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—— Abstract

We present a simple proof that the competitive ratio of any randomized online matching algorithm
for the line exceeds /log,(n-+1)/15 for all n = 2°—1 : i € N, settling a 25-year-old open question.
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1  Online matching, on the line

In online metric matching [7, 9] n points of a metric space are designated as servers. One by
one n requests arrive at arbitrary points of the space; upon arrival each must be matched
to a yet unmatched server, at a cost equal to their distance. Matchings should minimize
the ratio between the total cost and the offline cost attainable if all requests were known
beforehand. A matching algorithm is ¢(n)-competitive if it keeps this ratio no higher than
¢(n) for all possible placements of servers and requests.

It is widely acknowledged [1, 10, 14] that the line is the most interesting metric space for
the problem. Matching on the line models many scenarios, like a shop that must rent to
customers skis of approximately their height, where a stream of requests must be serviced
with minimally mismatched items from a known store. Despite matching being specifically
studied on the line since at least 1996 [8], no tight competitiveness bounds are known.

As for upper bounds, the line is a doubling space and thus admits an O(log n)-competitive
randomized algorithm [5]; a sequence of recent developments [1, 12, 13] yielded the same
ratio without randomization. Better bounds have been obtained only by algorithms with
additional power, such as that to re-assign past requests [6, 11] or predict future ones [2].

As for lower bounds, the competitive ratio is at least 4.591 for randomized algorithms
and 9 for deterministic ones since the cow-path problem is a special case of matching on
the line [8]. These bounds were conjectured tight [8] until a complex adversarial strategy
yielded a lower bound of 9.001 for deterministic algorithms [4]. Beyond some Q(logn) bounds
for restricted classes of algorithms [3, 10, 12], there has been no further progress on the
lower-bound side before this work.
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2  An Q(+/log n)-competitiveness bound

We prove a simple Q(1/logn) lower bound on the competitive ratio of randomized online
matching algorithms for the line.

For any n = 2 —1 with i € N consider the [0, n+1] interval; for each positive integer j < n
place a server at point j, and place n requests over log,(n+1) rounds as follows. On the rt*
round (for 1 <r <log,(n+1)) partition the interval into (n+1)/2" subintervals of length 2",
choose within each uniformly and independently at random an origin point, and place a
request on the closest integer multiple of 27" breaking ties arbitrarily. “Discretizing” requests
instead of directly using the corresponding origins prevents some technical difficulties — see
our remark at the end.

We prove in Lemma 1 that the expected distance between the £¢" leftmost server and the
¢th leftmost origin is O(y/logn), so servers and requests can be matched with an expected
offline cost O(n+/logn). Conversely, we prove in Lemma 2 that any online matching algorithm
ALG incurs an expected Q(n) cost in any given round, for a total cost Q(nlogn). The two
results can be combined to prove that on some request sequence ALG incurs Q(+/logn) times
the offline cost.

» Lemma 1. The expected distance between the (1" leftmost origin and the (' leftmost server

is at most \/logy(n+1) + 3.

Proof. Let S; be (" leftmost server and g, be the number of origins to its left. Note that

if go equals respectively ¢ or £ — 1, the ¢t"

origin is the first immediately to the left, or to
the right of Sy; and since the first round placed one origin in every subinterval of size 2,
such an origin is within distance 3 of Sy;. By the same token, denoting by d, the quantity
lge — (£ — ni_;_l)|, the (" leftmost origin is within distance 26, + 3 of Sy. Note that &, is
the absolute deviation from the mean of ry, since 7, is the sum of n independent indicator
random variables each denoting whether a given origin was placed to the left of S;, with
total expectation n7TL-1€ ={(— % (by construction, the expected density of origins is constant
throughout the main interval). At most one such variable in a given round has variance
greater than 0, albeit obviously at most 1/4: that corresponding to the origin placed in a
subinterval holding Sy strictly in its interior. Adding the individual variances we obtain that
the variance of ry, i.e. the expectation of §2, is at most log,(n+1)/4; and since by Jensen’s

inequality E[d;] < E[62]2, the expected distance between Sy and the £ leftmost origin is at

most y/logy(n+1) + 3. <

» Lemma 2. Any randomized online matching algorithm incurs an expected cost greater
than (n+1)/12 in each round.

Proof. Consider an origin placed uniformly at random in a subinterval of size 2" during the
r** round. Assume m unmatched servers in the interior points of that subinterval divide it
into m + 1 segments of (integer) length dy, ..., d,,. Then the probability the corresponding
request falls within a segment of length d is d/2", in which case the expected distance of the
request from the segment’s closer endpoint is d/4. Adding over all the s, segments in all
the round’s subintervals, applying Jensen’s inequality, and noting that s, does not exceed
the number of subintervals (i.e. (n+1)/2") plus the total number of unmatched servers (i.e.
(n+1)/2"=1 — 1), the expected cost to service all requests in the round is at least:

4 or =

= . <

dn dy 1 n+1 2> (n+1)? 2 n+1
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We can then easily prove the following:

» Theorem. The competitive ratio of any randomized online matching algorithm for the line
exceeds \/logy(n+1)/15 for alln =2 —1:i € N.

Proof. Let C4(0) be the expected cost incurred by a randomized online matching algorithm
ALG on a request sequence o, and Cp (o) the offline cost; and let p, be the probability of
generating o through the origin-request process described earlier. Since Va;, b; > 0 we have
that (3°, a;)/(3,; bi) is a convex linear combination of the individual ratios a;/b;, focusing

on the case /logy(n+1)/15 > 1 for which y/logy(n+1) + 3+ 27" < (5/4)+/logy(n+1):

Ca(o)ps
Calo) e M )l Togy (1)
op.#0 Co(o) = > Co(o)ps n(y/logy(n+1) +34277) 15 '
0:psF#0

» Remark. Without discretized requests the term >, Ca(0)p, in the theorem’s proof
would have been an integral, potentially ill-defined (for example, if ALG serviced requests
for rational points in an interval with one server and for irrational points with another).
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