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Abstract
We give a multidimensional version of amplitude estimation. Let p be an n-dimensional probability
distribution which can be sampled from using a quantum circuit Up. We show that all coordinates of
p can be estimated up to error ε per coordinate using Õ

(
1
ε

)
applications of Up and its inverse. This

generalizes the normal amplitude estimation algorithm, which solves the problem for n = 2. Our
results also imply a Õ (n/ε) query algorithm for ℓ1-norm (the total variation distance) estimation
and a Õ

(√
n/ε
)

query algorithm for ℓ2-norm. We also show that these results are optimal up to
logarithmic factors.
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1 Introduction

A central challenge when working with random processes is the estimating of the probability
of some event occurring from a bunch of samples. An example from classical computer science
is Monte Carlo methods, which try and estimate a value that is hard to compute using a
random sampling process. To estimate the probability p of an event occurring using classical
samples we can simply sample many times and use the fraction of the outcomes where the
event occurred as our estimate. It follows from the Chernoff bound that O

(
ln(1/δ)

ε2

)
samples

suffice to get an ε accurate estimate with failure probability at most δ. In fact, it can be
shown that this is optimal for classical samples [3].

If we however have access to “quantum samples”, that is a unitary that prepares a state
that upon measuring would return 1 with probability p, than we can improve the number
of “samples” needed. The amplitude estimation algorithm by Brassard et al. [2] show that
O
(

ln(1/δ)
ε

)
applications of the unitary and it’s inverse suffice. This already lays the ground

work for numerous general speedups, including for many Monte Carlo methods [9].
Sometimes estimating a single probability is not enough, and we are actually interested in

finding a full (discrete) probability distribution. We write ∆n := {x ∈ Rn : x ≥ 0 ∧ ∥x∥1 = 1}
for the set of all probability distributions on n elements. Let p ∈ ∆n, if we take O

(
ln(n/δ)

ε2

)
classical samples than for each element pi we get an estimate p̃i such that |pi − p̃i| ≤ ε

with error probability at most δ/n. Hence by the union bound over all i ∈ n it follows that
∥p− p̃∥∞ ≤ ε with probability at least 1 − δ.
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This paper considers the problem of recovering an estimate for a distribution p ∈ ∆n

using “quantum samples”:

▶ Definition 1 (Quantum probability oracle). Let p ∈ ∆n be a probability distribution. We
say that Op is a quantum probability oracle for p if

Op |0⟩ =
n∑

i=1

√
pi |i⟩|ψi⟩

for some quantum states |ψ1⟩ , . . . , |ψn⟩. That is, applying Op to the |0⟩ state and measuring
the first register is the same as sampling from p.

Throughout the paper we will assume that if we can apply Op, then we can also apply O−1
p ,

and we can do both in a controlled way. Note that this is the case if Op comes from a
randomized classical or quantum algorithm.

We generalize the result of amplitude estimation to n-dimensional distributions, showing
that an ε-ℓ∞-estimate can be obtained with Õ

( 1
ε

)
queries to a quantum probability oracle.

We do so using a multidimensional version of quantum phase estimation, in a similar manner
as the quantum gradient estimation algorithm by Jordan [6, 4]. In fact, we consider estimating
the gradient of the function f(x) = ⟨x, p⟩.

We also consider ℓ1-norm (or total variation distance) and ℓ2-norm estimates. We get
Õ
(

n
ε

)
and Õ

(√
n

ε

)
query algorithms respectively using norm equivalence. In the second

part of the paper we give lower bounds that matches the upper bounds up to logarithmic
factors for ℓ1-norm and ℓ2-norm. An ℓ∞-norm lower bound follows from known lower bounds
on amplitude estimation. We end the paper with some open questions.

Table 1 Comparison of known classical sampling bounds and our quantum results for estimating
a distribution p ∈ ∆n up to ε error in a certain norm. Here the Θ̃ (· · · ) hides polylogarithmic factors
in n and 1/ε. ⋆The ℓ2-norm quantum lower bound only holds when ε < 1/(3

√
n).

Known Classical Quantum
ℓ∞ Θ̃

(
1

ε2

)
Θ̃
(

1
ε

)
LB:[3] UB:Chernoff LB: [1]1 UB: Theorem 9

ℓ2 Θ̃
(

1
ε2

)
Õ
(

min(
√

n
ε

, 1
ε2 )
)

, Ω
(√

n
ε

)⋆

LB:[3] UB:[7] LB: Corollary 12 UB: Corollary 10
ℓ1 Õ

(
n
ε2

)
Θ̃
(

n
ε

)
UB:[7] LB: Lemma 11 UB: Corollary 10

2 Upper bound

We show our main result in two steps. First we prove the base result, Theorem 5, which has
an almost optimal query complexity but lacks in a few other areas. We then add several
improvements to obtain our main result, Theorem 9.

1 A lower bound on normal amplitude estimation follows from the lower bound on parity given in [1].
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2.1 Main algorithm

In this section we will show how to obtain an ε-ℓ∞-approximation of p ∈ ∆n using O
(

ln(n)
ε

)
queries to a quantum probability oracle for p. To do so we consider the linear function
f : [0, 1]n → [0, 1] : x 7→ ⟨x, p⟩. We will show how to construct a specific type of oracle for
this function, use known results to convert this to a phase roacle for the function, and then
apply multidimensional phase estimation to obtain the gradient p.

We will use the following two oracle definitions:

▶ Definition 2 (Oracles for functions). Let f : D → [0, 1] be a [0, 1] valued function from a
discrete domain D. A probability oracle for the function f is a unitary Uf that acts as

Uf |x⟩|0⟩|0⟩ = |x⟩
(√

f(x) |1⟩|ψx
1 ⟩ +

√
1 − f(x) |0⟩|ψx

0 ⟩
)
.

A phase oracle for the function f is a unitary Uf that acts as

Uf |x⟩ = eif(x) |x⟩ .

We start by constructing a probability oracle for f(x) = ⟨x, p⟩

▶ Lemma 3. Let Up be a quantum probability oracle for a distribution p ∈ ∆n. Let k ≥ 1
be an integer and let D =

{
0, 1

2k , . . . ,
2k−1

2k

}
be a discretization of [0, 1]. Then a probability

oracle Uf̃ for a function f̃ can be constructed such that f̃ is an additive µ-approximation of
f(x) : Dn → [0, 1] : x 7→ ⟨x, p⟩ using 2 queries to Up and Õ (npolylog (1/µ)) two-qubit gates.
The gate count can be improved to polylog (n/µ) when the input is stored in a QRAM2.

Proof. We start in a state |x⟩|0⟩|0⟩|0⟩|0⟩. First we apply Uf ⊗ I to obtain

|x⟩

(
n∑

i=1

√
pi |i⟩|ψi⟩

)
|0⟩|0⟩ .

Now, for each i ∈ [n] we do the following conditioned on i being in the second register:
1. In the last register, compute an approximation of 2arcsin

(√
xi

)
/π such that the approx-

imation is in [0, 1).
2. Conditioned on the first bit of the approximation rotate the second to last register from

|0⟩ to |1⟩ over an angle π/4.
3. Continue for the other bits: rotate over an angle π/8 conditioned on the second bit, then

π/16, and so on.
4. Uncompute the last register.
Note that we can approximate the arcsin very efficiently, only introducing a logarithmic
overhead in terms of the precision. In the end the second to last register will be rotated over
an angle very close to 2arcsin (xi) /π × π/2 = arcsin (xi). We finish the analysis as if the
angle was exact. We end up with (after dropping the last register which is now |0⟩ again)

|x⟩
n∑

i=1

√
pi |i⟩|ψi⟩

(√
xi |1⟩ +

√
1 − xi |0⟩

)
= |x⟩

n∑
i=1

√
pixi |i⟩|ψi⟩|1⟩ + . . . |0⟩ .

2 A QRAM allows us to store values in such a way that we can recover them conditioned on an index
register using a single QRAM query. While a physical QRAM requires many gates to build, the
implementation can likely be highly parallel in a similar manner to classical RAM. When we consider a
model with a QRAM we abstract the details of the QRAM away, and count a QRAM query as a single
gate, similar to how a classical RAM query is normally counted as a single operation for a classical
computer.

TQC 2021
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The ℓ2-norm of the |1⟩ part of te state is
√∑n

i=1
√
pixi

2 =
√

⟨x, p⟩. We conclude that the
state can be written as√

⟨x, p⟩ |x⟩|ψx,0⟩|0⟩ +
√

1 − ⟨x, p⟩ |x⟩|ψx,1⟩|1⟩ ,

and hence we have implemented a probability oracle for f .
The steps taken for each i can be performed at the same time when x is stored in a

QRAM, as this allows us to query xi in superposition on |i⟩. ◀

For our purposes we will require a phase oracle, not a probability oracle. Luckily, in [4] it
was shown that a phase oracle can be constructed from a probability oracle with minimal
overhead:

▶ Lemma 4. [4, Corollary 4.1 (Rephrased)] Let Uf be a probability oracle for a function
f : D → [0, 1] acting on q qubits. Let T > 0. An phase oracle with η-additive error for
T · f(x) can be constructed using O (|T | + log (1/η)) applications of Uf and its inverse, and
O (q|T | + qlog (1/η)) two-qubit gates.

We could directly apply quantum gradient calculation [6, 4] now to obtain p, but since we
have a linear function the result can be obtained using a slightly simpler proof, so we include
it for completeness.

▶ Theorem 5. Let p ∈ ∆n and let Up be a quantum probability oracle acting on q qubits for
p. Let ε > 0. An approximation p̃ such that ∥p− p̃∥∞ ≤ ε can be found with error probability
at most δ using O (ln(n/δ)/ε) applications of Up and Õ (ln(δ)qn/ε) two-qubit gates. The
gatecount can be improved to Õ (ln(δ)q(n+ 1/ε)) by using a QRAM.

Proof. Let k = ⌈log (4/ε)⌉. Consider the following algorithm:
1. Start in a n-register all zero state, where each register as k qubits:∣∣0k

〉
. . .
∣∣0k
〉

2. Apply Hadamard gates to all qubits to obtain

n⊗
i=1

 1√
2k

2k−1∑
xi=0

|xi⟩

 = 1
2kn/2

∑
x∈{0,2k−1}n

|x⟩

3. Make a phase query for an 1/6-approximation of f(x) = ⟨x, p⟩ using Lemma 3 with
µ < 1/(96ε) and Lemma 4 with T = 2k and η ≤ 1/12 to obtain a state 1/6-close in
ℓ2-norm to

1
2kn/2

∑
x∈{0,2k−1}n

ei⟨x,p⟩ |x⟩ = 1
2kn/2

∑
x∈{0,2k−1}n

ei
∑

i
xipi |x⟩

= 1
2kn/2

∑
x∈{0,2k−1}n

(
n∏

i=1
eixipi

)
|x⟩

=
n⊗

i=1

 1√
2k

2k−1∑
xi=0

eixipi |xi⟩



4. Apply the k-qubit inverse QFT to each of the n registers and measure each register.
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Note that this algorithm applies Up a total of O
( 1

ε

)
times as per Lemma 4. The gate cost of

the phase oracle implementation is Õ (qn/ε) (or Õ (q ln(n)/ε) when using QRAM), and the
n inverse QFTs require O

(
n ln2(1/ε)

)
gates3.

If we ignore the ℓ2-error due to the imperfect phase oracle than it would follow from the
analysis of phase estimation that we end up with a vector p̃ such that |pi − p̃i| ≤ 4/2k ≤ ε

with probability at least 5/6 per coordinate. Since we incurred at most 1/6-ℓ2-norm error
we conclude that |pi − p̃i| ≤ ε with probability at least 2/3 per coordinate. By repeating
O (ln(n/δ)) times and taking the coordinate wise median, the error probability can be reduced
to δ/n. Taking the union bound we get the result from the theorem. ◀

2.2 Improvements and tweaks
In this section we give three improvements on the main algorithm. We start by removing
the dependence on n, leaving only the implicit dependence via q in the gate-complexity. We
then show how to get a better query bound when only considering part of a distribution.
Finally we show that the algorithm can be tweaked to always return an estimate from ∆n.

2.2.1 Removing the dependence on n
While the main algorithm requires few queries, the time complexity grows linear in n. Since
the classical algorithm has no dependence linear dependence on n we would hope the same
for the quantum algorithm.

The high gate count in the quantum algorithm is due to the fact that we consider
all coordinates of p, even those with very small or 0 entries. However, to get an ε-ℓ∞-
approximation we can ignore all coordinates where the probability is less than ε. This leaves
at most 1/ε coordinates to run the algorithm on. To find relevant coordinates we simply use
classical samples:

▶ Lemma 6. Let p ∈ ∆n, and ε, δ ∈ (0, 1/3). O (ln(n/δ)/ε) classical samples suffice to, with
error probability at most δ, find all i ∈ [n] such that pi ≥ ε.

Proof. Consider a single entry i such that pi ≥ ε. After T samples the probability that we
have not seen i yet is at most (1 − ε)T . Letting T = ln(δε)

ln(1−ε) = O
(

ln(1/(δε))
ε

)
ensures that

this error probability is at most δε. Union bounding over the at most 1/ε coordinates gives
the result from the lemma. ◀

The lemma shows that the number of coordinates we have to consider in our main algorithm
is independent from n. As we can simply look at the inner product on those entries, we
only get a dependence on n implicitly as q ≥ log (n). In fact, the classical algorithm can be
improved using the same method.

2.2.2 Learning part of the distribution
Often we will not be interested in all coordinates of p, the method from the previous section
is an example, but there might be other cases as well. One example is a binary distribution
(p, 1 − p), where we only need to estimate the first entry. If we know a pmax such that
p ≤ pmax, then amplitude estimation [2] requires O

(√
pmax
ε

)
applications of Up.

3 The square can be removed by approximating the QFT using standard techniques.

TQC 2021
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Similarly, if we know that pi ≤ pmax for all i, then the classical algorithm can be improved
by a factor pmax. Sadly our main algorithm can not be improved by √

pmax to our knowledge,
but we may get a dependence on the sum of the entries in the part of p that we want to
estimate.

▶ Lemma 7. Let p ∈ ∆n, ε ∈ (0, 1/3) and let S ⊆ [n]. Let pmt ≥
∑

i∈S pi be the maximal
total probability on S. We can construct a quantum probability oracle for a distribution
p′′ ∈ ∆n+2 using O

(√
1/pmt

)
applications of Up, membership queries for S, and two-qubit

gates such that a estimating p′′ up to O (ε/pmt)-ℓ∞-error gives an ε-ℓ∞ error estimate of p.

Proof. The main idea is to amplify the probabilities by a factor of a = Θ (1/pmt) using
O (

√
a) iterations of amplitude amplification. This allows us to take ε′ = ε · a as a larger

error tolerance. However, we need to be careful as we do not know the original ℓ2 norm of
the “good” part of the state, and hence we do not know the exact amplification that O (

√
a)

iterations of amplitude amplification would give, only that it is Θ (1/pmt).
We consider a new distribution p′ with dimension n + 2. The first n coordinates are

equal to p/2, while the last to coordinates are pmt/2 and (1 − pmt)/2. We can construct a
quantum probability oracle Up′ for p′ using a single controlled application of Up.

Using amplitude amplification we can create an quantum probability oracle Up′′ for
a distribution p′′ that is equal to ap′ on the indices in S ∪ {n+ 1} for some unknown
a ∈ Θ (1/pmt). This requires O (

√
a) applications of Up′ and membership queries for S.

Note that p′′
n+1 = apmt/2 = Θ (1), and in particulair let L be a (constant) lower bound

so p′′
n+1 ≥ L. Now, let p̃′′ be a εL

8pmt
-ℓ∞-estimate of p′′. It follows that p̃′′

n+1 is an (1 ± ε
8pmt

)
multiplicative estimate of p′′

n+1, and hence it gives such a multiplicative estimate ã of a.
Let p̃i = 2p̃′′

i /ã. We know that p̃′′
i = p′′

i + e1 for some error term e1 with |e1| ≤ Lε/8pmt.
We also know that ã = a(1 + e2) for some error term e2 with |e2| ≤ ε/8pmt. Hence we know
that

p̃i = 2p̃′′
i

ã

= 2(p′′
i + e1)

a(1 + e2)

=
2( api

2 + e1)
a(1 + e2)

= pi + 2e1/a

(1 + e2)
= (pi + 2e1/a)(1 + e3)
= pi + 2e1/a+ pie3 + 2e1e3/a

where |e3| ≤ 2|e2| ≤ ε/4pmt. We can therefore bound the final error by

|2e1/a+ pie3 + 2e1e3/a| ≤ |2e1/a| + |pie3| + |2e1e3/a|

≤ 2 Lε

4pmta
+ pmt

ε

4pmt
+ 2 Lε2

32p2
mta

≤ 2Lε8L + ε

4 + 2 Lε

64L
≤ ε

Where we used that ε ≤ pmt, as otherwise the problem is trivial, as well as 1
pmta ≤ 1

2L . ◀
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2.2.3 Returning a probability distribution
Our main algorithm does not always return a p̃ ∈ ∆n, all we are promised is that ∥p− p̃∥∞ ≤ ε.
The following Lemma shows that we can always convert such a p̃ into a good approximation
inside ∆n.

▶ Lemma 8. Let p ∈ ∆n and let p̃ be such that ∥p− p̃∥∞ ≤ ε/8. Then a min(n, 8/ε)-sparse
p̃′ can be constructed from p̃ such that p̃′ ∈ ∆n and ∥p− p̃∥∞ ≤ ε.

Proof. Let p̃′ be defined by setting all elements in p̃ that are below ε/4 to zero and all
elements above 1 to 1, this introduces at most ε/4 extra error in ℓ∞-norm so ∥p− p̃′∥∞ ≤ ε/2.

Now, for an element in p̃′ to be non-zero, the corresponding element of p should be at
least ε/8, hence p̃′ has at most 8/ε non-zero elements. Let k ≤ min(n, 8/ε) be the number of
non-zero elements in p̃′. Let S be the sum of the entries in p̃′, so

max(0, 1 − nε/2) ≤ S ≤ 1 + kε/4.

If S = 1 then p̃′ ∈ ∆n so we are done.
If S > 1, then we decrease each of the non-zero elements by (S − 1)/k ≤ ε/4. This

introduces at most ε/4 extra error, so the total error is less than ε/2 + ε/4. Now all elements
are non-negative and they sum to 1.

If S < 1 and there is an element larger than 1 − ε/4, return the distribution that is 1 on
the corresponding index and 0 everywhere else. Otherwise we consider two cases, n ≤ 8/ε
and n > 8/ε. For the first case, the ℓ1-norm error in p̃′ is at most nε/2, so 1 − S is at
most nε/2. Hence, by increasing each coordinate by at most ε/2 we can ensure that the
resulting vector is in ∆n. For the second case we pick 2/ε entries in p̃′, giving preference to
the non-zero entries, and increase the picked entries by ε(1−S)

2 ≤ ε/2.
Finally, we note that this construction can be implemented in time linear in the input or

output sparsity, whichever is larger, times log (1/ε). ◀

2.2.4 Putting it all together
We can now combine these improvements with our base algorithm to get the following result
as a corollary.

▶ Theorem 9. Let p ∈ ∆n and let Up be a quantum probability oracle acting on q

qubits for p. Let ε > 0. Let S ⊆ [n] and let pmt be an upperbound on
∑

i∈S pi. An
Õ (1/ε)-sparse p̃ ∈ ∆n such that ∥p− p̃∥∞ ≤ ε can be found with error probability at most
δ > 0 using O

(
ln(1/εδ)√pmt/ε

)
applications of Up (and membership queries for S) and

Õ
(
q ln(δ)√pmt/ε

2) two-qubit gates. The gatecount can be improved to Õ
(
q ln(δ)√pmt/ε

)
using QRAM.

We note that the query complexity matches that of normal amplitude estimation (the query
complexity of which is known to be optimal as it can solve the parity problem for a 1/ε-bit
long string [1]) up to logarithmic factors.

Using the equivalence of norms we can also get upper bounds on the query complexity
for ℓρ estimates.

▶ Corollary 10. Let p ∈ ∆n and let Up be a quantum probability oracle acting on q qubits
for p. Let ε > 0 and ρ ≥ 1. Let S ⊆ [n] and let pmt be an upperbound on

∑
i∈S pi.

An Õ
(
n1/ρ/ε

)
-sparse p̃ ∈ ∆n such that ∥p− p̃∥ρ ≤ ε can be found with error probability

at most δ > 0 using O
(
ln(1/εδ)√pmtn

1/ρ/ε
)

applications of Up (and membership queries

TQC 2021
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for S) and Õ
(
q ln(δ)√pmtn

2/ρ/ε2) two-qubit gates. The gatecount can be improved to
Õ
(
q ln(δ)√pmtn

1/ρ/ε
)

using QRAM.

We note that this might not always be optimal, in particular in the low-precision regime. For
example, classical sampling can produce an ε-ℓ2-estimate using Õ

(
1/ε2) samples as shown

by Kamath et al. [7].

3 Lower bounds

In this section we will prove lower bounds on the number of applications of Up that are
required to approximate p in different norms. Since the ℓ∞-norm bound follows from known
lower bounds on amplitude estimation that can be obtained from the lower bound on parity [1],
we focus on the ℓ1 and ℓ2 norms. We start by proving a lower bound on ℓ1-norm estimation.

▶ Lemma 11. Let ε ∈ (0, 1/3) and n ≥ 2. Any algorithm that (with success probability at
least 2/3) for every p ∈ ∆n outputs a p̃ for which ∥p− p̃∥1 ≤ ε using queries to a quantum
probability oracle for p, uses at least Ω

(
n
ε

)
such queries.

Proof. We assume that n is even as we can always add an extra zero entry. Let k = Θ (1/ε),
where µ will be defined later. Let x(1), · · · , x(n/2) ∈ {0, 1}k be such that for all i we have
|x(i)| ∈ {k/2, k/2 + 1}. Finding the Hamming weight of a single x(i) solves the majority
problem and hence requires Ω (k) quantum queries to a standard (binary) oracle for x(i) [1].
We further note that any algorithm that recovers a n/2-bit string requires Ω (n) quantum
queries. Since quantum query complexity is multiplicative under composition [8] it follows
that finding all of the n/2 Hamming weights requires Ω (nk) = Ω (n/ε) quantum queries.
Standard techniques can be used to show that finding a constant fraction of the Hamming
weights would still require Ω (n/ε) quantum queries, as Grover search can be used to find
the “mistakes”.

We now reduce this problem to finding an ℓ1-approximation of a probability distribution.
Let p ∈ ∆n be given by pi = 2 |x(i)|

nk for i ≤ n/2 and by pi = 2 k−|x(i)|
nk otherwise. Let p̃ be an

ε approximation of p. If |pi − p̃i| < 1
nk than we can find |xi| from p̃i. As p̃ is an ε-ℓ1-norm

estimate, it can only be off more than 1/kn = Θ (ε/n) on a small constant fraction of the
indices, allowing us to find the Hamming weight for all the others.

Finally we show how to implement a quantum probability oracle for p. We can sample
from p using a classical algorithm as follows:
1. Pick a uniformly random i ∈ [n/2].
2. Pick a uniformly random j ∈ [k].
3. If x(i)

j = 1 return i, if x(i)
j = 0 return i+ n/2.

By replacing the uniformly random picks by the creation of a uniform superposition we get a
quantum probability oracle for p.

We conclude that Ω (n/ε) queries to a quantum probability oracle for p are required to
obtain an ε-ℓ1-approximation. ◀

As a corollary we get a lower bound for ℓ2-estimates in the high precision regime:

▶ Corollary 12. Let ε ∈ (0, 1/3
√
n) and n ≥ 2. Any algorithm that (with success probability

at least 2/3) for every p ∈ ∆n outputs a p̃ ∈ ∆n for which ∥p− p̃∥2 ≤ ε using queries to a
quantum probability oracle for p, uses at least Ω

( 1
ε

)
such queries.

Proof. This follows from the fact that ∥p− p̃∥1 ≤
√
n ∥p− p̃∥2 combined with Lemma 11. ◀
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4 Open questions

Estimating the expectation value of stochastic variables

We can identify a stochastic variable over a finite probability distribution p ∈ ∆n with a
vector a ∈ Rn. Here ai is the value of the stochastic variable on outcome i. Hence, the
expectation value of the stochastic variable is equal to ⟨a, p⟩. If we have m stochastic variables
a(1), . . . , a(m) then we can write these as the rows of a matrix A ∈ Rm×n. This leads to the
following problem:

Let A ∈ [−1, 1]m×n be a known matrix, let ε > 0 be an error parameter, and let p ∈ ∆n be
a unknown probability distribution, accessible via a quantum probability oracle. Output
a vector q̃ ∈ Rm such that ∥Ap− q∥∞ ≤ ε.

Here we take A ∈ [−1, 1]m×n for normalization purposes.
Classically this problem can be solved using O

(
ln(m/δ)

ε2

)
samples. The argument is similar

as before: each expectation value can be estimated with error probability δ/m, and union
bounding gives the result. However, our quantum algorithm does not generalize as easily.
One way to solve the problem is to apply amplitude estimation n times, but this would use
Õ (n ln(1/δ)/ε) applications of Up. In fact, we can proof the following lower bound:

▶ Lemma 13. Let ε ∈ (0, 1/(3
√
n)) and let n be a positive integer power of two. There

exists a matrix A ∈ {−1, 1}n×n, such that any algorithm that for every p ∈ ∆n (with success
probability at least 2/3) outputs a q̃ ∈ ∆n, for which ∥Ap− q̃∥∞ ≤ ε, uses at least Ω

(√
n

ε

)
queries to a quantum probability oracle for p.

Proof. We let A ∈ {−1, 1}n×n be
√
nH⊗log(n), the rescaled n-fold Hadamard, so 1√

n
A is

unitary. Now let p ∈ ∆n be an unknown probability distribution given by a quantum
probability oracle. Let A be an algorithm that uses T queries to a quantum probability
oracle for p, and outputs an estimate q̃ such that ∥Ap− q̃∥∞ ≤ ε. This ℓ∞−norm estimate
also gives an ℓ2-norm estimate ∥Ap− q̃∥2 ≤

√
nε. Applying the unitary 1√

n
AT gives

1√
n

∥∥ATAp−AT q̃
∥∥

2 ≤
√
nε,

and using that ATA = nI we get∥∥np−AT q̃
∥∥

2 ≤ nε.

So
∥∥p− 1

nA
T q̃
∥∥

2 ≤ ε, hence from q we can recover an ε-approximation of p in ℓ2-norm, which,
by Corollary 12 requires at least Ω

(√
n

ε

)
queries to a quantum probability oracle for p. ◀

We note that the proof, combined with the Õ
(

ln(m/δ)
ε2

)
classical algorithm for estimating

the expectation value of stochastic variables, gives an alternative proof to that of [7] of the
fact that Õ

(
ln(n/δ)/ε2) samples suffice for an ε-ℓ2-estimate.

Although the lower bound is disappointing, it still leaves open the possibility of an
improvement over applying amplitude estimation n times. In particular, when A = I the
problem is simply that of ℓ∞-norm estimation, and hence we know that there is an improved
algorithm. Slightly more general, if A can be decomposed as A = RC for matrices R and C
such that R has a maximal row sum of r, and C has a maximal column sum of c, then the
problem can be solved with Õ

(
rc
ε

)
queries, by first applying C/c as a leaky Markov chain

step, estimating the result in infty norm up to error ε/b, and then applying R. It is however
unclear for which matrices a good decomposition exists.
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Improvements for partial distributions

While our improved algorithm from Theorem 9 works better when the total probability of
seeing a sample we are interested in is low, there is still a discrepancy between the classical
dependence on pmax and the quantum dependence on √

pmt.

Lower bound for low precision ℓ2-norm estimates

Our lower bound for ℓ2-norm estimates only works for the high precision (ε ∈ O (1/
√
n))

regime. A Ω
( 1

ε

)
lower bound for the ε > 1√

n
regime follows from the lower bound on

amplitude estimation, but it is an open question whether this may be improved to Ω
( 1

ε2

)
.

Circuit depth

Recent work by Giurgica-Tiron et al. [5] addresses a big disadvantage of amplitude estimation
on near term hardware: the circuit depth. While classical probabilities can be estimated by
a highly parallel system of logarithmic depth using Õ

(
1/ε2) processors, quantum amplitude

estimation is inherently sequential and takes depth Õ (1/ε). Giurgica-Tiron et al. give
algorithms that interpolate between these two cases, keeping the depth times the number of
oracle queries constant at Õ

(
1/ε2). It would be interesting to achieve a similar trade-off in

the multidimensional case.

Applications

A natural question is of course that of applications. Since the algorithm works when samples
from p are generated by a quantum algorithm, inherently quantum outputs like that of the
HHL algorithm, Hamiltonian simulation, or quantum Gibbs sampling might be a good fit.
Our new methods allow a lower dependence on the error ε when performing quantum state
tomography on the resulting states than the classical method of simply measuring does.

Another application might lie in distribution learning theory, or more broadly learning
theory in general. Here we are given an unknown distribution and are asked to learn certain
properties of the distribution. Our estimation algorithm might serve as a new tool to design
quantum improvements in this area.

References
1 R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds

by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in FOCS’98.
doi:10.1145/502090.502097.

2 Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplifica-
tion and estimation. Contemporary Mathematics, 305, 2002. arXiv:arXiv:quant-ph/0005055.

3 Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross. An optimal algorithm for
monte carlo estimation. SIAM Journal on Computing, 29(5):1484–1496, 2000. doi:10.1137/
s0097539797315306.

4 András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing quantum optimization
algorithms via faster quantum gradient computation, pages 1425–1444. SIAM, 2019. doi:
10.1137/1.9781611975482.87.

5 Tudor Giurgica-Tiron, Iordanis Kerenidis, Farrokh Labib, Anupam Prakash, and William
Zeng. Low depth algorithms for quantum amplitude estimation, 2020. arXiv:2012.03348.

6 Stephen P. Jordan. Fast quantum algorithm for numerical gradient estimation. Phys. Rev.
Lett., 95:050501, July 2005. doi:10.1103/PhysRevLett.95.050501.

https://doi.org/10.1145/502090.502097
http://arxiv.org/abs/arXiv:quant-ph/0005055
https://doi.org/10.1137/s0097539797315306
https://doi.org/10.1137/s0097539797315306
https://doi.org/10.1137/1.9781611975482.87
https://doi.org/10.1137/1.9781611975482.87
http://arxiv.org/abs/2012.03348
https://doi.org/10.1103/PhysRevLett.95.050501


J. van Apeldoorn 9:11

7 Sudeep Kamath, Alon Orlitsky, Dheeraj Pichapati, and Ananda Theertha Suresh. On learning
distributions from their samples. In Proceedings of The 28th Conference on Learning Theory,
volume 40 of Proceedings of Machine Learning Research, pages 1066–1100, Paris, France, 2015.
PMLR. URL: http://proceedings.mlr.press/v40/Kamath15.html.

8 Shelby Kimmel. Quantum adversary (upper) bound. Chicago Journal of Theoretical Computer
Science, 19(1):1–14, 2013. doi:10.4086/cjtcs.2013.004.

9 Ashley Montanaro. Quantum speedup of monte carlo methods. Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 471(2181):20150301, 2015. doi:
10.1098/rspa.2015.0301.

TQC 2021

http://proceedings.mlr.press/v40/Kamath15.html
https://doi.org/10.4086/cjtcs.2013.004
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1098/rspa.2015.0301

	1 Introduction
	2 Upper bound
	2.1 Main algorithm
	2.2 Improvements and tweaks
	2.2.1 Removing the dependence on n
	2.2.2 Learning part of the distribution
	2.2.3 Returning a probability distribution
	2.2.4 Putting it all together


	3 Lower bounds
	4 Open questions

