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Abstract
Quantum state tomography is a powerful but resource-intensive, general solution for numerous
quantum information processing tasks. This motivates the design of robust tomography procedures
that use relevant resources as sparingly as possible. Important cost factors include the number of
state copies and measurement settings, as well as classical postprocessing time and memory. In
this work, we present and analyze an online tomography algorithm designed to optimize all the
aforementioned resources at the cost of a worse dependence on accuracy. The protocol is the first to
give provably optimal performance in terms of rank and dimension for state copies, measurement
settings and memory. Classical runtime is also reduced substantially and numerical experiments
demonstrate a favorable comparison with other state-of-the-art techniques. Further improvements
are possible by executing the algorithm on a quantum computer, giving a quantum speedup for
quantum state tomography.
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1 Motivation

Quantum state tomography is the task of reconstructing a classical description of a quantum
state from experimental data. This problem has a long and rich history [5] and remains a
useful subroutine for building, calibrating and controlling quantum information processing
devices. Over the last decade, unprecedented advances in the experimental control of
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Figure 1 Basis measurement primitive. Global measurements (left) require implementing a
global unitary that affects all n qudits prior to measuring in the computational basis. A k-local
measurement primitive only allows for unitaries that affect groups of k (geometrically) local qudits;
see the left-hand side for a visualization with n = 8 and k = 2.

quantum architectures have pushed traditional estimation techniques to the limit of their
capabilities. This is mainly due to a fundamental curse of dimension: the dimension of state
space grows exponentially in the number of qudits, i.e. a quantum system comprised of n

d-dimensional qudits is characterized by a density matrix ρ of size D = dn. The impact of
this scaling behavior is further amplified by the probabilistic nature of quantum mechanics
(“wave-function collapse”). Information about the state is only accessible via measuring the
system. An informative quantum measurement is destructive and only yields probabilistic
outcomes. Hence, many identically prepared samples of the quantum state are required to
estimate even a single parameter of the underlying state. Characterizing the full state of
a quantum system necessitates accurate estimation of many such parameters. Storing and
processing the measurement data also requires substantial amounts of classical memory and
computing power – another important practical bottleneck. To summarize: the curse of
dimension and wave-function collapse have severe implications that necessitate the design of
extremely resource-efficient protocols.

In this work, we focus on reconstructing the complete density matrix ρ from single-copy
measurements. This is an actual restriction, as it excludes some of the most powerful
tomography techniques known to this date [34, 19]. While very efficient in terms of state
copies, these procedures are extremely demanding in terms of quantum hardware – an actual
implementation would require exponentially long quantum circuits that act collectively on
all the copies of the unknown state stored in a quantum memory.

We also adopt a measurement primitive that mimics the layout of modern quantum
information processing devices. Apply a unitary U to the unknown state ρ 7→ UρU†

and perform measurements in the computational basis {|i⟩ : i = 1, . . . , D}. Fixing U and
repeating this procedure many times allows for estimating the associated outcome distribution:

[pU (ρ)]i = ⟨i|UρU†|i⟩ for i = 1, . . . , D. (1)

This outcome distribution characterizes the diagonal elements of UρU†. In general, access to
a single diagonal is insufficient to determine ρ unambiguously. Instead, multiple repetitions of
this basic measurement primitive are necessary. We refer to Fig. 1 for an illustration. Different
ensembles E of accessible unitary transformations give rise to different basis measurement
primitives. When employed to perform state tomography – i.e. reconstruct an unknown state
ρ up to accuracy ϵ in trace distance – the following fundamental scaling laws apply to any
(single-copy) basis measurement primitive and any tomographic procedure:
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Table 1 Resource scaling for state tomography protocols based on global measurements (single
copy): Here, D denotes the Hilbert space dimension, r is the rank of the target state and ϵ is
the desired precision (in trace distance). We have suppressed constants, as well as logarithmic
dependencies in D and r. The first row summarizes known fundamental lower bounds, while the
label “unknown” indicates a lack of rigorous theory support.

meas. primitive basis settings state copies runtime memory
lower bounds arbitrary ≥ r ≥ Dr2ϵ−2 ≥ Dr2ϵ−2 ≥ Dr

CS [40] Haar r unknown D4 D3

CS [27] Clifford D2/3r unknown D4 D3

PLS [18] 2-design D Dr2ϵ−2 D3 D2

this work 4-design rϵ−2 Dr2ϵ−4 D2r5/2ϵ−5 Drϵ−2

this work Clifford r3ϵ−2 Dr4ϵ−4 D2r6ϵ−5 Dr2ϵ−2

(i) The number of basis measurement settings M must scale at least linearly with the
(effective) target rank r = rank(ρ): M = Ω(r). This corresponds to estimating a total
of DM = Ω(rD) parameters [21, 25].

(ii) The sampling rate N , i.e. the number of independent state copies required to obtain
sufficient data, must depend on rank, dimension and desired accuracy: N = Ω

(
Dr2/ϵ2)

[19].
(iii) The classical storage S is bounded by dimension times target rank: S = Ω(rD).
Constraint iii. follows from a simple parameter counting argument – specifying a general
D×D-matrix with rank r requires (order) rD parameters – while i. and ii. reflect fundamental
limitations that have only been identified comparatively recently. These bounds cover three
of the four most relevant cost parameters. For the last one we are not aware of a nontrivial
rigorous lower bound:
(iv) The classical runtime associated with processing the measurement data to produce an

estimated state σ⋆ should be as fast as possible.

The last decade has seen the development of several procedures that provably optimize
some of these four cost factors up to logarithmic factors in the ambient dimension. We refer
to Table 1 for a detailed tabulation of resource requirements. For now, we content ourselves
with emphasizing that existing procedures have been designed to either minimize the number
of measurement settings (compressed sensing approaches [17, 32, 28]) or the required number
of samples per measurement (least-squares approaches [37, 18]). Neither of these approaches
seems to be well-suited for optimizing classical postprocessing memory and time. Finally,
we point out that currently available quantum technologies are not perfect [35]. Practical
tomography procedures should be robust with respect to imperfections, most notably state
preparation and measurement errors.

2 Overview of results

In this work, we develop a robust algorithm for almost resource-optimal quantum state
tomography from (single-copy) basis measurements that comes with rigorous convergence
guarantees. The theoretical results are closely related to quantum state distinguishability
[23, 22, 3, 33] and strongest for global measurement primitives (Fig. 1, left) that are sufficiently
generic. In the regime of low target rank r, the proposed method improves upon state-of-the
art techniques at the cost of a worse dependence on target accuracy ϵ. The actual numbers
are summarized in Table 1. The required number of basis measurement setting matches
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results from compressed sensing [17, 32, 28] – a technique that has been specifically designed
to optimize this cost function – while the required number of state copies is comparable
to projected least squares [37, 18] – which is known to be (almost) optimal in this regard.
Classical runtime and memory cost are also reduced substantially. We also obtain rigorous
results for k-local measurement primitives (Fig. 1, right), but the obtained theoretical
numbers only become competitive if the locality parameter k is sufficiently large. We believe
that this shortcoming is an artifact of poor constants and refer to App. B.4 of the extended
version [9] for details.

2.1 Algorithm and theoretical runtime guarantee
The tomography algorithm – which we call Hamiltonian updates – is based on a variant
of the versatile mirror-descent meta-algorithm [38, 10], see also [7]. Mirror descent and
its cousin, matrix multiplicative weights, have led to considerable progress in algorithm
design across several disciplines. Prominent examples include fast semidefinite programming
solvers [20, 4, 31, 39, 8, 6, 7], quantum prediction techniques like shadow tomography [1],
the online learning methods of [2] and the tomography protocol of [41]. The algorithm design
is summarized in Algorithm 1. The key idea is to maintain and iteratively update a guess
for the unknown state. The sequence of guess states is parametrized by Hamiltonians

σt = exp(−Ht)
tr(exp(−Ht))

for t = 0, 1, 2, . . . (Gibbs / thermal state)

and initialized to an infinite temperature state σ0 = I/D (maximum entropy principle).
At each subsequent iteration, we choose a unitary rotation U ∼ E at random from a fixed
ensemble, estimate the outcome distribution (1) of the rotated target state UρU† and compare
it to the predicted outcome distribution UσtU

† of the current guess state. If the two outcome
distributions differ by more than mere statistical fluctuations, σt is an inadequate guess for
ρ.

We then update the guess state σt 7→ σt+1 by including a small energy penalty in the
associated Hamiltonian that penalizes the observed mismatch and repeat. Heuristically, it is
reasonable to expect that this update rule makes progress as long as each newly selected basis
provides actionable advice, i.e. discrepancies in the outcome distributions. As we prove in
App. A of the extended version [9] that we indeed make progress in relative entropy. Things
get more interesting when this is not the case. Predicted and estimated outcome distribution
can be very close for two reasons (i): the current iterate σt is close to the unknown target ρ

(convergence); (ii) the current basis measurement cannot properly distinguish between σt

and ρ, even though they are still far apart (false positive). It is imperative to protect against
wrongfully terminating the procedure due to the occurrence of a false positive. Hamiltonian
Updates (Algorithm 1) suppresses the likelihood of wrongfully terminating by checking
closeness in (up to) L additional random bases. The required size of such a control loop
depends on the measurement primitive. Broadly speaking, generic measurement ensembles –
like Haar-random unitary transformations – are very unlikely to produce false positives; while
highly structured ensembles – like mutually unbiased bases – can be much more susceptible.
The following relation introduces two ensemble-dependent summary parameters that capture
this effect:

PrU∼E [∥pU (ρ)− pU (σt)∥ℓ1 ≥ θE(ρ, σt)∥ρ− σt∥2] ≥ τE(ρ, σt). (2)

The parameter θE(ρ, σt) relates an observed discrepancy in outcome distributions (measured
in ℓ1 distance) to the Frobenius distance in state space. As detailed below, it captures the
minimal progress we can expect from a successful update σt 7→ σt+1. The second parameter
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Algorithm 1 Hamiltonian Updates for quantum state tomography.

Input: error tolerance ϵ, number of loops L.
Initialize: t = 0, Ht = 0, convergence=false
while convergence=false do

compute σt = exp(−Ht)/tr(exp(−Ht)) ▷ current guess for the state ρ

select random basis measurement
{

U |i⟩⟨i|U†}
compute outcome statistics [pi] of σt ▷ classical computation
estimate outcome statistics [qi] of ρ ▷ quantum measurement
check if [pi] and [qi] are ϵ-close in ℓ1 distance
if no then set P =

∑
pi>qi

|i⟩⟨i| ▷ collect outcomes for which pi > qi

Set η = 1
8∥p− q∥ℓ1

Ht+1 ← Ht + ηU†PU ▷ energy penalty for mismatch (in this basis)
update σt+1 = exp(−Ht+1)/tr(exp(−Ht+1))
t← t + 1 ▷ update counter of number of iterations

else if yes then ▷ current guess may be close to ρ

check L additional random bases ▷ suppress likelihood of false positives
if ℓ1 distance is always < ϵ then ▷ current guess is likely to be close

set convergence=true
end if

end if
end while
Output: Ht

τE(ρ, σt) lower bounds the probability of observing an outcome discrepancy that appropriately
reflects the current stage of convergence. This parameter controls the size of the control loop.
It is desirable to choose both parameters as large as possible, but there is a trade-off (making
θE(ρ, σt) larger necessarily diminishes τE(ρ, σt)) and both depend heavily on the measurement
ensemble. One of our main theoretical contributions is a rigorous convergence guarantee
for Hamiltonian updates (Algorithm 1) that only depends on the ambient dimension D, the
target rank r = rank(ρ), as well as the worst-case ensemble parameters

θE(ρ) = max
σ state

θE(ρ, σ) and τE(ρ) = max
σ state

τE(ρ, σ). (3)

▶ Theorem 1 (informal statement). Fix a measurement primitive E, a desired accuracy
ϵ and let ρ be a rank-r target state. With high probability, Algorithm 1 requires at most
T = O

(
r log(D)/(θE(ρ)ϵ)2)

steps – each with a control loop of size L = O(log(T )/τE(ρ)) –
to produce an output σ⋆ that obeys ∥ρ− σ⋆∥1 ≤ ϵ.

This convergence guarantee is also stable with respect to imperfect implementations. In
particular, we only need to estimate measurement outcome statistics to a certain degree
of accuracy: O

(
Dr/(θE(ρ)ϵ)2)

measurement repetitions suffice for each basis. This implies
that the total number of measurement settings and state copies are bounded by

M =TL ≃ O
(
r log(D)/(τE(ρ)θE(ρ)2ϵ2)

)
(measurement settings), (4)

N ≃O
(
Dr2 log(D)/(τE(ρ)θE(ρ)4ϵ4)

)
(sample complexity). (5)

To increase readability, we have suppressed the logarithmic contribution in T .

TQC 2021
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2.2 Connections to quantum state distinguishability
The bounds for M in Eq. (4) and N in Eq. (5) are characterized by worst-case ensemble
parameters (2). These are intimately related to quantum state distinguishability: how good is
a fixed measurement primitive E at distinguishing state ρ from state σ in the single-shot limit?
Ambainis and Emerson [3] showed that the optimal probability of successful discrimination
is given by psucc = 1

2 + 1
4EU∼E∥pU (ρ)− pU (σ)∥ℓ1 and achieved by the maximum likelihood

rule, see also [33]. It is possible to relate this bias to the Frobenius distance in state space:

EU∼E∥pU (ρ)− pU (σ)∥ℓ1 ≥ λE(ρ, σ)∥ρ− σ∥2.

The proportionality constant λE(ρ, σ) measures how well the measurement primitive is
equipped to distinguish ρ from σ. It is closely related to the ensemble parameters defined in
Eq. (2) and has been the subject of considerable attention in the community. Tight bounds
have been derived for a variety of measurement primitives, such as Haar random unitaries
and approximate 4-designs [3, 33], random Clifford unitaries [29] and k-local (approximate)
4-designs [30]. Simple probabilistic arguments allow for converting these assertion into lower
bounds on both θE(ρ) and τE(ρ). Inserting these bounds into Eq. (4) and Eq. (5) then
implies the measurement and sample complexity assertions advertised in Table 1. We refer
to Appendix B of the extended version [9] for a detailed case-by-case analysis and content
ourselves here with an overview. We start with the strongest measurement primitive: Haar
random unitaries and approximate 4-designs achieve θE(ρ), τE(ρ) = const for any target state.
Hence, M = O(r log(D))/ϵ2) basis settings and N = O(Dr2 log(D)/ϵ4) state copies suffice.
Clifford random measurements achieve θE(ρ) ∼ r− 1

2 , τE(ρ) ∼ r−2. That is, they only have
a worse dependency on the rank, but perform as well as Haar measurements in terms of
the ambient dimension. On the other hand, more local measurement settings defined by
unitaries acting on at most k qubits have θE(ρ) ∼ exp(−O(n/k)), τE(ρ) ∼ exp(−O(n/k)),
showing an (exponentially) worse dependency on the number of qudits when compared to
Haar measurements. Empirical studies below do, however, suggest a much more favorable
performance in practice.

This scaling highlights both a core strength and a core weakness of Hamiltonian updates.
In terms of dimension D and rank r, these numbers saturate fundamental lower bounds on
any tomographic procedure up to a logarithmic factor. However, the number of measurement
settings also depends inverse quadratically on the accuracy. Furthermore, the accuracy enters
as ϵ−4, not ϵ−2 in the sample complexity. Thus, high accuracy solutions do not only require
many samples, but also many basis measurement settings. This drawback is a consequence
of a “curse of mirror descent (or multiplicative weights)”. These meta-algorithms are very
efficient in terms of problem dimension, but scale comparatively poorly in accuracy [4].
However, inverse polynomial scaling in accuracy ϵ is an unavoidable feature of quantum
state tomography. Hence, tomography is a reasonable setting to apply algorithms that trade
dimensional dependency for accuracy. Moreover, for most applications, it suffices to recover
the state up to precision ϵ = O(polylog(D)−1).

3 Summary and comparison to relevant existing work

We propose a variant of mirror descent [38, 10] to obtain resource-efficient algorithms for
quantum state tomography. In recent years, mirror descent and its cousins have been
extensively used to obtain fast SDP solvers [20, 4, 31, 39, 8, 6, 7], to develop prediction
algorithms like shadow tomography [1], the online learning methods of [2] and the tomography
protocol of [41]. Key advantages are resource efficiency, as well as intrinsic resilience towards
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noise. Empirical studies summarized in Fig. 2 confirm these theoretical assertions. A
downside is, however, that the number of iterations may depend on the desired target
accuracy ϵ. We focus on obtaining a ϵ-approximation in trace distance of a D-dimensional
state ρ from (random) basis measurements on i.i.d. copies (global classical description).
Our goal is to optimize the different resources required for that task. These include the
number of state copies (sample complexity), the cost for processing measurement data
(classical postprocessing), as well as the associated memory cost. The multipronged resource
efficiency of our results becomes particularly pronounced if the underlying target state has
(approximately) low-rank r ≪ D. This is a natural assumption in most applications, but can
also be relaxed to states with low Rényi entropy, see App. G of the extended version [9].

Thus, our results are similar in spirit to the tomography algorithms based on compressed
sensing (CS) [17, 32, 14, 36, 28], or projected least squares (PLS) [37, 18]. These also focus
on rigorous and (nearly) optimal sample complexity in the low-rank regime combined with
efficient postprocessing. Table 1 summarizes the resources required for these protocols, as
well as our new results. These compare favorably with existing methods. We note that for
approximate 4-design measurements, both sample complexity and memory – as functions
of D and r – are essentially optimal [34, 19]. Compared to existing approaches, we obtain
significant savings in both runtime and memory. Moreover, as pointed out in [41], there are
also qualitative advantages.

Current schemes that minimize the number of basis settings [40, 27] are only known to do
so with perfect knowledge of the underlying measurement outcomes. This will never be the
case in practice, due to statistical fluctuations. Thus, to the best of our knowledge, our work
is the first to rigorously obtain recovery guarantees with imperfect knowledge of outcomes
and basis settings that only scale logarithmically with the ambient dimension and linearly
with rank (albeit with the extra ϵ dependency).

The focus of this work differs from other recent applications of mirror descent to quantum
learning [2, 1, 6]. Broadly speaking, these works focus on obtaining a classical description
of the state – a shadow – that approximately reproduces a fixed set of target observables.
This is a different and weaker form of recovery. Moreover, these works prioritize sample
complexity, not necessarily classical postprocessing resources. Minimizing these classical
resources is a core focus of this work.

Having said this, the idea of using (variants of) mirror descent for quantum state (and
process) tomography is not completely new. Similar ideas were proposed in Refs. [13, 16]
and have been experimentally tested [11, 24]. More recently, Youssry, Tomamichel and Ferrie
proposed and analyzed state tomography based on matrix exponentiated gradient descent [41].
They focused on the practically relevant case of local (single-qubit) Pauli measurements and
established convergence to the target state as the number of samples goes to infinity. They
also pointed out conceptual advantages, such as online implementation and noise-robustness.
The results presented here add to this promising picture. We equip (a variant of) mirror
descent with rigorous performance guarantees in the non-asymptotic setting, optimize actual
implementations and establish robustness in a more general setting. Moreover, our results
apply to any measurement procedure that is capable of distinguishing arbitrary pairs of
quantum states.

We also want to point out that the method presented here could also be implemented
on a quantum computer. This would result in substantial runtime savings – a quantum
speedup for quantum state tomography. Suppressing polylogarithmic terms, a runtime of
order Õ(D 3

2 r3ϵ−9) suffices to obtain a classical description of the target state. We refer to
App. E of the extended version [9] for details and proofs. To the best of our knowledge, this
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Figure 2 Convergence of Algorithm 1 for different noise models. We consider Haar-random
global measurements of a 8-qubit pure target state with target accuracy ϵ = 0.04. Different colors
track convergence for different noise models: (blue) amplitude damping noise with parameter ϵ/4;
(red) white noise with standard deviation ϵ/4 that mimics one-shot noise; (orange) zero noise. All
logarithms are base 10 and the shaded areas indicate 25% and 75% quartiles, estimated from 20
samples.

is the first quantum speedup for low-rank tomography beyond the results of Kerenidis and
Prakash [26] which cover pure, real target states (r = 1) exclusively and work under the
stronger assumption of access to a controlled unitary that prepares the state.

Finally, we want to emphasize that the proposed reconstruction procedure can be em-
powered by advantageous measurement structure. Storage-efficiency stems from the fact
that we can keep track of the Hamiltonian – not the associated Gibbs state – which inherits
structure from the underlying measurement procedure. Runtime savings are achieved by only
exponentiating the Hamiltonian approximately and exploiting fast matrix-vector multiplica-
tion. We refer to App. D of the extended version [9] for details and content ourselves here
with a vague, but instructive, analogy: View Algorithm 1 as an adaptive cool-down procedure.
We start with a Gibbs state at infinite temperature and, at each step, we cool down the
system in a controlled fashion that guides the thermal state towards the unknown target.
Importantly, each update is small and the number of total cooling steps is also benign. Hence,
we never truly leave the moderate temperature regime and avoid computational bottlenecks
that typically only arise at low temperatures. In turn, the output of our algorithm is in the
form of a Hamiltonian whose Gibbs state is close to the target state. A list of Gibbs state
eigenvalues and corresponding eigenvectors can be obtained by block Krylov iterations, see
App. F of the extended version [9]. Runtime and memory cost of this conversion procedure
can never exceed those of Algorithm 1.

4 Numerical experiments

We complement our theoretical assertions with empirical test evaluations for systems com-
prised of up to 10 qubits. The results look promising and may establish Algorithm 1 as a
practical tool for quantum state tomography. We remark that our numerical implementation
has two additional details when compared with the one described in Algorithm 1. Although
these modifications do not change the asymptotic runtime analysis of the algorithm, they
can substantially reduce runtime and sample complexity in practice.

The first alteration we do is to recycle the last measurement data after a successful
update. More precisely, after each update σt → σt+1, we then check if the new iteration
σt+1 is still distinguishable from ρ under the previous measurement basis. Only if this is
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Figure 3 Convergence of Algorithm 1 for different measurement localities. Different colors track
convergence (in logarithmic trace distance) for 8-qubit basis measurements with different localities
and target accuracy ϵ = 0.04. Individual basis measurements are subject to white noise with standard
deviation ϵ/4. (Left) Reconstruction of a generic pure target state. (Right) Reconstruction of a
highly structured target state (EPR/Bell state). All logarithms are base 10 and the shaded area
indicate 25% and 75% quartiles, estimated from 20 samples.

not the case, we move on to sample a new measurement setting. Otherwise, we re-use the
already known measurement basis to drive another update in the same direction. We observe
empirically that this minor modification has very desirable consequences. It leads to a much
faster convergence throughout early stages of the algorithm and, by extension, reduces the
number of required measurement settings significantly.

What is more, this recycling procedure cannot change the asymptotic scaling of the
algorithm. To see this, note that the modification can only affect postprocessing complexity.
Indeed, it clearly does not require us to sample more states or measurement settings.
Finding another violation can only bring us closer to the state in relative entropy. And the
postprocessing time can only double in the worst case. This worst case scenario happens
when after updating every basis once, we have already converged in that basis and checking
again does not lead to further convergence. We will refer to this variation as the last step
recycling strategy. It is explained in detail in the appendix (Algorithm 2 of the extended
version [9]).

Other variations of this basic principle come to mind. For instance, we need not stop at
testing the current iteration against the previous measurement basis. We can also test it
against all measurements that have already accumulated. This variation can further reduce
the (total) number of basis settings required to converge. Fig. 4 confirms this intuition.
However, this strategy comes at the expense of an increase in the computational complexity
of the postprocessing. We refer to this strategy as the complete recycling strategy.

Apart from these practical improvements, we have also tested desirable fundamental
properties of Algorithm 1. Chief among them is noise resilience. As advertised in Sec. 2
and proved in App. C of the extended version [9], the performance of the algorithm under
arbitrary noise of bounded intensity is indistinguishable from the noiseless case. This
feature is empirically confirmed by Fig. 2. For detecting a random pure state on 8 qubits,
different noise sources – such as shot noise and amplitude damping – affect convergence in a
very mild fashion only (robustness). It is also interesting to note that the convergence in
trace norm appears to be polynomial for the first measurements and then switches to an
exponential phase.
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Another interesting figure of merit is measurement locality. The assertions that underpin
Algorithm 1 do, in principle, extend to local measurement primitives. But, as detailed in
App. B.4 of the extended version [9], the resulting numbers look rather pessimistic and scale
unfavorably with measurement locality k. Empirical studies do paint a much more favorable
picture, see Fig. 3. The two subplots address reconstruction of a typical 8-qubit target state
(left), as well as a highly structured one (right). A direct comparison lends credence to a
conjecture voiced in App. B.4 of the extended version [9] below: generic or typical states are
easier to reconstruct with local measurements than highly structured ones.
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Figure 4 Comparison between Algorithm 1 (HU) and compressed sensing (CS) tomography.
(Left) Reconstruction of a random n-qubit pure state from 15 globally random basis measurements
corrupted by amplitude damping noise (p = 0.005). Different colors track the logarithmic trace
distance error achieved by either CS (blue) or variants of HU (orange and red) for ϵ = 0.01. Shaded
regions indicate the 25 − 75 percentiles over 20 independent runs. (Right) Empirical runtime for
executing (naive implementations of) the three different reconstruction procedures on a conventional
laptop. CVX [12] – a standard solver for semidefinite programs – could not go beyond 7 qubits.

Last but not least, we compare Algorithm 1 against the state of the art regarding
tomography from very few basis measurements. Compressed sensing (CS) [17, 14, 27, 28] has
been designed to fit a low rank solution to the observed measurement data by also minimizing
the trace norm over the cone of positive semidefinite matrices (X ⪰ 0):

minimizeX⪰0 tr(X) subject to
∑M

i=1
∥p̂Ui(ρ)− pUi(X)∥2

ℓ2
≤ ϵ. (6)

Fig. 4 compares Algorithm 1 with compressed sensing (CS). CS is contingent on solving a
semidefinite program. We used CVX [12], a standard SDP solver, in Python. Algorithm 1
has also been implemented in Python. Open source code is available at [15]. We see that
Hamiltonian Updates is more noise-resilient than CS. The rightmost plot also underscores
the importance of memory improvements. A high-end desktop computer already struggles
to solve SDP (6) for 8 qubits (even though the extrapolated computation time Fig. 4 still
seems reasonable), while 10 qubits (and more) have not been a problem for Algorithm 1.
We believe that Fig. 4 conveys both quantitative and qualitative advantages of Hamiltonian
Updates over CS methods. This seems particularly noteworthy, because we compared both
procedures for pure target states (rank(ρ) = 1) – a use-case tailor-made for CS approaches.
We also stress that the implementation of the algorithm used to generate this data was not
optimized, there is room for further improvements.

Let us conclude with the most important take-away from Figs. 2, 3 and 4. The theoretical
assertions from Sec. 2 carry over to practice. Moreover, recycling of data ensures that the
number of measurement settings remains small even if we try to characterize the state up to



D. S. França, F. G. L. Brandão, and R. Kueng 7:11

high precision. Our theoretical results suggest that order 105 algorithm iterations, and thus
also measurement settings, might be required to obtain a ϵ = 10−2-approximation of a pure
state in dimension D = 210. But our numerics demonstrate that already order 101 suffice to
achieve convergence. The main theoretical drawbacks of Algorithm 1 – most notably, the
poor scaling in accuracy – may be a non-issue in practical use cases. These findings establish
our algorithm as a rare instance of a method that is provably (essentially) optimal and has a
competitive performance in practice.
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