on some other core (with index y). Each task τi is
assumed to have a unique priority. hp(i) (resp. lp(i)) is used to denote the set of tasks with
higher (resp. lower) priority than task τi. Similarly, hep(i) (resp. lep(i)) is used to denote
the set of tasks with higher (resp. lower) than or equal priority to task τi.

The schedulability tests introduced in this paper are named using the following convention:
CpSched-m-X , where C indicates a contention-based test for p partitioned scheduling,
using scheduling policy Sched, which is either FPPS or FPNS. The test is applicable to
systems with m cores, and makes use of information X , which is either D or R meaning the
deadlines or the response times of the tasks on other cores, or fc meaning fully composable,
i.e. the test does not rely on any information about the tasks running on the other cores.

The MRSS task model assumes that the resource sensitivity Xr
i and resource stress Y r

i

parameters for each task τi are provided by timing analysis. Obtaining precise bounds for
these parameters is a challenging timing analysis problem that is beyond the scope of this
paper; nevertheless, below we give a brief overview of how such values could be estimated.

Using measurement-based timing analysis techniques, the resource sensitivity Xr
i can

be obtained by capturing the maximum difference between the execution time of task τi

when it runs in parallel with a resource stressing contender, and the corresponding execution
time when it runs stand-alone, assuming that the same inputs and initial state are used in
each case. Similarly, the resource stress Y r

i can be obtained by capturing the maximum
difference between the execution time of a resource sensitive contender when it runs in
parallel with task τi, and the corresponding execution time of the contender when it runs
stand-alone. As with measurement-based WCET estimation, such an approach needs to
explore a representative set of inputs and initial states in order to obtain valid estimates.
Further, resource stressing and resource sensitive contenders need to be carefully designed to
meet their requirements in terms of creating/suffering the maximum amount of interference
via contention over the resource [24]. Bounds on resource sensitivity and resource stress can
also be obtained via static timing analysis. Static analysis first needs to compute an upper
bound on the maximum number of accesses Ar

i that task τi can make to the resource. The
resource sensitivity Xr

i can then be computed by determining the maximum increase in the

R. I. Davis, D. Griffin, and I. Bate 7:7

execution time of task τi assuming that Ar
i accesses are made in contention with an arbitrary

number of accesses emanating from one other core. Similarly, the resource stress Y r
i equates

to the maximum increase in the execution time of any arbitrary resource sensitive contender,
due to contention over the resource caused by Ar

i accesses emanating from one other core.
The schedulability analysis presented in Section 3 assumes that the total interference

occurring via multiple different resources can be upper bounded by the sum of the interference
occurring via each of those resources individually. This assumption can reasonably be expected
to hold provided that the resource contention is independent. In other words, that contention
over one resource does not create additional contention over another resource. An example
that breaks this assumption occurs with a cache that is shared between cores. In this case,
cache thrashing [36] can result in additional accesses to main memory, and hence further
contention and interference over that disparate resource. Cache partitioning (per core) would
be an effective way of addressing this issue, thus improving timing predictability.

The analysis also assumes that the total interference occurring due to co-running tasks
on multiple other cores can be upper bounded by the sum of the interference occurring due
to co-running tasks on each of those cores individually. This assumption can reasonably be
expected to hold provided that there are no discontinuities in the amount of interference
that can occur that can be triggered by co-running tasks on a multiple cores, but not by
co-runners on just one core. An example that breaks this assumption occurs with cache miss
status handling registers (MSHR) [41]. In this case, contention from tasks on multiple cores
can exhaust all of the available MSHRs, resulting in substantial blocking delays. Depending
on the local memory level parallelism, utilizing all of the MSHRs is typically not be possible
with just one contending core. Increasing the number of MSHRs, or reducing the local
memory level parallelism, such that contention from all m cores cannot exhaust the set of
MSHRs, are effective ways of addressing this problem [41] and restoring timing predictability.
To validate the use of the analysis given in Section 3, each of the above assumptions needs
to be assessed for the hardware architecture considered.

3 Schedulability Analysis

In this section, we introduce schedulability tests for the MRSS task model, assuming
partitioned fixed priority preemptive scheduling (pFPPS) (Section 3.1), and partitioned
fixed priority non-preemptive scheduling (pFPNS) (Section 3.2). In Section 3.3 we consider
composability and derive context-independent schedulability tests for both pFPPS and pFPNS.
The dominance relationships between the various tests are derived in Section 3.4.

3.1 pFPPS Schedulability Analysis
In the absence of any interference via shared hardware resources, the worst-case response
time of task τi under pFPPS is given via standard response time analysis [25, 5]:

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Cj (1)

Adding cross-core interference considering each resource r ∈ H, we may compute the worst-
case response time as follows:

Ri = Ci +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Cj +

∑
r∈H

Ir
i (Ri) (2)

where Ir
i (Ri) is an upper bound on the interference that may occur within the response time

of task τi, via shared hardware resource r, due to tasks executing on the other cores.

ECRTS 2021

7:8 Schedulability Analysis for Multi-Core Systems

The interference term Ir
i (Ri) depends on: (i) the total resource sensitivity for resource

r, denoted by Sr
i (Ri, x), for the tasks executing on the same core x as task τi within its

response time Ri; and (ii) the total resource stress on resource r, denoted by Er
i (Ri, y), that

can be produced by tasks executing on each of the other cores y within an interval of length
Ri. The total resource sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute
within the worst-case response time of task τi, hence with reference to (1) we have:

Sr
i (Ri, x) = Xr

i +
∑

j∈Γx∧j∈hp(i)

⌈
Ri

Tj

⌉
Xr

j (3)

The total resource stress Er
i (Ri, y) due to tasks that execute on another core y in the interval

Ri can be upper bounded as follows. Here, unlike in (3), the worst-case does not occur when
these tasks are released synchronously, but rather when the resource contention occurs as late
as possible for one job of a task, and then as early as possible for subsequent jobs. Further,
tasks of any priority can cause interference when executing on other cores. Thus we have:

Er
i (Ri, y) =

∑
j∈Γy

⌈
Ri + Dj

Tj

⌉
Y r

j (4)

The analysis in (4) does not make any assumptions about how long task τj needs to execute
in order to cause an increase in execution time of up to Y r

j in a task running on another
core. In particular, there is no assumption that task τj needs to run for at least Y r

j , since Y r
j

is a measure of the maximum increase in execution time of another task due to contention
from task τj , not a measure of the time for which task τj needs to execute to cause that
contention. Assuming that the execution causing contention can occur instantaneously, as is
done in (4), is potentially pessimistic; however, it ensures that the analysis is sound even
when there is considerable asymmetry in the (small) execution time required to stress a
resource and the (large) increase in execution time of another task, which is sensitive to that
resource stress. Since Xr

k represents the maximum sensitivity of a task τk when subject to
continuous interference via resource r from a maximally resource stressing contender on one
single other core, the maximum interference from other cores that can impact the response
time of task τi via resource r can be upper bounded by:

Ir
i (Ri) =

∑
∀y ̸=x

min(Er
i (Ri, y), Sr

i (Ri, x)) (5)

This is the case, since the maximum interference due to contention from each core y cannot
exceed the total resource stress Er

i (Ri, y) emanating from that core within a time Ri.
We refer to the schedulability test given by (2), (3), (4), and (5) as the CpFPPS-m-D

test, since this test uses information about the deadlines of the tasks running on other cores.
A more precise analysis may be obtained by substituting Rj for Dj in (4) as follows, since

a schedulable job of task τj cannot execute beyond its worst-case response time.

Er
i (Ri, y) =

∑
j∈Γy

⌈
Ri + Rj

Tj

⌉
Y r

j (6)

Using this formulation, the response times of the tasks become interdependent. This problem
can be solved via fixed point iteration. Here, an outer iteration starts with Ri = Ci, Rj = Cj

etc. for all tasks in the system, and repeatedly computes the response times for all tasks on
all cores. This is done using the Rj values in the right hand side of (6) from the previous
round, until all response times either converge (i.e. are unchanged from the previous round)

R. I. Davis, D. Griffin, and I. Bate 7:9

or one of them exceeds the associated deadline. Since Er
i (Ri, y) in (6) is a monotonically

non-decreasing function of each Rj , then on each round, each Rj value can only increase or
remain the same, it cannot decrease. Thus, the outer fixed point iteration is guaranteed to
either converge giving the set of schedulable Ri ≤ Di for all tasks in the system, or to result
in some Ri > Di, in which case that task and the system as a whole is unschedulable. We
refer to the schedulability test given by (2), (3), (5), and (6) as the CpFPPS-m-R test,
since it uses information about the response times of the tasks running on the other cores.

3.2 pFPNS Schedulability Analysis
In the absence of any cross-core contention and interference via shared hardware resources,
the worst-case response time of task τi under pFPNS can be upper bounded via a sufficient
response time analysis [13]:

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Cj + Ci (7)

Here, we have reformulated the sufficient analysis for FPNS [13] into a single equation. The
changes involve compacting the blocking term (max()), and bringing the execution time Ci

of the task under analysis into the equation. To compensate for the latter, the time interval
in which higher priority tasks can execute is changed to (Ri − Ci). This excludes the time at
the end of the interval when task τi is executing non-preemptively. We also use a ⌊ ⌋ + 1
formulation rather than ⌈ ⌉ to avoid the need for a term equal to the time unit granularity.

Similar to the case for pFPPS in (2), adding cross-core interference considering each
resource r ∈ H , we may compute an upper bound on the worst-case response time as follows:

Ri = max
k∈Γx∧k∈lep(i)

(Ck) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Cj + Ci +

∑
r∈H

Ir
i (Ri) (8)

where Ir
i (Ri) is an upper bound on the interference that may occur within the response time

of task τi, via shared hardware resource r, due to tasks executing on other cores. Here, we
make the sound, but potentially pessimistic, assumption that even though the execution
time of task τi may be increased to more than Ci due to contention, only during the final Ci

time units of the task’s response time are other tasks on core x precluded from executing
(i.e. we continue to use (Ri − Ci) in the ⌊ ⌋ function). Further, we use Ri in the final term,
since cross-core contention still occurs during non-preemptive execution.

The interference term Ir
i (Ri) depends on: (i) the total resource sensitivity for resource

r, denoted by Sr
i (Ri, x), for the tasks executing on the same core x as task τi within its

response time Ri; and (ii) the total resource stress on resource r, denoted by Er
i (Ri, y), that

can be produced by tasks executing on each of the other cores y within an interval of length
Ri. The total resource sensitivity Sr

i (Ri, x) is computed based on the jobs that may execute
within the worst-case response time of task τi, hence with reference to (7) we have:

Sr
i (Ri, x) = max

k∈Γx∧k∈lep(i)
(Xr

k) +
∑

j∈Γx∧j∈hp(i)

(⌊
Ri − Ci

Tj

⌋
+ 1

)
Xr

j + Xr
i (9)

The two equations (4) and (6) for the total resource stress Er
i (Ri, y) due to tasks that

execute on another core y in the interval Ri depend only on the tasks parameters and
response times, but not the scheduling policy per se. Thus by redefining Sr

i (Ri, x) according
to (9) for the non-preemptive case, we obtain the following pFPNS schedulability tests for
the MRSS task model.

ECRTS 2021

7:10 Schedulability Analysis for Multi-Core Systems

The CpFPNS-m-D test given by (8), (9), (4), and (5) makes use of the deadlines of the
tasks running on the other cores.

The CpFPNS-m-R test given by (8), (9), (6), and (5) makes use of the response times
of the tasks running on the other cores.

3.3 Composability
The schedulability analyses derived in Sections 3.1 and 3.2 make use of information about
the resource contention due to tasks executing on other cores. In other words, these analyses
requires that the resource stress (Y r

j) values are known for all tasks executing on the other
cores, as well as their other parameters i.e. Tj , Dj , Rj . While this results in tighter response
time bounds, it also means that the analyses are not fully composable, since the schedulability
of the tasks running on one core depend on the parameters of the tasks running on the other
cores. A fully composable analysis can, however, be obtained by redefining (5) as follows:

Ir
i (Ri) =

∑
∀y ̸=x

Sr
i (Ri, x) = (m − 1) · Sr

i (Ri, x) (10)

This equates to assuming a worst-case scenario of resource stressing contenders for each
resource r running on every core. This may be pessimistic on two counts: Firstly, the resource
stressing contenders may cause significantly more interference than the tasks actually running
on the other cores, and secondly, with more than one resource it may not be possible to
maximally stress all resources simultaneously.

Using (10) results in fully composable context-independent schedulability tests. These
tests are able to check the schedulability of task sets on each of the m cores in a system,
without needing to know any of the parameters of the tasks on the other cores. We refer to
the schedulability test given by (2), (3), and (10) as the CpFPPS-m-fc test. Similarly, we
refer to the schedulability test given by (8), (9), and (10) as the CpFPNS-m-fc test.

Finally, an intermediate partially composable analysis can be provided if resource access
regulation mechanisms or budgets are employed to limit the amount of contention emanating
from each core. Let F r

i (t, y) be the maximum increase in execution time of a resource
sensitive contender on another core that can occur due to contention over resource r caused
by a resource stressing contender running on core y for a time period of t, subject to resource
regulation. Partially composable analysis can be obtained by redefining (5) as follows:

Ir
i (Ri) =

∑
∀y ̸=x

min(F r
i (Ri, y), Sr

i (Ri, x)) (11)

Note, this analysis only holds if the resource regulation on each core y does not actually limit
the accesses to each resource r made by tasks on that core over any time interval. Provided
that is guaranteed, no actual runtime enforcement is necessary, the budget function F r

i (t, y)
simply acts as an intermediate value that permits a separation of concerns and composition.

3.4 Dominance Relations
A schedulability test S is said to dominate another test Z for a given task model and
scheduling algorithm, if every task set that is deemed schedulable according to test Z is also
deemed schedulable by test S, and there exists some task sets that are schedulable according
to test S, but not according to test Z.

Comparing the definitions of Er
i (Ri, y) given by (6) for the CpFPPS-m-R and CpFPNS-

m-R tests and by (4) for the CpFPPS-m-D and CpFPNS-m-D tests, it is evident that
each of the former tests deems schedulable all task sets that are schedulable according to the

R. I. Davis, D. Griffin, and I. Bate 7:11

corresponding latter test. This is the case, since in any schedulable system, the response
time of a task is no greater than its deadline (Rj ≤ Dj), and hence the Er

i (Ri, y) term for
the former tests, given by (6), is less then or equal to the equivalent term, given by (4),
for the latter tests. Further, it is easy to see that there exist task sets that are schedulable
according to the each of the former tests, but not according to the corresponding latter test
due to a larger contention contribution emanating from the larger Er

i (Ri, y) term. Hence
the CpFPPS-m-R test dominates the CpFPPS-m-D test, and the CpFPNS-m-R test
dominates the CpFPNS-m-D test.

Comparing the definitions of Ir
i (Ri) given by (5) for the CpFPPS-m-D CpFPNS-

m-D tests and by (10) for the CpFPPS-m-fc and CpFPNS-m-fc tests, it is evident
that the former tests deems schedulable all task sets that are schedulable according to
the corresponding latter test. Further, it is easy to see that there exist task sets that are
schedulable according to the each of the former tests, but not according to the corresponding
latter test due to a larger contention contribution emanating from the larger Ir

i (Ri) term.
Hence the CpFPPS-m-D test dominates the CpFPPS-m-fc test, and the CpFPNS-m-D
test dominates the CpFPNS-m-fc test.

As dominance is transitive, we have: CpFPPS-m-R → CpFPPS-m-D → CpFPPS-
m-fc and CpFPNS-m-R → CpFPNS-m-D → CpFPNS-m-fc where S → Z indicates
that test S dominates test Z.

Finally, comparing a system of m cores to one with m + 1 cores, where in each case
the first m cores execute exactly the tasks, and the m + 1 core system has extra tasks that
executes on core m + 1, then there is a dominance relationship between the systems as
analysed by any of the schedulability tests. In other words, adding a core and the contention
that it brings cannot improve schedulability for the tasks running on the existing cores, but
may make their schedulability worse. Schedulability for m cores thus dominates that for
m + 1 cores with added tasks: CpSched-m-X → CpSched-(m + 1)-X

4 Priority Assignment

To maximize schedulability it is necessary to assign task priorities in an optimal way [14].
This section considers optimal priority assignment for the schedulability tests introduced in
Section 3.

4.1 pFPPS Priority Assignment
Leung and Whitehead [31] showed that Deadline Monotonic Priority Ordering (DMPO) is
optimal for constrained-deadline task sets with parameters (C, D, T) under fixed priority
preemptive scheduling. We observe that this result also holds for constrained-deadline
MRSS task sets compliant with model described in Section 2 and analysed according to
the CpFPPS-m-fc test introduced in Section 3.3. This is because that formulation can
be re-arranged to match the basic response time analysis (1), with the execution time of
each task τk increased by

∑
r∈H(m − 1)Xr

k . DMPO is also optimal for constrained-deadline
MRSS task sets analysed according to the CpFPPS-m-D test, introduced in Section 3.1.
Proof is given below using the standard apparatus for proving the optimality of such priority
orderings, as described in section IV of [14]. This proof technique is applicable in cases where
task priorities can be defined directly from fixed task parameters, for example periods and
deadlines. To show that a priority assignment policy P (i.e. DMPO) is optimal, it suffices to
prove that any task set that is schedulable according to the schedulability test considered
using some priority assignment policy Q is also schedulable using priority ordering P . Proof
is obtained by transforming priority ordering Q into priority ordering P , while ensuring that
no tasks become unschedulable during the transformation. The proof proceeds by induction.

ECRTS 2021

7:12 Schedulability Analysis for Multi-Core Systems

▶ Theorem 1. Deadline Monotonic Priority Ordering is optimal for constrained-deadline
MRSS task sets compliant with the model described in Section 2 and analysed according to
the CpFPPS-m-D test introduced in Section 3.1.

Proof. Base case: The task set is schedulable with priority order Q = Qk, where k is the
iteration count.

Inductive step: We select a pair of tasks that are at adjacent priorities i and j where
j = i + 1 in priority ordering Qk, but out of Deadline Monotonic relative priority order. Let
these tasks be τA and τB , with τA having the higher priority in Qk. Note that DA > DB as
the tasks are out of Deadline Monotonic relative order. Let i be the priority of task τA in Qk

and j be the priority of task τB . We need to prove that all of the tasks remain schedulable
with priority order Qk−1, which switches the priorities of these two tasks. There are four
groups of tasks to consider:

hp(i): tasks in this set have higher priorities than both τA and τB in both Qk and Qk−1.
Since the schedulability of these tasks is unaffected by the relative priority ordering of τA

and τB , they remain schedulable in Qk−1.
τA: Let w = RB be the response time of task τB in priority order Qk. Since task τB is

schedulable in Qk, we have w = RB ≤ DB < DA ≤ TA, hence in (2), the contribution from
τA within the response time of τB is exactly one job (i.e. CA), and there is also a contribution
of CB from task τB itself. Considering interference, the total resource sensitivity Sr

B(w, x)
given by (3) depends only on the value w and fixed parameters of the set of tasks with
priorities higher than or equal to task τB in Qk that is τA, τB , and hp(i). Further, the total
resource stress Er

B(w, y) due to tasks executing on some other core y depends only on the
value of w and the fixed parameters of the tasks executing on that core. It follows that the
interference term Ir

B(w) given by (5) and used in (2) depends only on the value of w and the
fixed parameters of the set of tasks τA, τB , and hp(i), as well as the fixed parameters of the
tasks executing on all other cores. Now consider the response time of task τA under priority
order Qk+1. This response time is RA = w , as there is exactly the same contribution from
tasks τA, τB and all the higher priority tasks, and further the interference due to resource
contention is the same, in other words Ir

B(w) for Qk equates to Ir
A(w) for Qk+1, since the

value of w is the same, and the set of tasks that this term is dependent upon is unchanged
(τA, τB , and hp(i) on core x, and all of the task on the other cores). Since w < DA, task τA

remains schedulable.
τB: as the priority of τB has increased its response time is no greater in Qk+1 than in

Qk. This is the case because the only change to the response time calculation for τB is the
removal of the contribution from task τA, and also the removal of its contribution to the
total resource sensitivity, and hence from the interference term Ir

B(w). Thus τB remains
schedulable.

lp(j) : tasks in this set have lower priorities than tasks τA and τB in both Qk and Qk+1.
Since the schedulability of these tasks is unaffected by the relative priority ordering of tasks
τA and τB , they remain schedulable.

All tasks therefore remain schedulable in Qk+1.
At most k = n(n−1)/2 steps are required to transform priority ordering Q into P without

any loss of schedulability ◀

Next, we consider optimal priority assignment with respect to the CpFPPS-m-R test
introduced in Section 3.1. Davis and Burns proved in [12] that it is both sufficient and
necessary to show that a schedulability test meets three simple conditions in order for
Audsley’s Optimal Priority Assignment (OPA) algorithm [4] algorithm to be applicable.

R. I. Davis, D. Griffin, and I. Bate 7:13

Condition 1: The schedulability of a task according to the test must be independent of the
relative priority order of higher priority tasks.

Condition 2: The schedulability of a task according to the test must be independent of the
relative priority order of lower priority tasks.

Condition 3: The schedulability of a task according to the test must not get worse if the
task is moved up one place in the priority order (i.e. its priority is swapped with that of
the task immediately above it in the priority order).

▶ Theorem 2. The CpFPPS-m-R test, given in Section 3.1, is not compatible with Audsey’s
Optimal Priority Assignment (OPA) algorithm [4], and hence that algorithm cannot be used
to obtain an optimal priority assignment with respect to the test.

Proof. To prove non-compatibility, it suffices to show that any one of the three conditions
set out in [12] and listed above is broken by the test. In this case, we show that Condition 1
does not hold. According to the CpFPPS-m-R test, the schedulability of a task τi on core
x can depend on the response time of task τj on a different core y via Er

j (Ri, y) given by
(6). In turn, the response time of task τj can depend on the response time of some higher
priority task τk on the same core x as task τi via Er

k(Rj , x) also given by (6). Since the
response time of task τk depends on its relative priority order among those tasks with higher
priority than task τi, Condition 1 does not hold and therefore the CpFPPS-m-R test is
not compatible with Audsley’s OPA algorithm ◀

Although the CpFPPS-m-R test is not compatible with Audsley’s OPA algorithm, the
form of the test, with its dependence on the response times of other tasks, means that a
back-tracking search, as proposed in [11], could potential be used to obtain a schedulable
priority assignment without having to explore all possible priority orderings. The same
applies to the CpFPNS-m-R test discussed in Section 4.2 below.

4.2 pFPNS Priority Assignment
George et al. [18] showed that Deadline Monotonic Priority Ordering (DMPO) is not
optimal for constrained-deadline task sets with parameters (C, D, T) under fixed priority non-
preemptive scheduling, and proved that Audsley’s algorithm [4] is able to provide an optimal
priority ordering in this case. We observe that this result also holds for constrained-deadline
MRSS task sets compliant with the model described in Section 2 and analysed according to
the CpFPNS-m-fc test introduced in Section 3.3. This is the case because the formulation
can be re-arranged to match the basic response time analysis (7), with the execution time of
each task τk increased by (m − 1)Xr

k . Audsley’s algorithm [4] is also optimal with respect to
the CpFPNS-m-D test, as proved below.

▶ Theorem 3. Audsley’s algorithm [4] is optimal for constrained-deadline MRSS task sets
compliant with the model described in Section 2 and analysed according to the CpFPNS-m-D
test introduced in Section 3.2.

Proof. It suffices to show that the schedulability test meets the three conditions, given in [12]
and set out in Section 4.1. With respect to Condition 1 and Condition 2, inspection
of (8) shows that the first two terms are dependent on the set of lower and equal priority
tasks lep(i) and the set of higher priority tasks hp(i) respectively, but do not depend on the
relative priority order of the tasks within those sets. Considering the fourth term in (8),
Ir

i (t) is given by (5). In the definition of Ir
i (t), the total resource sensitivity Sr

i (t, x) is given
by (9), which is dependent on the set of tasks lep(i) and the set of tasks hp(i), but does

ECRTS 2021

7:14 Schedulability Analysis for Multi-Core Systems

not depend on the relative priority order of the tasks within those sets. Finally, the total
resource contention Er

i (t, y) given by (4) has no dependence on the relative priority order of
the tasks in the sets hp(i) and lep(i) (or lp(i)), thus Condition 1 and Condition 2 hold.

With respect to Condition 3, moving task τi up one place in the priority order is
equivalent to moving another task τh that also executes on core x from the set hp(i) to the
set lep(i). Considering (8), such a change may increase the first term by no more than Ch,
but is guaranteed to also reduce the second term by at least Ch. Further, with respect to the
total resource sensitivity Sr

i (t, x), given by (9), such a change may increase the first term by
no more than Xr

h, but is guaranteed to also reduce the second term by at least Xr
h. There is

no change to the total resource stress Er
i (t, y) given by (4). Hence the schedulability of task

τi cannot get worse if the task is moved up one place in the priority order. ◀

Finally, we note that the CpFPNS-m-R test is not compatible with Audsley’s OPA
algorithm, since it breaks Condition 1, as proven below.

▶ Theorem 4. The CpFPNS-m-R test given in Section 3.1, is not compatible with Audsey’s
Optimal Priority Assignment (OPA) algorithm [4], and hence that algorithm cannot be used
to obtain an optimal priority assignment with respect to the test.

Proof. Proof follows via exactly the same argument as given in the proof of Theorem 2 in
Section 4.1, replacing the CpFPPS-m-R test with the CpFPNS-m-R test. ◀

5 Evaluation

In this section, we present an empirical evaluation of the schedulability tests introduced in
Section 3 for MRSS task sets executing on a multi-core system, assuming a single hardware
resource shared between all cores. (Note, multiple shared hardware resources resulting in the
same total interference would have the same impact on schedulability, due to the summation
terms in (2) and (8)). Experiments were performed for 1, 2, 3, and 4 cores3, with the single
core case considered for comparison purposes.

5.1 Task Set Parameter Generation
The task set parameters used in our experiments were generated as follows:

Task utilizations (Ui = Ci/Ti) were generated using the Dirichlet-Rescale (DRS) al-
gorithm [21] (open source Python software [20]) providing an unbiased distribution of
utilization values that sum to the total utilization U required.
Task periods Ti were generated according to a log-uniform distribution [15] with a factor
of 100 difference between the minimum and maximum possible period. This represents a
spread of task periods from 10ms to 1 second, as found in many real-time applications.
(When considering non-preemptive scheduling, a factor of 10 difference was used, otherwise
most task sets would not be schedulable).
Task deadlines Di were set equal to their periods Ti.
The stand-alone execution time of each task was given by: Ci = Ui · Ti.

3 The analysis scales to more than 4 cores; however, we limited consideration to this range, since 4 cores
represents a typical cluster size beyond which sharing hardware resources can become a significant
performance bottleneck.

R. I. Davis, D. Griffin, and I. Bate 7:15

Task resource sensitivity values Xr
i were determined as follows. The DRS algorithm was

used to generate task resource sensitivity utilization values V r
i , such that the total resource

sensitivity utilization was SF (the Sensitivity Factor, default SF = 0.25) times the total
task utilization (i.e.

∑
∀i V r

i = U · SF), and each individual task resource sensitivity
utilization was upper bounded by the corresponding task utilization (i.e. V r

i ≤ Ui). Each
task resource sensitivity value was then given by Xr

i = V r
i · Ti.

Task resource stress values Y r
i were set to a fixed proportion of the corresponding resource

sensitivity value Y r
i = Xr

i · RF , where RF is the Stress Factor, default RF = 0.5.

The default value for the Sensitivity Factor (SF = 0.25) was set to approximately twice
the average value (13.6%) obtained for the tasks in the industry case study described in the
Appendix. This is justified since the case study considers a single shared hardware resource,
whereas in practice contention would likely occur via multiple shared hardware resources,
resulting in higher levels of interference. The default value for the Stress Factor (RF = 0.5)
was set within the range found in the case study (0.23 to 1.58). Further, specific experiments
were also used to evaluate performance over a wide range of values for these parameters.

5.2 Experiments
The experiments considered systems with 1, 2, 3, and 4 cores, with a different task set
(generated according to the same parameters) assigned to each core. The per core task
set utilization U (shown on x-axis of the graphs) was varied from 0.05 to 0.95. For each
utilization value examined, 1000 task sets were generated for each core considered, (100
in the case of experiments using the weighted schedulability measure [6]). The default
cardinality of the task sets on each core was n = 10. In the experiments, a system was
deemed schedulable if and only if the different task sets assigned to each of its m cores were
schedulable, i.e. if all m · n tasks in the system were schedulable. With a single core, there is
no cross-core resource contention and hence no interference, and so task set schedulability can
be determined via standard response time analysis. With multiple cores, contention and the
resulting interference was modelled as described in Section 2. The experiments investigated
the performance of the following schedulability tests for partitioned fixed priority preemptive
and non-preemptive scheduling:

No-CpFPPS-m: The exact analysis of pFPPS [25, 5] with no contention, recapped in
Section 3.1, and given by (1).
CpFPPS-m-R: The response time based analysis of pFPPS with contention, introduced
in Section 3.1, and given by (2), (3), (5), and (6).
CpFPPS-m-D: The deadline based analysis of pFPPS with contention, introduced in
Section 3.1, and given by (2), (3), (4), and (5).
CpFPPS-m-fc: The fully composable analysis of pFPPS with contention, introduced in
Section 3.3, and given by (2), (3), and (10).
No-CpFPNS-m: The sufficient analysis of pFPNS [13] with no contention, recapped in
Section 3.2, and given by (7)).
CpFPNS-m-R: The response time based analysis of pFPNS with contention, introduced
in Section 3.2, and given by (8), (9), (6), and (5).
CpFPNS-m-D: The deadline based analysis of pFPNS with contention, introduced in
Section 3.2, and given by (8), (9), (4), and (5).
CpFPNS-m-fc: The fully composable analysis of pFPNS with contention, introduced
in Section 3.3, and given by (8), (9), and (10).

ECRTS 2021

7:16 Schedulability Analysis for Multi-Core Systems

For consistency of comparison, Deadline Monotonic Priority Ordering (DMPO) [31] was
used to assign priorities to tasks on the individual cores. As shown in Section 4, DMPO is
optimal with respect to the No-CpFPPS-m, CpFPPS-m-fc, and CpFPPS-m-D tests,
but only a heuristic policy with respect to the CpFPPS-m-R test and the tests for fixed
priority non-preemptive scheduling.

Note, the results for the fully composable analyses (tests CpFPPS-m-fc and CpFPNS-
m-fc) equate to the performance obtained via the use of resource sensitivity information
only, as outlined in prior works [36, 16, 33, 24].

5.3 Results
In the first experiment, we compared the performance of the various schedulability tests,
assuming 1, 2, 3, and 4 cores, using the default parameters given in Section 5.1. The Success
Ratio, i.e. the percentage of systems generated that were deemed schedulable, is shown for
each of the pFPPS schedulability tests in Figure 1a, and for the pFPNS schedulability tests
in Figure 1b. The dominance relationships between the tests, discussed in Section 3.4, are
evidenced by the lines on the graphs. Note, schedulability depends on the number of cores
even when contention is not taken into account. This is because for an m-core system the
task sets on all m cores have to be schedulable for the system to be deemed schedulable.

Observe, that the performance advantage that the context-independent tests have over
their context-dependent counterparts is more pronounced with pFPPS than with pFPNS.
The reason for this is that the increased response times due to the blocking factor with
pFPNS mean that the critical task(s) (those that become unschedulable as utilization is
increased) are much more likely to be medium or high priority tasks than is the case with
pFPPS. For higher priority tasks, the balance between total resource sensitivity Sr

i (Ri, x) and
total resource stress Er

i (Ri, y) tends towards the latter being larger, since Er
i (Ri, y) includes

a contribution from all of the tasks on core y, while Sr
i (Ri, x) only includes a contribution

from a single lower priority (blocking) task in the case of pFPNS, and no lower priority tasks
at all in the case of pFPPS. When Er

i (Ri, y) exceeds Sr
i (Ri, x) then the performance of the

context-independent tests is reduced to that of their context-dependent counterparts.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sc
he

du
la

bl
e

Sy
st

em
s

Task Set Utilization

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sc
he

du
la

bl
e

Sy
st

em
s

Task Set Utilization

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS.

Figure 1 Success Ratio: Varying task set utilization.

R. I. Davis, D. Griffin, and I. Bate 7:17

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Sensitivity Factor

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Sensitivity Factor

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS.

Figure 2 Weighted Schedulability: Varying Sensitivity Factor (SF).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Stress Factor

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Stress Factor

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS.

Figure 3 Weighted Schedulability: Varying Stress Factor (RF).

In the second set of experiments, we used the weighted schedulability measure [6] to assess
schedulability test performance, while varying an additional parameter. In these experiments,
the other parameters were set to their default values given in Section 5.1. In all of the
weighted schedulability experiments the relative performance of the different tests follows
the pattern illustrated in the first experiment, as dictated by the dominance relationships.

The results of varying the Sensitivity Factor SF from 0.05 to 0.5 in steps of 0.05, are
shown in Figure 2a for pFPPS, and Figure 2b for pFPNS. Recall that the Sensitivity Factor
determines the ratio of the total resource sensitivity utilization to the total task utilization.
As expected, increasing the Sensitivity Factor and hence the amount of interference that
tasks can be subject to due to cross-core contention for resources results in a rapid decline in
the weighted schedulability measure for all of the tests that take into account contention.

The results of varying the Stress Factor RF from 0 to 1.2 in steps of 0.1 are shown in
Figure 3a for pFPPS, and Figure 3b for pFPNS. Recall that the Stress Factor determines
the ratio of the resource stress for each task to its resource sensitivity. Here, it is interesting
to note that interference effective saturates once the Stress Factor reaches 1.0. By then, the

ECRTS 2021

7:18 Schedulability Analysis for Multi-Core Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 6 10 14 18 22 26 30

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Number of Tasks

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 6 10 14 18 22 26 30

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Number of Tasks

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS.

Figure 4 Weighted Schedulability: Varying number of tasks in each task set.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3 3.5 4

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Range of Task Periods 10r

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D
CpFPPS-4-fc

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.5 1 1.5 2 2.5 3 3.5 4

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Range of Task Periods 10r

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D
CpFPNS-4-fc

(b) pFPNS.

Figure 5 Weighted Schedulability: Varying range of task periods.

total resource stress Er
i (t, y), given by (4) or (6), emanating from each additional core y in a

time interval t tends to exceed the total resource sensitivity Sr
i (t, x), given by (3), for core x

in that same time interval. Hence, for pFPPS the CpFPPS-m-R and CpFPPS-m-D tests
reduce to exactly the same performance as the CpFPPS-m-fc test. Similarly, for pFPNS the
CpFPNS-m-R and CpFPNS-m-D tests reduce to exactly the same performance as the
CpFPNS-m-fc test. This is because the min(Er

i (t, y), Sr
i (t, x)) term in (5) ceases to reduce

the value in the summation below Sr
i (t, x). At the other extreme a Stress Factor RF of zero

means that Er
i (t, y) = 0 whether computed via (4) or (6). For pFPPS, the CpFPPS-m-R

and CpFPPS-m-D tests therefore have the same performance as the no contention No-
CpFPPS-m test, and similarly for pFPNS the CpFPNS-m-R and CpFPNS-m-D tests
have the same performance as the No-CpFPNS-m test. Between the two extremes, the
smaller values of Er

i (t, y) given by (6) as opposed to (4) mean that the CpFPPS-m-R test
outperforms the CpFPPS-m-D test, and similarly the CpFPNS-m-R test outperforms
the CpFPNS-m-D test.

R. I. Davis, D. Griffin, and I. Bate 7:19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Ratio of Deadline to Period

No-CpFPPS-1
No-CpFPPS-2
No-CpFPPS-3
No-CpFPPS-4
CpFPPS-2-R
CpFPPS-2-D
CpFPPS-2-fc
CpFPPS-3-R
CpFPPS-3-D
CpFPPS-3-fc
CpFPPS-4-R
CpFPPS-4-D

(a) pFPPS.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Ratio of Deadline to Period

No-CpFPNS-1
No-CpFPNS-2
No-CpFPNS-3
No-CpFPNS-4
CpFPNS-2-R
CpFPNS-2-D
CpFPNS-2-fc
CpFPNS-3-R
CpFPNS-3-D
CpFPNS-3-fc
CpFPNS-4-R
CpFPNS-4-D

(b) pFPNS.

Figure 6 Weighted Schedulability: Varying ratio of deadlines to periods.

The results of varying the cardinality of task sets running on each core from 2 to 32 in
steps of 2 are shown in Figure 4a for pFPPS, and Figure 4b for pFPNS. In the preemptive
case, task set cardinality typically has only a limited effect on schedulability test performance;
however, in the non-preemptive case (Figure 4b), larger task sets equate to smaller execution
times for each task and hence smaller blocking factors. Thus schedulability improves with
increasing cardinality for all of the pFPNS schedulability tests. In the preemptive case (Figure
4a) the gap between the CpFPPS-m-R and CpFPPS-m-D tests and the CpFPPS-m-fc
test increases with larger numbers of tasks. This is due to changes in the shape of the total
resource stress function Er

i (t, y), which typically consists of many small steps when there are
a large number of tasks, and fewer larger steps when there are a smaller number of tasks. As
the function Er

i (t, y) is above the same gradient line in both cases, this difference acts to
improve schedulability for the CpFPPS-m-R and CpFPPS-m-D tests at higher task set
cardinality. The same effect is also evident in Figure 4a for the pFPNS schedulability tests.

The effects of varying the range of task periods (ratio of the max/min possible task
period) from 100.5 ≈ 3 to 104 = 10, 000 are shown in Figure 5a for pFPPS, and Figure 5b for
pFPNS. As expected, increasing the range of task periods results in a gradual improvement
in pFPPS schedulability test performance, a well-known effect with fixed priority preemptive
scheduling. In contrast, with non-preemptive scheduling, once the range of task periods
exceeds 100 (i.e. r = 2), hardly any task sets are schedulable. This happens because tasks
with short periods (and deadlines) cannot tolerate being blocked by tasks with long periods
and commensurate large execution times.

Finally, the results of varying task deadlines from 25% to 100% of the task’s period
are shown in Figure 6a for pFPPS, and Figure 6b for pFPNS. As expected, schedulability
improves for all approaches as task deadlines are increased. Further, the performance
advantage of the CpFPPS-m-R test over the CpFPPS-m-D test increases with increasing
deadlines. This occurs because larger deadlines provide a more pessimistic approximation of
response times for schedulable tasks, impacting the total resource stress as assumed by the
CpFPPS-m-D test.

ECRTS 2021

7:20 Schedulability Analysis for Multi-Core Systems

6 Conclusions

The main contributions of this paper are the Multi-core Resource Stress and Sensitivity
(MRSS) task model and its accompanying schedulability analyses. The MRSS task model:

Characterizes how much each task stresses shared hardware resources and how much it is
sensitive to such resource stress.
Provides a simple yet effective interface between timing analysis and schedulability analysis,
facilitating a separation of concerns that retains the advantages of the traditional two-step
approach to timing verification.
Caters for a variety of different shared hardware resources in a way that is both generic
and versatile.

The accompanying schedulability analyses:
Provide efficient context-dependent and context independent schedulability tests for both
fixed priority preemptive and fixed priority non-preemptive scheduling.
Exhibit dominance relationships illustrating the trade-off between context independence
and schedulability.
Were proven compatible or incompatible with efficient optimal priority assignment al-
gorithms.
Were subject to a systematic evaluation illustrating their effectiveness across a wide range
of parameter values.

In future, we aim to investigate task allocation strategies for partitioned fixed priority
scheduling of MRSS tasks. Details of a preliminary case study that explores the resource
stress and resource sensitivity of tasks from a Rolls-Royce aero-engine control system are
given in the appendix. This case study provides an underpinning proof-of-concept for the
MRSS task model.

A Case Study

In this appendix, we present a preliminary case study that investigates the resource stress
and resource sensitivity of tasks from a real-time industrial application. The purpose of this
case study is not to try to determine definitive values for task WCETs, resource sensitivities
and resource stresses, in itself a challenging research problem that is beyond the scope of this
work. Rather our aim is to obtain proof-of-concept data to act as an exemplar underpinning
the MRSS task model and its accompanying schedulability analysis.

The case study focuses on a set of 24 tasks from a Rolls-Royce aero engine control
system or FADEC (Full Authority Digital Engine Controller). The industrial software was
developed in SPARK-Ada and has been verified according to DO-178C standards (level A).
The software was provided in an anonymized object code format, derived from that used in
the case studies reported in [29] and [30]. The tasks have object code libraries ranging in size
from 300 KBytes to 40 MBytes, including compiled in data structures, but not including any
framework or Linux additions. The software was originally designed to run on a Rolls-Royce
specific packaged processor that integrates a single core, memory, I/O, and tracing interfaces;
however, for research purposes, it was ported to run on a Raspberry Pi 3B+ [30], along with
a framework that facilitates taking timing measurements [7].

The Raspberry Pi 3B+ uses a Broadcom BCM2837 System-on-Chip with a quad-core
ARM Cortex-A53 processor. It has a 16 KByte L1 data cache, 16 KByte L1 instruction
cache, 512 KByte L2 shared cache, and 1 GByte of DDR2-DRAM. The L2 cache was, as is

R. I. Davis, D. Griffin, and I. Bate 7:21

the default, configured for use as local memory for the GPU4, and so was not available to
the four CPUs. The experimental hardware set-up involved a cluster of Raspberry Pi 3B+s,
configured to run at a clock frequency of 600MHz, so as to eliminate any possible disruption
due to thermal throttling. The cluster was powered by specialized power rails to ensure a
stable supply voltage and frequency. The Pi 3B+s used the Raspberry Pi OS Lite (updated
on 01/25/2021) and the Linux Kernel 5.10.11-v7+. The isolcpus Linux option was used to
minimize activity on the two cores used for the experiments. Timing measurements were
obtained using a nanosecond clock, and cross-referenced against a 600MHz cycle counter.
Prior to each run of a task, the L1 data and L1 instruction caches were flushed. Given that
the L2 cache was not accessible to the CPUs, the case study focussed on the key shared
hardware resource, main memory (DDR2-DRAM).

A.1 Case Study Experiments
For each of the 24 tasks, we considered 10,000 randomly selected traces of execution. When
a task was called for a specific trace, each of its input parameters was set to a random value
based on the type (float, integer, or boolean) and the range of values permitted. The inputs
were thus randomized, but nevertheless reproducible via the trace number, which controlled
the random seed used. In the following, for brevity we use trace to mean a task with a
specific set of input parameters corresponding to the trace number.

In Experiment A.1, for each trace we obtained the stand-alone execution time, the
resource sensitivity, and the resource stress as measured against each of the three contenders
described below. These values were obtained by: (i) running the trace stand alone, (ii)
running the trace in parallel with the contender, (iii) running the contender stand alone.
In (i) and (ii) the execution time of the trace was recorded. In addition, in (ii) the number
of times L that the contender looped while the trace was running was recorded, along
with the execution time of the contender for that number of loops. Finally, in (iii) the
stand-alone execution time of the contender was recorded for L loops. The loop count L thus
enabled comparable measurements to be made irrespective of the trace execution times. The
stand-alone execution time of the trace came directly from (i), while the resource sensitivity
(per contender) for the trace was given by the difference between the trace execution times in
(i) and (ii), and the resource stress for the trace by the difference in the contender’s execution
times in (ii) and (iii).

We repeated the runs for each trace 9 times to ensure consistency. Post processing of the
raw timing data was used to eliminate anomalies caused by the kernel scheduler tick and
the clock synchronization interrupt, neither of which could be disabled. The cycle counter
was configured to pause when the scheduler was running, and so we were able to detect and
eliminate anomalies due to the scheduler by comparing nanosecond clock and cycle counter
readings. Measurement noise caused by the clock synchronization interrupt was more difficult
to detect; however, we were able to filter out these anomalies by taking the median value for
the 9 repeated runs for each trace, and by using the 95th percentile value (over the 10,000
traces) as the reference “maximum” increase in execution time for each task and contender.

Three contenders were used that cause contention by repeatedly accessing main memory.
The contenders both stress the resource and are sensitive to contention. The three contenders
have a similar structure, they differ only in the instruction patterns used: Read-Read (RR),
Read-Write (RW), and Write-Write (WW). The read and write operations both compile down

4 The case study software does not use the GPU.

ECRTS 2021

7:22 Schedulability Analysis for Multi-Core Systems

to a single instruction. Each contender loop body included 100 memory access instructions,
ensuring that the loop overhead, i.e. checking when the contender should stop, was small in
comparison to the loop body. Hence each contender achieved close to the maximum possible
load in terms of instructions that access memory and cause contention. The addresses used
were such that the accesses had to go to memory, rather than being satisfied by the L1 cache.
A handshaking protocol was used between task and contender to ensure that the contender
started before and finished after the task. Further, dummy loops with no memory accesses
were added before and after each task, to ensure that the experimental framework did not
cause extra interference on the contender when it was running but the task was not.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
o

rm
al

iz
ed

 t
o

 s
ta

n
d

-a
lo

n
e

ex
ec

u
ti

o
n

 t
im

e

Task Number

Sensitivity Stress

Figure 7 Estimated resource stress and resource sensitivity values for 24 tasks from a Rolls-Royce
aero-engine control systems normalized to the task’s estimated stand-alone WCET.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
o

rm
al

iz
ed

 t
o

 s
ta

n
d

-a
lo

n
e

ex
ec

u
ti

o
n

 t
im

e

Task Number (Victim)

Measured Bound

Figure 8 Increase in execution time of a (victim) task co-running with its paired task. Maximum
observed value and computed bound derived from resource sensitivity and resource stress values,
normalized to the stand-alone execution time of the victim task.

Figure 7 shows the results of Experiment A.1, for 24 tasks from the Rolls-Royce aero-
engine application, giving their maximum resource sensitivity and maximum resource stress
normalized to the task’s maximum stand-alone execution time. Note, the tasks appear in the
figure ordered by their maximum stand-alone execution time, largest first. The RW contender
was responsible for the maximum increase in task execution time (resource sensitivity) in all
24 cases. However, in terms of which contender suffered the maximum increase in execution
time due to the task (i.e. resource stress), this was the RR contender in 2 cases, the RW
contender in 3 cases, and the WW contender in 19 cases. Running a contender in parallel
with a task increased the task’s execution time by between 3.8% and 15.0% compared

R. I. Davis, D. Griffin, and I. Bate 7:23

to stand-alone execution, thus characterizing the tasks’ resource sensitivity. Further, the
contender’s execution time increased by between 1.5% and 19.3% of the task’s stand-alone
execution time, thus characterizing the tasks’ resource stress. The ratio of resource stress to
resource sensitivity for each task varied from 0.23 to 1.58. Some negative correlation can
be observed between the stand-alone execution time and the percentage resource sensitivity
and resource stress, with longer running tasks often having lower percentage values for these
metrics. This is to be expected, since longer tasks typically spend more of their execution
time in loops, running code that is cached, and therefore causes less resource contention.

As well as running tasks (traces) in parallel with the synthetic contenders, we also
conducted Experiment A.2, running pairs of tasks in parallel on different cores. For each
pair of tasks, we ran 10,000 pairs of their traces in parallel, with the inputs randomly selected
as described previously. Figure 8 shows the maximum increase in execution time for each
(victim) task due to cross-core contention from the task it was paired with. (The tasks
were sorted by stand-alone execution time and then paired 1-2, 3-4, 5-6 and so on). The
values shown are the maximum over the 10,000 pairs of traces, and are normalized to the
stand-alone execution time of the victim task. Also shown is the bound computed from the
minimum of (i) the resource sensitivity for the victim task and (ii) the resource stress for the
task it was paired with, both obtained via Experiment A.1 using the synthetic contenders.
The maximum measured increase in execution time is no greater than the computed bound.
On average it is approx. 69% of the bound, and varies between 26% and 99%.

This preliminary case study underpins the MRSS task model, illustrating the relevance
of using both resource sensitivity and resource stress to characterize cross-core contention,
and thus bound interference.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis.

An empirical survey-based study into industry practice in real-time systems. In 41st IEEE
Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020, pages
3–11. IEEE, 2020. doi:10.1109/RTSS49844.2020.00012.

2 Sebastian Altmeyer, Robert I. Davis, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. A generic and compositional framework for multicore response time analysis.
In Julien Forget, editor, Proceedings of the 23rd International Conference on Real Time
Networks and Systems, RTNS 2015, Lille, France, November 4-6, 2015, pages 129–138. ACM,
2015. doi:10.1145/2834848.2834862.

3 Björn Andersson, Hyoseung Kim, Dionisio de Niz, Mark H. Klein, Ragunathan Rajkumar,
and John P. Lehoczky. Schedulability analysis of tasks with corunner-dependent execution
times. ACM Trans. Embed. Comput. Syst., 17(3):71:1–71:29, 2018. doi:10.1145/3203407.

4 Neil C. Audsley. On priority assignment in fixed priority scheduling. Inf. Process. Lett.,
79(1):39–44, 2001. doi:10.1016/S0020-0190(00)00165-4.

5 Neil C. Audsley, Alan Burns, Michael Richardson, Kenneth W. Tindell, and Andrew J.
Wellings. Applying new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal, 8:284–292(8), September 1993. URL: https://digital-library.theiet.
org/content/journals/10.1049/sej.1993.0034.

6 Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedulability. In International
Workshop on Operating Systems Platforms for Embedded Real-Time Applications, pages 33–44,
2010.

7 Iain Bate, David Griffin, and Benjamin Lesage. Establishing confidence and understanding
uncertainty in real-time systems. In Liliana Cucu-Grosjean, Roberto Medina, Sebastian
Altmeyer, and Jean-Luc Scharbarg, editors, 28th International Conference on Real Time

ECRTS 2021

https://doi.org/10.1109/RTSS49844.2020.00012
https://doi.org/10.1145/2834848.2834862
https://doi.org/10.1145/3203407
https://doi.org/10.1016/S0020-0190(00)00165-4
https://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034
https://digital-library.theiet.org/content/journals/10.1049/sej.1993.0034

7:24 Schedulability Analysis for Multi-Core Systems

Networks and Systems, RTNS 2020, Paris, France, June 10, 2020, pages 67–77. ACM, 2020.
doi:10.1145/3394810.3394816.

8 Sheng-Wei Cheng, Jian-Jia Chen, Jan Reineke, and Tei-Wei Kuo. Memory bank partitioning
for fixed-priority tasks in a multi-core system. In 2017 IEEE Real-Time Systems Symposium,
RTSS 2017, Paris, France, December 5-8, 2017, pages 209–219. IEEE Computer Society, 2017.
doi:10.1109/RTSS.2017.00027.

9 Dakshina Dasari, Björn Andersson, Vincent Nélis, Stefan M. Petters, Arvind Easwaran, and
Jinkyu Lee. Response time analysis of cots-based multicores considering the contention on the
shared memory bus. In IEEE 10th International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2011, Changsha, China, 16-18 November, 2011,
pages 1068–1075. IEEE Computer Society, 2011. doi:10.1109/TrustCom.2011.146.

10 Robert I. Davis, Sebastian Altmeyer, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. An extensible framework for multicore response time analysis. Real Time
Syst., 54(3):607–661, 2018. doi:10.1007/s11241-017-9285-4.

11 Robert I. Davis and Alan Burns. On optimal priority assignment for response time analysis of
global fixed priority pre-emptive scheduling in multiprocessor hard real-time systems. Technical
Report YCS-2010-451, University of York, Computer Science Dept., 2010.

12 Robert I. Davis and Alan Burns. Improved priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems. Real Time Syst., 47(1):1–40, 2011.
doi:10.1007/s11241-010-9106-5.

13 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Real Time Syst., 35(3):239–272,
2007. doi:10.1007/s11241-007-9012-7.

14 Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. A review of priority
assignment in real-time systems. J. Syst. Archit., 65:64–82, 2016. doi:10.1016/j.sysarc.
2016.04.002.

15 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of
multiprocessor tasksets. In International Workshop on Analysis Tools and Methodolo-
gies for Embedded and Real-time Systems (WATERS), pages 6–11, July 2010. URL:
http://retis.sssup.it/waters2010/waters2010.pdf.

16 Mikel Fernández, Roberto Gioiosa, Eduardo Quiñones, Luca Fossati, Marco Zulianello, and
Francisco J. Cazorla. Assessing the suitability of the NGMP multi-core processor in the space
domain. In Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr, editors,
Proceedings of the 12th International Conference on Embedded Software, EMSOFT 2012, part
of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October 7-12, 2012,
pages 175–184. ACM, 2012. doi:10.1145/2380356.2380389.

17 Rudolf Fuchsen. How to address certification for multi-core based IMA platforms: Current
status and potential solutions. In 29th Digital Avionics Systems Conference, pages 5.E.3–1–
5.E.3–11, 2010. doi:10.1109/DASC.2010.5655461.

18 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and nonpreemptive real-time
uniprocessor scheduling. Technical report, INRIA Research Report, No. 2966, 1996. URL:
https://hal.inria.fr/inria-00073732.

19 Georgia Giannopoulou, Kai Lampka, Nikolay Stoimenov, and Lothar Thiele. Timed model
checking with abstractions: towards worst-case response time analysis in resource-sharing
manycore systems. In Ahmed Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr,
editors, Proceedings of the 12th International Conference on Embedded Software, EMSOFT
2012, part of the Eighth Embedded Systems Week, ESWeek 2012, Tampere, Finland, October
7-12, 2012, pages 63–72. ACM, 2012. doi:10.1145/2380356.2380372.

20 David Griffin, Iain Bate, and Robert I. Davis. Dirichlet-Rescale (DRS) algorithm software:
dgdguk/drs: v1.0.0 available at https://doi.org/10.5281/zenodo.4118059, 2020.

21 David Griffin, Iain Bate, and Robert I. Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 41st IEEE Real-Time Systems Symposium, RTSS 2020,

https://doi.org/10.1145/3394810.3394816
https://doi.org/10.1109/RTSS.2017.00027
https://doi.org/10.1109/TrustCom.2011.146
https://doi.org/10.1007/s11241-017-9285-4
https://doi.org/10.1007/s11241-010-9106-5
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1016/j.sysarc.2016.04.002
https://doi.org/10.1016/j.sysarc.2016.04.002
http://retis.sssup.it/waters2010/waters2010.pdf
https://doi.org/10.1145/2380356.2380389
https://doi.org/10.1109/DASC.2010.5655461
https://hal.inria.fr/inria-00073732
https://doi.org/10.1145/2380356.2380372
https://doi.org/10.5281/zenodo.4118059

R. I. Davis, D. Griffin, and I. Bate 7:25

Houston, TX, USA, December 1-4, 2020, pages 76–88. IEEE, 2020. doi:10.1109/RTSS49844.
2020.00018.

22 Mohamed Hassan. On the off-chip memory latency of real-time systems: Is DDR DRAM really
the best option? In 2018 IEEE Real-Time Systems Symposium, RTSS 2018, Nashville, TN,
USA, December 11-14, 2018, pages 495–505. IEEE Computer Society, 2018. doi:10.1109/
RTSS.2018.00062.

23 Wen-Hung Huang, Jian-Jia Chen, and Jan Reineke. MIRROR: symmetric timing analysis
for real-time tasks on multicore platforms with shared resources. In Proceedings of the 53rd
Annual Design Automation Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages
158:1–158:6. ACM, 2016. doi:10.1145/2897937.2898046.

24 Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F. Donaldson. Slow and steady:
Measuring and tuning multicore interference. In IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2020, Sydney, Australia, April 21-24, 2020, pages 200–212.
IEEE, 2020. doi:10.1109/RTAS48715.2020.000-6.

25 Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-time system. Comput.
J., 29(5):390–395, 1986. doi:10.1093/comjnl/29.5.390.

26 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark H. Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding and reducing memory interference in cots-based multi-core systems.
Real Time Syst., 52(3):356–395, 2016. doi:10.1007/s11241-016-9248-1.

27 Namhoon Kim, Bryan C. Ward, Micaiah Chisholm, James H. Anderson, and F. Donelson
Smith. Attacking the one-out-of-m multicore problem by combining hardware management
with mixed-criticality provisioning. Real Time Syst., 53(5):709–759, 2017. doi:10.1007/
s11241-017-9272-9.

28 Kai Lampka, Georgia Giannopoulou, Rodolfo Pellizzoni, Zheng Wu, and Nikolay Stoimenov.
A formal approach to the WCRT analysis of multicore systems with memory contention
under phase-structured task sets. Real Time Syst., 50(5-6):736–773, 2014. doi:10.1007/
s11241-014-9211-y.

29 Stephen Law and Iain Bate. Achieving appropriate test coverage for reliable measurement-
based timing analysis. In 28th Euromicro Conference on Real-Time Systems, ECRTS 2016,
Toulouse, France, July 5-8, 2016, pages 189–199. IEEE Computer Society, 2016. doi:10.1109/
ECRTS.2016.21.

30 Benjamin Lesage, Stephen Law, and Iain Bate. TACO: an industrial case study of test
automation for coverage. In Yassine Ouhammou, Frédéric Ridouard, Emmanuel Grolleau,
Mathieu Jan, and Moris Behnam, editors, Proceedings of the 26th International Conference on
Real-Time Networks and Systems, RTNS 2018, Chasseneuil-du-Poitou, France, October 10-12,
2018, pages 114–124. ACM, 2018. doi:10.1145/3273905.3273910.

31 Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-priority schedul-
ing of periodic, real-time tasks. Perform. Evaluation, 2(4):237–250, 1982. doi:10.1016/
0166-5316(82)90024-4.

32 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I. Davis. A survey of timing verification techniques for multi-core real-time systems.
ACM Comput. Surv., 52(3):56:1–56:38, 2019. doi:10.1145/3323212.

33 Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in
avionics. In Cristian Constantinescu and Miguel P. Correia, editors, 2012 Ninth European
Dependable Computing Conference, Sibiu, Romania, May 8-11, 2012, pages 132–143. IEEE
Computer Society, 2012. doi:10.1109/EDCC.2012.27.

34 Marco Paolieri, Eduardo Quiñones, Francisco J. Cazorla, Robert I. Davis, and Mateo Valero.
Iaˆ3: An interference aware allocation algorithm for multicore hard real-time systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2011,
Chicago, Illinois, USA, 11-14 April 2011, pages 280–290. IEEE Computer Society, 2011.
doi:10.1109/RTAS.2011.34.

ECRTS 2021

https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS49844.2020.00018
https://doi.org/10.1109/RTSS.2018.00062
https://doi.org/10.1109/RTSS.2018.00062
https://doi.org/10.1145/2897937.2898046
https://doi.org/10.1109/RTAS48715.2020.000-6
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/s11241-016-9248-1
https://doi.org/10.1007/s11241-017-9272-9
https://doi.org/10.1007/s11241-017-9272-9
https://doi.org/10.1007/s11241-014-9211-y
https://doi.org/10.1007/s11241-014-9211-y
https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1109/ECRTS.2016.21
https://doi.org/10.1145/3273905.3273910
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1016/0166-5316(82)90024-4
https://doi.org/10.1145/3323212
https://doi.org/10.1109/EDCC.2012.27
https://doi.org/10.1109/RTAS.2011.34

7:26 Schedulability Analysis for Multi-Core Systems

35 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In Giovanni De Micheli,
Bashir M. Al-Hashimi, Wolfgang Müller, and Enrico Macii, editors, Design, Automation and
Test in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010, pages 741–746. IEEE
Computer Society, 2010. doi:10.1109/DATE.2010.5456952.

36 Petar Radojkovic, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and
Francisco J. Cazorla. On the evaluation of the impact of shared resources in multithreaded
COTS processors in time-critical environments. ACM Trans. Archit. Code Optim., 8(4):34:1–
34:25, 2012. doi:10.1145/2086696.2086713.

37 Rapita Systems. Multicore timing analysis for do-178c. https://www.rapitasystems.com/
downloads/multicore-timing-analysis-do-178c.

38 Hamza Rihani, Matthieu Moy, Claire Maiza, Robert I. Davis, and Sebastian Altmeyer.
Response time analysis of synchronous data flow programs on a many-core processor. In Alain
Plantec, Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho, editors, Proceedings of
the 24th International Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, pages 67–76. ACM, 2016. doi:10.1145/2997465.2997472.

39 Simon Schliecker and Rolf Ernst. Real-time performance analysis of multiprocessor systems
with shared memory. ACM Trans. Embed. Comput. Syst., 10(2):22:1–22:27, 2010. doi:
10.1145/1880050.1880058.

40 Andreas Schranzhofer, Rodolfo Pellizzoni, Jian-Jia Chen, Lothar Thiele, and Marco Cac-
camo. Worst-case response time analysis of resource access models in multi-core systems.
In Sachin S. Sapatnekar, editor, Proceedings of the 47th Design Automation Conference,
DAC 2010, Anaheim, California, USA, July 13-18, 2010, pages 332–337. ACM, 2010.
doi:10.1145/1837274.1837359.

41 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, pages
161–172. IEEE Computer Society, 2016. doi:10.1109/RTAS.2016.7461361.

42 Heechul Yun, Rodolfo Pellizzoni, and Prathap Kumar Valsan. Parallelism-aware memory
interference delay analysis for COTS multicore systems. In 27th Euromicro Conference on
Real-Time Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015, pages 184–195. IEEE
Computer Society, 2015. doi:10.1109/ECRTS.2015.24.

https://doi.org/10.1109/DATE.2010.5456952
https://doi.org/10.1145/2086696.2086713
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://www.rapitasystems.com/downloads/multicore-timing-analysis-do-178c
https://doi.org/10.1145/2997465.2997472
https://doi.org/10.1145/1880050.1880058
https://doi.org/10.1145/1880050.1880058
https://doi.org/10.1145/1837274.1837359
https://doi.org/10.1109/RTAS.2016.7461361
https://doi.org/10.1109/ECRTS.2015.24

Response Time Bounds for DAG Tasks with
Arbitrary Intra-Task Priority Assignment
Qingqiang He #

Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Mingsong Lv1 #

Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Nan Guan #

Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Abstract
Most parallel real-time applications can be modeled as directed acyclic graph (DAG) tasks. Intra-task
priority assignment can reduce the nondeterminism of runtime behavior of DAG tasks, possibly
resulting in a smaller worst-case response time. However, intra-task priority assignment incurs
dependencies between different parts of the graph, making it a challenging problem to compute
the response time bound. Existing work on intra-task task priority assignment for DAG tasks is
subject to the constraint that priority assignment must comply with the topological order of the
graph, so that the response time bound can be computed in polynomial time. In this paper, we
relax this constraint and propose a new method to compute response time bound of DAG tasks with
arbitrary priority assignment. With the benefit of our new method, we present a simple but effective
priority assignment policy, leading to smaller response time bounds. Comprehensive evaluation with
both single-DAG systems and multi-DAG systems demonstrates that our method outperforms the
state-of-the-art method with a considerable margin.

2012 ACM Subject Classification Software and its engineering → Real-time schedulability

Keywords and phrases real-time systems, response time bound, DAG tasks, intra-task priority
assignment

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.8

1 Introduction

Multi-cores are becoming the mainstream of real-time systems for performance and energy
efficiency. To utilize the power of multi-cores, software must be parallelized. Many parallel
real-time applications can be modeled as directed acyclic graph (DAG) tasks. The DAG task
model has gained much attention in the past few years [6,22,23,25]. In real-time community,
researchers studied how to derive safe upper bounds for the response time of DAG tasks,
which is a crucial characteristic for schedulability test.

When scheduling a DAG task, the execution order of eligible vertices has a large impact
on the system schedulability [17,26]. A recent work [17] proposed to assign different priorities
to vertices of a DAG task (i.e., intra-task priority assignment) to control the execution
order of eligible vertices of a DAG task, and developed efficient algorithms to calculate safe
response time bound of the DAG task in polynomial time. However, the approach in [17]
is subject to the constraint that the intra-task priority must comply with the topological
order of the graph (i.e., a vertex’s priority cannot be higher than any of its ancestors). In
general, allowing priority orders not complying with the topological order can lead to smaller
response time bounds. The target of this work is to get rid of this constraint and further
improve the schedulability of DAG tasks. More precisely, we develop algorithms to compute
response time bounds of DAG tasks with arbitrary intra-task priority assignment.

1 corresponding author
© Qingqiang He, Mingsong Lv, and Nan Guan;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:qiang.he@connect.polyu.hk
mailto:mingsong.lyu@polyu.edu.hk
mailto:nan.guan@polyu.edu.hk
https://doi.org/10.4230/LIPIcs.ECRTS.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Response Time Bounds for DAG Tasks

The major challenge we face is how to deal with dependencies between different parts
of the graph incurred by intra-task priority assignment when it does not comply with the
topological order (see Example 4). We explore insights into these dependencies and the
structure of the problem, and propose solving the problem by abstracting the graph in a
context-free manner. An essential observation is that vertices with lower priorities can serve
to isolate dependencies. With our computing method unleashing possibilities for arbitrary
priority assignment, we devise a quite simple but effective priority assignment policy, leading
to a much smaller bound. Experiments with both single-DAG systems and multi-DAG
systems show that our method outperforms the previous method in [17] with a considerable
margin.

2 Preliminary

2.1 Task Model

The parallel real-time task is modeled as a DAG G = (V, E), where V is the set of vertices
and E ⊆ V × V is the set of edges. Each vertex vi ∈ V represents a piece of sequential
workload with worst-case execution time (WCET) c(vi) (for brevity, also denoted as ci). An
edge (vi, vj) ∈ E represents the precedence relation between vi and vj , i.e., vj can only start
execution after vertex vi finishes its execution. A vertex with no incoming (outgoing) edges
is called a source vertex (sink vertex). Without loss of generality, we assume that G has
exactly one source (denoted as vsrc), and one sink (denoted as vsink). In case G has multiple
source/sink vertices, a dummy source/sink vertex with zero WCET can be added to comply
with our assumption.

A path λ starting from vertex π0 and ending at vertex πk (̸= π0) is a sequence of vertices
(π0, · · · , πk) such that ∀i ∈ [0, k), (πi, πi+1) ∈ E, where π0, πk are the start vertex and end
vertex of path λ respectively. We also use λ to denote the set of vertices which are in the
path λ. The length of a path λ is defined as len(λ) =

∑
πi∈λ c(πi). A complete path is a

path (π0, · · · , πk) such that π0 = vsrc and πk = vsink, i.e., a complete path is a path starting
from the single source vertex and ending at the single sink vertex.

If there is an edge (u, v) ∈ E, u is a predecessor of v, and v is a successor of u. If there is
a path in G from u to v, u is an ancestor of v and v is a descendant of u. We use pred(v),
succ(v), ance(v) and desc(v) to denote the set of predecessors, successors, ancestors and
descendants of v, respectively.

For any vertex set V ′ ⊂ V , we define vol(V ′) =
∑

vi∈V ′ ci. The volume of a DAG G

denoted as vol(G) is defined as vol(V), i.e.,
∑

vi∈V ci, which is the total WCET of all vertices
in G. The longest path is a complete path with largest len(λ) in G. len(G) is defined as the
length of the longest path.

2.2 Scheduling Model

We consider vertices of DAG G scheduled on a multi-core platform with m identical cores.
The approach is divided into two phases:

Analysis phase. In this phase, first, priorities are assigned to vertices (different vertices
with identical priority are allowed). Formally, we assign a priority p(vi) to each vertex
vi of the DAG, and say vertex vi has a higher priority than vertex vj , if p(vi) < p(vj).
Second, response time bound is computed (the focus of this paper), and schedulability
test is applied (not the focus of this paper).

Q. He, M. Lv, and N. Guan 8:3

Scheduling phase. The scheduling algorithm for one DAG task with priority assignment
is prioritized list scheduling [17], which is work-conserving and preemptive and always
chooses at most m highest-priority eligible vertices for execution.

2.3 Problem Formulation

We first state some notations to present the problem. The parallel set of a vertex v ∈ V is
defined as para(v) = {u ∈ V \ {v}|u /∈ ance(v) ∧ u /∈ desc(v)}.

▶ Definition 1 (Interference Set [17]). The interference set of a vertex v ∈ V is defined as
I(v) = {u ∈ V |u ∈ para(v) ∧ p(u) ≤ p(v)}. The interference set of a path λ is defined as
I(λ) =

⋃
πi∈λ I(πi).

▶ Definition 2. For a path λ, R(λ) is defined in [17] as

R(λ) = len(λ) + vol(I(λ))
m

R(λ) can be think of as the response time bound of this path λ. A response time bound
for a DAG task was derived in [17] as stated in the following. The response time R of a DAG
G with priority assignment scheduled by prioritized list scheduling on a platform with m

cores is bounded by:

R ≤ max
λ∈Π(G)

{R(λ)} (1)

where Π(G) is the set of all complete paths of G.
It can be easily checked that this bound is timing-anomaly free or sustainable [8], thus

providing a safe bound if some vertices execute for less than its WCET and self-sustainable [2],
thus the bound not increasing if the number of cores increases. Actually, when some vertices
execute for less than its WCET, for a path λ, its inference set I(λ) being not change, len(λ)
and vol(I(λ)) do not increase. As a result, the computed R in Equation 1 does not increase.

For a DAG task, the bound defined above varies for different priority assignments. In the
computation of Equation 1, first, for a path, its interference set is computed which includes
vertices that may interfere with the execution of this path. Second, the response time bound
of the graph can be computed by searching all paths in this graph.

Although the bound is clearly defined in Equation 1, the computation of it can be a
challenging task. Since the number of paths can be exponential in the size of the DAG,
it is impractical to enumerate all the paths to compute the bound. Moreover, since the
interference sets of two vertices in a path may contain the same vertex (see Example 4),
which means dependencies exist among different parts of the graph, or different subproblems
of the whole problem, it can be challenging to find a clear abstraction to compute the bound.
We call the computation of Equation 1 as graph interference problem formulated as follows:

Graph Interference Problem. For a DAG G with priority assignment and the number of
cores m, the objective of this problem is to compute the bound defined in Equation 1.

2.4 An Illustrating Example

An example is given to explain concepts introduced in Section 2.

ECRTS 2021

8:4 Response Time Bounds for DAG Tasks

▶ Example 3. Figure 2b shows a DAG task with a priority assignment. The number inside
the circles (representing vertices) is the WCET of vertices, and the red number besides
vertices is its priority. v0, v5 are the single source vertex and the single sink vertex respectively
(both are dummy vertices with zero WCET). The longest path is λ1 = (v0, v1, v4, v5), and
path λ2 = (v0, v2, v4, v5) is a complete path. We can compute vol(G) = 18 and len(G) = 9.
For vertex v4, pred(v4) = {v1, v2}, succ(v4) = {v5}, ance(v4) = {v0, v1, v2}, desc(v4) = {v5}.
The priority of v1 is higher than that of v2 with p(v1) = 1, p(v2) = 5. para(v2) = {v1, v3},
I(v2) = {v1, v3}. len(λ2) = 4, I(λ2) = {v1, v3}.

Suppose that the number of cores is m = 2. R(λ2) = len(λ2)+vol(I(λ2))/m = 4+14/2 =
11. The graph has three complete paths. We can compute the bound defined in Equation 1
being 11 by searching all three complete paths exhaustively, and path λ2 = (v0, v2, v4, v5)
leads to this bound.

3 Motivation

3.1 Discussion on Existing Work
In [17], a dynamic programming algorithm was proposed to compute the bound defined in
Equation 1, alongside its response time analysis. But its computing method assumes the
intra-task priority assignment should comply with the topological order of the DAG. In the
following, we briefly introduce the computing method of [17] given in Algorithm 1, and use
an example to show that its method may not produce a correct bound for a DAG with a
priority assignment not complying with the topological order.

Algorithm 1 Bound Computation in [17].

1 σ ← TopologicalOrder(G)
2 λvsrc

← {vsrc}
3 for vi ∈ σ from vsrc to vsink do
4 if vi ̸= vsrc then
5 u∗ ← arg maxu∈pred(vi){len(λu) + ci + vol(I(λu)∪I(vi))

m }
6 λvi

← λu∗ ∪ {vi}
7 end
8 end
9 return R(λvsink

)

The Algorithm first computes a topological order of the graph G (Line 1), then searches
through the topological order for a path with max R(λ). In Line 5, whenever two paths join
at a vertex vi, it search through the predecessors of vi to find a path with maximum R(λ) in
the subgraph consisting of ancestors of vi. This path is stored in λvi . In Line 9, the searching
reaches vsink, and R(λvsink

) is returned as the response time bound of the whole graph.
The following example shows that Algorithm 1 may not compute a correct bound defined

in Equation 1.

▶ Example 4. Figure 1 presents a DAG with a priority assignment. Red numbers besides
vertices are priorities, and the sets above vertices are interference sets. Suppose that the
number of cores is m = 2. We can compute the bound being 8 by searching all three complete
paths exhaustively, and path (v0, v1, v4, v5, v6) leads to this bound. However, according to
Algorithm 1, the computed bound is 7.5 and path (v0, v2, v4, v5, v6) leads to this bound,
which is wrong and not the bound in Equation 1.

Q. He, M. Lv, and N. Guan 8:5

1 1 1 1

2

1

3

0

1

2

3

4 5 6
∅

∅

∅∅

0v

1v

2v

3v

4v 5v 6v

1 3{ , }v v

1 4{ , }v v

3{ }v

Figure 1 A counterexample of Algorithm 1.

0 1 0

6

3

8

0v

1v

2v

3v

4v 5v
1

3 5

4

20

(a) With topology constraint.

0 1 0

6

3

8

0v

1v

2v

3v

4v 5v
1

2 3

4

50

(b) Without topology constraint.

Figure 2 A motivational example.

During Algorithm 1 for Example 4, when computing v4 (v4 as vi in Line 5), it chooses path
λ1 = (v0, v2, v4) as λv4 because λ1 suffers interference from v3, thus λ1 having a larger R(λ)
than that of path (v0, v1, v4). When computing v5 in Line 5, it chooses path (v0, v2, v4, v5) as
λv5 because v5 has only one predecessor v4 and the path stored in λv4 is (v0, v2, v4). However,
this choice leads to a wrong result as shown in Example 4.

The reason why Algorithm 1 produces a wrong bound for the above example is that
vertex v3, being in the interference sets of both v2 and v5, incurs dependencies between
subgraph {v0, v1, v2, v4} and subgraph {v4, v5}. In fact, priority assignment, when it becomes
arbitrary, may incur dependencies between different parts of the graph, which the method
in [17] cannot resolve. Actually, the computing method in [17] is only valid when the priority
assignment satisfies topology constraint, i.e., a vertex’s priority is not higher than any of its
ancestors.

3.2 Motivation of this Work
Two reasons motivate us to study the problem of computing response time bound for DAG
tasks with arbitrary intra-task priority assignment.

First, there are situations where priorities are predetermined (e.g, by industry practition-
ers) before the schedulability analysis phase. For example, in OpenMP [1], practitioners can
use the priority clause to specify a priority for a task construct. It is not necessary that
these priority assignments satisfy topology constraint. In these cases, the computing method
in [17] cannot be applied.

Second, for priority assignment determined during analysis phase as the scheduling model
in Section 2.2 assumes, it is possible that much smaller response time bounds can be achieved
by relaxing topology constraint and allowing arbitrary priority assignment. Example 5 is an
illustration of this finding.

▶ Example 5. Figure 2 shows a DAG with two priority assignments (red numbers besides
vertices are priorities). Figure 2a is the priority assignment according to [17] with topology
constraint, while the priority assignment in Figure 2b is without this constraint (because v2,

ECRTS 2021

8:6 Response Time Bounds for DAG Tasks

as an ancestor of v4, has a priority lower than that of v4). Suppose that the number of cores
is m = 2. In Figure 2a, we can compute the bound being 12 by searching all three complete
paths exhaustively, and path λ1 = (v0, v3, v5) leads to this bound. In Figure 2b, as shown in
Example 3, the computed bound is 11, and path λ2 = (v0, v2, v4, v5) leads to it.

As shown in [17], assigning higher priorities to vertices in a longer path may lead to a
smaller response time. However, in Figure 2a, under topology constraint without which the
method in [17] is invalid, v3 in a path with length 6 has a priority lower (i.e., p(v3) > p(v2))
than that of v2 in a path with length 4, leading to a larger bound than that of Figure 2b.

With the two motivations, this paper focuses on solving the graph interference problem
with arbitrary priority assignment, thus unleashing the possibilities for a better (possibly
optimal) priority assignment policy without topology constraint.

4 Computing Response Time Bound

In this section, we solve the graph interference problem precisely through abstraction of the
graph in a context-free manner, assuming priority assignment is arbitrary.

We first give an overview of our abstraction framework. A DAG with priority assignment
is treated as a sentence of a formal language, and the graph interference problem is how to
parse the graph to compute an abstraction of the graph (i.e., the bound in Equation 1) under
a context-free grammar [18]. The abstraction of (part of) the graph is represented as tuple
(Definition 6). Starting from edges represented as simple tuples, through tuples connecting
into new tuples, the abstraction of the whole graph (i.e. the bound) is constructed gradually.
On one hand, the context-free grammar is expressed by the connection principle (Definition
9), which functions to identify the context-free parts of the graph to isolate dependencies
on other parts in the graph. On the other hand, why these parts of graph are context-free
and can be computed independently without having to consider the other parts of the graph
connecting to them is explained in Lemma 13, which states that these tuple connections
only depend on a limited number of vertices, whose information is included in these tuples
themselves, not the other parts of the graph. An illustrative example of the above concepts
is shown in Figure 3 located after the computing algorithm (Algorithm 2).

Next, we will go into the details of our abstraction framework.

▶ Definition 6 (Tuple). For a path λ = (π0, · · · , πk), we define a tuple

⟨π0, πk, R(λ)⟩

where π0, πk are the start vertex, end vertex of path λ.

We say the tuple defined above corresponds to path λ, or path λ corresponds to this
tuple. We also call π0, πk as the start vertex, end vertex of this tuple.

▶ Definition 7 (Connection Vertex). For a tuple ⟨u, v, R(λ)⟩, the connection vertex (denoted
as κ(u, v)) of this tuple is defined as:

κ(u, v) =



⊥ u = vsrc ∧ v = vsink

v u = vsrc ∧ v ̸= vsink

u u ̸= vsrc ∧ v = vsink

u u ̸= vsrc ∧ v ̸= vsink ∧ p(u) ≤ p(v)
v u ̸= vsrc ∧ v ̸= vsink ∧ p(u) > p(v)

where ⊥ means no connection vertex.

Q. He, M. Lv, and N. Guan 8:7

Although the equation for connection vertex seems complex, actually only two guidelines need
to be kept in mind: (1) never choose a terminate vertex (i.e., vsrc, vsink); (2) always choose
the vertex with a higher priority (i.e., p(v) with a smaller value). According to Definition 7,
except for tuples corresponding to a complete path, there is exactly one connection vertex
in a tuple. For a tuple ⟨u, v, R(λ)⟩ with u ̸= vsrc ∨ v ≠ vsink, we denote the priority of the
connection vertex of this tuple as p(κ(u, v))(for brevity, also denoted as p(u, v)).

Two paths λ0, λ1 can be connected into a new path λ, if the end vertex of λ0 is the same
as the start vertex of λ1, denoted as λ = λ0 ∪ λ1. Similarly, two tuples can be connected
into a new tuple, if the end vertex of the first tuple is the same as the start vertex of the
second tuple.

▶ Example 8. For the graph in Figure 2b, path λ0 = (v2, v4) corresponds to a tuple
α0 = ⟨v2, v4, R(λ0)⟩, and path λ1 = (v4, v5) corresponds to a tuple α1 = ⟨v4, v5, R(λ1)⟩.
κ(v2, v4) = v4, κ(v4, v5) = v4. Since v4 is the end vertex of α0 and the start vertex of α1,
tuple α0 and α1 can be connected into a new tuple α = ⟨v2, v5, R(λ)⟩, where λ = λ0 ∪ λ1 =
(v2, v4, v5).

With respect to tuple connection, we introduce the following connection principle.

▶ Definition 9 (Connection Principle). For two tuples ⟨u, v, R(λ0)⟩, ⟨v, w, R(λ1)⟩, if vertex v

is the connection vertex of these two tuples, then they can be connected into a new tuple.

We call these two tuples are connected under the connection principle denoted by

⟨u, v, R(λ0)⟩+ ⟨v, w, R(λ1)⟩⇝ ⟨u, w, R(λ)⟩ (2)

where λ = λ0 ∪ λ1.
Note that since R(λ0) is just a value, the detailed information of a path is not stored in

a tuple, which means R(λ) cannot be computed by the above equation. Later in Lemma 14,
the formula of computing the resulting tuple will be given.

For an edge (u, v) ∈ E, there is a path λ = (u, v) and a tuple ⟨u, v, R(λ)⟩. A simple tuple
is defined as a tuple ⟨u, v, R(λ)⟩, where λ is actually an edge.

▶ Definition 10 (Tuple under Connection Principle). The definition is given by the following
two recursive rules:

A simple tuple is under connection principle;
A tuple, which is computed according to Equation 2 by tuples under connection principle,
is also under connection principle.

▶ Example 11. In Example 8, since α0, α1 are simple tuples, these two tuples are under
connection principle. Since v4 is the connection vertex of α0, α1, this tuple connection is
also under connection principle, thus the resulting tuple α being under connection principle.

For the rest of this paper, unless explicitly specified, all tuples and tuple connections are
under connection principle.

▶ Lemma 12 (Connection Property). For a tuple ⟨u, w, R(λ)⟩ with u ̸= vsrc ∨ w ≠ vsink

under connection principle, the following holds:

∀πi ∈ λ \ {u, w}, p(πi) ≤ p(u, w)

Proof. We prove it by induction.
Base case: For a simple tuple, since λ \ {u, v} = ∅, the lemma holds trivially.
Induction step: For a tuple α = ⟨u, w, R(λ)⟩ that is not a simple tuple. Since α is under

ECRTS 2021

8:8 Response Time Bounds for DAG Tasks

connection principle, by Definition 10, there exist two tuples α0 = ⟨u, v, R(λ0)⟩, α1 =
⟨v, w, R(λ1)⟩, both being under connection principle, satisfying α0 + α1 ⇝ α. Since α0, α1
are under connection principle, by induction hypothesis, both α0 and α1 satisfy connection
property.

It is clear that v ̸= vsrc ∧ v ̸= vsink, and we already have κ(u, v) = v, κ(v, w) = v, which
means p(u, v) = p(v), p(v, w) = p(v).

There are three cases: (1) u = vsrc ∧ w ≠ vsink; (2) u ̸= vsrc ∧ w = vsink; (3) u ̸=
vsrc ∧ w ̸= vsink. For the first case, according to Definition 7, we have κ(u, w) = w, which
means p(u, w) = p(w). Since κ(v, w) = v, we have p(v) ≤ p(w), which means p(v) ≤ p(u, w).
For the second case, according to similar reasons, we have p(v) ≤ p(u, w). For the third
case, since κ(u, v) = v, κ(v, w) = v, according to Definition 7, we have p(v) ≤ p(u) and
p(v) ≤ p(w), which means p(v) ≤ p(u, w). In summary, for the three cases, p(v) ≤ p(u, w).

Since α0 satisfies connection property, we have

∀πi ∈ λ0 \ {u, v}, p(πi) ≤ p(u, v)

Note that p(u, v) = p(v) and p(v) ≤ p(u, w), we have

∀πi ∈ λ0 \ {u, v}, p(πi) ≤ p(u, w)

For the same reason, we have

∀πi ∈ λ1 \ {v, w}, p(πi) ≤ p(u, w)

Note that λ = λ0 ∪ λ1, we have

∀πi ∈ λ \ {u, w}, p(πi) ≤ p(u, w)

which means that tuple α satisfies connection property. The lemma follows. ◀

Under the principle, a key observation for the connection of tuples is that the computation
does not depend on the whole path necessarily, actually only depends on a limited number
of vertices on this path, as stated in the following lemma.

▶ Lemma 13. If two tuples ⟨u, v, R(λ0)⟩, ⟨v, w, R(λ1)⟩ under connection principle are
connected into a new tuple ⟨u, w, R(λ)⟩ according to Equation 2, then

I(λ0) ∩ I(λ1) = I(v) ∪ (I(u) ∩ I(w)) (3)

Proof. We use LHS and RHS to represent the left-hand side and right-hand side of Equation 3.
Next, we shall prove the lemma by showing that both RHS⊆LHS and LHS⊆RHS hold.
(1) RHS⊆LHS. Since v ∈ λ0 and v ∈ λ1, we have

I(v) ⊆ I(λ0) ∩ I(λ1)

Since u ∈ λ0 and w ∈ λ1, we have

I(u) ∩ I(w) ⊆ I(λ0) ∩ I(λ1)

In summary, we reach that

I(v) ∪ (I(u) ∩ I(w)) ⊆ I(λ0) ∩ I(λ1)

Q. He, M. Lv, and N. Guan 8:9

(2) LHS⊆RHS. Obviously, κ(u, v) = v, κ(v, w) = v, p(u, v) = p(v), p(v, w) = p(v). According
to Definition 1, ∀x ∈ I(λ0) ∩ I(λ1), ∃πi ∈ λ0 and ∃πj ∈ λ1, such that vertex x ∈ I(πi)
and x ∈ I(πj), which means p(x) ≤ p(πi) and p(x) ≤ p(πj).
Next, we shall prove that x ∈ para(v). If x ∈ ance(v), since v ∈ ance(πj) ∨ v = πj , then
x ∈ ance(πj), which contradicts x ∈ I(πj). We have x /∈ ance(v). By similar reasons,
x /∈ desc(v). In summary, x ∈ para(v).
In the following, we prove by exhaustion. There are three cases:
(a) πi ̸= u. Since κ(u, v) = v, by Lemma 12, we have p(πi) ≤ p(v). Note that

p(x) ≤ p(πi), so p(x) ≤ p(v). Together with x ∈ para(v), we have x ∈ I(v), which
means x ∈ I(v) ∪ (I(u) ∩ I(w)).

(b) πj ̸= w. For similar reasons to the first case, x ∈ I(v), so x ∈ I(v) ∪ (I(u) ∩ I(w)).
(c) πi = u ∧ πj = w. Since x ∈ I(πi) and x ∈ I(πj), we have x ∈ I(u) and x ∈ I(w),

which means x ∈ I(u) ∩ I(w). We reach that x ∈ I(v) ∪ (I(u) ∩ I(w)).
Summarizing these three cases, we have ∀x ∈ I(λ0) ∩ I(λ1), x ∈ I(v) ∪ (I(u) ∩ I(w)).

In conclusion, the lemma follows. ◀

▶ Lemma 14. If two tuples ⟨u, v, R(λ0)⟩, ⟨v, w, R(λ1)⟩ under connection principle are
connected into a new tuple ⟨u, w, R(λ)⟩ according to Equation 2, then

R(λ) = R(λ0) + R(λ1)− c(v)− vol(I(v) ∪ (I(u) ∩ I(w)))
m

(4)

Proof. By Definition 2,

R(λ) = len(λ) + vol(I(λ))
m

Since λ = λ0 ∪ λ1, we have len(λ) = len(λ0) + len(λ1) − c(v) and I(λ) = I(λ0) ∪ I(λ1).
Further,

R(λ) = R(λ0) + R(λ1)− c(v)− vol(I(λ0)) + vol(I(λ1))− vol(I(λ))
m

Since I(λ) = I(λ0) ∪ I(λ1), we have

vol(I(λ0)) + vol(I(λ1))− vol(I(λ)) = vol(I(λ0) ∩ I(λ1))

By Lemma 13, we have

vol(I(λ0)) + vol(I(λ1))− vol(I(λ)) = vol(I(v) ∪ (I(u) ∩ I(w)))

Together, we reach the conclusion. ◀

The meaning of the above lemma is twofold. First, it gives a formula to compute the
connection of tuples iteratively. Second, it implies that for two paths with the same start
and end vertex, the path with a smaller R(λ) cannot result in a path with a larger R(λ), as
stated in Lemma 16 formally.

▶ Definition 15 (Domination). Given two paths with the same start and end vertex, there are
two tuples ⟨u, v, R(λ)⟩, ⟨u, v, R(λ′)⟩. We say ⟨u, v, R(λ)⟩ dominates ⟨u, v, R(λ′)⟩, denoted by

⟨u, v, R(λ)⟩ ≽ ⟨u, v, R(λ′)⟩

if and only if R(λ) ≥ R(λ′).

ECRTS 2021

8:10 Response Time Bounds for DAG Tasks

7 6
3

1

0 5

8 2

49

7 6 5
8 2

49

7 5
8

9

7 5

DAG G

Iteration 1

Iteration 3

Iteration 2

Figure 3 An example illustrating Algorithm 2.

▶ Lemma 16. Under connection principle, given

⟨u, v, R(λ0)⟩+ ⟨v, w, R(λ1)⟩⇝ ⟨u, w, R(λ)⟩

and

⟨u, v, R(λ′
0)⟩+ ⟨v, w, R(λ1)⟩⇝ ⟨u, w, R(λ′)⟩

If

⟨u, v, R(λ0)⟩ ≽ ⟨u, v, R(λ′
0)⟩

then

⟨u, w, R(λ)⟩ ≽ ⟨u, w, R(λ′)⟩

Proof. According to Definition 15, we have R(λ0) ≥ R(λ′
0)

⇒ R(λ0) + R(λ1)− c(v)− vol(I(v) ∪ (I(u) ∩ I(w)))
m

≥ R(λ′
0) + R(λ1)− c(v)− vol(I(v) ∪ (I(u) ∩ I(w)))

m

⇒ R(λ) ≥ R(λ′)
⇒ ⟨u, w, R(λ)⟩ ≽ ⟨u, w, R(λ′)⟩

The conclusion is reached. ◀

The above lemma means when computing Equation 1, tuples with a smaller R can be
discarded safely, since in future computation they cannot result in a tuple with a larger R.
We summarize the above discussion into Algorithm 2 to compute the response time bound of
a DAG as defined in Equation 1.

Figure 3 provides an illustrative example of Algorithm 2 to show the steps of abstraction
of the graph. The graph is at the bottom of Figure 3 where the number inside each vertex
is its priority (The WCET of each vertex is irrelevant to the example, and we omit such

Q. He, M. Lv, and N. Guan 8:11

Algorithm 2 Computing graph interference problem.

Input : DAG G = (V, E); every vertex vi ∈ V is with its WCET ci and its priority
p(vi); the number of cores m

Output : the response time bound defined in Equation 1
1 TS ← {⟨u, v, R(λ)⟩ | λ = (u, v) ∈ E}
2 repeat
3 for each (αi, αj) ∈ TS × TS do
4 if αi, αj can be connected by Definition 9 then
5 α← αi + αj by Equation 2, 4
6 if ∃β ∈ TS such that β ≽ α then
7 continue
8 else if ∃β ∈ TS such that α ≽ β then
9 TS ← (TS \ {β}) ∪ {α}

10 else
11 TS ← TS ∪ {α}
12 end
13 end
14 end
15 until nothing changes in TS
16 return R such that ⟨vsrc, vsink, R⟩ ∈ TS

information in the figure). In the example, since each vertex has a unique priority, we also use
the priority to identify the vertex. After the first iteration of the loop in Line 2-15, with tuple
connections under the connection principle, the original graph is transformed as illustrated
in the figure. After three iterations of the loop, the tuple with start vertex and end vertex
being vsrc and vsink respectively appears, which means the bound in Equation 1 is computed.
It is easy to observe that all tuple connections in Figure 3 follow the connection principle
in Definition 9. The context-free parts of the graph are indicated as colored rectangles in
Figure 3. The relations between the context-free parts of the graph and their abstractions
during each iteration are indicated as dashed arrows, which form an abstract syntax tree of
the original graph.

Note that for clear and concise presentation of the principle behind Algorithm 2, the
illustration of Figure 3 is not exactly the same as Algorithm 2. In Algorithm 2, during one
iteration, plenty of tuples are connected, much of them being redundant and having been
connected in the previous iterations. Since these redundant tuple connections are irrelevant
to the correctness and theoretical computational complexity of Algorithm 2, we do not show
these connections in Figure 3.

Next, we introduce the concept of abstract path, which is useful for proving the correctness
of Algorithm 2.

▶ Definition 17 (Abstract Path). An abstract path λ = (π0, · · · , πk) (k > 0) is a sequence
of vertices such that ∀i ∈ [0, k), there is a path λi with start and end vertex being πi,
πi+1 respectively. Further, for an abstract path λ = (π0, · · · , πk), we define TS(λ) =
{⟨πi, πi+1, R(λi)⟩ | i ∈ [0, k)} as the set of tuples corresponding to λi.

Note that an abstract path is always an abstraction of a concrete path(i.e., ∪i∈[0,k)λi by using
the above notation). To compute TS(λ), the concrete path behind the abstract path λ should
be given. Since TS(λ) only serves as an intermediate concept when proving the correctness
of Algorithm 2, for brevity, we will omit this concrete path. According to the definition of
abstract path, a path is an abstract path, while an abstract path is not necessarily a path.

ECRTS 2021

8:12 Response Time Bounds for DAG Tasks

▶ Lemma 18 (Connection Lemma). For an arbitrary abstract path λ = (π0, · · · , πk) with
k > 1 ∧ π0 = vsrc ∧ πk = vsink, ∃α, β ∈ TS(λ), such that tuple α, β can be connected under
connection principle.

Proof. Since k > 1, there are at least two tuples in TS(λ). In the following, we prove
this by contradiction. Assume that there are not two tuples which can be connected under
connection principle, next we will consider the priority assignment along this abstract path
starting from π0 = vsrc. There are four cases.
(1) p(π0) > p(π1) ∧ p(π1) ≤ p(π2). Since κ(π0, π1) = κ(π1, π2) = π1, then ⟨π0, π1, R(λ0)⟩,
⟨π1, π2, R(λ1)⟩ can be connected under connection principle, which is a contradiction.
Note that the reasoning in this case does not rely on π0 = vsrc, which means if π0 is an
arbitrary vertex in λ, the above reasoning is valid.

(2) p(π0) > p(π1) ∧ p(π1) > p(π2). The reasoning in this case does not rely on π0 = vsrc

either.
(2a) If π2 = vsink, then κ(π0, π1) = κ(π1, π2) = π1, which means a contradiction.
(2b) If π2 ≠ vsink, consider p(π3). If p(π2) ≤ p(π3), we have the pattern p(π1) > p(π2) ∧

p(π2) ≤ p(π3). Since case (1) does not rely on π0 = vsrc, this pattern is the same as case
(1) and finally leads to a contradiction. Actually in this case, to ensure two tuples cannot
be connected under connection principle as indicated in the assumption, by the above
reasoning, the priority of the next vertex πi+1 must be higher than that of the previous
vertex πi, formally p(πi) > p(πi+1). Considering all vertices along λ, finally we reach
πk = vsink, and we have p(πk−2) > p(πk−1) ∧ p(πk−1) > p(vsink), which is the case in
(2a) and finally leads to a contradiction.

(3) p(π0) ≤ p(π1) ∧ p(π1) ≤ p(π2). Since π0 = vsrc, then κ(π0, π1) = κ(π1, π2) = π1, which
means a contradiction.

(4) p(π0) ≤ p(π1) ∧ p(π1) > p(π2).
(4a) If π2 = vsink, since π0 = vsrc, then κ(π0, π1) = κ(π1, π2) = π1, which means a

contradiction.
(4b) If π2 ≠ vsink, consider p(π3). If p(π2) ≤ p(π3), we have p(π1) > p(π2) ∧ p(π2) ≤ p(π3),

which is the case in (1) and finally leads to a contradiction. If p(π2) > p(π3), we have
p(π1) > p(π2)∧p(π2) > p(π3), which is the case in (2) and finally leads to a contradiction.

In summary, all cases lead to a contradiction, therefore the initial assumption must be
false. We reach the conclusion. ◀

For an abstract path λ = (π0, · · · , πi, πi+1, πi+2, · · · , πk), tuple α = ⟨πi, πi+1, R(λi)⟩,
β = ⟨πi+1, πi+2, R(λi+1)⟩ ∈ TS(λ), suppose α, β can be connected under connection principle,
this connection will result in a new abstract path λ′ = (π0, · · · , πi, πi+2, · · · , πk) and a new
TS(λ′) with |TS(λ′)| = |TS(λ)| − 1.

▶ Example 19. For the graph in Figure 2b, for path λ = (v0, v2, v4, v5) (which is also an
abstract path by definition), TS(λ) = {α0 = (v0, v2, R0), α1 = (v2, v4, R1), α2 = (v4, v5, R2)}.
From Example 8, by Lemma 18, we know in TS(λ), there exist α1, α2 that can be connected
under connection principle. This tuple connection results in a new abstract path λ′ =
{v0, v2, v5} and TS(λ′) = {(v0, v2, R′

0), (v2, v5, R′
1)}. It is obvious that |TS(λ′)| = |TS(λ)|−1.

Concerning the correctness and complexity of Algorithm 2, two aspects need to be
considered. On one hand, according to connection principle in Definition 9, if two tuples
are to be connected, first the end vertex of a tuple should be the start vertex of another
tuple; second the connection vertex of these two tuples should be the same. Since we do not
make any assumption about priority assignment, which is different from [17] where priority

Q. He, M. Lv, and N. Guan 8:13

assignment should comply with topological order, is it possible that after the loop in Line
2-15 finishes, there is not a tuple ⟨u, v, R⟩ with u = vsrc ∧ v = vsink in TS as required by
Line 16? On the other hand, since the loop in Line 2-15 does not exit until nothing changes
in TS , how can we guarantee that the loop will be completed within a reasonable number of
iterations? By using Lemma 18, we address these concerns in the following theorem.

▶ Theorem 20. The return value of Algorithm 2 equals the bound in Equation 1.

Proof. We define TSmax = {⟨u, v, R⟩ ∈ TS |u = vsrc ∧ v = vsink}. The theorem is proved by
the following three steps:
(1) In Line 16 of Algorithm 2, |TSmax| = 1.

a. |TSmax| ≥ 1. For ∀λ ∈ Π(G), if only two vertices in this path (i.e., |λ| = 2), then these
two vertices must be vsrc and vsink, which means α = ⟨vsrc, vsink, R(λ)⟩ is added to
TS in Line 1. Although α might be removed from TS in Line 9, this only happens
when α is dominated by a new tuple with start vertex and end vertex being vsrc, vsink

respectively. If |λ| > 2, according to Lemma 18, after one iteration of the loop in
Line 2-15, at least two tuples in TS(λ) must be connected under connection principle,
resulting in a new abstract path λ′ with |TS(λ′)| ≤ |TS(λ)| − 1. This fact means
after at most |V | iterations of the loop in Line 2-15, a tuple with start vertex being
vsrc and end vertex being vsink corresponding to λ (or a tuple dominating the tuple
corresponding to λ) will be eventually computed. Since Π(G) ̸= ∅, |TSmax| ≥ 1.

b. |TSmax| ≤ 1. According to Definition 15, It is sufficient to show that in any step of
the algorithm, ∄α, β ∈ TS , such that α ≽ β ∨ β ≽ α. First, obviously in Line 1, the
statement is true. Second, during the loop in Line 2-15, according to the conditions
in Line 6, 8, it is evident that Line 9, 11 will not lead to domination between tuples
in TS .

We denote the only tuple in TSmax as αmax.
(2) There is a complete path λmax ∈ Π(G) corresponding to αmax. It is sufficient to show

that ∀α ∈ TS , there is a path corresponding to α. First, in Line 1, all simple tuples are
added to TS . It is evident that a simple tuple corresponds to an edge, which is also a
path. Second, in Line 5, according to Equation 2, for every tuple connection, two paths
are connected into a new path corresponding to the newly computed tuple.

(3) There is no complete path λ ∈ Π(G) such that R(λ) > R(λmax). We prove this statement
by showing that ∀λ ∈ Π(G), ⟨vsrc, vsink, R(λmax)⟩ ≽ ⟨vsrc, vsink, R(λ)⟩. First, in Line 1,
all simple tuples are added to TS . We have ∀λ ∈ Π(G), TS(λ) ⊆ TS , which means all
complete paths have a representation (i.e. TS(λ)) in TS . Second, it is obvious that all
tuples in TS are under connection principle. According to Definition 15, together with
the discussion in 1(a), ∀λ ∈ Π(G), after at most |V | iterations of the loop in Line 2-15,
⟨vsrc, vsink, R(λ)⟩ will either be computed in TS (in this case, R(λ) = R(λmax)), or be
dominated (in this case, R(λ) ≤ R(λmax)). We reach the conclusion.

Summarizing above three steps, the theorem is proved. ◀

▶ Theorem 21. The time complexity of Algorithm 2 is polynomially bounded in |V |.

In the above proof, from (1a), the number of iterations of the loop in Line 2-15 will not
exceed |V |; from (1b), since no tuple domination in TS , the number of tuples in TS will
not exceed |V |2. In Line 3, there is TS × TS . So the number of iterations of the loop in
Line 3-14 will not exceed |V |4. The time complexity of Algorithm 2 is O(|V |5). However, in
Line 4, when tuple αi is determined, the end vertex of αi being determined, actually only
|V | number of αj in TS need to be examined. Consequently, the algorithm can be easily
implemented with time complexity being O(|V |4).

ECRTS 2021

8:14 Response Time Bounds for DAG Tasks

0 1 0

6

3

8

0v

1v

2v

3v

4v 5v
1

2 3

4

50() 0p v 

0() 9l v 

9

9 94

6

Figure 4 An example illustrating priority assignment.

5 Priority Assignment

To illustrate the performance of arbitrary priority assignment supported by our computing
method in Section 4, we devise a priority assignment policy without topology constraint,
leading to a much smaller bound as shown in Section 7. The guideline is to assign higher
priorities to vertices in a longer path as indicated in Section 3.2. We first introduce a concept
to identify vertices in a longer path.

▶ Definition 22 (Vertex Length). The vertex length of v (denoted as l(v)) is defined as

l(v) = max{len(λ) | λ ∈ Π(G) ∧ v ∈ λ} (5)

Intuitively, vertex length is the longest path length among all the paths which go through
the vertex. Vertex length can be computed by a straightforward dynamic programming
in polynomial time with respect to the size of the graph (Algorithm 3 in [17]). The fixed
priorities of vertices are assigned based on vertex length as follows.

A vertex with a larger length is assigned a higher priority, formally p(vi) < p(vj) if
l(vi) > l(vj);
If two vertices have the same length, the vertex with a smaller index in the graph is given
a higher priority, formally p(vi) < p(vj) if l(vi) = l(vj) ∧ i < j.

The vertex index does not necessarily follow topological order. Ties can be broken by any
other rules. The second rule is introduced to make the priority assignment policy determinate
and make the evaluation in Section 7 reproducible.

▶ Example 23. For the graph in Figure 2b, the length (the blue number below vertices) of
each vertex is labelled in Figure 4, and a priority assignment (the red number above vertices)
according to the proposed policy is also illustrated.

In Figure 4, the priority of v4 is higher (smaller priority value means higher priority) than
the priority of v2 (note that v2 is an ancestor of v4), which does not comply with topology
constraint (i.e., a vertex’s priority is not higher than any of its ancestors). In consequence, the
proposed priority policy is without topology constraint. As an illustrative specific example,
the proposed priority assignment policy indeed relies on some topological characteristics
(e.g., the vertex length in Definition 22). However, the claim and the main contribution of
this paper is that our computing method is valid for arbitrary priority assignment, thus not
limited to topology constraint required in [17].

We note that the proposed priority assignment policy does not strictly dominate the
policy in [17], i.e., not always producing a bound smaller than the bound of the policy in [17].
However, the proposed policy is much simpler, and leads to a smaller bound in general cases
(actually, only in very rare cases with a larger bound, see Section 7.1).

Q. He, M. Lv, and N. Guan 8:15

6 Extension to Multi-DAG Systems

The proposed method for computing response time bound for single DAG task can also
be applied to multi-DAG sporadic systems. The approach of utilizing intra-task priority
to improve the schedulability of multi-DAG systems was introduced in [17]. Although the
intra-task priority studied in this work is without topology constraint, thus the computing
method and priority assignment policy being completely different, the response time analysis
behind the bound in Equation 1 is still the same. Therefore, the approach of [17] can be
used directly to extend our method to multi-DAG systems. We briefly introduce it to help
understanding the experiments in Section 7.2.

The scheduling algorithm for multi-DAG systems is global prioritized list scheduling [17],
which has two levels: task level and vertex level. In task level, a priority policy, e.g., early
deadline first (EDF) and rate monotonic (RM), is employed to determine the highest-priority
ready DAG task; in vertex level, prioritized list scheduling is used. After priorities between
tasks and further between vertices are determined, the scheduling behavior is unchanged,
which is global, work-conserving, preemptive, and always chooses at most m (the core number)
highest-priority eligible vertices for execution.

▶ Theorem 24 ([17]). For a multi-DAG sporadic system with constrained deadlines scheduled
by global prioritized list scheduling on a platform with m cores, a bound Rj on the response
time of a task τj can be derived by the fixed-point iteration of the following equation, starting
with Rj = len(Gj):

Rj = max
λ∈Π(Gj)

{len(λ) + vol(I(λ))
m

}+
∑

i̸=j Ii
j(Rj)

m
(6)

where Ii
j(Rj) is the upper bound of the interference of task τi to τj during an interval of

length Rj.

In Equation 6, Ii
j(Rj) is related to task level priority policies and is computed by the

method in [25]. The computation of this term for EDF and RM is detailed in Lemma V.2
and Lemma V.1 of [25], respectively. For details of Theorem 24, please refer to [17].

7 Performance Evaluation

In this section, the performance of the proposed method is evaluated. During the evaluation,
we conduct experiments of both scheduling single-DAG systems and scheduling multi-DAG
systems using randomly generated task graphs.

7.1 Evaluation of Single-DAG Systems
In this section, the following methods are compared:

B-OUR. The bound in Equation 1 computed by our method with priority assignment
policy introduced in Section 5.
B-ZHAO. The bound proposed in [29] with explicit execution order developed alongside
its analysis.
B-HE. The bound proposed in [17] with its priority assignment policy.

These three bounds are normalized with respect to B-HE as the metric for comparison. So
in the figures with respect to normalized bound, B-HE is always one. The bounds computed
by other priority assignment algorithms [21], [19] are shown dominated by [17], thus not
included in the evaluation.

ECRTS 2021

8:16 Response Time Bounds for DAG Tasks

0 0.1 0.2 0.3 0.4
pf

0.8

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 B
ou

nd

B-OUR
B-ZHAO

Figure 5 Normalized bound with different pf .

Table 1 The percentage of inferior cases com-
paring with B-HE and B-ZHAO.

m B-HE B-ZHAO
4-10 0.11% 77.69%
11-16 0% 17.38%
17-22 0% 1%
23-32 0.01% 1.44%

Task Generation. The DAG tasks are generated using the Erdos-Renyi method [10], where
the number of vertices |V | is randomly chosen in a specified interval. For each pair of vertices,
the method generates a random value in [0, 1] and adds the edge to the graph if the generated
value is less than a predefined parallelism factor pf . The larger pf , the more sequential the
graph is. If the generated graph has multiple source/sink vertices, a dummy source/sink
vertex with zero WCET is added to the graph.

For experiments, we first give a default parameter setting, then tune different parameters
for evaluation. The default setting is as follows. The vertex number |V | and the WCET of
vertices ci are randomly chosen in [50, 250] and [50, 100] respectively. For each configuration,
we randomly generate 1000 DAG tasks to compute the average normalized bound.

Evaluation with Task Parallelism. We conduct experiments by changing parallelism factor
pf with core number m = 16. The results are presented in Figure 5. Since the normalized
bound is always smaller than one, our method consistently outperforms B-HE on average,
especially when the DAG task has high parallelism (when pf is small), which is the typical case
as benchmarks (such as [11,15]) and practical applications generally possess high parallelism.
This is because paths of a DAG with higher parallelism suffer more interference. The priority
assignment enabled by our computing method can balance such interference among different
paths better, thus reducing the response time bound. From experimental results, compared
with B-HE, the improvement of response time bound is up to 18.1%. For pf less than 0.2,
the performance of our method is better than B-ZHAO on average, which further shows our
method can balance interference among different paths effectively for DAG tasks with high
parallelism. When pf becomes larger, the DAG being more sequential, both bounds becomes
closer to B-HE, and finally approach to the length of the longest path in the graph. This
observation is also obtained in [17,29].

In the following experiments, we randomly choose pf in [0.01, 0.1] to better represent
real world applications which generally possess high parallelism as mentioned above.

Evaluation with Core Number. The objective of this experiment is to demonstrate how
sensitive the evaluated method is to core number. Figure 6 shows that our method always
produces smaller bounds than B-HE on average and outperforms B-HE by up to 13.3%
with m = 12. With core number being smaller and larger, B-OUR is close to B-HE. This is
because for core number being smaller, both bounds approach vol(G); for core number being
larger, both bounds approach len(G).

When core number is small, B-ZHAO performs better than our method. This is because,
for a small core number, the computing resource for non-critical vertices (vertices not in the
longest path) becomes scarce, which results in non-critical vertices having a large impact
on the response time bound. The method for B-ZHAO can delicately adjust the execution

Q. He, M. Lv, and N. Guan 8:17

4 8 12 16 20 24 28 32
m

0.8

0.85

0.9

0.95

1
N

or
m

al
iz

ed
 B

ou
nd

B-OUR
B-ZHAO

Figure 6 Normalized bound with different m.

0 50 100 150 200 250
|V|

0.85

0.9

0.95

1

1.05

1.1

N
or

m
al

iz
ed

 B
ou

nd B-OUR
B-ZHAO

Figure 7 Normalized bound with different |V |.

order of non-critical vertices, which is utilized by its analysis method subsequently, finally
leading to a smaller bound. With core number increasing, our method, being able to balance
interference among different paths effectively, outperforms B-ZHAO (e.g., by up to 7.5% with
m = 20). Real world applications, generally possessing high parallelism [17], may require
executing on computing platforms with a larger core number to meet their deadlines. What’s
more, nowadays mainstream computing platforms generally have a large number of cores.
These facts render our method more useful and effective in practice.

Table 1 reports the percentage of inferior cases (cases where the bound B-OUR is larger
than B-HE or B-ZHAO) during experiments of Figure 6. For example, in Table 1, for m in
[11, 16], no inferior case with respect to B-HE is observed and there are 17.38% cases where
bounds computed by our method are larger than that of B-ZHAO. Table 1 is consistent with
Figure 6: for small core numbers, B-ZHAO performs better; with core number increasing,
our method becomes more effective. We observe that during experiments of Figure 6, the
overall inferior cases are less than 0.04% with respect to B-HE and less than 24.38% with
respect to B-ZHAO. This observation further demonstrates the effectiveness of the proposed
method.

In the following experiments, we choose core number m = 16 as the representative to
evaluate the performance.

Evaluation with Vertex Number. This experiment evaluates the sensitivity of the proposed
analysis to the vertex number, and results are shown in Figure 7. For |V | < 30, the proposed
method provides similar results to B-HE, which is because the parallelism of the DAG is
relatively low when vertex number is small. As analysed above, our method is more effective
when parallelism is relatively higher. With vertex number increasing, our method becomes
more effective and outperforms B-HE more than 10% on average and up to 13.1% and
|V | = 240. For almost all vertex numbers in this experiment, our method outperforms
B-ZHAO. We also observe that for small vertex numbers, B-ZHAO may produce a bound
larger than B-HE.

7.2 Evaluation of Multi-DAG Systems
This section evaluates the performance of our method for multi-DAG systems with constrained
deadlines. All three methods in Section 7.1 extended their bounds for single DAG task to
multi-DAG systems. For task level priority policy, B-OUR and B-HE can be applied to
both dynamic priority (e.g., EDF) and static priority (e.g., RM), denoted as EDF-OUR,
RM-OUR, EDF-HE, RM-HE respectively; B-ZHAO can only be applied to static priority,
denoted as RM-ZHAO. These five methods are compared in this section.

ECRTS 2021

8:18 Response Time Bounds for DAG Tasks

0.1 0.3 0.5 0.7 0.9
Normalized Utilization

0

0.4

0.8
1

A
cc

ep
ta

nc
e

R
at

io EDF-HE
EDF-OUR
RM-HE
RM-OUR
RM-ZHAO

Figure 8 Acceptance ratio with different
normalized utilization (m = 16).

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 B
ou

nd

EDF-OUR
RM-OUR

Figure 9 Normalized bound with different
normalized utilization (m = 16).

Task Set Generation. DAG tasks are generated by the same method as Section 7.1 with
pf , |V | and ci in [0.01, 0.1], [50, 250] and [50, 100] respectively. The period T (which is
also the deadline in the experiment) of a DAG task is randomly chosen in [L, 6L], where
L is the length of the longest path of the task graph. To generate a task set with specific
utilization, we randomly generate a DAG task and add it to the task set until the total
utilization reaches the required value.

Evaluation Using Acceptance Ratio. We first test the schedulability of multi-DAG systems
using acceptance ratio to evaluate our method. For configuration, we randomly generate
1000 task sets. From the results reported in Figure 8, the proposed method offers better
schedulability than that of the state-of-the-art under all settings, especially when normalized
utilization is in [0.4, 0.7]. Compared with methods in [17], the improvement of acceptance
ratio for EDF and RM is up to 22.2% and 32.0% respectively. RM-ZHAO performs worse
than RM-HE, the reason of which is explained in the following. First, the scheduling
for task set in [29] is not work-conserving. Only when a DAG task finishes its execution
completely, it can schedule another DAG task to execute. However, before a DAG task
finishes its execution completely, some cores may be idle and available to execute tasks (this
behavior is fundamental to its underlying response time analysis), which wastes a lot of
computing resources. Second, the (α, β)-pair analysis for one DAG task proposed in [29] is
not incorporated into its analysis for task set, which makes its performance even worse. The
acceptance ratio for RM-ZHAO reported in our experiments is consistent with the results
reported in [29].

Evaluation Using Normalized Bound. The normalized bound of a task set is the average
value among normalized bounds of its tasks. Even if a task set is deemed to be unschedulable,
we still try to iterate until all tasks reach a fixed point to compute the response time bound
for all tasks. If a task set cannot reach a fixed point, it will be discarded. As reported in
Figure 8, the performance of RM-ZHAO is relatively poor, which results in that the response
time bound cannot be computed for lots of task sets (in our experiment, the fixed point
iteration procedure for computing bounds cannot converge before the iterated bounds reach
thirty times of its deadlines). Therefore, RM-ZHAO is not included in the result of this
experiment. For each configuration, we have at least 1000 task sets to compute the average
normalized bound. As shown in Figure 9, since the normalized bound is always smaller than
1, our method completely dominates B-HE for both EDF and RM, reducing the response
time bound by up to 12.3% for EDF and up to 12.4% for RM. The results are consistent
with the evaluation of single-DAG systems.

Q. He, M. Lv, and N. Guan 8:19

Summary. Experiments in this section show that our computing method and priority
assignment can reduce response time bound, improve system schedulability compared to
the state-of-the-art by a considerable margin. Specifically, compared to [17], our method
reduces response time bound by more than 10% on average and improves schedulability up
to 20%. The effectiveness of the method is also supported by the number of DAG tasks with
a smaller bound than the state-of-the-art.

8 Related Work

He et al. [17] proposed a dynamic programming algorithm to compute response time bound
for DAG tasks with intra-task priority assignment, alongside its response time analysis, which
is the most relevant work to this paper. Their computing method assumed that priority
assignment should comply with topology constraint. For a wide range of priority assignment
without this constraint, their algorithm may produce a wrong bound.

The response time analysis for multi-DAG systems has been intensively studied in recent
years, with different scheduling strategies including global scheduling [3, 7, 12, 13, 22, 25] and
federated scheduling [4–6,23,24]. All the above works involve using the response time bound
of a single DAG to bound the intra-task interference, which is the focus of this paper. Fonseca
et al. [14] proposed a partitioned scheduling for sporadic DAG tasks.

For response time bound of a single DAG task, zhao et al. [29] explored parallelism and
dependencies in DAG structure, and proposed a priority assignment policy and response
time bounds based on its CPC (concurrent provider and consumer) model. Han et al. [16]
studied typed DAG task for heterogeneous multi-core platform. Sun et al. [27] proposed a
method to compute the exact worst case response time with exponential time complexity
while being efficient for DAG tasks with small number of vertices. Chen et al. [9] proposed a
bound for a DAG with conditional branches by simulating the DAG task with a predefined
execution order. The bound in [9] was proved to be timing-anomaly free.

For intra-task priority assignment, in real-time community, Voudouris et al. [28] computed
response time bound by simulating the timing-anomaly free scheduler. Pathan et al. [26]
proposed a method to utilize intra-task priority assignment to improve resource utilization,
and used the idea of ready time and response time of vertices to reduce intra-task interference.
Besides research work from real-time community, there are plenty of techniques concerning
scheduling task graphs on multiprocessor platform with intra-task priority assignment.
Their objective is to reduce the response time on average, not the response time bound.
Works [19, 21] considered priority assignment for static scheduling algorithms for DAGs.
Kwok and Ahmad proposed a static scheduling algorithm for allocating task graphs to fully
connected multiprocessor based on the critical path of task graphs [20].

9 Conclusion, Limitations and Future Work

Computing response time bound of DAG tasks is one of the most important problems in the
real-time community. In this paper, we address a serious constraint of the previous result, and
propose a method capable of computing response time bound for DAG tasks with arbitrary
intra-task priority assignment. Experiments show that our method can greatly reduce the
response time bound. In the future, we plan to formulate the graph interference problem
into a formal language, clearly identify the context-free grammar inherently associated with
this problem, and utilize the automata theory [18] to compute it within a constant number
of iterations (the method of this paper computing within |V | iterations) and further improve
efficiency. Another direction is searching for an optimal priority assignment with respect to
the bound in Equation 1.

ECRTS 2021

8:20 Response Time Bounds for DAG Tasks

References
1 Openmp-api-specification-5.0.pdf. https://www.openmp.org/wp-content/uploads/

OpenMP-API-Specification-5.0.pdf. (Accessed on 03/01/2021).
2 Theodore P Baker and Sanjoy K Baruah. Sustainable multiprocessor scheduling of sporadic

task systems. In 2009 21st Euromicro Conference on Real-Time Systems, pages 141–150.
IEEE, 2009.

3 Sanjoy Baruah. Improved multiprocessor global schedulability analysis of sporadic dag task
systems. In 2014 26th Euromicro conference on real-time systems, pages 97–105. IEEE, 2014.

4 Sanjoy Baruah. The federated scheduling of constrained-deadline sporadic dag task systems. In
2015 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 1323–1328.
IEEE, 2015.

5 Sanjoy Baruah. Federated scheduling of sporadic dag task systems. In 2015 IEEE International
Parallel and Distributed Processing Symposium, pages 179–186. IEEE, 2015.

6 Sanjoy Baruah. The federated scheduling of systems of conditional sporadic dag tasks. In
Proceedings of the 12th International Conference on Embedded Software, pages 1–10. IEEE
Press, 2015.

7 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese.
Feasibility analysis in the sporadic dag task model. In 2013 25th Euromicro conference on
real-time systems, pages 225–233. IEEE, 2013.

8 Alan Burns and Sanjoy Baruah. Sustainability in real-time scheduling. Journal of Computing
Science and Engineering, 2(1):74–97, 2008.

9 Peng Chen, Weichen Liu, Xu Jiang, Qingqiang He, and Nan Guan. Timing-anomaly free
dynamic scheduling of conditional dag tasks on multi-core systems. ACM Transactions on
Embedded Computing Systems (TECS), 18(5s):1–19, 2019.

10 Daniel Cordeiro, Grégory Mounié, Swann Perarnau, Denis Trystram, Jean-Marc Vincent, and
Frédéric Wagner. Random graph generation for scheduling simulations. In Proceedings of the
3rd international ICST conference on simulation tools and techniques, page 60. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2010.

11 Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard Ayguade. Bar-
celona openmp tasks suite: A set of benchmarks targeting the exploitation of task parallelism
in openmp. In Parallel Processing, 2009. ICPP’09. International Conference on, pages 124–131.
IEEE, 2009.

12 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved response time analysis of
sporadic dag tasks for global fp scheduling. In Proceedings of the 25th international conference
on real-time networks and systems, pages 28–37, 2017.

13 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability analysis of dag tasks with
arbitrary deadlines under global fixed-priority scheduling. Real-Time Systems, 55(2):387–432,
2019.

14 José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luís Miguel Pinho. Response time
analysis of sporadic dag tasks under partitioned scheduling. In 2016 11th IEEE Symposium
on Industrial Embedded Systems (SIES), pages 1–10. IEEE, 2016.

15 Vladimir Gajinov, Srđan Stipić, Igor Erić, Osman S Unsal, Eduard Ayguadé, and Adrián
Cristal. Dash: a benchmark suite for hybrid dataflow and shared memory programming
models: with comparative evaluation of three hybrid dataflow models. In Proceedings of the
11th ACM conference on computing frontiers, page 4. ACM, 2014.

16 Meiling Han, Nan Guan, Jinghao Sun, Qingqiang He, Qingxu Deng, and Weichen Liu. Response
time bounds for typed dag parallel tasks on heterogeneous multi-cores. IEEE Transactions on
Parallel and Distributed Systems, 30(11):2567–2581, 2019.

17 Qingqiang He, Xu Jiang, Nan Guan, and Zhishan Guo. Intra-task priority assignment in
real-time scheduling of dag tasks on multi-cores. IEEE Transactions on Parallel and Distributed
Systems, 30(10):2283–2295, 2019.

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

Q. He, M. Lv, and N. Guan 8:21

18 John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory,
languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

19 H KASAHARA and S NARITA. Practical multiprocessor scheduling algorithms for efficient
parallel processing. IEEE transactions on computers, 33(11):1023–1029, 1984.

20 Yu-Kwong Kwok and Ishfaq Ahmad. Dynamic critical-path scheduling: An effective technique
for allocating task graphs to multiprocessors. IEEE transactions on parallel and distributed
systems, 7(5):506–521, 1996.

21 Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys (CSUR), 31(4):406–471, 1999.

22 Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Outstanding paper award:
Analysis of global edf for parallel tasks. In 2013 25th Euromicro Conference on Real-Time
Systems, pages 3–13. IEEE, 2013.

23 Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah.
Analysis of federated and global scheduling for parallel real-time tasks. In 2014 26th Euromicro
Conference on Real-Time Systems, pages 85–96. IEEE, 2014.

24 Jing Li, David Ferry, Shaurya Ahuja, Kunal Agrawal, Christopher Gill, and Chenyang Lu.
Mixed-criticality federated scheduling for parallel real-time tasks. Real-time systems, 53(5):760–
811, 2017.

25 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C Buttazzo. Response-time analysis of conditional dag tasks in multiprocessor systems.
In 2015 27th Euromicro Conference on Real-Time Systems, pages 211–221. IEEE, 2015.

26 Risat Pathan, Petros Voudouris, and Per Stenström. Scheduling parallel real-time recurrent
tasks on multicore platforms. IEEE Transactions on Parallel and Distributed Systems, 29(4):915–
928, 2017.

27 Jinghao Sun, Feng Li, Nan Guan, Wentao Zhu, Minjie Xiang, Zhishan Guo, and Wang Yi. On
computing exact wcrt for dag tasks. In 2020 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6. IEEE, 2020.

28 Petros Voudouris, Per Stenström, and Risat Pathan. Timing-anomaly free dynamic scheduling
of task-based parallel applications. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017 IEEE, pages 365–376. IEEE, 2017.

29 Shuai Zhao, Xiaotian Dai, Iain Bate, Alan Burns, and Wanli Chang. Dag scheduling and
analysis on multiprocessor systems: Exploitation of parallelism and dependency. In IEEE
Real-Time Systems Symposium. IEEE, 2020.

ECRTS 2021

Graceful Degradation in Semi-Clairvoyant
Scheduling
Sanjoy Baruah #

Washington University in Saint Louis, MO, USA

Pontus Ekberg #

Uppsala University, Sweden

Abstract
In the Vestal model of mixed-criticality systems, jobs are characterized by multiple different estimates
of their actual, but unknown, worst-case execution time (WCET) parameters. Some recent research
has focused upon a semi-clairvoyant model for mixed-criticality systems in which it is assumed that
each job reveals upon arrival which of its WCET parameters it will respect. We study the problem
of scheduling such semi-clairvoyant systems to ensure graceful degradation of service to less critical
jobs in the event that the systems exhibit high-criticality behavior. We propose multiple different
interpretations of graceful degradation in such systems, and derive efficient scheduling algorithms
that are capable of ensuring graceful degradation under these different interpretations.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Software and its engineering → Real-time schedulability

Keywords and phrases Mixed criticality, semi-clairvoyance, graceful degradation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.9

Funding Sanjoy Baruah: National Science Foundation Grants CNS-1814739 and CPS-1932530.
Pontus Ekberg: Swedish Research Council grant 2018-04446.

1 Introduction

A model for mixed-criticality workloads was proposed by Vestal [30] as a means of achieving
timing predictability upon modern processors. In this model, individual pieces of real-time
code are represented as jobs with associated deadlines that are characterized by multiple
worst-case execution time (WCET) parameters. These different WCET parameters represent
different estimates, made at differing levels of assurance, of the actual unknown WCET of
the code. Each job is also assigned a criticality – in the two-criticality level model considered
in this paper (and much of the mixed-criticality scheduling theory literature), these are called
hi and lo, denoting greater and lesser criticality respectively. The two WCET parameters
are determined for each job, one at a level of assurance consistent with hi criticality and
a second at a level of assurance consistent with lo criticality. The correctness criterion in
the Vestal mixed-criticality model is that if each job completes execution within a duration
not exceeding its lo-criticality WCET estimate then all the jobs should complete execution
by their respective deadlines, whereas if some jobs do not complete execution within their
lo-criticality WCET estimates (but all jobs would complete execution if allowed to execute
for as much as their hi-criticality WCET), then all the hi-criticality jobs should complete
execution by their respective deadlines although the lo-criticality jobs may fail to do so.

Run-time monitoring. The methodology introduced by Vestal [30] was initially applied for
the verification of timing correctness of criticality-agnostic scheduling algorithms: algorithms
that do not seek to determine during run-time whether or not lo-criticality WCET estimates
have been exceeded. It was later observed [12] that if system state were monitored during
run-time to determine when jobs execute in excess of their lo-criticality WCETs, then

© Sanjoy Baruah and Pontus Ekberg;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baruah@wustl.edu
mailto:pontus.ekberg@it.uu.se
https://doi.org/10.4230/LIPIcs.ECRTS.2021.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Graceful Degradation in Semi-Clairvoyant Scheduling

custom-designed mixed-criticality scheduling algorithms could be developed that explicitly
exploit such run-time information. Several such mixed-criticality algorithms were developed
– OCBP [10], MC-EDF [29], EDF-VD [5], AMC [7], MC-Fluid [26], etc. – that determine
during run-time if and when the system “mode” transitions from lo-criticality mode (no job
has executed beyond its lo-criticality WCET) to hi-criticality mode (some job has executed
for more than its lo-criticality WCET), and adjusts its scheduling decisions accordingly.

Forms of Clairvoyance. The notion of clairvoyance, which has previously been used to
quantify the effectiveness of on-line algorithms (see, e.g., [25]), forms the basis of the speedup
factor metric that is widely used for quantitatively characterizing these mixed-criticality
scheduling algorithms. In the context of mixed-criticality scheduling, a clairvoyant algorithm
is one that knows prior to run-time whether any job is going to exceed its lo-criticality WCET
or not. Generally speaking, a clairvoyant scheduling algorithm is an idealized abstraction
against which to compare the performance of actual scheduling algorithms.

More recently, the concept of semi-clairvoyance was introduced for mixed-criticality
scheduling [1] (also see [14]). A semi-clairvoyant scheduling algorithm is one that knows,
at the instant of a job’s arrival, whether it will complete execution within its lo-criticality
WCET. Unlike [full] clairvoyance, which is a purely conceptual abstraction that is not
realisable in practice, it is persuasively argued in both [1] and [14] that semi-clairvoyance
is a realistic and practically useful model for certain circumstances. For instance, a system
developer may provide two separate implementations of a job: upon arrival, the system
determines which implementation it is appropriate to execute given the current circumstances –
i.e., the current mode. (E.g., one implementation may be intended for execution under regular
conditions, and another for execution under unexpected – i.e., hi criticality – conditions: the
hi-criticality implementation including code to perform crisis-mitigation functionalities). As
stated in [14], semi-clairvoyance is particularly applicable “when the execution time [. . .]
depends on the state of the system at the time the job arrives, rather than on some internal
property that emerges as it executes.”

Graceful degradation and mixed-criticality scheduling. Despite its very significant impact
on the real-time scheduling theory literature, Vestal’s mixed-criticality workload model [30]
has been criticized [20, 19, 31] for not matching systems developers’ expectations in some
important aspects. Our focus here is upon one such aspect: that lo-criticality jobs ought to
be guaranteed some amount of execution prior to their deadlines even in hi-criticality modes.
Modifications to the Vestal model have been proposed (e.g., in [13] and [18]) that allows for
the specification of some degraded service for lo-criticality jobs even in hi-criticality system
behaviors – we will describe such a model in Section 2. Many algorithms have been proposed
(e.g., [8, 23, 24, 22]) that seek to ensure such graceful degradation for systems.

This research. In this paper, we study graceful degradation for semi-clairvoyant algorithms
upon preemptive uniprocessors – to our knowledge, this is the first piece of research that
integrates consideration of these two concepts. We consider three different notions of graceful
degradation, characterized here as three different correctness criteria, by placing different
requirements as to which lo-criticality jobs it is acceptable to provide degraded service to,
upon some hi-criticality job’s arrival signalling hi-criticality mode:
CC-1. all lo-criticality jobs that have deadlines after this instant;
CC-2. all lo-criticality jobs that begin execution after this instant; or
CC-3. all lo-criticality jobs that arrive after this instant.

S. Baruah and P. Ekberg 9:3

Although the three correctness criteria appear very similar, differing only in the treatment
accorded to lo-criticality jobs that span a mode-change instant, we will see that the associated
schedulability analysis problems are very different. We will show that determining whether a
collection of independent jobs can be scheduled correctly upon a preemptive uniprocessor can
be done in polynomial time via reduction to a linear program for correctness criterion CC-1,
is NP-complete in the strong sense for CC-2, and reduces to a variant of EDF-schedulability
analysis for CC-3 that is also solvable in polynomial time.1

Correctness criterion CC-1 is consistent with standard interpretations of mixed-criticality
scheduling (and most prior work). It can be a sensible criterion when lo-criticality jobs,
unlike hi-criticality jobs, do not have multiple available implementations, but their execution
times are instead enforced by budgeting. The reduced execution time of lo-criticality jobs
in hi-criticality mode is then simply achieved by lowering their execution-time budgets.
This can be done even to started jobs, and jobs that do not finish within their budgets are
suspended or discarded.

However, there are circumstances where the other two criteria are more appropriate.
Under the scenario in which multiple implementations of each job are available and the
run-time system chooses which to execute based upon current system state, it is reasonable to
expect, as in CC-2, that once an implementation is chosen and its execution has commenced,
it must be completed.

For systems observing “commitment upon job arrival” semantics [16], the choice as to
which available implementation of a job to execute must be made upon the job’s arrival. It
is reasonable to expect that for jobs arriving before the mode-change instant, this choice will
favor the lo-criticality implementations – this is what CC-3 requires.

Contributions. We have seen above that there are very good reasons for studying all three
correctness criteria, which is what we do in this research. Specifically

We formally define our three correctness criteria in Section 2, within the framework of a
workload model integrating graceful degradation and mixed criticality considerations.
In Section 3 we present a table-based run-time scheduling algorithm for scheduling
collections of independent jobs, and a fluid-based algorithm for scheduling implicit-
deadline sporadic task systems, under correctness criterion CC-1. Exact schedulability
tests that run in polynomial time are presented for both cases.
In Section 4 we prove that it is NP-hard in the strong sense to determine schedulability
of a collection of independent jobs under correctness criterion CC-2. We also provide
a mixed integer linear program (MILP) representation of this schedulability problem:
solving this MILP allows one to construct a table-based run-time scheduling algorithm.
In Section 5 we show that EDF is an optimal scheduling algorithm under CC-3 and
present exact schedulability tests for scheduling both collections of independent jobs and
three-parameter sporadic task systems with bounded utilization under this correctness
criterion. These tests run in polynomial and pseudo-polynomial time, respectively.
We place all these above results within a broader context in Section 6, explaining how
they fit together and how they suggest some guidelines for implementation and analysis
of semi-clairvoyant systems; while the benefits of these guidelines will be quite evident,
we will additionally provide a quantitative evaluation of their cost.

1 By comparison, schedulability analysis for non-clairvoyant scheduling of mixed-criticality jobs under
the ordinary mixed-criticality semantics (corresponding to CC-1) without graceful degradation – this is
the default mixed-criticality setting seen in most previous work – is NP-hard in the strong sense [4].

ECRTS 2021

9:4 Graceful Degradation in Semi-Clairvoyant Scheduling

2 Workload Model

As mentioned in Section 1 we will restrict our attention here to dual-criticality systems:
systems with two distinct criticality levels denoted lo and hi, that are to execute upon a
single preemptive processor. We consider both collections of independent jobs and recurrent
(sporadic) tasks.

For jobs, an instance is a collection of n dual-criticality jobs J = {J1, J2, ..., Jn}. Each
job Ji is characterized by a tuple of parameters: Ji = (χi, ai, [ci(lo), ci(hi)], di) where
χi ∈ {lo,hi} and the remaining parameters are non-negative integers, with the interpretation
that

χi denotes the criticality of the job;
ai denotes its release time;
di denotes its deadline; and
ci(lo) and ci(hi) denote lo-criticality and hi-criticality specifications of the job’s worst-
case execution time (WCET) parameter respectively. We require that the WCETs satisfy
the constraint that(

ci(hi) ≤ ci(lo), if χi = lo
)

and
(
ci(hi) ≥ ci(lo), if χi = hi

)
(I.e., a lo-criticality job receives degraded service whereas a hi-criticality job receives
enhanced service in hi-criticality mode.)

For sporadic tasks, an instance (or system) τ is a collection of n tasks {τ1, τ2, . . . , τn}.
Each τi is characterized by the parameters (χi, [Ci(lo), Ci(hi)], Di, Ti), where χi ∈ {lo,hi}
denotes its criticality, Ci(lo) and Ci(hi) its lo and hi criticality WCETs, Di ∈ N its relative
deadline parameter, and Ti ∈ N its period. Analogously to jobs, we require that the WCETs
satisfy the constraint(

Ci(hi) ≤ Ci(lo), if χi = lo
)

and
(
Ci(hi) ≥ Ci(lo), if χi = hi

)
Some additional notation: Let τ (lo) and τ (hi) denote the subsets of tasks τi with χi = lo
and χi = hi, respectively. Let Ui(lo) = Ci(lo)/Ti and Ui(hi) = Ci(hi)/Ti. Finally, let
Ulo =

∑
τi∈τ Ui(lo) and Uhi =

∑
τi∈τ Ui(hi).

Correctness criteria. Any task system or collection of jobs is assumed to begin execution
in lo-criticality mode, with each job requiring an amount of execution that is no greater
than its lo-criticality WCET. Any hi-criticality job may signal a transition to hi-criticality
mode upon its arrival. If this happens at some time-instant tswitch, then each hi-criticality
job that arrives at or after tswitch may require up to its (potentially larger) hi-criticality
WCET. Likewise, each lo-criticality job with deadline at or before tswitch requires up to its
lo-criticality WCET, while each lo-criticality job that arrives at or after tswitch can only
require up to its (potentially smaller) hi-criticality WCET. As mentioned in Section 1, we
consider three different notions of correctness for lo-criticality jobs that are active at time
point tswitch, and we will see that this choice has significant consequences for how to schedule
and analyse such systems. These three different correctness criteria are defined as follows.
CC-1. Any lo-criticality job that has its deadline after time tswitch may only require its

smaller hi-criticality WCET.
CC-2. Any lo-criticality job that is active and has already started executing at time tswitch

is permitted to require its larger lo-criticality WCET.
CC-3. Any lo-criticality job that is active at time tswitch is permitted to require its larger

lo-criticality WCET.

S. Baruah and P. Ekberg 9:5

Here we can note that if we restrict all lo-criticality jobs/tasks to have zero-valued WCETs
at hi-criticality (i.e., ci(hi) and Ci(hi) equal zero for all lo-criticality jobs/tasks), then
correctness criterion CC-1 reduces to the model that was studied in previous work on
semi-clairvoyant scheduling [1, 14].

3 Correctness Criterion CC-1

In this section we devise algorithms for scheduling dual-criticality instances of independent
jobs (Section 3.1), and implicit-deadline sporadic task systems (Section 3.2) under the
requirement that all lo-criticality jobs completing after the arrival of a hi-criticality job that
signals hi-criticality mode receive an amount of execution at least equal to their hi-criticality
WCETs. The following example illustrates some of the challenges in determining whether
such an instance can be correctly scheduled under semi-clairvoyant scheduling.
▶ Example 1. Consider an instance comprising the following three jobs:

χi ai ci(lo) ci(hi) di

J1 lo 0 1 0 2
J2 lo 0 2 1 3
J3 hi 1 0 2 3

First, we point out that this instance is clairvoyant schedulable:
in lo-criticality mode one could execute J1 over the interval [0, 1], and J2 over [1, 3];
in hi-criticality mode one could execute J2 over [0, 1], and J3 over [1, 3].

Observe that a different job is scheduled over [0, 1] in the two modes. However under
semi-clairvoyant scheduling the mode only becomes known at time-instant 1 (i.e., upon
J3’s arrival). An EDF schedule would choose J1 over the interval [0, 1]; if job J3 were to
signal hi-criticality mode upon arrival, that would require that an execution amount equal
to c2(hi) + c3(hi) = (1 + 2) = 3 units be completed over the next two time units. Hence
EDF is not able to schedule this instance correctly; we leave it to the reader to verify that
the following on-line scheduling strategy is correct:

Execute J2 over [0, 1]
if J3 signals lo-criticality mode upon its arrival

execute J1 over [1, 2], and J2 over [2, 3]
else // (i.e., J3 signals hi-criticality mode upon its arrival)

execute J3 over [1, 3] ⌟

In the remainder of this section we describe how such strategies may be determined
for collections of jobs and implicit-deadline task systems. Our results for CC-1 are closely
inspired by those of [1] (which effectively targets CC-1 without graceful degradation), though
in order to enable graceful degradation we take a very different approach to the formulation
of the linear program that we will see next.

3.1 Jobs
We partition the time-line by the release-dates and the deadlines (the ai and di parameters)
of the jobs. I.e., the time-line from the first release date to the last deadline is divided into
subintervals by dividing it at every ai and di. Let I1, I2, . . . denote these subintervals and
note that there are at most 2n− 1 of them. Let t1, t2, . . . denote the distinct time instants
at which hi-criticality jobs arrive, in order (i.e., tk < tk+1). There are at most n such time
instants tk.

In the following we let i range over jobs Ji, let j range over subintervals Ij , and let k
range over the time points tk where a hi-criticality job arrives.

ECRTS 2021

9:6 Graceful Degradation in Semi-Clairvoyant Scheduling

Variables. Our LP uses the following variables:
1. The variable xij represents the amount of execution assigned to the i’th job Ji in the

j’th interval Ij , in a schedule in which no hi-criticality job signals the transition to
hi-criticality mode. There are O(n2) such variables.

2. For each k, the variable y(k)
ij represents the amount of execution assigned to job Ji in

the interval Ij , in a schedule in which hi-criticality mode is signalled at time-instant tk.
There are O(n3) such variables – O(n2) for each value of k.

For the example instance of Example 1 there are 3 × 3 = 9 xij variables, and the same
number of y(1)

ij variables.

Constructing Scheduling Tables. A solution to our LP will assign values to these variables.
We will use these assigned values to construct several scheduling tables prior to run-time:

Scheduling table So will schedule job Ji for a duration xij during the interval Ij .
For each k, there will be a scheduling table Sk that schedules job Ji for a duration y

(k)
ij

during the interval Ij .
Our run-time scheduling strategy is then to start out making scheduling decisions according to
So, and to switch to Sk if hi-criticality mode is first signalled by the arrival of a hi-criticality
job at tk. The Constraints in Eq. 1 below enforce that y(k)

ij = xij for all intervals Ij before
tk; hence in the event that the arrival of a hi-criticality job at time tk signals hi-criticality
mode we are effectively following scheduling table Sk from the very beginning.

▶ Example 2. For the 3-job example instance in Example 1, there are three subintervals
I1 = [0, 1], I2 = [1, 2], and I3 = [2, 3]. Since there is only one hi-criticality job, we have
t1 = 1 as the only instant at which hi-criticality jobs arrive. Below is a possible assignment
of values for xij and y

(1)
ij for this example instance (these happen to be the xij and y

(1)
ij

values corresponding to the correct scheduling strategy described in Example 1):

j = 1 j = 2 j = 3

i = 1 x11 = 0, y
(1)
11 = 0 x12 = 1, y

(1)
12 = 0 x13 = 0, y

(1)
13 = 0

i = 2 x21 = 1, y
(1)
21 = 1 x22 = 0, y

(1)
22 = 0 x23 = 1, y

(1)
23 = 0

i = 3 x31 = 0, y
(1)
31 = 0 x32 = 0, y

(1)
32 = 1 x33 = 0, y

(1)
33 = 1

The following scheduling tables are constructed from these xi,j and yi,j values:
1. So schedules J2 over I1 = [0, 1], J1 over I2 = [1, 2], and J2 over I3 = [2, 3].
2. S1 schedules J2 over I1, and J3 over both I2 and I3.
During run-time we start out scheduling according to So; if job J3 signals hi-criticality mode
upon arrival at time-instant 1 then we subsequently switch to schedule S1. ⌟

Constraints. We will now describe the constraints added to our LP in order to ensure
that the variables defined above have their intended interpretations.

(Non-clairvoyance.) For each k, for all i, and for all j such that the interval Ij completes
no later than time-instant tk, we have

y
(k)
ij = xij (1)

There are O(n3) such constraints.
(Correctness in lo criticality.) For each i∑

Ij⊆[ri,di]

xij ≥ ci(lo) (2)

S. Baruah and P. Ekberg 9:7

There are O(n) such constraints – one per job.
(Correctness in hi criticality.) For each k (hi-criticality signalled at tk)

For each i for which χi = hi∑
Ij⊆[ri,di]

y
(k)
ij ≥

{
ci(lo) if ri < tk
ci(hi) if ri ≥ tk

(3)

There are O(n2) such constraints.
For each i for which χi = lo∑

Ij⊆[ri,di]

y
(k)
ij ≥

{
ci(lo) if di ≤ tk
ci(hi) if di > tk

(4)

There are O(n2) such constraints.
Notice the difference between Expression 3 and Expression 4: the first case in Expression 3
applies to all jobs that arrive before tk; in Expression 4, to all jobs that have deadlines
no later than tk.
(Adequate computing capacity to construct scheduling table So.) For each j∑

i

xij ≤ |Ij |, (5)

where |I| denotes the length of an interval I. There are O(n) such constraints.
(Adequate computing capacity to construct scheduling table Sk.) For each k, for each j∑

i

y
(k)
ij ≤ |Ij | (6)

There are O(n2) such constraints.

3.2 Tasks
We now give an optimal algorithm for scheduling systems of implicit-deadline sporadic
tasks2 – task systems in which the relative deadline parameter Di of each task τi is equal
to its period parameter Ti. Our algorithm is based on the fluid scheduling paradigm. Such
algorithms are allowed to assign individual tasks a fraction ≤ 1 of a processor (rather than an
entire processor, or none) at each instant in time. The MC-Fluid non-clairvoyant scheduling
algorithm [26, 9] was designed for scheduling dual-criticality implicit-deadline sporadic task
systems upon identical multiprocessor platforms. Prior to run-time, MC-Fluid computes
lo-criticality and hi-criticality execution rates θi(lo) and θi(hi) for each task τi ∈ τ . Each
task τi is initially scheduled at a rate θi(lo); if any job does not complete despite having
executed for its lo-criticality WCET, all lo-criticality tasks are immediately discarded and
each hi-criticality task τi henceforth executes at a rate θi(hi). An algorithm for computing
suitable values for the θi(lo) and θi(hi) parameters is presented in [26], and a somewhat
simpler algorithm subsequently derived in [9], and shown to be speedup-optimal3, with
speedup factor 4

3 .

2 We do not yet have an algorithm for scheduling task systems in which the Di and Ti parameters of
individual tasks may differ – to our knowledge, there are no non-trivial speedup-competitive prior results
known for semi-clairvoyant scheduling of task systems that are not implicit-deadline. In Section 6 we
will describe how a correct but non-optimal algorithm may be obtained for scheduling such systems.

3 The reader is referred to [25, 15] for in-depth discussions about speedup factors.

ECRTS 2021

9:8 Graceful Degradation in Semi-Clairvoyant Scheduling

The non-clairvoyant MC-Fluid algorithm is easily modified to form an optimal semi-
clairvoyant algorithm for dual criticality implicit-deadline tasks upon uniprocessors. Observe
first that for an implicit-deadline sporadic task system τ to be schedulable by any scheduler
(including a clairvoyant one), it is necessary that the following condition hold:

Ulo ≤ 1 and Uhi ≤ 1 (7)

The schedulability test associated with our optimal semi-clairvoyant scheduling algorithm is
straightforward: any task system τ satisfying the condition above will be correctly scheduled
by our algorithm. The algorithm assigns the θi(lo) and θi(hi) execution rates to each task
τi as follows:(

θi(lo) = Ui(lo)
)

and
(
θi(hi) = Ui(hi)

)
(We point out that therefore θi(hi) ≤ θi(lo) for lo-criticality tasks while θi(hi) ≥ θi(lo) for
hi-criticality tasks.) It initially executes each task τi at a rate θi(lo); if any hi-criticality job
signals a transition to hi-criticality mode upon arrival, the algorithm subsequently executes
each task τi at a rate θi(hi). It is evident that this algorithm is feasible upon a uniprocessor
since the rates of all the tasks both before and after such a transition sum to ≤ 1.

Proof of Correctness. We show that any task system τ satisfying the necessary schedulability
conditions in Eq. 7 is scheduled correctly as per correctness criterion CC-1.

It is evident that all tasks execute correctly in all lo-criticality behaviors (since each
job of each task τi receives a total execution θi(lo) × Ti = Ui(lo) × Ti = Ci(lo) units of
execution). Consider now some hi-criticality behavior, and let tswitch denote the instant at
which hi-criticality behavior is signalled. It is evident that any job that has both its arrival
time and its deadline ≤ tswitch, as well as any job that has both its arrival time and its
deadline ≥ tswitch, receives adequate execution. It remains to consider jobs that arrive before,
but have deadline after, time-instant tswitch.
hi-criticality tasks. Under semi-clairvoyant scheduling, all such hi-criticality jobs, having

arrived before hi-criticality mode was signalled, are guaranteed to complete upon having
executed for no more than their lo-criticality WCETs. Since θi(lo) ≤ θi(hi) for any
hi-criticality task τi, any job of such a τi clearly receives at least θi(lo) × Ti = Ci(lo)
units of execution by its deadline.

lo-criticality tasks. Symmetrically to the case above, under correctness criterion CC-1 all
such lo-criticality jobs are to be assigned an amount of execution not exceeding their
hi-criticality WCETs. Since θi(lo) ≥ θi(hi) for any lo-criticality task τi, any job of such
a τi receives at least θi(hi) × Ti = Ci(hi) units of execution by its deadline.

4 Correctness Criterion CC-2

lo-criticality jobs that begin executing before a mode-transition has been signalled are
required to execute for their (larger) lo-criticality WCETs under correctness criterion CC-2.
It turns out that establishing the schedulability of systems under this correctness criterion is
a computationally harder problem than under correctness criterion CC-1: while we saw above
(Section 3.1) that schedulability analysis of collections of jobs can be done in polynomial
time under CC-1, we now show that this is NP-complete in the strong sense under CC-2.

▶ Theorem 3. Under correctness criterion CC-2, it is NP-hard in the strong sense to deter-
mine whether an instance of jobs can be correctly scheduled upon a preemptive uniprocessor.

S. Baruah and P. Ekberg 9:9

Proof. We will give a reduction from the 3-Partition problem, which is well known to be NP-
complete in the strong sense [21]. An instance of 3-Partition is a set S = {s1, s2, . . . , s3m}
of 3m positive integers, such that

∑
si∈S si = mk for some integer k. We are asked whether

S can be partitioned into m disjoint subsets, such that each subset sums to k.
Let an instance S = {s1, s2, . . . , s3m} of 3-Partition be given. We create the following

set J of jobs.

Ji = (lo, 0, [2si, si], 2mk), for 1 ≤ i ≤ 3m
J3m+j = (hi, 2jk, [0, k], (2j + 1)k), for 1 ≤ j < m.

It is clear that this reduction can be carried out in polynomial time and that the values of
the produced numerical parameters are polynomially related to those given. In the following
we show that J is schedulable under correctness criterion CC-2 if and only if S can be
partitioned into subsets S0, S1, . . . , Sm−1 with the same sum. We consider the two directions
separately. Let Jlo and Jhi denote the sets of lo- and hi-criticality jobs in J , respectively.
S can be partitioned ⇒ J is schedulable: Assume S can be partitioned into S0, S1, . . . , Sm−1
such that each partition sums to k. Let Jj denote the set of jobs Ji ∈ Jlo such that si ∈ Sj ,
for 0 ≤ j < m. That is, Ji ∈ Jj if and only if si ∈ Sj .

The following scheduling strategy will be successful: We allocate time interval [0, 2k) for
the jobs in J0 where they are executed in any order. Then for all j such that 1 ≤ j < m we
allocate time interval [2jk, 2(j + 1)k) for first executing hi-criticality job J3m+j and then the
jobs in Jj in any order. If the jobs that are allocated to a time interval have finished early,
then we idle the processor until the start of the next allocated time interval.

We note that the total execution time of the jobs in J0 is at most
∑

Ji∈J0
ci(lo) =∑

si∈S0
2si = 2k, and therefore they can all finish in their allocated time interval [0, 2k).

We then note that for 1 ≤ j < m, if neither J3m+j nor any previous hi-criticality job
has signaled hi-criticality behavior, then the lo-criticality jobs in Jj have the entire time
interval [2jk, 2(j + 1)k) to execute in, which is enough since

∑
Ji∈Jj

ci(lo) = 2k. If, on the
other hand, J3m+j or some previous hi-criticality job has signaled hi-criticality behavior,
then the jobs in Jj might only have the time interval [(2j + 1)k, 2(j + 1)k) to execute in, but
this is still enough as they then only need to execute for up to

∑
Ji∈Jj

ci(hi) = k.
The hi-criticality tasks J3m+j , for 1 ≤ j < m, all execute first in their allocated time

intervals. Those time intervals start at the arrival time of the corresponding hi-criticality
job, so the hi-criticality jobs will always finish no later than their deadlines.
S cannot be partitioned ⇒ J is unschedulable: Assume that S cannot be partitioned into
m subsets of equal sum. We will show that no matter what scheduling decisions are
taken, there will always exist some runtime behaviors that lead to a deadline miss. In the
following we consider only behaviors where each job Ji requires an execution time of either
exactly ci(lo) or ci(hi). We then note that no job has a deadline later than 2mk and that∑

Ji∈Jlo ci(lo) = 2mk. Therefore, no idle time can possibly be allowed in a successful
schedule as long as hi-criticality behavior has not been signaled. In time interval [0, 2k),
lo-criticality jobs must then be scheduled for the entire 2k time units. Let J start

lo be the
jobs that begin execution in [0, 2k), and let x =

∑
Ji∈J start

lo
ci(lo). We consider two cases.

Case 1 (x > 2k) Suppose the hi-criticality job J3m+1 that arrives at time 2k signals hi-
criticality behavior, and that this and all following hi-criticality jobs require their hi-
criticality WCETs. The total execution time of the hi-criticality jobs is then (m− 1)k,
and the total time left over for the lo-criticality jobs until their deadline at 2mk is
2mk− 2k− (m− 1)k = (m− 1)k. However, the lo-criticality jobs that started execution

ECRTS 2021

9:10 Graceful Degradation in Semi-Clairvoyant Scheduling

before time 2k require their larger lo-criticality WCET. The total remaining execution
time requirement of the lo-criticality jobs is then∑

Ji∈Jlo\J start
lo

ci(hi) +
∑

Ji∈J start
lo

ci(lo) − 2k =
∑

Ji∈Jlo
ci(hi) +

∑
Ji∈J start

lo

ci(hi) − 2k

= mk + x

2 − 2k

> (m− 1)k,

and they can not all finish before their deadline.
Case 2 (x = 2k) Since

∑
Ji∈J start

lo
ci(lo) = 2k, the jobs in J start

lo correspond to a subset of
S that sums to k. In this case, let the hi-criticality job J3m+1 that arrives at time 2k
require zero execution time and therefore not signal hi-criticality behavior.

If the second case holds, we simply note that the lo-criticality jobs that were executed
corresponds to a subset of S that sums to k and repeat the same argument, but starting
from time 2k instead. If again the second case holds, we note that the rest of S again has a
subset that sums to k and repeat the argument from time 4k and so on. Since by assumption
S cannot be partitioned completely into subsets that each sum to k, any scheduler must
eventually either idle the processor or behave according to Case 1 above, both of which can
then lead to a deadline miss. ◀

An MILP for schedulability analysis under CC-2. Theorem 3 above establishes that we
cannot analyze schedulability of collections of jobs under CC-2 even in pseudo-polynomial
time (assuming P ̸=NP). This means that we cannot solve it with a polynomially-sized LP,
but below we adapt the LP obtained in Section 3.1 for correctness criterion CC-1 to make it
applicable to schedulability analysis under correctness criterion CC-2 by introducing some
additional binary integer variables, which in effect turns the LP into a mixed-integer linear
program (MILP). Since it is known [11] that determining whether an MILP has a feasible
solution is in NP, the existence of this MILP also serves to show that schedulability analysis
of collections of jobs under correctness criterion CC-2 is in the complexity class NP. This
fact, in conjunction with Theorem 3, establishes that the problem is NP-complete.

Observe that the difference between correctness criteria CC-1 and CC-2 is in the execution
time that lo-criticality jobs may require when some hi-criticality job signals hi-criticality
behavior. This was captured by the constraints in Eq. 4 for CC-1; reproduced below:
For each i for which χi = lo∑

Ij⊆[ri,di]

y
(k)
ij ≥

{
ci(lo) if di ≤ tk
ci(hi) if di > tk

We replace the constraints in Eq. 4 by the following set of constraints, keeping the other
constraints of the LP in Section 3.1 as they are.

For each lo-criticality job Ji and time instant tk where some hi-criticality job arrives, let
b

(k)
i be a new binary (i.e., 0–1 valued) integer variable. The intended interpretation is that

job Ji has started execution before tk in schedule So if and only if b(k)
i = 1. Instead of the

constraints in Eq. 4 we add the following constraints.
For each k (hi-criticality signalled at tk) and each i for which χi = lo:

If di ≤ tk (i.e., the entire job must be scheduled by time-instant tk),∑
Ij⊆[ri,di]

y
(k)
ij ≥ ci(lo) (8)

S. Baruah and P. Ekberg 9:11

If ri > tk (i.e., the entire job must be scheduled after time-instant tk),∑
Ij⊆[ri,di]

y
(k)
ij ≥ ci(hi) (9)

Otherwise (i.e., the job spans tk),∑
Ij⊆[ri,di]

y
(k)
ij ≥ ci(lo) × b

(k)
i (10)

∑
Ij⊆[tk,di]

y
(k)
ij ≥ ci(hi) × (1 − b

(k)
i) (11)

∑
Ij⊆[ri,tk]

y
(k)
ij ≤ M × b

(k)
i , (12)

where M is some large enough positive constant (e.g., M = maxi(ci(lo)) can be used).
We note that if b(k)

i = 1, then the constraint in Eq. 10 “forces” job Ji to be allocated at least
ci(lo) units of execution, while the constraints in Eqs. 11 and 12 are trivially satisfied. If
instead b

(k)
i = 0, then the constraint in Eq. 10 is always satisfied, while the constraint in

Eq. 11 forces Ji to be allocated at least ci(hi) units of execution after tk, and the constraint
in Eq. 12 forces Ji to not have begun execution before tk.

5 Correctness Criterion CC-3

Under correctness criterion CC-3, it is required that all lo-criticality jobs arriving before
mode-change is signalled receive an amount of service equal to their (larger) lo-criticality
WCETs. It is easily seen that unlike with regards to correctness criteria CC-1 and CC-2,
under correctness criterion CC-3 the WCET of each job is known upon the job’s arrival
regardless of whether some future job will signal hi-criticality mode upon arrival or not. And
it follows from the optimality property of the Earliest Deadline First scheduling algorithm
(EDF) upon preemptive uniprocessor platforms [27, 17] that any collection of such jobs that
can be scheduled to all complete by their deadlines is scheduled to all complete by their
deadlines by EDF. Therefore, under correctness criterion CC-3 EDF is an optimal run-time
algorithm. This is in contrast to correctness criteria CC-1 and CC-2, for neither of which do
we have a general, efficient, run-time scheduling algorithm. In the remainder of this section
we derive efficient schedulability-analysis for the EDF scheduling of dual-criticality instances
of independent jobs (Section 5.1), and three-parameter sporadic task systems (Section 5.2)
under this correctness criterion.

5.1 Jobs

In Sections 3.1 and 4, we had solved a linear program and an MILP respectively in order
to construct scheduling tables for the run-time scheduling of collections of jobs subject
to correctness criteria CC-1 and CC-2. Such an approach is not necessary for CC-3: as
observed above, we know that EDF is an optimal algorithm for scheduling instances subject
to correctness criterion CC-3. An associated schedulability test is easily obtained: simply
simulate the EDF scheduling of the instance multiple times, once assuming lo-criticality
behavior and once each under the assumption that each individual hi-criticality job is the

ECRTS 2021

9:12 Graceful Degradation in Semi-Clairvoyant Scheduling

one that signals transition to hi-criticality behavior.4 For an instance with n jobs, O(n) such
simulations of EDF need to be performed; each can be done in O(n log n) time [28], yielding
an overall complexity of O(n2 log n) for the schedulability test.

5.2 Tasks
As stated above, EDF is an optimal run-time scheduling algorithm under correctness criterion
CC-3. We now derive an exact EDF schedulability test for 3-parameter sporadic task systems
under this correctness criterion; our test holds for “arbitrary-deadline” systems – i.e., systems
in which tasks may have relative deadlines smaller than, equal to, or larger than their periods.
We will show that our schedulability test has pseudo-polynomial running time upon systems
in which max(Ulo, Uhi) is a priori bounded by some constant c < 1.

Demand bound function. Let dbfi(t, s) denote the demand bound function [2] (see [3,
Chapter 10.3] for a text-book description) of task τi in an interval of length t, where hi-
criticality mode is first signalled s time units into the interval (possibly by some other task).
That is, the function dbfi(t, s) bounds the maximum sum of execution times of jobs from τi

that have both release times and deadlines within any such interval.
Let t and s be given. We make the following observations (illustrated in Figure 1).
For a hi-criticality task τi, the execution demand is maximized when as many jobs as
possible fit into the interval, and as many of those as possible are released at or after the
signalling of hi-criticality mode, and therefore can have the larger WCET Ci(hi). This
corresponds to a scenario where one job from τi has its deadline at the end of the interval,
and the previous jobs are each released as late as possible.
For a lo-criticality task τi, the execution demand is instead maximized when the maximum
number of jobs from τi fit into the interval, but as many as possible are released before
the time instant where hi-criticality mode is signalled, and therefore can have the larger
WCET Ci(lo). This corresponds to a scenario where one job is released at the start of
the interval and subsequent jobs as early as possible.

x x+ s x+ t

hi task hihihihilo

lo task lo lo hi

Figure 1 An interval of length t with hi-criticality mode revealed s time units into the interval.
The lo-criticality task maximizes execution demand within the interval by fitting two jobs with
WCET C(lo) and one job with WCET C(hi). The hi-criticality task maximizes demand by fitting
four jobs with WCET C(hi) and one with WCET C(lo).

We use the above observations to express dbfi(t, s). Let ψi(t) denote the maximum
number of jobs of τi that both arrive in, and have their deadlines within, any contiguous

4 It follows from the sustainability property of EDF [6] that each such simulation can be done assuming
that each job executes to exactly its WCET.

S. Baruah and P. Ekberg 9:13

interval of duration t; it is known [2] that

ψi(t) = max
(⌊

t−Di

Ti

⌋
+ 1, 0

)
.

For a hi-criticality task τi, a total of ψi(t) jobs can fit inside the interval, and a total of
ψi(t− s) of those jobs can have an execution time requirement of Ci(hi). We therefore have

dbfi(t, s) = ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi) − Ci(lo)).

For a lo-criticality task τi the number of jobs that can fit in the interval is also at most ψi(t).
No more than ⌊s/Ti⌋ + 1 of those jobs can be released before5 the instant when hi-criticality
behavior is first signaled, and therefore have the larger execution time requirement Ci(lo).
We have

dbfi(t, s) = ψi(t) × Ci(hi) + min
(
ψi(t),

⌊
s

Ti

⌋
+ 1

)
× (Ci(lo) − Ci(hi)).

Putting the above together, we have the following expression to bound the maximum total
execution time demand of jobs from task τi in an interval of size t, where hi-criticality
behavior is first revealed s time units into the interval.

dbfi(t, s) =

ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi)−Ci(lo)), if χi = hi

ψi(t) × Ci(hi) + min
(
ψi(t),

⌊
s

Ti

⌋
+ 1

)
× (Ci(lo)−Ci(hi)), if χi = lo

(13)

The Schedulability Test

We assume here that max(Ulo, Uhi) < 1. Before establishing the schedulability test we
present three lemmas. Let B and S(t) be defined for any task system τ as follows.

B =
∑

τi∈τ Ci(χi)
1 − max(Ulo, Uhi)

,

S(t) =
⋃

τi∈τ (hi)

{t− kTi −Di | 0 ≤ k < ψi(t)} ∪ {t}.

As we will see in the following, B is the upper bound for the values of t that we need to
consider when using dbfi(t, s) for a schedulability test, and S(t) is the set of values for s
that needs to be considered for each t. In our first lemma we show that the demand bound
function for a task set is maximized at some value of s ∈ S(t), which corresponds to a release
of a job from a hi-criticality task when its jobs are aligned as in Figure 1.

▶ Lemma 4. Let t and s be given, where t > 0 and s ∈ [0, t]. Then there exists s′ ∈ S(t)
such that

∑
τi∈τ dbfi(t, s) ≤

∑
τi∈τ dbfi(t, s′).

Proof. Let s′ be the smallest s′ ∈ S(t) such that s′ ≥ s.
For all τi ∈ τ (hi), the set of values s′ where ψi(t−s′) is discontinuous in the interval [0, t] is

a subset of S(t). As ψi is a right-continuous step function, we must have ψi(t−s) = ψi(t−s′).
Hence, dbfi(t, s) = dbfi(t, s′) if χi = hi.

5 In fact, this captures the maximum number of jobs that can be released before or at the time point
where hi-criticality is signaled. It seems as if we should replace ⌊s/Ti⌋ + 1 by ⌈s/Ti⌉, but we will see
later that this is in fact the suitable formulation in order to use the demand bound function for an
efficient schedulability test that is both sufficient and necessary. Specifically, this formulation is required
for Lemma 6, but we will see in Theorem 7 that it does not detract from the exactness of the test.

ECRTS 2021

9:14 Graceful Degradation in Semi-Clairvoyant Scheduling

If τi ∈ τ (lo), then dbfi(t, s) in non-decreasing in s. Therefore dbfi(t, s) ≤ dbfi(t, s′) if
χi = lo, which completes the proof. ◀

Our second lemma puts an upper bound on the values of t that need to be considered.

▶ Lemma 5. If t ≥ B, then
∑

τi∈τ dbfi(t, s) ≤ t for all s ∈ [0, t].

Proof. Take any τi ∈ τ . We first note that ψi(x) ≤ x/Ti + 1 and then consider two cases.
Case 1 (χi = hi): We must have

dbfi(t, s) ≤
(
t

Ti
+ 1

)
× Ci(lo) +

(
t− s

Ti
+ 1

)
× (Ci(hi) − Ci(lo))

= Ci(lo)
Ti

× t+ Ci(lo) + Ci(hi) − Ci(lo)
Ti

× (t− s) + Ci(hi) − Ci(lo)

= Ui(hi) × (t− s) + Ui(lo) × s+ Ci(hi).

Case 2 (χi = lo): Similarly, we have

dbfi(t, s) ≤
(
t

Ti
+ 1

)
× Ci(hi) +

(
s

Ti
+ 1

)
× (Ci(lo) − Ci(hi))

= Ci(hi)
Ti

× t+ Ci(hi) + Ci(lo) − Ci(hi)
Ti

× s+ Ci(lo) − Ci(hi)

= Ui(hi) × (t− s) + Ui(lo) × s+ Ci(lo).

In both cases we then have

dbfi(t, s) ≤ Ui(hi) × (t− s) + Ui(lo) × s+ Ci(χi)

and therefore∑
τi∈τ

dbfi(t, s) ≤ Uhi × (t− s) + Ulo × s+
∑
τi∈τ

Ci(χi)

≤ max(Ulo, Uhi) × t+
∑
τi∈τ

Ci(χi).

But if t ≥ B, then∑
τi∈τ

dbfi(t, s) ≤ max(Ulo, Uhi) × t+
∑
τi∈τ

Ci(χi) ≤ t,

which concludes the proof. ◀

Our third lemma puts the above two together to limit the values of both t and s that we
must consider.

▶ Lemma 6. If
∑

τi∈τ dbfi(t, s) > t for some t > 0 and s ∈ [0, t], then there exists
t′ ∈ {0, 1, . . . , ⌊B⌋} and s′ ∈ S(t′) such that

∑
τi∈τ dbfi(t′, s′) > t′.

Proof. Assume that
∑

τi∈τ dbfi(t, s) > t for some t > 0 and s ∈ [0, t]. By Lemma 4 there
exists s′ ∈ S(t) such that

∑
τi∈τ dbfi(t, s′) ≥

∑
τi∈τ dbfi(t, s).

Let t′ = ⌊t⌋ and s′′ = ⌊s′⌋. We note then that for any task τi, we have ψi(t) = ψi(t′)
as ψi is a right-continuous step function that only changes value at integers. Further, we
note that by definition of S(t) it must be the case that the fractional parts of t and s′

S. Baruah and P. Ekberg 9:15

are the same. We must then have t − s′ = t′ − s′′ and ψi(t − s′) = ψi(t′ − s′′). Also, we
note that as Ti is integer we must have ⌊s/Ti⌋ = ⌊s′/Ti⌋. From Eq. 13 it follows then that∑

τi∈τ dbfi(t, s′) =
∑

τi∈τ dbfi(t′, s′′).
Finally, by Lemma 4 there must exist s′′′ ∈ S(t′) such that

∑
τi∈τ dbfi(t′, s′′) ≤∑

τi∈τ dbfi(t′, s′′′). Putting the above together we have∑
τi∈τ

dbfi(t′, s′′′) ≥
∑
τi∈τ

dbfi(t′, s′′)

=
∑
τi∈τ

dbfi(t, s′)

≥
∑
τi∈τ

dbfi(t, s)

> t

≥ t′

By Lemma 5 we must have t < B and therefore t′ ∈ {0, 1, . . . , ⌊B⌋}. As s′′′ ∈ S(t′), the
lemma follows. ◀

We can now establish the schedulability test.

▶ Theorem 7. Let τ be a task set of arbitrary-deadlines sporadic mixed-criticality tasks with
max(Ulo, Uhi) < 1. The task set τ is schedulable by EDF under correctness criterion CC-3
on a single preemptive processor if and only if

∀t ∈ {0, 1, 2, . . . , ⌊B⌋}, ∀s ∈ S(t) :
∑
τi∈τ

dbfi(t, s) ≤ t.

Proof. We separately prove the necessity and sufficiency of the schedulability test.

Test fails ⇒ τ is unschedulable: Assume there exists t ∈ {1, 2, . . . , ⌊B⌋} and s ∈ S(t) such
that

∑
τi∈τ dbfi(t, s) > t. Let τ release jobs in an interval of length t+ ϵ, for some 0 < ϵ < 1,

such that all lo-criticality tasks release a job at the start of the interval and then subsequent
jobs as early as possible. Let hi-criticality tasks instead release jobs such that one job has a
deadline at the end of the interval, and previous jobs are released as late as possible in the
interval.

By definition of S(t), at least one hi-criticality task must then release a job exactly s+ ϵ

time units into the interval. Let that job be the first to signal hi-criticality behavior, and let
all other jobs require their largest allowed execution time.

Any hi-criticality task τi then releases ψi(t+ ϵ) jobs with both release times and deadlines
within the interval, of which ψi(t+ ϵ− (s+ ϵ)) are released at or after the time point where
hi-criticality behavior is signaled, for a total execution time requirement of

ψi(t+ ϵ) × Ci(lo) + ψi(t+ ϵ− (s+ ϵ)) × (Ci(hi)−Ci(lo))
= ψi(t) × Ci(lo) + ψi(t− s) × (Ci(hi)−Ci(lo))
= dbfi(t, s),

where ψi(t+ ϵ) = ψ(t) since t is integer and ψi only changes value at integers.
Similarly, any lo-criticality task τi will release ψi(t+ ϵ) jobs in total, of which at most

⌈(s+ ϵ)/Ti⌉ are released before the time point where hi-criticality behavior is signaled, for a

ECRTS 2021

9:16 Graceful Degradation in Semi-Clairvoyant Scheduling

total execution time requirement of

ψi(t+ ϵ) × Ci(hi) + min
(
ψi(t+ ϵ),

⌈s+ ϵ

Ti

⌉)
× (Ci(lo)−Ci(hi))

= ψi(t) × Ci(hi) + min
(
ψi(t),

⌊ s
Ti

⌋
+ 1

)
× (Ci(lo)−Ci(hi))

= dbfi(t, s),

where ⌈(s+ ϵ)/Ti⌉ = ⌊(s+ ϵ)/Ti⌋ + 1 = ⌊s/Ti⌋ + 1 since both s and Ti are integer.
The total workload of jobs with both release time and deadline within the interval

of size t + ϵ is then
∑

τi∈τ dbfi(t, s). Since
∑

τi∈τ dbfi(t, s) is integer-valued and since∑
τi∈τ dbfi(t, s) > t by assumption, we must also have

∑
τi∈τ dbfi(t, s) > t+ ϵ. It follows

that the total workload that must be scheduled inside the interval is greater than the length
of the interval, hence it is impossible to meet all deadlines on a single processor.

τ is unschedulable ⇒ test fails: Assume that τ is unschedulable by EDF and let t2 be the
time point of a deadline miss. Let t1 be the earliest time point before t2 such that there
exists at least one active job with deadline no later than t2 at any time in the interval [t1, t2].
By definition of t1, there are no active jobs in [t1, t2] with deadline latest at t2 that are also
released earlier than t1. It follows that EDF schedules jobs that both arrive no earlier than
t1 and have deadline no later than t2 during the entirety of [t1, t2]. Still one of those jobs
misses its deadline at t2, so the total workload of those jobs must exceed t2 − t1.

We let t = t2 − t1 and consider three cases.

hi-criticality behavior is signaled before t1: The total workload of all jobs scheduled by
EDF in [t1, t2] can be no more than

∑
τi∈τ ψi(t) × Ci(hi). By Eq. 13 we have∑

τi∈τ

ψi(t) × Ci(hi) ≤
∑
τi∈τ

dbfi(t, 0).

hi-criticality behavior has not been signaled by t2: The total workload of all jobs scheduled
by EDF in [t1, t2] can be no more than

∑
τi∈τ ψi(t) × Ci(lo). Using ψi(t) ≤ ⌊t/Ti⌋ + 1

and Eq. 13 we get∑
τi∈τ

ψi(t) × Ci(lo) =
∑
τi∈τ

dbfi(t, t).

hi-criticality behavior is first signaled in [t1, t2]: Let tsignal be the time point where
hi-criticality behavior is first signaled. The total workload of all jobs scheduled by EDF
in [t1, t2] can be no more than

∑
τi∈τ dbfi(t, tsignal − t1).

In all three cases, the total workload of the jobs scheduled by EDF in [t1, t2] can be no
more than

∑
τi∈τ dbfi(t, s) for some s ∈ [0, t]. Since the total workload of those jobs must

exceed t, we then have
∑

τi∈τ dbfi(t, s) > t for some s ∈ [0, t].
By Lemma 6, there must then exist t′ ∈ {0, 1, . . . , ⌊B⌋} and s′ ∈ S(t′) such that∑

τi∈τ dbfi(t′, s′) > t′. This demonstrates the sufficiency of the test and concludes the
proof. ◀

▶ Corollary 8. The schedulability test described in Theorem 7 can be implemented to run in
pseudo-polynomial time if max(Ulo, Uhi) ≤ c for some constant c < 1.

Proof. If max(Ulo, Uhi) ≤ c, then B is clearly pseudo-polynomially bounded. It follows that
{0, 1, . . . , ⌊B⌋} is of pseudo-polynomial size, and so is S(t) for any t ∈ {0, 1, . . . , ⌊B⌋}. ◀

S. Baruah and P. Ekberg 9:17

6 Comparison and Recommendations

The results in Sections 3–5 above establish that CC-3 is the most tractable of our three
correctness criteria both from the run-time complexity perspective and in the sense that we
have the most positive results regarding sporadic task systems about this criterion. We point
out that correctness criterion CC-3 is a stronger constraint than correctness criterion CC-2 –
any schedule for an instance that satisfies correctness criterion CC-3 also satisfies correctness
criterion CC-2 for that instance (this follows from the observation that CC-3 guarantees any
lo-criticality job spanning a mode-transition instant its larger WCET, while correctness
criterion CC-2 only requires this for those lo-criticality jobs that have already begun execution
prior to the mode transition). In a similar vein correctness criterion CC-2 is a stronger
constraint than correctness criterion CC-1 since CC-2 guarantees some lo-criticality jobs
spanning a mode-transition instant (those that began execution prior to the transition) their
larger WCET, while correctness criterion CC-1 does not require this for any lo-criticality
job. It therefore follows that a schedule for an instance satisfying correctness criterion CC-3
also satisfies correctness criteria CC-2 and CC-1: correctness criterion CC-3 is a conservative
over-approximation of correctness criteria CC-2 and CC-1. Based on this observation and
the additional tractability of CC-3 compared to CC-1 and CC-2, we recommend that when
graceful degradation is the goal correctness criterion CC-3 be considered the default
correctness criterion for semi-clairvoyant scheduling, and furthermore that EDF be
considered the default preferred run-time semi-clairvoyant scheduling algorithm.

Quantifying the cost. We now quantify the cost of our recommendation: how much faster
does a processor need to be in order to ensure that an instance that can be correctly scheduled
under either of the weaker correctness criteria CC-1 or CC-2 can also be correctly scheduled
under the more conservative correctness criterion CC-3? We formalize this metric as the
criteria loss:

▶ Definition 9 (Criteria Loss). For two different correctness criteria CC-x and CC-y for
x, y ∈ {1, 2, 3}, (x ̸= y), the criteria loss of CC-x compared to CC-y is the smallest number ℓ
such that any collection of jobs J that is schedulable under correctness criterion CC-y on
a unit-speed processor is also schedulable on a speed-ℓ processor under correctness criterion
CC-x.

We start with an upper bound for the criteria loss of CC-3 compared to the others.

▶ Lemma 10. The criteria loss of CC-3 compared to CC-1 or CC-2 is no greater than 2.

Proof. First, we note that a necessary condition for schedulability of a collection of jobs J
with any algorithm under CC-1 or CC-2 is that it should meet all deadlines in the two cases
where either (i) every job Ji ∈ J executes for exactly ci(lo) time units (i.e., hi-criticality
mode is never signaled) or (ii) every job Ji ∈ J executes for exactly ci(hi) time units (i.e.,
hi-criticality mode is signaled at the first hi-criticality job arrival, and each lo-criticality job
completes upon having executed for exactly ci(hi) time units, even if it would be allowed to
execute for ci(lo) time units).

Second, due to the sustainability of EDF [6], we note that a sufficient condition for EDF
to successfully schedule J under CC-3 is that it could meet all deadlines if (iii) every job
Ji ∈ J executes for exactly max(ci(lo), ci(hi)) time units. It follows directly from standard
analysis of EDF on non-mixed criticality jobs that it will succeed with (iii) on a speed-2
processor if any algorithm can succeed with both (i) and (ii) on a unit-speed processor. ◀

ECRTS 2021

9:18 Graceful Degradation in Semi-Clairvoyant Scheduling

Next we see that this bound is tight compared to CC-2.

▶ Lemma 11. The criteria loss of CC-3 compared to CC-2 is at least 2.

Proof. Consider the collection J = {J1 = (lo, 0, [k − 1, 0], k), J2 = (hi, 1, [0, k − 1], k)} of
two jobs. Clearly J is schedulable under CC-2: simply idle the processor until the arrival of
J2 at time instant 1, after which there will be at most (k − 1) work to be done no matter if
J2 signals hi-criticality behavior or not.

Under CC-3, J1, having arrived prior to J2, can require up to c1(lo) = k − 1 units of
execution. If J2 then signals hi-criticality behavior, the total workload over [0, k] may be as
high as 2(k − 1). As k → ∞, we see that this would require a speed-2 processor. ◀

Lemmas 10 and 11 together yield the following theorem which completely characterizes the
worst-case penalty of over-approximating CC-1 or CC-2 by CC-3.

▶ Theorem 12. The criteria loss of CC-3 compared to either CC-1 or CC-2 is exactly 2.

Proof. From Lemma 10 we know that the criteria loss of CC-3 compared to CC-1 or CC-2
is at most 2. From Lemma 11 we know that the criteria loss of CC-3 compared to CC-2 is at
least 2. Since CC-2 is a conservative over-approximation of CC-1, the criteria loss of CC-3
compared to CC-1 must be at least 2 as well. ◀

For the sake of completeness we also present bounds on the criteria loss of CC-2 compared
to CC-1.

▶ Lemma 13. The criteria loss of CC-2 compared to CC-1 is in [φ, 2], where φ is the golden
ratio φ = (1 +

√
5)/2 ≈ 1.618.

Proof. First, observe that the upper bound of 2 clearly holds here as well. For simplicity of
presentation in deriving the lower bound we use real-valued job parameters in this proof,
with the observation that we can approximate those to an arbitrary level of precision with
rational parameters. Rational parameters can in turn be changed to integer parameters by
scaling everything with the least common multiple of the denominators without affecting the
schedulability of the jobs.

Let x = (3 −
√

5)/2 and consider the collection of jobs J = {J1, J2}, where

J1 = (lo, 0, [1, 0], 1),
J2 = (hi, x, [0, 1 − x], 1).

Note that J is schedulable under CC-1 since we can simply schedule J1 in [0, x) and then see
whether J2 signals hi-criticality behavior when it arrives. If J2 does not signal hi-criticality
behavior we continue executing J1 until it finishes, otherwise we execute J2 until it finishes
since J1 already has received more than c1(hi) execution time.

Under CC-2 we must make the choice of whether to start executing J1 before the arrival
of J2. If we do start executing J1 immediately and J2 later signals hi-criticality behavior,
then we need to finish a total of 1 + (1 − x) units of work over [0, 1], and we need a speed-ℓ
processor where

ℓ ≥ 2 − x = 1 +
√

5
2 = φ.

S. Baruah and P. Ekberg 9:19

If we instead decide to idle the processor until the arrival of J2 and J2 arrives without
signaling hi-criticality behavior, then we need to finish J1’s entire execution time c1(lo) = 1
in [x, 1]. For this we need a speed-ℓ processor where

ℓ ≥ 1
1 − x

= 2√
5 − 1

= 1 +
√

5
2 = φ,

which completes the proof. ◀

7 Context and Conclusions

Since the mixed-criticality model was introduced by Vestal [30], several extensions and
variations have been proposed. Criticism of the original model has made it clear that some
form of graceful degradation often is necessary for mixed-criticality scheduling to be used
in practice. In this paper we have combined graceful degradation with semi-clairvoyant
scheduling, an interesting new take on how and when information becomes available at
runtime to a scheduler, and studied this under three different correctness criteria that we
labeled CC-1, CC-2 and CC-3. Although the differences between the correctness criteria
appear minor – they differ only in the treatment of lo-criticality jobs that are active when
a hi-criticality job signals hi-criticality behavior – we have seen that they require wildly
differing solutions. The difference in the complexity of the associated schedulability problems
is also stark: schedulability for a collection of jobs is solvable in O(n2 log n) time for CC-3,
but is NP-complete in the strong sense for CC-2.

There is no single correctness criterion which is the correct one in all situations: each is a
reasonable model for some types of systems. However, as CC-3 is a safe over-approximation
of the other criteria it looks particularly useful as a default model. This is especially true
considering that it leads to easy scheduling (plain EDF is an optimal scheduler) and that
it is easy to analyze (in polynomial time for jobs, in pseudo-polynomial time for arbitrary
deadline tasks if utilization is bounded).

While we have studied these problems with the added generalization of graceful degrada-
tion, it should be noted that the correctness criteria – and the results of this paper – are
equally valid without graceful degradation. This is represented by simply having ci(hi) = 0
or Ci(hi) = 0 for all lo-criticality jobs or tasks.

We also note that the correctness criteria can apply equally to systems without semi-
clairvoyance: in ordinary (non-clairvoyant) mixed-criticality scheduling we can still have
different correctness criteria for the lo-criticality jobs that are active when it is first discovered
that the system is exhibiting hi-criticality behavior (i.e., when a job has executed for its
lo-criticality WCET without signaling completion). In such systems, CC-1 would correspond
to the standard semantics as studied in most previous work, but it is not necessarily the
most appropriate one, or the one that is easiest to work with.

References
1 Kunal Agrawal, Sanjoy Baruah, and Alan Burns. Semi-clairvoyance in mixed-criticality

scheduling. In Proceedings of the Real-Time Systems Symposium (RTSS), pages 458–468,
December 2019. doi:10.1109/RTSS46320.2019.00047.

2 S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic tasks
on one processor. In Proceedings of the 11th Real-Time Systems Symposium, pages 182–190,
Orlando, Florida, 1990. IEEE Computer Society Press. doi:10.1109/REAL.1990.128746.

ECRTS 2021

https://doi.org/10.1109/RTSS46320.2019.00047
https://doi.org/10.1109/REAL.1990.128746

9:20 Graceful Degradation in Semi-Clairvoyant Scheduling

3 Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for
Real-Time Systems. Springer Publishing Company, Incorporated, 2015. doi:10.1007/
978-3-319-08696-5.

4 Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 2012. doi:10.1109/TC.2011.142.

5 Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan Li, Alberto Marchetti-
Spaccamela, Suzanne Van Der Ster, and Leen Stougie. Preemptive uniprocessor scheduling
of mixed-criticality sporadic task systems. Journal of the ACM, 62(2):14:1–14:33, 2015.
doi:10.1145/2699435.

6 Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis. In Proceedings of the IEEE
Real-time Systems Symposium, pages 159–168, Rio de Janeiro, December 2006. IEEE Computer
Society Press. doi:10.1109/RTSS.2006.47.

7 Sanjoy Baruah, Alan Burns, and Robert Davis. Response-time analysis for mixed criticality
systems. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), Vienna, Austria,
2011. IEEE Computer Society Press. doi:10.1109/RTSS.2011.12.

8 Sanjoy Baruah, Alan Burns, and Zhishan Guo. Scheduling mixed-criticality systems to
guarantee some service under all non-erroneous behaviors. In Proceedings of the 2016 28th
EuroMicro Conference on Real-Time Systems, ECRTS ’16, Toulouse (France), 2016. IEEE
Computer Society Press. doi:10.1109/ECRTS.2016.12.

9 Sanjoy Baruah, Arvind Easwaran, and Zhishan Guo. MC-Fluid: simplified and optimally
quantified. In Real-Time Systems Symposium (RTSS), 2015 IEEE, December 2015. doi:
10.1109/RTSS.2015.38.

10 Sanjoy Baruah, Haohan Li, and Leen Stougie. Towards the design of certifiable mixed-
criticality systems. In Proceedings of the IEEE Real-Time Technology and Applications
Symposium (RTAS). IEEE, April 2010. doi:10.1109/RTAS.2010.10.

11 I. Borosh and L. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55:299–304, 1976. doi:
10.1090/S0002-9939-1976-0396605-3.

12 A. Burns and S. Baruah. Timing faults and mixed criticality systems. In Jones and Lloyd,
editors, Dependable and Historic Computing, volume LNCS 6875, pages 147–166. Springer,
2011. doi:10.1007/978-3-642-24541-1_12.

13 Alan Burns and Sanjoy Baruah. Towards a more practical model for mixed criticality systems.
In Proceedings of the International Workshop on Mixed Criticality Systems (WMC), December
2014.

14 Alan Burns and Robert Ian Davis. Schedulability analysis for adaptive mixed criticality
systems with arbitrary deadlines and semi-clairvoyance. In Proceedings of the IEEE Real-Time
Systems Symposium, 2020. doi:10.1109/RTSS49844.2020.00013.

15 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Robert I. Davis. On the
Pitfalls of Resource Augmentation Factors and Utilization Bounds in Real-Time Scheduling.
In Marko Bertogna, editor, 29th Euromicro Conference on Real-Time Systems (ECRTS
2017), volume 76 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–
9:25, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ECRTS.2017.9.

16 Lin Chen, Franziska Eberle, Nicole Megow, Kevin Schewior, and Cliff Stein. A general frame-
work for handling commitment in online throughput maximization. In Integer Programming
and Combinatorial Optimization (IPCO), pages 141–154, Cham, 2019. Springer International
Publishing.

17 Michael Dertouzos. Control robotics : the procedural control of physical processors. In
Proceedings of the IFIP Congress, pages 807–813, 1974.

https://doi.org/10.1007/978-3-319-08696-5
https://doi.org/10.1007/978-3-319-08696-5
https://doi.org/10.1109/TC.2011.142
https://doi.org/10.1145/2699435
https://doi.org/10.1109/RTSS.2006.47
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/ECRTS.2016.12
https://doi.org/10.1109/RTSS.2015.38
https://doi.org/10.1109/RTSS.2015.38
https://doi.org/10.1109/RTAS.2010.10
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1090/S0002-9939-1976-0396605-3
https://doi.org/10.1007/978-3-642-24541-1_12
https://doi.org/10.1109/RTSS49844.2020.00013
https://doi.org/10.4230/LIPIcs.ECRTS.2017.9
https://doi.org/10.4230/LIPIcs.ECRTS.2017.9

S. Baruah and P. Ekberg 9:21

18 Pontus Ekberg and Wang Yi. Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-Time Systems, 50(1):48–86, 2014. doi:10.1007/
s11241-013-9187-z.

19 Rolf Ernst and Marco Di Natale. Mixed criticality systems - A history of misconceptions?
IEEE Design & Test, 33(5):65–74, 2016. doi:10.1109/MDAT.2016.2594790.

20 Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. How realistic is the
mixed-criticality real-time system model? In Proceedings of the 23rd International Conference
on Real Time and Networks Systems, RTNS ’15, pages 139–148, New York, NY, USA, 2015.
ACM. doi:10.1145/2834848.2834869.

21 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA, 1979.

22 G. Giannopoulou, P Huang, R Ahmed, D Bartolini, and L Thiele. Isolation scheduling on
multicores: model and scheduling approaches. Real-Time Systems: The International Journal
of Time-Critical Computing, 53:614–667, 2017. doi:10.1007/s11241-017-9277-4.

23 Xiaozhe Gu and Arvind Easwaran. Dynamic budget management with service guarantees for
mixed-criticality systems. In 2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto,
Portugal, November 29 - December 2, 2016, pages 47–56, 2016. doi:10.1109/RTSS.2016.014.

24 Z. Guo, K. Yang, S. Vaidhun, S. Arefin, S. K. Das, and H. Xiong. Uniprocessor mixed-criticality
scheduling with graceful degradation by completion rate. In 2018 IEEE Real-Time Systems
Symposium (RTSS), pages 373–383, 2018. doi:10.1109/RTSS.2018.00052.

25 B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. In 36th Annual
Symposium on Foundations of Computer Science (FOCS’95), pages 214–223, Los Alamitos,
1995. IEEE Computer Society Press. doi:10.1109/SFCS.1995.492478.

26 Jaewoo Lee, Kieu-My Phan, Xiaozhe Gu, Jiyeon Lee, A. Easwaran, Insik Shin, and Insup
Lee. MC-Fluid: Fluid model-based mixed-criticality scheduling on multiprocessors. In
Real-Time Systems Symposium (RTSS), 2014 IEEE, pages 41–52, December 2014. doi:
10.1109/RTSS.2014.32.

27 C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

28 A. Mok. Task management techniques for enforcing ED scheduling on a periodic task set. In
Proceedings of the 5th IEEE Workshop on Real-Time Software and Operating Systems, pages
42–46, Washington D.C., May 1988.

29 Dario Socci, Petro Poplavko, Saddek Bensalem, and Marius Bozga. Mixed critical earliest
deadline first. In Proceedings of the 2013 25th Euromicro Conference on Real-Time Systems,
ECRTS ’13, Paris (France), 2013. IEEE Computer Society Press. doi:10.1109/ECRTS.2013.
20.

30 Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance. In Proceedings of the Real-Time Systems Symposium (RTSS), pages
239–243, Tucson, AZ, December 2007. IEEE Computer Society Press. doi:10.1109/RTSS.
2007.47.

31 Reinhard Wilhelm. Mixed feelings about mixed criticality (invited paper). In Florian Brandner,
editor, Proceedings of the 18th International Workshop on Worst-Case Execution Time Analysis,
pages 1:1–1:9. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.
WCET.2018.1.

ECRTS 2021

https://doi.org/10.1007/s11241-013-9187-z
https://doi.org/10.1007/s11241-013-9187-z
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.1145/2834848.2834869
https://doi.org/10.1007/s11241-017-9277-4
https://doi.org/10.1109/RTSS.2016.014
https://doi.org/10.1109/RTSS.2018.00052
https://doi.org/10.1109/SFCS.1995.492478
https://doi.org/10.1109/RTSS.2014.32
https://doi.org/10.1109/RTSS.2014.32
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/ECRTS.2013.20
https://doi.org/10.1109/ECRTS.2013.20
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.4230/OASIcs.WCET.2018.1
https://doi.org/10.4230/OASIcs.WCET.2018.1

Hard Real-Time Stationary GANG-Scheduling
Niklas Ueter #

Department of Computer Science, TU Dortmund University, Germany

Mario Günzel #

Department of Computer Science, TU Dortmund University, Germany

Georg von der Brüggen #

Max Planck Institute for Software Systems, Kaiserslautern, Germany

Jian-Jia Chen #

Department of Computer Science, TU Dortmund University, Germany

Abstract
The scheduling of parallel real-time tasks enables the efficient utilization of modern multiprocessor
platforms for systems with real-time constrains. In this situation, the gang task model, in which
each parallel sub-job has to be executed simultaneously, has shown significant performance benefits
due to reduced context switches and more efficient intra-task synchronization.

In this paper, we provide the first schedulability analysis for sporadic constrained-deadline
gang task systems and propose a novel stationary gang scheduling algorithm. We show that
the schedulability problem of gang task sets can be reduced to the uniprocessor self-suspension
schedulability problem. Furthermore, we provide a class of partitioning algorithms to find a stationary
gang assignment and show that it bounds the worst-case interference of each task. To demonstrate the
effectiveness of our proposed approach, we evaluate it for implicit-deadline systems using randomized
task sets under different settings, showing that our approach outperforms the state-of-the-art.

2012 ACM Subject Classification Computing methodologies → Concurrent algorithms; Computer
systems organization → Embedded and cyber-physical systems; Computer systems organization →
Real-time operating systems

Keywords and phrases Real-Time Systems, Gang Scheduling, Parallel Computing, Scheduling
Algorithms

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.10

Funding This work has been supported by Deutsche Forschungsgemeinschaft (DFG), as part of
Sus-Aware (Project no. 398602212). This result is part of two projects (PropRT and TOROS) that
have received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreements No. 865170 and No. 803111).

1 Introduction

In hard real-time systems, it is mandatory to verify the temporal behavior of the application,
e.g., the compliance to deadline constraints, by means of timing analysis. Due to the
high computational demands of modern real-time systems, multiprocessor platforms are
increasingly utilized since they potentially allow parallel tasks to be executed efficiently.
In parallel task scheduling, inter- and intra-task parallelism has to be considered in the
timing analysis, where inter-task parallelism refers to the co-scheduling of different tasks
and intra-task parallelism refers to parallel execution of a single task. In the context of task
models for parallel computing, fork/join models [26], synchronous parallel task models, and
DAG (directed-acyclic graph) based task models [4, 5, 10,11,18,19,28] have been proposed
and analyzed with respect to real-time constraints.

© Niklas Ueter, Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 10; pp. 10:1–10:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georg.von-der-brueggen@tu-dortmund.de
https://orcid.org/0000-0002-6722-4805
mailto:mario.guenzel@tu-dortmund.de
https://orcid.org/0000-0001-7575-7014
mailto:vdb@mpi-sws.org
https://orcid.org/0000-0002-8137-3612
mailto:jian-jia.chen@cs.uni-dortmund.de
https://orcid.org/0000-0001-8114-9760
https://doi.org/10.4230/LIPIcs.ECRTS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Hard Real-Time Stationary Gang-Scheduling

The scheduling algorithms for parallel tasks can be classified into three models: rigid,
moldable, and malleable tasks. A parallel task is called rigid if the number of processors
assigned to it is specified externally to the scheduler a priori and does not change throughout
its execution; moldable if the number of processors assigned to it is determined by the scheduler
and does not change throughout its execution; and malleable if the number of processors
assigned to it can be changed by the scheduler during its execution. Such classifications can
be found in the literature of multiprocessor scheduling and real-time systems such as [20].

In the gang task model, a set of threads is grouped together into a so called gang with
the additional constraint that all threads of a gang must be co-scheduled at the same time
on available processors. It has been demonstrated that gang-based parallel computing can
improve the performance in many cases [17, 23]. Even more, Wasly et al. [32] provided
experimental evidence of negative effects of non-gang scheduling with respect to the number
of context-switches and increased thread execution time due to blocking when threads are
not executed together. Moreover, the authors argue that by scheduling all threads of a task
in-parallel, the communication time can be easily accounted for, given that the inter-processor
interconnect provides real-time bounds. Due to its practicability, the gang model is supported
by many parallel computing standards, e.g., MPI, OpenMP, Open ACC, or GPU computing.

One advantage of the rigid gang model is that the interference caused by shared resource
and intra-task parallelism can potentially be quantified better, thus reducing the worst-
case execution time of the gang. Within a gang, co-scheduling of memory accesses and
computation is possible, which can also potentially reduce the worst-case execution time of
the gang. Specifically, one strict view of this is the RT-Gang model by Ali and Yun [1], in
which all processors are allocated to a gang at the same time.

The computational complexity of the rigid gang scheduling problem was studied back
in 1980s. Specifically, it has been shown that finding the optimal schedule for the rigid
gang scheduling problem is NP-hard in the strong sense even when all the tasks have the
same period and the same deadline [25]. Even simpler cases, like three machines [9] or unit
execution time per task [22] are also shown to be NP-hard in the strong sense.

To schedule a set of ordinary periodic [27] or sporadic [29] real-time tasks on a multi-
processor platform, three paradigms have been widely adopted: partitioned, global, and
semi-partitioned multiprocessor scheduling. A comprehensive survey can be found in [15].
For the rigid gang scheduling problem, the three scheduling paradigms are slightly modified
and called stationary, global, and semi-stationary (rigid) gang scheduling. The stationary
gang scheduling paradigm statically assigns a gang task to a set of processors, in which
the cardinality of the set is equal to the gang size of the task. After this assignment is
done, a gang task is only eligible to be executed on stationary processors assigned to it.
The semi-stationary scheduling paradigm allows a gang task to execute on any subset of
processors within a given set of processors that is larger than the gang size itself. That is, it
allows a job of the gang task to migrate from one subset of processors to another sub set
of the given processors at any time. The global rigid gang scheduler allows a gang task to
migrate to any available set of processors as long as the gang size constraints are met.

Note that when the gang size is 1 for each task (i.e., tasks are not executed in parallel
and are ordinary periodic or sporadic tasks), the stationary, global, and semi-stationary
gang scheduling paradigms correspond to the partitioned, global, and semi-partitioned
multiprocessor scheduling paradigms, respectively.

In real-time systems, rigid gang scheduling has been mostly studied under global earliest-
deadline-first (EDF) scheduling, in which the set of processors used by a gang task is not fixed
and can be dynamically relocated at runtime, e.g., [16,24,30]. Specifically, in [24], the authors

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:3

extended Baruah’s [3] multiprocessor global EDF analysis for ordinary sporadic real-time tasks
to deal with global EDF gang scheduling, which has been disproved by Richard et al. [30].
The only valid analysis for global EDF gang scheduling is from Dong and Liu [16] and
restricted to implicit-deadline sporadic real-time rigid gang task systems. They provide two
utilization-based analyses, one optimized and one approximated.

Goossens and Richard [20] studied fixed-priority scheduling for the rigid gang scheduling
problem for implicit-deadline periodic real-time task systems. They presented two algorithms,
one based on linear programming and another based on a heuristic algorithm, providing
exact and sufficient schedulability tests. Moreover algorithms based on deadline partitioning
(DP-Fair) for periodic gang systems have been proposed. However the many preemptions of
DP-Fair make this algorithm impractical and the complexity of the proposed algorithms is
high especially for a large number of processors. The authors themselves discuss the problems
to extend their algorithms to sporadic job arrival sequences due to its non-determinism.

For classical multiprocessor scheduling, is has been recently shown that global static-
priority scheduling [31] and global EDF as well as global FIFO scheduling [8] are dominated by
partitioned scheduling under state-of-the-art efficient sufficient schedulability tests, e.g., [6,21].
The main reason is due to the inherited pessimism in those tests, which all stem from the work
by Baker [2]. Hence, they all use carry-in interference to compensate the lack of a critical
instant theorem and divide the higher-priority interference by the number of processors, i.e.,
they have a multiplicative factor of 1/M in the corresponding analyses. We note that the
factor 1/M also appears in the schedulability tests in [16].

Contributions: In this paper we explore stationary gang scheduling for a set of sporadic real-
time tasks with constrained deadlines (i.e., the relative deadline of a task is no more than its
minimum inter-arrival time) on a homogeneous symmetric multiprocessor system consisting
of M processors. We develop the corresponding schedulability analyses for fixed-priority
scheduling and a heuristic algorithm for stationary gang assignments.

The contributions of this paper are as follows:

We present schedulability tests for stationary gang assignments for constrained-deadline
sporadic real-time tasks in Section 3. To the best of our knowledge, this is the
first schedulability analysis that is capable of verifying the schedulability of sporadic
constrained-deadline gang task systems, whilst the analysis in [16] is limited to implicit-
deadline sporadic real-time rigid gang task systems and the algorithm in [20] is limited to
implicit-deadline periodic tasks. Our success is due to the observation of self-suspension
behavior in Section 3.2 and the recent improvement of optimizations and analyses for
dynamic self-suspension task behavior [12,13].

We propose a class of partitioning algorithms based on the concept of consecutive
stationary gang assignment in Section 4. Furthermore, we show that consecutive stationary
gang assigments yield beneficial theoretical properties that can be used to upper-bound
the worst-case interference suffered by any task according to the ratio of gang sizes of
two tasks.

In Section 5, we compare our algorithm to the state-of-the-art schedulability analysis for
global EDF by Dong and Liu [16] by evaluation synthetically generated sporadic real-time
task systems with implicit deadlines. The evaluation results show that our algorithm
outperforms the algorithm by Dong and Liu [16]. Furthermore, we conducted evaluations
for constrained-deadline task systems and observe reasonable schedulability.

ECRTS 2021

10:4 Hard Real-Time Stationary Gang-Scheduling

2 System Model and Stationary GANG Scheduling

In this paper we consider a symmetric multiprocessor (SMP) system composed of M identical
processors and analyze the response-times of a gang task set with constrained deadlines using
our proposed stationary gang scheduler.

We consider a set T = {τ0, τ1, ..., τn−1} of n constrained-deadline gang tasks to be
scheduled on a set P = {P0, P1, . . . , PM−1} of M identical processors using fixed-priority
rigid gang schedulers under the additional constraint of stationary gang assignments. Each
task has a fixed-priority that is inherited by each instantiated job. We use πi to denote the
priority of task τi and say τj has higher priority than τi if and only if πj > πi. We assume
that no two tasks have the same priority, i.e., there are sufficient priority levels. Moreover,
each task is assigned and restricted to a subset of processor, namely its stationary gang
assignment, to execute on. This subset does not change in time, i.e., it is rigid. Throughout
this section, we will assume that a stationary gang assignment is given for each task and
revisit the problem to generate provably good stationary assignments in Section 4.

▶ Definition 1. A sporadic constrained-deadline gang task τi is defined by (Ci, Ei, Di, Ti) and
releases an infinite number of task instances, called jobs. Each job of a task releases a gang
of Ei sub-jobs with worst-case execution time Ci, that have to be executed in parallel. That
is, either all Ei sub-jobs are scheduled simultaneously or none is. Hence, a total workload of
Ei ·Ci has to be executed in the time interval between job release and deadline. The period Ti

denotes the minimal inter-arrival time of two jobs of τi and each task has a relative deadline
Di ≤ Ti. Moreover, the utilization of a gang task is given by Ui = Ei · Ci/Ti.

This means that when a job of τi is released at time t, the subsequent job of τi must be
released not earlier than at time t + Ti. Furthermore, to fulfill its timing constraints, this job
must be able to finish its execution not later than its absolute deadline at time t + Di. The
response time of a job of τi is its finishing time minus its release time, and the worst-case
response time Ri of task τi under a given scheduling policy is the maximum response time of
any job of τi for any job arrival sequence possible according to the parameters of tasks in T.

We now define stationary gang assignment and the related schedules.

▶ Definition 2. A stationary gang assignment Ai ⊆ {P0, P1, . . . , PM−1} of a gang task τi is
a subset of processors of size |Ai|= Ei ≤M , that are assigned to execute jobs of task τi.

In order to formalize the properties of a fixed-priority stationary gang scheduler, we first
formalize the definition of an arbitrary schedule.

▶ Definition 3. A schedule σPq
: R 7→ T∪ {⊥} for a processor Pq with q ∈ {0, . . . , M − 1} is

a mapping from the continuous time domain to the task that is executed at time t or to ⊥ if
the processor idles, i.e.,

σPq : R 7→ T ∪ {⊥} , σPq (t) =
{

τi if task τi is executed on Pq at time t

⊥ if Pq is idle at time t
(1)

Despite that a realistic schedule does not perform context switch arbitrarily, e.g., due to
granularity determined by the system tick duration, our analysis can in general be applied in
the continuous time domain. A stationary gang schedule is described as follows.

▶ Definition 4. A schedule for a multiprocessor system satisfies the stationary gang property
if for each task τi and its stationary gang assignment Ai, the following property holds:∧

Pq∈Ai

(σPq
(t) = τi) if and only if τi is scheduled at time t (2)

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:5

Whenever we argue about schedules that satisfy the stationary gang property, we for
example write σAi

(t) = τi, if task τi is scheduled on all the processors in Pq ∈ Ai at time t.
Throughout this paper, we say that a gang task τi is active at time t if a job of τi is released
and not yet finished. The stationary gang scheduler then schedules all active tasks τi that
are the highest-priority tasks with respect to all other tasks that use processors in Ai.

▶ Example 5. Consider the stationary gang schedule illustrated in Figure 1 with two tasks τk

and τi with the stationary gang assignments Ak = {P2, P3} and Ai = {P1, P2, P3}. Moreover,
let πk < πi. Therefore τi that releases a job at time 1 preempts task τk. Whenever τi is
preempted on Ai, τk is the highest-priority task amongst all tasks that compete for processors
P2 and P3 and is thus scheduled. ◀

3 Schedulability Test for Stationary Gang Scheduling

This section presents the schedulability test for stationary gang scheduling, provided that
each task τi has a predefined stationary gang assignment Ai. How to achieve good stationary
gang assignments is discussed in Section 4. Throughout this section, our analysis focuses
on the analysis to validate whether task τk can meet its deadline constraint, provided that
the tasks with higher priorities than τk are validated beforehand. Hence, the validation of
schedulability iterates from the highest-priority task to the lowest-priority task in T.

Towards this, we present methods to analyze the contention between a higher-priority
task τi and the task τk under analysis in Section 3.1. Specifically, our result shows that
τi can be considered as a self-suspending task under certain circumstances. Due to this
observation that some higher-priority tasks can be transformed into self-suspending tasks,
we employ existing suspension-aware schedulability analysis and present our schedulability
test for stationary gang scheduling in Section 3.2.

3.1 Contention Analysis
The preemptive fixed-priority stationary gang scheduler always schedules the active task τk

that has the highest priority with respect to all other tasks that use processors in Ak.

▶ Definition 6. The contention domain δ(Ak) of a set of processors Ak is defined as

δ(Ak) := {τℓ ∈ T |Ak ∩Aℓ ̸= ∅} (3)

Based on this behavior, we can formalize the condition for a higher-priority task τi to be
able to interfere with a task τk (πi > πk) as follows

τi interferes with τk ⇐⇒ τi ∈ δ(Ak) (4)

This is simply due to the fact that a task τi is able to preempt another task τk if and
only if it starts to be executed on a processor Pq on which τk is assigned. In such a case,
Pq ∈ Ak and Pq ∈ Ai and in conclusion Pq ∈ Ak ∩Ai, i.e., τi ∈ δ(Ak).

As a consequence, the schedulability of gang task τk can be reduced to the schedulability of
a single job with worst-case execution time Ck that is subjected to the maximum interference
by jobs of tasks in δ(Ak). In the remainder of this subsection, we show that the interfering
behavior of task τi in δ(Ak) can be over approximated by the interference behaviour of a
corresponding sequential task with dynamic self-suspension behavior, where the suspension-
time depends on the stationary gang assignments of the interfering tasks.

ECRTS 2021

10:6 Hard Real-Time Stationary Gang-Scheduling

0 1 2 3 4 5 6
P1

τi τi τi τi

0 1 2 3 4 5 6
P2

τk τi τi τi τi

0 1 2 3 4 5 6
P3

τk τi τi τi τi

Figure 1 An illustration of the suspension behavior of task τk from the point of view of the
task τi. The gray boxes denote interference due to other higher-priority tasks on processor P1.

▶ Definition 7 (Dynamic Self-Suspension [13, 14]). A task is said to have dynamic self-
suspension behavior if an active task can transition from a ready state into a suspended state,
in which the task is exempted from the scheduling decisions, and resume into a ready state at
any time. The cumulative amount of time that an active task τi can spend in a suspended
state is upper-bounded by a parameter Si. ◀

The link between stationary gang schedules and dynamic self-suspension behavior can be
illustrated in the following example.

▶ Example 8. Assume an arbitrary fixed-priority gang schedule for two tasks τk, τi with
πk < πi and a stationary gang assignments Ak = {P2, P3} and Ai = {P1, P2, P3} as shown in
Figure 1. We analyze the execution of task τk solely from the perspective of the processors
specified in Ak, i.e., P2 and P3. Due to the arrival of the higher-priority task τi at time t = 1,
τk is preempted. However, execution on a processor not in Ak interferes with the execution
of τi. Whenever τi is preempted by some interfering tasks on P1 (denoted by the gray boxes),
τk is scheduled on its assigned processors as described in the definition of the stationary
gang scheduling paradigm. Hence, if we only analyze the execution of τk with respect to its
assigned processors, then transparent preemption of τi equates to self-suspending behavior
that needs to be accounted for in the response-time analysis of τk. ◀

In the following, we formalize and explain how these task model substitutions can be
safely obtained. Before moving into the formal proof, we present the conditions that hold for
our scheduling policy.

▶ Definition 9. A task τj is executed at time t if and only if
1. Task τj is active at time t.
2. There exists no task τℓ ∈ δ(Aj) with higher priority, i.e., πℓ > πj , such that τℓ is executed

at time t.

For further clarification, assume that we are interested in the response-time of task τk

and thus analyze the interference caused by higher-priority tasks that use some processors
in Ak. Assume that τi is active and has the highest priority among all active jobs that use

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:7

some processors in Ak at time t, but is interfered by a higher-priority task τℓ ∈ δ(Ai) (e.g.,
the grey boxes in Figure 1). From the perspective of task τk this job is self-suspended and is
resumed when the interfering task τℓ releases the processor. More specifically, we provide
the following definition.

▶ Definition 10. A task τi ∈ δ(Ak) is in a suspended state at time t with respect to a task
τk under analysis if and only if
1. Task τi is active at time t.
2. Task τi has the highest priority among all active tasks on the processors in Ak, i.e.,

πi ≥ max {πj | τj ∈ δ(Ak) active at t}
3. Task τi is not executed.

We use the following definition to collect the set of tasks that may interfere with a
higher-priority task τi ∈ δ(Ak) but not interfere with the task τk under analysis.

▶ Definition 11 (Self-Suspension Inducing Tasks). The set of tasks that can induce self-
suspending behavior of τi when analyzing task τk is denoted by

Vi,k = {τℓ ∈ δ(Ai) | τℓ /∈ δ(Ak) and πℓ > πi} (5)

We now validate that only these tasks induce self-suspending behavior for τi.

▶ Lemma 12. Suppose that task τi is in a suspended state at time t with respect to a task τk

under analysis, then at least one task in Vi,k is executed at time t.

Proof. By Definition 10, (i) τi is active at time t, (ii) πi ≥ max {πj | τj ∈ δ(Ak) active at t},
and (iii) τi is not executed. Due to Definition 9 and since (i) and (iii) hold, there exists some
task τℓ ∈ δ(Ai) with πℓ > πi that is executed at time t. It remains to show that τℓ /∈ δ(Ak).
Assume that τℓ ∈ δ(Ak), then from (ii) follows that πi > πℓ which contradicts πℓ > πi. ◀

Now, we can provide a safe upper bound of the self-suspension time if Vi,k is not empty.

▶ Theorem 13. Suppose that πi > πk and Ri ≤ Di ≤ Ti, where Ri is an upper bound on the
worst-case response time of task τi, which was already verified beforehand. The amount of
time Si,k that a job of an active task τi self-suspends with respect to τk is at most

Si,k ≤ min

Ri − Ci,
∑

τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉)
· Cj

 (6)

Proof. Suppose that a job of τi is released at time ti and finished at time at ti + ∆. By the
assumption, ∆ ≤ Ri. Let f(t) be 1 if tasks τk and τi are both active at time t and πi > πk

but task τk is executed at time t; otherwise f(t) is 0. Therefore, the amount of time that
f(t) is set to 1 is the amount of time Si,k that the job of task τi self-suspends instead of
preempting τk. Therefore, Si,k can be calculated by integrating the function f(t) from ti to
ti + ∆, i.e., Si,k =

∫ ti+∆
ti

f(t)dt.
Suppose the amount of time that the job of τi suspends during ti and ti + ∆ is > Ri−Ci

for contradiction. This implies that the job of τi has only completed ∆−Ri + Ci amount of
computation. This violates the assumption that Ri is the worst-case response time of τi.

In addition, the suspension behavior of τi is in fact induced by the tasks in Vi,k when
analyzing task τk. By Lemma 12, we know that such interference can only come from tasks
in Vi,k. Since Rj ≤ Tj for every task τj with πj > πk, we know that the amount of time that
a task τj is executed from ti to ti + ∆ is at most

(
1 +

⌈
∆
Tj

⌉
Cj

)
. This can be proved by

ECRTS 2021

10:8 Hard Real-Time Stationary Gang-Scheduling

showing that the jobs of τj that are executed in the interval [ti, ti + ∆) are (i) at most only
one job released prior to ti, and (ii) the amount of jobs that we get by releasing jobs after t1
as soon as possible.1

Summing all tasks in Vi,k together, we have

Si,k =
∑

τj∈Vi,k

(
1 +

⌈
∆
Tj

⌉
Cj

)
≤

∑
τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉
Cj

)

where the inequality is due to the assumption that ∆ ≤ Ri.
Putting these two safe conditions together, we reach the conclusion. ◀

Note that the estimation in Theorem 13 may not be precise as it counts the higher-priority
interference of τj ∈ δ(Ai) and τj ∈ δ(Ak) as the suspension time of τi as well. This is in fact
standard higher-priority interference as in uniprocessor systems.

The following corollary is a direct implication from Theorem 13.

▶ Corollary 14. If Vi,k is empty, then task τi does not have any self-suspension behavior,
i.e., Si,k = 0 when analyzing task τk.

Proof. This is because the right-hand side of Equation (6) is 0 under this condition. ◀

3.2 Schedulability Analysis
After analyzing the link between the stationary gang scheduling problem and the dynamic self-
suspension problem, we now construct a worst-case response time analysis and schedulability
analysis for task τk. We provide such a bound based on suspension-aware analyses on
uniprocessor systems.

On the basis of Theorem 13 and Corollary 14, we can safely upper-bound the interference
of task τk. We first collect the higher-priority tasks that interfere with τk in Ψk, i.e.,
Ψk = {τi | τi ∈ δ(Ak) ∧ πi > πk}. For every task in Ψk, we transform it to an equivalent
dynamic self-suspension task as follows:

▶ Definition 15. Let a sporadic gang task τi ∈ Ψk be transformed to the corresponding
self-suspending task τ sus

i = (Ci, Di, Ti, Si,k) with the same Ci, Di, and Ti as for τi, where Si,k = min
{

Ri − Ci,
∑

τj∈Vi,k

(
1 +

⌈
Ri

Tj

⌉)
· Cj

}
if Vi,k ̸= ∅

Si,k = 0 otherwise
(7)

and Vi,k is defined as in Definition 11.

The set Ψsus
k is the set of all transformed tasks, i.e., Ψsus

k = ∪τi∈Ψk
τ sus

i .

▶ Theorem 16. Suppose that all higher-priority tasks τ0, τ1, . . . τk−1 with given station-
ary gang assignments A0, A1, . . . , Ak−1 are already verified to be schedulable. A sporadic
constrained-deadline gang task τk with stationary gang assignment Ak is schedulable by the
fixed-priority stationary gang scheduling algorithm if the worst-case response time of executing
Ck time units (without suspending task τk) is at most Dk ≤ Tk under the interference of
Ψsus

k on one processor under the same priority assignment.

1 This is typically done with the concept of carry-in jobs. Since Ri ≤ Ti, there is at most one carry-in
job of τj released before ti.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:9

Proof. Suppose that a job of task τk is released at time tk and there is no other job of τk

active at time tk. From tk, the schedule σ either executes τk or higher-priority jobs on the
processors in Ak. Therefore, the job of τk is either executed or interfered by higher-priority
tasks in δ(Ak). Hence, only tasks in Ψk have interference with τk. The equivalence of the
self-suspension behavior is due to Theorem 13. Therefore, the proof is complete. ◀

We adopt the current sound state-of-the-art self-suspension aware uniprocessor schedulab-
ility analyses by Chen et al. [12] for gang-scheduling, hence the correctness follows directly
from the related proofs in [12] and Theorem 16.

▶ Corollary 17. By the statement in Theorem 16, a gang sporadic task τk is schedulable by
the stationary gang scheduling algorithm if

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

min{Ci, Si,k}+
∑

τsus
i

∈Ψsus
k

⌈
t

Ti

⌉
· Ci ≤ t (8)

▶ Corollary 18. By the statement in Theorem 16, a gang sporadic task τk is schedulable by
the stationary gang scheduling algorithm if

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

⌈
t + Ri − Ci

Ti

⌉
· Ci ≤ t (9)

▶ Corollary 19. Suppose that there are k tasks in Ψsus
k , indexed from the highest priority

to the lowest priority, i.e., τ sus
0 is the highest-priority task in Ψsus

k . By the statement in
Theorem 16, a gang sporadic task τk is schedulable by the stationary gang scheduling if there
is a vector x⃗ = (x0, x1, . . . , xk−1) with xi ∈ {0, 1} such that

∃0 < t ≤ Dk, Ck +
∑

τsus
i

∈Ψsus
k

⌈
t + Qi(x) + (1− xi)(Ri − Ci)

Ti

⌉
≤ t (10)

where Qi(x⃗) =
∑k−1

j=i Sj,k · xj.

The provided schedulability analyses in Corollary 17, Corollary 18, and Corollary 19
can be evaluated using fixed-point iteration techniques. More precisely, let Wk(t) denote
the left-hand sides of the inequalities in the above corollaries and ϵ > 0, then we verify all
test-points t0 = Wk(ϵ), t1 = Wk(t0), . . . , tn = Wk(tn−1) until convergence is reached or
tn > Dk. Due to the fact that the above equations are step-functions and can thus only change
at discontinuity points of Wk(t), the amount of test-points is at most k · Dk/mini<k{Ti}
resulting in pseudo-polynomial time-complexity. In the remainder of this paper, we only use
O(kDk) for time-complexity, since the scaling of the deadline does not change the asymptotic
complexity.

As reported in [12], neither of the schedulability analyses in Corollary 17 and Corollary 18
dominate each other analytically and are incomparable. The authors also showed that the
test in Corollary 19 dominates those in Corollary 17 (i.e., Lemma 17 in [12]) and Corollary 18
(i.e., Lemma 16 in [12]). To efficiently find a vector x⃗ for Corollary 19, they suggest to use
three vectors, one is based on a linear approximation, one sets all elements of x⃗ to 0, and
one sets the xi in x⃗ to 1 if Si,k ≤ Ci, and 0 otherwise. Specifically, in the case when the
entries in x⃗ are all 0, Equation (19) is the same as Equation (18). In our evaluations we use
Corollary 19 with the above three vectors and choose the best one, i.e., a task is determined
schedulable if it is schedulable for at least one of the three vectors.

ECRTS 2021

10:10 Hard Real-Time Stationary Gang-Scheduling

4 GANG Assignment Algorithm

Since finding optimal schedules for the rigid gang scheduling problem is NP-hard in the
strong sense even in the simplest settings, we seek for approximation algorithms to solve the
gang assignment problem.

In fixed-priority stationary gang scheduling, next to priority assignments, the gang
assignments determine the schedulability of the task set T. A key problem in finding
stationary gang assignments is the dependency of gang assignments and the resulting
interference behaviour of higher-priority tasks. In general, each task τk under consideration
can have

(
M
Ek

)
many distinct gang assignments in terms of gang to processor mappings.

However, for any given gang assignment of all higher-priority tasks, there may exist subsets
of these distinct gang assignments, in which the interference of all higher-priority tasks of
τk is equivalent. A trivial example is the gang assignment of the first task, in which all
gang assignments are equivalent, since there is no interfering tasks. In that case, all distinct
gang assignments belong to the same equivalence class and any representative can be chosen
for the gang assignment. However, finding all equivalence classes results in an exhaustive
exploration of all possible solutions, which is computationally expensive especially for larger
task sets.

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

Figure 2 Consecutive stationary gang assignments A0
k, A1

k, A2
k, A3

k of a gang task τk with Ek = 3
on a system using 4 processors are generated by a sliding window.

We intend to identify a class of computationally feasible gang assignment algorithms that
allow to formulate worst-case performance guarantees with respect to any optimal rigid gang
scheduling algorithm. In order to get worst-case performance guarantees, it is mandatory to
find (preferably small) upper bounds of interference caused by higher-priority tasks. Thus,
instead of arbitrary gang assignments, we restrict ourselves to consecutive stationary gang
assignments that allow to bound interference. We note however that other gang assignments
can be explored starting from the consecutive assignments. By this, the approximation
properties can be kept whilst improving the schedulability using any heuristic.

▶ Definition 20. A consecutive stationary gang assignment Aℓ
k, ℓ ∈ {0, 1, . . . , M − 1} for a

gang task τk in a system of M processors is a set of consecutive processor indices

ℓ mod M, (ℓ + 1) mod M, . . . , (ℓ + Ek − 1) mod M (11)

where |Aℓ
k|= Ek ≤M .

An example of consecutive stationary gang assignments of a task τk with Ek = 3 on a
platform of 4 processors is illustrated in Figure 2. Intuitively, the consecutive stationary
gang assignments are generated by a sliding window of length 3.

Another restriction in our algorithm is to devise gang assignments in priority-order under
the premise that all higher-priority tasks are verified to be schedulable. By this restriction,
we only have to determine the interference behaviour of each higher-priority task that only
depends on the gang assignment Ak of task τk.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:11

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

P0 P1 P2 P3

A0
k

P0 P1 P2 P3

A1
k

P0 P1 P2 P3

A2
k

P0 P1 P2 P3

A3
k

Figure 3 Enumeration of all consecutive stationary gang assignments of a task τk (black window)
under the condition of a given consecutive stationary gang assignment of a higher-priority task (light
blue window).

The above restrictions yield the following two important theoretical properties:
1. There are always M different consecutive stationary gang assignments for each task.
2. Out of these M assignments, we are able to find upper-bounds for the number of

consecutive stationary gang assignments of τk, in which higher-priority tasks have self-
suspension behaviour and non self-suspension behaviour respectively. That means, we are
able to argue that in at most x out of the M consecutive stationary gang assignments, a
higher-priority task τi has self-suspension behaviour irrespective of the actual consecutive
assignment of τi.

In Figure 3, each column illustrates the M consecutive stationary gang assignments of τk,
that is subject to assignment and analysis, given a consecutive stationary gang assignment
of a higher-priority task. Each row shows a different assignment of a higher-priority task τi

indicated by the light blue window. According to the discussion in Section 3, τi interferes
with τk if and only if Ak∩Ai, i.e., whenever the windows in Figure 3 intersect. If for a column
(consecutive assignment of τk) there exists at least one row (consecutive assignment of τi)
in which both windows intersect then τi interferes with τk for the consecutive assignment
under consideration. In the provided example, all consecutive assignments suffer interference
from τi. In Lemma 21 we prove that there are at most Ek + Ei − 1 out of the M consecutive
stationary gang assignments of τk, in which τi interferes with τk.

Moreover, guided by the observation that if Ak ⊆ Ai then τi can not have self-suspension
behaviour with respect to τk under analysis, we can lower-bound the number of consecutive
stationary gang assignments of τk in which τi can not exhibit self-suspension behaviour.
For better illustration of this observation, assume that τi has self-suspension behavior with
respect to τk then there exists a task τℓ with higher priority than τi (and subsequently higher
priority than τk) such that Aℓ ∩Ai ̸= ∅ and Aℓ ∩Ak = ∅. This however implies that Ak ̸⊆ Ai

and contradicts the assumption. This can only happen if Ei ≥ Ek and if so then Ei − Ek

many of the M consecutive stationary assignments satisfy this property. In the next two
lemmas, we formally prove the intuition described above.

▶ Lemma 21. Given a task τk under analysis, each higher-priority task τi causes interference,
i.e., τi ∈ δ(Ak), in at most Ei+Ek−1 of the M -many consecutive stationary gang assignments.

ECRTS 2021

10:12 Hard Real-Time Stationary Gang-Scheduling

Proof. Let the consecutive stationary gang assignments for some higher-priority tasks i < k

be given by the following processor indices:

j mod M, (j + 1) mod M, . . . , (j + Ei − 1) mod M (12)

where j ∈ {0, 1, . . . , M − 1} is already given (fixed). Furthermore, let

ℓ + h mod M, (ℓ + h + 1) mod M, . . . , (ℓ + h + Ek − 1) mod M (13)

denote the processor indices of a consecutive stationary gang assignment of task τk after the
h-iteration for some arbitrary initial ℓ ∈ {0, 1, . . . , M − 1} (we only need this to show that
this works for an arbitrary initial position and can be set to 0 for comprehension). Then let
h′ denote the first iteration such that (ℓ + h′ + Ek − 1) mod M ≡ j − 1 mod M (we shift
the window of Ak to the border of window of Ai, i.e., the two consecutive stationary gang
assignments intersect in the next iteration for the first time. Therefore,

(ℓ + h′) mod M ≡ (j − Ek) mod M.

We have to iterate further z allocations unil the index of the first processor in the allocation
of τk, i.e., (ℓ + h′ + z) mod M ≡ (j + Ei − 1) mod M coincides with the index of the last
processor in the assignment of task τi. More formally, we seek to find the smallest z > 0
such that:

(ℓ + h′ + z) mod M ≡ (j + Ei − 1) mod M

((ℓ + h′) mod M) + (z mod M) ≡ (j + Ei − 1) mod M

(j − Ek + z) mod M ≡ (j + Ei − 1) mod M

which implies that z = Ei + Ek − 1, i.e., z consecutive stationary gang assignments yield an
intersection of both tasks. ◀

We can furthermore bound the interference for self-suspending tasks as follows:

▶ Lemma 22. For task τk (under analysis), there are at most min{2Ek−1, Ei +Ek−1} many
consecutive stationary gang assignments, in which a higher-priority task τi has self-suspension
behavior with respect to task τk.

Proof. From Lemma 21, we know that at most Ek + Ei − 1 many consecutive stationary
gang assigments cause an intersection of consecutive stationary gang assignments of task
τi and task τk. We hence substract max{Ei − Ek, 0}, namely the number of consecutive
stationary gang assignments in which self-suspension behavior of τi is impossible, from the
above. Clearly, in the case that Ek ≤ Ei we have (Ek + Ei − 1)−Ei + Ek = 2Ek − 1. Since
2Ek−1 ≤ Ei +Ek−1 implies that Ek ≤ Ei we can write it as min{2Ek−1, Ei +Ek−1}. ◀

For the rest of this paper, we used deadline-monotonic priority assignment and index the
tasks such that D1 ≤ D2 ≤ · · · ≤ Dn, in which τi has a higher priority than τk if i < k. Due
to the additional restrictions described above, it is possible to prove interference bounds and
in consequence approximation guarantees in terms of schedulability for any stationary gang
assignment algorithm that uses the following algorithm as a basis.

We first sort the tasks according to the relative deadlines. Starting from the highest-
priority task, we consider each of the possible stationary gang assignment candidates
A0

k, A1
k, . . . , AM−1

k and check whether it is feasible to assign task τk to the consecutive

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:13

gang assignment. It starts from ℓ = 0, 1, . . . , M − 1. If the consecutive gang assignment can-
didate Aℓ

k is feasible, we assign the gang task to the consecutive gang assignment; otherwise,
we move to the next candidate. If none of the M possible consecutive gang assignments is
feasible, this assignment step fails and the algorithm returns failure.

In Theorem 16, we assume that all stationary gang assignments Ai are given for all tasks
with higher priority than τk. Based on the information, we need to calculate Vi,k, δ(Ak), and
δ(Ai) before using Theorem 16.

To facilitate efficient implementation, we use a matrix representation to indicate whether
task τi is assigned on processor Pj . Let ρ be a n×M matrix in which

ρ(i, j) :=
{

True Pj ∈ Ai

False Pj /∈ Ai

. (14)

Given the stationary gang assignment matrix ρ, the algorithm constructs the interference
matrix

Γ(i, j) :=
{

True Ai ∩Aj ̸= ∅
False otherwise

(15)

by the boolean matrix multiplication ρ · ρT , where ρT is the transpose matrix of ρ. That
is, the multiplication operation of two elements is replaced with the logical and operation
and the addition operation of two elements is replaced with a logical or operation. More
precisely, each entry in the interference matrix is computed as follows:

Γ(i, j) =
M−1∨
m=0

ρ(i, m) ∧ ρ(j, m)

which is true only if task τi and task τj share at least one processor in their stationary
gang assignments. The asymptotic time-complexity for the matrix multiplication is given by
O(n2M). The space complexity is given by O(nM).

The transformation of the higher-priority tasks in T into Ψk, which is later needed to
construct Ψsus

k , can be done by the following operation:{
τi ∈ Ψk if

∨i−1
ℓ=1 Γ(ℓ, i) ∧ Γ(ℓ, k)

τi /∈ Ψk otherwise
(16)

We now analyze the time-complexity of Algorithm 1. Line 4 requires O(i) for each task τi

and therefore O(k2) for one iteration. Line 5 requires to calculate the right-hand side of
Equation (6), which can be done in O(1) if we only take Ri − Ci or O(i) if both terms are
evaluated in Equation (6) for a task τi ∈ Ψk. Therefore, Line 5 in one iteration requires O(k2).
The schedulability test in Line 6 from Corollaries 17, 18 and 19 is O(kDk). Line 7 is O(M).
Since the loop can run up to O(nM) iterations, the time complexity is O(nM2 + n3MDn).

5 Evaluation

In this section, we present evaluations with synthetically generated gang task sets to evaluate
our proposed algorithm (denoted as OUR-DM here) against the current state-of-the art
by Dong and Liu [16] for sporadic implicit-deadline gang task systems under global EDF.
Specifically, we compare to the optimized schedulability test in [16], denoted as DONG-OPT,
based on the acceptance ratio, i.e., the number of schedulable task sets compared to the
number of tested task sets.

ECRTS 2021

10:14 Hard Real-Time Stationary Gang-Scheduling

Algorithm 1 Deadline-Monotonic Stationary GANG Schedulability Analysis and Assignment.

1: Sort task set T such that Di ≤ Dj for i < j (ties are broken arbitrarily);
2: for k in {1, 2, . . . , n} do {Loop tasks.}
3: for ℓ ∈ {0, 1, . . . , M − 1} do {Loop candidates.}
4: Generate Ψk given the candidate Aℓ

k from Def. 20;
5: Transform Ψk to Ψsus

k using Def. 15;
6: if (Ck, Dk, Tk) ∪ Ψsus

k is schedulable according to any self-suspension aware uni-
processor schedulability test (from Cor. 17, 18 and 19) then

7: Assign Ak ← Aℓ
k;

8: break;
9: return No feasible stationary gang assignments found;

10: return Feasible stationary gang assignment Ai for each task τi;

We also evaluate our algorithm for sporadic constrained-deadline gang task systems under
different settings of gang sizes, but without comparison due to the absence of research results
for constrained-deadline gang tasks. In these experiments, we seek to explore how much the
imposed constraints in terms of stationary gang assignments and fixed-priority scheduling
algorithms impact the schedulability of the tested task sets.

5.1 Experimental Setup

We generate synthetic task sets of sporadic gang tasks with implicit- and constrained-
deadlines in the following way. To generate the task sets, we use the UUniFast algorithm [7]
to draw n samples of xi = Ei · Ci/MTi uniform at random where xi ∈ (0, 1] such that∑n

i=1 xi = x for x ∈ {0.05, 0.1, 0.15, . . . , 1}. Moreover, the periods Ti are drawn from a
log-uniform distribution in the range of [10, 100] ms.

The generated task sets are classified by the range of admissible gang sizes into light,
moderate, and heavy. We differentiate two different settings for these gang sizes:

1. Setting I - with variable gang sizes: In the first setting, each light gang task can have a
gang size in [1, M/8], a moderate task can gang size in [1, M/4], and a heavy task can
have gang size in [M/8, M/2].

2. Setting II - with fixed gang sizes: In this setting, a fixed gang size number is assigned
to each task of a category. Namely, each light task has gang size M/8, each moderate
task has gang size M/4 and each heavy task has a gang size 3M/8.

We avoid the generation of too heavy tasks, since in these cases the scheduling problem
is degraded to uniprocessor scheduling.2 With respect to constrained-deadlines, we only
demonstrate our proposed algorithm by a case of variable gang sizes (Setting I) in Figure 7
and a case of fixed gang sizes (Setting II) in Figure 8.

2 Dong and Liu [16] also performed their evaluations for gang size in [5M/8, M] for all tasks. This
configuration is not considered here as this setup implies that there is no possibility to concurrently
execute two gang tasks in parallel due to the imposed gang size. The problem becomes equivalent to
uniprocessor scheduling by viewing all processors as one virtual group. In this case, preemptive EDF is
the optimal solution and the classical timing analysis for uniprocessor EDF scheduling can be applied.

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:15

5.2 Evaluation Results

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta
nc

e
R
at
io

(%
)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 4 Acceptance ratio for light sporadic implicit-deadline gang task sets where the gang size
of each task is chosen according Setting II.

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 5 Acceptance ratio for moderate sporadic implicit-deadline gang task sets where the gang
size of each task is chosen according to Setting I.

5.2.1 Evaluation results for implicit-deadline task sets
For sporadic implicit-deadline gang task systems, we compare our algorithm (OUR-DM) with
the approach by Dong and Liu [16] (DONG-OPT) under the setting with variable gang sizes,
in which each configuration is evaluated with 100 task sets and 20 tasks for each task set. In
all conducted experiments shown in Figures 4, 5, and 6, our algorithm OUR-DM outperforms
DONG-OPT for all evaluated scenarios under the setting with variable gang sizes. The most
significant improvement of OUR-DM compared with DONG-OPT is demonstrated for the
moderate task set in Figure 5 where up to 40% can be achieved for 50% normalized utilization.
The smallest improvement can be observed for heavy gang task sets, where OUR-DM slightly
outperforms DONG-OPT. This is due to the fact that the heavier the task sets are, the more
similar the schedulability is to the uniprocessor schedulability problem. This also implies

ECRTS 2021

10:16 Hard Real-Time Stationary Gang-Scheduling

0 20 40 60 80 100
0

20

40

60

80

100
A

cc
ep

ta
nc

e
R

at
io

(%
)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

OUR-DM DONG-OPT

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 6 Acceptance ratio for heavy sporadic implicit-deadline gang task sets where the gang
size of each task is chosen according to Setting I.

that the stationary gang scheduling has less choices for gang assignments. Since EDF is an
optimal uniprocessor schedulability, the trouble to deal with the heavy gang task sets comes
from the adopted schedulability tests. For OUR-DM, we have to consider more tasks in Ψk

and for DONG-OPT their analysis becomes less pessimistic as the multiplicative of 1/M in
their analysis decreases.

5.2.2 Evaluation results for constrained-deadline task sets
For constrained-deadlines, we show our schedulability test for light, moderate, and heavy
task sets for gang sizes compliant to Setting I in Figure 7 and gang sizes compliant to the
Setting II described in Figure 8, in which each configuration is tested with 100 task sets and
20 tasks per task set. The behavior of Setting I is almost similar to the results in Figures 4, 5,
and 6 but with lower acceptance ratios.

For constrained-deadlines with fixed numbers of gang sizes as explained in Setting II, a
similar trend can be observed. However, moderate as well as heavy task sets almost show
the same acceptance ratio and the acceptance ratio of light tasks also increases. This further
supports the assumption, that the increased number of tasks with self-suspension behaviour
decreases the overall schedulability. This is explained by the fact that it is less likely to have
self-suspension behaviour of interfering tasks if all tasks have the same gang size.

5.3 Summary of Evaluation Results
In summary, the evaluations demonstrate, that the restriction of fixed-priority stationary
gang scheduling does not significantly sacrifice the schedulability of sporadic implicit-deadline
rigid gang task systems, in comparison to the state-of-the-art. In contrast, the schedulability
could be improved slightly without even considering performance benefits of implementations
in real systems, e.g., reduced context switches and migrations.

6 Conclusion and Future Work

In this paper we propose a specialization of the rigid gang scheduling problem for hard real-
time systems. We present how this problem can be analyzed and reduced to the uniprocessor
self-suspension problem and the schedulability analyses thereof. We show how to derive

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:17

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)
(a) M = 16

0 20 40 60 80 100

(b) M = 32

DM-OUR (light) DM-OUR (moderate) DM-OUR (heavy)

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 7 Acceptance ratio for light sporadic constrained-deadline gang task sets according to
Setting I. The deadline is chosen randomly between 70% − 100% of the minimum inter-arrival time.

0 20 40 60 80 100
0

20

40

60

80

100

A
cc

ep
ta

nc
e

R
at

io
(%

)

(a) M = 16

0 20 40 60 80 100

(b) M = 32

DM-OUR (light) DM-OUR (moderate) DM-OUR (heavy)

0 20 40 60 80 100

(c) M = 64

Utilization (%)

Figure 8 Acceptance ratio for light, moderate, heavy sporadic constrained-deadline gang task
sets according to Setting I. The deadline is chosen randomly between 70% − 100% of the minimum
inter-arrival time.

stationary gang assignments for deadline-monotonic gang scheduling that yields worst-case
interference bounds proportional to parameters defined by the ratios of the gang sizes of
tasks in the task set.

This paper is limited to constrained-deadline task systems, as there is no result known
for schedulability analyses for arbitrary-deadline dynamic self-suspending task systems. The
concept in this paper can be extended to EDF by adopting the proper schedulability tests
and suspension analysis. As future work, we plan to implement a fixed-priority stationary
gang scheduler in real-time operating systems and evaluate if there are significant benefits in
terms of scheduling overheads and investigate potential benefits with respect to improved
worst-case execution time.

ECRTS 2021

10:18 Hard Real-Time Stationary Gang-Scheduling

References
1 W. Ali and H. Yun. RT-Gang: Real-time gang scheduling framework for safety-critical systems.

In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 143–155, 2019. doi:10.1109/RTAS.2019.00020.

2 Theodore P. Baker. Multiprocessor EDF and deadline monotonic schedulability analysis. In
IEEE Real-Time Systems Symposium, pages 120–129, 2003. doi:10.1109/REAL.2003.1253260.

3 Sanjoy Baruah. Techniques for multiprocessor global schedulability analysis. In Proceedings
of the 28th IEEE International Real-Time Systems Symposium, pages 119–128, 2007.

4 Sanjoy Baruah. The federated scheduling of constrained-deadline sporadic DAG task systems.
In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, DATE,
pages 1323–1328, 2015. URL: http://dl.acm.org/citation.cfm?id=2757121.

5 Sanjoy Baruah. Federated scheduling of sporadic DAG task systems. In IEEE International
Parallel and Distributed Processing Symposium, IPDPS, pages 179–186, 2015. doi:10.1109/
IPDPS.2015.33.

6 Marko Bertogna and Michele Cirinei. Response-time analysis for globally scheduled symmetric
multiprocessor platforms. In Real-Time Systems Symposium (RTSS), pages 149–160, 2007.
doi:10.1109/RTSS.2007.31.

7 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

8 Alessandro Biondi and Youcheng Sun. On the ineffectiveness of 1/m-based interference bounds
in the analysis of global EDF and FIFO scheduling. Real Time Syst., 54(3):515–536, 2018.
doi:10.1007/s11241-018-9303-1.

9 J. Błażewicz, P. Dell’ Olmo, M. Drozdowski, and M.G. Speranza. Corrigendum to: Scheduling
multiprocessor tasks on three dedicated processors. Inf. Process. Lett., 49(5):269–270, 1994.

10 Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller, and Andreas Wiese.
Feasibility analysis in the sporadic dag task model. In ECRTS, pages 225–233, 2013.

11 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Partitioned
fixed-priority scheduling of parallel tasks without preemptions. In RTSS, pages 421–433. IEEE
Computer Society, 2018.

12 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Huang. A unifying response time analysis
framework for dynamic self-suspending tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 61–71, 2016.

13 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems: a re-
view of self-suspending tasks in real-time systems. Real Time Syst., 55(1):144–207, 2019.
doi:10.1007/s11241-018-9316-9.

14 Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Cong Liu. State of the
art for scheduling and analyzing self-suspending sporadic real-time tasks. In 23rd IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA 2017, Hsinchu, Taiwan, August 16-18, 2017, pages 1–10. IEEE Computer Society,
2017. doi:10.1109/RTCSA.2017.8046321.

15 Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor
systems. ACM Comput. Surv., 43(4):35, 2011. doi:10.1145/1978802.1978814.

16 Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-time sporadic
gang task systems. In IEEE Real-Time Systems Symposium, RTSS, pages 128–138, 2017.
doi:10.1109/RTSS.2017.00019.

17 Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16:306–318, 1992.

18 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved Response Time Analysis of
Sporadic DAG Tasks for Global FP Scheduling. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems, 2017. doi:10.1145/3139258.3139288.

https://doi.org/10.1109/RTAS.2019.00020
https://doi.org/10.1109/REAL.2003.1253260
http://dl.acm.org/citation.cfm?id=2757121
https://doi.org/10.1109/IPDPS.2015.33
https://doi.org/10.1109/IPDPS.2015.33
https://doi.org/10.1109/RTSS.2007.31
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1007/s11241-018-9303-1
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTCSA.2017.8046321
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1109/RTSS.2017.00019
https://doi.org/10.1145/3139258.3139288

N. Ueter, M. Günzel, G. von der Brüggen, and J.-J. Chen 10:19

19 José Carlos Fonseca, Geoffrey Nelissen, Vincent Nélis, and Luís Miguel Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In SIES, pages 290–299. IEEE,
2016.

20 Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. LITES,
3(1):04:1–04:18, 2016. doi:10.4230/LITES-v003-i001-a004.

21 Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response time bounds for fixed priority
multiprocessor scheduling. In IEEE Real-Time Systems Symposium, pages 387–397, 2009.

22 J.A. Hoogeveen, S.L. van de Velde, and B. Veltman. Complexity of scheduling multiprocessor
tasks with prespecified processor allocations. Discrete Appl. Math., 55(3):259–272, 1994.

23 Morris A. Jette. Performance characteristics of gang scheduling in multiprogrammed envir-
onments. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing, SC ’97,
1997.

24 Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In IEEE
Real-Time Systems Symposium, RTSS, pages 459–468, 2009. doi:10.1109/RTSS.2009.42.

25 M. Kubale. The complexity of scheduling independent two-processor tasks on dedicated
processors. Inf. Process. Lett., 24(3):141–147, 1987.

26 Karthik Lakshmanan, Shinpei Kato, and Ragunathan (Raj) Rajkumar. Scheduling parallel
real-time tasks on multi-core processors. In Proceedings of the 2010 31st IEEE Real-Time
Systems Symposium, RTSS ’10, pages 259–268, 2010.

27 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, 1973.

28 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C. Buttazzo. Response-Time Analysis of Conditional DAG Tasks in Multiprocessor
Systems. In Proceedings of the 2015 27th Euromicro Conference on Real-Time Systems, 2015.

29 Aloysius K. Mok. Fundamental design problems of distributed systems for the hard-real-time
environment. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA,
1983.

30 Pascal Richard, Joël Goossens, and Shinpei Kato. Comments on "gang EDF schedulability
analysis". CoRR, http://arxiv.org/abs/1705.05798, 2017. URL: http://arxiv.org/abs/1705.
05798.

31 Youcheng Sun and Marco Di Natale. Assessing the pessimism of current multicore global
fixed-priority schedulability analysis. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC, pages 575–583. ACM, 2018.

32 Saud Wasly and Rodolfo Pellizzoni. Bundled scheduling of parallel real-time tasks. In RTAS,
pages 130–142. IEEE, 2019.

ECRTS 2021

https://doi.org/10.4230/LITES-v003-i001-a004
https://doi.org/10.1109/RTSS.2009.42
http://arxiv.org/abs/1705.05798
http://arxiv.org/abs/1705.05798

Tight Tardiness Bounds for Pseudo-Harmonic
Tasks Under Global-EDF-Like Schedulers
Shareef Ahmed # Ñ

University of North Carolina at Chapel Hill, NC, USA

James H. Anderson #

University of North Carolina at Chapel Hill, NC, USA

Abstract
The global earliest-deadline-first (GEDF) scheduler and its variants are soft-real-time (SRT) optimal
for periodic/sporadic tasks, meaning they provide bounded tardiness so long as the underlying
platform is not over-utilized. Although their SRT-optimality has long been known, tight tardiness
bounds for these schedulers have remained elusive. In this paper, a tardiness bound, that does
not depend on the processor or task count, is derived for pseudo-harmonic periodic tasks, which
are commonly used in practice, under global-EDF-like (GEL) schedulers. This class of schedulers
includes both GEDF and first-in-first-out (FIFO). This bound is shown to be generally tight via an
example. Furthermore, it is shown that exact tardiness bounds for GEL-scheduled pseudo-harmonic
periodic tasks can be computed in pseudo-polynomial time.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases soft real-time systems, multicore, tardiness bounds

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.11

Funding Work was supported by NSF grants CNS 1563845, CNS 1717589, CPS 1837337, CPS
2038855, and CPS 2038960, ARO grant W911NF-20-1-0237, and ONR grant N00014-20-1-2698.

1 Introduction

The rise of multicore platforms has generated much interest in global schedulers such as
the global earliest-deadline-first (GEDF) scheduler. Although the preemptive uniprocessor
earliest-deadline-first (EDF) scheduler is hard real-time (HRT) optimal, meaning it can
schedule any task system that does not over-utilize the underlying platform without any
deadline misses, preemptive GEDF1 is not HRT-optimal [10]. Despite this, GEDF and many
of its variants guarantee bounded tardiness on different types of multiprocessor platforms
for any task system that does not over-utilize the platform [9,20,26,28], making them soft
real-time (SRT) optimal. The significance of GEDF’s SRT-optimality is reflected by references
to it in the documentation of SCHED_DEADLINE [13], Linux’s GEDF implementation.

Unfortunately, all known tardiness bounds for GEDF and its variants increase with
respect to the number of processors. Moreover, experimental evaluations have shown that
these bounds tend to become looser as the processor count increases [27]. This causes the
corresponding SRT guarantees to be of questionable utility on large platforms and may
even increase system cost. For example, the ill effects of tardiness can be “hidden” by
buffering [11, 16] and the needed buffers must be sized based upon established tardiness
bounds. While HRT-optimal schedulers can ameliorate these problems by eliminating all
tardiness, they come at the expense of large overheads [2, 4, 5, 23]. Hence, a tardiness bound
that does not scale with the number of tasks or processors under practical global schedulers
like GEDF would be desirable; the derivation of such a bound has remained an open problem
since the first work on SRT-optimality in 2005 [8].

1 All schedulers mentioned herein are assumed to be preemptive unless noted otherwise.
© Shareef Ahmed and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 11; pp. 11:1–11:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shareef@cs.unc.edu
https://orcid.org/0000-0002-9290-4896
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2021.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Tight Tardiness Bounds Under GEL Schedulers

In this paper, we close this problem for an important category of task systems, namely
pseudo-harmonic periodic task systems, where every period divides the maximum period. In
particular, we establish a tight tardiness bound for pseudo-harmonic periodic tasks under
global-EDF-like (GEL) schedulers on identical multiprocessor platforms. Our tardiness bound
does not depend on the processor or task count, but scales with respect to the task parameters,
e.g, periods. The class of GEL schedulers includes not only GEDF, but first-in-first-out (FIFO)
and various other related schedulers. Pseudo-harmonic tasks are common in automotive
applications [17]. Moreover, the class of pseudo-harmonic task systems contains harmonic
task systems, where every period is an integer multiple of each smaller period. Harmonic
task systems are common in different application domains such as avionics, robotics, control
applications, etc. [3, 6, 14, 21,24]. To our knowledge, we are the first to establish a tardiness
bound that is tight in general for a class of task systems of practical interest under a job-level
fixed-priority global scheduler. Our work was inspired by prior seminal work on the periodic
behavior of GEDF schedules for HRT periodic systems [7, 15,22].

Prior work. The SRT-optimality of GEDF on identical multiprocessor platforms was first
shown by Devi and Anderson [9]. A tighter tardiness bound under GEDF can be obtained by
compliant vector analysis (CVA), proposed by Erickson et. al [11,12]. The current best-known
GEDF tardiness bound, the harmonic bound, was given by Valente [27]. Window-constrained
schedulers, a class of schedulers containing all GEL schedulers, were proven to be SRT-
optimal by Leontyev and Anderson [20]. Recent works have established the SRT-optimality
of both GEDF on uniform heterogeneous multiprocessor platforms, and window-constrained
schedulers on identical multiprocessor platforms with arbitrary affinity masks [25,28].

Contributions. Our contributions are four-fold. First, we give a tardiness bound that is
independent of the task or processor count for pseudo-harmonic periodic tasks under GEL
schedulers. In a GEL scheduler, each task has a task-level fixed parameter called its relative
priority point, which is used to assign a priority point (PP) to each of its jobs: the PP of a
job is determined by adding its task’s relative PP to the job’s release time. The priority of a
job is determined by its PP, with earlier PPs denoting higher priority. For example, under
GEDF (resp., FIFO), a job’s PP is given by its deadline (resp., release time). Additionally, we
show that our bound can be exploited to ensure tardiness bounds that do not depend on the
processor count for pseudo-harmonic sporadic tasks by using periodic servers scheduled by a
GEL scheduler. Second, we show the general tightness of our bound by an example. Third,
we give an upper bound on the length of the interval that needs to be simulated to derive an
exact tardiness bound of any task in a pseudo-harmonic periodic task system. Using this, we
show how to determine exact tardiness bounds in pseudo-polynomial time. To our knowledge,
this is the first work on GEL schedulers that shows how to bound tardiness exactly. Fourth,
we compare both of our bounds with each other and prior bounds by simulation experiments.

Organization. In the rest of this paper, we give necessary background information (Sec. 2),
derive a tight tardiness bound for GEL schedulers (Sec. 3), show how to determine exact
tardiness bounds in pseudo-polynomial time via schedule simulation (Sec. 4), discuss our
experimental results (Sec. 5), and conclude (Sec. 6).

S. Ahmed and J. H. Anderson 11:3

2 Preliminaries

We consider a task system τ consisting of n implicit-deadline periodic tasks τ1, τ2, . . . , τn to
be scheduled on m identical processors. Each task τi releases a potentially infinite sequence
of jobs τi,1, τi,2, The period of task τi, denoted by Ti, is the separation time between two
consecutive job releases by it. The largest period among all tasks is denoted by Tmax. A
task system is called sporadic when the separation time between consecutive jobs of each
task τi can be more than Ti. The worst-case execution cost of τi is denoted by Ci. The offset
of a periodic task τi, denoted by Φi, is the release time of τi,1. The relative deadline of τi is
Di = Ti. For brevity, we denote a periodic task τi by (Φi, Ci, Ti).

The release time, absolute deadline, completion time, and execution cost of job τi,k are
denoted by ri,k, di,k, fi,k, and Ci,k, respectively. The jobs of each task are sequential, i.e.,
τi,k+1 cannot start execution before τi,k completes. The tardiness of a job τi,k is defined as
max{0, fi,k − di,k}. The tardiness of task τi is the maximum tardiness among any of its jobs.

The utilization of τi is ui = Ci/Ti. The utilization of the task system τ is U =
∑n

i=1 ui.
We require ui ≤ 1.0 and U ≤ m to hold; both are necessary for bounded tardiness [9]. The
hyperperiod H is the least common multiple of all periods. The periods are pseudo-harmonic
when each period divides Tmax, i.e., H = Tmax holds.

The relative PP of a task τi is denoted by Yi. We assume Yi ≥ 0 holds for each task τi.
The maximum and minimum relative PP among all tasks in τ are denoted by Ymax and
Ymin, respectively. The priority point (PP) of a job τi,k, denoted by yi,k, is defined as

yi,k = ri,k + Yi. (1)

If yi,k < yj,ℓ, then job τi,k has higher priority than job τj,ℓ. We assume ties to be broken
arbitrarily but consistently by task index.

We assume time to be discrete and a unit of time to be 1.0. All scheduling decisions are
taken at integer points in time. We also assume all task parameters to be integers. Therefore,
when a task τi executes during an unit interval [t − 1, t), it means τi continuously executes
during [t − 1, t). A job completes execution at t if it executes for the last time during [t − 1, t).
A job completes execution before t if it completes at or before t − 1. (It can be shown that
the tardiness bound presented in Sec. 3 also holds when time is continuous.) The following
definitions closely follow from material in [1, 9, 28].

▶ Definition 1. A job τi,k is active at time t in a schedule S if ri,k ≤ t < di,k.

▶ Definition 2. A job τi,k is pending at time t in a schedule S if ri,k ≤ t and τi,k has not
completed execution at or before t in S.

Allocation. The cumulative processor capacity allocated to a task τi (resp., task system
τ) in a schedule S over an interval [t, t′) is denoted by Ai(t, t′, S) (resp., A(t, t′, S)). Thus,
A(t, t′, S) =

∑
τi∈τ Ai(t, t′, S).

Ideal schedule. Let π̂1, π̂2, . . . , π̂n be n processors with speeds u1, u2, . . . , un, respectively.
In an ideal schedule I, each task τi is partitioned to execute on processor π̂i. Each job
starts execution as soon as it is released and completes execution by its deadline in I. For
task τi (resp., task system τ), Ai(t, t′, I) ≤ ui(t′ − t) (resp., A(t, t, I) ≤ U(t′ − t)) holds. If
τi is periodic and each job executes for its worst case Ci, then Ai(t, t′, I) = ui(t′ − t) where
t, t′ ≥ Φi.

ECRTS 2021

11:4 Tight Tardiness Bounds Under GEL Schedulers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

τ1

τ2

τ3

τ1,1 τ1,2 τ1,3 τ1,4

τ2,3 τ2,4τ2,2τ2,1

τ3,2τ3,1

release deadline completion execution

τ3,1 τ3,2

τ1,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2
τ3

τ1,1 τ1,2 τ1,3 τ1,4

τ2,3 τ2,4τ2,2τ2,1

τ3,1 τ3,3

τ1,5

τ3,2

τ2,5

(̂π3: speed 2/3)

(̂π2: speed 2/3)τ2

(̂π1: speed 2/3)τ1

(a)

(b)

time

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1 (a) A GEDF schedule and (b) an ideal schedule of the task system in Ex. 3.

lag and LAG. The lag of a task τi at time t in a schedule S is defined as

lagi(t, S) = Ai(0, t, I) − Ai(0, t, S). (2)

Since lagi(0, S) = 0, for t′ ≥ t we have

lagi(t′, S) = lagi(t, S) + Ai(t, t′, I) − Ai(t, t′, S). (3)

The LAG of a task system τ in a schedule S at time t is defined as

LAG(t, S) =
∑
τi∈τ

lagi(t, S) = A(0, t, I) − A(0, t, S). (4)

Since LAG(0, S) = 0, for t′ ≥ t we have

LAG(t′, S) = LAG(t, S) + A(t, t′, I) − A(t, t′, S). (5)

▶ Example 3. Consider a periodic task system τ with tasks τ1 = (0, 2, 3), τ2 = (0, 2, 3), and
τ3 = (0, 4, 6). A GEDF schedule S and an ideal schedule I of the task system is shown in
insets (a) and (b) of Fig. 1, respectively. τ1’s allocation over interval [0, 5) in S and I are 4.0
and 10/3 execution units, respectively. τ1’s lag in S at time 5 is lag1(5, S) = 10/3−4 = −2/3.
The LAG of the task system τ at time 5 is 1.0. ◀

3 Tardiness Bound

In this section, we derive a tardiness bound for pseudo-harmonic periodic task systems under
a GEL scheduler. We assume n > m as each job meets its deadline otherwise. We initially
assume the following, which we relax later.

(B) Each job of any task τi executes for its worst-case execution cost Ci.
We consider a GEL schedule S of τ satisfying (B) to derive our tardiness bound. We derive our
tardiness bound (Theorem 28) by giving an upper bound on per-task lag (Lemma 27) using a
lag-monotonicity property (Lemma 17). Informally, the lag-monotonicity property states that
no task τi receives more allocation in S than I, i.e., lag does not decrease, over any interval of
length Tmax beginning at or after Φi. We first establish the lag-monotonicity property using
a series of properties of lag proved in Sec. 3.1. We then use the lag-monotonicity property to
derive our tardiness bound in Sec. 3.2.

S. Ahmed and J. H. Anderson 11:5

3.1 lag Properties
We begin by proving some properties of lag. All properties specified here also hold for
non-pseudo-harmonic periodic task systems satisfying (B) with Tmax replaced by H in the
properties that reference Tmax. Since the lag-monotonicity property compares lag values
between two time instants, we first establish several properties concering such comparisons
between a pair of lag values (Lemmas 11–15) based on the simpler properties of lag (Lemmas 4–
10). Readers familiar with the concept of lag may skip the proofs of Lemmas 4–10.

▶ Lemma 4. For any task τi and interval [t, t′) with t ≥ Φi, the following hold.
(a) If τi continuously executes during [t, t′) in S, then lagi(t′, S) = lagi(t, S) + (t′ − t)(ui − 1).
(b) If τi does not execute during [t, t′) in S, then lagi(t′, S) = lagi(t, S) + (t′ − t)ui.

Proof. Since t ≥ Φi, by the definition of I, we have Ai(t, t′, I) = (t′ − t)ui.
(a) Since τi continuously executes throughout [t, t′) in S, Ai(t, t′, S) = (t′ − t) holds. Substi-
tuting Ai(t, t′, I) and Ai(t, t′, S) in (3), we have lagi(t′, S) = lagi(t, S) + (t′ − t)ui − (t′ − t) =
lagi(t, S) + (t′ − t)(ui − 1).
(b) Since τi does not execute during [t, t′) in S, we have Ai(t, t′, S) = 0. Substituting Ai(t, t′, I)
and Ai(t, t′, S) in (3), we have lagi(t′, S) = lagi(t, S)+(t′ −t)ui −0 = lagi(t, S)+(t′ −t)ui. ◀

▶ Lemma 5 ([28]). If lagi(t, S) > 0, then τi has a pending job at t in S.

The following lemma states that the lag of any task τi is non-negative in S at any time
instant t when it releases a job. Intuitively, all of τi’s jobs released before t complete execution
in I by time t, and thus, τi cannot receive more allocation in S than I.

▶ Lemma 6. For any task τi and non-negative integer c, lagi(Φi + cTi, S) ≥ 0.

Proof. If c = 0, then the lemma trivially holds. Assume that there is a task τi and an integer
c ≥ 1 such that lagi(Φi +cTi, S) < 0 holds. Then, by (2), Ai(0, Φi +cTi, S) > Ai(0, Φi +cTi, I)
holds. Since τi releases periodically, Φi + cTi is the deadline (resp., release time) of τi,c−1
(resp., τi,c). By the definition of I, all jobs of τi released before Φi + cTi complete execution
by time Φi + cTi in I. Since no job can execute before its release, Ai(0, Φi + cTi, S) cannot
be larger than Ai(0, Φi + cTi, I), a contradiction. ◀

Lemmas 7–10 give relationships among a task τi’s lag at time t, its utilization, and the
deadline or release time of a job of τi. We prove these lemmas by expressing τi’s allocation
in S by time t in terms of τi’s utilization and the deadline or release time of a job of τi.

▶ Lemma 7. If τi has no pending job at time t ≥ Φi in S and τi,k is the active job of τi

at t, then lagi(t, S) = (t − di,k)ui.

Proof. Since τi,k completes execution at or before t, all jobs of τi released at or before ri,k

complete execution at or before t. Since t < di,k, no jobs released after ri,k execute before t.
Hence, Ai(0, t, S) =

∑k
j=1 Ci =

∑k
j=1 Tiui =

∑k
j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui =

(di,k − Φi)ui. By the definition of I, we have Ai(0, t, I) = (t − Φi)ui. Substituting Ai(0, t, I)
and Ai(0, t, S) in (2), we have lagi(t, S) = (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

For the task set in Ex. 3 and its GEDF schedule in Fig. 1(a), τ1’s active job at time 2 is τ1,1 and
it has no pending job at time 2 in S. The lag of τ1 at time 2 in S is lag1(2, S) = (2−3) 2

3 = − 2
3 .

▶ Lemma 8. If τi,k completes execution at or before t ≥ Φi in S, then lagi(t, S) ≤ (t−di,k)ui.

ECRTS 2021

11:6 Tight Tardiness Bounds Under GEL Schedulers

Proof. Since τi,k completes execution at or before t, all jobs of τi released at or before
ri,k complete execution at or before t. Hence, Ai(0, t, S) ≥

∑k
j=1 Ci =

∑k
j=1 Tiui =∑k

j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui = (di,k − Φi)ui. By the definition of I, we have
Ai(0, t, I) = (t − Φi)ui. Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) =
Ai(0, t, I) − Ai(0, t, S) ≤ (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

▶ Lemma 9. If τi has a pending job τi,k at t ≥ Φi in S, then lagi(t, S) > (t − di,k)ui.

Proof. Since τi,k is pending at time t, we have Ai(0, t, S) <
∑k

j=1 Ci =
∑k

j=1 Tiui =∑k
j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui = (di,k − Φi)ui. By the definition of I, Ai(0, t, I) =

(t−Φi)ui holds. Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) = Ai(0, t, I)−
Ai(0, t, S) > (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

▶ Lemma 10. If τi,k is the earliest pending job of τi at t ≥ Φi in S, then lagi(t, S) ≤
(t − ri,k)ui.

Proof. Since τi,k is the earliest pending job of τi at t, all jobs of τi prior to τi,k complete
execution at or before t. Thus, Ai(0, t, S) ≥

∑k−1
j=1 Ci =

∑k−1
j=1 Tiui =

∑k−1
j=1 (ri,j+1 −ri,j)ui =

(ri,k −ri,1)ui = (ri,k −Φi)ui. By the definition of I, Ai(0, t, I) = (t−Φi)ui holds. Substituting
Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) ≤ (t−Φi)ui−(ri,k −Φi)ui = (t−ri,k)ui. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), τ3,1 is τ3’s earliest pending
job at at time 4. τ3’s lag at time 4 is 4 × 2/3 − 1 = 5/3. By Lemma 9, lag3(4, S) = 5/3 >

(4 − 6) × 2/3 = −4/3. By Lemma 10, lag3(4, S) = 5/3 ≤ (4 − 0) × 2/3 = 8/3.
Using Lemmas 7–10, we now prove Lemmas 11–14, which pertain to the relationship

between the lag of a task τi at a pair of time instants that are separated by an integer
multiple of τi’s period. For any integer c and any pair of time instants t, t + cTi ≥ Φi, the
active jobs of τi at t and t + cTi receive the same allocation in I by time t and t + cTi,
respectively. If τi’s active job τi,k at t completes execution in S at or before t, then τi,k+c

cannot receive more allocation by time t + cTi than τi,k receives by t. The following lemma
pertains to this scenario.

▶ Lemma 11. For any time t and integer c such that min{t, t + cTi} ≥ Φi, if τi has no
pending job at t in S, then lagi(t, S) ≤ lagi(t + cTi, S).

Proof. Let τi,k be the active job of τi at t, i.e., ri,k ≤ t < di,k. Since τi has no pending job
at t ≥ Φi, by Lemma 7 we have

lagi(t, S) = (t − di,k)ui. (6)

Since the jobs of a task are released periodically and t + cTi ≥ Φi holds, τi,k+c is the active
job of τi at time t + cTi. By Lemmas 7 and 9, we have

lagi(t + cTi, S) ≥ (t + cTi − di,k+c)ui

= {Since τi releases periodically, di,k+c = di,k + cTi}
(t + cTi − di,k − cTi)ui

= (t − di,k)ui

= {By (6)}
lagi(t, S). ◀

S. Ahmed and J. H. Anderson 11:7

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), τ2 has no pending job at time 5
but has a pending job at time 8 in S. By Lemma 11, lag2(5, S) = −2/3 ≤ 4/3 = lag2(8, S).

The following lemma considers the case when lagi(t, S) is not larger than lagi(t + cTi, S).
Informally, for any non-negative integer c, τi receives no more than cTiui = c · Ci units of
allocation over the interval [t, t + cTi). Therefore, if τi,k is pending at t, then τi,k+c must
also be pending at t + cTi.

▶ Lemma 12. For any integer c such that min{t, t + cTi} ≥ Φi, if lagi(t, S) ≤ lagi(t + cTi, S)
holds and τi,k is the earliest pending job of τi at t in S, then τi,k+c is pending at t + cTi in S.

Proof. Assume for a contradiction that τi,k+c is not pending at time t + cTi. Since τi,k is
pending at t ≥ Φi, ri,k ≤ t holds, and by Lemma 9 we have

lagi(t, S) > (t − di,k)ui. (7)

Since jobs are released periodically and ri,k ≤ t holds, we have ri,k+c ≤ t + cTi. Thus, τi,k+c

finishes execution at or before t + cTi (as it is not pending then). By Lemma 8, we have

lagi(t + cTi, S) ≤ (t + cTi − di,k+c)ui

= {Since τi releases periodically, di,k+c = di,k + cTi}
(t + cTi − di,k − cTi)ui

= (t − di,k)ui

< {By (7)}
lagi(t, S),

a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), lag2(4, S) = −1/3 ≤ 2/3 =
lag2(7, S). By Lemma 12, since τ2,2 is the earliest pending job of τ2 at time 4 in S and time 7
corresponds to c = 1, τ2,3 is pending at time 7 in S.

Similarly, we consider the case where lagi(t, S) is either not smaller or larger than
lagi(t + cTi, S).

▶ Lemma 13. For any integer c such that min{t, t + cTi} ≥ Φi, if τi,k is the earliest pending
job of τi at time t in S, then the following hold.
(a) If lagi(t, S) ≥ lagi(t + cTi, S), then all jobs of τi released before ri,k+c complete execution

at or before t + cTi in S.
(b) If lagi(t, S) > lagi(t + cTi, S), then all jobs of τi released before ri,k+c complete execution

before t + cTi in S.

Proof. If k + c = 1, then ri,k+c = ri,1 = Φi and the lemma trivially holds. So assume
k + c > 1. Since τi,k is the earliest pending job at t ≥ Φi, by Lemma 10,

lagi(t, S) ≤ (t − ri,k)ui. (8)

(a) Assume for a contradiction that τi has a job that is released before ri,k+c but does not
complete execution at or before t + cTi. Therefore, τi,k+c−1 does not complete execution
at or before t + cTi as the jobs of each task are sequential. Since τi,k is the earliest
pending job of τi at t, we have ri,k ≤ t. Since jobs are released periodically, we have
ri,k+c ≤ t + cTi, which implies ri,k+c−1 ≤ t + cTi. Therefore, τi,k+c−1 is pending at
t + cTi. Thus, by Lemma 9,

lagi(t + cTi, S) > (t + cTi − di,k+c−1)ui

ECRTS 2021

11:8 Tight Tardiness Bounds Under GEL Schedulers

= {Since τi releases periodically, di,k+c−1 = di,k + (c − 1)Ti}
(t + cTi − di,k − (c − 1)Ti)ui

= (t − di,k + Ti)ui

= {Since ri,k = di,k − Ti}
(t − ri,k)ui

≥ {By (8)}
lagi(t, S),

a contradiction.
(b) Since lagi(t, S) > lagi(t + cTi, S), by (a), all jobs of τi released before ri,k+c finish

execution at or before t + cTi. Assume that they do not complete execution before
t + cTi. Thus, they complete execution at t + cTi, and no job released at or after ri,k+c

executes at or before t + cTi. Thus, Ai(0, t + cTi, S) =
∑k+c−1

j=1 Ci =
∑k+c−1

j=1 Tiui =∑k+c−1
j=1 (ri,j+1 − ri,j)ui = (ri,k+c − Φi)ui = (ri,k + cTi − Φi)ui. Thus, by the definition of

I and (2), lagi(t+cTi, S) = (t+cTi −Φi)ui −(ri,k +cTi −Φi)ui = (t−ri,k)ui ≥ lagi(t, S),
a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), lag2(8, S) = 4/3 > 1/3 =
lag2(11, S). By Lemma 13(b), since τ2,3 is the earliest pending job of τ2 at time 8 in S and
time 11 corresponds to c = 1, all jobs of τ2 prior to τ2,4 complete execution before time 11
in S.

We now utilize Lemmas 12 and 13(a) to establish a necessary condition for lagi(t, S) =
lagi(t + cTi, S) to hold. Intuitively, if lagi(t, S) = lagi(t + cTi, S) holds, then in S any job
τi,k’s allocation at or before t must equal the allocation of job τi,k+c at or before t + cTi.

▶ Lemma 14. For any time t and integer c such that min{t, t + cTi} ≥ Φi, if lagi(t, S) =
lagi(t + cTi, S), then the following hold.
(a) If there is no pending job of τi at t in S, then there is no pending job of τi at t + cTi in

S.
(b) If τi,k is the earliest pending job of τi at t in S, then τi,k+c is the earliest pending job of

τi at t + cTi in S.

Proof.
(a) Assume that there is a pending job of τi at t + cTi and let τi,k be the earliest pending

job of τi at t + cTi. Substituting t and c in Lemma 12 by t + cTi and −c, respectively,
job τi,k−c is pending at t, a contradiction.

(b) By Lemma 12, τi,k+c is pending at t + cTi. By Lemma 13(a), all jobs of τi released before
ri,k+c finish execution at or before t + cTi. Thus, τi,k+c is the earliest pending job of τi

at t + cTi. ◀
We now give a necessary condition for the lag-monotonicity property to not hold.

▶ Lemma 15. Let t ≥ Φi + Tmax be the first time instant (if one exists) such that lagi(t −
Tmax, S) > lagi(t, S) holds in S. Then, the following hold.
(a) t > Φi + Tmax.
(b) τi executes during [t − 1, t), but does not execute during [t − Tmax − 1, t − Tmax) in S.

Proof.
(a) Assume that t = Φi+Tmax. Since t−Tmax = Φi, we have lagi(t−Tmax, S) = lagi(Φi, S) =

0. Since Ti divides Tmax, by Lemma 6, we have lagi(t, S) = lagi(Φi + Tmax, S) ≥ 0.
Therefore, lagi(t − Tmax, S) ≤ lagi(t, S), a contradiction.

S. Ahmed and J. H. Anderson 11:9

(b) By (a), t − 1 ≥ Φi + Tmax holds. By the definition of t, we have

lagi(t − Tmax − 1, S) ≤ lagi(t − 1, S). (9)

Assume that τi does not execute during [t − 1, t) or does execute during [t − Tmax −
1, t − Tmax). Then, one of the following three cases holds.

Case 1. τi executes during both [t − Tmax − 1, t − Tmax) and [t − 1, t). By Lemma 4(a),

lagi(t − Tmax, S) = lagi(t − Tmax − 1, S) + ui − 1, (10)

and

lagi(t, S) = lagi(t − 1, S) + ui − 1. (11)

Since lagi(t − Tmax, S) > lagi(t, S), by (10) and (11), we have lagi(t − Tmax − 1, S) >

lagi(t − 1, S), which contradicts (9).
Case 2. τi does not execute during both [t − Tmax − 1, t − Tmax) and [t − 1, t). By

Lemma 4(b),

lagi(t − Tmax, S) = lagi(t − Tmax − 1, S) + ui, (12)

and

lagi(t, S) = lagi(t − 1, S) + ui. (13)

Since lagi(t − Tmax, S) > lagi(t, S), by (12) and (13), we have lagi(t − Tmax − 1, S) >

lagi(t − 1, S), which contradicts (9).
Case 3. τi executes during [t − Tmax − 1, t − Tmax) but does not execute during [t − 1, t).

Thus, (10) and (13) hold. Therefore, by (10), we have

lagi(t − Tmax − 1, S) = lagi(t − Tmax, S) + 1 − ui

≥ {Since ui ≤ 1}
lagi(t − Tmax, S)

> {By the definition of t}
lagi(t, S)

≥ {By (13) and ui ≥ 0}
lagi(t − 1, S),

a contradiction to (9). ◀

▶ Definition 16. Let hi = Tmax/Ti.
The following lemma gives a lag-monotonicity property for SRT-schedulable systems that is
similar to one given previously for HRT-schedulable systems under a job-level fixed-priority
scheduler [7]. Informally, we show that, using Lemmas 11–13 and 15, no task can receive more
allocation in S than I over an interval [t − Tmax, t) because of the existence of higher-priority
jobs of other tasks, i.e., over-allocating a task would require under-allocating another task,
violating the priority ordering of the jobs.

▶ Lemma 17. For any task τi and any time t ≥ Φi + Tmax, lagi(t − Tmax, S) ≤ lagi(t, S).

ECRTS 2021

11:10 Tight Tardiness Bounds Under GEL Schedulers

tt− Tmaxt− Tmax − 1 t− 1

τi,k

τj,ℓ

yi,k

yj,ℓ

τj,q

τi,p

yj,q ≤ yj,ℓ+hj

yi,p ≥ yi,k+hi

release

deadline

PP

execution
time

Figure 2 Illustration of the proof of Lemma 17.

Proof. We use Fig. 2 to illustrate the proof. Assume for a contradiction that t is the first
time instant such that t ≥ Φi + Tmax and there is a task τi with lagi(t − Tmax, S) > lagi(t, S).
By Lemma 15(b), τi executes during [t − 1, t). Let τi,p be the job of τi that executes during
[t − 1, t). Since Ti divides Tmax, by the contrapositive of Lemma 11 (with t and c replaced
by t − Tmax and hi, respectively), there is a pending job of τi at t − Tmax. Let τi,k be the
earliest pending job of τi at t − Tmax.

▷ Claim. ri,k < t − Tmax.

Proof. Assume otherwise. Then, ri,k = t − Tmax and lagi(t − Tmax, S) = 0 hold. Since jobs
are released periodically and t = ri,k + Tmax holds, there is a non-negative integer c such
that t = Φi + cTi, which by Lemma 6 implies lagi(t, S) = lagi(Φi + cTi, S) ≥ 0. Therefore,
lagi(t − Tmax, S) = 0 ≤ lagi(t, S), and t cannot be a time instant with lagi(t − Tmax, S) >

lagi(t, S). Therefore, ri,k < t − Tmax holds. ◁

By the above claim, τi,k is pending at t − Tmax − 1. By Lemma 15(b), τi,k does not
execute during [t − Tmax − 1, t − Tmax) (see Fig. 2). Since lagi(t − Tmax, S) > lagi(t, S),
substituting t and c in Lemma 13(b) by t − Tmax and hi (Def. 16), respectively, all jobs of τi

released before ri,k+hi complete execution before t (at or before t − 1). Thus, p ≥ k + hi and
we have

yi,p ≥ yi,k+hi

= {Since τi releases periodically, yi,k+hi
= yi,k + hiTi holds and by Def. 16}

yi,k + Tmax. (14)

Since τi,k is pending but does not execute during [t−Tmax −1, t−Tmax) and τi,p executes
during [t − 1, t), there must be a task τj that executes during [t − Tmax − 1, t − Tmax), but
does not execute during [t−1, t). Let τj,ℓ executes during [t−Tmax −1, t−Tmax) (see Fig. 2).
By Lemma 15(a), t > Φi + Tmax, and hence, t − 1 ≥ Φi + Tmax. Thus, by the definition of t,
lagj(t−Tmax −1, S) ≤ lagj(t−1, S) holds. Since τj,ℓ executes during [t−Tmax −1, t−Tmax),
it is the earliest pending job of τj at t − Tmax − 1. Substituting τi,k, t, and c in Lemma 12
by τj,ℓ, t − Tmax − 1, and hj , respectively, τj,ℓ+hj

is pending at t − 1. Therefore, τj has a
pending job at t − 1; let τj,q be the earliest pending job of τj at t − 1. Thus, we have

yj,q ≤ yj,ℓ+hj

= {Since τj releases periodically, yj,ℓ+hj = yj,ℓ + hjTj holds and by Def. 16}
yj,ℓ + Tmax. (15)

Since τi,k is the earliest pending job of τi at t − Tmax − 1 but does not execute during
[t − Tmax − 1, t − Tmax), and τj,ℓ executes during [t − Tmax − 1, t − Tmax), we have two cases.

Case 1. yj,ℓ < yi,k. Substituting yj,ℓ by yi,k in (15), we have

yj,q < yi,k + Tmax

S. Ahmed and J. H. Anderson 11:11

≤ {By (14)}
yi,p.

Therefore, τj,q has higher priority than τi,p. Hence, τi,p cannot execute during [t − 1, t), while
τj,ℓ is not executing during [t − 1, t), a contradiction.

Case 2. yj,ℓ = yi,k and j < i (as ties are broken by task index). Substituting yj,ℓ by yi,k in
(15), we have

yj,q ≤ yi,k + Tmax

≤ {By (14)}
yi,p.

Therefore, τj,q has higher or equal priority than τi,p. Since j < i, τi,p cannot execute during
[t − 1, t), while τj,ℓ is not executing during [t − 1, t), a contradiction. ◀

By (4) and Lemma 17, we have the following LAG-monotonicity property.

▶ Corollary 18. For any time instant t ≥ Φmax + Tmax, LAG(t − Tmax, S) ≤ LAG(t, S).

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), we have Tmax = 6,
lag2(4, S) = −1/3 ≤ 2/3 = lag2(10, S) and LAG(4, S) = 1 ≤ 2 = LAG(10, S).

The following lemma, proved in [28], gives a relationship between lag and the deadline of
the earliest pending job of a task. The lemma, originally proved for GEDF, holds for any
schedule S provided that tasks are periodic and (B) holds.

▶ Lemma 19 ([28]). If τi,k is the earliest pending job of τi at time t in S, then

di,k ≤ t − lagi(t, S)
ui

+ Ti. (16)

▶ Corollary 20. If τi,k is the earliest pending job of τi at t in S, then yi,k ≤ t − lagi(t,S)
ui

+ Yi.

Proof. Adding (Yi − Ti) in both side of (16), we have

di,k + (Yi − Ti) ≤ t − lagi(t, S)
ui

+ Ti + (Yi − Ti),

which by (1) and the expression di,k = ri,k + Ti implies

yi,k ≤ t − lagi(t, S)
ui

+ Yi. ◀

The following lemma provides a relationship between lag and tardiness. The proof of this
lemma only depends on Lemma 19.

▶ Lemma 21 ([28]). If lagi(t, S) ≤ Li holds for any t, then the tardiness of τi is at most Li

ui
.

3.2 Deriving Tardiness Bounds
We now derive tardiness bounds for pseudo-harmonic periodic tasks using the properties of
lag derived in Sec. 3.1. We derive our tardiness bounds by first deriving an upper bound
on the lag (Lemma 27) of any task τi, and then applying Lemma 21 on the derived upper
bound. To derive an upper bound on per-task lag, we first give Lemmas 23–26. Def. 22 is
adapted from [1,9, 20].

ECRTS 2021

11:12 Tight Tardiness Bounds Under GEL Schedulers

▶ Definition 22. A time instant t is called busy if at least ⌈U⌉ tasks have pending jobs at
t, and non-busy otherwise. A time interval [t, t′) is called busy (resp., non-busy) if each
instant in the interval is busy (resp., non-busy).

▶ Lemma 23. If τi continuously executes during [t, t′) in S, then lagi(t′, S) ≤ lagi(t, S).

Proof. Follows from Lemma 4(a) and ui ≤ 1. ◀

▶ Lemma 24. If [t, t′) is a busy interval in S, then LAG(t′, S) ≤ LAG(t, S).

Proof. By the definition of I, A(t, t′, I) ≤ U(t′ − t) holds. By Def. 22, we have A(t, t′, S) ≥
⌈U⌉(t′ − t). Therefore, by (5) and U ≤ ⌈U⌉, LAG(t′, S) = LAG(t, S)+A(t, t′, I)−A(t, t′, S) ≤
LAG(t, S) + U(t′ − t) − ⌈U⌉(t′ − t) ≤ LAG(t, S). ◀

▶ Lemma 25. For any t ≥ Φmax + Tmax, if LAG(t − Tmax, S) = LAG(t, S) holds, then for
each τi, lagi(t − Tmax, S) = lagi(t, S) holds.

Proof. Assume that there is a task τi with lagi(t − Tmax, S) ̸= lagi(t, S). Since t ≥ Φmax +
Tmax, by Lemma 17, lagj(t − Tmax, S) ≤ lagj(t, S) holds for any task τj including τi.
Therefore, lagi(t − Tmax, S) < lagi(t, S) holds. By (4), we have

LAG(t − Tmax, S) =
∑

τj∈τ\{τi}

lagj(t − Tmax, S) + lagi(t − Tmax, S)

< {Since lagi(t − Tmax, S) < lagi(t, S) and for all j,
lagj(t − Tmax, S) ≤ lagj(t, S)}∑

τj∈τ\{τi}

lagj(t, S) + lagi(t, S)

= LAG(t, S),

a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(7, S) = 2 = LAG(13, S)
holds. By Lemma 25, we have lag1(7, S) = lag1(13, S) = −1/3, lag2(7, S) = lag2(13, S) = 2/3,
and lag3(7, S) = lag3(13, S) = 5/3.

▶ Lemma 26. For any Li > 0, if t is the first time instant such that lagi(t, S) > Li, then τi

does not execute during [t − 1, t).

Proof. Since Li > 0 and for any t′ ≤ Φi, lagi(t′, S) = 0 holds, we have t > Φi. Therefore,
lagi(t−1, S) ≤ Li holds. Assume that τi executes during [t−1, t). By Lemma 23, lagi(t, S) ≤
lagi(t − 1, S) ≤ Li, a contradiction. ◀

We now show that each task τi’s lag cannot exceed (Tmax + Yi − Ymin)ui. Informally, assume
that t is the first time instant where a task τi’s lag exceeds (Tmax + Yi − Ymin)ui in S. If
[t−Tmax, t) is a busy-interval, then by Lemma 24 (LAG does not increase over a busy interval)
and Corollary 18 (LAG-monotonicity), LAG at t − Tmax and t must be the same in S, which
by Lemma 25 implies τi’s lag at t − Tmax and t is also same. Otherwise, if there is a non-busy
instant tb in [t − Tmax, t), then by Corollary 20, τi’s earliest pending job’s priority must be
higher than any job released at or after tb throughout [tb, t). Therefore, τi would execute
continuously throughout [tb, t), violating Lemma 26. We now give the formal proof.

▶ Lemma 27. For any task τi and any time instant t in S, lagi(t, S) ≤ (Tmax +Yi −Ymin)ui.

S. Ahmed and J. H. Anderson 11:13

tt− Tmax

Ymin

τi,k

τj,ℓ

τp,1

yp,1

yj,ℓ

yi,k

time

release
deadline
PP

t− 1

completion

Figure 3 Illustration of the proof of Lemma 27.

Proof. We use Fig. 3 to illustrate the proof. Assume that there is a time instant t such that
there is a task τi with lagi(t, S) > (Tmax +Yi −Ymin)ui and let t be the first such time instant.
Since I executes τi at the rate of ui, lagi(t′, S) ≤ Tmaxui holds for any t′ ≤ Φi + Tmax.
Therefore, t > Φi + Tmax ≥ Tmax holds.

We first prove that [t − Tmax, t) is a busy interval. Since t > Tmax, [t − Tmax, t) is a valid
time interval. By Lemma 5, there is a pending job of τi at t because lagi(t, S) > 0. Let τi,k

be the earliest pending job of τi at t. By Corollary 20, we have

yi,k ≤ t − lagi(t, S)
ui

+ Yi

< {Since lagi(t, S) > (Tmax + Yi − Ymin)ui}

t − (Tmax + Yi − Ymin)ui

ui
+ Yi

= t − Tmax + Ymin. (17)

By (1), we have

ri,k = yi,k − Yi

< {By (17)}
t − Tmax + Ymin − Yi

≤ {Since Ymin ≤ Yi}
t − Tmax. (18)

Thus, τi,k is pending throughout [t−Tmax, t). Since t is the first time instant with lagi(t, S) >

(Tmax + Yi − Ymin)ui, by Lemma 26, τi,k does not execute during [t − 1, t). Thus, there are
at least m tasks with higher priority jobs than τi,k at t − 1. Let τh be the set of tasks having
higher priority jobs than τi,k at t − 1. Then, |τh| ≥ m holds. By the definition of τh, for
any task τj ∈ τh, yj,ℓ ≤ yi,k holds where τj,ℓ is the earliest pending job of τj at t − 1 (see
Fig. 3). By a calculation similar to that yielding (18), rj,ℓ < t − Tmax holds, which implies
τj,ℓ is pending throughout [t − Tmax, t). Thus, by (17) we have the following property.

Property P: Each task in τh ∪ {τi} has pending jobs with PPs less than Tmax + Yi − Ymin

throughout [t − Tmax, t).

By Property P, [t − Tmax, t) is a busy interval. By Lemma 24, we therefore have

LAG(t, S) ≤ LAG(t − Tmax, S). (19)

We now consider two cases.

ECRTS 2021

11:14 Tight Tardiness Bounds Under GEL Schedulers

Case 1. t ≥ Φmax + Tmax. By Corollary 18, we have

LAG(t, S) ≥ LAG(t − Tmax, S). (20)

By (19) and (20), we have

LAG(t, S) = LAG(t − Tmax, S). (21)

Since t ≥ Φmax + Tmax and (21) holds, by Lemma 25, lagi(t, S) = lagi(t − Tmax, S) holds.
Therefore, t cannot be the first time instant with lagi(t, S) > (Tmax + Yi − Ymin)ui.

Case 2. t < Φmax + Tmax. Let τ s be the set of tasks such that for each τp ∈ τ s, t − Tmax <

Φp ≤ Φmax holds. Since each task τp ∈ τ s releases its first job after t − Tmax, rp,1 > t − Tmax

and lagp(t − Tmax, S) = 0 hold (see Fig. 3). Thus, by (1) and Yp ≥ Ymin, we have

(∀τp ∈ τ s : yp,1 > t − Tmax + Ymin). (22)

By Property P and (22), no task τp ∈ τ s executes during [t − Tmax, t). Therefore, we have

(∀τp ∈ τ s : lagp(t, S) ≥ 0 = lagp(t − Tmax, S)). (23)

By the definition of τ s, for any task τq ∈ τ \ τ s, t − Tmax ≥ Φq holds, which implies
t ≥ Φq + Tmax. Therefore, by Lemma 17, we have

(∀τq ∈ τ \ τ s : lagq(t, S) ≥ lagq(t − Tmax, S)). (24)

Since t is the first time instant with lagi(t, S) > (Tmax + Yi − Ymin)ui > 0, lagi(t′, S) ≤
(Tmax + Yi − Ymin)ui holds for any t′ < t. Thus, we have

lagi(t, S) > lagi(t − Tmax, S). (25)

By (4), we have

LAG(t, S) =
∑
τj∈τ

lagj(t, S)

=
∑

τj∈τs

lagj(t, S) +
∑

τj∈τ\(τs∪{τi})

lagj(t, S) + lagi(t, S)

> {By (23), (24), and (25)}∑
τj∈τs

lagj(t − Tmax, S) +
∑

τj∈τ\(τs∪{τi})

lagj(t − Tmax, S) + lagi(t − Tmax, S)

= LAG(t − Tmax, S),

a contradiction to (19). ◀

We now give our tardiness bound in the following Theorem.

▶ Theorem 28. The tardiness of task τi is at most Tmax + Yi − Ymin in S.

Proof. The theorem follows from Lemmas 21 and 27. ◀

By Theorem 28, we have following tardiness bounds under GEDF and FIFO.

▶ Theorem 29. The tardiness of a task τi in a GEDF and FIFO schedule is at most Tmax +
Ti − Tmin and Tmax, respectively.

S. Ahmed and J. H. Anderson 11:15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

τ1

τ2

τ3

τ4

τ5

τ6

τ1,1 τ1,2 τ1,3 τ1,4

τ2,3 τ2,4τ2,2τ2,1

τ3,3τ3,2τ3,1

τ4,3τ4,2τ4,1

τ5,3τ5,2τ5,1

τ6,2 τ6,3τ6,1

release

deadline

completion

execution

time0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 4 Schedule corresponding to Ex. 31.

τi

release
deadline

PP
task

τi,k

τ
s

i

τ
s

i,ℓ−1 τ
s

i,ℓexecution
server
allocationcompletion

Figure 5 Scheduling sporadic tasks by GEL-scheduled periodic servers.

Removing Assumption (B). Prior work has shown that removing Assumption (B) does not
invalidate GEDF tardiness bounds because its removal cannot cause work to shift later [28].
It can be similarly removed for any GEL scheduler.

▶ Theorem 30. Let τ be a periodic task set, S be a GEL schedule of τ satisfying (B), and S ′

be a GEL schedule with the same PP for each job of τ without satisfying (B). Then no job in
S ′ finishes later than in S.

Tightness. The following example shows the tightness of the tardiness bound in Theorem 28.

▶ Example 31. Consider a task system τ with m + 1 tasks where τi = (0, m, m + 1). For any
job-level fixed-priority scheduler, the maximum tardiness among all tasks is m−1 = Tmax −2.
For both FIFO and GEDF, the tardiness bound of τ by Theorem 28 is Tmax. A GEDF/FIFO
schedule corresponding to m = 5 is shown in Fig. 4. Jobs τ6,1, τ5,2, and τ4,3 have tardiness
of 4.0, 3.0, and 2.0 time units, respectively. Similarly, τ3,4 has tardiness of 1.0 time unit (not
shown in Fig. 4). τ1 and τ2 have no tardy job. The schedule repeats after 30.0 time units.◀

Sporadic tasks. We can enable similar tardiness bounds for sporadic tasks using GEL-
scheduled periodic servers. For each task τi, we create a server task τ s

i = (0, Ci, Ti). We
schedule the server tasks by a GEL scheduler where each server job of τ s

i receives an allocation
of exactly Ci time units. We schedule job τi,k on server job τ s

i,ℓ where di,k ∈ (rs
i,ℓ, ds

i,ℓ] (see
Fig. 5). Since both τi and τ s

i have the same period, no other job of τi is scheduled on
τ s

i,ℓ. Since τ s
i,ℓ receives allocation of Ci time units, τi,k finishes execution at or before τ s

i,ℓ

completes. Since ds
i,ℓ − di,k ≤ Ti, we have the following theorem.

▶ Theorem 32. A pseudo-harmonic sporadic task system τ can be scheduled using periodic
servers scheduled by a GEL scheduler such that each task τi’s tardiness is at most Tmax +
Yi − Ymin + Ti.

Discussion. While the tardiness bound given in Theorem 28 is tight in general, the tardiness
bound is not tight for task systems with a smaller total utilization than m. For instance, a
HRT-schedulable task system also has the tardiness bound specified in Theorem 28. Although
the tardiness bounds in [9, 11, 27] can have smaller bounds when the total utilization is less
than m compared to systems with full utilization, they also have similar issues, e.g., positive
tardiness bounds for HRT-schedulable task systems.

ECRTS 2021

11:16 Tight Tardiness Bounds Under GEL Schedulers

Although the tardiness bound given in Theorem 28 is Tmax under FIFO, the tardiness
bound under GEDF can be larger than Tmax. The tardiness of a task can actually exceed
Tmax under GEDF as illustrated in the following example.

▶ Example 33. Consider a task system with five tasks τ1 = (1, 4, 5), τ2 = (3, 3, 4), τ3 =
(9, 19, 25), τ4 = (20, 99, 100), τ5 = (75, 70, 100) scheduled on four processors by GEDF. It can
be shown that the tardiness of the job τ4,48 is 104 time units, which is Tmax + 4.

4 Exact Tardiness Bounds

Having derived a tardiness bound for pseudo-harmonic periodic tasks that does not depend
on the processor or task count in Sec. 3, we now show how to derive an exact tardiness bound
in pseudo-polynomial time. We do so by deriving an upper bound on the length of the prefix
of a schedule during which tasks may experience increasing tardiness (afterwards, they do
not). We show, in Lemma 39, that if there is a time instant t ≥ Φmax when LAG has the
same values at t and t − Tmax, then for any t′ ≥ t, the LAG values at t′ and t′ − Tmax are also
equal. Intuitively, this implies that the schedule in the interval [t − Tmax, t) repeats after t.
Moreover, since the lag of each task is bounded (Lemma 27), we can derive an upper bound
on LAG (Lemma 38). Therefore, since LAG does not decrease over any interval of length
Tmax starting after Φmax (LAG-monotonicity), there must be a finite interval [Φmax, t′) such
that LAG strictly increases over any interval of length Tmax in [Φmax, t′). We derive an upper
bound on such an interval in Lemma 41. Intuitively, for each task, a job with the maximum
tardiness of the task must complete at or before the schedule starts to cycle. We first consider
task systems satisfying (B). We define a max-tardiness-increasing interval as follows.

▶ Definition 34. Given a periodic task system τ , a max-tardiness-increasing interval in a
schedule S is a finite interval of time [0, t] such that for each task τi ∈ τ , if the maximum
tardiness of τi’s jobs that complete execution at or before t is xi in S, then the tardiness of
τi is xi in S.

We now derive an upper bound on the max-tardiness-increasing interval of a pseudo-harmonic
periodic task system τ satisfying (B).

▶ Definition 35. Let F be the sum of the n − 1 largest values of Ci(1 − ui); i.e., F =∑
n−1 largest Ci(1−ui). Let G be the sum of the ⌈U⌉−1 largest values of (Tmax +Yi −Ymin)ui;

i.e., G =
∑

⌈U⌉−1 largest(Tmax + Yi − Ymin)ui. Let E = ⌈F + G + 1⌉.

The following lemma gives a trivial lower bound on the lag of a task at any time t in S. A
task’s lag is minimum when its active job finishes execution as early as possible in S, i.e., Ci

time units after its release.

▶ Lemma 36. For any task τi and time instant t, lagi(t, S) ≥ −Ci(1 − ui).

Proof. If t ≤ Φi, then lagi(t, S) = 0, so assume t > Φi. Let τi,k be the active job of
τi at t and ei be the cost of the completed portion of τi,k at or before t in S. Therefore,
Ai(0, t, S) =

∑k−1
j=1 Ci +ei. By the definition of I, all jobs of τi prior to τi,k complete execution

by t in I. Since jobs can only execute after their release, by the time τi,k executes for ei units
in S, τi,k must execute at least eiui units of τi,k in I. Therefore, Ai(0, t, I) ≥

∑k−1
j=1 Ci + eiui.

Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) ≥
∑k−1

j=1 Ci +eiui −
∑k−1

j=1 Ci −
ei = −ei(1 − ui). Since ei ≤ Ci, we have lagi(t, S) ≥ −Ci(1 − ui). ◀

S. Ahmed and J. H. Anderson 11:17

We now give a lower bound on LAG at Φmax in S. By the definition of Φmax, there is at
least one task with lag that equals 0 at Φmax.

▶ Lemma 37. LAG(Φmax, S) ≥ −F .

Proof. Let τ ′ be the set of tasks such that for any τi ∈ τ ′, Φi = Φmax holds. Therefore,
lagi(Φmax, S) = 0 holds for any τi ∈ τ ′. Thus,

∑
τi∈τ ′ lagi(Φmax, S) = 0. Hence, by (4), we

have LAG(Φmax, S) =
∑

τi∈τ lagi(Φmax, S) =
∑

τi∈τ\τ ′ lagi(Φmax, S), which by Lemma 36
implies, LAG(Φmax, S) ≥

∑
τi∈τ\τ ′ −Ci(1 − ui). By the definition of Φmax, |τ ′| ≥ 1 holds.

Therefore, by Def. 35, we have LAG(Φmax, S) ≥ −
∑

n−1 largest Ci(1 − ui) = −F . ◀

We now derive an upper bound on LAG at any time t in S by determining an upper bound
on LAG at the latest non-busy time instant at or before t.

▶ Lemma 38. For any t, LAG(t, S) ≤ G.

Proof. Let tb be the latest non-busy time instant at or before t, otherwise let tb = 0. We
first derive an upper bound on LAG(tb, S). If tb = 0, then LAG(tb, S) = 0. Otherwise, let
τ ′ ⊆ τ be the tasks with pending jobs at tb. By (4),

LAG(tb, S) =
∑

τi∈τ ′

lagi(tb, S) +
∑

τi /∈τ ′

lagi(tb, S)

≤ {By the contrapositive of Lemma 5, (∀τi /∈ τ ′ : lagi(tb, S) ≤ 0) holds}∑
τi∈τ ′

lagi(tb, S)

≤ {By Lemma 27}∑
τi∈τ ′

(Tmax + Yi − Ymin)ui

≤ {By Def. 22, |τ ′| < ⌈U⌉}∑
⌈U⌉−1 largest

(Tmax + Yi − Ymin)ui

= {By Def. 35}
G.

By Lemma 24, LAG(t, S) ≤ LAG(tb, S) ≤ G holds. ◀

Lemmas 37 and 38 imply that LAG cannot increase more than F + G units over any interval
[Φmax, t). We use this fact later in Lemma 41. We now show that once LAG(t, S) =
LAG(t − Tmax, S) holds for some t, the equality also holds for all time instances after t.
Informally, by Lemma 25, if LAG(t, S) = LAG(t − Tmax, S) holds, then for any task τi,
lagi(t, S) = lagi(t − Tmax, S) also holds. This implies that the scheduling decisions at t are
the same as at t − Tmax. Therefore, the schedule in [t − Tmax, t) repeats in [t, t + Tmax).

▶ Lemma 39. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds, then for any t ≥ t′, LAG(t − Tmax, S) = LAG(t, S) holds.

Proof. Assume for a contradiction that there exists a t ≥ t′ such that LAG(t − Tmax, S) ̸=
LAG(t, S) and let t be the first such time instant. By the definition of t and t′, t > t′ ≥
Φmax +Tmax and t−1 ≥ Φmax +Tmax hold. Therefore, LAG(t−Tmax −1, S) = LAG(t − 1, S)
holds. Thus, by Lemma 25, we have

(∀τi : lagi(t − Tmax − 1, S) = lagi(t − 1, S)). (26)

Since Ti divides Tmax, by (26) and Lemma 14(a) (with t and c replaced by t − Tmax − 1 and
hi, respectively), we have the following property.

ECRTS 2021

11:18 Tight Tardiness Bounds Under GEL Schedulers

Property Q: Any task with no pending job at t − Tmax − 1 has no pending job at t − 1.
Let τ ′ ⊆ τ be the set of tasks with pending jobs at t − Tmax − 1. Let τi,k be the earliest
pending job of τi ∈ τ ′ at t − Tmax − 1. By Def. 16, (26) and Lemma 14(b) (with t and c

replaced by t − Tmax − 1 and hi, respectively), τi,k+hi is the earliest pending job of τi at
t − 1. Since τi releases jobs periodically, we have yi,k+hi

= yi,k + hiTi = yi,k + Tmax. Thus,
the tasks in τ ′ have the same priority ordering at both t − Tmax − 1 and t − 1, which along
with Property Q implies that the same set of tasks execute during both [t − Tmax − 1) and
[t − 1, t). Hence, A(t − Tmax − 1, t − Tmax, S) = A(t − 1, t, S). Since t − Tmax − 1 ≥ Φmax,
we have A(t − Tmax − 1, t − Tmax, I) = A(t − 1, t, I). Thus, by (5) we have

LAG(t, S) = LAG(t − 1, S) + A(t − 1, t, I) − A(t − 1, t, S)
= {Since LAG(t − 1, S) = LAG(t + Tmax − 1)}

LAG(t − Tmax − 1, S) + A(t − 1, t, I) − A(t − 1, t, S)
= {Since A(t − 1, t, S) = A(t − Tmax − 1, t − Tmax, S) and

A(t − 1, t, I) = A(t − Tmax − 1, t − Tmax, I)}
= LAG(t − Tmax − 1, S) + A(t − Tmax − 1, t − Tmax, I)

− A(t − Tmax − 1, t − Tmax, S)
= {By (5)}

LAG(t − Tmax, S),

a contradiction. ◀

▶ Corollary 40. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds, then lagi(t − Tmax, S) = lagi(t, S) holds for any t ≥ t′ and τi ∈ τ .

Proof. Follows from Lemmas 39 and 25. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(6, S) = LAG(12, S) holds.
Therefore, for all task τi and t ≥ 12, LAG(t−Tmax, S) = LAG(t, S) = 2 and lagi(t−Tmax, S) =
lagi(t, S) hold. We now show that there is a time instant t after Φmax + Tmax and at or
before Φmax + ETmax where LAG has the same value at t and t − Tmax. Therefore, the
schedule starts to cycle at or before Φmax + ETmax. Intuitively, LAG must increase by at
least 1.0 execution unit, if not equal, over each interval [Φmax + iTmax, Φmax + (i + 1)Tmax)
where 0 ≤ i < E. Therefore, since E = ⌈F + G + 1⌉, LAG at Φmax + ETmax must be more
than G, contradicting Lemma 38.

▶ Lemma 41. There is a time instant t ∈ [Φmax + Tmax, Φmax + ETmax] such that LAG(t −
Tmax, S) = LAG(t, S) holds.

Proof. Assume LAG(t−Tmax, S) ̸= LAG(t, S) holds for all t ∈ [Φmax +Tmax, Φmax +ETmax].
Let t be any arbitrary time instant in [Φmax +Tmax, Φmax +ETmax]. Since t ≥ Φmax +Tmax,
by Corollary 18, we have LAG(t − Tmax, S) ≤ LAG(t, S). Thus, LAG(t − Tmax, S) < LAG(t, S)
holds. Since tasks release jobs periodically and t − Tmax ≥ Φmax holds, we have

A(t − Tmax, t, I) = UTmax. (27)

Since U =
∑n

i=1
Ci

Ti
and hi = Tmax/Ti, we have U =

∑n

i=1
hiCi

Tmax
. Therefore, UTmax =∑n

i=1 hiCi. Since both hi and Ci are integers, UTmax is also an integer. By (5), we have

A(t − Tmax, t, S) = A(t − Tmax, t, I) + LAG(t − Tmax, S) − LAG(t, S)

S. Ahmed and J. H. Anderson 11:19

< {Since LAG(t − Tmax, S) < LAG(t, S)}
A(t − Tmax, t, I)

= {Since A(t − Tmax, t, I) = UTmax}
UTmax (28)

Since UTmax and A(t − Tmax, t, S) are integers, by (28) we have

A(t − Tmax, t, S) ≤ UTmax − 1. (29)

Now, by (5), we have

LAG(Φmax + ETmax, S) = LAG(Φmax, S) + A(Φmax, Φmax + ETmax, I)
− A(Φmax, Φmax + ETmax, S)

= {Since [Φmax, Φmax + ETmax) =

∪E−1
i=0 [Φmax + iTmax, Φmax + (i + 1)Tmax).}

LAG(Φmax, S) +
E−1∑
i=0

(A(Φmax + iTmax, Φmax + (i + 1)Tmax, I)

− A(Φmax + iTmax, Φmax + (i + 1)Tmax, S))
≥ {Substituting t = Φmax + (i + 1)Tmax in (27) and (29)}

LAG(Φmax, S) +
E−1∑
i=0

(UTmax − UTmax + 1)

= LAG(Φmax, S) +
E−1∑
i=0

1

≥ {By Lemma 37 and Def. 35}
− F + F + G + 1

> G,

a contradiction to Lemma 38. ◀

We now show that a job with the maximum tardiness must complete execution at or before
Φmax + ETmax by Lemma 42 and Theorem 43.

▶ Lemma 42. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds and xi is the maximum tardiness of any of task τi’s jobs that complete
execution at or before t′ in S, then the tardiness of τi is xi in S.

Proof. Assume that the tardiness of τi is more than xi and let τi,k be the first job with
tardiness exceeding xi. Let t be the time instant when τi,k finishes execution. Then, t > t′

holds. Since LAG(t′ − Tmax, S) = LAG(t′, S) and t − 1 ≥ t′ hold, by Corollary 40, we have
lagi(t − Tmax − 1, S) = lagi(t − 1, S). Since hi = Tmax/Ti and τi,k is pending at t − 1,
substituting t and c in Lemma 14(b) by t − 1 and −hi, respectively, τi,k−hi

is pending at
t − 1 − Tmax. Therefore, τi,k−hi

finishes execution at or after t − Tmax. Hence, we have

fi,k−hi − di,k−hi ≥ t − Tmax − di,k−hi

= {Since τi releases periodically, di,k−hi
= di,k − hiTi}

t − Tmax − di,k + hiTi

= {By the definition of t and Def. 16}
fi,k − di,k.

ECRTS 2021

11:20 Tight Tardiness Bounds Under GEL Schedulers

Therefore, max{0, fi,k−hi − di,k−hi} ≥ max{0, fi,k − di,k} holds and τi,k’s tardiness cannot
exceed τi,k−hi

’s tardiness. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(t−Tmax, S) = LAG(t, S)
holds for the first time at time 12. Job τ3,1 has the maximum tardiness in S.

▶ Theorem 43. If the maximum tardiness of a task τi’s jobs that completes at or before
Φmax + ETmax is xi in S, then the tardiness of τi is xi in S.

Proof. By Lemma 41, there is a time instant t ∈ [Φmax + Tmax, Φmax + ETmax] such that
LAG(t − Tmax, S) = LAG(t, S) holds. Let zi be the maximum tardiness of τi’s jobs that
complete execution at or before t in S. By Lemma 42, the tardiness of τi is zi. Since
t ∈ [Φmax + Tmax, Φmax + ETmax], by the definition of xi, zi ≤ xi holds. Since the tardiness
of τi in S is zi, zi ≥ xi holds. Therefore, xi = zi. ◀

By Theorems 30 and 43, if the maximum tardiness of τi’s jobs that complete at or before
Φmax + ETmax is xi in a GEL schedule S satisfying (B), then τi’s tardiness is at most xi in a
GEL schedule S ′ not satisfying (B).

Deriving tardiness. By Theorem 43, we can determine an exact tardiness bound of each
task by simulating a schedule up to time Φmax + ETmax. By Def. 35, we have F =∑

n−1 largest Ci(1 − ui) ≤
∑n

i=1 Ci =
∑n

i=1 Tiui ≤ Tmax

∑n
i=1 ui ≤ mTmax. By Def. 35,

G =
∑

⌈U⌉−1 largest(Tmax+Yi−Ymin)ui ≤
∑

m−1 largest(Tmax+Ymax) = (m−1)(Tmax+Ymax)
holds. Therefore, we have E = ⌈F + G + 1⌉ ≤ ⌈mTmax + (m − 1)(Tmax + Ymax) + 1⌉. Since
scheduling decisions at each time instant are determined in polynomial time, simulating a
schedule up to time Φmax + ETmax takes pseudo-polynomial time. By Lemma 42, we can
terminate the simulation early at time t ≥ Φmax + Tmax by checking whether LAG(t, S) =
LAG(t − Tmax, S) holds. This would require storing the last Tmax values of LAG at any time.
We can also store one value of LAG at any time, e.g., the last time instant that is multiple
of Tmax, and check for LAG-equality Tmax time after the last-stored instance. This would
require simulating for at most Tmax time units more than that required when Tmax values of
LAG are stored. We note that this method can be adapted for non-pseudo-harmonic systems
with Tmax and G replaced with H and a corresponding upper bound on LAG, respectively.

5 Experiments

We now present the results of simulation experiments we conducted to evaluate our tardiness
bounds and the effectiveness of our approach to derive exact tardiness bounds.

We generated task systems randomly for systems with 4 to 32 processors. We chose
light, medium, heavy, or wide task utilizations, for which task utilizations were uniformly
distributed in [0.01, 0.3], [0.3, 0.7], [0.7, 1], and [0.01, 1], respectively. We chose task periods
uniformly from {4, 5, 10, 20, 25, 50, 100}ms. In case there was no task with a period of 100ms,
we randomly chose a task and scaled its parameters to set its period to 100ms. We rounded
down each execution cost to its nearest integer and disregarded any task if its execution cost
became zero. We chose the offset of each task randomly between 0 and its period. For each
utilization cap m and utilization distribution, we generated 1,000 task systems by adding
tasks until five attempts to add a next task without exceeding the utilization cap failed. To
compare tardiness bounds with respect to system utilization, we considered a 24-processor
platform and generated 1,000 task systems for each utilization cap within [16, 24] with a step
size of 0.5.

S. Ahmed and J. H. Anderson 11:21

5 10 15 20 25 30
Number of processors

0

5

10

15

20

25

30

Av
er

ag
e

M
ax

im
um

 T
ar

di
ne

ss
 (m

s)

EDF-TGT EDF-DA EDF-EXT FIFO-TGT FIFO-LA FIFO-EXT

5 10 15 20 25 30
Number of processors

0

5

10

15

20

25

30

A
v
e
ra

g
e
 R

e
la

ti
v
e

 T
a
rd

in
e
s
s

(a) Average relative tardiness for
heavy task utilizations with re-
spect to processor count.

5 10 15 20 25 30
Number of processors

0
25
50
75

100
125
150
175

M
a
x
im

u
m

 R
e
la

ti
v
e

 T
a
rd

in
e
s
s

(b) Maximum relative tardiness
for heavy task utilizations with re-
spect to processor count.

5 10 15 20 25 30
Number of processors

0

1

2

3

4

5

6

A
v
e
ra

g
e
 R

e
la

ti
v
e

 T
a
rd

in
e
s
s

(c) Average relative tardiness for
light task utilizations with respect
to processor count.

16 18 20 22 24
System Utilization

0.00

0.05

0.10

0.15

0.20

0.25

A
v
e
ra

g
e
 R

e
la

ti
v
e

 T
a
rd

in
e
s
s

(d) Average relative tardiness for
heavy task utilizations with re-
spect to system utilization.

16 18 20 22 24
System Utilization

0.0000
0.0025
0.0050
0.0075
0.0100
0.0125
0.0150
0.0175

A
v
e
ra

g
e
 R

e
la

ti
v
e

 T
a
rd

in
e
s
s

(e) Average relative tardiness for
light task utilizations with respect
to system utilization.

16 18 20 22 24
System Utilization

0.00

0.02

0.04

0.06

0.08

0.10

0.12

A
v
e
ra

g
e
 R

e
la

ti
v
e

 T
a
rd

in
e
s
s

(f) Average relative tardiness for
wide task utilizations with respect
to system utilization.

Figure 6 Average and maximum relative tardiness with respect to the number of processors and
system utilizations.

We used relative tardiness bounds as our evaluation metric, where a task’s relative tardiness
is computed by dividing its tardiness by its period. For each task system, we computed exact
tardiness bounds using Theorem 43 and tardiness bounds using Theorem 28 under GEDF
(EDF-EXT and EDF-TGT, respectively) and FIFO (FIFO-EXT and FIFO-TGT, respectively).
We also computed tardiness bounds under GEDF and FIFO using methods by Devi and
Anderson [9] (EDF-DA), and Leontyev and Anderson [19] (FIFO-LA), respectively. We did not
compare against the tighter bounds under GEDF from [12,27] as they are computationally
expensive to compute and have trends similar to EDF-DA [27] (In our attempt to compute
tardiness bounds from [27] using the most efficient implementation from [18], we found that
computing tardiness bounds for a task system on 16 or more processors can take several
hours to complete). We measured the time taken to compute EDF-EXT and FIFO-EXT for
each task system. We present a representative selection of our results in Fig. 6.

▶ Observation 1. For heavy utilizations, the average relative tardiness bound for EDF-TGT
was 7.58% smaller than for EDF-DA for large processor counts (at least 12 processors). The
maximum relative tardiness bound for EDF-TGT was 56.83% smaller than for EDF-DA. The
average and maximum relative tardiness bounds for FIFO-TGT were 58.47% and 83.70%
smaller than for FIFO-LA, respectively.

ECRTS 2021

11:22 Tight Tardiness Bounds Under GEL Schedulers

This can be seen in insets (a) and (b) of Fig. 6. While the mean for EDF-DA can be smaller
than that for EDF-TGT for smaller processor counts (Fig. 6(a)), the maximum for EDF-DA
is generally larger than for EDF-TGT (Fig. 6(b)). This is because EDF-DA and FIFO-LA tend
to be larger when task utilizations are large.

▶ Observation 2. For light utilizations, the average and maximum relative tardiness bounds
for EDF-TGT were 1199% and 447% larger than for EDF-DA, respectively. The average and
maximum relative tardiness bounds for FIFO-TGT were 90.47% and 13.65% larger than for
FIFO-LA, respectively.

This can be seen in Fig. 6(c). EDF-DA (resp., FIFO-LA) is tighter than EDF-TGT (resp.,
FIFO-TGT) for light per-task utilizations. This is because EDF-DA and FIFO-LA are functions
of the sum of largest m − 1 task utilizations, while EDF-TGT and FIFO-TGT do not depend
on task utilizations. Note that it is possible to derive a tardiness bound that is a function of
task utilizations by a method similar to [9,19] using the upper bound on LAG from Lemma 38.

▶ Observation 3. Across all task systems, the average relative tardiness for EDF-EXT and
FIFO-EXT was 0.09 and 0.17, respectively. The maximum relative tardiness for EDF-EXT and
FIFO-EXT was 4.75 and 14.0, respectively. For heavy and light utilizations, the average relative
tardiness for EDF-EXT was 1.11% larger and 99.9% smaller than FIFO-EXT, respectively.

This can be seen in insets (a), (b), and (c) of Fig. 6. Average and maximum relative tardiness
are usually smaller under GEDF than FIFO. However, average and maximum tardiness can
be larger under GEDF than FIFO (see Ex. 33).

▶ Observation 4. For heavy utilizations and high system utilization, the average relative
tardiness for EDF-EXT was larger than FIFO-EXT. For the remaining utilization distributions,
the average relative tardiness for EDF-EXT were smaller than FIFO-EXT.

This can be seen in insets (d), (e), and (f) of Fig. 6. GEDF has smaller average relative
tardiness than FIFO on average.

▶ Observation 5. Across all task systems, the average time to compute EDF-EXT and
FIFO-EXT was 386 and 64.5 ms, respectively. The maximum time to compute EDF-EXT and
FIFO-EXT was 6.95 and 0.63 sec, respectively. (These computations were done on 2.50 GHz
Intel processors with 30M cache and 256GB RAM.)

This implies that exact tardiness bounds can often be efficiently computed. The running
time increases when the number of processors is large. Note that the running time may
increase significantly when Tmax is large.

6 Conclusion

In this paper, we have presented a tardiness bound for pseudo-harmonic periodic tasks under
GEL schedulers. This is the first tardiness bound under any practical global scheduler that
does not increase with respect to the number of tasks or processors. We have shown the
tightness of our bound and provided a method to determine similar tardiness bounds for
pseudo-harmonic sporadic tasks. We have also provided a method to compute exact tardiness
bounds for pseudo-harmonic periodic tasks under GEL schedulers.

Several other issues regarding tardiness under global schedulers remain unresolved. For
example, we plan to investigate whether non-preemptive GEL schedulers provide tardiness
bounds that do not depend on the processor or task count for pseudo-harmonic task systems.

S. Ahmed and J. H. Anderson 11:23

We also want to investigate whether a similar tardiness bound exists for non-pseudo-harmonic
task systems under any GEL scheduler. Finally, we want to devise faster methods to compute
exact tardiness bounds for both pseudo-harmonic and non-pseudo-harmonic task systems.

References
1 S. Ahmed and J. Anderson. A soft-real-time-optimal semi-clustered scheduler with a constant

tardiness bound. In RTCSA’20, pages 1–10. IEEE, 2020.
2 J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of asynchronous periodic tasks.

Journal of Computer and System Sciences, 68(1):157–204, 2004.
3 S. Anssi, S. Kuntz, S. Gérard, and F. Terrier. On the gap between schedulability tests and an

automotive task model. Journal of Systems Architecture, 59(6):341–350, 2013.
4 S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress: A notion of fairness

in resource allocation. Algorithmica, 15(6):600–625, 1996.
5 S. Baruah, J. Gehrke, and C. Plaxton. Fast scheduling of periodic tasks on multiple resources.

In IPSS’95, pages 280–288. IEEE, 1995.
6 J. Busquets-Mataix, J. Serrano, R. Ors, P. Gil, and A. Wellings. Using harmonic task-sets to

increase the schedulable utilization of cache-based preemptive real-time systems. In RTCSA
’96, pages 195–202. IEEE, 1996.

7 L. Cucu-Grosjean and J. Goossens. Exact schedulability tests for real-time scheduling of peri-
odic tasks on unrelated multiprocessor platforms. Journal of Systems Architecture, 57(5):561–
569, 2011.

8 U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor.
In RTSS ’05, pages 330–341. IEEE, 2005.

9 U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multiprocessor.
Real-Time Systems, 38(2):133–189, 2008.

10 S. Dhall and C. Liu. On a real-time scheduling problem. Operations Research, 26(1):127–140,
1978.

11 J. Erickson, J. Anderson, and B. Ward. Fair lateness scheduling: reducing maximum lateness
in G-EDF-like scheduling. Real-Time Systems, 50(1):5–47, 2014.

12 J. Erickson, U. Devi, and S. Baruah. Improved tardiness bounds for global EDF. In ECRTS’10,
pages 14–23. IEEE, 2010.

13 L. Abeni et al. Deadline task scheduling. Linux kernel documentation. https://github.
com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst. [On-
line; accessed 06-May-2021].

14 Y. Fu, N. Kottenstette, Y. Chen, C. Lu, X. Koutsoukos, and H. Wang. Feedback thermal
control for real-time systems. In RTAS’10, pages 111–120. IEEE, 2010.

15 J. Goossens, E. Grolleau, and L. Cucu-Grosjean. Periodicity of real-time schedules for dependent
periodic tasks on identical multiprocessor platforms. Real-Time Systems, 52(6):808–832, 2016.

16 C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. Anderson. Soft real-time on multi-
processors: Are analysis-based schedulers really worth it? In RTSS’11, pages 93–103. IEEE,
2011.

17 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In WATERS’15, 2015.

18 M. Leoncini, M. Montangero, and P. Valente. A parallel branch-and-bound algorithm to
compute a tighter tardiness bound for preemptive global EDF. Real-Time Systems, 55(2):349–
386, 2019.

19 H. Leontyev and J. Anderson. Tardiness bounds for FIFO scheduling on multiprocessors. In
ECRTS’07, page 71. IEEE, 2007.

20 H. Leontyev and J. Anderson. Generalized tardiness bounds for global multiprocessor scheduling.
Real-Time Systems, 44(1-3):26–71, 2010.

ECRTS 2021

https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst

11:24 Tight Tardiness Bounds Under GEL Schedulers

21 H. Li, J. Sweeney, K. Ramamritham, R. Grupen, and P. Shenoy. Real-time support for mobile
robotics. In RTAS’03, pages 10–18. IEEE, 2003.

22 V. Nélis, P. Yomsi, and J. Goossens. Feasibility intervals for homogeneous multicores, asyn-
chronous periodic tasks, and FJP schedulers. In RTNS’13, pages 277–286. ACM, 2013.

23 P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. RUN: optimal multiprocessor
real-time scheduling via reduction to uniprocessor. In RTSS’11, pages 104–115. IEEE, 2011.

24 C. Shih, S. Gopalakrishnan, P. Ganti, M. Caccamo, and L. Sha. Scheduling real-time dwells
using tasks with synthetic periods. In RTSS’03, pages 210–219. IEEE, 2003.

25 S. Tang and J. Anderson. Towards practical multiprocessor EDF with affinities. In RTSS’20,
IEEE, pages 89–101, 2020.

26 S. Tang, S. Voronov, and J. Anderson. GEDF tardiness: Open problems involving uniform
multiprocessors and affinity masks resolved. In ECRTS’19, pages 13:1–13:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2019.

27 P. Valente. Using a lag-balance property to tighten tardiness bounds for global EDF. Real-Time
Systems, 52(4):486–561, 2016.

28 K. Yang and J. Anderson. On the soft real-time optimality of global EDF on uniform
multiprocessors. In RTSS’17, pages 319–330. IEEE, 2017.

Feasibility Analysis of Conditional DAG Tasks
Sanjoy Baruah #

Washington University in Saint Louis, MO, USA

Alberto Marchetti-Spaccamela #

La Sapienza University, Rome, Italy

Abstract
Feasibility analysis for Conditional DAG tasks (C-DAGs) upon multiprocessor platforms is shown
to be complete for the complexity class pspace. It is shown that as a consequence integer linear
programming solvers (ILP solvers) are likely to prove inadequate for such analysis. A demarcation is
identified between the feasibility-analysis problems on C-DAGs that are efficiently solvable using ILP
solvers and those that are not, by characterizing a restricted class of C-DAGs for which feasibility
analysis is shown to be efficiently solvable using ILP solvers.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Software and its engineering → Real-time schedulability

Keywords and phrases Multiprocessor feasibility analysis, Conditional Directed Acyclic Graphs,
PSPACE-complete

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.12

Funding Sanjoy Baruah: National Science Foundation Grants CNS-1814739 and CPS-1932530.

1 Introduction

This paper investigates the feasibility analysis problem for C-DAG tasks: the problem of
determining whether a given real-time workload which is specified in the Conditional Directed
Acyclic Graph task (C-DAG) model [6, 17] and is to be implemented upon a particular
multiprocessor platform, can be scheduled to always complete by a specified deadline. Since it
follows from earlier results [19] that a simpler version of this problem, in which the workload is
specified as a DAG (i.e., without any conditional nodes) is already NP-hard in the strong sense,
we should not expect to obtain algorithms with polynomial or pseudo-polynomial running
times that solve our problem exactly. Two approaches to such feasibility analysis problems
(i.e., those that are provably NP-hard in the strong sense) have previously been investigated
in the real-time literature: (i) design approximation algorithms that run in polynomial or
pseudo-polynomial time; or (ii) derive exact algorithms that (necessarily, assuming P ̸= NP)
run in exponential time. The latter approach is often based upon transforming the feasibility
analysis problem into an integer linear program (ILP), and leveraging the tremendous recent
improvements that have been obtained in the performance of ILP solvers to achieve running
times that are acceptable in practice for reasonably large problem instances. In this paper
we prove that an approach based on transformation to ILPs is unlikely to be applicable to
the general C-DAG feasibility-analysis problem – to our knowledge, this is amongst the first
feasibility-analysis problems for which such a negative result regarding the use of ILPs has
been obtained in the real-time literature. We also identify an important restricted case for
which ILP-solvers can in fact prove helpful: this special case essentially limits the number of
conditional constructs that may be present.

Our Contributions. Two major technical results are proved in this paper:
1. the C-DAG feasibility analysis problem is pspace complete; and
2. it is in NP if the number of conditional constructs is a priori bounded by a constant.

© Sanjoy Baruah and Alberto Marchetti-Spaccamela;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baruah@wustl.edu
mailto:alberto@diag.uniroma1.it
https://doi.org/10.4230/LIPIcs.ECRTS.2021.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Feasibility Analysis of Conditional DAG Tasks

c1 c2

G′
2 = (V ′

2 , E′
2)

G′
1 = (V ′

1 , E′
1)

s1 t1• •

s2 t2
• •

Vertices s1 and t1 (vertices s2 and t2, resp.)
are the sole source vertex and sink vertex of
G′

1 (of G′
2, resp.).

Figure 1 A canonical conditional construct.

While at first glance these may appear to be highly theoretical results that are a poor fit for
ECRTS, we will establish that they do in fact have major implications to real-time systems
design and implementation. We will show that it follows from our first result that it is highly
unlikely we will be able to solve general C-DAG feasibility analysis problems in polynomial
time even when calls to an ILP solver are “for free” (and hence, regardless of how good
your ILP solver may be). The second result clearly shows that the root cause of this is
the presence of the conditional constructs, and thereby demarcates the boundary between
feasibility-analysis problems that are efficiently transformable to ILPs and those that are
not. We also offer evidence that the size of the ILP for solving an instance of this restricted
case grows exponentially with the number of conditional constructs that are present. This in
turn suggests a design guideline: conditional constructs be considered as a scarce “resource”
to be used only when their increased expressiveness is essential, since their presence can slow
down feasibility analysis exponentially.

Organization. The remainder of this manuscript is organized as follows. We describe the
Conditional DAG model in Section 2, and briefly review some needed results from complexity
theory in Section 3. Our main technical results are in Section 4 (the pspace completeness
proof) and Section 5 (the more tractable special case). We conclude in Section 6 by listing
some additional implications of our findings and placing these within the context of related
research, and briefly list some interesting directions for future research.

2 The Conditional DAG (C-DAG) Model

Task models based upon Directed Acyclic Graphs (DAGs) seek to expose parallelism in real-
time workloads: the sporadic DAG model [7] (see [4, Chapter 21] for a text-book description)
is an early example. A task in this model is specified as a 3-tuple (G, D, T), where G is a
directed acyclic graph (DAG), and D and T are positive integers representing the relative
deadline and period parameters of the task respectively. The task repeatedly releases dag-jobs,
each of which is a collection of sequential jobs. Successive dag-jobs are released a duration
of at least T time units apart. The DAG G is specified as G = (V, E), where V is a set of
vertices and E a set of directed edges between these vertices. Each v ∈ V represents a job,
which corresponds to the execution of a sequential piece of code and is characterized by a
worst-case execution time (WCET). The edges represent dependencies between the jobs:
if (v1, v2) ∈ E then job v1 must complete execution before job v2 can begin execution. A
release of a dag-job of the task at time-instant t means that all |V | jobs v ∈ V are released
at t. If a dag-job is released at time t then all |V | jobs that were released at t must complete
execution by time t + D.

Conditional DAG tasks. The Conditional DAG (C-DAG) task model was introduced [6, 17]
to model the execution of conditional (e.g., if-then-else) constructs in parallel real-time
code. A C-DAG task, too, is specified as a 3-tuple (G, D, T), where G = (V, E) is a DAG,

S. Baruah and A. Marchetti-Spaccamela 12:3

and D and T are positive integers denoting the relative deadline and period parameters of
the task. They differ from regular sporadic DAGs in that certain vertices ∈ V are designated
as conditional vertices that are defined in matched pairs, each such pair defining a conditional
construct. Let (c1, c2) be such a pair in the DAG G = (V, E) – see Figure 1. Informally
speaking, vertex c1 represents a point in the code where a conditional expression is evaluated
and, depending upon the outcome of this evaluation, control will subsequently flow along
one of two different possible branches. It is required that these two different branches meet
again at a common point in the code, represented by the vertex c2. More formally,
1. There are two outgoing edges from c1 in E (say, to the vertices s1 and s2), and two

incoming edges to c2 (say, from the vertices t1 and t2), in E – see Figure 1.
2. For each ℓ ∈ {1, 2}, let V ′

ℓ ⊆ V and E′
ℓ ⊆ E denote all the vertices and edges on paths

reachable from sℓ that do not include vertex c2. By definition, sℓ is the sole source vertex
of the DAG G′

ℓ
def= (V ′

ℓ , E′
ℓ). Vertex tℓ must be the sole sink vertex of G′

ℓ.
3. It must hold that V ′

1
⋂

V ′
2 = ∅. Additionally for each ℓ ∈ {1, 2}, with the exception of

(c1, sℓ) there should be no edges in E into vertices in V ′
ℓ from vertices that are not in V ′

ℓ .
Edges (v1, v2) between pairs of vertices neither of which are conditional nodes represent prece-
dence constraints exactly as in traditional sporadic DAGs, while edges involving conditional
nodes represent conditional execution of code. More specifically, let (c1, c2) denote a defined
pair of conditional vertices that together define a conditional construct. The semantics of
conditional DAG execution mandate that

After the job c1 completes execution, exactly one of its two successor jobs becomes eligible
to execute; it is not known beforehand which successor job this may be.
Job c2 begins to execute upon the completion of exactly one of its two predecessor jobs.

In the remainder of this paper we make the simplifying assumption that each of the conditional
vertices c1 and c2 demarcating a conditional construct has zero execution time.

The C-DAG feasibility analysis problem. We are interested, from a real-time systems
perspective, in understanding how to implement specified collections of C-DAG tasks upon
a shared multiprocessor platform in a correct and resource-efficient manner. The federated
scheduling paradigm [15], in which each task is restricted to execute upon a specified subset of
the processors (and each processor is assigned to no more than one task), is a widely-studied
approach for implementing collections of tasks represented using DAG-based models upon
multiprocessor platforms. It is readily seen that federated scheduling of constrained-deadline
tasks – tasks (G, D, T) for which the deadline parameter D is no larger than the period T –
reduces to the problem of scheduling a single C-DAG upon a dedicated set of processors within
a duration not exceeding the relative deadline parameter. Hence the problem considered in
this paper is this:

▶ Definition 1 (The C-DAG feasibility analysis problem). Given a C-DAG G, a number m ∈ N
of processors upon which G is to execute, and a relative deadline parameter D, determine
whether it is feasible to schedule G on the m processors such that it always completes execution
within an interval of duration D, regardless of which conditional constructs in G evaluate to
true and which evaluate to false? ⌟

The problem definition above is incomplete: several variants can be defined based upon
restrictions that are placed on how jobs may execute. For instance permitting or prohibiting
preemption results in different variants. Variants may be also be defined based upon which
processors each job is allowed to execute on:

ECRTS 2021

12:4 Feasibility Analysis of Conditional DAG Tasks

global: any job may execute upon any processor, and the decision as to which processor a job
executes upon may be made at run-time. When preemption is permitted, a preempted
job may resume execution upon a different processor.

partitioned: each job may execute upon only one processor, and the determination as to
which processor a job executes upon is made prior to run-time.

restricted (or typed [13]): each job is pre-assigned to a particular processor. I.e., a mapping
from vertices to processors is provided as part of the problem specifications.

Why this is a difficult problem. It has been widely recognized [11, 6, 17, 22] that combina-
torial explosion is a major reason why C-DAG feasibility analysis is such a difficult problem:
exponentially many different combinations of outcomes are possible of the evaluation of the
conditional constructs in a single task, each of which may require a very different collection
of jobs to be scheduled for execution. There is, however, an additional aspect to the difficulty
of this problem that has received somewhat less attention: its inherently on line nature.
Consider the following simple illustrative example for a typed C-DAG (i.e., where vertices
are pre-assigned to individual processors):

A

B

C

D

E

F

G

H1 H2

J

K

D← 4 Example: Each vertex has WCET equal to one (except the
conditional vertices – recall they have WCET zero). Processor
assignments are color-coded: A, H1, & H2 share a processor, as
do B, C, J , & K; D & F ; and E & G.
If the conditional construct executes D, then C should execute
during [0, 1] – otherwise the “blue” processor will idle over [2, 3].
Else (i.e., the conditional construct executes E), B should exe-
cute during [0, 1].

There are two possible outcomes of the sole conditional construct, and it may be verified that
upon either outcome the set of vertices that must be executed is individually schedulable.
However, which of vertices B or C, both assigned to the same processor, should execute
over time-interval [0, 1] necessarily differs in these two schedules and hence depends upon
the outcome of the conditional construct’s evaluation. But the conditional construct is only
executed after time-instant 1, and hence this information is revealed too late. Thus this
C-DAG is infeasible despite the sets of vertices needing to be executed upon either outcome
being feasible.

Summarizing Prior Complexity Results. Ullman showed [19] that it is NP-complete in
the strong sense to determine whether a given DAG can be scheduled to meet a specified
deadline under global or partitioned scheduling upon an identical multiprocessor platform,
regardless of whether preemption is permitted or forbidden. Jansen subsequently showed [13]
that feasibility analysis of DAGs is NP-hard in the strong sense for restricted/ typed C-DAGs
(where each job is pre-assigned to a particular processor), again under both preemptive and
non-preemptive scheduling. Since these basic problems are already NP-hard in the strong
sense, so are the corresponding problems for the more general C-DAG model. It is easily
seen that all these problems are also in NP for (regular) DAGs.

S. Baruah and A. Marchetti-Spaccamela 12:5

P

NP

PSPACE

• ILP

The innermost (blue) solid line represents the problems in
P, the intermediate (teal) one includes problems that are in
NP, and the outermost (red) one further includes problems
that are in pspace. The dotted black line depicts the class
PNP.
As shown in the Venn diagram, the problem of solving ILPs
is in NP but not in P (assuming P ̸=NP).

Figure 2 Venn diagram depicting the relationship between some complexity classes.

3 Computational Complexity: Some Background

We now provide a brief introduction to concepts of computational complexity theory that are
used in this manuscript.1 We will make reference to the following four complexity classes:
1. P is the set of problems that can be solved by algorithms with running time polynomial

in the size of their inputs.
2. NP is the set of problems that can be verified by algorithms with running time polynomial

in the size of their inputs.
3. PNP is the set of problems that can be solved in polynomial time by an algorithm that

has access to an oracle for some NP-complete problem, where an oracle can be thought
of as a “black box” that is able to solve a specific decision problem in a single step.

4. pspace is the set of problems that can be solved by algorithms using an amount of space
(memory) that is polynomial in the size of their inputs. Since this complexity class has
not previously been widely used in real-time scheduling theory, we discus it a bit more
below, and provide some intuition of its relationship to C-DAG feasibility analysis.

It is widely believed, although not proved, that
(
P ⊊ NP ⊊ PNP ⊊ pspace

)
– see Figure 2.

PSPACE. The class pspace can be thought of as representing the existence of a winning
strategy for a particular player in bounded-length perfect-information games that can be
played in polynomial time. I.e., consider a two-player game where players alternate making
moves for a total of n moves. Given moves m1, . . . , mn by the players, let M(m1, . . . , mn) = 1
if and only if player 1 has won the game. Then player 1 has a winning strategy in the game
if and only if there exists a move m1 that player 1 can make such that for every possible
response m2 of player 2 there is a move m3 for player 1, . . . and so on. Formalizations of
many popular two-player games, including checkers, generalized geography, and Sokoban,
have been proven to be pspace-complete [12].

We can cast C-DAG feasibility in this two-player game framework. Given a C-DAG and
a deadline D, then the first move of player 1 (the scheduler) is to decide the set of jobs to
be scheduled until the first branch is executed; then player 2 (the environment) decides the
outcome of the branch. The game continues until the scheduling is completed and the first
player wins the game if and only if its strategy is able to complete the schedule in D time
units for all outcomes of branches (i.e. all decisions of the second player).

1 In order to keep things simple the presentation in this section is intentionally informal and not always
precise: for instance, while most of the concepts discussed below differ in their applicability to decision
problems – those for which there is a “yes/ no” answer – and optimization problems, we do not make
this distinction here but treat both decision and optimization problems in similar fashion.

ECRTS 2021

12:6 Feasibility Analysis of Conditional DAG Tasks

ILP solvers. Determining whether an integer linear program (ILP) has a solution or not is
known to be NP-complete in the strong sense [14]. Assuming P ̸= NP, this implies that ILP
solvers with polynomial or pseudo-polynomial running time cannot be developed. Despite
this inherent intractability, however, the optimization community has devoted immense effort
to devise very efficient implementations of ILP solvers, and highly optimized libraries with
such efficient implementations are widely available today in both open-source and commercial
offerings. Modern ILP solvers, executing upon powerful computing clusters, are commonly
capable of solving ILPs with tens of thousands of variables and constraints.

4 C-DAG feasibility analysis is PSPACE-complete

One of our main results is a negative one: that the C-DAG feasibility analysis problem
(Definition 1) is pspace-hard for all the variants – preemptive and non-preemptive; global and
partitioned and restricted (or typed) – described in Section 2. As stated in Section 3 above, a
pspace complete problem is highly unlikely to be in NP or PNP; hence we cannot solve it in
polynomial time by making additional calls to an ILP-solver, even if each such call took Θ(1)
(i.e., constant) time. In the remainder of this section we will prove this intractability result
for the variant2 of the C-DAG feasibility analysis problem where preemption is permitted
and migration is restricted (i.e., each job is pre-assigned to a particular processor):

▶ Theorem 1. The C-DAG feasibility problem when each job is pre-assigned to a particular
processor is pspace complete.

It is trivial to show that this problem is in pspace – an algorithm that repeatedly simulates
the scheduling of the C-DAG under all possible combinations of outcomes of the conditional
constructs would require polynomial space. The rest of this section is devoted to proving
that this problem is also pspace-hard. (Note that this hardness result strengthens a recent
result [2] showing this problem to be hard for the complexity class co-NPNP, since the
near-consensus view in computational complexity theory is that the class co-NPNP is strictly
contained in the class pspace.) pspace-hardness for our C-DAG feasibility analysis problem
is proved by deriving a polynomial-time reduction to the C-DAG feasibility analysis problem
from the following problem, which has previously [18, 21] been shown to be pspace complete:

▶ Definition 2 (The Quantified Boolean Formula Problem (QBF)).
Instance. A boolean formula in the following form:

∃x1 ∀y1 ∃x2 ∀y2 . . . ∃xn ∀yn

m∧
j=1

(
ℓj,1 ∨ ℓj,2 ∨ ℓj,3

)
(1)

where each xi and each yi is a boolean variable, and each ℓj,k is one of the xi or yi Boolean
variables or its negation.
Question. Does this formula evaluate to true? ⌟

We will describe a polynomial-time algorithm that accepts as input a Boolean formula of
the form given in Expression 1 above, and outputs a C-DAG, an assignment of jobs of the
C-DAG to processors, and a deadline D

def= 2n + 3, such that the C-DAG can complete

2 We have also proved this result for the variant that allows for global preemptive scheduling. We are
choosing to present the variant with pre-assigned processors for pedagogical reasons: the main ideas in
the proof of the hardness of the global preemptive case are also revealed in this proof while a lot of
grungy details that are not particularly novel but must be addressed for the global preemptive version
are not needed here.

S. Baruah and A. Marchetti-Spaccamela 12:7

execution by the deadline if and only if Expression 1 is true. Since QBF is known to be
pspace-complete, this polynomial-time reduction from QBF to C-DAG feasibility analysis
suffices to show that C-DAG feasibility analysis is pspace hard. We start with a high-level
overview of our polynomial-time reduction.

We will define three kinds of “gadgets” – subgraphs that have each been designed to
achieve some particular purpose – in Sections 4.1, 4.2, and 4.3. The first kind is used to
represent the clauses in Expression 1; the second, the existentially quantified (i.e., xi)
variables and the third, the universally quantified (i.e., yi) variables. Our C-DAG will be
the union of m gadgets of the first kind, n gadgets of the second kind, and n gadgets of
the third kind.
For each boolean variable xi (yi, respectively), our C-DAG will have two jobs labeled Xi

and ¬Xi (Yi and ¬Yi, respectively). We will state that job Xi “corresponds to” literal
xi and job ¬Xi corresponds to the literal ¬xi (analogously, that Yi corresponds to yi and
¬Yi corresponds to ¬yi).
We will see, in Sections 4.2 and 4.3, that we construct the gadgets for the xi’s and the yi’s
in a manner that enforces the constraint that at most one of each pair of jobs Xi and ¬Xi

(Yi and ¬Yi, respectively) can execute to completion by time-instant 2n in any schedule.
We can think of all these jobs that complete execution by time-instant 2n as defining a
truth assignment to the 2n variables {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn}: boolean variable
xi is assigned true if job Xi is executed and false if ¬Xi is executed, and analogously
for the yi variables.3 Furthermore, we will see in Sections 4.2 and 4.3 that such a truth
assignment happens in a manner that is consistent with the order and interpretation of
the quantifiers upon the boolean variables.
We will show, in Section 4.1 below, that the gadget representing each clause will complete
by the deadline if and only if at least one of the literals in the clause evaluates to true
in the truth assignment defined as above. Therefore, the gadgets representing all the
clauses can complete by the deadline if and only if the truth assignment defined above is
a satisfying one for all the clauses.

We detail the construction of the three kinds of gadgets in Sections 4.1–4.3; in Section 4.4
we show that the C-DAG thus obtained is feasible if and only if Expression 1 is true, and
hence this is indeed a polynomial-time reduction from QBF to C-DAG feasibility analysis.

4.1 Gadget for representing the clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3)

For the j’th clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3), we have four jobs with precedence constraints as
depicted in Figure 3, all of which are assigned to a single dedicated processor. The WCET
of each job is written above the job in Figure 3. We will say that each of the three unit-sized
jobs “represents” one of the three literals in the clause. Observe that the sum of the
WCETs of the four jobs is 2n + 1 + 1 + 1 = 2n + 3, which equals the deadline D; since all
these jobs are assigned to the same processor the processor must therefore never idle over
[0, D] in schedules that meet the deadline. This enforces the following schedule for these jobs:
1. the job with WCET 2n must execute over the interval [0, 2n], and
2. at least one of the three unit-sized jobs, each of which has one additional input edge from

the job corresponding to the literal that it represents, must become eligible to execute at
time-instant 2n.

3 If neither Xi nor ¬Xi (neither Yi nor ¬Yi, respectively) are executed for any i, the truth assignment
will be a partial one.

ECRTS 2021

12:8 Feasibility Analysis of Conditional DAG Tasks

2n

ℓj,1

1

ℓj,2

1

ℓj,3

1

Edge from vertex ℓj,1

Edge from vertex ℓj,2

Edge from vertex ℓj,3

These four jobs are all assigned to the same proces-
sor; no other jobs are assigned to this processor. The
WCET of each job is written above the job (i.e., the
job with no predecessors has WCET = 2n and the
other three jobs each have WCET = 1). Each of the
unit-sized jobs represents a literal of the clause; the
dotted lines represent edges from the jobs that corre-
spond to the literals (the notions of representation and
correspondence are both explained in Section 4).

Figure 3 “Gadget” representing the j’th clause.

Equivalently, in order for the part of the C-DAG we are constructing that is represented by
this gadget to complete by the deadline, it is necessary that the truth assignment defined
by the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant 2n

have at least one of the literals ℓj,1, ℓj,2, and ℓj,3 assigned the value true. I.e., this truth
assignment must be a satisfying one for the clause (ℓj,1 ∨ ℓj,2 ∨ ℓj,3).

Hence all m gadgets of the form depicted in Figure 3, constructed for all m clauses in
Expression 1, can complete by the deadline if and only if the truth assignment defined by
the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant 2n is
a satisfying one for each of the clauses in the QBF given in Expression 1. This is formally
stated in Fact 1:

▶ Fact 1. A schedule can complete the jobs representing (as depicted in Figure 3) all m

clauses by the deadline D = 2n + 3 if and only if the truth assignment, defined by the jobs
in

⋃
1≤i≤n{Xi,¬Xi, Yi,¬Yi} that have executed to completion by time-instant 2n in the

schedule, is a satisfying assignment for all the clauses. ⌟

Requirements of the remaining gadgets. The remainder of the C-DAG – i.e., the gadgets
for the xi and the yi boolean variables – must ensure that this truth assignment that is
defined by the Xi, the ¬Xi, the Yi and the ¬Yi jobs that completed execution by time-instant
2n is an accurate reflection of the alternating quantifiers in Expression 1:

∃x1 ∀y1 ∃x2 ∀y2 . . . ∃xn ∀yn

This desired alternation of quantifiers is achieved by ensuring the C-DAG is constructed to
enforce the requirement that for each i, 1 ≤ i ≤ n,
1. Prior to time-instant 2n, in any correct schedule the scheduler can execute the pair of

jobs Xi and ¬Xi, both of which are assigned to the same processor, only over the interval
[2i− 2, 2i− 1] – see Figure 4. Therefore, it can choose to execute only one of this pair
of jobs to completion prior to time-instant 2n. (We will also see that it can execute the
other job in the pair over [2n, 2n + 1]; hence both complete by time-instant 2n + 1.)

2. Prior to time-instant 2n, in any correct schedule the scheduler can execute only one of
the pair of jobs Yi and ¬Yi, over the interval [2i− 1, 2i] – see Figure 4. The decision as to
which job in the pair is able to execute over [2i− 1, 2i] is not made by the scheduler, but
is determined during run-time based on whether certain conditional constructs evaluate to
true or false. (We will also see that the scheduler can execute the other job in the pair
over the time-interval [2n, 2n + 1]; hence both the jobs complete by time-instant 2n + 1.)

The existential quantification (∃) of the xi variables is reflected by the fact that the scheduler
gets to decide whether to execute Xi or ¬Xi over the interval [2i − 2, 2i − 1], while the

S. Baruah and A. Marchetti-Spaccamela 12:9

(2i − 2) (2i − 1) 2i

time

The scheduler may choose to execute one of {Xi, ¬Xi} over
the interval [2i − 2, 2i − 1]. Run-time evaluation of condi-
tional constructs enables only one of {Yi, ¬Yi} to execute
over interval [2i − 1, 2i].

Figure 4 Illustrating the schedule over [2i − 2, 2i] for each i.

universal quantification (∀) of the yi variables is reflected by the fact that the environment
(i.e., run-time conditions) determines which of Yi or ¬Yi to execute, and the scheduler must
make subsequent scheduling decisions for both outcomes (i.e., regardless of whether Yi or
¬Yi is the job that was selected) by the environment. Notice that the order of the quantifiers
is also maintained: the scheduler must decide to execute one of {Xi,¬Xi} before one of
{Yi,¬Yi} is scheduled. And after one of {Yi,¬Yi} is chosen for execution by the environment,
the scheduler must decide to schedule one of {Xi+1,¬Xi+1}, and so on. In this manner the
truth assignment to the variables {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn} that is defined by the
schedule based on the jobs that complete execution by time-instant 2n reflects the order and
alternation of the quantifiers in Expression 1.

It remains to describe how these restrictions on the execution of the Xi,¬Xi, Yi, and ¬Yi

jobs in a manner that reflects the order and nature of the quantifiers is enforced – this we do
in describing our other two kinds of gadgets. As stated previously, we will have one gadget
for each xi variable and one for each yi variable; each gadget is defined on a unique set of
jobs that are assigned to a unique set of processors. Our C-DAG is the union of all 2n of
these gadgets and the m subgraphs of the form of Figure 3 (one per clause).

4.2 Gadget for enforcing the desired execution of Xi and ¬Xi

We first discuss the instantiation of this gadget for (i = 1), before subsequently describing
the general case. The four jobs labeled A1, B1, C1 and D1 depicted below serve to ensure
that prior to time-instant 2n the scheduler can execute the two jobs labeled X1, ¬X1 only
over the time-interval [0, 1] in any correct schedule.

A1

0
X1

1

¬X1

1

B1

1
C1

(2n − 1)
D1

3

The jobs A1, X1,¬X1, and C1 are all assigned to one processor, while B1 and D1 are both
assigned to another processor; furthermore, these two processors are used for no other
purpose. (In these diagrams vertex colors encode their processor assignments.) Since the
chain of jobs B1 → C1 → D1 has cumulative WCET 1 + (2n − 1) + 3 = 2n + 3 which is
equal to the deadline D, these three jobs must execute without interruption. Hence in any
correct schedule the processor shared by jobs A1, X1,¬X1, and C1 is only available to jobs
X1 and ¬X1 during the interval [0, 1], and after time 2n. Thus at most one of these jobs
may complete execution prior to time-instant 2n, and this job must do so by executing over
the interval [0, 1]. (We point out that the other one may execute over the time-interval
[2n, 2n + 1] and thereby complete by time-instant 2n + 1.)

ECRTS 2021

12:10 Feasibility Analysis of Conditional DAG Tasks

Ai

(2i − 2)

P (1, i)

Xi

1

P (1, i)

¬Xi

1

P (1, i)

Bi

(2i − 1)

P (2, i)

Ci

(2n − (2i − 1))

P (1, i)

Di

3

P (2, i)

For each job its WCET is written above, and the
processor to which it is assigned is written below, the
job.
A possible schedule for these jobs is depicted below, in
Gantt-chart form.

P (1, i)

P (2, i)

(2i − 2)
(2i − 1)

2i 2n
2n + 1

2n + 2

Ai Xi Ci ¬Xi

Bi Di

Figure 5 Gadget for Xi, comprising the four jobs Ai–Di plus the two jobs Xi and ¬Xi, and the
four edges shown, assigned to the two processors P (1, i) and P (2, i).

The gadget depicted in Figure 5 generalizes the one described above for all i, 1 ≤ i ≤ n.
In this figure the two processors upon which the jobs are to execute are named as P (1, i)
and P (2, i) – the processor to which each job is assigned is written below the job. A correct
schedule for the jobs upon these two processors is depicted as a Gantt chart below the gadget.

4.3 Gadget for enforcing the desired execution of Yi and ¬Yi

As with the xi’s above, we first discuss the instantiation of this gadget for (i = 1); we will
subsequently generalize to arbitrary i. The eight jobs labeled E1, F1, G1,H1, J1, K1, L1,
and M1 along with one conditional construct,4 and ten edges as depicted below, together
ensure that at most one of the two jobs labeled Y1, ¬Y1, execute over the time-interval [1, 2]
in any correct schedule while the other must execute after time-instant 2n; furthermore,
which of Y1, ¬Y1 executes over [1, 2] is determined not by the scheduler but by which branch
of the conditional construct ends up being executed during run-time.

F1

1

E1

1
¬Y1

1

Y1

1

H1

1

G1

1

K1

(2n − 2)

J1

(2n − 2)

M1

3
L1

3

4 Recall that in this paper we are assuming that the two nodes demarcating the start and the end of a
conditional construct each have WCET zero.

S. Baruah and A. Marchetti-Spaccamela 12:11

Fi

(2i − 1)

P (4, i)

Ei

(2i − 1)

P (3, i)

¬Yi

1

P (3, i)

Yi

1

P (4, i)

Hi

1

P (4, i)

Gi

1

P (3, i)

Ki

(2n − 2i)

P (4, i)

Ji

(2n − 2i)

P (3, i)

Mi

3

P (5, i)

Li

3

P (6, i)

P (3, i)

P (4, i)

P (5, i)

P (6, i)

(2i − 2)
(2i − 1)

2i 2n
2n + 1

2n + 2

Ei Gi Ji ¬Yi

Fi Yi Ki

Li

Mi

Figure 6 Gadget for Yi (discussed in Section 4.3).

These ten jobs (E1–M1, plus the jobs Y1 and ¬Y1) are assigned to four processors in the
following manner; no other jobs are assigned to any of these four processors5;

Jobs E1, G1,¬Y1 and J1 are assigned to one processor.
Jobs F1, H1, Y1 and K1 are assigned to a second processor;
Job L1 is assigned to a third processor; and job M1 to a fourth processor.

Let us first suppose that during some execution of this C-DAG the conditional construct
takes the upper branch (i.e., causes job G1 to execute).

Since the WCETs of the chain of jobs E1 → G1 → J1 → L1 sum to the deadline 3n + 3,
this chain of jobs must execute without interruption in any correct schedule. This in
turn implies that job ¬Y1, which is assigned to the same processor as jobs E1, G1, and
J1, cannot execute prior to time-instant 2n. (It may execute over the interval [2n, 2n + 1]
since there are no other jobs assigned to its processor.)
In order for the chain E1 → G1 → J1 → L1 to be able to execute without interruption,
job F1 must execute over the time-interval [0, 1]. Furthermore, the chain of jobs K1 →M1
is only eligible to execute after the conditional construct completes: this happens when
job G1 completes (at time-instant 2). Note that jobs J1 and L1 must now execute without
interruption over the interval [2, 2n + 3] in order to meet the deadline D = 2n + 3.
Therefore, the processor shared by jobs F1, H1 (which does not need to execute when the
conditional construct takes the upper branch), Y1, and K1, is only free over the interval
[1, 2] prior to time-instant 2n; this implies that the job Y1 must execute over the interval
[1, 2] if it is to complete prior to time-instant 2n.

5 As in Figure 5, processor assignments are color-coded in this diagram. (Note that a fresh set of processors
is used for each gadget and hence these colors do not “carry over” from Figure 5.)

ECRTS 2021

12:12 Feasibility Analysis of Conditional DAG Tasks

When the conditional construct takes the lower branch and causes H1 to execute, the situation
mirrors the one above: job ¬Y1 may execute over the interval [1, 2] but job Y1 may only
execute after time-instant 2n. Summarizing, we conclude that in a feasible schedule that
completes by the deadline D = 2n + 3, one of the two jobs Y1,¬Y1 may execute over the
interval [1, 2] and the other may execute over [2n, 2n + 1]; the determination as to which does
which is made during run-time based on whether the conditional construct evaluates to true
or false.

The gadget depicted in Figure 6 generalizes the one described above for all i,
1 ≤ i ≤ n. In this figure the four processors upon which the jobs are to execute are
named as P (3, i), P (4, i), P (5, i) and P (6, i); as in Figure 5, the processor to which each job
is assigned is again written below the job. A correct schedule for the jobs upon these four
processors is depicted as a Gantt chart below the gadget.

The restrictions upon the execution of the jobs Xi,¬Xi, Yi, and ¬Yi that are enforced by
the gadgets of Figure 5 and Figure 6 are stated in Facts 2 and 3 below (also see Figure 4):

▶ Fact 2. For each i, 1 ≤ i ≤ n, a scheduler may complete at most one of the two jobs
{Xi,¬Xi} by time-instant 2n in any correct schedule. The choice as to which of these two
jobs (if any) to complete by time-instant 2n must be made by the scheduler after it has
already been decided which of the jobs

(⋃
1≤j<i{Xj ,¬Xj , Yj ,¬Yj}

)
will complete by time

instant 2n.

▶ Fact 3. For each i, 1 ≤ i ≤ n, a scheduler may complete at most one of the two
jobs {Yi,¬Yi} by time-instant 2n. The determination as to which of these two jobs (if
either) to complete by time-instant 2n is made based on the outcome of the execution
of a conditional construct during run-time, after it has already been decided which of(⋃

1≤j<i{Xj ,¬Xj , Yj ,¬Yj}
⋃
{Xi,¬Xi}

)
will complete by time instant 2n. ⌟

4.4 Putting the pieces together
Consider now the truth assignment to the 2n variables {x1, x2, . . . , xn}∪{y1, y2, . . . , yn} that
is defined by the schedule over [0, 2n] in the following manner: for each i, 1 ≤ i ≤ n, boolean
variable xi is assigned true if job Xi is executed and false if ¬Xi is executed, and boolean
variable yi is assigned true if job Yi is executed and false if ¬Yi is executed. By Fact 2, a
value is assigned by the scheduler to xi in this assignment after values have been determined
for xj and yj variables for all j < i, while by Fact 3 the value of yi that is determined by the
execution of conditional constructs at run-time happens after values have been determined
for xj and yj variables for all j < i, as well as after the value of xi has been assigned by the
scheduler. Fact 4 follows.

▶ Fact 4. The truth assignment to the xi and yi variables defined by the execution of
Xi,¬Xi, Yi, and ¬Yi jobs over [0, 2n] is done in a manner that is compliant with the order of
alternation of quantifiers in Expression 1. ⌟

Summarizing the reduction. We have seen that the DAG we construct for a given quantified
boolean formula

∃x1 ∀y1 ∃x2 ∀y2 . . . ∃xn ∀yn

m∧
j=1

(
ℓj,1 ∨ ℓj,2 ∨ ℓj,3

)
comprises

S. Baruah and A. Marchetti-Spaccamela 12:13

1. For each of the m clauses, a sub-graph with four vertices and six edges as depicted in
Figure 3 that is to execute upon a single processor;

2. For each of the n xi variables, a sub-graph with the six vertices and four edges as depicted
in Figure 5 that is to execute upon two processors; and

3. For each of the n yi variables, a sub-graph with the ten vertices, one conditional construct,
and ten edges as depicted in Figure 6 that is to execute upon four processors.

It is easily seen that the reduction from quantified boolean formula to DAG is a polynomial-
time one: the resulting DAG has (4m+16n) vertices, n conditional constructs, and (6m+14n)
edges, and is to be scheduled upon (m + 6n) processors, and that it can be obtained in
polynomial time from the quantified boolean formula.

▶ Lemma 1. If Expression 1 is true, then the C-DAG constructed above can be scheduled to
always complete by its deadline.

Proof. Suppose that Expression 1 is true. This implies that variable x1 can be assigned a
value such that for every assignment of value to y1 the formula

∃x2∀y2∃x3 . . .
m∧

j=2
(ℓj,1 ∨ ℓj,2 ∨ ℓj,3)

is true. If the assigned value to x1 is true (false) then the scheduler completes job X1 (¬X1)
by time 2n; then, when the outcome of the first conditional construct is known, the job from
amongst {Y1,¬Y1} that can be completed by time 2n is scheduled. By Fact 3 this decision
is made before the scheduler gets to decide which job of the jobs amongst {X2,¬X2} will
complete by time 2n.

By repeated applications of Facts 2 and 3, we can ensure that the jobs amongst the Xi,
¬Xi, Yi, and ¬Yi jobs that execute over the interval [0, 2n] mimic each truth assignment to
the boolean variables {x1, x2, ..., xn} ∪ {y1, y2, ..., yn} that are made in a manner consistent
with the alternation of quantifiers in Expression 1. It follows from Fact 1 that the gadget
representing each clause (these are the gadgets depicted in Figure 3) will complete by the
deadline for each such truth assignment. ◀

▶ Lemma 2. If the C-DAG constructed above can be scheduled to always complete by its
deadline, then Expression 1 is true.

Proof. Suppose that the C-DAG that we have constructed can be scheduled to always
complete by its deadline, for all possible evaluations of the n conditional constructs in
it. (Recall that one conditional constructs is present in each of the gadgets described in
Section 4.3, and these are the only conditional constructs in the C-DAG t.)

Consider the schedule for any one of the 2n different possible combinations of outcomes
for the execution of these n conditional constructs. Fact 1 ensures that the truth assignment
defined by the jobs in

⋃
1≤i≤n{Xi,¬Xi, Yi,¬Yi} that have executed to completion by time-

instant 2n in this schedule is a satisfying assignment for all the clauses in Expression 1; by
Fact 4, this truth assignment is compliant with the order of alternation of quantifiers in
Expression 1.

Our premise is that the C-DAG completes by its deadline for each of the 2n different
possible combinations of outcomes for the execution of the conditional constructs. It follows
that each clause in Expression 1 evaluates to true in the corresponding truth assignments
defined by the jobs in

⋃
1≤i≤n{Xi,¬Xi, Yi,¬Yi} that have executed to completion by time-

instant 2n. Finally, it follows from Fact 3 that these 2n different possible combinations of
outcomes of the execution of the conditional constructs represent all possible interpretations
of the universal quantifications of the yi variables. The lemma follows. ◀

ECRTS 2021

12:14 Feasibility Analysis of Conditional DAG Tasks

A

B

C

D

E
F

D = 5 1. A ⋄ B ⋄ D F
2. A ⋄ B ⋄ E F
3. A ⋄ C F

Figure 7 A C-DAG instance with two conditional constructs. Each vertex has WCET=1, and all
are assigned to the same processor. Its “certificate” of feasibility is shown on the right: it comprises
three schedules, all of which are identical until the first conditional construct is executed (depicted
as a ⋄). The top two schedules, which correspond to the upper branch being taken, are further
identical until the second conditional construct is executed.

Lemmas 1 and 2 together establish that the C-DAG feasibility problem is pspace-hard
when each job is pre-assigned to a particular processor. We have already seen that this
problem is in pspace; this therefore completes the proof of Theorem 1.

5 A More Tractable Special Case

Theorem 1 above tells us that we are unlikely to be able to efficiently (i.e., in polynomial
time) reduce the problem of determining whether a C-DAG is feasible to the problem of
solving one, or even polynomially many, ILPs. In this section we will show that for C-DAGs
satisfying the additional restriction that the number of conditional constructs is bounded by a
constant, the feasibility-analysis problem can indeed be polynomial-time reduced to a single
ILP. Our method of showing this is indirect, and based upon the following reasoning.

As mentioned in Section 3, it is NP-complete to determine whether an ILP has a
solution [19]. It follows from definition that a consequence of a problem being NP-
complete is that all other problems in NP can be reduced to it in polynomial time.
Hence in order to show that feasibility analysis for C-DAGs in which the number of
conditional constructs is bounded by some constant can be reduced to an ILP in polynomial
time, it suffices to show that this feasibility analysis problem is in NP.

Below we will show that this problem is indeed in NP. We do so by appealing to the definition
of the complexity class NP: as stated in Section 3, a problem is defined to be in NP if a
claimed solution to any problem instance can be verified by an algorithm with running time
polynomial in the size of the instance. Hence we will describe a verification algorithm [10,
page 1063] that accepts as input a C-DAG and a “certificate” claiming to show that the
C-DAG is feasible, and verifies, in time polynomial in the representation of the C-DAG,
whether the certificate does indeed show feasibility.6

The certificate for a C-DAG instance with k conditional constructs will be an explicit
enumeration of the at most 2k individual schedules, one each for the vertices that must be
executed upon each possible combination of outcomes of the execution of the k conditional
expressions. The number of schedules in the certificate may be fewer than 2k since not
all outcomes may be possible – e.g., the C-DAG depicted in Figure 7 has two conditional
constructs but only 3 possible outcomes. A certificate with the three schedules is provided in
Figure 7 for when this C-DAG is to be implemented on a single processor.

6 We acknowledge that the following description of this verification algorithm is at a high level and
somewhat “hand-wavy”; however we believe it is adequate for conveying the main ideas as to what
information is contained in the certificate, and how the verifier checks this information.

S. Baruah and A. Marchetti-Spaccamela 12:15

Given such a certificate, the verification algorithm verifies that
1. Each schedule in the certificate is indeed a feasible schedule for the vertices that must be

executed upon some possible outcome of the execution of the conditional constructs.
2. The sets of vertices that must be executed upon all possible outcomes have schedules in

the certificate.
3. The schedules in the certificate are consistent in the following sense:

They are all identical (i.e., schedule the same jobs at the same instants) until the end
of the first execution of a conditional expression (the diamond-shaped node marking
the beginning of a conditional construct).
After that the set of schedules is partitioned into two subsets, one representing each of
the two possible outcomes of the execution of that conditional expression.
Each of these two subsets must satisfy the two properties above: all schedules in the
subset are identical up to the next execution of a conditional expression, and split into
two sets representing the schedules for the two different outcomes thereafter.
This repeats until each set contains a single schedule.

This establishes that C-DAG feasibility analysis is in NP, and can therefore be reduced in
polynomial time to the NP-complete problem ILP. We are currently working on developing
such a polynomial-time algorithm: although the main ideas are fairly straightforward – in
essence, use integer decision variables to specify the different schedules in the certificate and
write constraints to enforce the requirements listed above as being checked by the verification
algorithm, there are a lot of rather tedious details that must be enumerated.

The number of variables and the number of constraints in the ILP depend upon the
number of schedules in the certificate. Notice the relationship between the number of
conditional constructs k and the number of schedules in the certificate (at most 2k) – this
suggests that ILPs with fewer conditional constructs are likely to be representable using
smaller ILPs.

6 Context and Conclusions

Real-time scheduling theory has begun considering the use of ILP solvers to obtain efficient
algorithms for solving feasibility analysis problems. Several schedulability analysis problems
have recently been solved by representing them as ILPs (e.g.,[8, 3]); here we have shown that
an important problem cannot be solved efficiently in this manner (under the widely-held
assumption that NP ⊊ pspace). We note some additional implications of our main technical
results.
1. Observe that the workload model for heterogeneous multiprocessor platforms is unchanged

from the one for identical multiprocessors for typed systems (those in which all vertices
are pre-assigned to individual processors). Therefore our results for typed systems also
hold for heterogeneous multiprocessors. Many are also applicable to the recently proposed
more general Heterogeneous Parallel Conditional (HPC) DAG model [22].

2. Most solvers that are used in system design (including SAT solvers, many SMT [1] solvers,
etc.) actually solve problems that are in NP.7 Hence our main negative conclusion holds
for all these solvers as well: they are unlikely to be helpful for C-DAG feasibility analysis.

7 One important reason for this is that the results returned by such solvers can be verified efficiently, in
polynomial time. Solutions obtained by using solvers that solve problems not in NP must either be
accepted “on faith”, or inordinate amounts of time are required to validate their correctness.

ECRTS 2021

12:16 Feasibility Analysis of Conditional DAG Tasks

3. In this work we have required that problems be reducible to ILPs in polynomial time in
order to be considered tractable. As an alternative, we could have instead required that
there be a polynomial-sized ILP representation. However, this alternative definition is
unsatisfactory: one could conceivably determine feasibility for any instance of a problem
via exhaustive enumeration by taking inordinate amounts of time, and then represent
its feasibility as a simple ILP of just one or two variables and constraints which has a
solution if and only if the instance is feasible. Hence, one could argue that just about
any feasibility-analysis problem can be represented by a small ILP: the true measure of
tractability is how rapidly such an ILP can be obtained.

Some Related Work. ILP solvers have previously been used in real-time system design and
analysis – see, e.g., [16, 20]. But in the real-time scheduling theory community, where the focus
has primarily been on obtaining efficient algorithms with polynomial or pseudo-polynomial
running times, ILP-based techniques have traditionally not found much favor for obvious
reasons. The recent dramatic improvements in performance of modern solvers mentioned
in Section 3 is starting to change this, and the real-time scheduling theory community has
begun to investigate the use of ILP-based methods [5, 8, 3, 9].

Future work. We have established a conceptual and technical framework for both showing
problems to not be efficiently solvable using ILP solvers, and for identifying restricted versions
that are so solvable. We plan to apply our framework to better demarcate the boundary
between what if efficiently solvable and what is not with ILP solvers, as well as extend the
framework to answer additional questions of interest. For a start, we plan to investigate
notions of approximability – we could, e.g., seek sufficient ILP-based feasibility-analysis
algorithms of the following kind: given an instance generate, in polynomial time, an ILP
such that (i) if it is feasible, then the instance is feasible upon unit-speed processors; and
(ii) if it is infeasible, then the instance is not feasible on speed-s processors (for some s ≤ 1).

With regards to C-DAG feasibility, we have identified one specific structural property –
restrict the number of conditional constructs – that enables efficient solution via ILP’s. The
reason such instances are efficiently solved is that certificates attesting to their feasibility
contain relatively few schedules. We are currently identifying other such structural properties
of C-DAGs that also possess this property (of having “small” certificates of feasibility).

References
1 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability

modulo theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
pages 825–885. IOS Press, 2009. doi:10.3233/978-1-58603-929-5-825.

2 Sanjoy Baruah. Feasibility Analysis of Conditional DAG Tasks is co-NPNP-Hard (Why This
Matters). In Proceedings of the Twenty-Ninth International Conference on Real-Time and
Network Systems, RTNS ’21, New York, NY, USA, 2020. ACM.

3 Sanjoy Baruah. Scheduling DAGs when processor assignments are specified. In Proceedings of
the Twenty-Fifth International Conference on Real-Time and Network Systems, RTNS ’20,
New York, NY, USA, 2020. ACM.

4 Sanjoy Baruah, Marko Bertogna, and Giorgio Buttazzo. Multiprocessor Scheduling for Real-
Time Systems. Springer Publishing Company, Incorporated, 2015.

5 Sanjoy Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-Spaccamela. Ilp-
based approaches to partitioning recurrent workloads upon heterogeneous multiprocessors.

https://doi.org/10.3233/978-1-58603-929-5-825

S. Baruah and A. Marchetti-Spaccamela 12:17

In Proceedings of the 2016 28th EuroMicro Conference on Real-Time Systems, ECRTS ’16,
Toulouse (France), 2016. IEEE Computer Society Press.

6 Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The global EDF
scheduling of systems of conditional sporadic DAG tasks. In Proceedings of the 2014 26th
Euromicro Conference on Real-Time Systems, ECRTS ’15, pages 222–231, Lund (Sweden),
2015. IEEE Computer Society Press.

7 Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Leem Stougie, and Andreas
Wiese. A generalized parallel task model for recurrent real-time processes. In Proceedings of
the IEEE Real-Time Systems Symposium, RTSS 2012, pages 63–72, San Juan, Puerto Rico,
2012.

8 Sanjoy K. Baruah, Vincenzo Bonifaci, Renato Bruni, and Alberto Marchetti-Spaccamela. ILP
models for the allocation of recurrent workloads upon heterogeneous multiprocessors. Journal
of Scheduling, December 2018. doi:10.1007/s10951-018-0593-x.

9 Slim Ben-Amor. Multicore Scheduling of Dependent Tasks with Probabilistic Execution Times.
PhD thesis, Sorbonne Université, 2021.

10 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, third edition, 2009.

11 Jose Fonseca, Vincent Nelis, Gurulingesh Raravi, and Luis Miguel Pinho. A Multi-DAG model
for real-time parallel applications with conditional execution. In Proceedings of the ACM/
SIGAPP Symposium on Applied Computing (SAC), Salamanca, Spain, April 2015. ACM Press.

12 Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters, 2009.
13 Klaus Jansen. Analysis of scheduling problems with typed task systems. Discrete Applied

Mathematics, 52(3):223–232, 1994.
14 R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors,

Complexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972.
15 Jing Li, Abusayeed Saifullah, Kunal Agrawal, Christopher Gill, and Chenyang Lu. Analysis

of federated and global scheduling for parallel real-time tasks. In Proceedings of the 2012
26th Euromicro Conference on Real-Time Systems, ECRTS ’14, Madrid (Spain), 2014. IEEE
Computer Society Press.

16 Y. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 16(12):1477–1487, 1997. doi:10.1109/43.664229.

17 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio Buttazzo. Response-time analysis of conditional DAG tasks in multiprocessor systems.
In Proceedings of the 2014 26th Euromicro Conference on Real-Time Systems, ECRTS ’15,
pages 222–231, Lund (Sweden), 2015. IEEE Computer Society Press.

18 L. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1976.
19 J. Ullman. NP-complete scheduling problems. Journal of Computer and System Sciences,

10(3):384–393, 1975.
20 Reinhard Wilhelm. Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone.

In Verification, Model Checking, and Abstract Interpretation, pages 309–322, 2004. doi:
10.1007/978-3-540-24622-0_25.

21 C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3:23–33, 1976.

22 Houssam-Eddine Zahaf, Nicola Capodieci, Roberto Cavicchioli, Marko Bertogna, and Giuseppe
Lipari. The HPC-DAG task model for heterogeneous real-time systems. IEEE Transactions
on Computers, pages 1–1, 2020.

ECRTS 2021

https://doi.org/10.1007/s10951-018-0593-x
https://doi.org/10.1109/43.664229
https://doi.org/10.1007/978-3-540-24622-0_25
https://doi.org/10.1007/978-3-540-24622-0_25

Scheduling Replica Voting in Fixed-Priority
Real-Time Systems
Pietro Fara # Ñ

Scuola Superiore Sant’Anna, Pisa, Italy

Gabriele Serra # Ñ

Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi # Ñ

Scuola Superiore Sant’Anna, Pisa,Italy

Ciro Donnarumma #

Rete Ferroviaria Italiana S.P.A., Rome, Italy
Scuola Superiore Sant’Anna, Pisa, Italy

Abstract
Reliability and safety are mandatory requirements for safety-critical embedded systems. The design of
a fault-tolerant system is required in many fields (e.g., railway, automotive, avionics) and redundancy
helps in achieving this goal. Redundant systems typically leverage voting techniques applied to the
outputs produced by tasks to detect and even tolerate failures.

This paper studies the integration of distributed voting protocols in fixed-priority real-time
systems from a scheduling perspective. It analyzes two scheduling strategies for implementing voting.
One is attractive and friendly for software developers and based on suspending the task execution
until the replica provides the data to be voted. The other one is inspired by the Logical Execution
Time (LET) paradigm and requires introducing additional tasks in the system to accomplish voting-
related activities. Queuing and delays introduced by inter-replica communication interfaces are also
analyzed.

Experimental results are finally presented to compare the two strategies, showing that LET-
inspired voting is much more predictable and hence more suitable than the other strategy for
fixed-priority real-time systems.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks; Computer systems organization → Real-time systems

Keywords and phrases Real-time systems, safety-critical systems, voting, redundancy, fault-tolerance,
logical execution time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.13

1 Introduction

Embedded computing systems have become more and more pervasive in our lives: they
are used to fulfill evermore functions, a lot of which are related to the safety of people and
the surrounding environment. Indeed, embedded systems are nowadays widely present in
avionic, railway, automotive, and military applications in a way that their failures could lead
to catastrophic consequences. As these systems are related to our safety, they are commonly
called safety-critical embedded systems.

In most application domains there exist a lot of regulations to which a safety-critical
system must comply [11, 12]. Such regulations mandate the use of certain techniques to
improve the reliability and the safety of a system. These techniques can be mainly classified
into two categories: fault avoidance (also known as fault intolerance) and fault tolerance.
Fault avoidance techniques aim at drastically reducing by design the probability of failure.
This approach is generally not viable for complex systems because, even by performing a

© Pietro Fara, Gabriele Serra, Alessandro Biondi, and Ciro Donnarumma;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 13; pp. 13:1–13:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pietro.fara@santannapisa.it
https://retis.santannapisa.it/~pietro.fara
https://orcid.org/0000-0002-6290-9231
mailto:gabriele.serra@santannapisa.it
https://gabrieleserra.ml
https://orcid.org/0000-0003-0225-6731
mailto:alessandro.biondi@santannapisa.it
https://retis.sssup.it/~a.biondi/
mailto:c.donnarumma@rfi.it
https://doi.org/10.4230/LIPIcs.ECRTS.2021.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Scheduling Replica Voting in Fixed-Priority RTS

meticulous design, it could be impossible to eliminate all the internal sources of faults, so that
the system will eventually experience a failure. On the other hand, fault tolerance techniques
aim at making a system capable of properly react to faults, avoiding that they lead to a
failure of the functionality offered by the system [31]. Redundancy is a widespread approach
to build fault-tolerant systems. Redundant systems are built by several subsystems, called
replicas, that perform the same computations over time. The replication allows the detection
and/or the masking of a fault through the voting (i.e., comparison) of the results computed
by all replicas. A redundant architecture is said to be r-out-of-n (with r ≤ n) if it is built by
n replicas, r of which have to properly work to make the whole system failure-free [30].

The 2-out-of-2 architecture is the most used redundant architecture in the railway domain.
It is an architecture that enables the detection of faults: if the results provided by the two
replicas are different, a fault is detected and the system goes into a fail-safe state (e.g.,
shutdown). As described by Shenghua and Li [29], in the railway domain, the 2-out-of-2
architecture is employed in a hierarchical framework where the entire system with two replicas
is further replicated to build a 1-out-of-2 system of systems. In normal conditions, only
the primary system provides the output to the external environment but, as soon as the
voting in the primary system detects a fault, the primary is shut down and the secondary
system (in hot standby) takes over. As a result, this architecture is capable of masking faults
increasing system availability.

Another architecture used in many domains, such as avionics, is the 2-out-of-3 (also
known as Triple Modular Redundancy) [17, 32]. It implements majority-voting and is known
to be capable of providing both fault-detection and fault-masking [31]: if one replica is faulty
(i.e., its output is different by the other two), a fault will be detected and the system output
will continue to rely on the outputs of the other two replicas.

Even though several other redundancy schemes have been proposed, most of them are
based on the same idea: replicated systems perform the same computations on the same
inputs, sending through a communication network their results to be voted. Voting can be
either centralized or distributed. In the former case, voting is implemented on a centralized
node that collects and votes all the results provided by the replicated subsystems. In this
case, the voter itself is clearly a single-point-of-failure. In the latter case, each replica has its
voter, either implemented with a hardware component or with a software algorithm, and
votes its data against the one produced by the other replicas.

In this work, we focus on distributed voting implemented with software techniques, which
is a more and more widespread approach (e.g., in the railway domain) to achieve flexibility
and contain cost in realizing fault-tolerant systems.

The implementation of distributed voting requires dealing with the transmission of
data among replicas, the waiting and synchronization among replicas, and the execution
of the voting protocol itself. These aspects clearly impact on the timing properties of
real-time tasks and call for the investigation of different strategies to suitably schedule all
voting-related activities.

1.1 This work
Informed by experience in safety-critical software for the railway industry, in this work we
analyze and compare two different strategies for scheduling voting-related activities under
2-out-of-2 redundancy. The first one corresponds to a case that is particularly attractive
and friendly for software developers: data is transmitted among replicas whenever they are
produced by the tasks and each task waits for the reception of the data sent by the other
replica by suspending its execution (e.g., by using a classical condition variable). When tasks

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:3

are resumed, the data to be voted is available and they can proceed with the execution of
the voting protocol and then complete it. The second one is a new approach proposed in
this work inspired by the Logical Execution Time (LET) [19,28] paradigm where voting is
delayed at the end of the tasks’ periods and delegated to dedicated tasks. Although the
first approach may be preferable by software developers, this work shows that it introduces
several sources of unpredictability that make it particularly challenging to be analyzed from
a worst-case perspective.

In summary, this work makes the following contributions:
It provides a response-time analysis for real-time tasks under two strategies for scheduling
voting-related activities, one of the two being novel and proposed in this work.
It provides an analysis of queuing effects and worst-case transmission delays introduced
during inter-replica communications.
It compares the two strategies by means of an experimental evaluation.

To the best of our records, this is the first work that analyzes in detail the timing
properties of distributed voting protocols implemented upon a fixed-priority real-time system
with periodic multitasking. Software engineers from the railway industry collaborated in this
work. Since this work only addresses how voting operations are scheduled, other aspects such
as fault detection and recovery strategies are not discussed as they depend on the target
application and the adopted voting protocol.

Paper structure. The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 presents the system model by considering both tasks and inter-replica
communication. Section 4 formalizes the behavior of the two voting strategies. Section 5
analyzes queuing effects and delays in inter-replica communications. Section 6 provides
response-time analysis under the two voting strategies. Section 7 presents the experimental
results and Section 8 concludes the paper.

2 Related Work

Several works in the literature studied fault-tolerant systems from both a hardware and
software perspective.

Davies et al. [14] proposed a hardware-level solution, called Synchronization Voting, for
achieving inter-replica synchronization in a redundant system, overcoming the need for a
common external clock, which is a source of common-mode failures. Their approach consists
of using a set of synchronizer modules (one for each replica) that, by exchanging mutual
feedback, allow replicas to correct for their inevitable drift. McConnel et al. [27] continued
this work by presenting voter designs for different signaling conventions (transition, level, and
pulse). These papers present elegant solutions to implement inter-replica synchronization
and voting at the hardware-level, but they do not consider the effects of multitasking on
the replicated systems, where the voting has to be implemented on the outputs produced
by tasks. Eris et al. [16] focused on railway systems (with 2-out-of-2 redundancy) with
diverse programming. Their approach allows the voter to move the system from a safe state
toward a less safe state only when all replicas agree. They also analyzed the effects of the
synchronization issues (i.e., race conditions) on the railway signaling protocols by proposing
a solution based on a centralized voter acting as a replica coordinator. Again, multitasking
has not been considered.

Some real-time scheduling strategies, aimed at improving the system resilience against
transient faults, have been proposed by Kim and Shin [21], and Kwak and Kim [24]. They are
based on executing different copies of the same task at different times so that the probability

ECRTS 2021

13:4 Scheduling Replica Voting in Fixed-Priority RTS

ICI ICI

RX FIFORX FIFO

ReceiveReceive

TX FIFOTX FIFO

TransmitTransmit

RX FIFORX FIFO

ReceiveReceive

TX FIFOTX FIFO

TransmitTransmit

Figure 1 An overview of the system architecture.

that a common transient fault affects all of them is reduced. Back et al. [1] proposed
TL-NMR, a task-level N Modular Redundancy schema, which allows the execution of several
copies of tasks in parallel upon multiprocessor platforms scheduled by Global Fixed-Priority.
The authors provided an algorithm that allows selecting the number of copies for each task
along with a schedulability test based on the response-time analysis. However, these papers,
focused only on the schedulability of the tasks’ copies, without considering issues related to
inter-replica synchronization and the impact on the scheduling of voting protocols. Another
work that improves the fault-tolerance in the presence of environmentally-induced faults is
due to Gujarati et al. [18]. The authors proposed an algorithm, along with a suspension-free
model of its real-time implementation (based on the Liu and Layland task model), that
allows a distributed real-time system to solve the Interactive Consistency problem in the
presence of Byzantine faults. The authors also provided a detailed real-time-aware reliability
analysis of the proposed solution.

Bernat et al. [4, 5] presented a real-time fault-tolerant architecture capable of handling
transient overload conditions through the firm real-time task model. The proposed archi-
tecture comprises multiple replicated subsystems, each executing a copy of the same task
set, and a dedicated processor for the voting called Redundancy eXecutive (RX). Whenever
a task finishes its execution, it sends the computed results to the RX and suspends its
execution. As soon as the RX has collected enough replicas’ results (some replicas could be
failed), executes the voting protocol and sends the voted output back to the tasks’ copies,
allowing them to resume their computation. Similar to our work, the authors also provided
a detailed schedulability analysis based on the response-time analysis. They consider every
contribution to the tasks’ execution time, such as the communication time spent into the
results exchanging and executing the voting algorithm on the RX subsystem. These works
have several limitations. First, they consider one scheduling scheme for voting only. Second,
they rely on a dedicated subsystem to execute the voting algorithm, introducing a higher
system cost and requiring to deal with the RX subsystem’s potential faults. Third, they do
not provide any experimental evaluation.

From the perspective of voting protocols, researchers consolidated several algorithms such
as the ones presented in [2, 3, 7, 8, 14,25,33].

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:5

3 System model

This work considers a 2-out-of-2 redundant system with two replicas R1 and R2. Each replica
Rk consists in a uni-processor platform that executes a set Γk = {τk

1 , . . . , τ
k
n} of n periodic

tasks. Each periodic task τk
i is characterized by a worst-case execution time (WCET) Ck

i ,
a release period T k

i , and a relative deadline Dk
i ≤ T k

i . Tasks are scheduled according to
fixed-priority preemptive scheduling. The set of higher-priority tasks with respect to τk

i that
execute on the same replica Rk is denoted by hp(i, k).

Each periodic task τ1
i running in the primary is associated with a corresponding periodic

task τ2
i running in the secondary and the two tasks form a replica pair ri = {τ1

i , τ
2
i }. The tasks

in a replica pair share the same period and deadline, i.e., T 1
i = T 2

i and D1
i = D2

i , ∀i = 1, . . . , n.
Given a replica Rk, the other replica is referred to as Ror(k), where or(k) = (k + 1) mod 2.
The clocks of the two replicas are synchronized so that the release of the periodic tasks in
each replica pair is synchronized. The WCET of the tasks can be different from replica to
replica, i.e., C1

i can be larger or shorter than C2
i for some pairs of tasks τ1

i and τ2
i .

Inter-replica communication and voting. The two replicas are connected via two wired
inter-replica communication interfaces (ICI): one for sending the data from R1 to R2, and
one for sending data from R2 to R1. An overview of the system architecture is shown in
Figure 1. For instance, the ICI can be realized with serial peripheral interfaces (SPI) for
transmitting data and digital lines connected to general-purpose input/output (GPIO) for
the synchronization signals.

Data transmission via the ICI occurs by acting on memory-mapped device registers. The
ICI provides an output (resp., input) buffer organized as a first-in-first-out (FIFO) queue
of Q elements, each of size b bytes. The ICI also provides synchronization signals to notify
events among replicas (e.g., the completion of a computation). The minimum read/write
rate in accessing such registers is denoted by β (in bytes per time unit), while the maximum
one is denoted by β. The minimum transmission rate guaranteed by the ICI is denoted by α
(in bytes per time unit). The minimum read/write rate to access memory is γ1. For instance,
this means that a task that intends to send x bytes via one of the ICI spends (i) at most
x/γ time units to read the data to be sent from memory, (ii) at least x/β time units and at
most x/β time units of its computation time to fill the ICI queue with data, and (iii) that
such data will be transmitted to the other replica in at most x/α time units.

Periodic tasks may produce vital outputs, i.e., data that are critical for the system. Both
the tasks τ1

i and τ2
i of each replica pair produce the same set of vital outputs. Before the

completion of each job, each periodic task has to vote its vital outputs (if any) with the
corresponding task of its replica pair. Voting is implemented via a distributed voting protocol
[26] that exchanges data via the ICI.

Both the tasks in a replica pair ri exchange Mi data packets with a fixed size of b bytes
that contain the data to be voted.

Tasks that intend to send data via an ICI that has its queue full, busy-wait until at least
one slot in the queue becomes empty. In reception, the ICI can either operate in polling
mode or in interrupt mode. In the former case, tasks receive packets by actively sampling
the ICI queue, possibly wasting processor cycles if the queue is empty. In the latter case,

1 The authors acknowledge that memory write times are generally shorter than read times. A common
rate γ has been considered just for the sake of simplicity as it does not particularly affect the results of
this paper.

ECRTS 2021

13:6 Scheduling Replica Voting in Fixed-Priority RTS

the ICI notify receipt of packets through interrupts. The ICI are programmed to raise one
interrupt every time a packet is received. The corresponding interrupt service routine (ISR)
is in charge of reading the packets in the queue, by acting on the ICI device registers, and
copying them into a memory buffer shared with the task interested by the packet (interrupts
that are raised while the ISR is pending are ignored and the corresponding packets are
processed by the same). Each ISR introduces an overhead of at most σISR time units due to
the management of the ISR activation and completion (i.e., this overhead does not include
the time required to process packets).

The time that τk
i spends to perform computations lasts at most Ek

i time units. This
parameter does not account for packet transmissions and receptions and the execution
of the voting protocol. The transmissions performed by each job of the tasks consist of
copying the vital outputs from memory into the transmission registers of the ICI. For tasks
of the replica pair ri such transmissions take at most V Ti = Mi · PT time units, where
PT =

(
b
γ + b

β

)
. The maximum time needed to receive the packets of the tasks of ri and store

them in a shared-memory buffer, to be later consumed by the voting protocol, is denoted by
V Ri = Mi · PT .

The utilization of the ICI, intended as the amount of bytes transmitted per time unit in
the long run, is defined as U ICI =

∑n
i=1(Mib)/Ti. To avoid dealing with cases in which the

ICI is overutilized, which clearly makes the system not feasible, we require α > U ICI and
β > U ICI.

After the two tasks in a replica pair ri exchanged the data to be voted, a voting protocol
can be executed, which takes at most V Pi time units.

The data transmission is performed by using one of the ICI in a mutually-exclusive
manner. To this end, each task may have to acquire and release a lock before and after
transmitting each packet, respectively. The immediate priority ceiling (IPC) locking protocol
is adopted. The case in which all tasks have to vote data is equivalent to a resource shared
by all tasks: hence, under the IPC protocol, the critical sections to access the communication
interface are equivalent to non-preemptive sections.

4 Voting implementations

This work is focused on analyzing and comparing two schemes to schedule the execution of
the voting protocol and the related data transmissions.

The first one, named passive waiting, is an approach that can be implemented with
a minimal impact on general-purpose programming paradigms, as it corresponds to the
case in which a task sequentially performs the following three operations: (i) compute, (ii)
wait for the other replica to complete by self-suspending its execution, and (iii) execute the
voting protocol. Note that passive waiting can be implemented with classical semaphores
and condition variables. The second one is inspired by the Logical Execution Time (LET)
paradigm and requires introducing additional tasks in the system.

The following rules characterize the behavior of each of the considered scheduling schemes:
Transmission Rule: it defines how data transmission is performed among replicas.
Reception Rule: it defines the behavior of the replica that receives the data.
Waiting Rule: it defines how a task τk

i has to wait for the corresponding task τor(k)
i in

the other replica.
Voting Rule: it defines how the voting protocol is executed.

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:7

4.1 Passive waiting
Under passive waiting tasks are composed of three serialized phases: (i) an execution phase
(E), in which the task computes the data to be voted; (ii) a transmission phase (VT) where
vital outputs are transmitted to the other replica; and (iii) a final phase where the voting
protocol (VP) is executed. The reception of packets is handled by ISRs (the ICI are used in
interrupt mode).

ISR

τ
1

1

τ
1

2

ISR

τ
2

1

τ
2

2

R1

R2

time

time

1 1

1 1 2 2

1 1 2 2

1 1

TransmissionExecution Reception Voting Self-Suspended

Figure 2 Example schedule of two replica-pairs under passive waiting.

Transmission rule. When completing its computations, each task τk
i transmits Mi packets

of data to be voted on by the other replica. For each packet to transmit, the task first
acquires the lock on the communication interface, then transmits the packet, and finally
releases the lock.

Reception rule. Whenever a replica Rk receives a data packet, an ISR is executed by
preempting any task in execution in Rk, i.e., the ISRs run at the highest priority level and
are not affected by the locking of the communication interface as two independent ICI are
used for transmission and reception. The ISRs perform the operations specified in Section 3.
For each task τk

i , when the last of the Mi packets sent by τor(k)
i (i.e., from the other replica

Ror(k)) is received, the ISR that handles the packet notifies τk
i that all its data is ready in a

shared-memory buffer to be voted on.

Waiting rule. When a task τk
i completes its transmission phase it self-suspends its execution

until all the Mi packets sent by the other replica task τor(k)
i are received and processed by

the corresponding ISRs. The self-suspension is skipped if all Mi packets have already been
received and processed by ISRs.

Voting rule. The voting protocol is executed after all the Mi packets have been received
and processed by ISRs, i.e., after the eventual self-suspension enforced by the voting rule.
The task terminates after the execution of the voting protocol.

ECRTS 2021

13:8 Scheduling Replica Voting in Fixed-Priority RTS

An example schedule under passive waiting is illustrated in Figure 2. In this example,
two replica-pairs are needing to vote two packets each. The first job of τ1

1 , according to
the waiting rule, does not experience any suspension as it already received all the packets
from the other replica when it becomes ready to vote. On the other hand, the first job of
τ2

1 completes its execution and transmission phases before τ1
1 , so it self-suspends until the

delivery of the second packet. As soon as the ISR of replica R2 handles the last packet, τ2
1 is

awakened to execute the voting protocol. The behaviors of the second jobs of the previous
tasks are dual: task τ2

1 completes without any suspension, instead, τ1
1 self-suspends to wait

for the other replica. Note that, at its release time, the second job of τ2
1 is blocked by τ2

2
because the latter acquires the lock on the ICI to transmit a packet.

Note that with this approach the ICI queues may contain packets of different tasks at
the same time. Indeed, some task τk

i can start sending packets and then be preempted
by another task τk

j that sends its packets, and so on. As such, packets must contain the
identifier of the sender task to be correctly dispatched by ISRs in the other replica.

4.2 LET-inspired voting
The underlying idea of this scheduling scheme is to get rid of both the waiting times and the
any-time data transmission of the preceding scheme by confining all voting-related activities
in predefined time intervals.

Together with the task set Γk, each replica Rk serves the execution of a set Υk =
{υk

1 , . . . , υ
k
n} of voting tasks, one for each task τk

i , each of them executing at the same priority
equal to a value higher than the priority of any task in Γk. Voting tasks are executed with the
same period of the corresponding (regular) task, i.e., T k,V

i = T k
i , ∀i, ∀k. Tasks communicate

with their corresponding voting tasks via shared-memory buffers. A task completes as soon
as it finishes its computations, leaving the data to be voted in a shared-memory buffer. Then,
the voting-related activities are delegated to the corresponding voting task υk

i , which is
synchronously activated with τk

i . Note that, being υk
i executed at a higher priority than τk

i ,
it always executes before τk

i . As such, each j-th job of the voting task υk
i accomplishes the

voting-related activities for the preceding job, i.e., the (j − 1)-th one, of τk
i . Voting tasks

are synchronously-released among replicas and executed in the same order on both replicas
(voting tasks are selected according to their identifier whenever they are simultaneously
pending). The execution of the voting tasks is also synchronized among replicas, meaning
that a rendez-vous point is provided at their completion so that each voting task υk

i finishes
together to υor(k)

i . The latter synchronization is implemented by means of the synchronization
signals offered by the ICI.

Voting tasks access the ICI in polling mode (no ICI-related ISRs are present under this
voting scheme). The voting tasks perform the transmission and reception of packets in
inverse order on the two replicas, as stated by the following rules.

Transmission rule. After completing their computations, the tasks terminate their execution
by leaving the packets to be transmitted in memory buffers shared with their corresponding
voting tasks. The transmission is then delegated to the voting tasks. On replica R1, the
voting task υ1

i of τ1
i transmits Mi packets to R2 as soon as it is activated. On replica R2,

the voting task υ2
i of τ2

i transmits Mi packets to R1 after it received the packets sent by υ1
i .

Receiving rule. On replica R1, the voting task υ1
i of τ1

i receives (in polling mode) Mi

packets sent from R2 after it transmitted its packets. On replica R2, the voting task υ2
i of

τ2
i receives (in polling mode) Mi packets from R1 as soon as it is activated.

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:9

τ
1

1

τ
1

2

R1

time

v
1

1

v
1

2

τ
2

1

τ
2

2

R2

time

v
2

1

v
2

2

TransmissionExecution Reception Voting

Figure 3 Example schedule under LET-inspired voting for a system with two replica pairs.

Waiting rule. None: when a task has finished its execution phase it terminates.

Voting rule. The voting protocol is executed by voting tasks after they completed both the
packet transmission and reception. When the voting protocol terminates, the voting tasks
busy waits until the corresponding voting task on the other replica sends a signal through
the ICI synchronization line to notify the completion of the voting protocol.

The behavior of this LET-inspired scheduling scheme for voting is illustrated in Figure 3.
Note that, since voting tasks are synchronously released together with their corresponding
regular tasks and have a higher priority, voting is guaranteed to occur before starting
executing the next job of regular tasks. In this way, voting is still logically occurring in the
temporal context given by the period of the tasks that generate the data to be voted.

5 Inter-replica communication

This section deals with the analysis of inter-replica communications employing the ICI. Two
problems are addressed. First, since under passive waiting packets can be sent at any time
and that the communication is asynchronous (the ICI works in interrupt mode), packets
of different tasks can be enqueued together in the ICI queues. This makes the worst-case
transmission delay experienced by the packets of a certain task particularly challenging to
be bounded, especially if considering the additional delays introduced by the waiting for the
emptying of the queue. For this reason, we derive an analysis to ensure that the ICI queues
are never full, hence getting rid of these additional delays by construction. Subsequently, we
also provide a bound on the maximum delay introduced by the ICI.

5.1 Queuing analysis
We begin by bounding the amount of data sent within arbitrary time windows.

ECRTS 2021

13:10 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 1. In any time window of length t, the tasks can provide in the ICI queue at most
g(t) bytes of data, where

g(t) = min
{

n∑
i=1

⌈
t+ Ti

Ti

⌉
Mib, βt

}
. (1)

Proof. In any time window of length t a periodic task in ri can release at most ⌈(t+ Ti)/Ti⌉
jobs (e.g., see [9], Ch. 5). Each job of the tasks in ri sends at most Mi packets, each of size
b bytes. Hence the first term in the minimum of Eq. (1). Note that the amount of data the
tasks can send within a time window is also limited by the maximum rate with which the
ICI queue can be filled, which is given by β. Hence the lemma follows. ◀

The above lemma can then be used to derive a safe condition under which the ICI queues
are never full.

▶ Lemma 2. No task can find the ICI queues full if

∀t > 0, g(t) − αt ≤ Qb. (2)

Proof. Assume by contradiction that at a certain time instant t1 a task finds an ICI queue
full. Let t0 < t1 be the latest time at which the ICI queue has been empty and let t = t1 − t0.
It holds that (t0, t1] is an interval of length t in which the ICI has always been busy with
packets to transmit to the other replica. Let x(t) be the amount of bytes issued by the tasks
to be provided in the ICI queue in (t0, t1]. Note that during this interval the ICI must have
sent at least αt bytes: hence, if the queue is full at time t1 it holds that x(t) − αt > Qb.

By Lemma 1, in any time window of length t the cumulative amount of bytes provided in
the ICI queue is bounded by g(t). Hence, g(t) ≥ x(t), which implies g(t) − αt > Qb. This
contradicts Eq. (2). Hence the lemma follows. ◀

Note that Lemma 2 does not consist in a practical test as any possible value of t shall be
checked. This issue is solved below by limiting the test to a finite number of check-points.

▶ Lemma 3. Lemma 2 holds also if ∀t ∈ Φ, g(t) − αt ≤ Qb, where

Φ =
n⋃

i=1
{kTi + ϵ ≤ t∗, k = 0, 1, 2, . . .} ∪ {ψ} (3)

with

t∗ =
2

∑n
i=1 Mib

α−
∑n

i=1
Mib
Ti

, ψ =
{
t ≤ t∗ |

n∑
i=1

⌈
t+ Ti

Ti

⌉
Mib = βt

}
, (4)

and ϵ > 0 arbitrarily small.

Proof. We prove the lemma by showing that function g(t) − αt can be maximal only for
values t ∈ Φ. First note that the minimum of two functions is upper bounded by the upper
bound of one of the two functions. Hence g(t) ≤ G(t) =

∑n
i=1

(
t+Ti

Ti
+ 1

)
Mib.

Note that both G(t) and αt are two lines with slope U ICI =
∑n

i=1(Mib)/Ti and α,
respectively. Recall that α > U ICI (see Section 3). Therefore G(t) and αt intersect and, from
their intersection on, we have g(t) ≤ G(t) ≤ αt and hence also g(t) − αt ≤ 0.

The intersection occurs for the value t∗ such that G(t∗) = αt∗ and can be computed
by solving the latter equality with respect to t∗, hence getting the expression at the left of
Eq. (4). Therefore, for values of t > t∗ function g(t) − αt cannot be maximal.

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:11

If g(t) =
∑n

i=1

⌈
t+Ti

Ti

⌉
Mib note that function g(t) − αt can be maximal only for those

values of t that correspond to a step of the ceiling term of g(t). The values are of the form
t = kTi + ϵ with k being a non-negative integer and ϵ > 0 arbitrarily small. Conversely, if
g(t) = βt, being both the latter function and αt monotonic increasing, function g(t) − αt

can be maximal only for those values of t for which at t′ = t+ ϵ (when α ≤ β) or t′ = t− ϵ

(when α > β), with ϵ > 0 arbitrarily small, it holds g(t′) ̸= βt. These values of t must be an
intersection between the two components that define g(t), which are those of the set ψ at
the right of Eq. (4). Hence the lemma follows. ◀

5.2 Delay analysis
▶ Definition 4. The ICI-related delay ∆ICI is an upper bound on the maximum time that
can elapse from the time a packet is stored in the ICI queue by the sender task to the time
the packet is available to be read from the ICI queue at the receiver.

In the following the ICI-related delay is studied with queuing theory for networks [6] [23].
Under this approach, the ICI-related delay is decomposed as

∆ICI = dprop + dtrans + dproc + dqueue,

where dprop is the propagation delay, dtrans is the transmission delay, dproc is the processing
delay at the receiver, and dqueue is the queuing delay. We proceed by individually bounding
the above delay components.

Propagation delay. This delay corresponds to the physical propagation of the data along
the wires that connect the two replicas. Clearly, it depends on both the technology used
to realize the ICI and the wire length, as well as other physical properties such as the wire
material. For instance, a typical SPI has a propagation delay of 5 ns/m [22], which is hence
mostly negligible in an integrated system with short wiring. Hence dprop ≈ 0.

Transmission delay. This delay is simply bounded by the minimum guaranteed transmission
rate α of the ICI as dtrans ≤ b/α.

Processing delay. This delay corresponds to the time taken by the ICI peripheral to make
a packet available to be read from the ICI queue after it has been received. For instance, for
SPI it is typically in the order of a very few microseconds (e.g., see [34]) and is hence mostly
negligible. Thus dproc ≈ 0.

Queuing delay. This delay corresponds to the maximum time some data can remain in the
ICI queues before being actually transmitted. In order to bound this delay component, the
maximum number of packets that can be enqueued in the ICI queues at any time must be
bounded first.

▶ Lemma 5. The ICI queues never contain more than QMAX packets, where

QMAX = max
t∈Φ

{⌈
g(t) − αt

b

⌉}
(5)

and Φ is defined as in Lemma 3.

ECRTS 2021

13:12 Scheduling Replica Voting in Fixed-Priority RTS

Proof. Assume by contradiction that at a certain time instant t1 there are more than
QMAX packets in an ICI queue. Let t0 < t1 be the latest time at which the ICI queue has
been empty and let t = t1 − t0. Similarly as argued in the proof of Lemma 2 this implies
g(t) − αt > QMAXb, which in turn also implies

⌈
g(t)−αt

b

⌉
> QMAX. By Lemma 3, function

g(t) −αt can be maximal only for values t ∈ Φ, hence Eq. (5) also gives the maximal value of⌈
g(t)−αt

b

⌉
that must be both equal and larger to QMAX. This is a contradiction. The lemma

follows. ◀

The maximum time a packet can be delayed while being in the queue is guaranteed not
to be larger than the cumulative transmission time of all the preceding packets in the queue,
which can be at most QMAX − 1. Hence

dqueue ≤ (QMAX − 1) · b/α. (6)

6 Response-time analysis

This section focuses on bounding the worst-case response time of tasks under both passive
waiting and LET-inspired voting.

6.1 Passive waiting
Following Section 4, besides its regular execution, which lasts at most Ek

i time units, each
task also executes the transfer of the data to be voted into the ICI registers and the voting
protocol, which last at most V Ti and V Pi time units, respectively, on both replicas. Hence,
the cumulative WCET of task τk

i is given by

Ck
i = Ek

i + V Ti + V Pi. (7)

The analysis of tasks under passive waiting is split into two parts. First we bound the
partial response time of a task, which is defined as the response time up to the copy into the
ICI registers of the data to be voted, i.e., just before the start for the waiting of the other
replica. Subsequently, the response time of the whole task is bounded as a function of the
partial response time.

Up to the partial response time, task τk
i can be delayed by (i) its own execution and the

transfer of the data to be voted into the ICI registers, which can last at most Ek
i + V Ti time

units, (ii) the interference generated by high-priority tasks, (iii) the blocking time generated
by low-priority tasks, and (iv) the interference generated by the ISRs (which run at higher
priorities). We proceed by bounding these components individually.

Note that, under passive waiting, tasks behave as self-suspending tasks [13]. As such,
high-priority interference can be bounded utilizing a state-of-the-art result provided that the
WCET bound of Equation (7) is used.

▶ Lemma 6. Under passive waiting, the high-priority interference generated to a job of task
τi by high-priority tasks in any interval of length t is bounded by

Ik,hp
i (t) =

∑
τk

j
∈hp(i,k)

⌈
t+Rk

j − Ck
j

Tj

⌉
· Ck

j ,

where Rk
j is an upper bound on the response time of τk

j .

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:13

Proof. Follows by [13] (Theorem 1). ◀

Now, we proceed by bounding the non-preemptive blocking generated by low-priority
tasks because of the locking of the ICI.

▶ Lemma 7. Under passive waiting, a job of task τi can be blocked at most twice, one before
its partial response time and one after, and each time by at most PT time units.

Proof. Due to the transmission rule under passive waiting (Sec. 4.1), a task can lock one
of the ICI to transmit a packet, hence entering a non-preemptive section that can delay a
higher-priority task. As the lock is released after the packet is stored in the ICI registers,
the non-preemptive section can last at most PT time units. Tasks can be prevented from
execution due to non-preemptive blocking (i) at their release, and (ii) when resuming their
execution after self-suspensions, which occurs after their partial response time. Case (ii) can
happen only once as tasks suspend once to wait for the completion of the replica task. Hence
the lemma follows. ◀

▶ Lemma 8. Let PRk

j be an upper bound on the partial response time of task τk
j . Under

passive waiting, the interference generated to a job of task τk
i , in any interval of length t, by

ISRs that handle packets for τk
j is bounded by

Ik,ISR
i,j (t) =

 t+ PR
or(k)
j + ∆ICI

Tj

 ·Mj · (σISR + PT).

Proof. Consider an arbitrary time interval [0, t] and a replica Rk. ISRs are activated by
packets sent by jobs of tasks running in the other replica Ror(k). Each job of task τor(k)

j in
Ror(k) can send at most Mj packets, each requiring PT time units to be read by ISRs in Rk.
Each job of task τor(k)

j can also activate at most Mj ISRs in Rk, one per packet sent, each
introducing an overhead of at most σISR time units. Overall, the total ISR-related workload
generated by a job τ

or(k)
j is bounded by Mj · (σISR + PT).

Now, note that tasks can send packets only before the occurrence of their partial response
time. Hence, a job of task τor(k)

j released before time −(PRk

j + ∆ICI) cannot activate an ISR
in Rk during [0, t] as its packets would have already been sent and transmitted before the
beginning of the interval. Hence, only jobs of τor(k)

j released in interval [−(PRk

j + ∆ICI), t]

may activate ISRs in [0, t]. This means that there are most
⌈

t+P R
or(k)
j +∆ICI

Tj

⌉
jobs of τor(k)

j

that can activate ISRs in Rk during [0, t]. Hence the lemma follows. ◀

Bounds on contributions (i)-(iv) mentioned above are hence now available. Following
classical response-time analysis, a bound on the worst-case partial response time PRk

i of
each task τk

i can then be computed as the least positive fixed point of the recurrence:

PRk
i = Ek

i + V Ti + Ik,hp
i (PRk

i) + PT +
n∑

j=1
Ik,ISR

i,j (PRk
i). (8)

Note that Equation (8) uses the interference bound of Lemma 8, which in turn requires
the knowledge of an upper bound on the partial response time PRk

j that is to be computed
by Equation (8), hence introducing a circular dependency. This issue can be solved with
a typical refinement algorithm for response-time bounds starting from a safe value (e.g.,
see [10]), such as the task deadline.

It is now possible to bound the total response time of the tasks by bounding the worst-case
response time of the execution of the voting protocol.

ECRTS 2021

13:14 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 9. After at most

Jk
i = max{PRk

i , PR
or(k)
i } + ∆ICI +QMAX · (σISR + PT) (9)

time units from the task release, the voting protocol of task τk
i is ready to start executing.

Proof. Given the task behavior under passive waiting specified in Section 4.1, the voting
protocol of task τk

i can start executing only after that (i) all its Mi packets have been sent
to the other replica, and (ii) all packets sent by the replica task τ

or(k)
i have been received

and handled by ISRs.
Let us consider times related to the release of τk

i . At time max{PRk
i , PR

or(k)
i } both

τk
i and τ

or(k)
i have sent their packets by definition of partial response time. The last

packet sent by τ
or(k)
i will take at most ∆ICI to be transmitted to Rk. Hence, at time

max{PRk
i , PR

or(k)
i } + ∆ICI all packets sent by τ

or(k)
i must already have been received by

Rk. When the last of such packets is received it may still be the case that there are some
other packets ahead in the ICI queue to be processed: by Lemma 5, they can be at most
QMAX − 1 and each of them can take at most (σISR + PT) time units to be processed as
discussed in the proof of Lemma 8. At most other (σISR + PT) time units are needed to
process the last packet sent by τor(k)

i . Hence the lemma follows. ◀

The above lemma allows studying the execution of the voting protocol of each task τk
i as

a sub-task with jitter Jk
i whose completion corresponds to the completion of τk

i .

▶ Theorem 10. The response time of task τk
i is bounded by Jk

i +Rk
i , where Rk

i is the least
positive fixed point of the following recurrence:

Rk
i = V Pi + PT + Ik,hp

i (Rk
i) +

n∑
j=1
j ̸=i

Ik,ISR
i,j (Rk

i). (10)

Proof. Task τk
i completes when the execution of the voting protocol completes. The latter

lasts at most V Pi time units and can be delayed by (i) non-preemptive blocking, (ii) the
execution of high-priority tasks, and (iii) the execution of ISRs. By Lemma 7, non-preemptive
blocking is no larger than PT time units. By Lemma 6, high-priority task interference is
bounded by Ik,hp

i (t). Note that only ISRs that handle packets of other tasks τk
j ̸= τk

i can
interfere with the execution of the voting protocol as the latter becomes eligible for execution
only when all packets of τk

i have been received. Hence, by Lemma 8, the last term in Eq. (10)
bounds the ISR interference.

Due to the fact that all the phenomena that can delay the execution of the voting protocol
are safely bounded, by standard response-time analysis the least positive fixed point of
Eq. (10) bounds the largest amount of time the execution of the voting protocol can take to
complete from the time it becomes ready to execute. Therefore, after recalling Lemma 9,
Jk

i +Rk
i is a safe response time and the theorem follows. ◀

6.2 LET-inspired voting
Under the LET-inspired scheduling scheme for voting, the tasks compute their results and
terminate without undertaking any voting-related activity. Therefore, the WCET of each
task τk

i can be computed as just Ck
i = Ek

i .
Conversely, the voting tasks (i) receive the data produced by the other replica, (ii)

transmit the data to the other replica, (iii) execute the voting protocol, and (iv) finally wait
for the completion of the corresponding voting task on the other replica. As specified in

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:15

Section 4.2, voting tasks are synchronized among replicas: being synchronously released and
synchronously terminated, the execution of the voting tasks running on the two replicas
perfectly overlaps in time. This allows bounding the WCET of the voting tasks as follows.

▶ Theorem 11. The WCET of voting task υk
i is bounded by

Ck,V
i = 2

(
V Ti + Mib

α
+ V Ri

)
+ V Pi. (11)

Proof. Following the behavior specified in Section 4.2, voting tasks execute the transmission
and reception of packets in different orders. We then separately study the voting tasks on
the two replicas. On R1, υ1

i first executes the transmission and then the reception. The
time taken to perform these operations is due to (i) the actual copies to and from the ICI
device registers and (ii) the eventual busy waiting either because the ICI queue is full during
transmission or because the ICI queue is empty during the reception. Contribution (i) can
be at most V Ti + V Ri time units.

Since voting tasks are synchronously executed on the two replicas and the transmission and
reception phases are performed in inverse orders on the two replicas, when υ1

i is transmitting
packets υ2

i can continuously make progress in receiving them, and vice versa. Furthermore,
since the completion of voting tasks is synchronized among replicas, the ICI queues are
guaranteed to be empty whenever the voting tasks are activated. Hence, during the execution
of υ1

i and υ2
i only packets related to replica pair ri can be present in the ICI queues. This

means that υ2
i can take at most Mib

α + V Ri time units to receive the packets sent by υ1
i and

υ2
i can take at most Mib

α + V Ti time units to transmit its packets to υ1
i . These terms bound

the corresponding waiting times experienced because the ICI queues are either full or empty.
Hence, contribution (ii) is bounded by 2 Mib

α + V Ri + V Ti.
Finally, since the reception is performed in polling mode, when υ1

i starts executing the
voting protocol υ2

i must already have transmitted its packets, otherwise the reception phase
of υ1

i would not be completed. Hence, υ1
i can either execute the voting protocol for at

most V Pi time units or wait for the completion of just the execution of the voting protocol
in R2, which lasts anyway at most V Pi time units. Overall, υ1

i can execute for at most
(V Ti + V Ri) + (2 Mib

α + V Ri + V Ti) + V Pi time units, hence matching Eq. (11).
Now, let us consider υ2

i . For the same reasons discussed above, this task can wait at
most Mib

α + V Ti time units during the reception of packets performed at the beginning
of the task. At the time t∗ at which υ2

i received all packets it is guaranteed that υ1
i has

completed its transmission phase. Hence, υ2
i cannot wait for more than the time υ1

i can
take to complete its reception phase and the execution of the voting protocol, which is
bounded by Mib

α + V Ri + V Ti + V Pi as discussed above. From t∗ on, υ2
i can also executes

its transmission phase and voting protocol for no more than V Ti + V Pi time units. Hence,
the total time υ2

i can take from t∗ to its completion, either busy waiting or executing, is
bounded by max{ Mib

α + V Ri + V Ti + V Pi, V Ti + V Pi} = Mib
α + V Ri + V Ti + V Pi. Hence,

the total execution time of υ2
i is bounded again by Eq. (11). The theorem follows. ◀

With the above lemma in place, it is now possible to bound the worst-case response time
of the tasks as follows. The worst-case response time of task τk

i is bounded by the least
positive solution of the following recurrence:

Rk
i = Ck

i + Ik,hp
i (Rk

i) + Ik,V
i (Rk

i),

where Ik,hp
i (Rk

i) is a bound on the interference generated by high-priority tasks and Ik,V
i (Rk

i)
is a bound on the interference generated by voting tasks.

ECRTS 2021

13:16 Scheduling Replica Voting in Fixed-Priority RTS

▶ Lemma 12. It holds Ik,hp
i (Rk

i) =
∑

τk
j

∈hp(i,k)

⌈
Rk

i

T k
j

⌉
· Ck

j .

Proof. Under LET-inspired voting, tasks τk
i behave as regular periodic tasks (note that no

suspensions are involved). Thus, the lemma follows from standard response-time analysis for
periodic tasks under preemptive fixed-priority scheduling [20]. ◀

▶ Lemma 13. It holds Ik,V
i (Rk

i) =
∑

υk
j

∈Υk

⌈
Rk

i

T k,V
j

⌉
· Ck,V

j .

Proof. Voting tasks have a higher priority than any task in Γk, hence they all generate
high-priority interference to τk

i . They are also periodically activated and execute as standard
periodic tasks. Hence the lemma follows as for Lemma 12 provided that the WCET bound
of Theorem 11 is used. ◀

6.3 Discussion
As it can be noted from the above sections, the analysis of voting with passive waiting is
much more challenging than the one under LET-inspired voting due to the various sources of
unpredictability introduced by that scheme. In addition, passive waiting requires the analysis
of packet queuing presented in Section 5 to deal with any-time packet transmissions.

On the other hand, passive waiting is relatively simple to implement from the perspective of
the programmer and does not require introducing additional tasks in the system. Furthermore,
it introduces limited priority inversion related to voting: indeed, a high-priority task can
be delayed by voting-related activities of low-priority tasks only by the transmission of one
packet and the reception of packets by means of ISRs.

Conversely, LET-inspired voting does not require the packet queuing analysis since the
voting data is communicated in precise time intervals during which the interested voting tasks
are synchronously executed on both replicas. Nevertheless, this approach tends to introduce
larger priority inversion because all voting-related activities are executed by LET tasks at
the highest priority. Hence, the whole transmission and reception of packets as well as the
voting protocol of a low-priority task can interfere with the execution of a high-priority task.

7 Experimental results

This section reports the results of an experimental evaluation that was conducted to compare
those two voting scheduling strategies studied in this paper.

Workload generation. Given a target task set utilization U and a number of tasks n, N
task sets have been generated with the Emberson et al.’s generator [15], which was configured
to randomly select the task periods in the range [Tmin, Tmax] with log-uniform distribution.
The task sets Γ1 and Γ2 of the two replicas were then generated as follows. For each replica
pair ri, one replica was randomly selected to be the slower in executing it, say Rk, then
E

or(k)
i was set to the WCET value obtained by the task generator and Ek

i = E
or(k)
i · ξ, where

ξ was randomly selected in [ξmin, 1] with uniform distribution. Note that, since the WCET
provided by the task generator is used to control the worst-case duration of the execution
phase of tasks (parameter Ek

i), the utilization U used to control the generation refers to
the maximum per-replica utilization without voting-related activities. A random number
⌊pvital · n⌋ of tasks, with pvital randomly chosen in [0.6, 0.8] with uniform distribution, were
selected to be vital in each replica pair, and hence to require voting. For each vital replica pair,
the number of packets Mi was randomly generated in [0,Mmax] with uniform distribution.

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:17

Table 1 Nominal setting of the parameters that control the workload generation.

Parameter Value Description
N 500 Number of task sets
n 10 Number of tasks per replica

pvital [0.6, 0.8] Vital task ratio for each replica pair
T min 5000 Task minimum period (µs)
T max 500000 Task maximum period (µs)
ξmin 0.85 Minimum faster-replica speed coefficient

Mmax 5 Maximum number of packets sent by a task
α 15 ICI bandwidth (MB/s)
b 16 Number of bytes per packet
Q 8 ICI queue size (packets)
γ 13.24 Minimum read/write rate to access memory (MB/s)
β 13.24 Minimum read/write rate to access device registers (MB/s)
β 56.47 Maximum read/write rate to access device registers (MB/s)

σISR 2 ISR overhead (µs)
λVP 50 Time required to vote a packet of data (µs)

Parameters V Ri and V Ti were computed accordingly as a function of Mi. The WCET of the
voting protocol was also generated as V Pi = λVP ·Mi where λVP ≥ 0 is another parameter
that control the generation. For non-vital replica pairs we set V Pi = V Ti = V Ri = 0. All
tasks were assigned implicit deadlines (i.e., Di = Ti).

To configure the device register and memory access rates β, β, and γ we took the
Xilinx Ultrascale+ SoC (considering the Cortex-A cores running at 1.2 GHz) as a reference
platform, from which we obtain respectively, 725, 170, and 170 clock cycles by profiling. The
configuration of other parameters that are not mentioned above is varied in the experiments
presented next and, whenever mentioned, is kept fixed to the nominal setting reported in
Table 1.

Experiments. A first experiment was conducted by varying the utilization without voting
U and testing N = 500 task sets per utilization value. The results under four representative
configurations are reported in Figure 4. The plots report the schedulability performance of the
proposed analysis techniques for voting with passive waiting (Section 4.1) and LET-inspired
voting (Section 4.2), as well as for the system without voting activities (used as a reference
upper bound of the schedulability performance). These results were obtained under the
setting reported above each plot, where the parameters that are not mentioned were set to
the nominal configuration of Table 1.

As it can be noted from the plots, LET-inspired voting always outperforms passive waiting.
Passive waiting is strongly penalized in the presence of short ICI queues (see Fig. 4(a) vs.
Fig. 4(b)) due to the queuing analysis, while LET-inspired voting is almost insensitive to the
ICI queue size as expected. The performance of both approaches degrades as the number
of packets sent by tasks increases (see Fig. 4(c) vs. Fig. 4(d)), but LET-inspired voting is
capable of guaranteeing much better schedulability performance than passive waiting as
Mmax increases.

Another experiment was conducted to study the dependency of the schedulability perfor-
mance of the two approaches as a function of other parameters different than U . The results
are reported in Figure 5, where 500 task sets have been tested for each value of the varied
parameters. Figure 5(a) illustrates the dependency of the schedulability performance on the
minimum task period Tmin in a condition of high system load (U= 0.9). This figure clearly

ECRTS 2021

13:18 Scheduling Replica Voting in Fixed-Priority RTS

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(a) Q = 8, Mmax = 5

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(b) Q = 20, Mmax = 5

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(c) Q = 20, Mmax = 6

0.0 0.2 0.4 0.6 0.8 1.0

50

100

U

(d) Q = 20, Mmax = 8

Passive Waiting LET-inspired No voting

Figure 4 Schedulability ratio (y-axis of the plots) as a function of the voting-unrelated utilization
U used to control the task set generation under four representative configurations.

2 4 6 8 10 12

50

100

T min (milliseconds)

(a) Q = 20, Mmax = 5, U = 0.9, B = 16

2 4 6 8 10 12

50

100

Mmax

(b) Q = 20, U = 0.9, B = 16

100 200 300 400 500 600

50

100

λVP

(c) Q = 20, U = 0.7, Mmax = 5

6 8 10 12 14 16

50

100

Q

(d) U = 0.7, Mmax = 5

Passive Waiting LET-inspired No voting

Figure 5 Schedulability ratio (y-axis of the plots) as a function of T min, Mmax, λVP, and Q

under four representative configurations.

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:19

6 8 10 12 14 16 18

50

100

n

(a) Q = 10, Mmax = 5, U = 0.7

6 8 10 12 14 16 18

50

100

n

(b) Q = 20, Mmax = 5, U = 0.7

6 8 10 12 14 16 18

50

100

n

(c) Q = 10, Mmax = 5, U = 0.9

6 8 10 12 14 16 18

50

100

n

(d) Q = 20, Mmax = 5, U = 0.9

Passive Waiting LET-inspired No voting

Figure 6 Schedulability ratio (y-axis of the plots) as a function of n under four representative
configurations.

shows that LET-inspired voting is penalized in the presence of very short task periods due
to the priority-inversion generated by voting tasks discussed in Section 6.3. Figures 5(b)
and 5(c) show how the performance of both approaches degrades as either Mmax or λVP

increases, and that the gap between the two reduces for large values of these parameters.
Finally, Figure 5(d) confirms that passive waiting exhibits very poor performance in the
presence of short ICI queues and that LET-inspired voting is insensitive to this parameter.
The last experiment was conducted to assess how the schedulability ratio of both approaches
varies as a function of the number of tasks in the tested task sets. Figure 6(a) shows that
the performance of passive waiting quickly degrades by increasing the number of tasks while
LET-inspired voting is not affected by the size of the task set. Figure 6(b) reports the results
under the same configuration of Figure 6(a) but considering larger ICI queues: in this case,
the performance of passive waiting definitively improves but is still lower than the one of
LET-inspired voting. Furthermore, Figure 6(c) and Figure 6(d) show that the performance
of both approaches decreases as the number of tasks increases at high utilization (U = 0.9).
Nevertheless, LET-inspired voting always outperforms passive waiting in all the tested cases.

8 Conclusion and future work

This paper studied two scheduling strategies for distributed voting protocols in 2-out-of-2
redundant real-time systems, namely passive waiting (based on task self-suspensions to wait
for the other replica) and LET-inspired voting. Both queuing and delays related to inter-
replica communication interfaces have been studied. Response-time analysis for real-time
tasks under the two strategies has been presented. The pros and cons of the two scheduling
strategies have also been discussed. The two strategies have been experimentally compared
in terms of schedulability performance. The experimental results revealed that LET-inspired
voting is always preferable to passive waiting, exhibiting even a 100% performance gap

ECRTS 2021

13:20 Scheduling Replica Voting in Fixed-Priority RTS

in the presence of short packet queues of inter-replica communication interfaces. In other
configurations with longer queues, LET-inspired voting is also capable of scheduling up to
five more times task sets than passive waiting.

Future work should investigate the possibility of improving the analysis of passive waiting,
both in terms of packet queuing and response times, and on the design of improved scheduling
strategies that can better control the priority inversion introduced by LET-inspired voting.

References
1 Jaemin Baek, Jeonghyun Baek, Jeeheon Yoo, and Hyeongboo Baek. An n-modular redundancy

framework incorporating response-time analysis on multiprocessor platforms. Symmetry,
11(8):960, 2019.

2 Julian M Bass. Voting in real-time distributed computer control systems. PhD thesis, University
of Sheffield, 1995.

3 H Benítez-Pérez, G Latif-Shabgahi, HA Thompson, S Bennett, PJ Fleming, and JM Bass.
Integration and comparison of fdi and fault masking features in embedded systems. IFAC
Proceedings Volumes, 32(2):7712–7717, 1999.

4 Guillem Bernat, Jose Miro-Julia, and Julian Proenza. A technique to analyze the tolerance to
transient overloads of a fault-tolerant real-time system. In Proceedings 1997 High-Assurance
Engineering Workshop, pages 221–226. IEEE, 1997.

5 Guillem Bernat, Jose Miro-Julia, Julian Proenza, et al. Fixed priority schedulability analysis
of a distributed real-time fault tolerant architecture. In PDPTA, pages 479–487, 1997.

6 Dimitri Bertsekas and Robert Gallager. Data Networks (2nd Ed.). Prentice-Hall, Inc., USA,
1992.

7 DM Blough and GF Sullivan. Voting using predispositions. IEEE Transactions on reliability,
43(4):604–616, 1994.

8 Douglas M Blough and Gregory F Sullivan. A comparison of voting strategies for fault-tolerant
distributed systems. In Proceedings Ninth Symposium on Reliable Distributed Systems, pages
136–145. IEEE, 1990.

9 B. Brandenburg. Scheduling and locking in multiprocessor real-time operating systems. In
Ph.D. dissertation, The University of North Carolina at Chapel Hill, 2011.

10 D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. Partitioned fixed-priority scheduling of
parallel tasks without preemptions. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 421–433, 2018. doi:10.1109/RTSS.2018.00056.

11 EN CEI. Cei en 50126-1. Railway Applications - The Specification and Demonstration of
Reliability, Availability, Maintainability and Safety (RAMS). Part 1: Generic RAMS Process,
2019.

12 EN CEI. Cei en 60730-1. Automatic electrical controls - Part1: General requirements, 2019.
13 J. Chen, G. Nelissen, and W. Huang. A unifying response time analysis framework for dynamic

self-suspending tasks. In 2016 28th Euromicro Conference on Real-Time Systems (ECRTS),
pages 61–71, 2016. doi:10.1109/ECRTS.2016.31.

14 Daniel Davies and John F. Wakerly. Synchronization and matching in redundant systems.
IEEE Computer Architecture Letters, 27(06):531–539, 1978.

15 P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis of multiprocessor
tasksets. In 1st International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), pages 6–11, July 2010.

16 Oytun Eriş, Uğur Yıldırım, Mustafa S Durmuş, Mehmet T Söylemez, and Salman Kurtulan.
N-version programming for railway interlocking systems: Synchronization and voting strategy.
IFAC Proceedings Volumes, 45(24):177–180, 2012.

17 Saurabh Gohil, Aravind Basavalingarajaiah, and Varadharajan Ramachandran. Redundancy
management and synchronization in avionics communication products. In 2011 Integrated

https://doi.org/10.1109/RTSS.2018.00056
https://doi.org/10.1109/ECRTS.2016.31

P. Fara, G. Serra, A. Biondi, and C. Donnarumma 13:21

Communications, Navigation, and Surveillance Conference Proceedings, pages C3–1. IEEE,
2011.

18 Arpan Gujarati, Sergey Bozhko, and Björn B Brandenburg. Real-time replica consistency
over ethernet with reliability bounds. In 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 376–389. IEEE, 2020.

19 T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003. doi:10.1109/JPROC.
2002.805825.

20 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

21 Hagbae Kim and Kang G Shin. Sequencing tasks to minimize the effects of near-coincident
faults in tmr controller computers. IEEE transactions on computers, 45(11):1331–1337, 1996.

22 Thomas Kugelstadt. Extending the spi bus for long-distance communication. Analog Applica-
tions Journal, 2011. URL: https://www.ti.com/lit/an/slyt441/slyt441.pdf.

23 J.F. Kurose and K.W. Ross. Computer Networking: A Top-Down Approach. Pearson Education,
Limited, 2010. URL: https://books.google.it/books?id=2hv3PgAACAAJ.

24 Seong Woo Kwak and Byung Kook Kim. Task-scheduling strategies for reliable tmr controllers
using task grouping and assignment. IEEE Transactions on Reliability, 49(4):355–362, 2000.

25 G Latif-Shabgahi, JM Bass, and S Bennett. Complete disagreement in redundant real-time
control applications. IFAC Proceedings Volumes, 31(4):223–228, 1998.

26 G Latif-Shabgahi, Julian M Bass, and Stuart Bennett. A taxonomy for software voting
algorithms used in safety-critical systems. IEEE Transactions on Reliability, 53(3):319–328,
2004.

27 Stephen R McConnel and Daniel P Siewiorek. Synchronization and voting. IEEE Transactions
on Computers, 100(2):161–164, 1981.

28 P. Pazzaglia, D. Casini, A. Biondi, and M. Di Natale. Optimal memory allocation and
scheduling for dma data transfers under the let paradigm. In 58th Design Automation
Conference (DAC), 2021.

29 Dai Shenghua and Li Yishi. Research on 2-out-of-2 multiplying 2 redundancy system used in
high-speed train. In 2011 IEEE International Conference on Computer Science and Automation
Engineering, volume 2, pages 483–486. IEEE, 2011.

30 Martin L Shooman. Reliability of computer systems and networks. Wiley Online Library, 2002.
31 Daniel Siewiorek and Robert Swarz. Reliable computer systems: design and evaluatuion.

Digital Press, 2017.
32 Daniel P Siewiorek and Priya Narasimhan. Fault-tolerant architectures for space and avionics

applications. NASA Ames Research http://ic. arc. nasa. gov/projects/ishem/Papers/Siewi,
2005.

33 Zhijun Tong and Richard Y Kain. Vote assignments in weighted voting mechanisms. IEEE
Transactions on Computers, 40(5):664–667, 1991.

34 Xilinx. Zynq-7000 soc: Dc and ac switching characteristics - ds191, 2018. URL: https://www.
xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.
pdf#G1940899.

ECRTS 2021

https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1093/comjnl/29.5.390
https://www.ti.com/lit/an/slyt441/slyt441.pdf
https://books.google.it/books?id=2hv3PgAACAAJ
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899
https://www.xilinx.com/support/documentation/data_sheets/ds191-XC7Z030-XC7Z045-data-sheet.pdf#G1940899

A Residual Service Curve of Rate-Latency Server
Used by Sporadic Flows Computable in Quadratic
Time for Network Calculus
Marc Boyer # Ñ

ONERA / DTIS – Université de Toulouse, F-31055 Toulouse, France

Pierre Roux #

ONERA / DTIS – Université de Toulouse, F-31055 Toulouse, France

Hugo Daigmorte #

RealTime-at-Work, F-54600 Villers-lès-Nancy, France

David Puechmaille
RealTime-at-Work, F-54600 Villers-lès-Nancy, France

Abstract
Computing response times for resources shared by periodic workloads (tasks or data flows) can be
very time consuming as it depends on the least common multiple of the periods. In a previous study,
a quadratic algorithm was provided to upper bound the response time of a set of periodic tasks with
a fixed-priority scheduling. This paper generalises this result by considering a rate-latency server
and sporadic workloads and gives a response time and residual curve that can be used in other
contexts. It also provides a formal proof in the Coq language.

2012 ACM Subject Classification Networks → Formal specifications; Networks → Network perform-
ance evaluation; Networks → Network reliability; Software and its engineering → Formal methods;
General and reference → Verification

Keywords and phrases Network Calculus, response time, residual curve, rate-latency server, sporadic
workload, formal proof, Coq

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.14

Supplementary Material The code of the Coq proof is provided.
Software: http://doi.org/10.5281/zenodo.4518843
Software (ECRTS 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.1.2

1 Introduction

Network calculus is a theory designed to compute upper bounds on delays and memory usage
in distributed real-time systems. Given such a system, network calculus offers different ways
to model it and different algorithms, producing different bounds at different computation
costs.

Even if network calculus is able to analyse realistic industrial configurations in a few
seconds [10], some operations have an exponential worst case complexity, related to the least
common multiple (lcm) of the periods of the involved flows.

Currently, when modelling periodic or sporadic flows, one often use either an affine (i.e.
fluid) model, with linear complexity, or a staircase model, with exponential complexity. This
paper presents a quadratic solution for a very common operation, involved in the computation
of a residual service for common scheduling policies.

This paper is inspired by [2], that gave a quadratic algorithm for the response time of
a set of periodic real-time tasks on a CPU with fixed-priority scheduling. Since network
calculus also offers methods to compute upper bounds on the response time of such systems,

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 14; pp. 14:1–14:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Marc.Boyer@onera.fr
https://www.onera.fr/staff/marc-boyer
https://orcid.org/0000-0003-0344-6991
mailto:Pierre.Roux@onera.fr
https://orcid.org/0000-0003-2910-4738
mailto:hugo.daigmorte@realtimeatwork.com
https://orcid.org/0000-0002-1410-974X
https://orcid.org/0000-0002-8789-4793
https://doi.org/10.4230/LIPIcs.ECRTS.2021.14
http://doi.org/10.5281/zenodo.4518843
https://doi.org/10.4230/DARTS.7.1.2
https://doi.org/10.4230/DARTS.7.1.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

we had a look on the proof itself, and we found that it relies on the computation of the
CPU capacity that is left to some task by the higher priority flows. This notion also exists
in network calculus, where it is called “residual service” or “left-over capacity”. This paper
adapts the result in [2] to the network calculus framework and generalises it.

Since the proof is quite long, a formal proof, checked by the Coq proof assistant [13], is
also provided.

After a presentation of a relevant subset of network calculus in Section 2, and an overview
of related work in Section 3, the result itself is presented in Section 4, and evaluated on
benchmarks in Section 5.

2 Network calculus

This section provides a recall of network calculus formalism in Section 2.1, with a focus on
sporadic workload and rate-latency servers in Section 2.2.

Let R denote the set of real numbers, R+ the subset of non-negative real numbers, Z
the set of integers, for any i, j ∈ Z, Ji, jK = {i, i + 1, . . . , j}, ⌈·⌉ : R → Z the ceiling function
(⌈1.2⌉ = 2, ⌈4⌉ = 4, ⌈−1.2⌉ = −1). For any set X, |X| denotes its cardinal. For any number
x ∈ R, [x]+ = max(x, 0). For any function f : R+ → R, its non-decreasing non-negative
closure (illustrated in Figure 1) is defined by [f]+↑ (t) = max0≤s≤t [f(s)]+.

2.1 Generic results

Network calculus is a theory for deriving deterministic upper bounds in networks. Network
calculus mainly manipulates non decreasing functions to model flows, workload and server
capacity. This section provides a short introduction. A more thorough treatment can be
found in [12, 20, 5].

In network calculus, input and output flows of data are modelled by cumulative functions
which represent the amount of data observed at some point the flow up to time t. Servers
are just relations between input and output flows: a server S receives an arrival/input flow,
A(t), and delivers the data after some delay, as a departure/output flow, D(t). We always
have the relation D ≤ A, meaning that data can only go out after its arrival.

If the order of data within the flow is preserved, the delay at time t is defined as
hDev(A, D, t), and the worst delay is hDev(A, D), with

hDev(A, D, t) def= inf
{

d ∈ R+ A(t) ≤ D(t + d)
}

, hDev(A, D) def= sup
t∈R+

hDev(A, D, t)

(see Figure 3 for an illustration).
However, the exact input/output data flows are in general unknown at design time, or too

complex, and the calculus of these cumulative functions cannot be obtained. Nevertheless,
the evolution of input/output data flows can be bounded considering contracts on the traffic
and the services in the network. For this purpose, network calculus provides the concepts of
arrival curve (illustrated in Figure 2) and service curve.

▶ Definition 1 (Arrival curve). Let A be a flow, and α a function. Then, α is said to be an
arrival curve for flow A, iff ∀(t, d) ∈ R+ × R+, A(t + d) − A(t) ≤ α(d).

The expression α(d) is an upper bound on the amount of data that can be generated on any
interval of duration d. For a given flow A, one may consider several arrival curves.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:3

y

x

y = f(x)
y = [f]+↑ (x)

Figure 1 Non-negative non-decreasing closure.

da
ta

time

A

t t + d

≤ α(d)

Figure 2 Arrival curve.

time

da
ta A

D

hDev(A, D)

t

hDev(A, D, t)

Figure 3 Delay of the flow A.

time
da

ta

C

T − J 2T − J

νT,C,J

b

γr,b

L

βR,L

Figure 4 Common curves.

▶ Definition 2 (Minimal service). A server S offers a strict minimal service curve β iff for all
input/output A,D and for any backlogged period (s, t] (i.e. such that ∀x ∈ (s, t] : A(x) > D(x))

D(t) − D(s) ≥ β(t − s). (1)

Let us now present the main network calculus result which allows, considering contracts,
to compute bounds on delay.

▶ Theorem 3 (Delay bound). Let S be a server transforming an arrival A into a departure
D. If A has arrival curve α and S offers a strict minimal service of curve β then

hDev(A, D) ≤ hDev(α, β). (2)

A key point in network calculus is that arrival and service curves do not have to be tight.
Mathematically they only have to be, respectively, upper and lower bounds (cf. eq. (1),
eq. (1)). From a modelling point of view, they are not the exact behaviour, but only contracts.
It has two complementary consequences. On one hand, if the contract is too far away from
the real behaviour, the computed bounds will be large w.r.t. the real worst case. On the
other hand, a complex contract can be approximated by a simpler one and all results still
hold.

2.2 Sporadic workload, rate-latency servers and NP-SP policy
This paper focuses on periodic or sporadic flows and rate-latency servers.

Given a flow sending frames of maximal size or cost C ∈ R+ with a period or minimal
inter-arrival time T ∈ R+ and a jitter J ∈ R+, it admits the arrival curve νT,C,J : R+ → R+,
t 7→ C

⌈
t+J

T

⌉
but also γr,b : R+ → R+, t 7→ rt + b (1), with r = C

T and b = r(J + T), as

1 Readers with some background in network calculus may notice that in our definition, γr,b(0) = b whereas
the common practice is to set γr,b(0) = 0. But the results are simpler to prove with this definition, and
can be easily extended to the case where the function is null at origin.

ECRTS 2021

14:4 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

illustrated in Figure 4. Using νT,C,J is called “staircase modelling” while using γr,b is called
“fluid modelling”.

Servers often offer a rate-latency service, i.e. a constant rate R (a data link bandwidth for
example) after some latency L (some switching delay for example), modelled by a function
βR,L : t 7→ R [t − L]+.

When several flows share a server, its capacity β is shared between the flows, and to
compute an upper bound on the delay for a flow of interest, network calculus offers to
compute a residual service (aka. left-over service). The expression depends on the scheduling
policy.

▶ Theorem 4 (NP-SP residual service). Let S be a server shared by n flows using a non-
preemptive static priority scheduling policy. If S offers a strict minimal service curve βR,0,
and each flow i has arrival curve αi and a maximal frame size Si, then each flow j receives
a residual service

βj =

βR,Smax
j

/R −
∑

k∈hp(j)

αk

+

↑

(3)

with Smax
j = max

k∈lp(j)
Sk, and hp(j) (resp. lp(j)) the set of flows with higher (resp. lower)

priority than j.

The same kind of result holds, with some variations, with other type of service curves, or
preemptive static priority server, FIFO or even EDF [5]2.

2.3 Illustrative example
Consider a bus with a bandwidth of 125kb/s, a non-preemptive static priority arbitration
rule, and a latency of 0.75ms. Three periodic flows, with period and packets sizes given in
Table 1 are sharing this bus. Flow 3 has the lowest priority, then hp(3) = {1, 2}.

To compute the delay of this flow 3, one may choose to apply eq. (3). One may then
either set αi = νTi,Ci,Ji (staircase modelling) or αi = γri,bi (fluid modelling). In the top
plot of Figure 5 are plotted the two staircase arrival curves, ν1, ν2 and the corresponding
fluid arrival curves γ1, γ2. Eq. (3) involves the sum α1 + α2, being either ν1 + ν2 or γ1 + γ2
(both are in the second plot of Figure 5), and the two residual services βstc

3 = [β − ν1 − ν2]+↑ ,
βfluid

3 = [β − γ1 − γ2]+↑ are also plotted (given in the third and fourth plots of Figure 5). The
latency is then bounded either by hDev(α3, βstc

3) = h1 or hDev(α3, βfluid
3) = h1 + h2 + h3.

As expected, the staircase modelling, that captures in a more accurate way the behaviour
of the flows, gives a smaller bound than the fluid modelling.

2.4 Problem statement
Whereas the staircase modelling computes better bounds, it has several drawbacks.

One problem is the cost of the addition (i.e. the term
∑

k∈hp(j) αk in equation 3). With a
fluid model (when it exists real values rk, bk such that αk = γrk,bk

) there exists a closed-form
formula whose cost is linear w.r.t. the number of curves (it holds

∑
k∈hp(j)

γrk,bk
= γr,b with

2 Readers with a background in network calculus may have noticed only strict minimal service is presented,
whereas applications of these results also involve min-plus minimal service. Since the contribution of
this paper is independent of the service type, only one notion has been presented.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:5

Table 1 Flow parameters of illustrative example.

i Ti Ci ri bi

1 2.5 ms 125 b 50 kb/s 125 b
2 3.5 ms 125 b 35.72kb/s 125 b
3 3 ms 100 b 33.33 kb/s 100 b

r =
∑

k∈hp(j)
rk and b =

∑
k∈hp(j)

bk). On the contrary, the addition with a staircase model is
hard: there exists no closed-form formula, only algorithms [6], and the computation requires
to unroll the function up to the least common multiple of the periods3, leading to exponential
complexity.

Another problem is the absence of a closed-form formula. Closed formulae, and especially
those involving linear terms, allow to perform explicit and efficient optimisations.

A last problem is related to the implementation: not all tools are able to handle staircase
functions, and several only consider linear arrival curves, as presented in the next section.

The contribution of this paper is to give a rate-latency residual service that lies between
the staircase and the fluid residual service curves, denoted βR′,C/R′ in Figure 5.

3 Related work

3.1 Implementation of algebraic operators for network calculus
Practical application of network calculus requires an implementation of algebraic operations
on functions.

For years, work has concentrated exclusively on linear functions, using closed-form
formulae [20], and some tools were even only using affine arrival curves and rate-latency
service curves [3].

The subclass of concave or convex piecewise linear functions has also received some
attention [25, 7] and is the class currently used in the DISCO tool [26, 4].

A big step was the development of the (min,plus) library for the RTC toolbox [29],
representing piecewise linear functions (called VCCs) as a collection of segments [28, Sec. 7].

A major breakthrough has been achieved with the definition of the class of ultimately
pseudo periodic functions, generalising VCCs, and the development of the algorithms allowing
effective computation [6].

The problem of computation time has not yet received a lot of attention in academia.
In [9], the idea is to maintain a staircase arrival curve per flow, but to approximate it by a

concave piecewise linear function of two segments before summing, to keep linear complexity.
The notion of a “container” is developed in [21], with O(n log n) complexity on operations.
Another line of work is based on the fact that the computation of the bounds (the

horizontal deviation, hDev) is based only on the prefix of the involved functions, and that
one can maintain only a prefix and approximate the remainder of the function by an affine
segment [17, 18, 27].

Lastly, another way to reduce the computation time (at the price of getting larger upper
bounds) is to replace some periods Ti by a smaller value T ′

i but such that the lcm of the T ′
i

is smaller than the lcm of the Ti [23, 24].

3 In practice, periods are often integers or rational numbers that can be mapped to integers once a
common denominator is found.

ECRTS 2021

14:6 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

Time (ms)

1 2 3 4 5 6 7 8 9 10 11 12

D
at

a
(b

its
)

10
0

20
0

30
0

40
0

50
0

60
0

ν1 γ1
ν2 γ2
β

Time (ms)

1 2 3 4 5 6 7 8 9 10 11 12

D
at

a
(b

its
)

20
0

40
0

60
0

80
0

10
00

12
00

ν1 + ν2
γ1 + γ2
β

Time (ms)

1 2 3 4 5 6 7 8 9 10 11 12

D
at

a
(b

its
)

10
0

20
0

30
0

40
0

50
0

60
0

-1
00

-2
00

[β − γ1 − γ2]+

[β − ν1 − ν2]+↑
(β − ν1 − ν2)
βR′,C/R′

Time (ms)

1 2 3 4 5 6 7 8 9 10 11 12

D
at

a
(b

its
)

10
0

20
0

30
0

40
0

50
0

60
0

h1 h2 h3

G

[β − ν1 − ν2]+↑
(β − ν1 − ν2)
βR′,C/R′

ν3
γ3

Figure 5 Illustration of different curves, with R = 125kb/s, L = .75ms and ∀i ∈ {1, 2, 3} , νi =
νTi,Ci,0, γi = γri,bi , for the values of Ti, Ci, ri and bi given in Table 1, and G as in Theorem 5.

3.2 Coq for real-time systems
Coq is a proof assistant [13], i.e., a tool offering a language to state theorems and describe
their proofs as well as a software4 verifying the proofs. It can also be used to develop software
whose execution is proved to be conform to their (formal) specification such as the CompCert
C compiler [22] or the CertiKOS operating system [16]. When used as a proof checker, Coq
will complain when attempting to use a lemma without providing a proof for one of its
hypotheses or if the proved hypotheses do not match the expected ones.

Proving that a systems guarantees some real-time property is often a complex task,
requiring long and complex proofs. One way to build correct analyses is to use a proof
assistant, like Coq [11] or Isabelle/HOL.

4 Contribution

This section details the main contribution of the paper: given a rate-latency curve βR,T and
a set of staircase functions νTi,Ci,Ji

, there exists a rate-latency function βR′,C/R′ which is a
lower bound, as shown in eq. (4), that can be used to compute residual service. The main
results are presented in Section 4.1. Since the proof of the main theorem is quite long, it is
presented in Appendix A. The statement of the theorem in Coq is presented in Section 4.2.

4 Think of it as a compiler (in practice it is indeed a compiler for a very strongly typed language).

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:7

The problem is illustrated in Figure 5. It shows that each function γi is a good fluid
approximation of the function νi (e.g. γ1(t) = ν1(t) for t = 2.5 × k, k ∈ N) and even if there
are less equality point between the two sums ((γ1 + γ2)(t) = (ν1 + ν2)(t) for t = 17.5 × k,
k ∈ N), γ1 + γ2 it is still the best possible affine upper approximation of ν1 + ν2. And the
distance between (β −γ1 −γ2) and (β −ν1 −ν2) is exactly the same as the one between γ1 +γ2
and ν1 + ν2. But the non-decreasing closure has a major impact on the expression based on
staircase, but none on the fluid one, creating a larger distance between both functions (e.g. at
t = 11, (β − ν1 − ν2)(11) is close to (β − γ1 − γ2)(11) but far away from [β − ν1 − ν2]+↑ (11)).

4.1 A quadratic rate-latency bound
▶ Theorem 5 (Quadratic rate-latency bound). Let R, L, C1, . . . , Cn, T1, . . . , Tn (resp.
J1, . . . , Jn) be a set of positive real (resp. non negative real) values such that

∑n
i=1

Ci

Ti
< R.

Then[
βR,L −

n∑
i=1

νTi,Ci,Ji

]+

↑

≥ βR′,C/R′ (4)

with

R′ = R −
n∑

i=1

Ci

Ti
, C = RL + W −

max
{

Gl, Gq
}

R
, W =

n∑
i=1

(
Ti + Ji − Ci

R

)
Ci

Ti
,

Gl = min
k∈J1,nK

Ck

(
n∑

i=1

Ci

Ti
− max

i∈J1,nK

Ci

Ti

)
, Gq =

n∑
i=1

i−1∑
j=1

min {Ti, Tj} CiCj

TiTj
.

In the context of a rate-latency server shared by several sporadic flows with a static
priority policy, the term R′ represents the residual rate, made of the initial rate minus the
utilisation of higher priority flow Ci

Ti
, and the term C represents an upper bound on the

backlog of higher priority flows.
The expression of the function βR′,C/R′ involves only simple sums (sub-terms R′, W and

Gl) and one double sum (sub-term Gq) leading to quadratic complexity O(n2). To obtain a
linear complexity, one may omit the term Gq, leading to a smaller curve (i.e. a worst service)
but in a shorter time.

Two proofs are given. In Appendix A is given a “pen and paper” proof. This proof being
non trivial, we chose to get a high level of confidence in its soundness by formalizing and
verifiying it with Coq. A feedback of this use is given at the end of the current section and
an overview of the Coq proof is given in Section 4.2.

The next theorem states that the previous result is an enhancement w.r.t. a fluid
modelling.

▶ Theorem 6. Let R, L, C1, . . . , Cn, T1, . . . , Tn, J1, . . . , Jn, R′, C be as in Theorem 5. Then[
βR,L −

n∑
i=1

γri,bi

]+

=
[
βR′,C/R′ − G

]+ with G =
(

n∑
i=1

C2
i

Ti
+ max

{
Gl, Gq

})
(5)

ri = Ci

Ti
, bi = ri(Ji + Ti), and R′, C, Gl, Gq defined as in Theorem 5.

The term G is the global gain obtained with the new result from Theorem 5 w.r.t. a fluid
modelling.

ECRTS 2021

14:8 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

Proof. The first step consists in an expression of linear residual service. First,
∑n

i=1 γri,bi =
γ∑n

i=1
ri,
∑n

i=1
bi

, then for any t ∈ R+ :

[
βR,L(t) −

n∑
i=1

γri,bi(t)
]+

=
[

[R(t − L)]+ −

(
n∑

i=1
ri

)
t −

n∑
i=1

bi

]+

(6)

=
[(

R −
n∑

i=1
ri

)
t −

(
RL +

n∑
i=1

bi

)]+

(7)

= βR′,C′/R′ (8)

with C ′ = RL + (
∑n

i=1 bi). Let now compare C and C ′

C ′ = RL +
n∑

i=1
(Ji + Ti)

Ci

Ti
= C + 1

R

(
n∑

i=1

C2
i

Ti
+ max

{
Gl, Gq

})
. (9)

◀

Figure 5 illustrates the differences between the functions and highlights the influence of
the non-decreasing closure. As expected, since fluid modelling gives a larger arrival curve
than staircase modelling (γi ≥ νi), then the fluid residual curve is less than or equal to the
staircase one: β −

∑
i γi ≤ β −

∑
i νi. As stated by the Theorem, βR′,C/R′ ≤ [β −

∑
i γi]+↑

but βR′,C/R′ is not smaller than β −
∑

i γi.

Comparison with [2]

This result is of course closely related to the one in [2], and once the equation is given, the
amount of generalisation can be detailed. Using network calculus, the response time of a
task of execution time C0 and period T0 on a CPU with speed one (R = 1) and no latency
(L = 0) can be bounded by hDev(γC0/T0,C0 , βR′,C/R′) = C/R′ + C0/R′ = C0+W −max{L,Q}

R′

whereas the expression in [2, Thm. 1] is C0+W −Q
R′ . The contribution of this paper is then:

the modelling of the speed R and the latency L of a server, the introduction of the linear
term Gl and the extraction of the residual curve, that can be used in more contexts than the
fixed priority scheduling.

Feedback on the use of Coq

The use of Coq gave us the opportunity to fix a few small mistakes in a preliminary version
of the proof of Theorem 5 and one of its hypotheses.

One of the last steps of the proof consists is showing that a value s is non-negative (step
11 in Appendix A). It was claimed as an evidence, even with negative values Ji of the jitters.
While trying to encode this “evidence” in Coq, we realised that the current proof holds only
for non-negative Ji values, and the hypotheses have been updated. We do not know currently
whether the property holds with negative Ji values.

One step of the proof (an index permutation, step 9.c in Appendix A) was using a wrong
argument, doing a confusion between values and indexes. The proof has been corrected.

Regarding the cost of the development, it can be considered reasonable as only 1400 lines of
Coq code were needed5, requiring about two person×weeks of development6, (including above

5 214 lines for statements, 989 lines for proofs and 49 lines of comment (the remaining being blank lines).
6 For a developper with a few years of experience with the tool.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:9

mentioned proof fixes). This was made possible thanks to the availability of a formalization
of the real numbers in Coq’s standard library as well as the nice Mathematical Components
library [15] and particularly its big operators [1] to manipulate the Σ notation for sums.

4.2 Coq statement of Theorem 5
While the Coq compiler checks that a theorem is well formed and that its proof is correct, it
can not check that the theorem conforms to the author or reader intuition. We will then
describe the formal statement of Theorem 5 in Coq’s language.

The full proof is available, along with instructions to automatically recheck it with Coq,
at http://doi.org/10.5281/zenodo.4518843 .

First comes the loading of the libraries,

Require Import mathcomp.(*...*).
Require Import Reals (*...*).

and Coq is instructed to interpret all standard notations, such as +, −, ≤, as real number
ones

Local Open Scope R_scope.

We then give the hypotheses of the theorem

Section Theorem3.

Variable n’ : nat.
Notation n := n’.+1. (* Be sure that n is non zero *)

Variable R T : R+∗.
Variable tC tT : R+∗ ^ n.
Variable tJ : R+ ^ n.

For convenience, the i-th element (tC i) of the n-tuple tC will then be denoted C‘_i

Notation "’C‘_’ i" := (tC i).
Notation "’T‘_’ i" := (tT i).
Notation "’J‘_’ i" := (tJ i).

Hypothesis R_large_enough : \sum_i C‘_i / T‘_i < R.

And we define the various constants and functions

Definition R’ := R − \sum_i C‘_i / T‘_i.
Definition W := \sum_i (T‘_i + J‘_i − C‘_i / R) ∗ (C‘_i / T‘_i).
Definition L := (\min_k C‘_k) ∗ ((\sum_i C‘_i / T‘_i) − \max_i (C‘_i / T‘_i)).
Definition Q :=

\sum_(i < n) \sum_(j < n | j < i) Rmin T‘_i T‘_j ∗ (C‘_i ∗ C‘_j) / (T‘_i ∗ T‘_j).
Definition C := R ∗ T + W − Rmax L Q / R.
Definition V t := \sum_i C‘_i ∗ IZR (Zceil ((t + J‘_i) / T‘_i)).
Definition beta R T := fun t : R+ ⇒ R ∗ ’[t − T]+.

Before finally stating the theorem itself

Theorem theorem3 : forall t, (beta R’ (C / R’) t ≤ ’[fun t ⇒ beta R T t − V t]+^ t)%Rbar.

where %Rbar tells Coq that ≤ is the one on R = R ∪ {−∞, +∞} since the non decreasing
closure contains a least upper bound that could be infinite.

ECRTS 2021

http://doi.org/10.5281/zenodo.4518843

14:10 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

Table 2 Periods of flows (in ms).

Set name S1 S2 S3
Period values 2,5,10,20,25,40,50 2,3,4,5,6,7,8,9,10 2,3,5,7,11,13
lcm 200 2520 30030

Table 3 Mean computed bounds and computing time.

Configuration Method
Periods Jitters Fluid Linear Quadratic Staircase
Mean computed bounds, per flow, in ms, and gain w.r.t. fluid modelling
S1 Null 12.3 12.0 (-2%) 10.3 (-16%) 6.1 (-50%)
S1 Rand. 17.6 17.2 (-2%) 15.5 (-11%) 6.1 (-65%)
S2 Null 7.7 7.4 (-3%) 5.7 (-25%) 3.4 (-56%)
S2 Rand. 10.6 10.2 (-3%) 8.6 (-19%) 3.4 (-68%)
S3 Null 7.2 6.9 (-3%) 5.6 (-22%) 3.3 (-54%)
S3 Rand. 9.9 9.5 (-3%) 8.2 (-17%) 3.3 (-66%)

Mean computing time, per configuration, in ms
(and ratio w.r.t. lcm for staircase)

S1 Null 9 15 96 567 (2.8)
S1 Rand. 10 18 101 597 (3.0)
S2 Null 6 7 26 5239 (2.1)
S2 Rand. 6 7 24 4935 (2.0)
S3 Null 6 6 21 51657 (1.7)
S3 Rand. 6 6 21 50226 (1.7)

5 Evaluation

This section evaluates the quality of the approximation provided in this paper, in terms of
accuracy of the result and computational cost.

To do so, we test the expression on a large set of configurations. Each configuration
represents a non-static priority server, with a constant rate of 1Mb/s, no latency, and a set
of randomly generated sporadic flows. Let ci be a configuration, each flow fi,j has priority j,
a fixed packet size Ci,j chosen uniformly between 8 and 16 bytes, a period Ti,j also randomly
chosen in a subset of values, and a jitter Ji,j also randomly chosen. New flows are added up
to reaching a global load of 90%, and ni denotes the number of flows.

One hundred configurations are generated picking periods values from S1 of Table 2 and
with no jitter, another hundred using set S2 and also with no jitter, and another hundred
using set S3 of the same table and also no jitter. Three others sets are generated in a similar
way, but with a jitter uniformly distributed between 0 and the flow period (excluded).

For each configuration ci, let fi,1, . . . , fi,ni
be the set of flows. For each flow fi,j , four

bounds on the delay are computed using different methods. The two first have been used in
the illustrative example in Section 2.3.
1. dfluid

i,j = hDev(αi, βfluid
i,j), where βfluid

i,j is computed using eq. (3) with αk =
γCk/Tk,Ck(1+Jk/Tk). It is called the fluid modelling.

2. dstc
i,j = hDev(αi, βstc

i,j), where βstc
i,j is computed using eq. (3) with αk = νTk,Ck,Jk

. It is
called the staircase modelling.

3. dlin
i,j = hDev(αi, βlin

i,j) where βlin
i,j is computed using Theorem 5 but only with the linear

term Gl (i.e. setting Gq = 0). It is called the linear modelling.
4. dquad

i,j = hDev(αi, βquad
i,j) where βquad

i,j is computed using Theorem 5 but only with the
quadratic term Gq (i.e. setting Gl = 0). It is called the quadratic modelling.

Experiments have run on a laptop with 4GB of memory and a 2.7GHz Intel Core i5.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:11

0 10 20 30 40 50 60 70
flow id

0

20

40

60

80

100

120

de
la

y
(in

 m
s)

fluid stair quadratic linear

(a) Per flow delay bound, for one configuration, null
jitter.

0 10 20 30 40 50 60 70
flow id

0

20

40

60

80

100

120

de
la

y
(in

 m
s)

fluid stair quadratic linear

(b) Per flow delay bound, for one configuration,
random jitter.

0 20 40 60 80 100
configuration id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
la

tiv
e

de
la

y
co

m
pa

re
d

wi
th

 th
e

flu
id

 d
el

ay

fluid stair quadratic linear

(c) Per configuration mean delay w.r.t. to fluid
modelling, null jitter.

0 20 40 60 80 100
configuration id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
la

tiv
e

de
la

y
co

m
pa

re
d

wi
th

 th
e

flu
id

 d
el

ay

fluid stair quadratic linear

(d) Per configuration mean delay w.r.t. to fluid
modelling, random jitter.

0 20 40 60 80 100
configuration id

101

102

103

Co
m

pu
tin

g
tim

e
(m

s)

fluid stair quadratic linear

(e) Per configuration computing time, null jitter.

0 20 40 60 80 100
configuration id

101

102

103

Co
m

pu
tin

g
tim

e
(m

s)

fluid stair quadratic linear

(f) Per configuration computing time, random jitter
.

Figure 6 Plots related to configurations with periods in S1 set, null w.r.t. random jitters.

ECRTS 2021

14:12 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

4 6 8 10 12 14 16 18
Mean delay (ms)

101

102

103

Co
m

pu
tin

g
tim

e
(m

s)
fluid stair quadratic linear

(a) Null jitter.

5 10 15 20 25
Mean delay (ms)

101

102

103

Co
m

pu
tin

g
tim

e
(m

s)

fluid stair quadratic linear

(b) Random jitter.

Figure 7 Computing time per mean delay, for configurations with periods in S1 set.

Figure 6a plots, for a given configuration ck with periods chosen in S1 (harmonic periods)
and no jitter, the bounds dfluid

k,j , dstc
k,j , dquad

k,j dlin
k,j computed by the four methods for each

flow. Since flows are sorted by priority, the plots are non decreasing. As expected, the fluid
modelling gives the larger, i.e. worse, bounds, whereas the linear approximation is smaller,
the quadratic approximation even smaller, and staircase modelling leads to the smallest
bounds. Only one configuration is plotted, but they all have the same shape.

Now considering the fluid modelling as the reference value, Figure 6c plots, for each
configuration with harmonic periods, the sum of all bounds computed by a method divided by

the sum of all bounds computed by fluid modelling:
∑ni

j=0
dX

i,j∑ni

j=0
dfluid

i,j

with X ∈ {fluid, stc, lin, quad}.

Figure 6e plots the computation time required to analyse each configuration, depending on
the modelling, with a log-scale on time axis. Last, Figure 7 plots the computation time as a
function of the mean delay, for each configuration and each method.

In the same figure group are also plotted the same graphs but considering the jitter of
each flow picked up between 0 and the flow period. As expected, the jitter increases the
delay of the affine models, but has no influence on the staircase one (cf. Figure 6b). Then,
the gain obtained by the staircase model w.r.t. the fluid model increases, whereas the gain
of the quadratic model is less (12% instead of 16%).

The Table 3 summarises, for each set of hundred configurations, the mean bound on
delays for all flows, and the mean computing time for a single configuration. For the staircase
modelling is added this computation time divided by the lcm of the periods, showing that
this computation time is almost linear w.r.t. this lcm.

The same kind of information is plotted in the group of Figures 8 when the periods are
taken from the set S3. The relations between the methods in terms of accuracy of results are
in the same order of magnitude (from 16% to 22% without jitter, from 11% to 17% with
jitter), but the computation time of the staircase methods is three orders of magnitude larger
(50s vs. 21ms).

The results for the set S2 are not plotted but are summarised in Table 3.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:13

0 5 10 15 20 25 30 35 40
flow id

0

20

40

60

80

100

120

de
la

y
(in

 m
s)

fluid stair quadratic linear

(a) Per flow delay bound, for one configuration, null
jitter.

0 5 10 15 20 25 30 35 40
flow id

0

20

40

60

80

100

120

de
la

y
(in

 m
s)

fluid stair quadratic linear

(b) Per flow delay bound, for one configuration,
random jitter.

0 20 40 60 80 100
configuration id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
la

tiv
e

de
la

y
co

m
pa

re
d

wi
th

 th
e

flu
id

 d
el

ay

fluid stair quadratic linear

(c) Per configuration mean delay w.r.t. to fluid
modelling, null jitter.

0 20 40 60 80 100
configuration id

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

re
la

tiv
e

de
la

y
co

m
pa

re
d

wi
th

 th
e

flu
id

 d
el

ay

fluid stair quadratic linear

(d) Per configuration mean delay w.r.t. to fluid
modelling, random jitter.

0 20 40 60 80 100
configuration id

101

102

103

104

105

Co
m

pu
tin

g
tim

e
(m

s)

fluid stair quadratic linear

(e) Per configuration computing time, null jitter.

0 20 40 60 80 100
configuration id

101

102

103

104

105

Co
m

pu
tin

g
tim

e
(m

s)

fluid stair quadratic linear

(f) Per configuration computing time, random jitter
.

Figure 8 Plots related to configurations with periods in S3 set, null w.r.t. random jitters.

6 Conclusion

In network calculus, the computation of residual services with staircase arrival curves has
exponential complexity, whereas fluid arrival curves offer a linear complexity but give larger,
i.e. worse, upper bounds.

ECRTS 2021

14:14 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

This paper generalises a result from [2], and develops a residual service curve with either
linear or quadratic computational complexity. The correctness of the result is enforced by
providing a formal Coq proof. The different approaches are evaluated on 600 systems with
sporadic workload and non-preemptive static priority scheduling.

Whereas the staircase model computes bounds that are half of those of the fluid model7,
at the expense of a computation time from 102 to 104 times larger, the quadratic approach
already enhances the results by about 20% while being only 10 times slower. The linear
model offers a limited enhancement (2%-5%). Having accurate results in short computation
times helps real-time system designers when exploring several configurations (in design space
exploration). A comparison with prefix-based approach [17, 18, 27] is left to further studies.

Moreover, the analytic formula of the residual service curves opens some opportunities.
First, having a residual curve allows to use the Pay Burst Only Once principle, to compute an
end-to-end network delay smaller than the sum of per switch delays. Second, a closed form
formula gives opportunities for optimisation. Third, getting rid of least common multiple
allows the use of directed rounding floating-point arithmetic that could lower the computation
cost by one or two additional orders of magnitude.

The formalization of the main result of the paper using Coq enabled to fix some glitches
and reach a very high level of confidence in this result. This was done at a moderate extra
cost and follows the direction impulsed by the call for action8 “Real Proofs for Real Time:
Let’s do better than “almost right” at ECRTS 2016 [14].

References
1 Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca. Canonical big operators. In

Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher
Order Logics, pages 86–101, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

2 Enrico Bini, Andrea Parri, and Giacomo Dossena. A quadratic-time response time upper
bound with a tightness property. In Proc. of the 36th IEEE Real-Time Systems Symposium
(RTSS 2015), San Antonio, USA, December 2015.

3 Luca Bisti, Luciano Lenzini, Enzo Mingozzi, and Giovanni Stea. DEBORAH: a tool for worst-
case analysis of FIFO tandems. In Proc. of the 4th Int. Symp. On Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2010), LNCS. Springer, 2010.

4 Steffen Bondorf and Jens B. Schmitt. The DiscoDNC v2 – a comprehensive tool for deterministic
network calculus. In Proc. of the 8th Int. Conf. on Performance Evaluation Methodologies
and Tools (VALUETOOLS 2014), 2014.

5 Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus – From
theory to practical implementation. Wiley, 2018.

6 Anne Bouillard and Éric Thierry. An algorithmic toolbox for network calculus. Discrete Event
Dynamic Systems, 18(1):3–49, October 2008.

7 Marc Boyer and Christian Fraboul. Tightening end to end delay upper bound for AFDX
network with rate latency FCFS servers using network calculus. In Proc. of the 7th IEEE Int.
Workshop on Factory Communication Systems Communication in Automation (WFCS 2008),
pages 11–20. IEEE industrial Electrony Society, May 21–23 2008.

7 It must be mentioned that a previous study on a realistic avionic configuration, based on Ethernet and
2 priority levels, has shown a gain related to staircase of only 6% [8] and another on a more loaded
configuration gave a gain of 18% [10]. But these realistic configurations had lower load.

8 A similar impulsion was given a decade ago in the programming language community and a number
of mechanized formalisations (using either Coq or other tools) now appear each year at their main
conference POPL.

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:15

8 Marc Boyer, Jörn Migge, and Marc Fumey. PEGASE, a robust and efficient tool for worst case
network traversal time. In Proc. of the SAE 2011 AeroTech Congress & Exhibition, Toulouse,
France, 2011.

9 Marc Boyer, Jörn Migge, and Nicolas Navet. An efficient and simple class of functions to
model arrival curve of packetised flows. In Proc. of the 1st Int. Workshop on Worst-Case
Traversal Time (WCTT’2011), pages 43–50. ACM, 2011.

10 Marc Boyer, Nicolas Navet, and Marc Fumey. Experimental assessment of timing verification
techniques for AFDX. In Proc. of the 6th Int. Congress on Embedded Real Time Software and
Systems, Toulouse, France, 2012.

11 Felipe Cerqueira, Felix Stutz, and Björn B. Brandenburg. PROSA: A case for readable
mechanized schedulability analysis. In Proc. of the 28th Euromicro Conference on Real-Time
Systems (ECRTS 2016), pages 273–284, Toulouse, France, July 5–8 2016. doi:10.1109/ECRTS.
2016.28.

12 Cheng-Shang Chang. Performance Guarantees in communication networks. Telecommunication
Networks and Computer Systems. Springer, 2000.

13 The Coq development team. The Coq proof assistant reference manual, 2019. Version 8.11.
URL: https://coq.inria.fr.

14 Christian Fraboul and Nathan Fisher, editors. 28th Euromicro Conference on Real-Time
Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016. IEEE Computer Society, 2016. URL:
https://ieeexplore.ieee.org/xpl/conhome/7557819/proceeding.

15 Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension
for the Coq system. Research Report RR-6455, INRIA, 2008. URL: http://hal.inria.fr/
inria-00258384.

16 Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. Certikos: An extensible architecture for building certified concurrent
OS kernels. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 653–669, Savannah, GA, November 2016. USENIX Association. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu.

17 Nan Guan and Wang Yi. Finitary real-time calculus: Efficient performance analysis of
distributed embedded systems. In Proc. or the IEEE 34th Real-Time Systems Symposium
(RTSS’2013), pages 330–339. IEEE, 2013.

18 Kai Lampka, Steffen Bondorf, and Jens Schmitt. Achieving efficiency without sacrificing model
accuracy: Network calculus on compact domains. In Proc. of the 24th IEEE Int. Symp. on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS
2016), 2016.

19 Leslie Lamport. How to write a 21st century proof. Journal of Fixed Point Theory and
Applications, 11(1):43–63, March 2012.

20 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus, volume 2050 of LNCS. Springer
Verlag, 2001. http://lrcwww.epfl.ch/PS_files/NetCal.htm.

21 E. Le Corronc, B. Cottenceau, and L. Hardouin. Container of (min,+)-linear systems. Journal
of Discrete Event Dynamic Systems, 14(1):15–52, March 2014.

22 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

23 Nicolas Navet, Tieu Long Mai, and Jörn Migge. Using machine learning to speed up the design
space exploration of Ethernet TSN networks. Technical Report 10993/38604, University of
Luxembourg, January 2019.

24 Nicolas Navet, Jörn Migge, Josetxo Villanueva, and Marc Boyer. Pre-shaping bursty trans-
missions under IEEE802.1Q as a simple and efficient QoS mechanism. SAE Int. Journal of
Passenger Cars—Electronic and Electrical System, 11(3), 2018.

25 Hanrijanto Sariowan, Rene L. Cruz, and George C. Polyzos. SCED: A generalized scheduling
policy for guaranteeing quality-of-service. IEEE/ACM transactions on networking, 7(5):669–
684, October 1999.

ECRTS 2021

https://doi.org/10.1109/ECRTS.2016.28
https://doi.org/10.1109/ECRTS.2016.28
https://coq.inria.fr
https://ieeexplore.ieee.org/xpl/conhome/7557819/proceeding
http://hal.inria.fr/inria-00258384
http://hal.inria.fr/inria-00258384
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/1538788.1538814

14:16 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

26 Jens B. Schmitt and Frank A. Zdarsky. The DISCO network calculator - a toolbox for worst
case analysis. In Proc. of the First International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS’06), Pisa, Italy. ACM, 2006.

27 Urban Suppiger, Simon Perathoner, Kai Lampka, and Lothar Thiele. A simple approximation
method for reducing the complexity of modular performance analysis. TIK-Report 329,
Computer Engineering and Networks Laboratory – Swiss Federal Institute of Technology
(ETH), August 2010.

28 Ernesto Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. PhD thesis, ETH Zurich, September 2006.

29 Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.
http://www.mpa.ethz.ch/Rtctoolbox, 2006. URL: http://www.mpa.ethz.ch/Rtctoolbox.

A Proof of Theorem 5

Regarding only correctness issues, we may have omitted this section since the Coq proof
already provides a formal correctness insurance. Nevertheless, this section can be considered
as the documentation of the Coq proof. But the main justification of this section relies in
the opportunity to adapt or generalise the results. The same way as we have converted and
extended the result on response time presented in [2] by a study of its proof, we provide a
human-oriented proof, as a complement of the formal Coq proof.

The proof presentation is inspired by [19]. Each sub-step of the proof will start with
some ordering value, followed by the statement of the sub-step, using bold font. Thereafter
will come the proof of the sub-step itself.

For the proof, let V
def=
∑n

i=1 νTi,Ci,Ji
i.e. V (t) =

∑n
i=1 Ci

⌈
t+Ji

Ti

⌉
, and ρ =

∑n
i=1

Ci

Ti
the

long term rate of V , and recall that ρ < R.
1. Definitions of sM and first properties: For any M ∈ R, let

sM def= min {t ∈ R V (t) + M = R(t − L)} . (10)

This sM is the minimal solution to V (t) + M = R(t − L). The first step consists in
showing that sM exists (there are solutions, and there exists a minimal one), and the
second on their relative positions (cf. Figure 9).
a. The minimum exists: By definition of the ceiling function, x ≤ ⌈x⌉ < x + 1. Then,

for any i, t Ci

Ti
+ Ji

Ci

Ti
≤ Ci

⌈
t+Ji

Ti

⌉
< t Ci

Ti
+ Ji

Ci

Ti
+ Ci. Making the sum for all i ∈ [1, n]

t

v0

v1

v2

v3

v4

v5

v6

T + M
R

R(t − T) − M

V (t)
ρt + b′

ρt + b

sM
x x′

Figure 9 Illustration of sM definition, with n = 2, C1 = C2 = 1
2 , T1 = 2, T2 = 3, J1 = J2 = 0.

http://www.mpa.ethz.ch/Rtctoolbox

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:17

leads to

∀t ∈ R : ρt + b ≤ V (t) < ρt + b′, (11)

with b =
∑n

i=1 Ji
Ci

Ti
, b′ = b +

∑n
i=1 Ci.

These are affine functions, and since R > ρ, there exists x < x′ such that ρx + b =
R(x−L)−M and ρx′ +b′ = R(x′ −L)−M (cf. Figure 9). Set y = ρx+b, y′ = ρx′ +b′.
From eq. 11, for any t ∈ [x, x′] : y ≤ V (t) ≤ y′. Set Y = {V (t) t ∈ [x, x′]} the set
of values of V on [x, x′]. This set is non-empty and finite. If (vi)i∈N is the ordered
set of values of the function V , there exists k ≤ k′ such that Y = {vk, vk+1, . . . , vk′}
(Y = {v3, v4} on the example in Figure 9), and to each one corresponds one sM

k such that
vk = R(sM

k − L) − M . Then the set {t ∈ R V (t) + M = R(t − T)} =
{

sM
k , . . . , sM

k′

}
is non empty and finite, and its minimum, sM exists.

b. Before sM , R(t − L) − M is below V (t) i.e.

∀t < sM : R(t − L) − M < V (t): (12)

By contradiction, assume there exists t < sM such that R(t−L)−M ≥ V (t). The case
R(t−L)−M = V (t) leads to t ≥ sM by definition of sM . In case of R(t−L)−M > V (t),
then R(t − L) − M > ρt, so t > x.

c. A lower bound on sM : In step 1a, x has been defined such that sM ∈ [x, x′], with
ρx + b = R(x − L) − M , then

sM ≥ x =
M + RL +

∑n
i=1 Ji

Ci

Ti

R′ . (13)

This relation will be used in one of the last step of the proof.
2. Definitions of qM

i , rM
i and first properties: Let introduce for any i ∈ J1, nK,

qM
i

def=
⌈

sM + Ji

Ti

⌉
, rM

i

def= Tiq
M
i − (sM + Ji) (14)

keep in mind that qM
i = sM +Ji+rM

i

Ti
and that Ti > rM

i ≥ 0 (from x
L ≤

⌈
x
L

⌉
< x

L + 1 comes
0 ≤ L

⌈
x
L

⌉
− x < L, and setting x = sM + Ji).

3. Expression of sM in terms of rM
i : Since sM is a minimum, it satisfies R(sM − L) =

V (sM) + M i.e.

R(sM − L) =
n∑

i=1
Ci

⌈
sM + Ji

Ti

⌉
+ M =

n∑
i=1

Ciq
M
i + M (15)

=
n∑

i=1

Ci

Ti
(sM + Ji + rM

i) + M (16)

⇐⇒ sM (R −
n∑

i=1

Ci

Ti
) = M + RL +

n∑
i=1

Ci

Ti
(Ji + rM

i) (17)

⇐⇒ R′sM = M + RL +
n∑

i=1

Ci

Ti
Ji +

n∑
i=1

Ci

Ti
rM

i (18)

4. Two definitions for a reordering lM
i and σ:

∀i ∈ J1, nK : lM
i

def= (qM
i − 1)Ti − Ji. (19)

ECRTS 2021

14:18 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

Remark that sM > lM
i (from 0 ≤ rM

i < Ti comes 0 ≤ Tiq
M
i − (sM + Ji) < Ti and

Ti(qM
i − 1) − Ji < sM).

Now, let σ : J1, nK → J1, nK be a permutation such that the sequence lM
σ(i) is non-increasing,

i.e. sM > lM
σ(1) ≥ lM

σ(2) ≥ · · · ≥ lM
σ(n).

5. Forall k ∈ J1, nK it holds

Ck

⌈
sM + Jk

Tk

⌉
= Ck

⌈
lM
k + Jk

Tk

⌉
+ Ck (20)

By definition qM
k is an integer, so qM

k − 1 also is and qM
k =

⌈
qM

k − 1
⌉

+ 1. By definition
of lM

k , we then get qM
k =

⌈
lM
k +Jk

Tk

⌉
+ 1 hence the result by definition of qM

k .

6. Forall i ∈ J1, nK : sM ≥ lM
σ(i) +

∑i
k=1

Cσ(k)
R :

Let i ∈ J1, nK, Si = {σ(1), . . . , σ(i)} and S̄i = J1, nK \Si.
From previous relation, for any k in Si, Ck

⌈
sM +Jk

Tk

⌉
≥ Ck

⌈
lM
k +Jk

Tk

⌉
+ Ck. But by

definition, (lM
σ(m))m∈J1,nK is non-increasing sequence, so for all k ∈ Si, lM

k ≥ lM
σ(i), which

yields Ck

⌈
lM
k +Jk

Tk

⌉
+ Ck ≥ Ck

⌈
lM
σ(i)+Jk

Tk

⌉
+ Ck. To conclude

∀k ∈ Si : Ck

⌈
sM + Jk

Tk

⌉
≥ Ck

⌈
lM
σ(i) + Jk

Tk

⌉
+ Ck (21)

Now, consider k ∈ S̄i. By the definition of lM
j (cf. proof step 4), ∀j ∈ J1, nK : sM > lM

j ,
and in particular, for j = σ(i). Then, it holds

∀k ∈ S̄i : Ck

⌈
sM + Jk

Tk

⌉
≥ Ck

⌈
lM
σ(i) + Jk

Tk

⌉
(22)

Summing over eq. (21) and eq. (22), it comes

∑
k∈Si∪S̄i

Ck

⌈
sM + Jk

Tk

⌉
≥

∑
k∈Si∪S̄i

Ck

⌈
lM
σ(i) + Jk

Tk

⌉
+
∑
k∈Si

Ck

i.e. V (sM) ≥ V (lM
σ(i)) +

i∑
j=1

Cσ(j)

By the definition of sM , one has V (sM) = R(sM − L) − M . Conversely, since sM ≥ lM
σ(i),

from eq. 12, it comes V (lM
σ(i)) ≥ R(lM

σ(i) − L) − M , so

R(sM − L) − M ≥ R(lM
σ(i) − L) − M +

i∑
j=1

Cσ(j) (23)

⇐⇒ sM ≥ lM
σ(i) +

i∑
j=1

Cσ(j)

R
(24)

7. Forall i ∈ J1, nK : rM
σ(i) ≤ Tσ(i) −

∑i
j=1

Cσ(j)
R : This is a direct consequence of definition

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:19

of lM
i , qM

i and previous relation.

sM ≥ lM
σ(i) +

i∑
j=1

Cσ(j)

R
(25)

⇐⇒ sM ≥ (qM
σ(i) − 1)Tσ(i) − Jσ(i) +

i∑
j=1

Cσ(j)

R
(26)

⇐⇒ sM + Jσ(i) − Tσ(i)q
M
σ(i) ≥ −Tσ(i) +

i∑
j=1

Cσ(j)

R
(27)

⇐⇒ rM
σ(i) ≤ Tσ(i) −

i∑
j=1

Cσ(j)

R
(28)

8.
n∑

i=1
rM

i

Ci

Ti
≤

n∑
i=1

(
Ti − Ci

R

)
Ci

Ti
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
:

n∑
i=1

rM
i

Ci

Ti
=

n∑
i=1

rM
σ(i)

Cσ(i)

Tσ(i)
since σ is a permutation (29)

≤
n∑

i=1

Tσ(i) −
i∑

j=1

Cσ(j)

R

 Cσ(i)

Tσ(i)
(30)

=
n∑

i=1

Tσ(i) −
Cσ(i)

R
−

i−1∑
j=1

Cσ(j)

R

 Cσ(i)

Tσ(i)
(31)

=
n∑

i=1

(
Tσ(i) −

Cσ(i)

R

)
Cσ(i)

Tσ(i)
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(j)Cσ(i)

Tσ(i)
(32)

=
n∑

i=1

(
Ti − Ci

R

)
Ci

Ti
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(j)Cσ(i)

Tσ(i)
(33)

The next step consists in having a lower bound on
∑n

i=1
∑i−1

j=1
Cσ(j)Cσ(i)

Tσ(i)
.

9.
∑n

i=1
∑i−1

j=1
Cσ(j)Cσ(i)

Tσ(i)
≥ max

{
Gq, Gl

}
The goal in this step is to get rid of the σ

permutation, since it depends on M . :

a.
∑n

i=1
∑i−1

j=1
Cσ(j)Cσ(i)

Tσ(i)
≥ Gl :

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
≥

n∑
i=1

i−1∑
j=1

Cσ(i) mink∈J1,nK Ck

Tσ(i)
(34)

= min
k∈J1,nK

Ck

n∑
i=1

Cσ(i)

Tσ(i)
× (i − 1) (35)

≥ min
k∈J1,nK

Ck

n∑
i=1

Cσ(i)

Tσ(i)
× min(i − 1, 1) (36)

and since one does not know the value of σ(1) (i.e. when i − 1 = 0)

≥ min
k∈J1,nK

Ck

(
n∑

i=1

Ci

Ti
− max

i∈J1,nK

Ci

Ti

)
= Gl (37)

ECRTS 2021

14:20 A Quadratic Residual Service Curve of Rate-Latency Server Used by Sporadic Flows

b.
∑n

i=1
∑i−1

j=1
Cσ(i)Cσ(j)

Tσ(i)
≥
∑n

i=1
∑i−1

j=1
Cσ(i)Cσ(j)
Tσ(i)Tσ(j)

min
{

Tσ(i), Tσ(j)
}

:

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)
=

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
Tσ(j) (38)

≥
n∑

i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
min

{
Tσ(i), Tσ(j)

}
(39)

(40)

c.
∑n

i=1
∑i−1

j=1
Cσ(i)Cσ(j)
Tσ(i)Tσ(j)

min
{

Tσ(i), Tσ(j)
}

=
∑n

p=1
∑p−1

q=1
CpCq

TpTq
min {Tp, Tq} = Gq:

Let xi,j
def= CiCj

TiTj
min {Ti, Ti}, and X

def=
{

(i, j) ∈ J1, nK2
i > j

}
, and also

h : J1, nK2 → J1, nK2

(i, j) 7→
{
(σ(i), σ(j)) when (i > j) = (σ(i) > σ(j))
(σ(j), σ(i)) otherwise.

Note that for all i, j, we have (i, j) ∈ X if and only if h(i, j) ∈ X and xσ(i),σ(j) = xh(i,j)
since x is symmetric. We thus have

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)Tσ(j)
min

{
Tσ(i), Tσ(j)

}
=

∑
(i,j)∈X

x(σ(i),σ(j)) =
∑

h(i,j)∈X

xh(i,j) (41)

One can then prove that h is injective, meaning it is bijective, which enables the
following reindexing∑

h(i,j)∈X

xh(i,j) =
∑

(i,j)∈X

x(i,j) = Gq (42)

10. sM ≤ M+C
R′ : This is just, going from equations (18), application of steps 8 and 9.

R′sM = M + RL +
n∑

i=1

Ci

Ti
Ji +

n∑
i=1

Ci

Ti
rM

i

≤ M + RL +
n∑

i=1

Ci

Ti
Ji +

n∑
i=1

(
Ti − Ci

R

)
Ci

Ti
− 1

R

n∑
i=1

i−1∑
j=1

Cσ(i)Cσ(j)

Tσ(i)

≤ M + RL +
n∑

i=1

(
Ji + Ti − Ci

R

)
Ci

Ti
−

max
{

Gq, Gl
}

R

=⇒ sM ≤ M + C

R′

11. Here comes the M elimination: Let t ∈ R+.
If t ≤ C

R′ , βR′, C
R′

(t) = 0, so βR′, C
R′

(t) ≤ [βR,L − V]+↑ (t) trivially holds.
If t ≥ C

R′ . By definition of sM , for any M ∈ R,

M = R(sM − L) − V (sM) (43)
so, for any interval IM such that sM ∈ IM

M ≤ sup
u∈IM

{R(u − L) − V (u)} . (44)

M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille 14:21

Set M = R′t − C (this can be done safely since there is no hidden M in R, R′, L, V (·)).
From step 10, sM ≤ M+C

R′ = t, so

R′t − C ≤ sup
sM ≤u≤t

{R(u − L) − V (u)} . (45)

But from t ≥ C
R′ and M = R′t − C comes M ≥ 0, and introducing it in eq. 13 yields

sM ≥ 0, so

R′t − C ≤ sup
0≤u≤t

{R(u − L) − V (u)} , (46)

and by doing the maximum with 0

R′
[
t − C

R′

]+
≤ sup

0≤u≤t
[R(u − L) − V (u)]+ (47)

⇐⇒ βR′, C
R′

(t) ≤ [βR,L − V]+↑ (t) (48)

ECRTS 2021

Stability and Performance Analysis of Control
Systems Subject to Bursts of Deadline Misses
Nils Vreman # Ñ

Lund University, Department of Automatic Control, Sweden

Anton Cervin # Ñ

Lund University, Department of Automatic Control, Sweden

Martina Maggio # Ñ

Universität des Saarlandes, Department of Computer Science, Saarbrücken, Germany
Lund University, Department of Automatic Control, Sweden

Abstract
Control systems are by design robust to various disturbances, ranging from noise to unmodelled
dynamics. Recent work on the weakly hard model – applied to controllers – has shown that control
tasks can also be inherently robust to deadline misses. However, existing exact analyses are limited
to the stability of the closed-loop system. In this paper we show that stability is important but
cannot be the only factor to determine whether the behaviour of a system is acceptable also under
deadline misses. We focus on systems that experience bursts of deadline misses and on their recovery
to normal operation. We apply the resulting comprehensive analysis (that includes both stability
and performance) to a Furuta pendulum, comparing simulated data and data obtained with the
real plant. We further evaluate our analysis using a benchmark set composed of 133 systems,
which is considered representative of industrial control plants. Our results show the handling of the
control signal is an extremely important factor in the performance degradation that the controller
experiences – a clear indication that only a stability test does not give enough indication about the
robustness to deadline misses.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computer systems organization → Real-time systems; Computer systems organization →
Dependable and fault-tolerant systems and networks

Keywords and phrases Fault-Tolerant Control Systems, Weakly Hard Task Model

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.15

Funding The authors are members of the ELLIIT Strategic Research Area at Lund University.
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement Number 871259 (ADMORPH project). This publication reflects
only the authors’ view and the European Commission is not responsible for any use that may be
made of the information it contains.

1 Introduction

Feedback control systems have been used as prime examples of hard real-time systems ever
since the term was coined. However, in the past twenty years, it has become increasingly
clear that the hard real-time task model is overly strict for most control systems. Requiring
that all deadlines of a periodic control task must be met can lead to very conservative
designs with low utilisation, low sampling rates, and – in the end – worse than necessary
control performance. Following this line of reasoning, researchers started looking into task
models in which tasks can sporadically miss some deadlines, and defined concepts like the
“skip factor” [45], i.e., the number of correctly executed jobs that must occur between two
failed instances. Task models with failed jobs eventually led to the definition of the weakly
hard task model [11], that specify constraints on the sequence of jobs that complete their

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Nils Vreman, Anton Cervin, and Martina Maggio;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nils.vreman@control.lth.se
https://portal.research.lu.se/portal/sv/persons/nils-vreman(93ad23d3-8783-4d76-82b1-bdcceb42d352).html
https://orcid.org/0000-0002-6732-9500
mailto:anton.cervin@control.lth.se
https://portal.research.lu.se/portal/en/persons/anton-cervin(e4dbf159-b77b-44db-911f-c4c034723c69).html
https://orcid.org/0000-0003-4889-8772
mailto:maggio@cs.uni-saarland.de
http://www.martinamaggio.com
https://orcid.org/0000-0002-1143-1127
https://doi.org/10.4230/LIPIcs.ECRTS.2021.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Stability and Performance Analysis of Control Systems . . .

execution correctly and the ones that miss their deadlines. Adopting the weakly hard model
allows a control task to opportunistically execute more frequently, which in general improves
reference tracking and disturbance rejection [41,46,55].

A recent industrial survey has shown that practitioners are used to work with systems
that experience deadline misses [5, Questions 14 and 15]. In a significant percentage of cases,
these systems are subject to blackout events that can persist for more than ten consecutive
task periods. Examples of such events are mode switches in mixed-criticality systems, resets
due to hardware faults, security attacks, specific types of cache misses, and connectivity
issues in networked control systems. Handling all of these situations by design could require
extreme resource over-provisioning.

In this paper we focus precisely on these sporadic system events, which may cause a
control task to stall for one or several cycles. To determine the effect of deadline misses on
the control system, it is of utmost importance to analyse the physics of the plant and the
effect of control signals not being delivered to it. For these systems, stability guarantees have
been given on the maximum number of tolerable consecutive deadline misses [48]. These
guarantees only consider stability of the closed-loop system as the property to be preserved.
In this paper, we demonstrate that while stability may be preserved, the control system
performance may be severely affected by the burst of misses. Performance and stability
have been considered simultaneously in the literature. For example, in [30] a controller is
developed that guarantees stability, accepting some level of performance degradation for
a given plant. However, we believe that a lot is left open to investigate, especially with
respect to general guarantees. In particular, in this paper we aim to understand the effect
that the deadline handling strategies jointly have on performance and stability, providing a
holistic evaluation. Furthermore, we evaluate our results on both simulated platforms and
real control plants. More precisely, we offer the following contributions:

We propose a new type of weakly hard task model, which specifies a consecutive deadline
miss interval followed by a minimum consecutive deadline hit (recovery) interval. This
model is crucial to properly assess the performance effect of a burst of deadline misses, as
the ones reported by practitioners [5].
We provide an analysis methodology for stability and performance of control tasks
executing under this task model using a variety of implementation choices to handle
deadline misses (Kill vs. Skip-Next, Zero vs. Hold). In particular, we separately consider
the two cases in which a miss pattern is repeated (which fits an increased workload
situation – for example due to a different mode of execution), and in which it is not
possible to specify constraints on the repetition of the miss pattern.
We compare experimental results obtained with a real process – a Furuta pendulum that
is stabilised in the upright position – with simulation results based on a linear model of the
same process, using the same controller. This shows that simulated data is representative
enough to draw conclusions on the controller performance, despite unmodelled nonlinear
dynamics and noise.
We present the result of a large scale evaluation campaign of commonly used controllers
on a benchmark of 133 industrial plants. From this evaluation we conclude that the choice
of actuation strategy (i.e., what to do with the control signal when a miss occurs) affects
control performance significantly more than the choice of deadline handling strategy (i.e.,
what to do with the control task when a miss occurs).

The rest of this paper is outlined as follows. In Section 2 we give a brief overview of
related work. In Section 3 we present relevant control theory and introduce the stability and
performance concepts. Section 4 describes the weakly hard task models and the strategies

N. Vreman, A. Cervin, and M. Maggio 15:3

that are commonly used to handle deadline misses. Section 5 presents our extension to the
weakly hard task model, and the corresponding stability and performance analysis. Section 6
presents our experimental results, and Section 7 concludes the paper.

2 Related Work

The work presented in this paper is closely related to two broad research areas, namely, the
analysis of

(i) weakly hard systems and
(ii) fault-tolerant control systems.

Weakly Hard Systems. Deadline misses can be seen as sporadic events caused by unforeseen
delays in the system. Such delays could for instance be induced by overload activations [36,64]
or cache misses [6, 22]. The idea behind weakly hard analysis is that deadline misses are
permitted under predefined constraints. Such systems have been analysed extensively from a
real-time scheduling perspective [10,15,21,37]. The weakly hard models have gained traction
in the research community as a tool to understand and analyse systems with sporadic
faults [4, 12,13,26,29,35,38,55,59–61]. In a recent paper, Gujarati et al. [33] analysed and
compared different methods for estimating the overall reliability of control systems using the
weakly hard task model. Furthermore, the authors of [50] proposed a toolchain for analysing
the strongest, satisfied weakly hard constraints as a function of the worst-case execution time.

Fault-Tolerant Control Systems. Real-time systems are sensitive to faults. Due to their
safety-critical nature, it is arguably more important to guarantee fault-tolerance with respect
to other classes of systems. Some of these faults can be described using the weakly hard
model. Due to the nature of control systems, special analysis techniques can combine fault
models and the physical characteristics of systems.

Fault-tolerance has been investigated in many of its aspects, e.g., fault-aware scheduling
algorithms [16,23] and the analysis of systems with unreliable components [43]. Furthermore,
restart-based design [1, 2] has been used as a technique to guarantee resilience. The fault
models are frequently assumed to target overload-prone systems, or systems with components
subject to sporadic failures. Bursts of faults have been observed to affect real systems [20,63].
Gujarati et al. [32] proposed an analysis method for networked control systems that uses
active replication and quantifies the resilience of the control system to stochastic errors.
Maggio et al. [48] developed a tool for determining the stability of a control system where
the control task behaves according to the weakly hard model. From the control perspective,
there has been extensive research into both analysis and mitigation of real-time faults in
feedback systems [30,31,57]. Very often, this research produced tools to analyse the effect of
computational delays [19] and of choosing specific scheduling policies or parameters [18,52],
possibly including deadline misses. In a few instances, researchers looked at how to improve
the performance of control systems in conjunction with scheduling information [14]. One
such effort analyses modifications to the code of classic and simple control systems to handle
overruns that reset the period of execution of the control task [53]. Abdi et al. [3] proposed a
control design method for safe system-level restart, mitigating unknown faults during runtime
execution, while keeping the system inside a safe operating space. Pazzaglia et al. [54] used
the scenario theory to derive a control design method accounting for potential deadline
misses, and discussed the effect of different deadline handling strategies. Linsenmayer et
al. [47] worked on the stabilisation of weakly-hard linear control systems for networked control

ECRTS 2021

15:4 Stability and Performance Analysis of Control Systems . . .

+ C P

−1

rk ek uk yk

wk

Figure 1 Control loop: The reference value rk is compared with the output yk of the plant P.
The control error ek = rk − yk is used by the controller C to compute the value of the control signal
uk. The plant is disturbed by the stochastic process wk.

systems, with some extension for nonlinear systems [39]. In the considered setup, faults
compromise network transmissions, but do not interfere with the controller computation
(assuming that the computation is triggered). The work also focused on stability, with no
control performance evaluation.

To the best of our knowledge, no previous work has devised a combined stability and
performance analysis to understand how faults (even when they can be tolerated) affect the
plant that should be controlled when different deadline handling strategies are used.

3 System Behaviour in Nominal Conditions

In this section, we introduce the relevant control background needed for the remainder of
the paper, and we detail how the controller and the system behave under normal operation.

3.1 Plant Model
We first describe the model we use for the object we are trying to control. In control terms
– mostly due to historical reasons – this object is called a plant. Examples range from a
pendulum that we would like to stabilise in the upward position, to a chemical dilution
process, to the distribution of workload in a datacenter.

Plants are usually modelled as continuous- or discrete-time dynamical systems. All real-
world plants are nonlinear, but for control design purposes they are often linearised around
their operating points. Around such a point, the resulting model becomes a Linear Time-
Invariant (LTI) system. In this paper, we restrict our analysis to discrete-time LTI systems,
because we investigate controllers implemented with fixed-rate sampling and actuation in
digital electronics. To design and analyse these systems, we use the discrete-time counterpart
of the continuous-time physical model, which can be obtained with standard techniques [9].

We consider a plant P described in state-space form:

P :
{

xk+1 = Ap xk + Bp uk + Gp wk

yk = Cp xk + Dp uk

(1)

In (1), k counts the discrete instants that represent the plant’s sampling points. We
assume periodic sampling; the time between two consecutive samples k and k + 1 is fixed
and equal to sampling period ts. In the equation, xk is a column vector with dp elements.
These elements represent the state variables that account for, e.g., the storage of mass,
momentum, and energy. Similarly, uk is a column vector with ip elements. These values
represent the inputs that affect the dynamics of the plant. We also consider wk, a column

N. Vreman, A. Cervin, and M. Maggio 15:5

vector with ip elements. The term wk represents an unknown load disturbance, modelled as
a stationary stochastic process with known properties. Finally, yk is a column vector with op

elements, that represents the measurements that are taken from our plant. The matrices Ap

(size dp × dp), Bp (size dp × ip), Cp (size op × dp), Dp (size op × ip), and Gp (size dp × ip)
characterise the dynamics of the plant.

3.2 Controller Model
The plant P is controlled by a periodically executing controller C with implicit deadlines, i.e.,
the deadline of each task instance (job) coincides with the next task activation. We consider
the class of all linear controllers with a one-step delay between sampling and actuation.1 In
other words, we consider all the controllers that can be written as linear systems, according
to the following state-space equation:

C :
{

zk+1 = Ac zk + Bc ek

uk+1 = Cc zk + Dc ek

(2)

Here, zk is a column vector with dc elements that represents the state of the controller.
The input of the controller is ek, a vector of ic = op elements. Each element in the vector is
the error between the corresponding plant output and its reference value (ek = rk −yk, where
rk represents the reference values for the plant outputs). Finally, uk is a vector of oc = ip

elements, that encodes the output of the controller, which is connected to the plant input
vector. The matrices Ac (size dc ×dc), Bc (size dc × ic), Cc (size oc ×dc), and Dc (size oc × ic)
characterise the dynamics of the controller. For every task activation, the controller first
applies the value of uk that was computed by the previous job and then reads the inputs rk

and yk. It then calculates the values of zk+1 and uk+1 that will be used in the next iteration.
The analysis methodology presented in the remainder of this paper is valid for all linear

controllers. The class of linear controllers includes some of the most frequently used controllers
in industry, in particular proportional and integral (PI), proportional, integral, and derivative
(PID), lead–lag compensators, and linear-quadratic-Gaussian (LQG) controllers. Although
the performance analysis is presented for the time-invariant case, the formulas are valid also
for systems with time-varying matrices. Hence, it is possible to analyse plants and controllers
that transition between different local linear models.

3.3 Closed-Loop System Dynamics
We now analyse the closed-loop system shown in Figure 1. Combining the dynamical models
from (1) and (2), we obtain matrices that represent the closed-loop system. We denote the
state vector of the closed-loop system with x̃k =

[
xT

k , zT
k , uT

k

]T , where T is the transpose
operator. In this way, we obtain a system that has the vectors rk and wk as input, and is
described by

S :
{

x̃k+1 = A x̃k + Br rk + Bw wk

yk = C x̃k,
(3)

1 One-step delay controllers are controllers in which a control signal is computed in the k-th interval
and actuated at the beginning of the k + 1-th period. In the real-time systems jargon, one-step
delay controllers are often referred to as controllers that follow the Logical Execution Time (LET)
paradigm [25, 44]. From the real-time perspective, implementing the controller following the LET
paradigm improves the timing predictability. From the control perspective, one-step delay controllers
reduce activation jitter and allows the engineer to neglect time-varying computational delays.

ECRTS 2021

15:6 Stability and Performance Analysis of Control Systems . . .

S
rk

wk

yk

Figure 2 Closed-loop system rewritten as a new linear system S. The resulting system has two
inputs, rk and wk and one output. The feedback loop shown in Figure 1 is hidden inside S.

where the closed-loop state matrix A is

A =

 Ap 0dp×dc
Bp

−Bc Cp Ac −Bc Dp

−Dc Cp Cc −Dc Dp

 , (4)

the input matrices Br and Bw are

Br =

0dp×ic

Bc

Dc

 , Bw =

 Gp

0dc×ip

0ip×ip

 , (5)

and the output matrix C is

C =
[
Cp 0dp×dc

Dp

]
. (6)

Figure 2 shows the graphical representation of the closed-loop system S, with input and
output signals.

Stability

To assess the stability of the closed-loop system under normal operation, it is sufficient to
check the eigenvalues of the state matrix. According to the Schur stability criterion [9], if the
eigenvalues of A lie within the unit disc, then the system is asymptotically stable. Formally,
a closed-loop system is Schur stable if and only if

max
i

|λi (A)| < 1, (7)

where λi (A) is a function that returns the i-th eigenvalue of A.
If the system dynamics change at runtime (e.g., in the case of a lost sample, unexpected

delay, or computational problem), Schur stability is no longer a sufficient stability criterion.
Instead, switching stability analysis can be employed to check the stability of a system with
alternating dynamics [40]. There has been a lot of research on the switching stability analysis,
with multiple tools developed in order to simplify the analysis. Two main methods are
employed: (i) the search for a common Lyapunov function, e.g., as done in [46], (ii) the
computation of the Joint Spectral Radius (JSR), e.g., as done in [48,62].

Performance

Alongside stability, it is important to look at the performance of the closed-loop system. Per-
formance can be defined in different ways, often depending on the application [8]. Whichever
way is chosen, a common way to quantify performance is to define a cost function and
evaluate the cost function during the execution of the controller. In our work, we use a
quadratic cost function

Jk = E
(
eT

k Qeek + uT
k Quuk

)
. (8)

N. Vreman, A. Cervin, and M. Maggio 15:7

The cost function penalises deviations from the reference value as well as usage of the control
signal. E denotes expected value, and the positive semidefinite weighting matrices Qe (size
op × op) and Qu (size oc × oc) weigh the different terms against each other. A small cost
value means that the controller successfully makes the error approach zero, using a small
control signal.

If the stochastic properties of the external signals rk and wk are known, it is possible
to calculate the value of the cost function analytically. For simplicity and without loss of
generality, we will henceforth assume that rk = 0 (i.e., we want to regulate the output to
zero) and that wk is a zero-mean Gaussian white noise process with variance R = E

(
wkwT

k

)
.

More elaborate disturbance models can be realised by adding extra states in the plant model.
We now detail how to evaluate (8). Let Pk denote the covariance of the closed-loop state

vector at time k,

Pk = E
(
x̃kx̃T

k

)
. (9)

The state covariance evolves according to

Pk+1 = A Pk AT + Bw R BT
w . (10)

Given Pk, we can calculate the cost for time step k as

Jk = E
(
x̃T

k Q x̃k

)
= tr (Pk Q) , (11)

where tr computes the trace of the matrix, and

Q =

CT
p Qe Cp 0dp×dc 0dp×ip

0dc×dp
0dc×dc

0dc×ip

0ip×dp
0ip×dc

Qu

 (12)

is the total cost matrix. The stationary cost of the system is defined as J∞. This is the cost
that the system converges to when operating under normal conditions:

J∞ = lim
k→∞

Jk. (13)

This means that there exists an instant k̄ for which Jk reaches a value arbitrarily close to
the steady-state value J∞, or ∀ε, ∃k̄ s.t. ∀k > k̄, |(Jk − J∞)/J∞| < ε.

4 System Behaviour with Deadline Misses

The analysis above holds when the control task meets all its deadlines. However, the presence
of deadline misses changes the behaviour of the system. The stability of controllers with
a number of consecutive deadline misses has been investigated in [48]. The results of this
investigation attested that, due to their inherent robustness, many control systems can
withstand at least a small number of consecutive misses.

To analyse the system, we need to clarify three aspects about the miss behaviour:
(i) What happens to the control signal.
(ii) What happens to the control task.
(iii) The computational model used for the analysis (how many deadlines can we miss, and

in what pattern).

For the first item, the actuator can either output a zero (uk = 0oc×1), or hold the previous
value (uk = uk−1). The choice depends on both the plant dynamics and on the controller, as
no strategy in general dominates the other one [58]. For controllers with integral action, it

ECRTS 2021

15:8 Stability and Performance Analysis of Control Systems . . .

makes sense to hold the previous control value, under the presumption that the system is still
disturbed and that a non-zero control signal is needed to keep the plant close to its operating
point. On the other hand, the zero strategy may be preferred for plants with unstable or
integrator dynamics, where outputting a zero control action may be the safer option.

Considering the second item, at least three different strategies can be employed to deal
with a control task that misses its deadline [18]:

(i) Kill,
(ii) Skip-Next,
(iii) and Queue(λ) (λ ∈ {1, 2, 3, . . .}).

When the Kill strategy is used, the job that missed its deadline is terminated, its changes
are rolled back, and the next job is released. Following the Skip-Next strategy, the job that
missed its deadline continues its execution. No new control task jobs are released until the
currently running one completes its execution. Queue(λ) behaves similarly to Skip-Next in
allowing the current job to complete execution, but also allows the activation of new jobs
(the queue of active jobs holds up to the most recent λ instances of the control task). In this
paper we only analyse Kill and Skip-Next. In fact, the results presented in [18,48] suggest
that Queue(λ) is not a feasible strategy to handle misses. The presence of two or more
active jobs in the same period creates a chain effect that is hard to recover from and that
deteriorates stability and performance.

The last item refers to models of computation. The weakly hard task model [11, 34]
is usually considered expressive enough to analyse the behaviour of tasks that miss their
deadlines. The authors of [11] propose four definitions for a weakly hard real-time task τ :

▶ Definition 1 (Weakly Hard Task Models [11]). A task τ may satisfy any of these four weakly
hard constraints:

(i) τ ⊢
(

n
ℓ

)
: there are at least n hits for every ℓ jobs,

(ii) τ ⊢
(

m
ℓ

)
: there are at most m misses for every ℓ jobs,

(iii) τ ⊢
〈

n
ℓ

〉
: there are at least n consecutive hits for every ℓ jobs,

(iv) τ ⊢
〈

m
ℓ

〉
: there are at most m consecutive misses for every ℓ jobs.

There has been a lot of research on the second model, often also called m-K model [4,
12,13,26,29,35,38,45,54,55,57,59–61] (with m being the maximum number of misses in a
window of K activations). Recently there has also been an analysis of the stability of control
systems when the control task behaves according to the fourth model [48].

If the misses are due to faults or security attacks, usually the control task experiences an
interval of consecutive misses. When the fault is resolved, the control task starts hitting its
deadlines again. From the performance standpoint, a consecutive number of misses degrades
the control quality. We are interested in what degradation is acceptable and how much time
should occur between two potential failures. Specifically, we look at how many deadline hits
should follow a given number of consecutive misses for the system to recover. None of the
four models above allow us to formulate this requirement (as they specify either consecutive
hits or misses but not both), which leads us to introduce a different weakly hard model of
computation, together with its analysis, in Section 5.

5 Burst Interval Analysis

In this section, we analyse the stability and performance of a real-time control system that
experiences bursts of deadline misses. Section 5.1 introduces the fault model, Section 5.2
derives the control system behaviour subject to different real-time policies and delves into
both the stability and performance analysis.

N. Vreman, A. Cervin, and M. Maggio 15:9

5.1 Fault Model

Faults can happen during the normal execution of tasks on a platform. Informally, as a result
of a fault, tasks miss their deadlines. When the fault is resolved, then the original situation
is recovered (possibly after a transient initial phase).

Specifically, given a system S, we define a burst interval M as an interval of controller
activations in which the control task executing C consecutively misses m deadlines, regardless
of the strategy used to handle the misses. We assume that the burst interval M is followed
by a recovery interval R, defined as an interval in which the control task consecutively hits
n deadlines.

During the burst interval, the deadline misses of the control task are handled using a
deadline handling strategy D (Kill, K, or Skip-Next, S). The control signal uk is selected in
accordance with the actuation strategy A (Zero, Z, or Hold, H). We denote the combination
of D and A with H = (D, A). For example H could be SZ to indicate that the Skip-Next
deadline handling strategy is paired with the Zero actuation strategy. The system recovers
once it operates close to steady-state.

From an industrial viewpoint, the proposed fault model is highly relevant. The common
approach is to treat faults as pseudo-independent events adhering to predefined constraints
on their incidence rate [42, 49, 51]. However, during the operation of a control system, faults
can be caused by events like network connection problems (e.g., cutting the connection
between the sensor and the controller), security attacks, contention on resources. Studies in
the automotive sector, for example, indicate that deadline misses can occur in bursts [56, 64].
In these cases, the controller does not execute properly for a given amount of time (e.g., until
the connection is restored, the attack is terminated, or the resource contention is reduced).
The analysis methods we propose allow us to address such situations and to provide tighter
bounds on the closed-loop stability and performance than under the previously proposed
weakly hard models. Moreover, following a burst interval, we are interested in analysing the
length of the recovery interval R that is needed to return to normal operation under each
implementation strategy H. Hence, we here extend the weakly hard models of computation
with a fifth alternative and then devote the remainder of the paper to its analysis.

▶ Definition 2 (Weakly Hard Fault Model With Burst Of Misses). A real-time task τ may
satisfy the weakly hard task model

(v) τ ⊢
{

m
ℓ

}
: there are at most m consecutive misses, followed by ℓ − m consecutive hits

for every ℓ jobs.
This means that a real-time task τ behaves according to the model τ ⊢

{
m
ℓ

}
, if, whenever

τ experiences a burst interval M consisting of m consecutive deadline misses, it is always
followed by a recovery interval R consisting of n = ℓ − m consecutive deadline hits.

5.2 Closed-Loop System Dynamics

In this section we derive the system dynamics for a closed-loop control system under the
assumption that we enter a burst interval of length m after time instant k, and after m

deadline misses we start completing the control job in time.

Normal Operation. Under normal operating conditions the system is not experiencing any
deadline misses. In other words, the system evolves according to the closed-loop system
dynamics (3).

ECRTS 2021

15:10 Stability and Performance Analysis of Control Systems . . .

Kill&Zero. If a control task deadline miss occurs at time instant k, the plant states xk still
evolve as normal. However, the controller terminates its execution prematurely by killing the
job, thus not updating its states (zk+1 = zk). The controller output is determined by the
actuation strategy and is here zero (uk+1 = 0). Now, consider a burst interval of length m

after time instant k. Recalling that x̃k =
[
xk

T zk
T uk

T
]T , we can write the evolution of the

closed-loop system for the sequence of m deadline misses followed by a single deadline hit
as the product of a matrix representing the behaviour of the system for a hit and a matrix
representing the behaviour in case of miss elevated to the power of m to indicate m steps of
the system evolution.

The resulting closed-loop system in state-space form isxk+m+1
zk+m+1
uk+m+1

 = A

 Ap 0dp×dc
Bp

0dc×dp
I 0dc×ip

0ip×dp
0ip×dc

0ip×ip

m

︸ ︷︷ ︸
AKZ (m)

xk

zk

uk

 , (14)

where AKZ (m) represents the system matrix for m misses under the Kill&Zero strategy,
followed by a single hit (the matrix A that is multiplied to the left of the equation). The
matrix A is the same specified in (4), and represents the first hit that follows the m misses,
hence, we determine how x̃k influences x̃k+m+1 (m misses and one hit).

Kill&Hold. Changing the actuation strategy to Hold, slightly alters the system matrix we
derived for the Kill&Zero case. The plant states xk evolve as normal and the control states
zk are still not updated (zk+1 = zk). However, due to the change in actuation strategy, the
last actuated value is instead held (uk+1 = uk). The resulting closed-loop state-space form
can be seen in (15), where AKH (m) is used to represent the system matrix for m misses
under the Kill&Hold strategy and matrix A is specified in (4).xk+m+1

zk+m+1
uk+m+1

 = A

 Ap 0dp×dc Bp

0dc×dp
I 0dc×ip

0ip×dp
0ip×dc

I

m

︸ ︷︷ ︸
AKH (m)

xk

zk

uk

 (15)

Skip-Next&Zero. When the control task misses a deadline under the Skip-Next strategy,
the job missing the deadline is allowed to continue its execution until completion. However,
no subsequent job of the control task is released until the current job has finished executing.
If the currently active job terminates during period k, the next control job is released at the
start of the k + 1-th period. We can then write the evolution of the system where the control
job experiences m misses before completing its execution, meaning that there is a subsequent
hit that uses old information for the error measurements. While the controller executed only
once to completion, the plant evolved for m + 1 steps. The resulting closed-loop state-space
form can be seen in (16), where ASZ (m) is used to represent the system matrix under the
Skip-Next&Zero strategy for m misses and one completion using old measurements.xk+m+1

zk+m+1
uk+m+1

 =

 Am+1
p 0dp×dc

Am
p Bp

−BcCp Ac −BcDp

−DcCp Cc −DcDp


︸ ︷︷ ︸

ASZ (m)

xk

zk

uk

 (16)

N. Vreman, A. Cervin, and M. Maggio 15:11

Skip-Next&Hold. Similar to Skip-Next&Zero, one job finishes execution after m consecutive
misses. However, the actuation strategy holds the previous control value during the entire
burst interval. Therefore, the plant evolution is affected by a cumulative sum over the prior
control values. The resulting closed-loop state-space form can be seen in (17), where ASH (m)
is used to represent the system matrix for m misses under the Skip-Next&Hold strategy.xk+m+1

zk+m+1
uk+m+1

 =

 Am+1
p 0dp×dc

∑m
i=0 Ai

pBp

−BcCp Ac −BcDp

−DcCp Cc −DcDp


︸ ︷︷ ︸

ASH (m)

xk

zk

uk

 (17)

Equations (14)–(17) are inspired by the analysis in [48], but we have we introduced two
generalisations. The first one is that our controller is specified as a general state-space system;
therefore our method is able to address all linear controllers. The second generalisation is
that we could include estimates of the plant states in the controller. We can thus properly
handle the presence of an observer.2 Furthermore, we simplify the calculations by reducing
the number of states x̃k of the closed-loop matrices.

Stability

We now describe how the system matrices above can be used to analyse stability. Recall
that a closed-loop control system is stable if and only if the (fixed) system matrix A is Schur
stable. This criterion is also valid for cyclic patterns, where A represents the product of all
closed-loop state matrices experienced in a full burst–recovery cycle. Hence, we can search
for the shortest recovery interval length n such that

max
i

∣∣λi

(
An−1AH (m)

)∣∣ < 1, H ∈ {KZ, KH, SZ, SH}. (18)

Recall that AH (m) already includes one hit, thus the left multiplication with An−1. This is
a sufficient condition and not necessary, meaning that a miss occurring during the recovery
interval does not immediately imply that the closed-loop system is destabilised. We summarise
the analysis in the following definition.

▶ Definition 3 (Static-Cyclic Stability Analysis). We denote the stability analysis from (18)
with the term static-cyclic stability analysis. The system under analysis cycles through a
sequence of m misses followed by a sequence of n hits, indefinitely.

The static-cyclic analysis assumes a repeating burst–recovery cycle with no interruptions.
This works well for instance in case the misses are due to a permanent overload condition
caused by a mode switch (for example from low to high criticality mode in mixed-critical
systems). However, the setting is not very general. To foster generality, we complement
the stability evaluation with a less restrictive stability analysis, based on the proposed task
model in Definition 2.

▶ Definition 4 (Miss-Constrained Stability Analysis). To guarantee miss-constrained stability,
a system has to be stable under arbitrary switching between all the possible m realisations
(i.e., closed-loop matrices) that comply with all task models τ ⊢

{
m⊂

ℓ

}
, m⊂ ∈ {1, . . . , m} and

also include the case in which the system does not miss deadlines.

2 In [48] the controller state is specified as part of the plant (e.g., when the proportional and integral
controller is introduced). This implies that the state is computed although the controller did not execute.
Our formulation fixes this by separating the plant execution and the controller states.

ECRTS 2021

15:12 Stability and Performance Analysis of Control Systems . . .

In other words, a system is miss-constrained stable if and only if it is stable under arbitrary
switching of the closed-loop matrices in the set{

Aℓ−1AH (1) , Aℓ−2AH (2) , . . . , Aℓ−mAH (m) , A
}

. (19)

Switching stability is unfortunately quite involved.3 However, many excellent tools have been
developed to simplify this analysis (e.g., MJSR [48] or the JSR toolbox [62] for MATLAB).

Performance

We now show how the cost function in Equation (11) can be used as a time-varying perform-
ance metric. Before a burst interval, we assume that the system is in the neighbourhood of
its steady-state covariance P∞ and performance J∞.

When a burst interval of m missed deadlines occurs, the system will be disrupted and its
covariance matrix will evolve according to

Pk+m+1 = AH (m) Pk (AH (m))T + AjnRw

(
Ajn

)T
, (20)

where

Rw =
[∑jm

i=0 Ai
p Gp R GT

p (Ai
p)T 0dp×dc+ip

0dc+ip×dp
0dc+ip×dc+ip

]
,

jm =
{

m − 1 if D = K (Kill),
m if D = S (Skip-Next),

jn =
{

1 if D = K (Kill),
0 if D = S (Skip-Next).

(21)

Ap and Gp are matrices from the plant evolution in (1), R is the noise intensity from (10),
and A is the closed-loop matrix from (4). The cost will simultaneously change following (11).
In the recovery interval, the covariance is again governed by the normal closed-loop evolution
described in (10). The system is said to have recovered once the cost is arbitrarily close to
the steady-state cost. We evaluate this as∣∣∣∣J∞ − Jk

J∞

∣∣∣∣ < ε, (22)

where ε > 0 is the recovery threshold.

▶ Definition 5 (Performance Recovery Interval). We define the recovery length interval n∗
H

as the smallest n such that (22) is satisfied for all k ≥ n when using H to handle deadline
misses.

▶ Definition 6 (Maximum Normalised Cost). We denote the maximum normalised cost of the
system by

JM,H = max
k

Jk,H

J∞
, (23)

where Jk,H is the cost computed according to (11) when using H to handle the deadline
misses.

N. Vreman, A. Cervin, and M. Maggio 15:13

0 2 4 6 8 10 12 14 16 18 200

2

4

6
H = KZ

Jk,H/J∞ = Jk,KZ/J∞

2 ε band

JM,H = JM,KZ

m n∗
H = n∗

KZ

Time

N
or

m
al

is
ed

C
os

t

Figure 3 Illustration of normalised cost (Jk/J∞), performance recovery interval n∗
H and maximum

normalised cost JM,H on a data trace. The example uses H = Kill&Zero and ε = 0.1.

Figure 3 gives a graphical representation of n∗
H and JM,H for an execution trace in which

the controller experiences 3 misses and uses Kill&Zero as strategy H.
Compared to the stability analysis, the performance analysis also takes into account

state deviations and uncertainty due to disturbances. In Section 5.2 we used the system
dynamics to analyse the stability of the system. The disturbance term wk was neglected
as it does not influence the system stability. However, its presence (as the presence of any
disturbance) changes the dynamic behaviour of the system. For the performance metric,
the state covariance matrix Pk evolves according to both the noise intensity and the system
dynamics (20). The result is that the performance analysis provides us with a conservative
(but more realistic) recovery interval, that takes system uncertainties into consideration.

To find the length of the recovery interval, we evolve the state covariance during a burst
interval, using a specific strategy H according to (20). Thereafter, the state covariance is
evolved under normal operation, according to (10), until (22) is satisfied, allowing us to find
the performance recovery interval n∗

H.

6 Experimental Results

In this section, we apply the analysis presented in Section 5 to a set of case studies, analysing
stability and performance. We first present detailed results with a Furuta pendulum, both
in simulation and with real hardware, using the same controller. The simulated results
are compared to the real physical plant. This shows that the performance analysis does
capture the important trends for real control systems. We then present some aggregate
results obtained with a set of 133 different plants from a control benchmark. One noteworthy
aspect is that the Furuta pendulum model is linearised for the control design and the
pendulum stabilised around an unstable equilibrium – the top position – while the control
benchmark includes (by design) stable systems. The difference between simulation results
and real experiments for stable linear systems should in principle be smaller than for unstable
nonlinear systems, making our pendulum the ideal stress test for the similarity of simulated
and real data.

3 We have devoted some research effort into the investigation of a suitable stability analysis for control
tasks subject to a set of weakly-hard constraints (of the type presented in Defintion 1). A summary of
our findings can be found at https://arxiv.org/abs/2101.11312.

ECRTS 2021

https://arxiv.org/abs/2101.11312

15:14 Stability and Performance Analysis of Control Systems . . .

6.1 Furuta Pendulum
We here analyse the behaviour of a Furuta pendulum [27], a rotational inverted pendulum in
which a rotating arm is connected to a pendulum. The rotation of the arm induces a swing
movement on the pendulum. The pendulum has two equilibria: a stable position in which
the pendulum is downright, and an unstable position in which the pendulum is upright. Our
objective is to keep the pendulum in the up position, by moving the rotating arm.

The Furuta pendulum is a highly nonlinear process. In order to design a control strategy
to keep the pendulum in the top position, it is necessary to linearise the dynamics of the
system around the desired equilibrium point. We consider this as a stress test to check the
divergence between simulation results and real hardware results, because of the instability of
the equilibrium and the nonlinearity of the dynamics. In fact, the controller necessarily acts
with information that is valid only around the upright position, and there is only a range of
states in which the linearised model closely describes the behaviour of the physical plant.

We design a linear-quadratic regulator (LQR) to control the plant. Every ts = 10 ms the
plant is sampled and the control signal is actuated. Based on state-of-the-art models [17]
and on our control design, the plant model P is

P :


xk+1 =


1.002 0.0100 0 0
0.3133 1.002 0 0

−2.943 · 10−5 −9.808 · 10−8 1 0.01
−0.0059 −2.943 · 10−5 0 1

 xk +


−0.0036
−0.7127
+0.0096
+1.9120

 uk + Iwk,

yk = Ixk,

(24)

the controller C takes the form

C : uk+1 =
[
8.8349 1.5804 0.2205 0.3049

]
xk (25)

and is designed and analysed using the following parameters (see Section 3.3):

Qe = diag(100, 1, 10, 10), Qu = 100, R = diag(0, 0, 10, 1). (26)

We first apply the stability analyses presented in Section 5.2 to our model. Figure 4
shows the results. Each square in the figure represents a combination of (at most) m deadline
misses (on the vertical axis) and (at least) n deadline hits (on the horizontal axis). If a
square is coloured with a dark colour, the corresponding combination of misses and hits is
both static-cyclic and miss-constrained stable, found using the JSR Toolbox [62]. The light
squares in the figure show combinations for which the system only satisfies the static-cyclic
stability condition. The white squares mark configurations for which stability cannot be
guaranteed.

We remark on the presence of peaks in the static-cyclic stability region of H = KH at
n = {1, 5, 9, 13, 19}. Similar peaks are also found for the other strategies, but for different
values of n. These peaks indicate that the system would be stable if that particular burst
and recovery interval length would be repeated indefinitely. However, this assumption is
not robust to variations in the burst or recovery interval lengths as can be seen from the
miss-constrained stability region being more conservative with its guarantees. Instead, the
peaks in the static-cyclic region can be explained by stable modes occurring due to the
natural frequencies of the open-loop (for the Zero actuation mode) and closed-loop (for the
Hold actuation mode) systems. It is also interesting to note that Kill seems to consistently
yield a larger stability region than Skip-Next, while neither Zero nor Hold dominate each
other in terms of stability guarantees. An example of the latter fact was given already in [58].

N. Vreman, A. Cervin, and M. Maggio 15:15

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Hold

n

m

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Hold

n

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Zero

n

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Zero

n

Figure 4 Miss-constrained stability (dark coloured area) and static-cyclic stability (light coloured
area) when different strategies H are used in the example and the weakly hard model in Definition 2
is considered. Each square represents a window of size ℓ = m + n. The dark area satisfies both the
miss-constrained and static-cyclic stability whilst the light area only provides static-cyclic stability.
The white squares denote potentially unstable combinations of m and n.

For the performance analysis, we considered a one-shot burst fault of a specific length m,
followed by a long period of normal execution. Assuming that the pendulum starts close to
the upright equilibrium, with stationary cost J∞, we calculate how the covariance Pk and
performance cost Jk evolve during and after the burst interval using Equations (20)–(21).4
These calculations assume an ideal, linear model of the pendulum. The simulation results for
different strategies and bursts of length m = 20 are shown in the upper half of Figure 5. For
Hold, it is seen that the cost grows exponentially during the initial fault interval (the first
20 ts = 0.2 s). This is true also for Zero, although the growth rate is too small to be visible.
The reason for the poor performance of Hold is that any non-zero held control signal will
actively push the pendulum away from its unstable upright equilibrium even further than
either disturbances or noise would already do without a proper control action.

The large spike in cost comes when the controller is reactivated at time 0.2 s. Here, the
Hold strategy again shows much worse performance than Zero, with the peak cost being
almost an order of magnitude worse. The difference between Kill and Skip-Next is relatively
small, with the latter strategy consistently performing slightly worse than the former. This
is due to the small extra delay caused by using old data in the Skip-Next strategy.

We conducted experiments on a Furuta pendulum, using the same controller for the real
plant rather than its model.5 Initially, we performed 500 experiments with 500 jobs each and
no deadline misses, to determine the nominal variance of the system – i.e., the stationary
variance used to find the static cost J∞. For each strategy H we then ran 500 identically set
up experiments. In each experiment, the control task operated according to the task model

4 The analysis is implemented using JitterTime [19], https://www.control.lth.se/jittertime.
5 A video, showing experiments with the real system and bursts of deadline misses can be viewed at

https://youtu.be/0P0K_7lvKVU. The video shows a comparison of all the strategies for bursts of
(m = 20, n = 480). Furthermore, we have included additional experiments with (m = 50, n = 450)
and (m = 75, n = 425) for the Skip&Hold strategy. The results of the additional experiments with
higher values of m are not described in the paper, as stability could not be guaranteed (and in fact the
pendulum is not at all times kept in the upright position).

ECRTS 2021

https://www.control.lth.se/jittertime
https://youtu.be/0P0K_7lvKVU

15:16 Stability and Performance Analysis of Control Systems . . .

0 0.5 1 1.5 2
1

10

30

50

pKill&Holdp

37.9
J

k
/
J

∞
Si

m
ul

at
ed

0 0.5 1 1.5 2
1

10

30

50

Skip&Hold
46.7

0 0.5 1 1.5 2
1
3
5
7

pKill&Zerop

5.9

0 0.5 1 1.5 2
1
3
5
7

Skip&Zero

6.6

0.5 1 1.5 2
1

10

30

50
33.8

Time [s]

J
k
/
J

∞
R

ea
l

0.5 1 1.5 2
1

10

30

50 44.0

Time [s]
0.5 1 1.5 2

1
3
5
7

4.0

Time [s]
0.5 1 1.5 2

1
3
5
7

3.7

Time [s]

Figure 5 Normalised performance cost Jk/J∞ obtained with the Furuta pendulum. The upper
part of the figure shows simulated data, while the lower part of the figure shows the corresponding
values obtained averaging the results of 500 experiments with the real process and hardware. Each
experiment corresponds to a 500 jobs of the controller (20 misses and 480 hits).

from Definition 2, experiencing a burst of length m = 20 misses, followed by by a recovery
interval with n = 480 deadline hits.

Due to system model uncertainties (e.g., friction) being significant, the rotation angle
around the arm axis displayed a considerable variance. We removed the state from the
covariance calculations, since the arm angle majorly impacted the variance despite its
inconsequential significance on the system dynamics (the pendulum can be stabilised with
the arm being around any position, provided that the pendulum itself is kept in the upright
position). Including the rotation angle would not change the shape of the performance
degradation seen in Figure 5. However, it would make the results obtained with different
strategies H not comparable (in some of them, the rotation angle could have varied less across
the 500 experiments). The covariance matrix Pk was derived by calculating the variance of
the closed-loop state vector x̃k according to Equation (9), in each time step k.

The resulting performance cost can be seen in the lower half of Figure 5, where the
cost Jk was calculated according to Equation (11) and normalised using the stationary cost
J∞. Comparing the simulated (upper) and real (lower) performance costs in Figure 5, we
notice the similarities between the simulated analysis and the analysis performed on the
physical plant. Particularly, the strategies involving Hold actuation show similar behaviours.
For these strategies, the simulated and real values are very close for the transient burst
interval, the secondary cost peak (seen around time 0.4 s), and the maximum normalised
cost JM,H. However, the real cost is recovering slower than in the simulations – an effect
that arises due to the nonlinear effects present in the real process, but unmodelled in the
simulated environment. Instead, comparing the Zero actuation strategies, the performance
cost of the physical experiments during the burst interval seem to improve compared to the
simulations. This is again likely due to the unmodelled dynamics (e.g., friction) appearing in
the physical experiment but not in the simulations. The stiction component of the friction
reduces the variance of the states when the actuation signal becomes zero. With longer burst
intervals, a similar behaviour as for the Hold actuation strategies would appear. Despite

N. Vreman, A. Cervin, and M. Maggio 15:17

this difference, both the recovery interval, the secondary cost peak (around 0.4 s), and the
maximum normalised costs JM,H are comparable.

We conclude that the results of the experiments performed on the physical process support
the validity of the performance analysis presented in Section 5.2.

6.2 Control Benchmark
In Section 6.1 we extensively discussed the results obtained with a single plant (the Furuta
pendulum), with the aim of showing that simulating the performance cost yields interesting
and relevant results. As the main novelty of this paper lays in the introduction of the
performance analysis as an additional tool to evaluate the behaviour of control systems that
can miss deadlines, we here focus on performance.

We use a set of representative process industrial plants [7], developed to benchmark
PID design algorithms in the control literature. The set includes 9 different batches of
stable plants, each presenting different features that can be encountered in process industrial
plants, for a total of 133 plants.6 For each batch, all systems have the same structure, but
different parameters. For example, the fourth batch is a stable system with a set of repeated
eigenvalues, and a single parameter specifying the system order, which can take six possible
values (3, 4, 5, 6, 7, or 8). Almost all the plants have a single independent parameter. The
only exception is Batch 7, for which we can specify two different configuration parameters,
the first one having 4 possible values and the second one having 9 potential alternatives,
with a total of 36 possible configurations.

The analysis methodology presented in this paper is valid for all linear control systems.
In Section 6.1, we introduced an LQR controller to analyse the Furuta pendulum. To
demonstrate the generality of the analysis, here, we focus on the most common controller
class: proportional and integral (PI) controllers. These controllers constitute the vast
majority of all the control loops in the process industry.7 We also performed the analysis for
proportional, integral, and derivative (PID) controllers obtaining similar results. Introducing
our tuning for PID controllers requires additional clarifications and details, which we omit
due to space limitations.

For each plant we derived a PI controller according to the methodology presented in [28].
In order to showcase the applicability of our analysis to different linear systems, controllers,
and noise models, we analyse the resulting closed-loop systems for m ∈ [1, 20], under the
assumption that the systems are affected by brown noise (in comparison to the white noise
applied to the Furuta Pendulum). The brown noise model integrates the white noise and
is thus applicable to systems where the noise is more dominant at lower frequencies (e.g.,
oscillations from nearby machinery). Figure 6 shows the results for m = 10.

The first result that the figure shows is that the plant dynamics plays an important role in
how the system reacts to misses. For example, the plants in Batch 4 and Batch 8 need around
20 hits to recover from a burst of 10 misses. On the contrary, the plants in Batch 6 and Batch
7 need a higher number of hits to recover from the same burst interval. The second result
that is apparent from the figure is that the Hold actuation strategy recovers much better
(performance-wise) than Zero. The reason why Hold outperforms Zero can be explained by
the brown noise. The control signal will actively counteract the integrated noise dynamics,

6 In our analysis, we present results with 134 plants. In fact, the test set was used in [28] to assess
a control design method, and an additional plant was added to the set during this assessment. We
included this additional plant in our analysis.

7 A 2001 survey by Honeywell [24] states that 97% of the existing industrial controllers are PI controllers.

ECRTS 2021

15:18 Stability and Performance Analysis of Control Systems . . .

3 6 9 12 15 18 21

0
20
40
60

1

B
at

ch
1

pKill&Holdp

3 6 9 12 15 18 21

0
20
40
60

1

Skip&Hold

3 6 9 12 15 18 21

0
20
40
60

1

pKill&Zerop

3 6 9 12 15 18 21

0
20
40
60

1

Skip&Zero

3 6 9 12 15 18 21
0

50

100

1

B
at

ch
2

3 6 9 12 15 18 21

0

50

100

1 3 6 9 12 15 18 21

0

50

100

1 3 6 9 12 15 18 21

0

50

100

1

1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1

B
at

ch
3

1 2 3 4 5 6 7 8 9 10
0

20
40
60
80

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1

1 2 3 4 5 6

0
20
40
60

1

B
at

ch
4

1 2 3 4 5 6

0
20
40
60

1 1 2 3 4 5 6

0
20
40
60

1 1 2 3 4 5 6

0
20
40
60

1

1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1

B
at

ch
5

1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1 1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1 1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1

1 2 3 4 5 6 7 8 9 10

0

50

100

1

B
at

ch
6

1 2 3 4 5 6 7 8 9 10

0

50

100

1 1 2 3 4 5 6 7 8 9 10

0

50

100

1 1 2 3 4 5 6 7 8 9 10
0

50

100

1

5 10 15 20 25 30 35

0

50

100

1

B
at

ch
7

5 10 15 20 25 30 35

0

50

100

1 5 10 15 20 25 30 35

0

50

100

1 5 10 15 20 25 30 35

0

50

100

1

1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1

B
at

ch
8

1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1

1 2 3 4 5 6 7 8 9 10

0
20
40
60

1

B
at

ch
9

1 2 3 4 5 6 7 8 9 10

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60

1

Figure 6 Performance Recovery Interval n∗
H needed to recover from a burst of 10 deadline misses

for different strategies and all the plants in the 9 batches for PI controllers designed according to [28].

N. Vreman, A. Cervin, and M. Maggio 15:19

meaning that zeroing the control signal removes the compensation against the integrated
noise. Finally, comparing the deadline handling strategies, Kill performs marginally better
than Skip-Next. Under Kill, the controller uses fresh data at the beginning of the recovery
interval, while Skip-Next uses old data. However, we assumed ideal rollback (i.e., zero
additional computation time for the rollback and clean state) for the Kill strategy. In real
systems, rollback is difficult to realise and the advantage provided by Kill over Skip-Next
may therefore become unimportant. These findings are consistent throughout all the plants
in the experimental set, regardless of the burst interval length m.

The plant dynamics and noise affect the behaviour and performance of the strategies.
Comparing the results of Section 6.1 with the aggregate results, it becomes apparent that
the actuation strategy (Zero or Hold) affects control performance significantly more than
the deadline handling strategy. For the Furuta pendulum (an unstable, nonlinear plant
influenced by white noise) Zero performed the best, but for the process industrial systems
(stable, linear plants influenced by brown noise) Hold outperformed Zero. These results
were apparent even with no consideration taken to the deadline handling strategies. Thus,
we conclude that the plant and noise model should be the ruling factor when choosing the
actuation strategy, while the deadline handling strategy is mainly limited by the constraints
imposed by the real-time implementation.

7 Conclusions

In this paper we analysed control systems and their behaviour in the presence of bursts of
deadline misses. We provided a comprehensive set of tools to determine how robust a given
control system is to faults that hinder the computation to complete in time, with different
handling strategies. Our analysis tackles both stability and performance. In fact, we have
shown that analysing the stability of the system is not enough to properly quantify the
robustness to deadline misses, as the performance loss could be significant even for stable
systems. We introduced two performance metrics, linked to the recovery of a system from a
burst of deadline misses.

A limitation of the presented performance analysis is that it only applies to linear control
systems. However, the approach can easily be extended to analyse time-varying linear systems
and can also be used for local analysis of a nonlinear system that should follow a given
reference trajectory. In fact, to illustrate the applicability to real (e.g., nonlinear) systems,
we applied the analysis to a Furuta pendulum and compared the results of simulations
obtained with a model of the process to the real execution data. The results support our
claim that the proposed performance analysis is a valid approximation of the real-world
system performance.

We performed additional tests on a large batch of industrial plants, using modern control
design techniques. From our experimental campaign, we conclude that the choice of actuation
strategy affects the control performance significantly more than the choice of deadline handling
strategy.

References
1 F. Abdi, C. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo. Preserving physical safety

under cyber attacks. IEEE Internet of Things Journal, 6(4), 2019.
2 F. Abdi, R. Mancuso, R. Tabish, and M. Caccamo. Restart-based fault-tolerance: System

design and schedulability analysis. In 23rd IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), 2017.

ECRTS 2021

15:20 Stability and Performance Analysis of Control Systems . . .

3 F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo. Application and system-level
software fault tolerance through full system restarts. In 8th International Conference on
Cyber-Physical Systems (ICCPS), 2017.

4 L. Ahrendts, S. Quinton, T. Boroske, and R. Ernst. Verifying weakly-hard real-time properties
of traffic streams in switched networks. In 30th Euromicro Conference on Real-Time Systems
(ECRTS), volume 106 of Leibniz International Proceedings in Informatics (LIPIcs), pages
15:1–15:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

5 B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis. An empirical survey-based
study into industry practice in real-time systems. In 41st IEEE Real-Time Systems Symposium
(RTSS), 2020.

6 S. Altmeyer and R. I. Davis. On the correctness, optimality and precision of static probabilistic
timing analysis. In Design, Automation Test in Europe Conference Exhibition (DATE), pages
1–6, 2014.

7 K. J. Åström and T. Hägglund. Revisiting the Ziegler—Nichols step response method for PID
control. Journal of Process Control, 14(6):635–650, 2004.

8 K. J. Åström and T. Hägglund. Advanced PID Control. The Instrumentation, Systems and
Automation Society, 2006.

9 K. J. Åström and B. Wittenmark. Computer-Controlled Systems: Theory and Design. Prentice
Hall, 3rd edition, 1997.

10 G. Bernat and A. Burns. Combining
(

n
m

)
-hard deadlines and dual priority scheduling. In 18th

IEEE Real-Time Systems Symposium (RTSS), pages 46–57, 1997.
11 G. Bernat, A. Burns, and A. Liamosi. Weakly hard real-time systems. IEEE Transactions on

Computers, 50:308–321, 2001.
12 T. Bund and F. Slomka. Controller/platform co-design of networked control systems based on

density functions. In 4th ACM SIGBED International Workshop on Design, Modeling, and
Evaluation of Cyber-Physical Systems, pages 11–14. ACM, 2014.

13 T. Bund and F. Slomka. Worst-case performance validation of safety-critical control systems
with dropped samples. In 23rd International Conference on Real Time and Networks Systems
(RTNS), pages 319–326. ACM, 2015.

14 G. Buttazzo, M. Velasco, and P. Marti. Quality-of-control management in overloaded real-time
systems. IEEE Transactions on Computers, 56(2):253–266, 2007.

15 M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing aperiodic
responsiveness. In 18th IEEE Real-Time Systems Symposium (RTSS), pages 330–339, 1997.

16 M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In 21st IEEE
Real-Time Systems Symposium (RTSS), pages 295–304, 2000.

17 B. S. Cazzolato and Z. Prime. On the dynamics of the Furuta pendulum. Journal of Control
Science and Engineering, 2011.

18 A. Cervin. Analysis of overrun strategies in periodic control tasks. IFAC Proceedings Volumes,
38(1):219–224, 2005.

19 A. Cervin, P. Pazzaglia, M. Barzegaran, and R. Mahfouzi. Using JitterTime to analyze transient
performance in adaptive and reconfigurable control systems. In 24th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pages 1025–1032,
2019.

20 A. Chen, Ha. Xiao, A. Haeberlen, and L. T. X. Phan. Fault tolerance and the five-second rule.
In Workshop on Hot Topics in Operating Systems (HotOS), 2015.

21 H. Choi, H. Kim, and Q. Zhu. Job-class-level fixed priority scheduling of weakly-hard real-time
systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
241–253, 2019.

22 R. I. Davis, L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean. Analysis of probabilistic
cache related pre-emption delays. In 25th Euromicro Conference on Real-Time Systems
(ECRTS), pages 168–179, 2013.

N. Vreman, A. Cervin, and M. Maggio 15:21

23 D. de Niz, L. Wrage, A. Rowe, and R. Rajkumar. Utility-based resource overbooking for
cyber-physical systems. In 19th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 217–226, 2013.

24 L. Desborough. Increasing customer value of industrial control performance monitoring-
honeywell’s experience. Preprints of CPC, pages 153–186, 2001.

25 R. Ernst, S. Kuntz, S. Quinton, and M. Simons. The logical execution time paradigm: New
perspectives for multicore systems. Dagstuhl Reports, 8:122–149, 2018.

26 G. Frehse, A. Hamann, S. Quinton, and M. Woehrle. Formal analysis of timing effects on
closed-loop properties of control software. In 35th IEEE Real-Time Systems Symposium
(RTSS), pages 53–62, 2014.

27 K. Furuta, M. Yamakita, and S Kobayashi. Swing-up control of inverted pendulum using
pseudo-state feedback. Proceedings of the Institution of Mechanical Engineers, Part I: Journal
of Systems and Control Engineering, 206(4):263–269, 1992.

28 O. Garpinger and T. Hägglund. Software-based optimal PID design with robustness and noise
sensitivity constraints. Journal of Process Control, 33:90–101, 2015.

29 M. Gaukler, T. Rheinfels, P. Ulbrich, and G. Roppenecker. Convergence rate abstractions for
weakly-hard real-time control. arXiv preprint arXiv:1912.09871, 2019.

30 S. Kumar Ghosh, S. Dey, D. Goswami, D. Mueller-Gritschneder, and S. Chakraborty. Design
and validation of fault-tolerant embedded controllers. In Design, Automation & Test in Europe
Conference Exhibition (DATE). IEEE, 2018.

31 D. Goswami, D. Mueller-Gritschneder, T. Basten, U. Schlichtmann, and S. Chakraborty.
Fault-tolerant embedded control systems for unreliable hardware. In International Symposium
on Integrated Circuits (ISIC). IEEE, 2014.

32 A. Gujarati, M. Nasri, and B. B. Brandenburg. Quantifying the resiliency of fail-operational
real-time networked control systems. In 30th Euromicro Conference on Real-Time Systems
(ECRTS), volume 106 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

33 A. Gujarati, M. Nasri, R. Majumdar, and B. B. Brandenburg. From iteration to system failure:
Characterizing the fitness of periodic weakly-hard systems. In 31st Euromicro Conference on
Real-Time Systems (ECRTS), volume 133 of Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

34 M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with
(m,k)-firm deadlines. IEEE Transactions on Computers, 44(12):1443–1451, 1995.

35 Z. A. H. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux. Bounding deadline misses
in weakly-hard real-time systems with task dependencies. In Design, Automation & Test in
Europe Conference Exhibition (DATE), pages 584–589, 2017.

36 Z. A. H. Hammadeh, S. Quinton, and R. Ernst. Extending typical worst-case analysis using
response-time dependencies to bound deadline misses. In 14th International Conference on
Embedded Software (EMSOFT). ACM, 2014.

37 Z. A. H. Hammadeh, S. Quinton, and R. Ernst. Weakly-hard real-time guarantees for earliest
deadline first scheduling of independent tasks. ACM Transactions of Embedded Computing
Systems, 18(6), 2019.

38 Z. A. H. Hammadeh, S. Quinton, M. Panunzio, R. Henia, L. Rioux, and R. Ernst. Budgeting
under-specified tasks for weakly-hard real-time systems. In 29th Euromicro Conference on
Real-Time Systems (ECRTS), volume 76 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1–17:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.

39 M. Hertneck, S. Linsenmayer, and F. Allgöwer. Nonlinear dynamic periodic event-triggered
control with robustness to packet loss based on non-monotonic lyapunov functions. In 58th
IEEE Conference on Decision and Control (CDC), pages 1680–1685, 2019.

40 R. Jungers. The Joint Spectral Radius: Theory and Applications. Lecture Notes in Control
and Information Sciences. Springer Berlin Heidelberg, 2009.

ECRTS 2021

15:22 Stability and Performance Analysis of Control Systems . . .

41 M. Kauer, D. Soudbakhsh, D. Goswami, S. Chakraborty, and A. M. Annaswamy. Fault-tolerant
control synthesis and verification of distributed embedded systems. In Design, Automation &
Test in Europe Conference Exhibition (DATE), 2014.

42 F. Khosravi, M. Glaß, and J. Teich. Automatic reliability analysis in the presence of probabilistic
common cause failures. IEEE Transactions on Reliability, 66(2), 2017.

43 F. Khosravi, M. Müller, M. Glaß, and J. Teich. Uncertainty-aware reliability analysis and
optimization. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 97––102, 2015.

44 C. Kirsch and A. Sokolova. The logical execution time paradigm. In Advances in Real-Time
Systems, pages 103–120. Springer Berlin Heidelberg, 2012.

45 G. Koren and D. Shasha. Skip-Over: algorithms and complexity for overloaded systems that
allow skips. In 16th IEEE Real-Time Systems Symposium (RTSS), pages 110–117, 1995.

46 S. Linsenmayer and F. Allgower. Stabilization of networked control systems with weakly hard
real-time dropout description. In 56th IEEE Conference on Decision and Control (CDC),
pages 4765–4770, 2017.

47 S. Linsenmayer, M. Hertneck, and F. Allgower. Linear weakly hard real-time control systems:
Time- and event-triggered stabilization. IEEE Transactions on Automatic Control, 2020.

48 M. Maggio, A. Hamann, E. Mayer-John, and D. Ziegenbein. Control-system stability under
consecutive deadline misses constraints. In 32nd Euromicro Conference on Real-Time Systems
(ECRTS), Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

49 D.C. Montgomery. Introduction to Statistical Quality Control. Wiley, 2009.
50 S. Natarajan, M. Nasri, D. Broman, B. B. Brandenburg, and G. Nelissen. From code to weakly

hard constraints: A pragmatic end-to-end toolchain for timed C. In 40th IEEE Real-Time
Systems Symposium (RTSS), pages 167–180, 2019.

51 P. P. O’Connor and A. Kleyner. Practical Reliability Engineering. Wiley Publishing, 5th
edition, 2012.

52 L. Palopoli, L. Abeni, G. Buttazzo, F. Conticelli, and M. Di Natale. Real-time control system
analysis: an integrated approach. In 21st IEEE Real-Time Systems Symposium (RTSS), pages
131–140, 2000.

53 P. Pazzaglia, A. Hamann, D. Ziegenbein, and M. Maggio. Adaptive design of real-time control
systems subject to sporadic overruns. In Design, Automation & Test in Europe Conference
Exhibition (DATE), 2021.

54 P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin. DMAC: Deadline-Miss-Aware Control.
In 31st Euromicro Conference on Real-Time Systems (ECRTS), volume 133 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 1:1–1:24. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019.

55 P. Pazzaglia, L. Pannocchi, A. Biondi, and M. Di Natale. Beyond the weakly hard model:
Measuring the performance cost of deadline misses. In 30th Euromicro Conference on Real-
Time Systems (ECRTS), volume 106 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 10:1–10:22, 2018.

56 S. Quinton, T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and R. Ernst. Typical worst
case response-time analysis and its use in automotive network design. In 51st Annual Design
Automation Conference (DAC), pages 1–6, New York, NY, USA, 2014. ACM.

57 P. Ramanathan. Graceful degradation in real-time control applications using (m,k)-firm
guarantee. In 27th IEEE International Symposium on Fault Tolerant Computing, pages
132–141, 1997.

58 L. Schenato. To zero or to hold control inputs with lossy links? IEEE Transactions on
Automatic Control, 54(5):1093–1099, 2009.

59 D. Soudbakhsh, L. T. X. Phan, A. M. Annaswamy, and O. Sokolsky. Co-design of arbitrated
network control systems with overrun strategies. IEEE Transactions on Control of Network
Systems, 5(1):128–141, 2018.

N. Vreman, A. Cervin, and M. Maggio 15:23

60 D. Soudbakhsh, L. T. X. Phan, O. Sokolsky, I. Lee, and A. Annaswamy. Co-design of
control and platform with dropped signals. In 4th ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), pages 129–140. ACM, 2013.

61 Y. Sun and M. Di Natale. Weakly hard schedulability analysis for fixed priority scheduling of
periodic real-time tasks. ACM Transactions on Embedded Computing Systems, 16(5s), 2017.

62 G. Vankeerberghen, J. Hendrickx, and R. M. Jungers. JSR: A toolbox to compute the joint
spectral radius. In 17th International Conference on Hybrid Systems: Computation and
Control (HSCC), pages 151––156. ACM, 2014.

63 N. Vreman and C. Mandrioli. Evaluation of burst failure robustness of control systems in
the fog. In A. Cervin and Y. Yang, editors, 2nd Workshop on Fog Computing and the IoT
(Fog-IoT), volume 80 of OpenAccess Series in Informatics. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020.

64 W. Xu, Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton. Improved deadline miss
models for real-time systems using typical worst-case analysis. In 27th Euromicro Conference
on Real-Time Systems (ECRTS), pages 247–256, 2015.

ECRTS 2021

On the Convolution Efficiency for Probabilistic
Analysis of Real-Time Systems
Filip Marković #

Mälardalen University, Västerås, Sweden

Alessandro Vittorio Papadopoulos #

Mälardalen University, Västerås, Sweden

Thomas Nolte #

Mälardalen University, Västerås, Sweden

Abstract
This paper addresses two major problems in probabilistic analysis of real-time systems: space and
time complexity of convolution of discrete random variables. For years, these two problems have
limited the applicability of many methods for the probabilistic analysis of real-time systems, that rely
on convolution as the main operation. Convolution in probabilistic analysis leads to a substantial
space explosion and therefore space reductions may be necessary to make the problem tractable.
However, the reductions lead to pessimism in the obtained probabilistic distributions, affecting the
accuracy of the timing analysis. In this paper, we propose an optimal algorithm for down-sampling,
which minimises the probabilistic expectation (i.e., the pessimism) in polynomial time.
The second problem relates to the time complexity of the convolution between discrete random
variables. It has been shown that quadratic time complexity of a single linear convolution, together
with the space explosion of probabilistic analysis, limits its applicability for systems with a large
number of tasks, jobs, and other analysed entities. In this paper, we show that the problem can be
solved with a complexity of O(n log(n)), by proposing an algorithm that utilises circular convolution
and vector space reductions. Evaluation results show several important improvements with respect
to other state-of-the-art techniques.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Computer
systems organization → Real-time system specification

Keywords and phrases Probabilistic analysis, Random variables, Algorithm Complexity

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2021.16

Supplementary Material Software (ECRTS 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.1.1

Funding This work was supported by the Swedish Research Council (VR) via the project “Practical
Probabilistic Timing Analysis of Real-Time Systems (PARIS)”, and by the Knowledge Foundation
(KKS) via the project “Federated Choreography of an Integrated Embedded Systems Software
Architecture (FIESTA)”.
Alessandro Vittorio Papadopoulos: Swedish Research Council (VR) via the project “Pervasive
Self-Optimizing Computing Infrastructures (PSI)”.

Acknowledgements We want to thank Davor Čirkinagić who borrowed his computing system for
performing the evaluation. Also, we are very grateful to the anonymous reviewers for their comments.

1 Introduction

In the last decades, probabilistic timing analysis has emerged as an important concept for
assurance of real-time guarantees in various fields [10]. Compared to the deterministic-based
worst-case execution time model, a probabilistic model of time parameters offers more
expressiveness and a higher degree of representation of the actual system behaviour. Besides

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Filip Marković, Alessandro Vittorio Papadopoulos, and Thomas Nolte;
licensed under Creative Commons License CC-BY 4.0

33rd Euromicro Conference on Real-Time Systems (ECRTS 2021).
Editor: Björn B. Brandenburg; Article No. 16; pp. 16:1–16:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filip.markovic@mdh.se
https://orcid.org/0000-0002-3210-3819
mailto:alessandro.papadopoulos@mdh.se
https://orcid.org/0000-0002-1364-8127
mailto:thomas.nolte@mdh.se
https://orcid.org/0000-0001-6132-7945
https://doi.org/10.4230/LIPIcs.ECRTS.2021.16
https://doi.org/10.4230/DARTS.7.1.1
https://doi.org/10.4230/DARTS.7.1.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

that, it can be more applicable for soft real-time systems, and systems with below-worst-case
provisioning, that in general are more present than the strictly hard-real time systems.

One of the major concepts that has been used in the analysis of real-time systems is the
linear convolution, which is also known as addition, when used on discrete random variables.
This operation has been studied and adjusted for the analysis of real-time systems in many
papers throughout the years [12,19,20,22], while its mere use is present in almost all research
areas of probabilistic real-time systems [10].

However, as shown by Davis and Cucu-Grosjean [10], one of the main obstacles for
probabilistic timing analysis is the fact that the linear convolution in the worst-case exhibits
O(n2) time and space complexity. This problem was first addressed with distribution down-
sizing techniques [19,20,22,25], and later with the analytical methods [6–8,27,28] for the
determination of deadline-miss probability. There are many benefits of using analytical
methods, the major one being the reduction of the time and space complexity. However,
analytical methods come with some limitations: (i) they often introduce over-approximation
in the resulting deadline-miss probabilities [28], and (ii) the most accurate methods rely on
convolution, e.g., Pruning and Unify, proposed by von der Brüggen et al. [28]. Moreover,
analytical methods do not provide comprehensive information on the resulting probabilistic
distributions. This can be very important for many present problems in the analysis of
real-time systems since there are many more potential goals other than determining deadline
miss probabilities, e.g., computing cache-miss probability, analysis of random replacement
caches [11], analysis of the tasks with multiple probabilistic parameters [18], etc.

This research. There is a rich area of past and future research that is limited by the space
and time complexity of linear convolution. In this paper, we focus on further reducing the
space and time complexity of convolution-based analyses, as a fundamental operator for
the probabilistic analysis of real-time systems. One of the main exploration lines seized in
this paper is the concept from mathematics and signal processing known as the circular
convolution [15, 23]. The main contributions of this paper are:

An algorithm for optimal down-sampling of random variables in terms of probabilistic
expectation is proposed, which represents the quantitative degree of pessimism when
analysing real-time systems. (Section 3)
Methods which reduce the time complexity of convolution between two random variables
from O(n2) (linear convolution from state-of-the-art) to O(n log(n)). (Section 4)

The results of evaluation show that the proposed methods can be applicable for probabilistic
analysis of real-time systems even with large numbers of analysed entities.

Organisation. The remainder of this paper is organised as follows. In Section 2, we describe
the basic terminology and mathematical notation used in the paper. Section 3 describes
the proposed algorithm for optimal down-sampling of random variables. Section 4 presents
algorithms to reduce the time complexity of addition between two random variables. The
evaluation is described in Section 5, the related work is presented in Section 6, and the paper
is concluded with Section 7.

2 Terminology and mathematical notation

▶ Definition 1 (Discrete Random Variable). A discrete random variable X on the probability
space (Ω,F,P) is defined to be a measurable function X : Ω −→ R such that the image X(Ω)
is a countable subset of R, and {ω ∈ Ω : X(ω) = x} ∈ F for x ∈ R.

F. Marković, A. V. Papadopoulos, and T. Nolte 16:3

Table 1 List of important symbols used in the paper.

Symbol Brief explanation
X, Y, Z Discrete random variables in form of two-row matrices.
X ′ Down-sampled random variable.
V, W, Q One-column vectors representing X, Y , and Z in the given order.
|V| Cardinality of vector V.
V⊙W Element-wise product between two vectors.
F {V} Fourier Transform of vector V.
F−1 {V} Inverse Fourier Transform of vector V.

In the above definition, Ω is a sample space, the set of all possible outcomes. F is an event
space, where an event is a set of outcomes in the sample space. P represents a probability
function, that assigns each event in the event space a probability.

The image of Ω under X is denoted with Im X, and it is the set of values taken by X,
with positive probability.

Given a random variable X, we define the cumulative distribution function of X as
FX(x) = P(X ≤ x), and its expected value (expectation) as E(X) =

∑
x∈Im X x · P(X = x).

Throughout the paper, we will use a two-row matrix to represent the mapping between
the obtainable values (sorted in increasing order), and their respective probabilities:

X ∼
[

x1 x2 · · · xn

P(X = x1) P(X = x2) · · · P(X = xn)

]
, (1)

where the symbol ∼ denotes that the random variable X has the probability distribution
described by the two-row matrix, and n is the cardinality of Im X.

▶ Definition 2 (Usual Stochastic order [26]). Two random variables X and Y , with cumulative
distribution functions FX and FY , are said to be in the usual stochastic order, denoted as
X ⪰ Y , if and only if ∀x, FX(x) ≤ FY (x).

▶ Definition 3 (Independence). Two (discrete) random variables X and Y are independent
if the pair of events {X = x} and {Y = y} are independent for all x, y ∈ R. Formally,

P(X = x, Y = y) = P(X = x)P(Y = y) for all x, y ∈ R.

▶ Definition 4 (Convolution or sum of random variables). If X and Y are independent discrete
random variables on (Ω,F,P), then Z = X + Y has the mass function

P(Z = z) =
∞∑

x=−∞
P(X = x)P(Y = z − x) for z ∈ R.

▶ Definition 5 (Element-wise product). The element-wise product (also known as, Hadamard
product, point-wise product, and Schur product) between two matrices A and B of the same
dimension m× n is denoted as A⊙B.

▶ Definition 6 (Discrete convolution between two vectors). Given two vectors V and W of
equal length n, the discrete convolution between the two vectors is defined as

(V ∗W) =
n∑

i=1
V(i)W(n− i) =

n∑
i=1

W(i)V(n− i),

where V(i) (and W(i)) is the i-th element of the vector V (of W).

ECRTS 2021

16:4 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

α 10 20 30 40 50
+0

+6
+13

+21
+30

+0

+1

+3
+6

+0

+1
+3

+0

+1

+0

(a) Potential paths for down-sampling.

α 10 20 30 40 50
+0

+6
+13

+21
+30

+0

+1

+3
+6

+0

+1
+3

+0

+1

+0

(b) Optimal path (solid).

Figure 1 Graph representation of the additional expectations from the running example.

The majority of the above definitions are available in the book [13]. Definition 2 is cited
from [26], while it is described by Diaz et al. [12] as the first-order stochastic dominance. In
Table 1, we provide the list of the most important and frequently used symbols in the paper.

3 Down-sampling of Random Variables

We divide this section into two main parts. Section 3.1 describes the problem of optimal down-
sampling with respect to minimising the probabilistic expectation. We solve this problem by
proposing an algorithm that uses a dynamic programming approach. Section 3.2 proposes a
linear down-sampling algorithm, which exhibits an improved time complexity compared to
the optimal algorithm, at the cost of an increased over-approximation in some cases.

3.1 Optimal down-sampling of random variables
▶ Problem 1 (Optimal down-sampling of random variables). Given a discrete random variable
X where n is the cardinality of Im X, down-sample the random variable to cardinality s,
s < n, such that the expectation of the derived variable X ′ is minimised, while X ′ ⪰ X.

Upon down-sampling, the probabilistic expectation of the down-sampled random variable X ′

is often larger than the expectation of the original random variable X since the probability
mass in X ′ has to be shifted to the larger values in order to account that X ′ upper bounds
X (Definition 2). For this reason, Maxim et al. [19] showed that expectation can be regarded
as the metric of pessimism when the random variable is down-sampled from its original
cardinality to a lower one. Many down-sampling algorithms were proposed in the state-of-
the-art to reduce the probabilistic expectation upon down-sampling (e.g. Max-k re-sampling,
Pessimism reduce re-sampling [19], etc.). In this section, we show how the random variable
can be down-sampled to cardinality s such that its probabilistic expectation is less than or
equal to the expectation of any other potential down-sampling of the same cardinality. To
better clarify the problem, we introduce the following running example.

▶ Example 1. Initially, the random variable X contains the following values with the assigned
probabilities (expressed with the notation of Equation (1)):

X ∼
[

10 20 30 40 50
0.6 0.1 0.1 0.1 0.1

]
, E(X) = 20. (2)

F. Marković, A. V. Papadopoulos, and T. Nolte 16:5

The goal is to derive the down-sampled variable X ′ of cardinality 3 such that ∀x ∈ Im X,
FX′ (x) ≤ FX(x) and such that E[X ′] is minimised.

Problem 1 can be solved in two steps.

Step 1. For any two values k, l ∈ Im X with k < l, compute the additional probabilistic
expectation that would be present in the resulting variable X ′ if k, l ∈ Im X ′ and no other
value between k and l is present in Im X ′.

Regarding the running example, the additional expectations can be represented with the
weighted graph (see Figure 1a), such that vertices represent values, and solid edges represent
additional expectation considering the case when two connected values are selected to be in
the down-sampled variable.

Step 2. Use dynamic programming to select s values prior the last value of X, such that
the total additional expectation is minimised. Considering the graph representation (see
Figure 1a) the problem is equivalent to the problem of finding the path of size s from the
artificial zero node (denoted α), to the last node of the graph. The zero node is added such
that path can start from any node, i.e. any value in X, without necessarily starting from the
first value in Im X.

In the remainder of the section, we formalise different terms that are used in the algorithm,
which is followed by the pseudo code and the algorithm description.

▶ Definition 7. Additional expectation Ek,l(X) that is introduced in X ′ when only l is present
in Im X ′ within interval (k, l], is defined with the following equation

Ek,l(X) = l
l∑

i=k+1
P(X = i)−

l∑
i=k+1

iP(X = i) =
l∑

i=k+1
(l − i)P(X = i). (3)

In the first equality term of Equation (3), we consider that Ek,l(X) is equal to the
difference between the following two terms:
1. l

∑l
i=k+1 P(X = i), which is the expectation in the interval (k, l] when all the values

between k and l are removed. Meaning that for the removed values their probabilities
are accumulated to the value l in order to preserve safety (see Definition 2).

2.
∑l

i=k+1 iP(X = i), which is the original expectation of X within the interval (k, l].
The expression is further simplified in order to account for only one traversal from k to l.
From the example in Figure 1a, E20,40 = (40− 30) · 0.1 = +1.

Considering the graph representation of the problem, where nodes represent values from
X, and edges represent the potential selection, a weight on the edge between two nodes, k and
l, is equal to the additional expectation Ek,l(X) defined in Equation (3). Thus, Problem 1
is analogous to the problem of finding a path of size s to the last value from X such that
cost (expectation) is minimised. We use plus symbols in the weights to express the concept
of additional expectation that is introduced in the down-sampled random variable (RV)
compared to the original one. To solve such problem, we propose Algorithm 1.

3.1.1 Algorithm description
Algorithm 1 takes the input variables: (i) X, which is the discrete random variable to
be down-sampled, and (ii) s, which is the cardinality for down-sampling. Additionally to
the down-sampled variable X ′, the algorithm also outputs the difference En between the
expectation of the original random variable and the down-sampled one.

ECRTS 2021

16:6 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

Algorithm 1 Optimal down-sampling of a discrete random variable.
Data: Discrete random variable X, cardinality s for down-sampling
Result: Down-sampled random variable X ′

1 function optimalDS(X, s):
2 n← max(Im X)
3 α = min(Im X)− 1
4 for l ∈ Im X do
5 El ← Eα,l(X)
6 Vl ← ∅
7 end
8 for i← 1 to s by 1 do
9 for l ∈ Im X do

10 E′
l ← +∞

11 V ′
l ← ∅

12 end
13 for k, l ∈ Im X : k < l do
14 if E′

l > Ek + Ek,l then
15 E′

l ← Ek + Ek,l

16 V ′
l ← Vk ∪ k

17 end
18 end
19 for l ∈ Im X do
20 El ← E′

l

21 Vl ← V ′
l

22 end
23 end
24 X ′ ← RV such that Im X ′ = Vn and P(X ′ = x′) =

∑x′

x=prec(x′)+ϵ
P(X = x), where

prec(x′) is the value preceding x′ from Im X ′, and prec(min(Im X ′)) = min(Im X)
25 return X ′, En

In line 3, the algorithm computes the artificial value α which represents the first value that
precedes the minimum value from Im X (see Figure 1a). Then, in line 5, α is used to compute
the minimum expectation El that is imposed if we select some value l from X as the first
selected for the down-sampled variable, without anymore considering the values that precede
l. The additional expectation of performing such a step is equal to Eα,l(X) (see Figure 1a).
Since at the beginning, no value is still selected, for each value l from Im X, we initialise Vl

which is the set of values whose selection yields the minimum expectation until the value l.
In lines 8–23, the algorithm computes and updates the minimum expectations that can be
imposed until any value l from X, upon selection of at most i values that precede l. Upon
accounting for each new selection, the minimum expectation until each value l is updated
(line 20), together with the set Vl of selected values that yield the minimised expectation
(line 21). After doing this step s times, the Vn represents the set that yields En, while En

represents the minimum additional expectation until the last value n (line 2) upon selection
of s values prior the last one. This is equivalent to the dynamic programming problem:
E[i + 1, l] = mink<l{E[i, k] + Ek,l}, where E[a, x] is the minimum additional expectation
until value x after a selections.

3.1.2 Algorithm correctness
We prove that the algorithm minimises the additional expectation by using induction.

F. Marković, A. V. Papadopoulos, and T. Nolte 16:7

Proof. By induction.
Induction hypothesis: For l ∈ Im X, after the i-th iteration of the for loop at line 8, El

represents the minimum additional expectation that can be produced until value l, considering
at most i selected values prior l, while Vl represents the set of selected i values whose joint
expectation yields El.
Base case: Before the loop at line 8 starts, the number of iterations is i = 0, El is equal to
the expectation Eα,l(X) which is also the minimum additional expectation imposed without
selecting any value that precedes l, as follows from Equation (3). Also, Vl is an empty set,
representing that no value preceding l is selected. Thus, the base case holds.
Inductive step: We now prove that the induction hypothesis holds at the end of i + 1 iteration
of the for loop (lines 8–23). At the beginning of the i + 1 iteration, for every value l ∈ Im X,
Algorithm 1 identifies the respective preceding value k such that the expectation of selecting
k prior to l yields the minimum expectation (lines 13–18). This is the case because the
expectation is minimised over the all possible choices of k : k < l ∧ k ∈ Im X (line 13). Also,
it follows from the induction hypothesis that until value k the expectation is minimised
with at most i selected values before k. Then, the derived expectation E′

l at the end of the
loop (line 18) is the minimum expectation that can be produced with at most i + 1 selected
values until l, where k is the additional (+1) selected value. This further means that El

also represents the demanded minimum possible expectation since after line 20, El = E′
l .

Analogically, the same holds for the set of selected values Vl that yields El since the set is
computed as the union of 1) values which yield the minimum expectation Ek, as follows from
the induction hypothesis, and 2) value k which is the additional selected value that yields
the minimum El as shown previously. Finally, after s iterations, it follows that the algorithm
computes the minimum additional expectation En which is the result of selecting s values
prior the last one, n. Analogously, it holds that Vn stores the selected values whose selection
yields the minimum added expectation. Thus, the random variable X ′ (line 24) resulting
from the selected values in Vn, yields the minimum additional expectation En among the
other possible random variables of the same cardinality, constructed from values in X, also
upper-bounding X. This concludes the proof. ◀

3.1.3 Time complexity
The worst-case time complexity of Algorithm 1 is O(n3) since there are at most ((n + 1)n)/2
expectations of form Ek,l to be computed, and for each such computation, Equation 3 has
linear complexity, which finally results in O((n + 1)n)O(n) = O(n3).

3.2 Linear Down-sampling
In this subsection, we propose Algorithm 2 for down-sampling of random variables, that
exhibits linear time complexity. The main idea behind the algorithm is uniform down-
sampling of a probability distribution. The algorithm starts from the first value of the
original random variable and it iterates until the last one (line 6). It assigns the subset of
values from Im X such that the cumulative probability between consecutive selected values
in X ′ is as uniform as possible, under the condition of X ′ ⪰ X. The considered terms are:

P un – unassigned probability sum, i.e., part of the distribution that is not present in the
current version of the down-sampled variable X ′,
s – number of values to be assigned to the down-sampled variable X ′,
pδ – probability sum threshold, which controls that the number of values in the resulting
down-sampled variable does not exceed the predefined cardinality s,

ECRTS 2021

16:8 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

Algorithm 2 Linear down-sampling of a discrete random variable.
Data: Discrete random variable X, cardinality s for down-sampling
Result: Down-sampled random variable X ′

1 function linearDS(X, s):
2 P un ← 1 // sum of the unassigned probability values from X to X ′

3 pδ ← P un/s

4 Im X ′ ← ∅
5 pΣ ← 0
6 for l ∈ Im X in an increasing order do
7 pΣ ← pΣ + P(X = l)
8 P un ← P un − P(X = l)
9 if pΣ ≥ pδ then

10 Im X ′ ← Im X ′ ∪ l such that P(X = l) = pΣ

11 s← s− 1
12 pδ ← P un/s

13 pΣ ← 0
14 end
15 end
16 X ′ ← RV such that Im X ′ = Vn and P(X ′ = x′) =

∑x′

x=prec(x′)+ϵ
P(X = x), where

prec(x′) is the value preceding x′ from Im X ′, and prec(min(Im X ′)) = min(Im X)
17 return X ′

pΣ – probability sum from the last selected value until the currently observed one,
Im X ′ – set of selected values for X ′.

Given the above terms, in each iteration the algorithm assigns the currently observed value
l ∈ Im X to the down-sampled variable X ′, but only in case the probability sum pΣ, from the
last selected value in X ′, exceeds the probability threshold pδ (line 9). Probability threshold
pδ maintains uniformity of the probability distribution and does not allow that more than
s values are selected within X ′. This is achieved by constant re-computation of the still
unassigned probability P un , whenever a new value is assigned to X ′ (line 10). Also, whenever
a new value is assigned to X ′, value pΣ is set to zero to account for the fact that no new
value and respective probability is assigned from the last assignment (line 13). In case when
l is not selected, pΣ is updated with the probability resulting from l itself (line 8). At the
end, the algorithm returns the down-sampled random variable X ′ (line 17).

3.3 Description of the algorithms using the running example
Given the random variable X from Example 1, and the process of down-sampling to the
cardinality of 3, Algorithm 1 selects the values 10, 30, and 50 as depicted in Figure 1b with
solid arrows above the values. This is the shortest path of size 2 until the last value 50,
with non-zero probability. Note that in order to select three values, Algorithm 1 should be
invoked with s = 2 since the largest value from Im X will always be selected (line 24).

Algorithm 2 selects the same two values using a different approach. For the desired
cardinality s = 3, it first computes that the probability sum threshold pδ is equal to
1/3 = 0.333 (line 3). Then, by trying to uniformly distribute the cumulative probability
sum, it immediately at value 10 (lines 6 – 8) identifies that the threshold is exceeded since
0.3 < P(X = 10) (line 9), and adds 10 to the down-sampled variable (line 10). By recomputing
the threshold (line 12), for the remainder of the distribution, it derives the new threshold
pδ = (1− 0.6)/2 = 0.2 since 0.4 is the unassigned probability sum, and there are two more

F. Marković, A. V. Papadopoulos, and T. Nolte 16:9

(a) (X, Y) addition=========⇒
multiplication

Z ′′ sorting====⇒
sorting

Z ′ normalisation=========⇒
addition

Z

(b) (X, Y) ∼ (V, W) F{·}−−−→ (V̂, Ŵ) element-wise product−−−−−−−−−−−−−→ Q̂ F−1{·}−−−−−→ Q ∼ Z

Figure 2 Overview of (a) linear, and (b) circular convolutions for computing X + Y = Z.

values to be selected. At l = 20, its probability is P(X = 10) = 0.1, thus the threshold is not
reached, but in the next iteration l = 30, it is (line 9, i.e. 0.1+0.1 ≥ 0.2). At the end, the sum
of the remaining unassigned probability mass is equal to P un = (1−0.6−0.2) = 0.2, and there
is only one value to be selected. This means that the algorithm selects the last value 50 and
assigns to it the probability of 0.2. For both algorithms, E(X ′) = 22 and X ′ = [10 30 50

0.6 0.2 0.2].

4 Efficient convolution

Probabilistic timing analysis techniques suffer from a large time complexity that is essentially
attributable to the linear convolution operator [10].

▶ Problem 2 (Efficient convolution of random variables). Improve the efficiency of computing
the exact result of the convolution between two random variables.

In the following, we describe different ways of computing the sum of two random variables,
and we present different improvements that can be used to reduce their time complexity.

Let X and Y be independent discrete random variables, such that

X ∼
[

x1 · · · xn

P(X = x1) · · · P(X = xn)

]
, Y ∼

[
y1 · · · ym

P(Y = y1) · · · P(Y = ym)

]
.

The addition X + Y of the two random variables is the random variable Z whose probability
distribution is characterised by the convolution between the probability distributions of X

and Y , and it is defined as:

P(Z = z) =
+∞∑
k=0

P(X = k)P(Y = z − k), Im Z = {z|∀x ∈ Im X, ∀y ∈ Im Y, z = x + y}.

Linear convolution. The linear convolution (also known as canonical convolution) is per-
formed in three steps, as described by Milutinović et al. [22]. We show this in Figure 2(a),
where the symbol v=⇒

p
denotes that operation v is performed on the values of the random

variables (indicated above the arrow), and that operation p is applied to the respective
probability distributions (indicated below the arrow). Reading the figure from the left, we
start with X and Y , with their respective probability distributions. Then, the algebraic
addition of each possible pair of values in Im X and in Im Y is computed, and for each
computed value the multiplication of the respective probability distribution is computed,
obtaining the variable Z ′′. Then, the values in Im Z ′′ are sorted in increasing order, and the
associated probabilities are sorted accordingly, thus deriving the variable Z ′. At the end, a
normalisation is performed on the values of Z ′ such that the repeated values are combined,
and their respective probabilities are summed. Such algorithm has a time complexity of
O(n ·m), where n and m are the cardinalities of Im X and Im Y , respectively. For more
details, refer to paper by Milutinović et al. [22].

ECRTS 2021

16:10 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

Circular convolution. To solve Problem 2, we build upon the idea of circular convolution.
There are many mathematical sources that explain the benefit of circular over the linear
convolution [15, 23]. The circular convolution idea is shown in Figure 2(b). Starting from X

and Y , we first compute vectors V and W, respectively, such that vector indexes represent
values, while the vector elements represent probabilities of the corresponding random variable.
Note that in Figure 2(b), we use e−→ to represent that operation e is performed on the vector
elements. On the vectors V and W, we perform the Fourier Transformation operation,
obtaining the new vectors V̂ and Ŵ. Then, we perform the element-wise product between the
transforms, deriving the transform Q̂. Next, we compute the inverse Fourier transformation
of Q̂, deriving the vector Q, which characterises random variable Z, i.e., indexes of Q
represent values of Z, while vector elements represent probabilities of Z. In Figure 2, this is
denoted with Q ∼ Z.

The above-described process of computing the Fourier and inverse Fourier transformations,
together with the element-wise product of two transforms, is known as circular convolution,
and it has a time complexity of O(d log(d)), where d = max(Im Z)−min(Im Z). We discuss
the whole process formally, in more detail, in the remaining part of this section.

4.1 Formal description of the circular convolution of random variables
Let us start from the convolution theorem [1,3,5]. In the following formulation of the theorem
we narrow it to vectors although it holds for more complex mathematical entities.

▶ Theorem 1 (Fourier’s convolution theorem [24]). The Fourier transform of the convolution
of two vectors V and W is equal to the element-wise product of the Fourier transforms of
the two vectors, i.e.

F {(V ∗W)} = F {V} ⊙ F {W} . (4)

In the above equation, ⊙ represents linearly complex element-wise multiplication between
vectors F {V} and F {W} of Fourier coefficients. To compute the convolution of V and
W, we can compute the inverse Fourier transform of the right side of the equality, and this
process is known as the circular convolution. However, the result of the circular convolution
cconv(V, W) of two vectors V and W is equal to the result of the corresponding linear
convolution, (as presented in [15,21]) when the following equations hold

cconv(V, W) = F−1
{

V̂⊙ Ŵ
}

, where V̂ = F {V⌢0v} ,

Ŵ = F {W⌢0w} ,

v = nptwo(|V|+ |W| − 1)− |V|,
w = nptwo(|V|+ |W| − 1)− |W|,

(5)

where nptwo(a) is a function that returns the first power of two greater than or equal to
some value a ∈ N, and ⌢ is a concatenation operator. In the above equation, vectors V and
W first need to be zero-padded to the same size, and that size must be greater than or equal
to the the sum of their respective sizes minus one, as shown by Langton and Levin [15]. This
size, in the equation, is represented by the following term |V|+ |W| − 1. The zero-padding of
the vectors is performed with the vector concatenation operator (⌢). This operator is used
between the desired vector (e.g. V) and the zero-column vector (e.g. 0v). The concatenation
of the zero-column vector to the desired vector leads to the desired zero-padding. Similar
computations are defined for the vector W as well, considering the zero-column vector 0w.

F. Marković, A. V. Papadopoulos, and T. Nolte 16:11

Additionally, in the equation, the zero-padding is increased to reach the size that is equal
to the first power of two that succeeds |V|+ |W| − 1. This step, of computing the nptwo(·)
function, is performed in order to allow for the linearithmic time complexity that can be
achieved by using the Discrete Fast Fourier Transformation, known also as Cooley-Tukey
algorithm [9].

Without the loss of generality, for the sake of the simplified equations and the running
example, suppose that {0, 1, 2, . . . , b}, where b ∈ N, is the support of discrete random variables
X and Y .

Considering sum Z of random variables X and Y , it can be computed using Equation (5)
such that for discrete random variables X and Y , their probabilities are represented as the
elements of vectors V and W respectively, as shown in the following equations.

V = (vj) = P(X = j) ∧ j ∈ {0, . . . , mX} , where mX = max({x | x ∈ Im X}),
W = (wj) = P(Y = j) ∧ j ∈ {0, . . . , mY } , where mY = max({y | y ∈ Im Y }),

Q = cconv(V, W) = (qj) and Z ∼
[

0 . . . j . . . mX + mY

q0 . . . qj . . . qmX +mY

]
.

(6)

▶ Example 2.

X ∼
[
200 300
0.6 0.4

]

Y ∼
[
150 200
0.6 0.4

]

Z ∼
[

350 400 450 500
0.36 0.24 0.24 0.16

]
V =





0 0
...

0.6 200

0 201
...

0.4 300

W =





0 0
...

0.6 150

0 151
...

0.4 200

Q =





...
0.36 350

...
0.24 400

...
0.24 450

...
0.16 500

... 511

Starting from the random variable X, in Equation (6), we first define vector V such that
its index j represents all the values in the domain of X, starting from 0 until the last value
mX ∈ X that has non-zero probability of occurrence. Then, the j-th value vj in V represents
the probability P (X = j). Similar is performed for vector W but considering the random
variable Y . Then, using Equation (5) we compute the circular convolution of V and W thus
deriving vector Q, whose j-th value is equal to the probability P (X + Y = j). Finally, as
follows from Theorem 1 and Equation (6), the vector Q contains the combined information
on probability values from Im X + Y .

In the above example, the omitted numbers represent probabilities equal to zero. The
majority of computations between those zeros can be avoided, while still maintaining the
exact computation of the final result. This is the problem that we solve in the following
subsection by proposing two methods for vector reductions such that the computations derive
the exact result.

4.2 Fast and efficient computation of the exact result
Compared to the solution from Equation (6), it is possible to derive the resulting random
variable Z with more efficient computations.

▶ Improvement 1. Reducing the vector sizes using the greatest common divisor.

ECRTS 2021

16:12 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

In this solution, the improvement is made by using the greatest common divisor among
the values from Im X and Im Y . As follows from Definition 4, a value with zero probability
of occurrence cannot lead to the non-zero probability value in Z. The same holds for the
analogous Equation (6). Thus, we can improve the computation by considering the minimum
quantum that considers all non-zero values from both equations, as follows:

δ = GCD(Im X ∪ Im Y), (7)
V = (vj) = P(X = j) ∧ j ∈ {0, . . . , mX} , where mX = 1/δ ·max({x | x ∈ Im X}), (8)
W = (wj) = P(Y = j) ∧ j ∈ {0, . . . , mY } , where mY = 1/δ ·max({y | y ∈ Im Y }), (9)
Q = cconv(V, W) = (qj), (10)

Z ∼
[
0 · δ . . . j · δ . . . (mX + mY) · δ
q0 . . . qj . . . qmX +mY

]
. (11)

With the above equation, the sum Z of X and Y from Example 2 would look as follows:

δ = 50, V =




0 0
...

0.6 4

0 5

0.4 6

, W =




0 0
...

0.6 3

0.4 4

, Q = cconv(V, W) =





...
0.36 7

0.24 8

0.24 9

0.16 10
... 15

Z ∼
[
350 = 7 · 50 400 = 8 · 50 450 = 9 · 50 500 = (6 + 4) · 50

0.36 0.24 0.24 0.16

]
.

(12)

The essence of the above described transformation is to change the base metric unit such
that unnecessary computations are avoided. Compared to Example 2, the vector sizes are
roughly 30 times less in the above equation, which also propagates to computation time.
▶ Improvement 2. Reducing the vector sizes by removing the starting zero intervals.
In this improvement we focus on the starting values of the vectors V and W. Consider
Example 2 and the follow-up Equation (12), both vectors V and W start with probabilities
equal to zero, followed by more zero probabilities that represent values that are not in Im X

and Im Y . We show that both vectors can be reduced by ignoring starting zero intervals,
thus starting from the probabilities of the minimum values in Im X and Im Y , without losing
computation precision. Let us start from random variables X and Y :

X ∼
[

x1 . . . xn

P(X = x1) . . . P(X = xn)

]
, Y ∼

[
y1 . . . ym

P(Y = y1) . . . P(Y = ym)

]
. (13)

▶ Proposition 2. Given two random variables X and Y , the convolution X + Y is

X+Y ∼
[
x1 + y1

1

]
+

[
x1 − x1 . . . xn − x1

P(X = x1) . . . P(X = xn)

]
+

[
y1 − y1 . . . ym − y1

P(Y = y1) . . . P(Y = ym)

]
. (14)

Proof.[
x1 + y1

1

]
+

[
x1 − x1 . . . xn − x1

P(X = x1) . . . P(X = xn)

]
+

[
y1 − y1 . . . ym − y1

P(Y = y1) . . . P(Y = ym)

]
=

[
x1
1

]
+

[
x1 − x1 . . . xn − x1

P(X = x1) . . . P(X = xn)

]
+

[
y1
1

]
+

[
y1 − y1 . . . ym − y1

P(Y = y1) . . . P(Y = ym)

]
=

[
x1 . . . xn

P(X = x1) . . . P(X = xn)

]
+

[
y1 . . . ym

P(Y = y1) . . . P(Y = ym)

]
∼ X + Y ◀

F. Marković, A. V. Papadopoulos, and T. Nolte 16:13

The benefit of using Proposition 2 is observable when we want to generate vectors V and
W. Consider creating vectors from random variable X ∼

[
1000 1001
0.4 0.6

]
and Y ∼

[
1005 1006
0.4 0.6

]
.

Instead of generating vectors of sizes measured in thousand units, we can simply apply the
proposition and derive the following term:[

1000 1001
0.4 0.6

]
+

[
1005 1006
0.4 0.6

]
= 1000 + 1005 +

[
0 1

0.4 0.6
]

+
[

0 1
0.4 0.6

]
, (15)

and therefore we can represent random variables with two vectors, each having size of two.
Based on Proposition 2 and Improvement 1, we introduce the following computations.

X ′ = X − x1, Y ′ = Y − y1, δ = GCD(Im X ′ ∪ Im Y ′), (16)
V = (vj) = P(X ′ = j) ∧ j ∈ [0, . . . , mX} , where mX = 1/δ ·max({x | x ∈ Im X ′}),

(17)
W = (wj) = P(Y ′ = j) ∧ j ∈ [0, . . . , mY } , where mY = 1/δ ·max({y | y ∈ Im Y ′}),

(18)
Q = cconv(V, W) = (qj), (19)

Z ∼
[
x1 + y1 + 0 · δ . . . x1 + y1 + j · δ . . . x1 + y1 + (mX + mY) · δ

q0 . . . qj . . . qmX +mY

]
. (20)

The above set of computations is almost the same as the one for the first improvement,
but the major difference is that we use Proposition 2 and therefore compute the circular
convolution only for variables X ′ and Y ′ which results in the furthermore reduced vectors
V and W. In Equation (20), the result of X + Y is restored by applying the proposition
(x1 + y1 + j × δ). We show the vector size reduction in the running example:

x1 + y1 = 200 + 150 = 350, X ′ ∼
[

0 100
0.6 0.4

]
, Y ′ ∼

[
0 50

0.6 0.4

]
, δ = 50,

V =

 0.6 0

0 1

0.4 2
, W =

[]
0.6 0

0.4 1 , Q = cconv(V, W) =




0.36 0

0.24 1

0.24 2

0.16 3

,

Z ∼
[
350 = 350 + 0 · 50 400 = 350 + 1 · 50 450 = 350 + 2 · 50 500 = 350 + 3 · 50

0.36 0.24 0.24 0.16

]
.

In this simple example we reduced the number of elements in vectors from 512 values (as
in Example 2) to 4 values at most, still deriving the exact random variable Z.

Impact of the improvements on the probabilistic timing analysis. Improvements 1 and 2
may simplify and improve the efficiency of many analysis types that are characterised with
the iterative computation of the increasing probabilistic distribution.
▶ Example 3 (Computation of the probability distribution). Consider the computation of the
probabilistic distribution from two tasks (τ1 and τ2) whose probabilistic execution times are
defined with the following random variables C1 ∼

[
1000 1001
0.4 0.6

]
and C2 ∼

[
1005 1006
0.4 0.6

]
. If we

want to compute the probabilistic distribution that involves 100 jobs of C1 and 200 jobs of C2,
we can simply use Proposition 2 and derive the following result: 100·C1+200·C2 = 100·1000+
200 · 1005 + S, where random variable S is characterised with F−1

{⊙100
1 V̂1 ⊙

⊙200
1 V̂2

}
.

Vectors V̂1 and V̂2 are the Fourier transforms of vectors that represent C1 and C2
(each having size of two). The important benefit is that the random variable S, which

ECRTS 2021

16:14 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

follows the summation of the deterministic values, can be derived from the inverse Fourier
transformation of the vector of 600 elements (2 · 100 + 2 · 200), compared to the naive method
from Equation (6), where the final vector size would be 301600 elements.

This is a huge improvement in the computation efficiency, while the magnitude of space
and time reduction becomes even greater with each new job that may be considered in the
analysis.

▶ Example 4 (Computation of the deadline miss probability). Let us consider the very same
two tasks (τ1 and τ2) from the previous example, and assume that we want to compute
the deadline miss probability at time instant D2 = 2000. Furthermore, τ1 can be released
at most two times until D2, while τ2 can be released at most once. Instead of performing
the entire computation, we can first apply Proposition 2 and check where the image of
the resulting distribution starts, i.e. what is the first value s with non-zero probability of
occurrence in the final distribution. Thus we derive that s = 2 · 1000 + 1 · 1005 = 3005.
Since the image of the summed distribution starts from 3005, and since s > D2, this implies
that P(C1 + C1 + C2 > 2000) = 1 and there is no need to perform convolutions. Such an
improvement reduces the number of probabilistic computations for such types of problems.

4.3 Efficient repetitive convolutions
In timing analysis, there are often cases when one variable is summed multiple times, e.g.
request bound function (RBF) of form RBF i(∆) = Ci · α(∆) where Ci is the worst-case
execution time of a task, ∆ is the time interval under consideration, and α(∆) represents a
function that upper-bounds the number of arrivals of jobs of τi within some time interval
of length ∆. It has been shown by Bozhko and Brandenburg [4] that RBF can be used
to concretize many existing types of response-time analysis, under various taskset model
assumptions, and thus it represents the fundamental computation in the analysis of real-time
systems.

Analogously, as shown in many probabilistic timing analysis papers, e.g., [12, 19], prob-
abilistic request bound can be computed by consecutive addition of the random variables
that represent upper-bounded probabilistic execution time of a task. Similar computation is
necessary in many other areas of real-time system analysis, e.g., probability of cache miss
and hit, etc. Therefore, in this section we describe the algorithm that efficiently computes
consecutive additions of the same random variable, based on the consecutive Hadamard
product of the Fourier coefficients, using the powers of two1.

Algorithm 3 computes the result of n convolutions of random variable X. This computa-
tion can be achieved by creating the sum vector V̂sum = 1, of all values equal to one, (line 5)
which is iteratively multiplied n times with the Fourier Transform F {V} of vector V, where
V characterises X (line 4). However, instead of that, we can perform fewer multiplications
by constantly computing the power vector V̂′, which is initially set to F {V} (line 6). We
show it by the following example.

Let us assume that we need 9 multiplications of F {V}. In its binary form, 9 is equal to
B(9) = 1001, and let us traverse to each bit of B(9) one by one (lines 7 – 16). On each bit
shift (line 9), we first multiply V̂sum with V̂′ (line 11) if the bit at the i-th index of B(9)
is equal to 1 (line 10). Then, regardless of the previous computation, after each shift we
compute V̂′ as the power of itself (line 13). Following this rule, the computations are:

1 It has been shown by Milutinovic et al. [22] that the power of two technique reduces computation time
also for linear convolution.

F. Marković, A. V. Papadopoulos, and T. Nolte 16:15

Algorithm 3 Fast computation of consecutive summations of a random variable.
Data: X – random variable, n – number of necessary convolutions
Result: Sum XΣ equal to n additions of X

1 function fastSum(X, n):
2 s← n ·min({x | x ∈ Im X} // direct application of Proposition 2
3 mX ← max({x | x ∈ Im X})−min({x | x ∈ Im X}
4 V← compute using Equation (6) and zero-pad until n ·mX

5 V̂sum ← column vector of elements equal to 1, of size |V|
6 V̂′ ← F {V}
7 k, i← 0
8 while k ̸= n do
9 b← B(n, i) // B(n, i) is a function that checks the binary representation of n and

returns the value at index i

10 if b = 1 then
11 V̂sum ← V̂sum ⊙ V̂′

12 end
13 V̂′ ← V̂′ ⊙ V̂′

14 k ← k + b× 2i

15 i← i + 1
16 end
17 V← F−1 {

V̂sum
}

// where vj is the j-th element in V

18 XΣ ←
[

s + 0 . . . s + j . . . s + n ·mX

v0 . . . vj . . . vn·mX

]
19 return XΣ

Initial values. V̂sum ← 1 and V̂′ ← F {V}
(i = 0 and B(9, i) = 1) : V̂sum ← (V̂sum ⊙ V̂′) = F {V} and V̂′ ← (V̂′)2 = (F {V})2

(i = 1 and B(9, i) = 0) : V̂′ ← (V̂′)2 = (F {V})4

(i = 2 and B(9, i) = 0) : V̂′ ← (V̂′)2 = (F {V})8

(i = 3 and B(9, i) = 1) : V̂sum ← (V̂sum ⊙ V̂′) = (F {V} ⊙ (F {V})8) = (F {V})9

At the end of this process, V̂sum is equal to (F {V})9. The very same principle is used in
the algorithm (lines 8 – 16). At the end of the algorithm (lines 17 and 18), it just computes
the inverse Fourier Transform of V̂sum , which then characterises XΣ.

Space-complexity reduction of repetitive computations. Although the time complexity is
improved with the above-mentioned methods, there may be the cases where space complexity
can still be an issue despite the vector reductions proposed by Improvements 1 and 2. E.g.
after k additions of some random variable X, the resulting random variable in the worst-case
may have the image that is k times greater than the one of X.

This problem can be further addressed by using the principles implied by the central limit
theorem in probability theory. In more details, considering the case when one random variable
X is added to itself multiple times, with each new addition the resulting sum tends more
towards the normal distributions, even though the X is not normally distributed. Consider
for the moment Figure 3, we show the original random variable X, the random variable after
three additions of X, and the random variable after 20 additions of X. You can see that by
each new summation, the resulting sum resembles more to the normal distribution, although
initially it has quite opposite properties compared to it.

Therefore, Algorithm 3 may be improved by applying the down-sampling methods on the
inverse Fourier transforms of V̂sum and V̂′. The proposed down-sampling algorithms are
tailored to decrease the vector sizes by safely removing the starting zero tail that contains

ECRTS 2021

16:16 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

0 2 4
0

0.1
0.2
0.3
0.4

Value

P
ro

ba
bi

lit
y

(a) X

0 5 10 15
0

5 · 10−2
0.1

0.15
0.2

Value

(b) 3 × X

0 20 40 60 80 100
0
1
2
3

·10−2

Value

(c) 20 × X

Figure 3 Consecutive additions of the same random variable. The points are connected in order
to show the resemblance to the continuous normal distribution.

close-to-zero probabilities. The removed zero interval can then be accounted by Proposition 2.
Additionally, the down-sampling method known as domain-quantisation [19] can be an
efficient way to further reduce the vector sizes and enable Improvement 1 from Section 4.2.

5 Evaluation

The evaluation is organised in three parts: (i) Evaluation of the down-sampling algorithms,
(ii) Evaluation of the convolution computations, and (iii) Computation of the deadline miss
probability. The code of the implementation is available (see [17]).

Hardware and software configuration. In all of the experiments, we used a PC with i7
4770k CPU with a frequency of 2.6 GHz, and 32 GB of RAM memory. All the algorithms
are implemented in MATLAB, using Advanpix Multiprecision Computing Toolbox [16].

5.1 Evaluation of the down-sampling algorithms
Goal of the evaluation and the evaluated entities. In this evaluation, we compared
the two proposed down-sampling algorithms, Optimal (OP), from Section 3, and Linear
(LN), from Section 3, with Domain Quantisation (DQ), and Pessimism Reduce (PR), both
proposed by Maxim et al. [19]). The later two algorithms are selected since PR introduces
the least pessimism in the down-sampled variables among the state-of-the-art algorithms,
while DQ is known as the fastest down-sampling algorithm [19]. The comparison between
the algorithms is made according to three criteria: (a) Computation time of the algorithms
as a function of the size of the initial random variable, (b) Probabilistic expectation, i.e.,
pessimism introduced upon down-sampling, (c) Probability of exceeding the median. The
later is evaluated since the probability of exceeding some value is often used in probabilistic
analysis, e.g., deadline miss probability, that is, the probability of exceeding the deadline.

Experiment Setup. In this experiment, we considered |V| ∈ {200, 400, 600, 800, 1000}, and
for every cardinality |V| we sampled 1000 realisations of the random variable X associated
with V, using UUniFast algorithm [2]. The experiments analyse the performance of the
down-sampling operation to the maximum size of 20 values, for all the 5000 realisations.

Experiment Results. Figure 4(a) shows the average computation time of down-sampling
as a function of the cardinality of the initial realisation of the vector V. The results show
that the average computation time of OP is impacted the highest (4.7s for the initial size of
1000 values), compared to the other down-sampling approaches. This is due to its cubic time
complexity. For the other algorithms, execution time did not exceed 0.01 seconds. According

F. Marković, A. V. Papadopoulos, and T. Nolte 16:17

200 400 600 800 1000
10−1

100

|V|

C
om

pu
ta

tio
n

tim
e

(s
)

(a)

PR
DQ
LN
OP

PR DQ LN OP X
300

305

310

315

Derived random variables

E
xp

ec
ta

tio
n

(b)

PR DQ LN OP X
0.5

0.52

0.54

0.56

Derived random variables

P(
R V
≥

30
0)

(c)

Figure 4 Results of the evaluation on the comparison of down-sampling algorithms.

to MATLAB documentation for tic toc functions, execution times which do not exceed the 0.1
seconds are not representative with enough confidence and for this reason are not reported.
The average execution time of PR (1µs for the cardinality 1000) seems to be greater than
the average execution time of LN and DQ (below 100µs for the cardinality 1000), but this
comparison demands for the further, more precise investigation.

Figure 4(b) shows the average probabilistic expectation, for the evaluated algorithms
and the expectation of the initial random variable (X in the figure). This figure presents
the data only for |V| = 600. OP succeeds to minimise the additional expectation the most,
compared to the other algorithms, followed by LN.

Figure 4(c) shows the average probability of exceeding the median, for |V| = 600. The
results show that the probability of exceeding 300, is least when using OP, followed by LN.

Discussion. In the above experiments, we showed that OP and LN can introduce less pess-
imism compared to the state-of-the-art algorithms. This is relevant when the down-sampled
variable needs to be used in the probabilistic analysis since the pessimism linearly grows
with each new addition to the other variables or itself. The improvements of OP come with
the computation cost. Since OP is a parallelisable algorithm, based on dynamic program-
ming, the computation improvements can be further addressed. During the evaluation, we
also discovered that each of the evaluated algorithms may derive the best down-sampling
with respect to exceedence probability. Therefore, the potential improvement may arise by
combining DQ, LN, PR, and OP, which remains for the future work.

5.2 Evaluation of the convolution algorithms
Goal of the evaluation and the evaluated entities. In this evaluation, we compared
Algorithm 3, referred in the following as CC (for circular convolution) with the analogous
method that uses the power-based addition, for linear convolution, proposed by Milutinović
et al. [22], referred as LC (linear convolution). LC is the fastest method in the state-of-the-art
for computing the linear convolution of random variables and we implemented it with the
linear-convolution function (conv) in MATLAB. The comparison criterion in the experiment
was the average computation time as a function of the number of convolutions, analogous to
the number of summed jobs in the probabilistic schedulability analysis.

Experiment Setup. In this experiment, we generated three random variables, using UUni-
Fast algorithm [2], with size |V| ∈ {100, 1000, 10000}. The results are shown in Figure 5. For
each realisation we report the computation time as a function of the number of convolutions

ECRTS 2021

16:18 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

0 2000 4000 6000 8000
0

50

100

(512,626)

Number of convolutions

C
om

pu
ta

tio
n

tim
e

(s
) (a) |V| = 100

CC-BC
CC-WC
LC

0 1000 2000 3000 4000
0

50

100

150

200

(512,626)

Number of convolutions

(b) |V| = 1000

CC-BC
CC-WC
LC

0 500 1000
0

100

200

300

(512,626)

Number of convolutions

(c) |V| = 10000

CC-BC
CC-WC
LC

Figure 5 Computation time as a function of number of additions, e.g., number of analysed jobs.

performed. The above-described generation of the probability distribution did not affect the
computation times, and therefore we used only one variable per setup. Since Algorithm 3
performs the least number of vector multiplications when the number of convolutions is a
power of two, and the largest number of multiplications when the number of convolutions is
equal to a power of two minus one, we reported those two lines separately. CC-WC represents
the worst-case computation time (worst-case number of vector multiplications) with ticks that
are by one less than the power of two, while BC-WC represents the best-case computation
time, ticks being powers of two. The two modes of computation do not significantly affect
LC, and therefore we reported only the results for ticks equal to powers of two.

Experiment Results. Figure 5(a) shows the case of |V| = 100. We observe that LC
takes 132s to compute 512 convolutions, while CC-WC takes only 5s for 8191 = 213 − 1
convolutions. Due to the smaller number of multiplications, CC-BC takes only 1.7s for
performing 8192 = 213 convolutions. A similar trend can be observed for |V| ∈ {1000, 10000}
in Figure 5(b)–(c). Finally, it can observed that the size of the V has a significant impact
on the computation time. In fact, looking at CC-WC for |V| = 10000, when the number of
convolutions is 1023 = 210 − 1, the average computation time is 83 seconds, while for CC-BC
when the number of convolutions is 1024 = 210, the computation time is only 22 seconds.

Discussion. The difference of time complexities of linear and circular convolution can be
observed by the derived results. The proposed algorithm, based on the circular convolu-
tion and vector reductions defined in the paper, outperforms the linear-convolution-based
algorithm in this experiment setup. However, it should be stated that there are cases when
LC can provide better computation times compared to CC since the computation time of LC
depends on the cardinality of the images of random variables, while the computation time of
the circular convolution depends on the difference between the largest and the lowest values
within the respective images. Regardless of this, the scaling of the circular convolution is
better due to a lower time-complexity class.

5.3 Computation of the deadline miss probability
Goal of the evaluation and the evaluated entities. In order to show the applicability of
the proposed computations in the state-of-the-art probabilistic analysis, we implemented the
deadline miss probability analysis (DMPA), according to Equation (3) described by von der
Brüggen et al. [28], using however the circular convolution for variable additions, instead of
the linear convolution (as shown in [18]). In the implementation, we also used Improvement 2
from Section 4.2. Regarding the evaluation, we compared the circular-convolution-based

F. Marković, A. V. Papadopoulos, and T. Nolte 16:19

5 10 15 20 25 30 35

10−1

101

103

Taskset size

Av
g.

co
m

pu
ta

tio
n

tim
e

(s
)

(a)

CDMP BDMP HDMP CB UM

5 10 15 20 25 30 35

10−5

10−3

10−1

Taskset size

Av
g.

de
ad

lin
e

m
is

s
pr

ob
.

(b)

CDMP BDMP HDMP

Figure 6 Computation time as a function of a taskset size, measuring deadline miss probability.

approach (CDMP), with the two fastest DMPA approximations, i.e., the Hoeffding bound
(HDMP), and the Bernstein bound (BDMP), as defined by von der Brüggen et al. [28]. To
the best of the authors’ knowledge, these two approximation approaches are the fastest in the
state-of-the-art for the given problem. Their drawback is that they tend to over-approximate
the deadline-miss probabilities. Compared to the timing values reported by von der Brüggen
et al. [28], our implementations for HDMP and BDMP achieve an average speedup factor of
6; for the sake of completeness, we therefore report the average computation time also of
the other approaches presented in [28], scaling the timing values according to the speedup
factor. The additional methods are: Unify method (UM), proposed by von der Brüggen et
al. [28] and the method based on the Chernoff bound (CB), which was proposed by Chen and
Chen [6]. UM derives the exact deadline-miss probability, while CB is more accurate and
efficient compared to UM, but less efficient approximation compared to HDMP and BDMP.

Experiment Setup. In this experiment, we replicated the setup proposed by von der Brüggen
et al. [28]. Thus, 1000 tasksets were generated per each presented point, considering the
sizes of 5, 10, . . . , 35. For each taskset we generated the utilisations using UUniFast [2], with
the taskset utilisation set to 0.7. Task periods were generated according to a log-uniform
distribution ranging from 10ms to 1000ms. Normal execution modes were computed by
multiplying the utilisation and the period for each generated pair of values. The periods
and normal execution mode times were ceiled to be multiples of 50µs. This allowed for the
discrete random-variable support while not severely affecting the taskset utilisation given by
UUniFast. The implementation of the circular convolution did not include Improvement 1
from the paper, in order to not take the advantage of the experiment setup that considers only
two execution time modes. Implicit-deadlines were assumed. Probability of occurrence for
the normal execution was set to 0.975, while the probability of occurrence for the abnormal
execution mode was set to 0.025. Abnormal execution was set to be two times greater than
the normal execution. For more details on the setup, refer to their paper.

Experiment Results. Figure 6(a) shows that CDMP is applicable for computation of the
deadline-miss probability. With taskset size of 35, CDMP achieves to compute the deadline
miss probability of the lowest priority task, taking 4.3s, while BDMP takes 3.4s, and HDMP
around 1s. The projected computation times for CB and UM are still several times larger
despite the speedup scaling, although these results may be improved or worsened based on
the implementation choices in MATLAB and the underlined hardware. In Figure 6(b), we
show the average deadline miss result computed by CDMP, BDMP, and HDMP. Since the

ECRTS 2021

16:20 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

result of CDMP is the exact deadline miss probability, we observe that the BDMP estimation
becomes more pessimistic with the increase of the taskset size, while the HDMP bound is
still significantly worse than the result derived with CDMP (note the log scale).

Discussion. We conclude that the methods proposed in this paper are promising for the
deadline miss analysis since the computation time is low, while the results are exact. However,
the further empirical investigations should address the impact of the more complex execution
time distributions and taskset parameters. For example, using 1µs as the basic unit of time for
random variables may increase the computation time of the method due to necessary vector
increase. Also, further investigations should take into account more complex assumptions,
e.g. probabilistic executions and inter-arrival times, as proposed by Maxim et al. [18].

6 Related work

As described by Davis and Cucu-Grosjean [10,11], the issues of computational intractability of
the linear convolution in the probabilistic schedulability and timing analysis are investigated
for years in the research area of real-time systems. There are two main research directions
that tried to solve this problem: (i) Down-sampling methods, and (ii) Analytical methods.
The goal of the down-sampling methods is to approximate the random variables such that
its image size is reduced. Then, the linear convolution can be applied, however introducing
over-approximation. There are several works in this domain, e.g., Refaat et al. [25], Diaz et
al. [12], Kim et al. [14]. More recent improvement was made by Maxim et al. [19, 20] where
several down-sampling algorithms were proposed, among which are domain quantisation
and reduced pessimism. Both were used in the evaluation of this paper. Finally, the most
recent improvement was made by Milutinović et al. [22] addressing the cache-miss probability
analysis. In their work, several improvements for speeding up the linear convolution were
proposed, using parallel computations and power operations, while they also pointed that the
use of circular convolution may be relevant for addressing the tractability issues. Contrary
to the above methods, Chen and Chen [6] proposed an analytical approach for computing
the deadline-miss probability, which is based on the Chernoff bounds. Following this line
of research, von der Brüggen et al. [27,28] proposed several algorithms for approximating
the deadline miss probability (based on the Hoeffding and the Bernstein inequalities). Next
to those, they also proposed two exact methods: Pruning, which is a multinomial-based
approach combined with the pruning techniques, and Unify, which is a combination of
Pruning with the approach based on the union of equivalence classes. More recently Chen et
al. [7] proposed the improvement for the Chernoff bounds approximation, which is solved
by considering an equivalent convex optimisation problem. This improvement reduces the
computation time of deriving the approximation, while it also improves its accuracy.

7 Conclusions

In this paper, we addressed two problems that consider random variables and their use in the
analysis of probabilistic real-time systems. The first problem considered the space reduction,
i.e., the down-sampling of a random variable. This is the problem of approximation, such
that the distribution of the random variable is preserved while its set of values is reduced.
Such process in the probabilistic analysis often introduces pessimism, that then propagates
towards the final results of the probabilistic response-time and similar types of analysis.
We proposed an optimal algorithm for down-sampling, which minimises upon probabilistic
expectation, i.e., pessimism introduced upon down-sampling.

F. Marković, A. V. Papadopoulos, and T. Nolte 16:21

The second addressed problem considers the efficiency of computing the convolution
between random variables. This problem for years limited the applicability of many existing
and possibly future work in the domain of probabilistic analysis of real-time systems. In
this paper, we showed how the circular convolution can be used to address this problem,
reducing the time complexity of a single discrete convolution from O(n2) to O(n log(n)).
Using the circular convolution with the vector reductions proposed in the paper, we showed
in the evaluation that the proposed approach shows promising results with respect to its
applicability in the existing problems of probabilistic analysis.

References
1 George B. Arfken and Hans J. Weber. Mathematical methods for physicists, 1999.
2 Enrico Bini and Giorgio C Buttazzo. Measuring the performance of schedulability tests.

Real-Time Syst., 30(1-2):129–154, 2005.
3 Jonathan M. Blackledge. Digital image processing: mathematical and computational methods.

Elsevier, 2005.
4 Sergey Bozhko and Björn B Brandenburg. Abstract response-time analysis: A formal found-

ation for the busy-window principle. In Euromicro Conf. Real-Time Syst. (ECRTS 2020),
2020.

5 Ronald Newbold Bracewell. The Fourier transform and its applications. McGraw-Hill, 1999.
6 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor fixed-

priority scheduling under soft errors. In IEEE Int. Symp. Industrial Emb. Syst. (SIES), pages
1–8, 2017.

7 Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen. Efficient compu-
tation of deadline-miss probability and potential pitfalls. In Design, Automation & Test in
Europe Conf. & Exhibition (DATE), pages 896–901, 2019.

8 Kuan-Hsun Chen, Georg von der Brüggen, and Jian-Jia Chen. Analysis of deadline miss rates
for uniprocessor fixed-priority scheduling. In IEEE Int. Conf. Emb. and Real-Time Computing
Syst. and Applications (RTCSA), pages 168–178, 2018.

9 James W. Cooley and John W. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

10 Robert Ian Davis and Liliana Cucu-Grosjean. A survey of probabilistic schedulability analysis
techniques for real-time systems. LITES: Leibniz Trans. Emb. Syst., pages 1–53, 2019.

11 Robert Ian Davis and Liliana Cucu-Grosjean. A survey of probabilistic timing analysis
techniques for real-time systems. LITES: Leibniz Transactions on Embedded Systems, pages
1–60, 2019.

12 Jose Luis Diaz, Jose Maria Lopez, Manuel Garcia, Antonio M Campos, Kanghee Kim, and
Lucia Lo Bello. Pessimism in the stochastic analysis of real-time systems: Concept and
applications. In IEEE Int. Real-Time Syst. Symp. (RTSS), pages 197–207, 2004.

13 Geoffrey Grimmett and Dominic Welsh. Probability: an introduction. Oxford U. Press, 2014.
14 Kanghee Kim, Jose Luis Diaz, Lucia Lo Bello, José María López, Chang-Gun Lee, and

Sang Lyul Min. An exact stochastic analysis of priority-driven periodic real-time systems and
its approximations. IEEE Transactions on Computers, 54(11):1460–1466, 2005.

15 Charan Langton and Victor Levin. The Intuitive Guide to Fourier Analysis and Spectral
Estimation. Mountcastle Company, 2017.

16 Advanpix LLC. Multiprecision computing toolbox for MATLAB. URL: http://www.advanpix.
com/.

17 Filip Marković, Alessandro Vittorio Papadopoulos, and Thomas Nolte. Artifact-
evaluation—on-the-convolution-efficiency, 2021. URL: https://github.com/Aeoliphile/
Artifact-Evaluation---On-the-convolution-efficiency.

ECRTS 2021

http://www.advanpix.com/
http://www.advanpix.com/
https://github.com/Aeoliphile/Artifact-Evaluation---On-the-convolution-efficiency
https://github.com/Aeoliphile/Artifact-Evaluation---On-the-convolution-efficiency

16:22 On the Convolution Efficiency for Probabilistic Analysis of Real-Time Systems

18 Dorin Maxim and Liliana Cucu-Grosjean. Response time analysis for fixed-priority tasks with
multiple probabilistic parameters. In 2013 IEEE 34th Real-Time Systems Symposium, pages
224–235. IEEE, 2013.

19 Dorin Maxim, Mike Houston, Luca Santinelli, Guillem Bernat, Robert I Davis, and Liliana
Cucu-Grosjean. Re-sampling for statistical timing analysis of real-time systems. In Int. Conf.
Real-Time and Network Syst. (RTNS), pages 111–120, 2012.

20 Dorin Maxim, Luca Santinelli, and Liliana Cucu-Grosjean. Improved sampling for statistical
timing analysis of real-time systems. Int. Conf. Real-Time and Network Syst. (RTNS), pages
17–20, 2010.

21 Stephen McGovern. MATLAB Central File Exchange, Fast Convolution. https://www.
mathworks.com/matlabcentral/fileexchange/5110-fast-convolution. Accessed: 2021-01.

22 Suzana Milutinović, Jaume Abella, Damien Hardy, Eduardo Quiñones, Isabelle Puaut, and
Francisco J Cazorla. Speeding up static probabilistic timing analysis. In Int. Conf. Architecture
of Computing Syst. (ARCS), pages 236–247, 2015.

23 Alan V Oppenheim, John R Buck, and Ronald W Schafer. Discrete-time signal processing.
Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

24 Athanasios Papoulis. The fourier integral and its applications. McCraw-Hill, 1962.
25 Khaled S Refaat and Pierre-Emmanuel Hladik. Efficient stochastic analysis of real-time systems

via random sampling. In Euromicro Conf. Real-Time Syst. (ECRTS), pages 175–183, 2010.
26 Moshe Shaked and J. George Shanthikumar, editors. Univariate Stochastic Orders, pages 3–79.

Springer New York, New York, NY, 2007.
27 Georg von der Brüggen. Realistic Scheduling Models and Analyses for Advanced Real-Time

Embedded Systems. PhD thesis, TU Dortmund (Germany), 2019.
28 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina

Morik. Efficiently approximating the probability of deadline misses in real-time systems. In
Euromicro Conf. Real-Time Syst. (ECRTS), 2018.

https://www.mathworks.com/matlabcentral/fileexchange/5110-fast-convolution
https://www.mathworks.com/matlabcentral/fileexchange/5110-fast-convolution

	p000-Frontmatter
	Preface

	p001-Platzer
	1 Introduction
	2 Background and Related Work
	2.1 Parallel Processing Architectures
	2.2 Vector Processors

	3 Architecture of Vicuna
	4 Timing-Predictability
	5 Evaluation
	6 Conclusion

	p002-Hoornaert
	1 Introduction
	2 Related Work
	3 Background Concepts
	3.1 Hybrid Multi-Core Platforms with Programmable Logic
	3.2 Programmable Logic In-the-Middle
	3.3 Advanced eXtensible Interface (AXI)

	4 Design Goals and Overview
	4.1 Design Goals
	4.2 Design Overview

	5 SchIM Design and Implementation
	5.1 Software Stack
	5.2 Altered communication scheme
	5.3 Queueing Domain
	5.4 LLC-SchIM Interface and Traffic Accounting
	5.5 Scheduling Interface and Implemented Policies
	5.5.1 Fixed Priority
	5.5.2 Time Division Multiple Access

	5.6 Programming Model
	5.7 PL-to-PS Feedback

	6 Evaluation
	6.1 Experimental Setup
	6.2 Platform Capabilities and performance degradation
	6.3 PL-to-PS feedback performance impact
	6.4 Internal Behaviour of SchIM
	6.5 Memory Isolation

	7 Discussion and Limitations
	8 Conclusion

	p003-Serrano-Cases
	1 Introduction
	2 Background and Related Works
	3 Analysis of the QoS Mechanisms in the Zynq UltraScale+ MPSoC
	3.1 QoS support per IP-block

	4 Interaction Among QoS-enabled IP Blocks
	4.1 QoS domains and mappings
	4.2 Incompatible QoS features and Incongruous QoS Values
	4.3 QoS-Enabled IP Block Instantiation
	4.4 Putting it All Together: Key Insights of the Analysis

	5 QoS mechanisms characterization
	5.1 Experimental Environment
	5.2 Unveiling QoS features in the ZUS+

	6 Case Study: IFC selection
	6.1 Malleability
	6.2 QoS for Improved Platform Setup

	7 Conclusions and Future Work

	p004-Ghaemi
	1 Introduction
	2 Related Work
	3 Background
	4 Design
	4.1 Core Principles
	4.2 High-level BBProf Workflow
	4.3 Profiling Strategy
	4.3.1 User-Space Driver (UProfiler)
	4.3.2 Kernel-side Driver (KProfiler)

	4.4 Additional Operational Modes

	5 Implementation
	5.1 UProfiler Implementation
	5.2 KProfiler Implementation

	6 System Instantiation
	7 Evaluation
	7.1 Interference and Mitigation via Strict Partitioning
	7.2 Profiling of Staircase and SD-VBS benchmarks
	7.3 Mitigation of Contention-induced Instruction Stall
	7.4 Controllable Mitigation of Cache Interference

	8 Known Limitations
	9 Concluding Remarks

	p005-RibotGonzalez
	1 Introduction
	2 Related work
	3 System model
	4 nDimNoC architecture
	4.1 NoC topology
	4.2 Router architecture
	4.3 Routing policy

	5 Bound on the worst-case communication time
	5.1 Worst-case and best-case traversal time
	5.2 Worst-case injection time

	6 Experimental results
	6.1 Implementation of nDimNoC
	6.2 Analyses results

	7 Summary and conclusion

	p006-Nemitz
	1 Introduction
	2 Background
	3 The PF-L: A New Phase-Fair Lock with Light Reading
	4 Evaluation of the PF-L
	5 Schedulability Analysis of Phase-Fair Reader-Writer Locks
	6 Schedulability Evaluation
	7 Conclusion
	A Additional Constraints

	p007-Davis
	1 Introduction
	1.1 Background
	1.2 Contribution and Organization
	1.3 Related Work
	1.4 Inspiration

	2 System Model and Assumptions
	3 Schedulability Analysis
	3.1 pFPPS Schedulability Analysis
	3.2 pFPNS Schedulability Analysis
	3.3 Composability
	3.4 Dominance Relations

	4 Priority Assignment
	4.1 pFPPS Priority Assignment
	4.2 pFPNS Priority Assignment

	5 Evaluation
	5.1 Task Set Parameter Generation
	5.2 Experiments
	5.3 Results

	6 Conclusions
	A Case Study
	A.1 Case Study Experiments

	p008-He
	1 Introduction
	2 Preliminary
	2.1 Task Model
	2.2 Scheduling Model
	2.3 Problem Formulation
	2.4 An Illustrating Example

	3 Motivation
	3.1 Discussion on Existing Work
	3.2 Motivation of this Work

	4 Computing Response Time Bound
	5 Priority Assignment
	6 Extension to Multi-DAG Systems
	7 Performance Evaluation
	7.1 Evaluation of Single-DAG Systems
	7.2 Evaluation of Multi-DAG Systems

	8 Related Work
	9 Conclusion, Limitations and Future Work

	p009-Baruah
	1 Introduction
	2 Workload Model
	3 Correctness Criterion CC-1
	3.1 Jobs
	3.2 Tasks

	4 Correctness Criterion CC-2
	5 Correctness Criterion CC-3
	5.1 Jobs
	5.2 Tasks

	6 Comparison and Recommendations
	7 Context and Conclusions

	p010-Ueter
	1 Introduction
	2 System Model and Stationary GANG Scheduling
	3 Schedulability Test for Stationary Gang Scheduling
	3.1 Contention Analysis
	3.2 Schedulability Analysis

	4 GANG Assignment Algorithm
	5 Evaluation
	5.1 Experimental Setup
	5.2 Evaluation Results
	5.2.1 Evaluation results for implicit-deadline task sets
	5.2.2 Evaluation results for constrained-deadline task sets

	5.3 Summary of Evaluation Results

	6 Conclusion and Future Work

	p011-Ahmed
	1 Introduction
	2 Preliminaries
	3 Tardiness Bound
	3.1 lag Properties
	3.2 Deriving Tardiness Bounds

	4 Exact Tardiness Bounds
	5 Experiments
	6 Conclusion

	p012-Baruah
	1 Introduction
	2 The Conditional DAG (C-DAG) Model
	3 Computational Complexity: Some Background
	4 C-DAG feasibility analysis is PSPACE-complete
	4.1 Gadget for representing the clause (l_{j,1} vee l_{j,2} vee l_{j,3})
	4.2 Gadget for enforcing the desired execution of X_i and neg X_i
	4.3 Gadget for enforcing the desired execution of Y_i and neg Y_i
	4.4 Putting the pieces together

	5 A More Tractable Special Case
	6 Context and Conclusions

	p013-Fara
	1 Introduction
	1.1 This work

	2 Related Work
	3 System model
	4 Voting implementations
	4.1 Passive waiting
	4.2 LET-inspired voting

	5 Inter-replica communication
	5.1 Queuing analysis
	5.2 Delay analysis

	6 Response-time analysis
	6.1 Passive waiting
	6.2 LET-inspired voting
	6.3 Discussion

	7 Experimental results
	8 Conclusion and future work

	p014-Boyer
	1 Introduction
	2 Network calculus
	2.1 Generic results
	2.2 Sporadic workload, rate-latency servers and NP-SP policy
	2.3 Illustrative example
	2.4 Problem statement

	3 Related work
	3.1 Implementation of algebraic operators for network calculus
	3.2 Coq for real-time systems

	4 Contribution
	4.1 A quadratic rate-latency bound
	4.2 Coq statement of Theorem 5

	5 Evaluation
	6 Conclusion
	A Proof of Theorem 5

	p015-Vreman
	1 Introduction
	2 Related Work
	3 System Behaviour in Nominal Conditions
	3.1 Plant Model
	3.2 Controller Model
	3.3 Closed-Loop System Dynamics

	4 System Behaviour with Deadline Misses
	5 Burst Interval Analysis
	5.1 Fault Model
	5.2 Closed-Loop System Dynamics

	6 Experimental Results
	6.1 Furuta Pendulum
	6.2 Control Benchmark

	7 Conclusions

	p016-Markovic
	1 Introduction
	2 Terminology and mathematical notation
	3 Down-sampling of Random Variables
	3.1 Optimal down-sampling of random variables
	3.1.1 Algorithm description
	3.1.2 Algorithm correctness
	3.1.3 Time complexity

	3.2 Linear Down-sampling
	3.3 Description of the algorithms using the running example

	4 Efficient convolution
	4.1 Formal description of the circular convolution of random variables
	4.2 Fast and efficient computation of the exact result
	4.3 Efficient repetitive convolutions

	5 Evaluation
	5.1 Evaluation of the down-sampling algorithms
	5.2 Evaluation of the convolution algorithms
	5.3 Computation of the deadline miss probability

	6 Related work
	7 Conclusions

