
New Sublinear Algorithms and Lower Bounds for
LIS Estimation
Ilan Newman #

University of Haifa, Israel

Nithin Varma #

University of Haifa, Israel

Abstract
Estimating the length of the longest increasing subsequence (LIS) in an array is a problem of
fundamental importance. Despite the significance of the LIS estimation problem and the amount
of attention it has received, there are important aspects of the problem that are not yet fully
understood. There are no better lower bounds for LIS estimation than the obvious bounds implied
by testing monotonicity (for adaptive or nonadaptive algorithms). In this paper, we give the first
nontrivial lower bound on the complexity of LIS estimation, and also provide novel algorithms that
complement our lower bound.

Specifically, we show that for every ϵ ∈ (0, 1), every nonadaptive algorithm that outputs an
estimate of the LIS length in an array of length n to within an additive error of ϵn has to make
logΩ(log(1/ϵ)) n queries. Next, we design nonadaptive LIS estimation algorithms whose complexity
decreases as the number of distinct values, r, in the array decreases. We first present a simple
algorithm that makes Õ(r/ϵ3) queries and approximates the LIS length with an additive error
bounded by ϵn. This algorithm has better complexity than the best previously known adaptive
algorithm (Saks and Seshadhri; 2017) for the same problem when r ≪ poly log(n). We use our
algorithm to construct a nonadaptive algorithm with query complexity Õ(

√
r · poly(1/λ)) that, when

the LIS is of length at least λn, outputs a multiplicative Ω(λ)-approximation to the LIS length. Our
algorithm improves upon the state of the art nonadaptive LIS estimation algorithm (Rubinstein,
Seddighin, Song, and Sun; 2019) in terms of the approximation guarantee.

Finally, we present a O(log n)-query nonadaptive erasure-resilient tester for monotonicity. Our
result implies that lower bounds on erasure-resilient testing of monotonicity does not give good
lower bounds for LIS estimation. It also implies that nonadaptive tolerant testing is strictly harder
than nonadaptive erasure-resilient testing for the natural property of monotonicity.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases longest increasing subsequence, monotonicity, distance estimation, sublinear
algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.100

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2010.05805

Funding Ilan Newman: Supported by The Israel Science Foundation, grant number 497/17.
Nithin Varma: Supported by The Israel Science Foundation, grant number 497/17 and by the PBC
Fellowship for Postdoctoral Fellows by the Israeli Council of Higher Education.

1 Introduction

Estimating the length of the longest increasing subsequence (LIS) in an array is a problem
of fundamental importance. For arrays of length n, one can solve this problem exactly
in time O(n log n) using dynamic programming [9] or patience sorting [2]. Approximating
the length of the LIS has also been well-studied, and there are several sublinear-time

EA
T

C
S

© Ilan Newman and Nithin Varma;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 100; pp. 100:1–100:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilan@cs.haifa.ac.il
mailto:nvarma@bu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.100
https://arxiv.org/abs/2010.05805
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

100:2 New Sublinear Algorithms and Lower Bounds for LIS Estimation

algorithms [15, 1, 19, 18] for this task. In the approximation task, for a real-valued array A

of size n, the goal is to estimate the length of the LIS within an additive error (of ϵn) or
multiplicative error. An additive ϵn-approximation algorithm for this problem can also be
used to estimate, with the same approximation guarantee, the Hamming distance of A to
the closest sorted array1 (a.k.a. distance to monotonicity).

Early sublinear-time algorithms for LIS estimation [15, 1] provided multiplicative (2+o(1))-
approximation for the distance to monotonicity, and thereby, additive n

2 -approximation to
the length of the LIS. Saks and Seshadhri [19] made a major improvement to the state of the
art, and presented an algorithm that approximates the LIS length to within an additive error
of ϵn for arbitrary ϵ ∈ (0, 1). All these algorithms have query complexity polylogarithmic2

in n for constant ϵ. Subsequently, Rubinstein, Seddighin, Song, and Sun [18] presented a
nonadaptive algorithm that computes a multiplicative Ω(λ3)-approximation to the LIS length,
with query complexity Õ(

√
n·poly(1/λ)), where λ is the ratio of the LIS length to n. In a very

recent work (independent and parallel to ours), Mitzenmacher and Seddighin [11] developed
a sublinear algorithm for LIS estimation with query complexity Õ(n1−Ω(ϵ) · poly(1/λ)) that
obtains an approximation ratio of Ω(λϵ) for arbitrary ϵ ∈ (0, 1).

Despite the significance of the LIS estimation problem and the amount of attention it
has received, there are important aspects of the problem that are not yet fully understood.
There is no better lower bound on the query complexity of LIS estimation, for adaptive or
nonadaptive algorithms, other than the obvious bound of Ω(log n) implied by monotonicity
testing [8]. Another issue is to investigate whether the input length n is the right parameter
to express the complexity of LIS estimation algorithms. In other words, it is unknown
whether there are other input parameters that capture the fine-grained complexity of LIS
estimation by making use of the underlying combinatorics of the problem.

In this paper we address both these issues. We prove the first nontrivial lower bound on
the query complexity of nonadaptive algorithms for additive error LIS estimation. We also
design nonadaptive LIS estimation algorithms whose query complexity is parameterized in
terms of the number of distinct values in the input array.

Lower Bound for LIS Estimation. We show that there is no nonadaptive algorithm
that approximates the LIS length to arbitrary additive error and has query complexity
polylogarithmic in n. Specifically, for arbitrary constant ϵ ∈ (0, 1), every nonadaptive LIS
estimation algorithm that has an additive error bounded by ϵn has to make logΩ(log(1/ϵ)) n

queries. Interestingly, our lower bound construction uses ideas from the lower bound [4] on the
query complexity of 1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness.
This is the first lower bound that improves upon the obvious lower bound of Ω(log n).

One general approach for proving lower bounds on the complexity of LIS estimation
was proposed by Dixit, Raskhodnikova, Thakurta, and Varma [6], who showed that lower
bounds for erasure-resilient testing of monotonicity provides lower bounds for estimating
the distance to monotonicity up to an additive error. We prove that this method cannot
provide a nontrivial lower bound for LIS estimation, by showing a O(log n)-query nonadaptive
algorithm for erasure-resilient monotonicity testing.

1 It is necessary and sufficient to modify the values that do not belong to an LIS to make the array sorted.
2 The query complexity of the algorithm by Saks and Seshadhri [19] depends on the approximation

parameter ϵ as O((1/ϵ)1/ϵ) and hence is within aforementioned bound only if ϵ is constant. In particular,
the query complexity ceases to be sublinear as as soon as ϵ is O(1/ log(n)).

I. Newman and N. Varma 100:3

Sublinear Algorithms for LIS Estimation. Our starting point here is to understand the
dependence of the query complexity of LIS estimation on the range size of an input array.
This is a major direction of study for the simpler problem of monotonicity testing, since the
only tight lower bound [8] holds for exponential range. Recently, Pallavoor, Raskhodnikova,
and Varma [14], and Belovs [3], gave efficient algorithms for monotonicity testing whose query
complexity beats the above lower bound when range size is small. There were no explicit
results on LIS estimation for limited range size before our work.3 In this paper, we give
efficient nonadaptive LIS estimation algorithms whose complexity is parameterized by r, the
number of distinct values in the array, which is always at most the range size. Our algorithms
improve upon the state of the art algorithms in both complexity and approximation guarantee
when the range is small.

We first show a Õ(r/ϵ3)-query nonadaptive algorithm for LIS estimation, of additive error
ϵn, for arbitrarily small ϵ. In particular, when the LIS length is a constant fraction of n, our
algorithm can be used to get a multiplicative (1 ± ϵ)-approximation for the LIS length. We
add that our algorithm is the only sublinear nonadaptive algorithm giving this approximation
guarantee when r = o(n). Furthermore, when r = o(logk n) (for an appropriate power k), our
algorithm outperforms the adaptive algorithm of Saks and Seshadhri [19], not only in terms
of the dependence of query complexity on the input size n, but also in terms of its dependence
on the approximation parameter ϵ. Hence, our algorithm bridges the gap between the known
Ω(poly log n)-query algorithm for the general range and the O(1)-query algorithm for the
Boolean range.

An additional main result of this paper is a Õ(
√

r)-query nonadaptive algorithm that
gives a multiplicative approximation to the LIS length even when the LIS is relatively
small. Namely, the algorithm makes Õ(

√
r · poly(1/λ)) queries and outputs a multiplicative

Ω(λ)-aproximation to the LIS length, where λ denotes the LIS length normalized by the
input length. This is an improvement over the algorithm by Rubinstein, Seddighin, Song, and
Sun [18], which makes Õ(

√
n · poly(1/λ)) nonadaptive queries and outputs a multiplicative

Ω(λ3)-approximation to the LIS length. Our algorithm improves upon [18] in terms of
approximation guarantee (even in the general case of r = n) as well as query complexity
(when r ≪ n), and further, works for any value of r. Finally, the query complexity of our
algorithm is always better than that of the recent LIS estimation algorithm by Mitzenmacher
and Seddighin [11] that outputs a multiplicative Ω(λϵ)-approximation to the LIS length for
arbitrary ϵ ∈ (0, 1).4

Separating Distance Estimation from Erasure-Resilient Testing. As mentioned before, a
general method for proving lower bounds on distance estimation (or tolerant testing [15]) is
via proving lower bounds on erasure-resilient testing [6].

Our nonadaptive erasure-resilient tester for monotonicity with complexity O(log n) and
our lower bound on the query complexity of nonadaptive algorithms for LIS estimation imply
that nonadaptive tolerant testing is strictly harder than nonadaptive erasure-resilient testing
for the natural property of monotonicity, thereby making progress towards solving an open
question raised by Raskhodnikova, Ron-Zewi, and Varma [16].

3 For the case of Boolean arrays, Berman, Raskhodnikova, and Yaroslavtsev [5] showed that one can
approximate the LIS length to within an additive error of ϵn by making O(1/ϵ2) queries.

4 We point out that the LIS estimation algorithm of Mitzenmacher and Seddighin [11] uses the algorithm
of Rubinstein et al. [18] as a subroutine. By using our algorithm instead, the query complexity of the
algorithm of Mitzenmacher and Seddighin [11] can be improved.

ICALP 2021

100:4 New Sublinear Algorithms and Lower Bounds for LIS Estimation

1.1 Discussion of Results and Overview of Techniques
In this section, we state our results more formally, and provide an overview of the techniques
used to prove them. We use ideas from [18], [12] and [4]. Given a real-valued array A of
length n, an LIS in A is the longest nondecreasing sequence of values in A. In other words,
the LIS is a largest cardinality set L of indices such that for u, v ∈ L, we have u < v if and
only if A[u] ≤ A[v]. We abuse notation and also use the term LIS to denote |L| when this
is clear from the context. A real-valued array of length n can be equivalently viewed as a
function from [n] to the reals. Adopting this view, we use the term monotone array to refer
to a sorted array. Throughout, we denote by r, the number of (or a guaranteed upper bound
on) distinct values in the array. That is, r = |R| for R = {A[i] : i ∈ [n]}. Thus, for the
unrestricted case it is assumed that r = n.

1.1.1 Lower bound on the query complexity of nonadaptive LIS
estimation algorithms

Our first result proves that there is no nonadaptive algorithm that approximates the LIS
length in an array of length n to within an additive error of ϵn and has query complexity
polylogarithmic in n, for arbitrary constant ϵ ∈ (0, 1).

▶ Theorem 1.1. For every ϵ ∈ (0, 1), every nonadaptive algorithm that on an array A of
length n, outputs an additive ϵn-approximation to the length of the LIS in A, has to make
logΩ(log(1/ϵ)) n queries.

We note that this is the first lower bound on LIS estimation that is not directly implied
by the lower bound for testing monotonicity [8].

To prove our lower bound, we construct two distributions with different LIS lengths
such that every deterministic nonadaptive algorithm distinguishing the distributions with
probability at least 2/3, has query complexity logω(1)(n). More specifically, for every natural
number h, we construct distributions D(h)

0 and D(h)
1 that are supported on inputs whose LIS

lengths differ by exp(−h). We then prove that every deterministic nonadaptive algorithm
that takes input from the union of the supports of D(h)

0 and D(h)
1 , and aims to correctly

identify the distribution from which the input is taken, either fails for most inputs or makes
Ω(logh n) queries. Interestingly, our lower bound construction uses ideas from the lower
bound of Ben-Eliezer, Canonne, Letzter, and Waingarten [4] on the query complexity of
1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness, where an array
A of length n is (k, . . . , 2, 1)-free if there are no k indices i1 < i2 < · · · < ik such that
A[i1] > A[i2] > · · · > A[ik].

Using reductions from erasure-resilient testing

As mentioned before, a general method for proving lower bounds on distance estimation is
via proving lower bounds on erasure-resilient testing [6].

▶ Definition 1.2 (Erasure-resilient monotonicity tester). Given ϵ, α ∈ (0, 1) and a real-valued
array A containing at most α-fraction of erased values5, the goal of an α-erasure-resilient
ϵ-tester for monotonicity is to determine whether A can be completed to a monotone array
or whether every completion of A has Hamming distance at least ϵn to monotonicity.

5 Erasures are made adversarially before the tester makes its queries and the tester is unaware of the
location of the erasures. A tester that queries the value at an erased location is returned a special
symbol ⊥.

I. Newman and N. Varma 100:5

Dixit, Raskhodnikova, Thakurta and Varma [6] observed that the complexity of erasure-
resilient (ER) testing a property, falls in between the complexity of standard testing the
property and estimating the distance to that property (with additive error). Hence, a lower
bound on the complexity of ER testing monotonicity implies the same lower bound for
estimating the LIS length up to an additive error. The only previously known ER tester
for monotonicity [6] is adaptive and has query complexity O(log(n)/ϵ). Hence, a nontrivial
lower bound for (adaptive) LIS estimation cannot be obtained this way.

We present a nonadaptive ER tester that makes O(log n) queries and works for all fraction
of erasures. This makes the results on ER testing monotonicity tight, and also shows that
one cannot obtain a lower bound for LIS estimation via ER testing.

▶ Theorem 1.3. Let ϵ, α ∈ (0, 1) such that α + ϵ < 1. There exists a nonadaptive α-
erasure-resilient ϵ-tester for monotonicity that makes O

(
log n

ϵ2 + 1
ϵ3

)
queries for n-length

arrays.

The ER testers designed by Dixit et al. [6] for various properties, are all either adaptive, or
obtained by repeating a (standard) tester that makes independent and uniformly distributed
queries. Our tester is different, and is in this sense, the first nontrivial nonadaptive ER
tester for a natural property. Consider an array A of length n with at most α fraction
of erasures, where α ∈ [0, 1). Our tester samples an index s ∈ [n] uniformly at random
and does a randomized binary search for s on the array as if it were monotone. It queries
the array values on these indices, and looks for violations to monotonicity on the search
path to s. In case there are no erasures, this is a good strategy to detect a violation to
monotonicity [7]. However, when values at a constant fraction of indices are erased, it could
be the case that most of the values on the search path are erased. We show that a slightly
modified version of this tester can be used for testing monotonicity. Specifically, our tester,
in addition to querying the values along the binary search path, also queries the indices in a
small constant-sized interval around the search point s. To analyze this modified tester, we
rely on a combinatorial lemma by Newman, Rabinovich, Rajendraprasad, and Sohler [12]. A
nonerased index x ∈ [n] is γ-deserted for γ ∈ (0, 1) if there exists an interval I ⊆ [n] such
that x ∈ I and at most γ fraction of the values in I are nonerased. Roughly speaking, the
lemma implies that the fraction of γ-deserted indices in A is proportional to γ · α. Using this,
we are able to argue that, with high probability, the index s that we sample as the search
point is not γ-deserted (for an appropriate choice of γ) and that it forms a violation with
enough other nonerased indices, so as to ensure a high probability of success.

1.1.2 Parameterized and nonadaptive algorithms for LIS estimation
We present efficient nonadaptive LIS estimation algorithms. The novelty is that we paramet-
erize the complexity of LIS estimation algorithms in terms of the number of distinct values r

in an array. We first show an LIS estimation algorithm with query complexity Õ(r).

▶ Theorem 1.4. There exists a nonadaptive algorithm that, given a real-valued array A of
length n containing at most r distinct values, and a parameter ϵ ∈ (0, 1), makes Õ(r/ϵ3)
queries and outputs, with probability at least 2/3, an estimate for the LIS size that is
accurate to within additive ϵn-error. Moreover, the queries of the algorithm are uniformly
and independently distributed, and the algorithm runs in time Õ(r/ϵ3).

We mention that the approximation guarantee provided by the algorithm is quite strong
and holds even for non-constant error parameter ϵ. It matches the approximation guarantee
of the adaptive LIS estimation algorithm by Saks and Seshadhri [19], which makes polylog(n)

ICALP 2021

100:6 New Sublinear Algorithms and Lower Bounds for LIS Estimation

queries when ϵ = θ(1). In particular, when the length of the LIS L is a constant fraction
of n, our algorithm can be used to get a multiplicative (1 ± ϵ)-approximation for the LIS
length. We add that our algorithm is the only nonadaptive sublinear algorithm giving this
approximation guarantee as soon as r = o(n). Furthermore, when r = o(logk n) (for an
appropriate power k), our algorithm performs much better than the algorithm of Saks and
Seshadhri, not only in terms of the dependence of query complexity on the input size n, but
also in terms of the dependence on the approximation parameter ϵ.

The high level idea of the algorithm is that it is enough to restrict attention to special
subarrays that are dense and nice, as elaborated in the following. Let L be a fixed unknown
LIS in the input array. A subarray is dense if a constant fraction of its indices belong to
L, and it is nice if the LIS takes at most one distinct value in the subarray. Informally,
we divide the array into O(r/ϵ) subarrays. This will make most dense subarrays nice with
respect to L (for an appropriate density parameter). We then sample O(log r) indices in
each subarray to find the values that are “typical” in each subarray.

Our goal is to output as an estimate for |L|, the size of L′, which is the restriction of L
to such typical values. This will naturally be an underestimate, but with a small additive
error. To estimate the size of L′, we consider all possible increasing sequences of the typical
values, taking one value from each subarray. Since most subarrays are nice, the size of L′

restricted to such a sequence of values is quite close to |L′|. Finally, for a given nice subarray
Ai, the largest subsequence in Ai that takes one given value v can be easily determined –
this is just the distance to the array taking the value v everywhere.

Next, we use the above Õ(r)-query algorithm to obtain a nonadaptive LIS estimation
algorithm with query complexity Õ(

√
r).

▶ Theorem 1.5. There exists a nonadaptive algorithm that, given a real-valued array A of
length n containing at most r distinct values and |LIS(A)| = λ · n, makes Õ(

√
r · poly(1/λ))

queries and outputs, with probability at least 2/3, an estimate est such that Ω(λ · |LIS(A)|) ≤
est ≤ O(|LIS(A)|). Moreover, the algorithm runs in time Õ(r · poly(1/λ)).

As mentioned before, this result is an improvement over a recent LIS estimation algorithm
by Rubinstein, Seddighin, Song and Sun [18], in terms of the approximation guarantee.
Additionally, the complexity of our algorithm improves as the number of distinct values in
the input array decreases. Another advantage of our algorithm (also that of [18]) is that its
query complexity is sublinear, even if λ is sub-constant.

Our Õ(
√

r)-query nonadaptive algorithm is somewhat complicated. In the following, we
present a high-level description of the algorithm. We denote the input array by A and use
L to denote a fixed LIS in A. We visualize the array values as points in an r × n grid Gn.
The vertical axis of Gn represents the range R of the array and is labeled with the at most r

distinct array values in increasing order and the horizontal axis is labeled with the indices in
[n]. We refer to an index-value pair in the grid as a point. The grid has n points, to which
we do not have direct access. We use queries to the array to form some approximate picture
of the location of points in this grid, and use it to estimate |L|.

The main idea is to build, in Õ(
√

r) queries, a data structure that possesses enough
information to compute an estimate est, which is a lower bound on |L| and is also a reasonably
good approximation. Roughly speaking, the first step in building this data structure is the
following. We divide the r × n grid Gn into y∗ rows and x columns that partitions Gn into a
y∗ ×x grid G′ of boxes, where y∗ = Θ(

√
r) and x = Θ(

√
r). Specifically, we divide the interval

[n] into x contiguous subarrays. For i ∈ [x], let Di denote the i-th subarray. Additionally,
we divide the range R into y∗ contiguous intervals of array values, where for j ∈ [y∗], we use
Ij to denote the j-th interval when the intervals are sorted in the nondecreasing order of
values. The set of boxes in G′ is then {(Di, Ij) : i ∈ [x], j ∈ [y∗]}.

I. Newman and N. Varma 100:7

For simplicity, we assume that r = n for the rest of the high-level description. The y∗ × x

grid of boxes G′ induces a poset on the y∗x boxes, which is similar to the natural poset defined
on Gn. Namely, for two boxes in G′ (or for two points in Gn), we have (Di, Ij) ⪯ (It, Ds)
(or (i, j) ≤ (t, s)) if i ≤ s and j ≤ t. The points in L form a chain in the above poset in
Gn. Conversely, each chain in the poset Gn forms an increasing subsequence in the array A.
Further, the boxes in G′ through which L passes also forms a chain in the poset in G′. On
the other hand, every chain of boxes in the poset in G′ induces a number of chains in the
poset in Gn, but of possibly quite different lengths. Our strategy is to find a small collection
of chains in the poset in G′ that cover all boxes through which the fixed L passes, and then
to estimate the length of an LIS in each of these chains of boxes.

Let I ⊆ R be a subset of the range R of values and B be a subarray of A. The density of
the box (B, I), denoted by den(B, I), is defined to be the fraction of indices in the subarray
B whose values belong to the interval I. In other words, for each box (Di, Ij) ∈ G′, its
density den(Di, Ij) is the fraction of indices in the subarray Di whose values land in the
interval Ij . For β < 1, a box (Di, Ij) is said to be β-dense, if den(Di, Ij) ≥ β. There can be
at most 1

β boxes that are β-dense in any particular subarray Di.
Suppose that we know (a good approximation of) the density of every box in G′ (this is

what we require from our data structure, and this will be achieved via sampling). Then, we
may restrict our attention to the at most x/β dense boxes in G′ and compute the LIS only
in the corresponding part of Gn. This is obviously an underestimate of the size of L, but
one that can be afforded; deleting every box that is not β-dense from the chain of boxes that
L passes through causes the deletion at most βn points from L.

We note that the same global idea is also used in the algorithms of [18] and (implicitly)
also of [19], but in a completely different setting (and grid sizes) which makes the first one
weaker in term of approximation guarantees, and the second one necessarily adaptive.

Next, in order to further reduce the number of possible chains of boxes in which we need
to compute LIS, we note that we can delete large antichains of boxes from G′, while not
decreasing the LIS size by much. For this, we first consider a finer partition of each dense
box into dense cells of nearly equal densities, and then define a poset on the set of all dense
cells in the whole array. We then remove large antichains from this latter poset and argue
that the removal of dense cells participating in these antichains does not hurt the LIS too
much. Finally, by using Dilworth’s theorem, we are able to obtain a collection of a constant
number of chains in G′, that covers the restriction of L to the undeleted boxes.

The next idea is to estimate the LIS in each of the constantly many remaining chains.
This results in a loss of a multiplicative constant factor in the LIS size estimation.

At this point, we have reduced the problem to the estimation of the LIS in a given fixed
chain of β-dense boxes in G′. Such a chain can be partitioned into two chains, one that
contains only strictly horizontal chains on disjoint subarrays, and the other that contains
only strictly vertical chains on disjoint interval ranges (see Figure 3). We will estimate the
LIS in each, losing possibly another multiplicative 2-factor, which we are prepared to accept.

The final idea is the following. For the vertical going chain, one can just sample a constant
number of vertically going subchains, estimate the LIS length in each one of them, and use
these estimates to estimate the LIS length in the vertical chain. By the Hoeffding bound,
this will be a good approximation. When r = n, estimating the LIS in a single vertical going
subchain is trivial; we just query all n/x = Õ(

√
n) points in the subarray Di corresponding

to that subchain. For smaller r, this is not possible, and what we do is to reduce to the
algorithm implied in Theorem 1.4, using the fact that most vertically going chains span a
small range (this later fact will have to be argued from the way the data structure is formed).

ICALP 2021

100:8 New Sublinear Algorithms and Lower Bounds for LIS Estimation

For horizontally going chains, we will need a bit more from our data structure. The
partition G′ of Gn will be such that every layer formed by i ∈ [y∗] contains either a small
fraction of points from L, or it contains only one range value. This is the only place in which
we actually make use of the fact that y∗ = Ω(

√
n), which lower bounds the query complexity

of the algorithm. Having this guarantee on the grid G′, it would have been enough to sample
a constant number of horizontally going subchains, and estimate the LIS within. Further, by
the guarantee above, each horizontal layer in G′ contains only a small number of distinct
values. This implies that we could again employ our algorithm of Theorem 1.4. However,
this will make the whole algorithm adaptive (as one has to “locate” the horizontal segments).
Instead, we show that we can concentrate on short (spanning a constant number of boxes)
subchains, which will allow us to employ the algorithm given by Theorem 1.4 nonadaptively.

1.1.3 Separating erasure-resilient testing from tolerant testing
Tolerant testing is a generalization of property testing [17, 10] defined by Parnas, Ron and
Rubinfeld [15]. Specifically, a (δ, ϵ + δ)-tolerant tester of monotonicity distinguishes, with
probability at least 2/3, between the cases that the distance of A to monotonicity is less
than δn and at least (ϵ + δ)n, where ϵ, δ ∈ (0, 1).

It has been observed [15] that a tolerant tester for a property is equivalent to an algorithm
for estimating the distance to that property with an additive error guarantee. Hence, the
task of estimating the LIS up to an additive error is equivalent to tolerant monotonicity
testing. This allows us to restate Theorem 1.1 in terms of tolerant testing as follows.

▶ Theorem 1.6. For every ϵ ∈ (0, 1), there exists a constant δ ∈ (0, 1) such that every
nonadaptive 2-sided error (δ, δ + ϵ)-tolerant tester of monotonicity has query complexity
logΩ(log(1/ϵ)) n.

Theorem 1.6 and Theorem 1.3 together imply that for the property of monotonicity, non-
adaptive tolerant testing is strictly harder than nonadaptive ER testing, and also significantly
less efficient than adaptive tolerant testing. Our results make progress towards answering
the open question raised by Raskhodnikova, Ron-Zewi, and Varma [16] on the existence of
natural properties for which one can show a separation between tolerant testing and ER
testing in terms of query complexity.

1.2 Organization
We set our notations in Section 2. The proof for an important special case of our lower bound
on the query complexity of nonadaptive LIS estimation (Theorem 1.6) is presented in Section 3
and the proof in its full generality is deferred to the full version [13]. Our nonadaptive
and parameterized algorithm for multiplicative error LIS estimation (Theorem 1.5) and
its analysis are presented in Section 4. Our algorithm for additive error LIS estimation
(Theorem 1.4), and our nonadaptive erasure-resilient monotonicity tester (Theorem 1.3)
can both be found in the full version [13]. All omitted proofs can also be found in the full
version [13].

2 Notations and Preliminaries

For a natural number n, we use [n] to denote the set {1, 2, . . . , n}. For a real-valued array A

of length n, we use A[i] to denote the i-th entry of A for i ∈ [n]. For x ≤ y ∈ [n] we denote
by [x, y] the set {x, x + 1, . . . , y}. The array A is monotone if for every two indices u, v ∈ [n]

I. Newman and N. Varma 100:9

such that u < v, we have A[u] ≤ A[v]. If A is not monotone, two indices u, v ∈ [n] are said
to violate monotonicity if u < v and A[u] > A[v]. For ϵ ∈ (0, 1), we say that A is ϵ-far from
monotone if the values on at least ϵ · n indices need to be modified to get a monotone array.
A is ϵ-close to monotone if there is a way to modify the values on fewer than ϵ · n indices
to get a monotone array. For a parameter α ∈ [0, 1), we say that A is α-erased, if at most
α fraction of the array values evaluate to a special symbol ⊥. An assignment of values to
the erased points in an array is called a completion. An α-erased array is monotone if there
exists a completion that is monotone; it is ϵ-far from monotone if every completion is ϵ-far
from monotone. We assume that algorithms accesses an input array A via an oracle; that is
when the algorithm makes a query i ∈ [n], the oracle returns a special symbol ⊥ if the array
value at index i is erased, and A[i] otherwise. An algorithm is adaptive if its queries depend
on the answers to its previous queries, and is nonadaptive otherwise. A partially ordered set
(poset) is a set P associated with a reflexive, transitive, antisymmetric order relation ⪯ on
its elements. We denote the poset by ⟨P, ⪯⟩. A chain in ⟨P, ⪯⟩ of length k is a sequence
of elements x1 ⪯ x2 ⪯ · · · ⪯ xk. An antichain is a set S ⊆ P such that for u, v ∈ S neither
u ⪯ v nor v ⪯ u.

3 Lower Bounds for Nonadaptive LIS Estimation

In this section, we prove our lower bounds (Theorem 1.1) on the query complexity of 2-sided
error nonadaptive algorithms for estimating the distance of real-valued arrays of length n from
monotonicity up to an additive error of ϵ · n for some constant ϵ ∈ (0, 1). Equivalently, our
lower bounds also hold for algorithms that (δ, ϵ + δ)-tolerant test monotonicity for constants
δ, ϵ ∈ (0, 1). Interestingly, our lower bounds use ideas from the lower bound on the query
complexity of 1-sided error nonadaptive testers for the property of (k, . . . , 2, 1)-freeness [4],
where an array A of length n is (k, . . . , 2, 1)-free if there are no k indices i1 < i2 < · · · < ik

such that A[i1] > A[i2] > · · · > A[ik].
An algorithm is said to be comparison-based if its decisions are based only on the ordering

relation between the queried values, and not on the values themselves. The following
Lemma 3.1, which follows from the work of Fischer [8], states that it is enough to restrict
our attention to comparison-based algorithms.

▶ Lemma 3.1 ([8]). There is an optimal comparison-based algorithm for computing an
additive ϵn-approximation to the LIS in real-valued arrays of length n for all constant
ϵ ∈ (0, 1).

Even though Fischer [8] proves the above statement in the context of testing monotonicity
in the standard model, his proof also works for the case of tolerant testing monotonicity,
and in turn for LIS estimation. In the rest of this section, we restrict our attention to
comparison-based algorithms for LIS estimation.

3.1 An Ω(log2 n) Lower Bound
As a starting point, we prove an Ω(log2 n) lower bound. Throughout this section, we assume
that n is of the form 22x for some natural number x. We prove the lower bound using
Yao’s method. Specifically, we describe two distributions D0 and D1 over real-valued arrays
of length n, with different distances to monotonicity (Lemma 3.2), and show that every
deterministic nonadaptive comparison-based algorithm distinguishing these distributions
with probability at least 2/3, has to make Ω(log2 n) queries (Lemma 3.3).

ICALP 2021

100:10 New Sublinear Algorithms and Lower Bounds for LIS Estimation

Figure 1 The relative values in j1-blocks of D0 either look like the left or right diagrams above,
with equal probability.

For ease in describing our distributions, we first define some notation. We think of the
indices of an array of length n as the leaves of an ordered binary tree T of height log(n) + 1.
We associate bit positions in the log n-bit representation of the numbers in [n] with the
non-leaf nodes of T . The root is associated with the most significant bit (or the bit position
log n). Every node at distance i ∈ [log(n) − 1] from the root is associated with bit position
log(n) − i. The bit position associated with a node is also referred to as its level (and the
level of the root is log n). The edges connecting a node with its left and right children are
labeled 0 and 1, respectively. Clearly, the string obtained by concatenating all the edge labels
on a root-to-leaf path in T gives the binary representation of the index corresponding to the
leaf. For two indices x, y ∈ [n] (which are, by definition, the leaves in T), we use LCA(x, y) to
denote the lowest common ancestor of x and y in T . For j ∈ [log n] there are obviously n/2j

subtrees of T , each rooted at level j. In a left to right ordering, these n/2j subtrees partition
[n] into blocks of size 2j . The “the ℓ-th j-block” is the ℓ-th block from left with size 2j .

The distributions D0 and D1

We first describe the steps that are common to constructing the distributions D0 and D1.
Sample numbers j1, j2 ∈ [log n] such that j1 < log(n) − 14, and j2 < j1 − 14. We refer to the
numbers j1, j2 as the scales of the distributions.

We start with the monotone array A in which A[u] = u for all u ∈ [n]. Swap the array
values between the left and right halves of every j1-block. See the left part of Figure 1 to
see how the relative values in each j1-block of the array will look like at this point. For
ℓ ∈ [n/2j1], let Bℓ denote the ℓ-th j1-block.

Distribution D0: Independently for each ℓ ∈ [n/2j1]:
1. with probability 1

2 , for each j2-block inside Bℓ, swap the array values between the left
and right halves of that j2-block.

Distribution D1: Independently for each ℓ ∈ [n/2j1]:
1. with probability 1

2 , for each j2-block inside the left half of Bℓ, swap the array values
between the left and right halves of that j2-block,

2. with the remaining probability 1
2 , for each j2-block inside the right half of Bℓ, swap

the array values between the left and right halves of that j2-block.

The relative values taken by the array A on indices in an arbitrary j1-block in distributions
D0 and D1 can be visualized as in Figures 1 and 2. We note that in both D0, D1, all values in
the ℓ-th j1-block are smaller than the values in the (ℓ + 1)-th j1-block for all ℓ ∈ [(n/2j1) − 1].

I. Newman and N. Varma 100:11

Figure 2 The relative values in j1-blocks of D1 either look like the left or right diagrams above,
with equal probability.

▶ Lemma 3.2. The distance to monotonicity of every array sampled from D0 is, with
probability 1 − δ/2, within 5

8 ± δ, where δ ≤ 1
26 . The distance to monotonicity of every array

sampled from D1 is equal to 1/2.

Proof. Consider an array A sampled from one of the distributions. Let j1 > j2 be the scales
used. First, observe that there are no violations to monotonicity across j1-blocks. Therefore,
it is enough to focus on repairing individual j1-blocks and making them monotone (without
inducing new violations). Consider a j1-block Bℓ for ℓ ∈ [n/2j1].

Assume that A is constructed from D0, and that Bℓ is such that the values in the left
and right halves of every j2-block in Bℓ are swapped (happens with probability 1

2 for that
block). Then we need to modify the values of at least 3/4 fraction of indices in Bℓ to make
it monotone, since Bℓ contains an exact cover by disjoint decreasing subsequences, each of
size 4. Further, it is easy to see that by correcting a 3/4 fraction of indices we can make Bℓ

monotone. In case swapping of values is done for none of the j2-blocks in Bℓ (happens with
probability 1

2), then we can repair Bℓ if and only if we modify the values on half the indices
in Bℓ. Therefore, the expected distance to monotonicity of each block Bℓ, and thereby, of A

is equal to 5/8. Note that the specific values of the scales did not matter in the above.
Let δ = 1/26. We now show that the distance of A from monotonicity is 5

8 ± δ, with
high probability. For a block Bℓ, ℓ ∈ [n/2j1], let dist(Bℓ) denote the distance of the block
from monotonicity, normalized by the block length 2j1 . We can see that the random
variable (

∑
ℓ dist(Bℓ))/(n/2j1) corresponds to the normalized Hamming distance of A from

monotonicity. By Hoeffding’s bound, we have, Pr
[∣∣∣∣∑

ℓ
dist(Bℓ)

n/2j1 − 5
8

∣∣∣∣ > 1
26

]
≤ 2

exp(8) ≤ 1
27 = δ

2 .

Assume now that A is constructed from D1. For ℓ ∈ [n/2j1], if the swap of values happens
within every j2-block in the left half of Bℓ, then we can repair Bℓ by setting every value
in the left half of that block to the smallest value in the right half of the same block. An
analogous repair can be done if the swap happens in the right hand side of the block. In both
cases, we only change values of at most half the number of indices in each block. The reader
can easily convince themselves that at least half the values per block need to be changed to
make a j1-block monotone, which concludes the proof for the given scales. As before, the
argument is independent of the choice of the scales. ◀

▶ Lemma 3.3. Every comparison-based nonadaptive deterministic algorithm that, with
probability at least 2/3, distinguishes the distributions D0 and D1 has to make Ω(log2 n)
queries.

Proof. Consider an arbitrary deterministic comparison-based nonadaptive algorithm T that
makes o(log2 n) queries and aims to distinguish D0 and D1. Let Q ⊆ [n] denote the set of
queries that T makes.

ICALP 2021

100:12 New Sublinear Algorithms and Lower Bounds for LIS Estimation

Consider an array A sampled according to one of the distributions. Recall that T denotes
an ordered binary tree whose leaves are the indices of A. Let j1, j2 ∈ [log n] such that j2 < j1
denote the scales used while constructing A. Let E denote the (bad) event that Q contains
four indices w < x < y < z ∈ [n] such that for some ℓ ∈ [n/2j1], (1) Each of {w, x, y, z}
belongs to the same ℓ-th j1-block, (2) LCA(w, x) and LCA(y, z) are both nodes in T at level
j2, and (3) LCA(x, y) is at level j1. By an argument of Ben-Eliezer, Canonne, Letzter, and
Waingarten [4], the probability, over the choice of the scales j1, j2, of the event E is at most
1/3. In the rest of the proof, we fix the scales (j1, j2) for which E does not happen.

Let x, y ∈ Q be such that LCA(x, y) is at level j2 in T . In the rest of the proof, for
simplicity, we refer to such queries as being j2-cousins. Let B be a j1-block, and let QL(B)
be the queries in Q that are in the left half of B, and QR(B) the queries in Q that are in the
right half of B. By our conditioning, for each j1-block B, either all j2-cousins in B belong
to QL(B) or to QR(B) but not both. Consider the half of B that does not contain any
j2-cousins. In the algorithm’s view, the array values in that half are increasing, whether A is
sampled from D0 or D1.

Assume that A is sampled from D0. We show that there is a way to sample an array A′

from D1 such that the algorithm’s view on A and A′ are identical. The scales of A′ have to
be identical to those of A. We only need to specify how swapping of values is done inside the
j1-blocks, as part of constructing A′.

Note that we only need to consider the j1-blocks in which at least two queries fall.
Consider such a block B, and assume that QR(B) contains no j2-cousins. Consider the case
that swapping of values was done within every j2-block inside the block B while constructing
A. Then, in A′, we swap the values only within the j2-blocks inside the left half of B. In the
other case that no swapping of values (within j2-blocks) was done while constructing A, we
swap the values only within the j2-blocks inside the right half of B. It is easy to see that the
relative values within block B in the array A′ are consistent with that of an array sampled
from D1. One can make similar arguments about coupling the arrays A and A′ on blocks B

such that the only occurrences of indices x, y ∈ Q ∩ B that are j2-cousins are in the right
half of B.

We conclude that for any scales j1, j2 for which E does not happen, the view of the
algorithm making queries Q is identical on A′ and A. Hence the algorithm cannot distinguish
between the case that the array is sampled from D0 or from D1 for such scales. As this is
true for any scales for which E does not happen, this concludes the proof.

Observe that the only place in the analysis where we made use of the bound on the
number of queries is in arguing that the event E happens with low probability. ◀

3.2 A logω(1) n Lower Bound

Next, we strengthen the Ω(log2 n) lower bound and prove Theorem 1.1. We make use of the
idea of Ben-Eliezer et al. [4] for lower bounding query complexity of nonadaptive detection of
larger forbidden order patterns. The idea is to use more than just two scales. This, in turn,
makes the difference between the distances of arrays sampled from the two distributions
smaller, which is why we only get a logω(1) n lower bound.

Let h ≥ 2 be an integer parameter. We describe the two distributions D(h)
0 and D(h)

1
on real-valued arrays, such that no comparison-based deterministic nonadaptive algorithm
that makes o(logh n) queries can distinguish between the distributions with high probability.
Further, the distance to monotonicity of each array sampled from D(h)

0 will be significantly
different than that of arrays sampled from D(h)

1 .

I. Newman and N. Varma 100:13

The distributions are defined recursively, where, for the base case h = 2, let D(2)
0 and

D(2)
1 be equal to D0 and D1 defined with scales j1, j2 as in Section 3.1, respectively. The

details of the distributions and the proof of lower bound for the general case is much more
technical and it is deferred to the full version [13].

4 Parameterized and Nonadaptive Algorithm for LIS Estimation

Our final goal in this paper is to present a sublinear algorithm that, for an array of length
n containing at most r distinct values, approximates the LIS length within a bounded
multiplicative error (Theorem 1.5). Our algorithm is described in the following subsections,
and it uses as a subroutine, the algorithm guaranteed by Theorem 1.4 that approximates
the LIS length within a bounded additive error. The description and analysis of the latter
algorithm can be found in the full version of the paper [13].

4.1 Õ(
√

r)-Query Nonadaptive Algorithm
Let L denote the set of points in an arbitrary and fixed LIS in the input array A. For
simplicity of the presentation, we assume that our algorithm knows a lower bound λn on |L|.
Disregarding this assumption, the algorithm will output, with high probability, a lower bound
estimate of the size of an increasing sequence in A. If λn is indeed a bound as assumed, it
will be guaranteed that the estimate is within the multiplicative error that is stated. Hence λ

can be checked by running the algorithm, in parallel, for a geometrically decreasing sequence
of λ’s. The reader may think of λ < 1 as a small constant (although the algorithm works for
λ = o(1) as well).

Throughout this section, we visualize the array values as points in an r × n grid Gn. The
vertical axis of Gn represents the range R of the array and is labeled with the at most r

distinct array values in increasing order and the horizontal axis is labeled with the indices in
[n]. We refer to an index-value pair in the grid as a point. The grid has n points, to which
we do not have direct access.

We divide the r × n grid Gn into y∗ rows and x columns that partitions Gn into a
y∗ × x grid G′ of boxes, where y∗ = Θ(

√
r) and x = Θ(

√
r). Specifically, we divide the

interval [n] into x contiguous subintervals. For i ∈ [x], let Di denote the subarray induced
by the indices in the i-th subinterval. Additionally, we divide the range R into y∗ contiguous
intervals of array values, where for j ∈ [y∗], we use Ij to denote the j-th interval when the
intervals are sorted in the nondecreasing order of values. The set of boxes in G′ is then
{(Di, Ij) : i ∈ [x], j ∈ [y∗]}.

The y∗ × x grid of boxes G′ induces a poset ⟨P, ⪯⟩ on the y∗x boxes, which is similar
to the natural poset defined on Gn. Namely, for two boxes in G′ (or for two points in Gn),
we have (Di, Ij) ⪯ (Ds, It) (or (i, j) ≤ (s, t)) if i ≤ s and j ≤ t. The points in L form a
chain in the above poset in Gn. Further, each chain in the poset in Gn forms an increasing
subsequence in the array A. The boxes in G′ through which L passes also forms a chain in
the poset in G′. Every chain of boxes in the poset in G′ induces a number of chains in the
poset in Gn, but of possibly quite different lengths.

▶ Definition 4.1 (Density of a box). Let I ⊆ R be a subset of the range R of values and B

be a subarray of A. The density of the box (B, I), denoted by den(B, I), is defined to be the
fraction of indices in the subarray B whose values belong to the interval I.

In other words, for each box (Di, Ij) ∈ G′, its density den(Di, Ij) is the fraction of points in
the subarray Di that land in the box (Di, Ij). For β < 1 (that the reader can think of as a
small constant), a box (Di, Ij) is said to be β-dense, if den(Di, Ij) ≥ β.

ICALP 2021

100:14 New Sublinear Algorithms and Lower Bounds for LIS Estimation

4.1.1 Forming the grid G′ of boxes

Our goal in this section is to describe a procedure that determines the grid G′ of boxes.
Specifically, as we do not know the range R and only know an upper bound r on its size
|R|, we start by forming an approximation of R and an approximation of the densities of
subinterval ranges in R in the array A. To do this, we first partition R into Õ(

√
r) sub-ranges

called layers. For the sake of generality, we describe the procedure for a subarray B of A.
More generally, given a subarray B, and a parameter y, our goal is to partition the range

R into roughly y intervals of roughly equal densities, where the densities are with respect to
B. We note that although the size r of the range R might be relatively large, it is possible
that some values appear in B much more frequently than others. One of our goals is to
identify such values and well-approximate their densities. We now define a “nice” partition as
follows. Given y and B, a nice y-partition of the values in B is a partition R = ∪y∗

i=1Ii, if for
each i ∈ [y∗], either Ii contains only one value vi and den(B, Ii) ≥ 1

2y , or den(B, Ii) ≤ 2
y . In

the former case, we call Ii a single-valued layer. In the latter, we say that Ii is a multi-valued
layer (although in an extreme case it might contain only one value). We also require y∗ ≤ 2y.

Next, we describe our procedure Layering(B, y, t) that forms a y-nice partition of a
subarray B, along with a good approximation of the densities of the single-valued layers.
This is quite technical, although standard. We advise the reader to avoid it on first reading,
and assume that, when needed, we have a nice partition along with a good approximation to
the densities of layers.

Algorithm 1 Layering.

1: procedure Layering(B, y, t)
2: Goal: To divide the set of array values in the subarray B into roughly y contiguous

intervals of roughly equal densities. The parameter t is used to control the success probability.
3: Sample a set of ℓ = t·y log y indices S from B, uniformly at random and independently.

▷ Note that a value v is expected to appear in proportion to its density in the array. Hence
the collection of values obtained is a multiset of size ℓ.

4: We sort the multiset of values V = {B[p] : p ∈ S} to form a strictly increasing
sequence seq = (v′

1 < . . . < v′
q), where with each i ∈ [q] we associate a weight wi that

equals the multiplicity of v′
i in the multiset V of values. ▷ Note that

∑
i∈[q] wi = ℓ.

5: We now partition the sequence W = (w1, . . . , wq) into maximal disjoint contiguous
subsequences W1, . . . Wy∗ such that for each j ∈ [y∗], either

∑
w∈Wj

w < 2t log y, or Wj

contains only one member w for which w > t log y.
Note that this can be done greedily as follows. If w1 > t log y then W1 will contain

only w1, otherwise W1 will contain the maximal subsequence (w1, . . . , wi) whose sum is
at most 2t log y. We then delete the members of W1 from W and repeat the process. For
i ∈ [y∗], let w(Wi) denote the total weight in Wi.

Correspondingly, we obtain a partition of the sequence seq of sampled values into at
most y∗ subsequences {Si}i∈[y∗]. Some subsequences contain only one value of weight
at least t log y and are called single-valued. The remaining subsequences are called
multi-valued.

For a subsequence Si, let αi = min(Si) and βi = max(Si). Let β0 = −∞. Note that
αi ≤ βi and βi−1 < αi for all i ∈ [y∗].

6: For i ∈ [y∗], we associate with the subsequence Si, an interval (layer) Ii ⊆ R, where
Ii = (βi−1, βi], and an approximate density d̃en(B, Ii) = w(Wi)/ℓ.

7: end procedure

I. Newman and N. Varma 100:15

Let {Ii}y∗

i=1 be the set of layers that are created by a call to Layering(B, y, t). Recall
that w(Wi) ≥ t log y if Ii is a single-valued layer and w(Wi) < 2t log y if Ii is multi-valued,
where Wi denotes the sum of multiplicities of the values in the sample Si.

For a multi-valued layer Ii, let Ei denote the event that den(B, Ii) < 4
y . For a single-valued

layer Ii such that den(B, Ii) ≥ 1
2y , let Ei denote the event that den(B,Ii)

2 ≤ d̃en(B, Ii) ≤
3
2 den(B, Ii). For a single-valued layer Ii such that den(B, Ii) < 1

2y , let Ei be the event that
d̃en(B, Ii) ≤ 3

2 den(B, Ii). Let E =
⋂y∗

i=1 Ei. The following claim asserts that the layering
above well-represents the structure of the range w.r.t. B.

▷ Claim 4.2. Layering(B, y, t) returns a collection of intervals {Ii}y∗

i=1 such that, y∗ ≤ 2y,
and Pr(E) = 1 − exp(Ω(−t)).

We now define the grid G′ of boxes as follows. We first use the procedure Layering on
the original array, B = A, with parameters y =

√
r

ϵ and t = O(1), where the value of t is
set to ensure a success probability of 99/100 in Claim 4.2. This defines the set of y∗ layers
that partitions R as R =

⋃
i∈y∗ Ii. Next we partition [n] into x = ϵ ·

√
r contiguous intervals

D1, . . . Dx each of size n/x, which defines G′ as the grid of boxes {(Di, Ij) : (j, i) ∈ [y∗]× [x]}
in the r × n grid, some of which may be empty, while some may contain many points.

We set β = ϵ3λ. Next, our goal is to find all the β-dense boxes in G′ by making Õ(
√

r)
queries and then restrict our attention only to these boxes. As described in the high level
overview Introduction, doing this will not make the LIS in this restricted array too short.
This is made formal in the following claim.

▷ Claim 4.3. The number of points in L that belong to boxes that are not β-dense is at
most βn · (1 + 2y/x).

We do not know which boxes are β-dense. We approximate this by sampling, and this is
formally presented below as algorithm Gridding. The algorithm assumes the partition of [n]
and of the range R as above. As before, t = O(1) in this procedure can be set appropriately
to ensure a large constant success probability.

Algorithm 2 Gridding.

1: procedure Gridding(A, {Ij}j∈[y∗], {Di}i∈[x], β)
2: for i ∈ [x] do
3: Sample ℓ = t · 1

β · log(x
β) indices from Di uniformly and independently at random.

4: for j ∈ [y∗] do
5: Label box (Di, Ij) as dense if and only if the values on at least 3

4 βℓ points
from the sample fall into the box; namely, if for at least 3

4 βℓ indices sampled from Di,
the values are in Ij .

6: end for
7: end for
8: end procedure

Let D be the event that all β-dense boxes are tagged as dense by the procedure, and that
every box that is not β/8-dense is not tagged as dense.

▷ Claim 4.4. Pr[D] ≥ 1 − exp(−Ω(t)).

From now on, we assume that we have the grid G′ for which the events E and D hold.
This is the initialization of our data structure as described in the Introduction. We now
refine the data structure as follows.

ICALP 2021

100:16 New Sublinear Algorithms and Lower Bounds for LIS Estimation

A β-dense box may have density that is anything in [β, 1]. For a better approximation
guarantee, we need to identify the regions with density nearly equal to β. To achieve this,
we perform the following finer layering using the procedure Layering on each dense box.

Finer layering of each dense box. For each i ∈ [x], call Layering on the array Di with
y = 1/β and t′ = Θ(log(x/β)). Here, we do not collapse the single-valued intervals into a
single layer, but rather just leave them as different layers of the same value and density β.

Let {I ′
k}k∈[y∗

i
] be the set of intervals returned by the procedure. We restrict our attention

to the boxes (Di, I ′
k) contained in some β-dense box (Di, Ij), and call them β-dense cells.

Fix Di. The number of β-dense cells in Di is at most 2y = 2/β. Claim 4.2 asserts that,
with probability 1 − exp(−Ω(t′)) = 1 − β

100x , each Di is layered so that each β-dense cell has
true density at most 3β/2 and at least β/8. Additionally, the portion of a β-dense box that
is not covered by β-dense cells has true density smaller than β. This implies that for all
i ∈ [x] this event happens with probability at least 99/100. We denote this event by F , and
assume in what follows that F happens.

4.1.2 Chain reduction
In this section, we define a poset over dense cells and argue that in order to well-approximate
the LIS, it is enough to restrict our attention to LIS’s in a few chains in this poset.

Since dense cells, by definition, are contained inside dense boxes, we denote dense cells
using triplets (Di, Ij , k), where this triplet denotes the k-th dense cell inside the dense box
(Di, Ij), i ∈ [ϵ

√
r], j ∈ [

√
r/ϵ].

Recall that there is a poset ⟨P, ⪯⟩ on the dense boxes. Now, we define another poset
⟨P⋆, ⪯⋆⟩ whose elements are the (at most) 2x/β dense cells. The order relation ⪯⋆ is defined
by (Di, Ij , k) ⪯⋆ (Di′ , Ij′ , k′) if and only if either (Di, Ij) ̸= (Di′ , Ij′) and (Di, Ij) ⪯ (Di′ , Ij′),
or if j′ = j, i′ = i and k ≤ k′. Note that the poset ⪯⋆ is not consistent with a grid poset, it
rather inherits the order from P for cells in different boxes.

Let L1 be the LIS L restricted to dense boxes, let C(L1, P) be the set of dense boxes in
which L1 passes, and let C(L1, P⋆) be the set of dense cells in which L1 passes. We observe
that C(L1, P) and C(L1, P⋆) are chains in the corresponding posets.

Our goal now is to show that there are a small number of chains in P⋆ that cover
C(L1, P⋆). This is done as follows.

For parameter τ = 5/λ, repeatedly remove antichains of size larger than τ from P⋆.
Here, by removing, we mean the deletion of the points in the cells of the corresponding
antichain from the array6.

Let the resulting poset be denoted by P⋆⋆. The maximum antichain in this poset has size at
most τ , and Dilworth’s theorem implies that there is a decomposition of P⋆⋆ into at most τ

chains. These chains, being made of dense cells, is naturally extended to at most τ (possibly
intersecting) chains of the poset P. Let these chains be C1, . . . , Cτ . We bound the “loss” to
the LIS incurred by chain reduction in Claim 4.5.

▷ Claim 4.5. Conditioned on the events E ∪ D ∪ F , the number of points in L1 that does
not belong to ∪τ

i=1Ci is at most 4n/τ .

6 For a single-valued cell a = (Di, Ij , k) taking the value v, there might be other points with value v in
the dense box containing a. When we remove a from P⋆, we “mentally” remove some βn/x points of
value v from the box (Di, Ij). This is not algorithmically done, but will just be used in the analysis.

I. Newman and N. Varma 100:17

D1 D2 D3 D
ǫ·

√

r

Figure 3 A staircase like chain, and its decomposition into two chains, one that contains only
horizontal blocks and one that contains only vertical blocks. In each of the chains, no two blocks
share a layer or a subarray.

Let L2 denote the LIS L1 after chain reduction. The following claim is straightforward.

▷ Claim 4.6. There exists i ∈ [τ] such that |LIS(Ci)| ≥ |L2|
τ .

We point out that no query is made at this stage.

4.1.3 Estimating the LIS restricted to poset chains
Let P ′ denote the poset obtained from P after removing the large antichains in P⋆. At this
point, we have covered the poset P ′ using at most τ chains C1, . . . , Cτ . This reduces the LIS
estimation to estimating the LIS in one of these chains.

In what follows, we fix such one chain C, and denote by L(C), the LIS in the array
restricted to C. The chain C is composed of a sequence of horizontal and vertical blocks,
arranged in a staircase manner (see Figure 3), where a horizontal block is a sequence of
contiguous boxes in the chain from the same layer, and a vertical block is a sequence of
contiguous dense boxes in the chain that belong to the same subarray.

Let H1, H2 be two maximal horizontal blocks in C. Blocks H1, H2 have a subarray Di

in common if there are boxes (Di, Ij) ∈ H1 and (Di, Is) ∈ H2. In particular, there is a
vertical block between them. Two horizontal chains have at most one subarray in common,
and if this happens, then the common subarray Di defines the rightmost box of the “lower”
horizontal chain (the horizontal chain in the lower layer) and the leftmost box of the “upper”
horizontal chain. We conclude that if we arrange the horizontal blocks from bottom to top
as H1, . . . Hs, and remove the rightmost box from Hi if it has a common subarray with Hi+1,
we get a sequence of horizontal blocks in which no two share a subarray. We use CH to
denote this subchain of C. Notice that CV = C \ CH is a chain that contains only vertical
blocks, where no two share a layer (see Figure 3, as how the whole chain C decomposes into
a chain of horizontal blocks and a chain of vertical blocks).

To estimate the size of L(C), we estimate the LIS within CH and CV separately, and
use the larger for the size estimate for L(C). In the following, we denote LH and LV for
LIS(CH) and LIS(CV), respectively. The main advantage of this decomposition of C into
CH and CV is given by the following observation.

▶ Observation 4.7. For any chain C, we have |LH | =
∑

B∈CH
|LIS(B)|, where the sum

is over the horizontal blocks B in CH . A similar statement holds for CV in which case,
horizontal blocks are replaced with vertical blocks.

The observation leads to an immediate adaptive way to approximate the lengths of LH

and LV . We sample a constant number of blocks from the chain, estimate the LIS in each
block, and normalize to estimate the LIS in the entire chain. By the Hoeffding bound, we can

ICALP 2021

100:18 New Sublinear Algorithms and Lower Bounds for LIS Estimation

see that the estimate is accurate enough with high probability. The adaptivity is needed to
locate each block, and to estimate the LIS within a block (horizontal and vertical), which we
did not yet specify how to do. To avoid adaptivity, we will rely on the fact that if LV is large,
then it must contain a large number of small vertical blocks. Thus, sampling uniformly in [n]
will hit such blocks frequently enough to facilitate the Hoeffding bound above. Further, for
the estimation of LIS within a short vertical block, we will use the algorithm guaranteed by
Theorem 1.4. For horizontal blocks, we need some further relaxations. We will show below
that we may restrict ourselves to short horizontal blocks, due to the choice of parameters in
the formation of the grid G′. This again will facilitate the use of the algorithm guaranteed
by Theorem 1.4. The details now follow.

Estimating the length of LIS in a horizontal chain. A horizontal block belonging to a
multi-valued layer is referred to as a multi-valued horizontal block, and a horizontal block
belonging to a single-valued layer is a single-valued horizontal block. We treat these horizontal
blocks separately.

Let m = ϵ/λ2. Let L′
H denote the restriction of LH after deleting multi-valued horizontal

blocks containing more than m boxes. We first show that the length of L′
H is not much

smaller than LH .

▷ Claim 4.8. |L′
H | ≤ |LH | − 4λ2ϵn.

Let C ′
H denote the chain obtained after removing multi-valued horizontal blocks containing

more than m boxes. If there are at most ϕ = ϵλ2y multi-valued horizontal blocks in the chain
C ′

H , then, by removing all of them, we end up losing only ϕ · 4n
y ≤ 4nϵλ2 points (as each

multi-valued layer has density at most 4/y). If there are at least ϕ multi-valued horizontal
blocks in C ′

H , then the average number of values in such a horizontal block is at most
r
ϕ ≤ r

ϵλ2y =
√

r
λ2 by our choice of y. That is, with probability at least 1− 1

100 log(τ) , a uniformly
random multi-valued horizontal block in C ′

H contains at most 100
√

r log(τ)
λ2 values. Thus,

we have reduced the problem to estimating the LIS in a collection of (possibly very long)
single-valued horizontal blocks and several short multi-valued horizontal blocks containing
O(

√
r log(τ)

λ2) values.
In the following, we use the term segment to denote a subarray composed of 2m subarrays

{Di, Di+1, . . . , Di+2m−1} for some i ∈ [x−2m+1]. A segment is said to contain a multi-valued
horizontal block H if all the subarrays forming H are contained in the segment.

Fix r′ = 100
√

r log(τ)
λ2 . Our algorithm for estimating the length of LH is as follows:

1. Sample t log2(τ) uniformly random segments.
2. For each sampled segment B, query s = Θ

(
m log(τ)

β · r′

ϵ3λ6 log
(

r′2

ϵλ

))
points uniformly

and independently at indexes from B and run the algorithm given by Theorem 1.4 with
parameters r′ (for the number of distinct values) and ϵλ2 (for approximation guarantee)
using the samples that fall into the multi-valued horizontal block H contained in the
segment B, if any.

3. Estimate the contribution to the LIS from multi-valued horizontal blocks by summing
the answers returned by the algorithm in the previous steps and then normalizing
appropriately.

4. Estimate the contribution to the LIS from single-valued horizontal blocks by summing
the estimates of the densities of all single-valued horizontal blocks in CH (as we already
know these estimates from the Gridding stage).

5. Output an estimate LH of the length of LH by summing the above two estimates.

I. Newman and N. Varma 100:19

Clearly, the contribution to LH from single-valued horizontal blocks is estimated within
multiplicative (1 ± 1

2)-error, by our conditioning on the event F . We show the following.

▷ Claim 4.9. With probability 1 − O(log(τ)
τ2), the contribution to LH from multi-valued

horizontal blocks is estimated within an additive error of ϵλ2n.

Estimating the length of the LIS in a vertical chain. Let ν = ϵλ2. We may assume that
the vertical chain is composed of at least ν · x vertical blocks, for otherwise, we can abandon
the entire vertical chain by incurring a “loss” to the LIS amounting to at most ν · n points.
Additionally, since the boxes from different vertical blocks belong to different layers, using a
similar averaging argument as before, we can show that with probability at least 1− 1

100 log(τ) ,
a uniformly random vertical block contains at most 100

√
r log(τ)
λ2 distinct values.

Therefore, in order to estimate the length of the LIS in the vertical chain, we sample
O(log(τ)) subarrays Di, i ∈ [x] and run the pseudo-solution-based LIS estimation algorithm,
restricted to the vertical box, if any, that belongs to this subarray while making sure that
the success probability is at least 1 − 1

100 log τ and the error parameter is ϵλ2. The details of
how to implement this procedure nonadaptively are identical to how we implemented the
estimation of the LIS in CH in the preceding section. The query complexity is also identical.

▷ Claim 4.10. With probability 1 − O(log(τ)
τ2), we estimate the contribution of vertical blocks

to within an additive error of ϵλ2n.

4.1.4 Correctness, approximation guarantee, and query complexity
In this section, we complete the analysis of our algorithm and finish the proof of Theorem 1.5.

Success probability. The probability that any of Layering, Gridding and Finer Gridding
fail is at most 3/100. For a specific chain of boxes, by Claims 4.9 and 4.10, we know
that estimating the length of LIS within them is within the approximation guarantee with
probability at least 1 − O(log(τ)

τ2). By a union bound over all τ chains, we can see that the
probability of incorrectly estimating the LIS length in some chain is at most 1/100. Thus,
overall, the failure probability is at most a small constant.

Query complexity. The query complexity is clearly Õ(
√

r · poly(1/λ)) from the description
of the algorithm.

Approximation guarantee. Consider a fixed true LIS L. The loss to L due to ignoring
boxes that are not β-dense (β = ϵ2λ) is at most ϵ3λn + ϵλn. The loss to L due to antichain
removal is at most 4n/τ , which is equal to 4λn/5. The resulting increasing sequence has
length at least |L| − ϵ3λn − ϵλn − 4λn/5, which is at least (1 − ϵ3 − ϵ − 4/5) · |L|, since,
by our assumption |L| ≥ λn. After chain decomposition, the length of the LIS in the best
chain is at least (1 − ϵ3 − ϵ − 4/5) · |L|/τ , which is equal to λ

5 · |L| · (1/5 − ϵ3 − ϵ). Since
we split the chains into horizontal and vertical chains, we further lose a factor of 2, and
the resulting LIS length becomes λ

10 · |L| · (1/5 − ϵ3 − ϵ). In case of horizontal chains, we
additionally lose a 9ϵλ2n and in the case of vertical chains, we additionally lose ϵλ2n. That
is the length of LIS in the (best) horizontal chain is at least λ

10 · |L| · (1/5 − ϵ3 − 11ϵ). Finally,
using Claims 4.9 and 4.10, we can see that we estimate the lengths of the best horizontal
and vertical chains to within a constant multiplicative factor. Overall, the approximation
guarantee is multiplicative Ω(λ).

ICALP 2021

100:20 New Sublinear Algorithms and Lower Bounds for LIS Estimation

References
1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to

a monotone function. Random Structures & Algorithms, 31(3):371–383, 2007. doi:10.1002/
rsa.20167.

2 David Aldous and Persi Diaconis. Longest increasing subsequences: from patience sorting
to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc., 34:413–432, 1999. doi:
10.1090/S0273-0979-99-00796-X.

3 Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the line. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2018, pages 31:1–31:10, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.
2018.31.

4 Omri Ben-Eliezer, Clément L. Canonne, Shoham Letzter, and Erik Waingarten. Finding
monotone patterns in sublinear time. In 60th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2019, pages 1469–1494, 2019. doi:10.1109/FOCS.2019.000-1.

5 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, pages 164–173. ACM, 2014.
doi:10.1145/2591796.2591887.

6 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin Varma. Erasure-
resilient property testing. SIAM J. Comput., 47(2):295–329, 2018. doi:10.1137/16M1075661.

7 Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. Journal of Computer and System Sciences, 60(3):717–751, 2000.

8 Eldar Fischer. On the strength of comparisons in property testing. Inf. Comput., 189(1):107–
116, 2004. doi:10.1016/j.ic.2003.09.003.

9 Michael L. Fredman. On computing the length of longest increasing subsequences. Discret.
Math., 11(1):29–35, 1975. doi:10.1016/0012-365X(75)90103-X.

10 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

11 Michael Mitzenmacher and Saeed Seddighin. Improved sublinear time algorithm for longest
increasing subsequence. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1934–
1947. SIAM, 2021. doi:10.1137/1.9781611976465.115.

12 Ilan Newman, Yuri Rabinovich, Deepak Rajendraprasad, and Christian Sohler. Testing for
forbidden order patterns in an array. Random Struct. Algorithms, 55(2):402–426, 2019.

13 Ilan Newman and Nithin Varma. New sublinear algorithms and lower bounds for LIS estimation.
CoRR, abs/2010.05805, 2021. arXiv:2010.05805.

14 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized
property testing of functions. ACM Trans. Comput. Theory, 9(4):17:1–17:19, 2018. doi:
10.1145/3155296.

15 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 6(72):1012–1042, 2006.

16 Sofya Raskhodnikova, Noga Ron-Zewi, and Nithin M. Varma. Erasures vs. errors in local
decoding and property testing. In Proceedings of the Innovations in Theoretical Computer
Science Conference, (ITCS) 2019, pages 63:1–63:21, 2019.

17 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

18 Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms
for LCS and LIS with truly improved running times. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, pages 1121–1145, 2019. doi:10.1109/FOCS.
2019.00071.

19 Michael E. Saks and C. Seshadhri. Estimating the longest increasing sequence in polylogar-
ithmic time. SIAM Journal on Computing, 46(2):774–823, 2017.

https://doi.org/10.1002/rsa.20167
https://doi.org/10.1002/rsa.20167
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.1090/S0273-0979-99-00796-X
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.31
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.31
https://doi.org/10.1109/FOCS.2019.000-1
https://doi.org/10.1145/2591796.2591887
https://doi.org/10.1137/16M1075661
https://doi.org/10.1016/j.ic.2003.09.003
https://doi.org/10.1016/0012-365X(75)90103-X
https://doi.org/10.1137/1.9781611976465.115
http://arxiv.org/abs/2010.05805
https://doi.org/10.1145/3155296
https://doi.org/10.1145/3155296
https://doi.org/10.1109/FOCS.2019.00071
https://doi.org/10.1109/FOCS.2019.00071

	1 Introduction
	1.1 Discussion of Results and Overview of Techniques
	1.1.1 Lower bound on the query complexity of nonadaptive LIS estimation algorithms
	1.1.2 Parameterized and nonadaptive algorithms for LIS estimation
	1.1.3 Separating erasure-resilient testing from tolerant testing

	1.2 Organization

	2 Notations and Preliminaries
	3 Lower Bounds for Nonadaptive LIS Estimation
	3.1 An Omega(log²n) Lower Bound
	3.2 A Superpolylog Lower Bound

	4 Parameterized and Nonadaptive Algorithm for LIS Estimation
	4.1 O(Root-r)-Query Nonadaptive Algorithm
	4.1.1 Forming the grid G' of boxes
	4.1.2 Chain reduction
	4.1.3 Estimating the LIS restricted to poset chains
	4.1.4 Correctness, approximation guarantee, and query complexity

