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Abstract
We present a simple proof that the competitive ratio of any randomized online matching algorithm
for the line exceeds

√
log2(n+1)/15 for all n = 2i−1 : i ∈ N, settling a 25-year-old open question.
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1 Online matching, on the line

In online metric matching [7, 9] n points of a metric space are designated as servers. One by
one n requests arrive at arbitrary points of the space; upon arrival each must be matched
to a yet unmatched server, at a cost equal to their distance. Matchings should minimize
the ratio between the total cost and the offline cost attainable if all requests were known
beforehand. A matching algorithm is c(n)-competitive if it keeps this ratio no higher than
c(n) for all possible placements of servers and requests.

It is widely acknowledged [1, 10, 14] that the line is the most interesting metric space for
the problem. Matching on the line models many scenarios, like a shop that must rent to
customers skis of approximately their height, where a stream of requests must be serviced
with minimally mismatched items from a known store. Despite matching being specifically
studied on the line since at least 1996 [8], no tight competitiveness bounds are known.

As for upper bounds, the line is a doubling space and thus admits an O(log n)-competitive
randomized algorithm [5]; a sequence of recent developments [1, 12, 13] yielded the same
ratio without randomization. Better bounds have been obtained only by algorithms with
additional power, such as that to re-assign past requests [6, 11] or predict future ones [2].

As for lower bounds, the competitive ratio is at least 4.591 for randomized algorithms
and 9 for deterministic ones since the cow-path problem is a special case of matching on
the line [8]. These bounds were conjectured tight [8] until a complex adversarial strategy
yielded a lower bound of 9.001 for deterministic algorithms [4]. Beyond some Ω(log n) bounds
for restricted classes of algorithms [3, 10, 12], there has been no further progress on the
lower-bound side before this work.
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2 An Ω(
√

log n)-competitiveness bound

We prove a simple Ω(
√

log n) lower bound on the competitive ratio of randomized online
matching algorithms for the line.

For any n = 2i −1 with i ∈ N consider the [0, n+1] interval; for each positive integer j ≤ n

place a server at point j, and place n requests over log2(n+1) rounds as follows. On the rth

round (for 1 ≤ r ≤ log2(n+1)) partition the interval into (n+1)/2r subintervals of length 2r,
choose within each uniformly and independently at random an origin point, and place a
request on the closest integer multiple of 2−n breaking ties arbitrarily. “Discretizing” requests
instead of directly using the corresponding origins prevents some technical difficulties – see
our remark at the end.

We prove in Lemma 1 that the expected distance between the ℓth leftmost server and the
ℓth leftmost origin is O(

√
log n), so servers and requests can be matched with an expected

offline cost O(n
√

log n). Conversely, we prove in Lemma 2 that any online matching algorithm
ALG incurs an expected Ω(n) cost in any given round, for a total cost Ω(n log n). The two
results can be combined to prove that on some request sequence ALG incurs Ω(

√
log n) times

the offline cost.

▶ Lemma 1. The expected distance between the ℓth leftmost origin and the ℓth leftmost server
is at most

√
log2(n+1) + 3.

Proof. Let Sℓ be ℓth leftmost server and gℓ be the number of origins to its left. Note that
if gℓ equals respectively ℓ or ℓ − 1, the ℓth origin is the first immediately to the left, or to
the right of Sℓ; and since the first round placed one origin in every subinterval of size 2,
such an origin is within distance 3 of Sℓ. By the same token, denoting by δℓ the quantity
|gℓ − (ℓ − ℓ

n+1 )|, the ℓth leftmost origin is within distance 2δℓ + 3 of Sℓ. Note that δℓ is
the absolute deviation from the mean of rℓ, since rℓ is the sum of n independent indicator
random variables each denoting whether a given origin was placed to the left of Sℓ, with
total expectation n

n+1 ℓ = ℓ − ℓ
n+1 (by construction, the expected density of origins is constant

throughout the main interval). At most one such variable in a given round has variance
greater than 0, albeit obviously at most 1/4: that corresponding to the origin placed in a
subinterval holding Sℓ strictly in its interior. Adding the individual variances we obtain that
the variance of rℓ, i.e. the expectation of δ2

ℓ , is at most log2(n+1)/4; and since by Jensen’s
inequality E[δℓ] ≤ E[δ2

ℓ ] 1
2 , the expected distance between Sℓ and the ℓth leftmost origin is at

most
√

log2(n+1) + 3. ◀

▶ Lemma 2. Any randomized online matching algorithm incurs an expected cost greater
than (n+1)/12 in each round.

Proof. Consider an origin placed uniformly at random in a subinterval of size 2r during the
rth round. Assume m unmatched servers in the interior points of that subinterval divide it
into m + 1 segments of (integer) length d0, . . . , dm. Then the probability the corresponding
request falls within a segment of length d is d/2r, in which case the expected distance of the
request from the segment’s closer endpoint is d/4. Adding over all the sr segments in all
the round’s subintervals, applying Jensen’s inequality, and noting that sr does not exceed
the number of subintervals (i.e. (n+1)/2r) plus the total number of unmatched servers (i.e.
(n+1)/2r−1 − 1), the expected cost to service all requests in the round is at least:

sr∑
h=1

dh

4 · dh

2r
≥ 1

4 · 2r
sr

(
n+1
sr

)2
>

(n+1)2

4 · 2r
· 2r

3(n+1) = n+1
12 . ◀
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We can then easily prove the following:

▶ Theorem. The competitive ratio of any randomized online matching algorithm for the line
exceeds

√
log2(n+1)/15 for all n = 2i − 1 : i ∈ N.

Proof. Let CA(σ) be the expected cost incurred by a randomized online matching algorithm
ALG on a request sequence σ, and CO(σ) the offline cost; and let pσ be the probability of
generating σ through the origin-request process described earlier. Since ∀ai, bi > 0 we have
that (

∑
i ai)/(

∑
i bi) is a convex linear combination of the individual ratios ai/bi, focusing

on the case
√

log2(n+1)/15 ≥ 1 for which
√

log2(n+1) + 3 + 2−n < (5/4)
√

log2(n+1):

max
σ:pσ ̸=0

CA(σ)
CO(σ) ≥

∑
σ:pσ ̸=0

CA(σ)pσ∑
σ:pσ ̸=0

CO(σ)pσ
>

(n+1) log2(n+1)/12
n(

√
log2(n+1) + 3 + 2−n)

>

√
log2(n+1)

15 . ◀

▶ Remark. Without discretized requests the term
∑

σ:pσ ̸=0 CA(σ)pσ in the theorem’s proof
would have been an integral, potentially ill-defined (for example, if ALG serviced requests
for rational points in an interval with one server and for irrational points with another).
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