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Abstract
StoqMA captures the computational hardness of approximating the ground energy of local Hamiltoni-
ans that do not suffer the so-called sign problem. We provide a novel connection between StoqMA and
distribution testing via reversible circuits. First, we prove that easy-witness StoqMA (viz. eStoqMA,
a sub-class of StoqMA) is contained in MA. Easy witness is a generalization of a subset state such
that the associated set’s membership can be efficiently verifiable, and all non-zero coordinates
are not necessarily uniform. This sub-class eStoqMA contains StoqMA with perfect completeness
(StoqMA1), which further signifies a simplified proof for StoqMA1 ⊆ MA [9, 12]. Second, by showing
distinguishing reversible circuits with ancillary random bits is StoqMA-complete (as a comparison,
distinguishing quantum circuits is QMA-complete [26]), we construct soundness error reduction of
StoqMA. Additionally, we show that both variants of StoqMA that without any ancillary random
bit and with perfect soundness are contained in NP. Our results make a step towards collapsing the
hierarchy MA ⊆ StoqMA ⊆ SBP [9], in which all classes are contained in AM and collapse to NP
under derandomization assumptions.
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1 Introduction

This tale originates from Arthur-Merlin protocols, such as complexity classes MA and AM,
introduced by Babai [5]. MA is a randomized generalization of the complexity class NP,
namely the verifier could take advantage of the randomness. AM is additionally allowing
two-message interaction. Surprisingly, two-message Arthur-Merlin protocols are as powerful
as such protocols with a constant-message interaction, whereas it is a long-standing open
problem whether MA = AM. It is evident that NP ⊆ MA ⊆ AM. Moreover, under well-
believed derandomization assumptions [31, 32], these classes collapse all the way to NP.
Despite limited progresses on proving MA = AM, is there any intermediate class between
MA and AM?

StoqMA is a natural class between MA and AM, initially introduced by Bravyi, Bessen,
Terhal [9]. StoqMA captures the computational hardness of the stoquastic local Hamiltonian
problems. The local Hamiltonian problem, defined by Kitaev [29], is substantially approxim-
ating the minimum eigenvalue (a.k.a. ground energy) of a sparse exponential-size matrix
(a.k.a. local Hamiltonian) within inverse-polynomial accuracy. Stoquastic Hamiltonians [10]
are a family of Hamiltonians that do not suffer the sign problem, namely all off-diagonal
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4:2 StoqMA Meets Distribution Testing

entries in the Hamiltonian are non-positive. StoqMA also plays a crucial role in the Hamilto-
nian complexity – StoqMA-complete is a level in the complexity classification of 2-local
Hamiltonian problems on qubits [17, 11], along with P, NP-complete, and QMA-complete.

Inspiring by the Monte-Carlo simulation in physics, Bravyi and Terhal [9, 12] propose
a MA protocol for the stoquastic frustration-free local Hamiltonian problem, which further
signifies StoqMA with perfect completeness (StoqMA1) is contained in MA. A uniformly
restricted variant1 of this problem, which is also referred to as SetCSP [3]2, essentially
captures the MA-hardness.

To characterize StoqMA through the distribution testing lens, we begin with an informal
definition of StoqMA and leave the details in Section 2.2. For a language L in StoqMA,
there exists a verifier Vx that takes x ∈ L as an input, where the verifier’s computation is
given by a classical reversible circuit, viewed as a quantum circuit. Besides a non-negative
state3 in the verifier’s input as a witness, to utilize the randomness, ancillary qubits in the
verifier’s input consist of not only state |0⟩ but also |+⟩ := (|0⟩ + |1⟩)/

√
2. After applying

the circuit, the designated output qubit is measured in the Hadamard basis4. A problem
is in StoqMA(a, b) for some a > b ≥ 1/2, if for yes instances, there is a witness making the
verifier accept with probability at least a; whereas for no instances, all witness make the
verifier accepts with probability at most b. The gap between a and b is at least an inverse
polynomial since error reduction for StoqMA is unknown.

The optimality of non-negative witnesses suggests a novel connection to distribution
testing. Let |0⟩ |D0⟩ + |1⟩ |D1⟩ be the state before the final measurement, where |Dk⟩ =∑

i∈{0,1}n−1

√
Dk(i) |i⟩ for k = 0, 1 and n is the number of qubits utilized by the verifier. A

straightforward calculation indicates that the acceptance probability of a StoqMA verifier is
linearly dependent on the squared Hellinger distance d2

H(D0, D1) between D0 and D1, which
indeed connects to distribution testing! Consequently, to prove StoqMA ⊆ MA, it suffices to
approximate d2

H(D0, D1) within an inverse-polynomial accuracy using merely polynomially
many samples5.

1.1 Main results
StoqMA with easy witness (eStoqMA). With this connection to distribution testing, it
is essential to take advantage of the efficient query access of a non-negative witness where
a witness satisfied with this condition is the so-called easy witness. For this sub-class of
StoqMA (viz. eStoqMA) such that there exists an easy witness for any yes instances, we are
then able to show an MA containment by utilizing both query and sample accesses to the
witness. Informally, easy witness is a generalization of a subset state such that the associated
state’s membership is efficiently verifiable, and all non-zero coordinates are unnecessarily
uniform. It is evident that a classical witness is also an easy witness, but the opposite is not
necessarily true (See Remark 17). Now let us state our first main theorem:

1 It is the projection uniform stoquastic local Hamiltonian problem, namely each local term in Hamiltonian
is exactly a projection. See Definition 2.10 in [4].

2 Namely, a modified constraint satisfaction problem such that both constraints and satisfying assignments
are a subset.

3 A witness here could be any quantum state, but the optimal witness is a non-negative state, see
Remark 10.

4 It is worthwhile to mention that we can define MA [10] (see Definition 7) in the same fashion, namely
replacing the measurement on the output qubit by the computational basis.

5 Each sample is actually the measurement outcome after running an independent copy of the verifier, see
Remark 12.
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▶ Theorem 1 (Informal of Theorem 15). eStoqMA = MA.

It is worthwhile to mention that easy witness also relates to SBP (Small Bounded-error
Probability) [7]. In particular, Goldwasser and Sipser [22] propose the celebrated Set Lower
Bound protocol – it is an AM protocol for the problem of approximately counting the
cardinality of such an efficient verifiable set. Recently, Watson [42] and Volkovich [40]
separately point out that such a problem is essentially SBP-complete.

Although eStoqMA seems only a sub-class of StoqMA, we could provide an arguably
simplified proof for StoqMA1 ⊆ MA [9]. Namely, employed the local verifiability of SetCSP [3],
it is evident to show eStoqMA contains StoqMA with perfect completeness, which infers
StoqMA1 ⊆ MA. However, it remains open whether all StoqMA verifier has easy witness,
whereas an analogous statement is false for classical witnesses (see Proposition 27).

Reversible Circuit Distinguishability is StoqMA-complete. It is well-known that distin-
guishing quantum circuits (a.k.a. the Non-Identity Check problem), namely given two efficient
quantum circuits and decide whether there exists a pure state that distinguishes one from
the other, is QMA-complete [26]. Moreover, if we restrict these circuits to be reversible (with
the same number of ancillary bits), this variant is NP-complete [27]. What happens if we
also allow ancillary random bits, viewed as quantum circuits with ancillary qubits which is
initially state |+⟩? It seems reasonable to believe this variant is MA-complete; however, it is
actually StoqMA-complete, as stated in Theorem 2:

▶ Theorem 2 (Informal of Theorem 22). Distinguishing reversible circuits with ancillary
random bits within an inverse-polynomial accuracy is StoqMA-complete.

In fact, Theorem 2 is a consequence of the distribution testing explanation of a StoqMA
verifier’s maximum acceptance probability. We can view Theorem 2 as new strong evidence
of StoqMA = MA. It further straightforwardly inspires a simplified proof of [27]:

▶ Proposition 3 (Informal of Proposition 28). Distinguishing reversible circuits without
ancillary random bits is NP-complete.

Apart from the role of randomness, Proposition 4 is analogous for StoqMA regarding the
well-known derandomization property [21] of Arthur-Merlin systems with perfect soundness:

▶ Proposition 4 (Informal of Proposition 23). StoqMA with perfect soundness is in NP.

Notably, the NP-containment in Proposition 4 holds even for StoqMA(a, b) verifiers with
arbitrarily small gap a− b. It is arguably surprising since StoqMA(a, b) with an exponentially
small gap (i.e., the precise variant) at least contains NPPP [33], but such a phenomenon does
not appear in this scenario.

Soundness error reduction of StoqMA. Error reduction is a rudimentary property of many
complexity classes, such as P, BPP, MA, QMA, etc. . It is peculiar that such property of
StoqMA is open, even though this class has been proposed since 2006 [9]. An obstacle follows
from the limitation of performing a single-qubit Hadamard basis final measurement, so we
cannot directly take the majority vote of outcomes from the verifier’s parallel repetition.
Utilized the gadget in the proof of Theorem 2, we have derived soundness error reduction
of StoqMA, which means we could take the conjunction of verifier’s parallel repetition’s
outcomes:

▶ Theorem 5 (Soundness error reduction of StoqMA). For any polynomial r = poly(n),

StoqMA
(

1
2 + a

2 ,
1
2 + b

2

)
⊆ StoqMA

(
1
2 + ar

2 ,
1
2 + br

2

)
.
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4:4 StoqMA Meets Distribution Testing

1.2 Discussion and open problems
Towards SBP = MA. As stated before, it is known MA ⊆ StoqMA ⊆ SBP ⊆ AM [7, 9].
Note a subset state associated with an efficient membership-verifiable set is an easy witness.
Could we utilize this connection and deduce proof of SBP ⊆ eStoqMA?

Owing to the wide uses of the Set Lower Bound protocol [22], such a solution would be a
remarkable result with many complexity-theoretic applications. Unfortunately, even a QMA
containment for this kind of approximate counting problem is unknown. Despite such smart
usage of the Grover algorithm implies an O(

√
2n/|S|)-query algorithm [2, 8, 39], we are not

aware of utilizing a quantum witness. Furthermore, an oracle separation between SBP and
QMA [1] suggests that such a proof of SBP ⊆ QMA is supposed to be in a non-black-box
approach, which signifies a better understanding beyond a query oracle is required.

Besides SBP vs. MA, it remains open whether StoqMA = MA. It is natural to ask
whether each StoqMA verifier has easy witness. However, we even do not know how to
prove StoqMA(1 − a, 1 − 1/poly(n)) has easy witness, where a is negligible (i.e., an inverse
super-polynomial). In [4], they prove StoqMA(1 − a, 1 − 1/poly(n)) ⊆ MA by applying the
probabilistic method on a random walk, whereas the existence of easy witness seems to
require a stronger structure6.

Towards error reduction of StoqMA. Error reduction of StoqMA is an open problem since
Bravyi, Bessen, and Terhal define this class in 2006 [9]. We first state this conjecture:

▶ Conjecture 6 (Error reduction of StoqMA). For any a, b such that 1/2 ≤ b < a ≤
1 and a − b ≥ 1/poly(n), the following holds for any polynomial l(n): StoqMA(a, b) ⊆
StoqMA

(
1 − 2−l(n), 1/2 + 2−l(n)) .

As [4] shows that StoqMA with a negligible completeness error is contained in MA, (com-
pleteness) error reduction of StoqMA plays a crucial role in proving StoqMA = MA. Instead
of performing the majority vote among parallelly running verifiers, another commonplace
approach is first reducing errors of completeness and soundness separately, then utilizing
these two procedures alternatively with well-chosen parameters. For instance, the renowned
polarization lemma of SZK [36, 6], and the space-efficient error reduction of QMA [19].
Since Theorem 5 already states soundness error reduction of StoqMA, is it possible to
also construct a completeness error reduction? Namely, a mechanism that builds a new
StoqMA(1/2 + a′/2, 1/2 + b′/2) verifier from the given StoqMA(1/2 + a/2, 1/2 + b/2) verifier
such that a′ is super-polynomially close to 1. It seems to require new ideas since a direct
analog of the XOR lemma in the polarization lemma of SZK, such as Lemma 4.11 in [6],
does not work here.

StoqMA with exponentially small gap. Fefferman and Lin prove [20] that PreciseQMA is
as powerful as PSPACE, where PreciseQMA is a variant of QMA(a, b) with exponentially small
gap a− b. Moreover, we know that both PreciseQCMA and PreciseMA are equal to NPPP [33],
where PreciseQCMA is a precise variant of QMA with a classical witness of the verifier. It is
evident that PreciseStoqMA is between NPPP and PSPACE, also the classical-witness variant
of this class is precisely NPPP (see Section 3.3). Does PreciseStoqMA an intermediate class
between NPPP and PSPACE, or even strong enough to capture the full PSPACE power?

6 The candidate here is the set S of all good strings (see Appendix B) of the given SetCSP instance, which
is unnecessary an optimal witness. It is thus unclear whether the frustration of S remains negligible.



Y. Liu 4:5

Paper organization
Section 2 introduces useful terminologies and notations. Section 3 proves that easy-witness
StoqMA is contained in MA, which indicates an arguably simplified proof of StoqMA1 ⊆ MA,
together with remarks on classical-witness StoqMA. Section 4 presents a new StoqMA-
complete problem named reversible circuit distinguishability, and the complexity of this
problem’s exact variant, which infers StoqMA with perfect soundness is in NP. Section 5
provides error reduction of StoqMA regarding soundness error.

2 Preliminaries

2.1 Non-negative states
We assume familiarity with quantum computing on the levels of [34]. Beyond this, we
then introduce some notations which are more particular for this paper: the support of |ψ⟩,
supp(|ψ⟩) := {i ∈ {0, 1}n : ⟨ψ|i⟩ ≠ 0}, is the set strings with non-zero amplitude. A quantum
state |ψ⟩ is non-negative of ⟨i|ψ⟩ ≥ 0 for all i ∈ {0, 1}n. For any S ⊆ {0, 1}n, we refer to the
state |S⟩ := 1√

|S|

∑
i∈S |i⟩ as the subset state corresponding to the set S [41].

2.2 Complexity class: MA and StoqMA
A (promise) problem L = (Lyes,Lno) consists of two non-overlapping subsets Lyes,Lno ⊆
{0, 1}∗. These classes MA and StoqMA considered in this paper using the language of
reversible circuits, as Definition 7 and Definition 9.

▶ Definition 7 (MA, adapted from [9]). A promise problem L = (Lyes,Lno) ∈ MA if there
exists an MA verifier such that for any input x ∈ L, an associated uniformly generated
verification circuit Vx using only classical reversible gates (i.e. Toffoli, CNOT, X) on
n := nw + n0 + n+ qubits and a computational-basis measurement on the output qubit, where
nw is the number of qubits for a witness, and n0 (or n+) is the number of |0⟩ (or |+⟩)
ancillary qubits, such that
Completeness. If x ∈ Lyes, then there exists an n-qubit non-negative witness |w⟩ such that

Pr [Vx accepts |w⟩] ≥ 2/3.
Soundness. If x ∈ Lno, we have Pr [Vx accepts |w⟩] ≤ 1/3 for any n-qubit witness |w⟩.

For simplicity, we denote
∣∣0̄〉 := |0⟩⊗n0 and |+̄⟩ := |+⟩⊗n+ for the rest of this paper. We

refer the equivalence between Definition 7 and the standard definition of MA to as Remark 8,
which is first observed by [10].

▶ Remark 8 (Equivalent definitions of MA). The standard definition of MA only allows
classical witnesses, viz. binary strings. To show it is equivalent to Definition 7, it suffices to
prove the optimal witness for yes instances is classical. Notice that Pr [Vx accepts |w⟩] =
⟨ψin|V †

x ΠoutVx |ψin⟩ where |ψin⟩ := |w⟩⊗
∣∣0̄〉⊗|+̄⟩ and Πout = |0⟩ ⟨0|1 ⊗Ielse. Since V †

x ΠoutVx

is a diagonal matrix, the optimal witness of Vx is classical.

Analogously, we could define NP using classical reversible gates by setting n+ = 0 in
Definition 7. Now we proceed with the definition of StoqMA.

▶ Definition 9 (StoqMA, adapted from [9]). A promise problem L = (Lyes,Lno) ∈ StoqMA if
there is a StoqMA verifier such that for any input x ∈ L, a uniformly generated verification
circuit Vx using Toffoli, CNOT, X gates on n := nw + n0 + n+ qubits and a Hadamard-basis
measurement on the output qubit, where nw is the number of qubits for a witness, and n0

TQC 2021



4:6 StoqMA Meets Distribution Testing

(or n+) is the number of |0⟩ (or |+⟩) ancillary qubits, such that for efficiently computable
functions a(n) and b(n):
Completeness. If x ∈ Lyes, then there exists an n-qubit non-negative witness |w⟩ such that

Pr [Vx accepts |w⟩] ≥ a(n).
Soundness. If x ∈ Lno, we have Pr [Vx accepts |w⟩] ≤ b(n) for any n-qubit witness |w⟩.
Moreover, a(n) and b(n) satisfy 1/2 ≤ b(n) < a(n) ≤ 1 and a(n) − b(n) ≥ 1/poly(n).

Error reduction of StoqMA remains open since this class was defined in 2006 [9] because
this class does not permit amplification of gap between thresholds a, b based on majority
voting. Hence, this gap is at least an inverse polynomial. We leave the remarks regarding
the non-negativity of witnesses and parameters to Remark 10.

▶ Remark 10 (Optimal witnesses of a StoqMA verifier is non-negative). Analogous to QMA,
the maximum acceptance probability of a StoqMA verifier Vx is precisely the maximum
eigenvalue of Mx :=

〈
0̄
∣∣ ⟨+̄|V †

x |+⟩ ⟨+|1 Vx

∣∣0̄〉 |+̄⟩ due to Pr [Vx accepts |ψ⟩] = ⟨ψ|Mx |ψ⟩.
Notice the matrix Mx is entry-wise non-negative. Owing to the Perron-Frobenius theorem
(see Theorem 8.4.4 in [24]), a straightforward corollary is that the eigenvector ψ (i.e., the
optimal witness) maximizing the acceptance probability has non-negative amplitudes in
the computational basis, namely it suffices to consider only non-negative witness for yes
instances. Additionally, it is clear-cut that the acceptance probability for any non-negative
witness |ψ⟩, regardless of the optimality, is at least 1/2 by a direct calculation.

2.3 Distribution testing
Distribution testing is generally about telling whether one probability distribution is close to
the other. We further recommend a comprehensive survey [15] for a detailed introduction.
We begin with the squared Hellinger distance d2

H(D0, D1) between two (sub-)distributions
D0, D1, where d2

H(D0, D1) := 1
2 ∥ |D0⟩ − |D1⟩ ∥2

2 and |Dk⟩ =
∑

i

√
Dk(i) |i⟩ for any k = 0, 1.

This distance is comparable with the total variation distance (see Proposition 1 in [18]). We
then introduce a specific model used for this paper, namely the dual access model:

▶ Definition 11 (Dual access model, adapted from [14]). Let D be a fixed distribution over
[2n]. A dual oracle for D is a pair of oracles (SD,QD):

Sample access: SD returns an element i ∈ {0, 1}n with probability D(i). And it is
independent of all previous calls to any oracle.
Query access: QD takes an input a query element j ∈ {0, 1}n−1, and returns the quotient
D(0||j)/D(1||j) where D(a||j) is the probability weight that D puts on a||j for a ∈ {0, 1}.

We then explain how to implement these oracles here in Remark 12:

▶ Remark 12 (Implementation of dual access model). The sample access oracle in Definition 11
could be implemented by running an independent copy of the circuit that generates the state
|0⟩ |D0⟩ + |1⟩ |D1⟩, and measuring all qubits on the computational basis. Meanwhile, the
query access oracle is substantially an efficient evaluation algorithm corresponding to the
quotient D0(i)/D1(i) for given index i.

In [14], Canonne and Rubinfeld show that approximating the total variation distance
between two distributions within an additive error ϵ requires only Θ(1/ϵ2) oracle accesses
(see Theorems 6 and 7 in [14]). However, suppose we allow to utilize only sample accesses.
In that case, such a task requires Ω(N/ logN) samples even within constant accuracy (see
Theorem 9 in [18]), where N is the dimension of distributions.
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3 StoqMA with easy witnesses

This section will prove that StoqMA with easy witnesses, viz. eStoqMA, is contained in MA.
Easy witness is named in the flavor of the seminal easy witness lemma [25], which means
that an n-qubit non-negative state witness of a StoqMA verifier has a succinct representation.
In particular, there exists an efficient algorithm to output the quotient D0(i)/D1(i) for given
index i. It is a straightforward generalization of subset states where the membership of the
corresponding subset is efficiently verifiable. We here define eStoqMA formally:

▶ Definition 13 (eStoqMA). A promise problem L = (Lyes,Lno) ∈ eStoqMA if there is a
StoqMA verifier such that for any input x ∈ L, a uniformly generated verification circuit
Vx using only Toffoli, CNOT, X gates on n := nw + n0 + n+ qubits and a Hadamard-basis
measurement on the output qubit, where nw is the number of qubits for a witness, and
n0 (or n+) is the number of |0⟩ (or |+⟩) ancillary qubits, such that for efficiently computable
functions a(n) and b(n):
Completeness. There exists an n-qubit non-negative witness |w⟩ :=

∑
i∈{0,1}n

√
Dw(i) |i⟩

such that Pr [Vx accepts |w⟩] ≥ a(n), and there is an efficient algorithm Qw that out-
puts Dw(0||i)/Dw(1||i) (or Dw(1||i)/Dw(0||i)) of index 1||i (or 0||i) sampled from the
distribution Dw where i ∈ {0, 1}n−1.

Soundness. For any n-qubit witness |w⟩, Pr [Vx accepts |w⟩] ≤ b(n).
Moreover, a(n) and b(n) satisfy 1/2 ≤ b(n) < α(n) ≤ 1 and a(n) − b(n) ≥ 1/poly(n).

▶ Remark 14 (Subset-state witnesses require only membership). To show a subset-state witness
|w⟩ is an easy witness, it suffices to decide the membership of supp (|w⟩) for the associated
algorithm Qw. Notice any coordinate Dw(j) in Dw is 1/|supp (|w⟩) | if j ∈ supp (|w⟩);
otherwise Dw(j) = 0. Moreover, if Dw(1||i) = 0 for some i, the corresponding point will
never be sampled. Hence, the quotient Dw(0||i)/Dw(1||i) is 1 if both 0||i and 1||i belong to
supp (|w⟩) (i.e., Dw(0||i) = Dw(1||i) ̸= 0); otherwise the quotient is 0.

Distribution testing techniques inspire an MA containment of eStoqMA, as Theorem 15.
Precisely, employed with the dual access model (see Definition 11) adapted from Canonne
and Rubinfeld [14], we obtain an empirical estimation within inverse-polynomial accuracy
of an eStoqMA verifier’s acceptance probability, where both sample complexity and time
complexity are efficient.

▶ Theorem 15 (eStoqMA ⊆ MA). For any 1/2 ≤ b < a ≤ 1 and a− b ≥ 1/poly(n),

eStoqMA(a, b) ⊆ MA
( 9

16 ,
7

16
)
.

In [9, 12], Bravyi, Bessen, and Terhal proved StoqMA1 ⊆ MA, utilizing a relatively
complicated random walk based argument. By taking advantage of eStoqMA, we here
provide an arguably simplified proof by plugging Proposition 16 into Theorem 15:

▶ Proposition 16. StoqMA1 ⊆ eStoqMA.

The proof of Proposition 16 straightforwardly follows from the definition of SetCSP (see
Definition 30), namely any SetCSP0,1/poly instance certainly has easy witness, and it is
indeed optimal. We further leave the technical details regarding SetCSP in Appendix B.

How strong is the eStoqMA? Remark 17 suggests eStoqMA seems more powerful than
classical-witness StoqMA (i.e., cStoqMA):
▶ Remark 17 (eStoqMA is not trivially contained in cStoqMA). Classical witness is clearly also
easy witness, but the opposite is unnecessarily true. Even though Merlin could send the

TQC 2021



4:8 StoqMA Meets Distribution Testing

algorithm QDw as classical witness to Arthur, Arthur only can prepare |w⟩ by a post-selection,
which means cStoqMA does not trivially contain eStoqMA.

Furthermore, the proof of StoqMA(a, b) with classical witnesses is in MA [23] could
preserve completeness and soundness parameters. By inspection, it is clear-cut that this
proof even holds when the gap a− b is arbitrarily small, whereas the proof of Theorem 15
works only for inverse-polynomial accuracy. Further remarks of classical witness’ limitations
can be found in Section 3.3.

3.1 eStoqMA ⊆ MA: the power of distribution testing
To derive an MA containment of eStoqMA, it suffices to distinguish two non-negative states
(viz., approximating the maximum acceptance probability) within an inverse-polynomial
accuracy regarding the inner product (i.e., squared Hellinger distance). It seems plausible to
prove StoqMA ⊆ MA by taking samples and post-processing. However, the known sample
complexity lower bound (See Section 2.3) indicates that (almost) exponentially many samples
are unavoidable. Fortunately, we could circumvent this barrier for showing eStoqMA ⊆ MA,
since easy witness guarantees efficient query access to D0(i)/D1(i) for given index i. In
particular, employing both sample and query oracle accesses to D0, D1, such approximation
within an additive error ϵ requires merely Θ(1/ϵ2) samples and queries! This advantage first
noticed by Rubinfeld and Servedio [35], and then almost fully characterized by Canonne
and Rubinfeld [14]. Recently, this technique also has algorithmic applications used in
quantum-inspired classical algorithms for machine learning [16, 38].

▶ Lemma 18 (Approximating a single-qubit Hadamard-basis measurement). In the dual access
model, there is a randomized algorithm T which takes an input x, 1/2 ≤ b(|x|) < a(|x|) ≤ 1,
as well as access to (SD,QD), where the non-negative state before the measurement is
|ψ⟩ =

∑
i∈[2n]

√
D(i) |i⟩. After making O

(
1/(a− b)2) calls to the oracles, T outputs either

accept or reject such that:
If 1

2 ∥ |D0⟩ + |D1⟩ ∥2
2 ≥ a, T outputs accept with probability at least 9/16;

If 1
2 ∥ |D0⟩ + |D1⟩ ∥2

2 ≤ b, T outputs accept with probability at most 7/16,
where Dk (k ∈ {0, 1}) is a sub-distribution such that ∀i ∈ {0, 1}n−1, Dk(i) := D(k||i).

Proof Intuition. To construct this algorithm T , the main idea is writing the acceptance
probability pacc of a StoqMA verifier’s easy witness as an expectation over D1 (or D0) of
some random variable regarding coordinates quotients D0(i)/D1(i). Note that the quotient√
D0(i)/

√
D1(i) could be computed by running the evaluation algorithm Qw (i.e., query

oracle access). Hence, T only require to calculate an empirical estimation of E[X] (see the
RHS of Equation (1)) within 1/poly(|x|) accuracy. Such an approximation could be achieved
by averaging poly(|x|) sample with a standard concentration bound, which is analogous to
Theorem 6 in [14].

Now we proceed with the explicit construction (i.e., Algorithm 1) and analysis.

Proof of Lemma 18. We begin with estimating the quantity ∥|D0⟩ + |D1⟩∥2
2 /2 ∥D1∥1 up

to some additive error ϵ := (a− b)/8. We first observe that

∥|D0⟩+|D1⟩∥2
2

2∥D1∥1
= 1

2
∑

i∈{0,1}n−1

(
1 +

√
D0(i)√
D1(i)

)2
D1(i)
∥D1∥1

= E
i∼D1/∥D1∥1

[
1
2

(
1 +

√
D0(i)√
D1(i)

)2
]
. (1)

Since the inner product is symmetric, it also implies
∥|D0⟩+|D1⟩∥2

2
2∥D0∥1

= E
i∼ D0

∥D0∥1

[
1
2

(
1 +

√
D1(i)√
D0(i)

)]
.
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Algorithm 1 O(1/(a − b)2)-additive approximation tester T of 1
2 ∥|D0⟩ + |D1⟩∥2

2.

Require : SD and QD oracle accesses; parameters 1
2 ≤ b < a ≤ 1.

Set m,m′ := Θ(1/ϵ2), where ϵ := (a− b)/8;
Draw samples o1, · · · , om′ from
Dout := marginal distribution of the designated output qubit;

Compute Ẑ := 1
m′

∑m′

i=1 Zi, where Zi := oi;
Draw samples s1, · · · , sm from D;
For i = 1, · · · ,m Do

If Ẑ ≥ 1
2 Then with QD, get Xi := 1

2

(
1 +

√
D0(si)√
D1(si)

)2
;

Else with QD, get Xi := 1
2

(
1 +

√
D1(si)√
D0(si)

)2
;

End
Compute X̂ := 1

m

∑m
i=1 Xi;

If Ẑ ≥ 1
2 and X̂Ẑ ≥ 1

2 (a+ b) Then output ACCEPT;
Else If Ẑ < 1

2 and X̂(1 − Ẑ) ≥ 1
2 (a+ b) Then output ACCEPT;

Else output REJECT;

Notice T only require to achieve an empirical estimate of this expected value, which suffices
to utilize m = O

(
1/(a− b)2) samples si from D1, querying D0(si)

D1(si) , and computing Xi =

1
2

(
1 +

√
D0(si)√
D1(si)

)2
∥D1∥1. We here provide the explicit construction of T , as Algorithm 1.

Analysis. Define random variables Zi as in Algorithm 1. We obviously have E[Zi] =
∥D1∥1 ∈ [0, 1]. Since all Zis’ are independent, a Chernoff bound ensures

Pr
[∣∣∣Ẑ − ∥D1∥1

∣∣∣ ≤ ϵ
]

≥ 1 − 2e−2m′/ϵ2
, (2)

which is at least 3/4 by an appropriate choice of m′.
Note drawing samples from p0 implicitly by post-selecting the output qubit to be 0.

However, due to the inner product’s symmetry and ∥D0∥1 + ∥D1∥1 = 1, there must exist
i ∈ {0, 1} such that ∥Di∥1 ≥ 1/2. Hence, the required sample complexity will be enlarged
merely by a factor of 2.

Let us also define random variables Xi as in Algorithm 1. W.L.O.G. assume that ∥D1∥1 ≥
1/2 ≥ ∥D0∥1. By Equation (1), we obtain Ei∼D1/∥D1∥1

[Xi] = ∥|D0⟩ + |D1⟩∥2
2 /2 ∥D1∥1.

Because the Xi’s are independent and takes value in [1/2, 1], by Chernoff bound,

Pr
[∣∣∣∣∣X̂ −

∥|D0⟩ + |D1⟩∥2
2

2∥D1∥1

∣∣∣∣∣ ≤ ϵ

]
≥ 1 − 2e−2m/ϵ2

. (3)

Therefore, by our choice of m, X̂ is an ϵ-additive approximation of ∥|D0⟩ + |D1⟩∥2
2 /2 ∥D1∥1

with probability at least 3/4. Note that Xi, Zi are independent, we obtain E
[
X̂Ẑ

]
=

1
2 ∥|D0⟩ + |D1⟩∥2

2. Hence, notice 1/2 ≤ ∥D1∥1 ≤ 1 and 1/2 ≤ 1
2 ∥|D0⟩ + |D1⟩∥2

2 ≤ 1, by
combining Equations (2) and (3), we obtain with probability 9/16:

X̂Ẑ ≤
(

∥|D0⟩+|D1⟩∥2
2

2∥D1∥1
+ ϵ
)

(∥D1∥1 + ϵ) ≤ 1
2 ∥|D0⟩ + |D1⟩∥2

2 + ϵ2 + ϵ + 2ϵ ≤ 1
2 ∥|D0⟩ + |D1⟩∥2

2 + 4ϵ;

X̂Ẑ ≥
(

∥|D0⟩+|D1⟩∥2
2

2∥D1∥1
− ϵ
)

(∥D1∥1 − ϵ) ≥ 1
2 ∥|D0⟩ + |D1⟩∥2

2 + ϵ2 − ϵ − 2ϵ ≥ 1
2 ∥|D0⟩ + |D1⟩∥2

2 − 4ϵ.
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4:10 StoqMA Meets Distribution Testing

It implies that Pr
[∣∣∣X̂Ẑ − 1

2 ∥|D0⟩ + |D1⟩∥2
2

∣∣∣ ≤ 4ϵ
]

≥ 9/16. We thereby conclude that

If 1
2 ∥|D0⟩ + |D1⟩∥2

2 ≥ a, then X̂Ẑ ≥ a− 4ϵ and T outputs ACCEPT w.p. at least 9/16.
If 1

2 ∥|D0⟩ + |D1⟩∥2
2 ≤ b, then X̂Ẑ ≤ b+ 4ϵ and T outputs ACCEPT w.p. at most 7/16.

Furthermore, the algorithm T makes m′ + 2m calls for SD and m calls for QD . ◀

It is worthwhile to mention that this construction in the proof of Theorem 15 is optimal
regarding the sample complexity, as Theorem 7 stated in [14].

Finally, we complete the proof of Theorem 15 by Lemma 18.

Proof of Theorem 15. Given an eStoqMA(a, b) verifier Vx, we here construct a MA verifier
V ′

x that follows from Algorithm 1 in the proof of Lemma 18:

(1) For each call to the sample oracle SDw , we run the eStoqMA verifier Vx (without measuring
the output qubit) with the witness w, and draw samples by performing measurements:

For samples si (1 ≤ i ≤ m) from distribution D, measure all qubits utilized by the
verification circuit in the computational basis;
For samples oj (1 ≤ j ≤ m′) from distribution Dout, measure the designated output
qubit in the computational basis.

(2) For each call to the query oracle QDw
with index i, find the corresponding index i′ at the

beginning by performing the permutation associated with V †
x on i, and then evaluate the

value Dw(i′′)/Dw(i′) by utilizing the given algorithm associated with this easy witness,
where i′′ is given by flipping the first bit of i′.

(3) Compute an empirical estimation of 1
2 ∥|D0⟩ + |D1⟩∥2

2 as Algorithm 1, and then decide
whether Vx accepts w.

The circuit size of V ′
x is a polynomial of |x| since both sample and query complexity

are efficient. We thus conclude that the new MA verifier V ′
x is efficient, and only requires

O
(
1/(a− b)2) copies of the witness w, which finishes the completeness case.
For the soundness case, the acceptance probability pacc of the eStoqMA verifier Vx for

all witnesses is obviously upper-bounded by b, regardless of whether such a witness is easy
or not. Furthermore, entangled witnesses are useless since we draw samples by performing
measurements separately. Hence, the maximum acceptance probability of the new MA verifier
V ′

x is also at most b. ◀

3.2 StoqMA with perfect completeness is in eStoqMA
We here complete proof of Proposition 16. By Theorem 15, it infers StoqMA1 ⊆ MA.

Proof of Proposition 16. By Theorem 31, we know that SetCSP0,1/poly is
StoqMA1-complete, so it suffices to show that SetCSP0,1/poly is contained in eStoqMA1.

By Lemma 35, given a SetCSP0,b instance C, we can construct a StoqMA (1, 1 − b/2)
verifier. The corresponding subset S ⊆ {0, 1}n, where S satisfies all set-constraints of C, is
an optimal witness. It is left to show that this subset states is an easy witness.

We achieve the proof by inspection. Let S be the set of all good strings of C, then
set-unsat(C, S) = 0. Note x ∈ S is a good string of C iff x is a good string of all set-
constraints Ci(1 ≤ i ≤ m), the membership of S thus can be decided efficiently, which infers
the subset state |S⟩ is easy witness by Remark 14. ◀
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3.3 Limitations of classical-witness StoqMA
As we have shown StoqMA with easy witness is contained in MA. What about classical
witness, namely cStoqMA? In fact, we could show such a containment that preserves both
completeness and soundness parameters.

▶ Proposition 19 ([23]). For any 1/2 ≤ b < a ≤ 1 and a− b ≥ 1/poly(n), cStoqMA(a, b) ⊆
MA(2a− 1, 2b− 1).

Proof Sketch. We only illustrate the intuition: for any s ∈ {0, 1}n and any reversible
circuit U , we have ⟨s|U† |+⟩ ⟨+|1 U |s⟩ = 1

2 + 1
2 ⟨s|U†X1U |s⟩ since |+⟩ ⟨+| = 1

2 (X + I). The
detailed proof is left in Appendix A.1. ◀

The proof of Proposition 19 immediately infers the precise variant of StoqMA with
classical witnesses, where the completeness-soundness gap is exponentially small, is equal
to PreciseMA. However, the proof of Theorem 15 no longer works for precise scenarios,
indicating that StoqMA with classical witness seems not interesting.

Furthermore, it is not hard to see that classical witness is optimal for StoqMA1 verifier7.
However, it does not mean that a classical witness is optimal for any StoqMA1 verifier. In
fact Appendix A.2 provides a simple counterexample by considering an identity as a verifier.
However, this impossibility result is unknown for easy witness yet.

4 Complexity of reversible circuit distinguishability

This section will concentrate on the complexity classification of distinguishing reversible
circuits, namely given two efficient reversible circuits, and decide whether there is a non-
negative state that cannot tell one from the other. With ancillary random bits, this problem
is StoqMA-complete, as Theorem 22. However, this problem’s exact variant, namely assuming
two reversible circuits are indistinguishable with respect to any non-negative witness for
no instances (viz., StoqMA with perfect soundness), is NP-complete (see Proposition 23).
Moreover, Theorem 22 also implies that distinguishing reversible circuits without any ancillary
random bit is NP-complete, which signifies a simplified proof of [27].

4.1 Reversible circuit distinguishability is StoqMA-complete
We begin with the formal definition of the Reversible Circuit Distinguishability problem.

▶ Definition 20 (Reversible Circuit Distinguishability). Given a classical description of two
reversible circuits C0, C1 (using Toffoli, CNOT, X gates) on n := nw +n0 +n+ qubits, where
nw is the number of qubits of a non-negative state witness |w⟩, n0 is the number of |0⟩
ancillary qubits, and n+ is the number of |+⟩ ancillary qubits. Let the resulting state before
measuring the output qubit be |Ri⟩ := Ci |w⟩

∣∣0̄〉 |+̄⟩, i ∈ {0, 1}. Promise that C0 and C1 with
respect to witness state(s) are either α-indistinguishable or β-distinguishable, decide whether

Yes (α-indistinguishable): there exists a non-negative witness |w⟩ such that ⟨R0|R1⟩ ≥ α;
No (β-distinguishable): for any non-negative witness |w⟩, then ⟨R0|R1⟩ ≤ β;

where α− β ≥ 1/poly(n)8.

7 By combining StoqMA1 ⊆ MA1 and the gadget in the proof of Proposition 36, we could construct a
StoqMA1 verifier such that a classical witness is optimal.

8 Note ⟨R0|R0⟩ = ⟨R1|R1⟩ = 1 which differs from ⟨D0|D0⟩ + ⟨D1|D1⟩ = 1 previously used in Section 3,
we obtain that the acceptance probability pacc = 1

2 + 1
2 ⟨R0|R1⟩ = 1 − 1

2 · 1
2 ∥ |R0⟩ − |R1⟩ ∥2

2.
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4:12 StoqMA Meets Distribution Testing

Since Definition 20 seems slightly inconsistent with known results regarding distinguishing
circuits [26, 27, 37], it is worthwhile to mention a slightly different version (see Remark 21)
of Definition 20, which is co-StoqMA-complete.

▶ Remark 21 (Equivalence Check of Reversible Circuits is co-StoqMA-complete). Consider the
same scenario in Definition 20, and the task is checking whether C0 and C1 are approximately
equivalent (with respect to witness states). More concretely, decide whether ⟨R0|R1⟩ ≥ α

for any |w⟩; or there exists |w⟩ such that ⟨R0|R1⟩ ≤ β. The co-StoqMA-completeness
straightforwardly follows from the constructions in the proof of Theorem 22.

Now we state the main theorem in Section 4.

▶ Theorem 22 (Reversible Circuit Distinguishability is StoqMA-complete). For any α− β ≥
1/poly(n), (α, β)-Reversible Circuit Distinguishability is StoqMA (1/2 + α/2, 1/2 + β/2)-
complete.

We will then proceed with an intuitive explanation regarding proof of Theorem 22.

Proof Intuition. The StoqMA-containment proof is inspired by the SWAP test for distin-
guishing two quantum states [13], since it could be thought of as a StoqMA verification
circuit with the maximum acceptance probability 1. We below provide a procedure (see
Figure 1) to distinguish two reversible circuits C0, C1 using a non-negative witness, and such
a procedure is apparently a StoqMA verifier. The StoqMA-hardness proof is straightforward:
replacing C0 and C1 by identity and V †

xX1Vx (see Figure 2), respectively, where Vx is the
given StoqMA verification circuit.

|+⟩|+⟩ X

|w⟩

C0 C1
∣∣0̄〉
|+̄⟩

Figure 1 RCD is in StoqMA.

|+⟩|+⟩

|w⟩

V †
xX1Vx

∣∣0̄〉
|+̄⟩

Figure 2 RCD is StoqMA-hard.

Now we proceed with the technical details.

Proof of Theorem 22. We first show (α, β)-RCD is StoqMA (1/2 + α/2, 1/2 + β/2)-hard.
Consider a StoqMA verifier Vx as Figure 2, let C0 := V †

xX1Vx where the X gate in the middle
acts on the output qubit, and let C1 be identity. Then for any witness |w⟩, we obtain:

Pr [Vx accepts |w⟩] = ⟨w|
〈
0̄
∣∣ ⟨+̄|

(
V †

x |+⟩ ⟨+|1 Vx

)
|w⟩
∣∣0̄〉 |+̄⟩ ;

⟨R0|R1⟩ = ⟨w|
〈
0̄
∣∣ ⟨+̄|

(
V †

xX1Vx

)
|w⟩
∣∣0̄〉 |+̄⟩ .

(4)

Note that |+⟩ ⟨+| = (X + I)/2, we thereby complete the StoqMA-hardness proof by Equa-
tion (4): Pr [Vx accepts |w⟩] = 1/2 + ⟨R0|R1⟩/2.

Now it is left to show the StoqMA (1/2 + α/2, 1/2 + β/2) containment of (α, β)-RCD.
Given reversible circuits C0, C1, we construct a StoqMA verifier as Figure 1. Hence, we
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obtain the state before measuring the output qubit (viz. the red dash line):

Ctrl−C1 ·X1 · Ctrl−C0

(
|0⟩ + |1⟩√

2
⊗ |w⟩

∣∣0̄〉 |+̄⟩
)

= 1√
2

|0⟩ |R0⟩ + 1√
2

|1⟩ |R1⟩ := |RHS⟩ .

We thus complete the StoqMA-containment proof:
Pr [Vx accepts |w⟩] = ∥|+⟩ ⟨+|1 |RHS⟩∥2

2 = 1/2 + ⟨R0|R1⟩/2. ◀

4.2 Exact Reversible Circuit Distinguishability is NP-complete
We will prove that the exact variant of the Reversible Circuit Distinguishability is NP-
complete. Moreover, it will signify that StoqMA with perfect soundness (even the gap
between thresholds α, 1/2 is arbitrarily small) is in NP.

▶ Proposition 23 (Exact RCD is NP-complete). Exact Reversible Circuit Distinguishability
(RCD), namely (α, 0)-Reversible Circuit Distinguishability for any 0 ≤ α < 1, is NP-complete.

Proof Sketch. It suffices to show an NP containment. By an analogous idea in [21], we
could find two matched pairs (s, r) and (s′, r′) as classical witness, where s, s′ are indices
of non-zero coordinates in the given witness, and r, r′ are random bit strings. Specifically,
for yes instances, there exist two such pairs such that the resulting strings C0(s, r) 9 and
C1(s′, r′) are identical; whereas it is evident that no matched pairs exist for no instances.
The details are left in Appendix A.3. ◀

As a corollary, Proposition 23 will imply StoqMA with perfect soundness is in NP:

▶ Corollary 24 (StoqMA with perfect soundness is in NP).
⋃

a>1/2 StoqMA
(
a, 1

2
)

= NP.

StoqMA without any ancillary random bit is in NP. In fact, distinguishing reversible
circuits without any ancillary random bit is NP-complete. By analogous reasoning, we
also provide an alternating proof of Strong Equivalence of Reversible Circuits is co-NP-
complete [27]. We leave the detailed proof in Appendix A.4.

5 Soundness error reduction of StoqMA

In this section, we will partially solve Conjecture 6 by providing a procedure that reduces
the soundness error of any StoqMA verifier.

▶ Theorem 25 (restated of Theorem 5). For any r = poly(n),

StoqMA
(

1
2 + a

2 ,
1
2 + b

2

)
⊆ StoqMA

(
1
2 + ar

2 ,
1
2 + br

2

)
.

Consequently, Theorem 25 infers a direct error reduction for StoqMA1 by choosing
appropriate parameters a, b, r.

▶ Corollary 26 (Error reduction of StoqMA1). For any s such that 1/2 ≤ s ≤ 1 and
1 − s ≥ 1/poly(n), StoqMA(1, s) ⊆ StoqMA (1, 1/2 + 2−n) .

Proof. Choosing a, b such that 1 = 1/2+a/2 and s = 1/2+b/2, we have a = 1 and b = 2s−1.
By Theorem 25, we obtain StoqMA

( 1
2 + 1

2 · 1, 1
2 + 1

2 (2s− 1)
)

⊆ StoqMA
(
1, 1

2 + 1
2 (2s− 1)r

)
.

To finish the proof, it remains to choose a parameter r such that r ≥ (n+1)/ log2 (1/(2s− 1)),
since (2s− 1)r/2 ≤ 2−n implies that 2−r log2(1/(2s−1))−1 ≤ 2−n. ◀

9 A reversible circuit takes (s, r) as an input, and permutes it to the other binary string as the output.
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. . . |+⟩

. . .

. . .

. . .

. . .

. . .

. . .

|+⟩

∣∣w(1)〉
V †

xX1Vx

∣∣0̄〉
|+̄⟩

∣∣w(r)〉
V †

xX1Vx

∣∣0̄〉
|+̄⟩

Figure 3 AND-type repetition procedure of a StoqMA verifier.

5.1 AND-type repetition procedure of a StoqMA verifier

Proof Intuition. The main idea is doing a parallel repetition of a StoqMA verifier Vx,
and taking the conjunction (viz., AND) of the outcomes cleverly. More concretely, given a
StoqMA verification circuit Vx where x is in L ∈ StoqMA, we result in a new StoqMA verifier
by separately substituting an identity and V †

xX1Vx for C0, C1 (as Figure 2). Notice the
acceptance probability of a StoqMA verifier’s non-negative witness |w⟩, Pr [Vx accepts |w⟩] =
1
2 + 1

2 ⟨D0|D1⟩, is linearly dependent to an inner product between states associated with two
distributions D0, D1 where |D0⟩ := |w⟩

∣∣0̄〉 |+̄⟩ and |D1⟩ := Vx |w⟩
∣∣0̄〉 |+̄⟩. We could then

take advantage of this new StoqMA verifier by running r = poly(|x|) copies of these reversible
circuits parallelly with the same target qubit, which is denoted as V ′

x (see Figure 3).
For yes instances, it follows that an inner product of two tensor products of distributions

is equal to the product of inner products of states associated with these distributions, namely,
Pr [V ′

x accepts |w⟩] = 1
2 + 1

2 ⟨D0|D1⟩r. However, it seems problematic for no instances, since
a dishonest prover probably wants to cheat with an entangled witness instead of a tensor
product among repetitive verifiers. We resolve this issue by an observation used in the QMA
error reduction [30]: the maximum acceptance probability of a verifier Vx is the same as the
maximum eigenvalue of a projection Π0V

†
x Π1VxΠ0 where Π1 is the final measurement on

the designated output qubit and Π0 :=
∣∣0̄〉 〈0̄∣∣⊗ |+̄⟩ ⟨+̄|. Eventually, an entangled witness

will not help a dishonest prover. This is because the maximum eigenvalue of the tensor
product of the projection Π0V

†
x Π1VxΠ0 is also the product of the maximum eigenvalue of

this projection.
Finally, we proceed with the proof of Theorem 25.

Proof of Theorem 25. Given a promise problem L = (Lyes,Lno) ∈ StoqMA(1/2+a/2, 1/2+
b/2). For any input x ∈ L, we have a StoqMA verifier Vx which is equivalent to a new StoqMA
verifier Ṽx as Figure 2, by the StoqMA-hardness proof of reversible circuit distinguishability
as Theorem 22. Namely, Ṽx is starting on a |+⟩ ancillary qubit, applying a controlled-unitary
V †

xX1Vx on nw + n0 + n+ qubits, and measuring the designated output qubit.
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Let |Rw⟩ := |w⟩
∣∣0̄〉 |+̄⟩ where |w⟩ is a witness, we obtain∥∥∥∥|+⟩ ⟨+|1

(
1√
2

|0⟩ ⊗ |Rw⟩ + 1√
2

|1⟩ ⊗
(
V †

xX1Vx

)
|Rw⟩

)∥∥∥∥2

2
= ∥ |+⟩ ⟨+|1 Vx |Rw⟩ ∥2

2. (5)

By an observation used in the QMA error reduction, namely Lemma 14.1 in [30], we
notice that the maximum acceptance probability of a StoqMA verifier Vx is proportion to
the maximum eigenvalue of a matrix Mx :=

〈
0̄
∣∣ ⟨+̄|V †

xX1Vx

∣∣0̄〉 |+̄⟩ associated with Vx:

Pr [Vx accepts |w⟩] = 1
2 + 1

2 max
|w⟩

Tr(Mx |w⟩ ⟨w|) = 1
2 + 1

2λmax(Mx). (6)

AND-type repetition procedure of a StoqMA verifier. We now construct a new StoqMA
verifier V ′

x using r copies of the witness |w⟩ on r(nw + n0 + n+) + 1 qubits. As Figure 3, V ′
x

is starting from a |+⟩ ancillary qubit as a control qubit, then applying controlled-unitary
V †

xX1Vx on qubits associated with different copies of the witness
∣∣w(i)〉 for any 1 ≤ i ≤ r.

By an analogous calculation of Equation (5), we have derived the acceptance probability
of a witness w(1) ⊗ · · · ⊗ w(k) of the new StoqMA verifier V ′

x:

Pr
[
V ′

x accepts
(
w(1) ⊗ · · · ⊗ w(r)

)]
= 1

2 + 1
2Tr

(∣∣∣w(i)
〉〈

w(i)
∣∣∣M⊗r

x

)
,

where Mx is defined in Equation (6). Hence, the maximum acceptance probability of V ′
x:

max
|w′⟩

Pr [V ′
x accepts |w′⟩] = 1

2 + 1
2λmax

(
M⊗r

x

)
= 1

2 + 1
2 (λmax(Mx))r

, (7)

where the second equality thanks to the property of the tensor product of matrices. Equa-
tion (7) indicates that entangled-state witnesses are harmless since any entangled-state
witness’ acceptance probability is not larger than a tensor-product state witness’.

Finally, we complete the proof by analyzing the maximum acceptance probability of the
new StoqMA verifier V ′

x regarding the promises: For yes instances, we obtain λmax(Mx) ≥ a

since there exists |w⟩ such that Pr [Vx accepts |w⟩] ≥ 1/2 + a/2. By Equation (7), we have
derived Pr

[
V ′

x accepts |w⟩⊗r
]

= 1
2 + 1

2 (λmax(Mx))r ≥ 1
2 + ar

2 . For no instances, we have
λmax(Mx) ≤ b since Pr [Vx accepts |w⟩] ≤ 1/2 + b/2 for all witness |w⟩. By Equation (7), we
further deduce ∀w′,Pr [V ′

x accepts |w′⟩] = 1
2 + 1

2 (λmax(Mx))r ≤ 1
2 + br

2 . ◀
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A Missing proofs

A.1 Proof of Proposition 19: cStoqMA ⊆ MA
Proof of Proposition 19. Given a cStoqMA verifier Vx on n = n′ +n0 +nw qubits where n′

is the number of qubits of a witness, we construct a new MA verifier Ṽx on n = n′ + n0 + nw

qubits: first run the verification circuit Vx (without measuring the output qubit), then apply
an X gate on the output qubit, after that run the verification circuit’s inverse V †

x , finally
measure the first n′ + n0 qubits in the computational basis; Ṽx accepts iff the first n′ bits of
the measurement outcome is exactly s1 · · · sn′ and the remained bits are all zero.

We then calculate the acceptance probability of a classical witness |s⟩ of a cStoqMA
verifier Vx, where w = w1 · · ·wn′ ∈ {0, 1}n′ . Notice |+⟩ ⟨+| = 1

2 (I +X), we obtain

Pr [Vx accepts s] = ∥ |+⟩ ⟨+|1 Vx |s⟩
∣∣0̄〉 |+̄⟩ ∥2

2

= 1
2 + 1

2 ⟨s|
〈
0̄
∣∣ ⟨+̄|V †

x (X ⊗ In−1)Vx |s⟩
∣∣0̄〉 |+̄⟩ .

(8)

By a direct calculation, the acceptance probability of a classical witness |s⟩ of Ṽx:

Pr
[
Ṽx accepts s

]
= ⟨R|R⟩ where |R⟩ :=

(
⟨s|
〈
0̄
∣∣⊗ In+

)
V †

x (X ⊗ In−1)Vx |s⟩
∣∣0̄〉 |+̄⟩ . (9)
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It is evident that |R⟩ is a subset state and supp(|R⟩) ⊆ {0, 1}n+ . Together with Equations
(8) and (9), we have completed the proof by noticing Pr [Vx accepts s] = 1

2 + 1
2 ⟨+̄|R⟩ =

1
2 + 1

2 ⟨R|R⟩ = 1
2 + 1

2 Pr
[
Ṽx accepts s

]
. ◀

Could we extend Proposition 19 from a classical witness to a probabilistic witness∑
si

√
D(i) |si⟩ with a polynomial-size support10? Notice that the crucial equality ⟨+̄| |R⟩ =

⟨R|R⟩ utilized in Proposition 19 does not hold anymore, we need an efficient evaluation
algorithm calculating D(i) given an index i. Moreover, we have to calculate each coordinate’s
contribution on the acceptance probability separately, so the accumulated additive error is
still supposed to be inverse-polynomial, which indicates the support size of this probabilistic
witness is negligible for some polynomial.

A.2 Classical witness is not optimal for any StoqMA1 verifier
▶ Proposition 27. Classical witness is not optimal for any StoqMA1 verifier.

Proof. Consider a StoqMA1 verifier Vx that uses only identity gates, then
(1) For all classical witness si ∈ {0, 1}nw , Pr [Vx accepts si] = 1

2 since ⟨R0|R1⟩ = 0 where
the resulting state before the measurement is |0⟩ ⊗ |R0⟩ + |1⟩ ⊗ |R1⟩.

(2) For any classical witness si, sj ∈ {0, 1}nw such that si and sj are identical except for the
first bit, one can construct a witness |s⟩ = 1√

2 |si⟩ + 1√
2 |sj⟩, Pr [Vx accepts s] = 1 since

⟨R0|R1⟩ = 1.
We thus conclude that classical witness is not optimal for this StoqMA1 verifier. ◀

A.3 Proof of Proposition 23: Exact RCD is NP-complete
Proof of Proposition 23. Exact RCD is NP-hard, namely NP ⊆ StoqMA (1, 1/2), straight-
forwardly follows from the proof of Proposition 36. It suffices to prove that the exact
RCD is in NP. By Theorem 22, (2α − 1, 0)-RCD is StoqMA (α, 1/2)-complete. Let |w⟩
be an nw-qubit non-negative witness such that |w⟩ :=

∑
si∈supp(w)

√
Dw(si) |si⟩, then

Pr [Vx accepts |w⟩] = 1
2 + 1

2 ⟨R0|R1⟩ = 1
2 + 1

2 ⟨w|
〈
0̄
∣∣ ⟨+̄|C†

0C1 |w⟩
∣∣0̄〉 |+̄⟩ .

For yes instances, note that ⟨R0|R1⟩ = 2α− 1 and α > 1/2, we have derived

⟨R0|R1⟩ =
∑

si,sj∈supp(w)

∑
r,r′∈{0,1}n+

√
Dw(si)Dw(sj)

2n+
⟨si|

〈
0̄
∣∣ ⟨r|C†

0C1 |sj⟩
∣∣0̄〉 |r′⟩ > 0. (10)

Since ∀si, sj , Dw(si)Dw(sj) ≥ 0, there exists si, sj ∈ supp (w) and r, r′ ∈ {0, 1}n+ such that

⟨si|
〈
0̄
∣∣ ⟨r|C†

0C1 |sj⟩
∣∣0̄〉 |r′⟩ = 1. (11)

For no instances, combining ⟨R0|R1⟩ = 0 and Equation (10), it infers

∀si, sj ∈ supp (w) ,∀r, r′ ∈ {0, 1}n+ , ⟨si|
〈
0̄
∣∣ ⟨r|C†

0C1 |sj⟩
∣∣0̄〉 |r′⟩ = 0. (12)

We eventually construct an NP verifier as follows. The input is the classical description
of two reversible circuits C0 and C1, and the witness is two pairs of binary strings (s0, r0)
and (s1, r1). The verifier accepts iff C0(s0, 0n0 , r0) and C1(s1, 0n0 , r1) are identical where
Ci(i = 0, 1) takes (si, 0n0 , ri) as an input and permutes it as the output. Notice these strings
s0, r0, s1, r1 exists for yes instances owing to Equation (11), whereas they do not exist for no
instances due to Equation (12), which achieves the proof. ◀

10 Such witnesses are clearly easy witnesses, but not all easy witnesses have polynomial-bounded size
support. See the explicit construction in Section 3.2 as an example.
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A.4 StoqMA without any ancillary random bit is in NP
▶ Proposition 28. StoqMA without any ancillary random bit is NP-complete.

Proof. It suffices to show that StoqMA without any ancillary random bit (viz. ancillary
qubits which is initially |+⟩) is in NP. As a straightforward corollary of Theorem 22,
distinguishing reversible circuits without |+⟩ ancillary qubit is complete for StoqMA without
|+⟩ ancillary qubit, which is essentially NP according to Section 2.2.

Consider reversible circuits C0 and C1 act on nw + n0 qubits where n0 is the number of
|0⟩ ancillary qubits, we observe that if C0 and C1 are not distinguishable with respect to
any classical witness, then ∃s ∈ {0, 1}nw , ⟨s|

〈
0̄
∣∣C†

0C1 |s⟩
∣∣0̄〉 = 1 since reversible circuits C0

and C1 are bijections. Otherwise, it is evident that ∀w, ⟨w|
〈
0̄
∣∣C†

0C1 |w⟩
∣∣0̄〉 = 0 provided C0

and C1 are distinguishable with respect to any witness. It is thus sufficient to only consider
classical witnesses for distinguishing C0 and C1, namely, classical witness is optimal.

Now we provide an NP verifier. The input is the classical description of two reversible
circuits C0 and C1, and the witness is a nw-bit string s. The verifier accepts iff C0(s, 0n0)
is identical to C1(s, 0n0). Note by inspection, the analysis is completed by above showing
classical witness is optimal, which finishes the proof. ◀

By analogous reasoning, we provide an alternating proof of [27] with respect to the variant
of RCD defined in Remark 21.

▶ Proposition 29. Equivalence check of reversible circuits without any ancillary random bit
is co-NP-complete.

Proof. Consider reversible circuits C0, C1 act on nw +n0 qubits, we observe that if C0 and C1
are not exactly equivalent, then ∃s ∈ {0, 1}nw , ⟨s|

〈
0̄
∣∣C†

0C1 |s⟩
∣∣0̄〉 = 0 since reversible circuits

C0 and C1 are essentially bijections. Otherwise, it is evident that ∀w, ⟨w|
〈
0̄
∣∣C†

0C1 |w⟩
∣∣0̄〉 = 1

provided C0 and C1 are exactly equivalent. Therefore, classical witness is optimal, and the
remained proof follows from the proof of Proposition 28. ◀

B SetCSP0,1/poly is StoqMA1-complete

We start from the definition of SetCSP with frustration:

▶ Definition 30 (k-SetCSPϵ1,ϵ2 , adapted from Section 4.1 in [3]). Given a sequence of k-local
set-constraints C = (C1, · · · , Cm) on {0, 1}n, where k is a constant, n is the number of
variables, and m is a polynomial of n. A set-constraint Ci acts on k distinct elements of
[n], and it consists of a collection Y (Ci) = {Y (i)

1 , · · · , Y (i)
li

}of disjoint subsets Y (i)
j ⊆ {0, 1}k.

Promise that one of the following holds, decide whether
Yes: There exists a subset S ⊆ {0, 1}n s.t. set-unsat(C, S) ≤ ϵ1(n);
No: For any subset S ⊆ {0, 1}n, set-unsat(C, S) ≥ ϵ2(n),

where ϵ1 and ϵ2 are efficiently computable function and ϵ2 − ϵ1 ≥ 1/poly(n).

Now we briefly define a SetCSP instance C’s frustration. We leave the formal definition in
Proposition 34. The frustration of a set-constraint C regarding a subset S is set-unsat(C, S) =
1
m

∑m
i=1 set-unsat(Ci, S) = 1

m

∑m
i=1

(
|Bi(S)|

|S| + |Li(S)|
|S|

)
, where Bi(S) is the set of bad strings

of Ci, namely ∀s ∈ Bi(S), s|supp(Ci) /∈ ∪li
j=1Y

(i)
j ; And Li(S) is the set of longing strings of

the subset S regarding Ci.
We will prove Theorem 31 in the remainder of this section.

▶ Theorem 31. SetCSPnegl,1/poly is StoqMA1−negl-complete.
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B.1 SetCSPnegl,1/poly is StoqMA(1 − negl, 1/poly)-hard
To prove Theorem 31, we will first show that SetCSP0,1/poly is StoqMA1-hard.

▶ Proposition 32 (SetCSP is hard for StoqMA(1 − negl, 1/poly)). For any super-polynomial
q(n) and polynomial q1(n), there exists a polynomial q2(n) such that SetCSP1/q(n),1/p2(n) is
hard for StoqMA (1 − 1/q(n), 1/p1(n)).

Proof. The StoqMA (1 − 1/q(n), 1/p1(n))-hardness proof is straightforwardly analogous to
the circuit-to-Hamiltonian construction used in MA-hardness proof of SetCSP in [3]. The only
difference is replacing Y (Cout) = {{00}, {01}, {11}} by Y (Cout) = {{00}, {01}, {10, 11}} in
Section 4.4.2, since the final measurement on the (T + 1)-qubit is on the Hadamard basis
instead of the computational basis. The rest of the proof follows from an inspection of Section
4.4 in [3]. ◀

Then Corollary 33 is an immediate corollary of Proposition 32 by substituting 0 for
1/q(n):

▶ Corollary 33. SetCSP0,1/poly is StoqMA1-hard.

B.2 SetCSPa,b is in StoqMA(1 − a/2, 1 − b/2)

It now remains to show a StoqMA1 containment of SetCSP0,1/poly. We will complete the
proof by mimicking the StoqMA containment of the stoquastic local Hamiltonian problem in
Section 4 in [9]. The starting point is an alternating characterization of the frustration of a
set-constraint Ci in a SetCSP instance C. The proof of Proposition 34 is deferred in the end
of this section.

▶ Proposition 34 (Local matrix associated with set-constraint). For any k-local set-constraint
Ci(1 ≤ i ≤ m), given a subset S ⊆ {0, 1}n, the frustration

set-unsat(Ci, S) = 1 −
|Y (Ci)|∑

j=1

∑
x,y∈Y

(i)
j

1
|Y (i)

j
|
⟨S| (|x⟩ ⟨y| ⊗ In−k) |S⟩.

Now we state the StoqMA containment of SetCSP, as Lemma 35.

▶ Lemma 35. For any 0 ≤ a < b ≤ 1, SetCSPa,b ∈ StoqMA (1 − a/2, 1 − b/2). Moreover,
for a subset S ⊆ {0, 1}n such that S = argminS′ set-unsat(C, S′), the subset state |S⟩ is an
optimal witness of the resulting StoqMA verifier.

The proof of Lemma 35 tightly follows from Section 4 in [9]. We here provide a somewhat
simplified proof using the SetCSP language by avoiding unnecessary normalization.

Proof of Lemma 35. Given a SetCSPa,b instance C = (C1, · · · , Cm). For each set-
constraint Ci(1 ≤ i ≤ m), we first construct a local Hermitian matrix Mi preserves the
frustration, then construct a family of StoqMA verifiers for such a Mi. For any set-constraint
Ci, we obtain a k-local matrix Mi by Proposition 34 such that for any subset S ⊆ {0, 1}n:

set-unsat(Ci, S) = 1 − ⟨S|Mi ⊗ In−k|S⟩ where Mi =
|Y (Ci)|∑

j=1

∑
x,y∈Y

(i)
j

1
|Y (i)

j |
|x⟩ ⟨y| . (13)
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Moreover, for a set Y (i)
j of strings associated with the set-constraint Ci, we further have∑

x,y∈Y
(i)

j

|x⟩ ⟨y| =
∑

x∈Y
(i)

j

|x⟩ ⟨x| + 1
2

∑
x ̸=y∈Y

(i)
j

(|x⟩ ⟨y| + |y⟩ ⟨x|)

=
∑

x∈Y
(i)

j

Vx |0⟩ ⟨0|⊗k
V †

x + 1
2

∑
x ̸=y∈Y

(i)
j

Vx,y

(
X ⊗ |0⟩ ⟨0|⊗k−1

)
V †

x,y,

(14)

where Vx is a depth-1 reversible circuit with X such that ∀x, |x⟩ = Ux

∣∣0k
〉
, and Vx,y is a

O(k)-depth reversible circuit with CNOT and X such that ∀x, y, Ux,y

∣∣0k
〉 ∣∣10k−1〉U†

x,y.
Notice that the resulting local observables in Equation (14) are either |0⟩ ⟨0|⊗k (i.e. a single-

qubit computational-basis measurement) or X ⊗ |0⟩ ⟨0|⊗k−1 (i.e. a single-qubit Hadamard-
basis measurement). To construct a StoqMA verifier, we only allow local observables in form
X ⊗ I⊗O(k). Namely, we are supposed to simulate a computational-basis measurement by
ancillary qubits and a Hadamard-basis measurement, which is achieved by Proposition 36.

▶ Proposition 36 (Adapted from Lemma 3 in [9]).
(1) For any integer k, there exists an O(k)-depth reversible circuit W using k |0⟩ ancillary

qubits and a |+⟩ ancillary qubits s.t.

∀ |ψ⟩ , ⟨ψ| |0⟩ ⟨0|⊗k |ψ⟩ = ⟨ψ| ⟨0|⊗k ⟨+|W † (X ⊗ I⊗2k
)
W |ψ⟩ |0⟩⊗k |+⟩ .

(2) For any integer k, there exists an O(k)-depth circuit V using k − 1 |0⟩ ancillary qubits
s.t.

∀ |ψ⟩ , ⟨ψ|X ⊗ |0⟩ ⟨0|⊗k−1 |ψ⟩ = ⟨ψ| ⟨0|⊗k−1
W † (X ⊗ I⊗2k−2)W |ψ⟩ |0⟩⊗k−1

.

It is worthwhile to mention that the gadgets used in the proof (see Section A.4 in [9]) further
provide proof of MA ⊆ StoqMA that preserves both completeness and soundness parameters.

Let Idx (Ci) be the set of indices, and let α(j,x,y) be the weight of an index (j, x, y),

Idx (Ci) :=
{

(j, x, y) : 1 ≤ j ≤ |Yi(C)|, (x, y) ∈
(

Y
(i)

j

2

)
⊔
{

(x, x) : x ∈ Y
(i)

j

}}
;

α(j,x,y) := 1
(1 + I(x ̸= y))m|Y (i)

j |
, where the indicator I(x ̸= y)) = 1 ⇔ x ̸= y.

Plugging Proposition 36 and Equation (14) into Equation (13), we have derived

1−set-unsat(Ci, S) =
∑

l∈Idx(Ci)

αl⟨S|
(

⟨0|⊗k ⟨+|U†
k

(
X ⊗ I⊗2k

)
Uk |0⟩⊗k |+⟩

)
⊗In−k|S⟩. (15)

For a SetCSP instance C = (C1, · · · , Cm), by Equation (15), by substituting |+⟩ ⟨+| =
1
2 (X + I) into Equation (15), we thus arrive at a conclusion that

Pr [Vx accepts |S⟩] = 1
m

m∑
i=1

(
1 − 1

2 · set-unsat(Ci, S)
)

= 1 − 1
2 · set-unsat(C, S). (16)

Note that the set of StoqMA verifiers Vx with the same number of input qubits and witness
qubits is linear, namely a convex combination of l StoqMA verifiers (V1, p1), · · · , (Vl, pl) can
be implemented by additional |+⟩ ancillary qubits and controlled Vi(1 ≤ i ≤ l). Therefore,
by Equation (16), we conclude that ∀a, b, SetCSPa,b is in StoqMA (1 − a/2, 1 − b/2). ◀

Finally, we achieve proof of Proposition 34:
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Proof of Proposition 34. Given a k-local set-constraint Ci, the set of good strings Gi =
⊔1≤j≤|Y (Ci)|Y

(i)
j , and the set of bad strings Bi = {0, 1}|J(Ci)| \ Gi. Also, for any subset

S{0, 1}n, the set of bad strings in S is Bi(S). By direction calculation, notice that

|Bi(S)|
|S| = ⟨S|

(∑
x∈Bi

|x⟩ ⟨x| ⊗ In−k

)
|S⟩

|Y (Ci)|∑
j=1

|L(i)
j (S)|
|S| = ⟨S|

(∑
x∈Gi

|x⟩ ⟨x| ⊗ In−k

)
|S⟩ −

|Y (Ci)|∑
j=1

∑
x,y∈Y

(i)
j

1
|Y (i)

j |
⟨S| (|x⟩ ⟨y| ⊗ In−k) |S⟩.

(17)

Plugging Equation (17) and {0, 1}|J(Ci)| = Bi ⊔ Gi into set-unsat(Ci, S) = |Bi(S)|
|S| +∑|Y (Ci)|

j=1
|L(i)

j
(S)|

|S| , we then finish the proof.
◀
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