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Abstract
In the claw detection problem we are given two functions f : D → R and g : D → R (|D| = n,
|R| = k), and we have to determine if there is exist x, y ∈ D such that f(x) = g(y). We show
that the quantum query complexity of this problem is between Ω

(
n

1/2k
1/6

)
and O

(
n

1/2+εk
1/4

)
when

2 ≤ k < n.
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1 Introduction

In this note we study the Claw problem in which given two discrete functions f : D → R

and g : D → R (|D| = n, |R| = k) we have to determine if there is a collision, i.e., inputs
x, y ∈ D such that f(x) = g(y). In contrast to the Element-Distinctness problem, where
the input is a single function f : D → R and we have to determine if f is injective, Claw is
non-trivial even when k < n. This is the setting we focus on.

Both Claw and Element-Distinctness have wide applications as useful subroutines
in more complex algorithms [5, 12] and as a means of lower bounding complexity [10, 1].

Claw and Element-Distinctness were first tackled by Buhrman et al. in 2000 [8] where
they gave an O

(
n3/4)

algorithm and Ω
(
n1/2

)
lower bound. In 2003 Ambainis, introducing a

novel technique of quantum walks, improved the upper bound to O
(
n2/3

)
in the query model

[4]. It was soon realized that a similar approach works for Claw [9, 13, 15]. Meanwhile
Aaronson and Shi showed a lower bound Ω

(
n2/3

)
that holds if the range k = Ω

(
n2)

[2].
Eventually Ambainis showed that the Ω

(
n2/3

)
bound holds even if k = n [3]. The same lower

bound has since been reproved using the adversary method [14]. Until now, only the Ω
(
n1/2

)
bound based on reduction of searching was known for Claw with k = o(n) [8].

We consider quantum query complexity of Claw where the input functions are given
as a list of their values in black box. Let Q(f) denote the bounded error quantum query
complexity of f . For a short overview of black box model refer to Buhrman and de Wolf’s
survey [7]. Let [n] denote {1, 2, . . . , n}. Let Clawn→k : [k]2n → {0, 1} be defined as

Clawn→k(x1, . . . , xn, y1, . . . , yn) =
{

1, if ∃i, j xi = yj

0, otherwise
.

Our contribution is a quantum algorithm for Clawn→k with quantum query complexity
Q(Clawn→k) = O

(
n1/2+εk1/4

)
and a lower bound Q(Clawn→k) = Ω

(
n1/2k1/6

)
. In section 2

we describe the algorithm, and in section 3 we give the lower bound.
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2 Results

▶ Theorem 1. For all ε > 0, we have Q(Clawn→k) = O
(
n1/2+εk1/4

)
.

Proof. Let X = (x1, . . . , xn), Y = (y1, . . . , yn) be the inputs of the function. We denote
k = nκ .

Consider the following algorithm parametrized by α ∈ [0, 1].
1. a. Select a random sample A = {a1, . . . , aℓ} ⊆ [n] of size ℓ = 4 · nα · ln n and query the

variables xa1 , . . . , xaℓ
.

Denote by XA = {xa | a ∈ A} the set containing their values. Do a Grover search for
an element y ∈ Y such that y ∈ XA. If found, output 1.

b. Select a random sample A′ = {a′
1, . . . , a′

ℓ} ⊆ Y of size ℓ and query the variables
ya′

1
, . . . , ya′

ℓ
.

Denote by YA′ = {ya′ | a′ ∈ A′} the set containing their values. Do a Grover search
for an element x ∈ X such that x ∈ YA′ . If found, output 1.

2. Run Claw4b ln n→k algorithm (with the value of b specified below) with the following
oracle:
a. To get xi: do a pseudorandom permutation on x1, . . . , xn using seed i and using

Grover’s minimum search return the first value xj such that xj /∈ XA.
b. To get yi: do a pseudorandom permutation on y1, . . . , yn using seed i and using

Grover’s minimum search return the first value yj such that yj /∈ XA′ .
Let B = {i ∈ [n] | xi /∈ XA}, B′ = {i ∈ [n] | yi /∈ YA′} be the sets containing the indices of
the variables which have values not seen in the steps 1a and 1b. We denote |B| = b = nβ .

Let us calculate the probability that after step 1a there exists an unseen value v which is
represented in at least n1−α variables, i.e., v /∈ XA ∧ |{i ∈ [n] | xi = v}| ≥ n1−α. Consider
an arbitrary value v∗ ∈ [k] such that |{i | xi = v∗}| ≥ n1−α. For i ∈ [ℓ], let Zi be the
event that xai = v∗. ∀i ∈ [ℓ] Pr[Zi] ≥ n1−α

n . Let Z =
∑

i∈[ℓ] Zi. Then E[Z] = ℓ · E[Z1] ≥
4 · nα · ln n · n1−α

n = 4 ln n. Using Chernoff inequality (see e.g. [11]),

Pr[Z = 0] ≤ exp
(

−1
2 E[Z]

)
≤ exp(−2 ln n) = 1

n2 .

The probability that there exists such v∗ ∈ [k] is at most nκ

n2 = o(1). Therefore, with
probability 1 − o(1) after step 1a, every value v ∈ XB is represented in the input less than
n1−α times. The same reasoning can be applied to step 1b and the set B′. Therefore, with
probability 1 − o(1) both b and b′ are at most k · n1−α = nκ+1−α.

Similarly, we show that with probability 1 − o(1) each x ∈ B appears as the first element
from B in at least one of the permutations of the oracle in step 2. Let W x

i be the event
that x ∈ B appears in the i-th permutation as the first element from B. E[W x

i ] = 1
b .

Let W x =
∑

i∈[4b ln n] W x
i . E[W x] = 4b ln n · 1

b = 4 ln n. Pr[W x = 0] ≤ exp(−2 ln n) = 1
n2 .

Pr[∃x ∈ B : W x = 0] ≤ n
n2 = 1

n = o(1). The same argument works for B′. Therefore, if there
is a collision, it will be found by the algorithm with probability 1 − o(1).

We also show that with probability 1 − o(1), in all permutations the first element from
B appears no further than in position 4n

b ln n (and similarly for B′). We denote by Pi,j

the event that in the i-th permutation in the j-th position is an element from B. E[Pi,j ] =
b
n . We denote Pi =

∑
j∈[4· n

b ·ln n] Pi,j . E[Pi] = 4 · ln n. Pr[Pi = 0] ≤ exp(−2 ln n) = 1
n2 .

Pr[∃i ∈ [4b ln n] : Pi = 0] ≤ 4b ln n
n2 ≤ 4n ln n

n2 = o(1). Therefore, the Grover’s minimum search
will use at most Õ

(√
n

nβ

)
queries.
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The steps 1a and 1b use Õ(nα) queries to obtain the random sample, and O(
√

n) queries
to check if there is a colliding element on the other side of the input. The oracle in step 2
uses Õ

(√
n

nβ

)
queries to obtain one value of xi or yi.

Therefore the total complexity of the algorithm is

Õ
(

nα + n
1
2 + Q(Claw4b ln n→k) · n

1
2 − 1

2 β
)

.

By using the O
(
n2/3

)
algorithm in step 2,

Q(Claw4b ln n→k) · n
1
2 − 1

2 β = n
2
3 β+ 1

2 − 1
2 β

= n
1
2 + 1

6 β

≤ n
1
2 + 1

6 (κ+1−α)

= n
4+κ−α

6 ,

and the total complexity is minimized by setting α = 4+κ
7 . However, we can do better

than that. Notice that the O
(
n2/3

)
algorithm might not be the best choice for solving

Claw4b ln n→k in step 2.
Let A0 denote the regular O

(
n2/3

)
Clawn→k algorithm. For i > 0, let Ai denote a

version of algorithm from Theorem 1 that in step 2 calls Ai−1. Then we show that for all n

and all 0 ≤ κ ≤ 2
3 ,

Q(Ai) = Õ
(

nTi(κ)
)

,

where Ti(κ) = (2i−1)κ+2i+1

2i+2−1 .
The proof is by induction on i. For i = 0, we trivially have that Q(A0) = Õ

(
n2/3

)
. For

the inductive step, consider the analysis of our algorithm. Let us set α = Ti(κ). First, notice
that Ti(κ) is non-decreasing in κ and Ti

( 2
3
)

= 2
3 for all i. Thus for all κ ≤ 2

3 , we have
Ti(κ) ≤ 2

3 , hence α ≤ 2
3 and κ

1−α+κ ≤ 2
3 . Second, since the coefficient of κ is 2i−1

2i+2−1 ≤ 1 the
function Ti(κ) is above κ for κ ≤ 2

3 , establishing α − κ ≥ 0. This confirms that α = Ti(κ)
is a valid choice of α.

It remains to show that the complexity of step 2 does not exceed Õ
(
nTi(κ)). By the

inductive assumption and analysis of the algorithm, the complexity (up to logarithmic factors)
of the second step is n to the power of (1 − α + κ) · Ti−1

(
κ

1−α+κ

)
+ α−κ

2 . Finally, we have
to show that

(1 − Ti(κ) + κ) · Ti−1

(
κ

1 − Ti(κ) + κ

)
+ Ti(κ) − κ

2 ≤ Ti(κ).

By expanding Ti−1(κ) and with a slight rearrangement, we obtain

(2i−1 − 1)κ + 2i(1 − Ti(κ) + κ)
2i+1 − 1 ≤ Ti(κ) + κ

2 .

We can further rearrange the required inequality by bringing Ti(κ) to right hand side and
everything else to the other. Then we get

(2i−1 − 1 + 2i − 2i+1−1
2 )κ + 2i

2i+1 − 1 ≤ Ti(κ)
(

1
2 + 2i

2i+1 − 1

)
.

After simplification we obtain (2i−1)κ+2i+1

2i+2−1 ≤ Ti(κ), which is true.
Since limi→∞

2i−1
2i+2−1 = 1

4 and limi→∞
2i+1

2i+2−1 = 1
2 , the result follows. ◀
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3 Lower Bound

We show a Ω
(
n1/2k1/6

)
quantum query complexity lower bound for Clawn→k.

▶ Theorem 2. For all k ≥ 2, we have Q(Clawn→k) = Ω
(
n1/2k1/6

)
.

Proof. Let pSearchm : (∗ ∪ [k])m → [k] be the partial function defined as

pSearchm(x1, x2, . . . , xm) =
{

xi, if xi ̸= ∗, ∀j ̸= i : xj = ∗
undefined, otherwise

.

Consider the function fn,k = Clawk→k ◦ pSearch⌊n/k⌋. One can straightforwardly reduce
fn,k(x, y) to Clawn→k+2(x′, y′) by setting

x′
i =

{
xi, if xi ̸= ∗
k + 1, if xi = ∗

and

y′
i =

{
yi, if yi ̸= ∗
k + 2, if yi = ∗

.

Now we show that Q(fn,k) = Ω
(

k2/3
√

n/k
)

= Ω
(
n1/2k1/6

)
. The fact that Q(Clawk→k) =

Ω
(
k2/3

)
has been established by Zhang [16]. Furthermore, thanks to the work done by

Brassard et al. in [6, Theorem 13] we know that for pSearchm a composition theorem holds:
Q(h ◦ pSearchm) = Ω(Q(h) · Q(pSearchm)) = Ω(Q(h) ·

√
m). Therefore,

Q(Clawn→k) ≥ Q
(

Clawk−2→k−2 ◦ pSearch⌊ n
k−2 ⌋

)
= Ω

(
k

2/3

√
n

k

)
= Ω

(
n

1/2k
1/6

)
.

◀

4 Open Problems

Can we show that Q
(
Clawn→n2/3

)
= Ω

(
n2/3

)
? In particular, our algorithm struggles with

instances where there are n
2/3

2 singletons only two (or none) of which are matching and
the remaining variables are evenly distributed with Θ

(
n1/3

)
copies each, such that none are

matching. Thus our algorithm then either has to waste time sampling all the high-frequency
decoy values or have most variables not sampled by step 2. If this lower bound held, it would
imply a better lower bound for evaluating constant depth formulas and Boolean matrix
product verification [10, Theorem 5].
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