Matching on the Line Admits No $o(\sqrt{\log n})$ -Competitive Algorithm

Enoch Peserico

Università degli Studi di Padova, Italy

Michele Scquizzato ☑

Università degli Studi di Padova, Italy

— Abstract

We present a simple proof that the competitive ratio of any randomized online matching algorithm for the line exceeds $\sqrt{\log_2(n+1)}/15$ for all $n=2^i-1: i\in\mathbb{N}$, settling a 25-year-old open question.

2012 ACM Subject Classification Theory of computation \rightarrow Online algorithms

Keywords and phrases Metric matching, online algorithms, competitive analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.103

Category Track A: Algorithms, Complexity and Games

Related Version Extended Version: https://arxiv.org/abs/2012.15593

Funding Michele Scquizzato: supported, in part, by Univ. Padova grant BIRD197859/19.

Acknowledgements We are indebted to Kirk Pruhs and the anonymous reviewers for their constructive criticism and insightful observations.

1 Online matching, on the line

In online metric matching [7, 9] n points of a metric space are designated as servers. One by one n requests arrive at arbitrary points of the space; upon arrival each must be matched to a yet unmatched server, at a cost equal to their distance. Matchings should minimize the ratio between the total cost and the offline cost attainable if all requests were known beforehand. A matching algorithm is c(n)-competitive if it keeps this ratio no higher than c(n) for all possible placements of servers and requests.

It is widely acknowledged [1, 10, 14] that the line is the most interesting metric space for the problem. Matching on the line models many scenarios, like a shop that must rent to customers skis of approximately their height, where a stream of requests must be serviced with minimally mismatched items from a known store. Despite matching being specifically studied on the line since at least 1996 [8], no tight competitiveness bounds are known.

As for upper bounds, the line is a doubling space and thus admits an $O(\log n)$ -competitive randomized algorithm [5]; a sequence of recent developments [1, 12, 13] yielded the same ratio without randomization. Better bounds have been obtained only by algorithms with additional power, such as that to re-assign past requests [6, 11] or predict future ones [2].

As for lower bounds, the competitive ratio is at least 4.591 for randomized algorithms and 9 for deterministic ones since the *cow-path* problem is a special case of matching on the line [8]. These bounds were conjectured tight [8] until a complex adversarial strategy yielded a lower bound of 9.001 for deterministic algorithms [4]. Beyond some $\Omega(\log n)$ bounds for restricted classes of algorithms [3, 10, 12], there has been no further progress on the lower-bound side before this work.

2 An $\Omega(\sqrt{\log n})$ -competitiveness bound

We prove a simple $\Omega(\sqrt{\log n})$ lower bound on the competitive ratio of randomized online matching algorithms for the line.

For any $n=2^i-1$ with $i\in\mathbb{N}$ consider the [0,n+1] interval; for each positive integer $j\leq n$ place a server at point j, and place n requests over $\log_2(n+1)$ rounds as follows. On the r^{th} round (for $1\leq r\leq \log_2(n+1)$) partition the interval into $(n+1)/2^r$ subintervals of length 2^r , choose within each uniformly and independently at random an origin point, and place a request on the closest integer multiple of 2^{-n} breaking ties arbitrarily. "Discretizing" requests instead of directly using the corresponding origins prevents some technical difficulties – see our remark at the end.

We prove in Lemma 1 that the expected distance between the ℓ^{th} leftmost server and the ℓ^{th} leftmost origin is $O(\sqrt{\log n})$, so servers and requests can be matched with an expected offline cost $O(n\sqrt{\log n})$. Conversely, we prove in Lemma 2 that any online matching algorithm ALG incurs an expected $\Omega(n)$ cost in any given round, for a total cost $\Omega(n\log n)$. The two results can be combined to prove that on *some* request sequence ALG incurs $\Omega(\sqrt{\log n})$ times the offline cost.

▶ **Lemma 1.** The expected distance between the ℓ^{th} leftmost origin and the ℓ^{th} leftmost server is at most $\sqrt{\log_2(n+1)} + 3$.

Proof. Let S_{ℓ} be ℓ^{th} leftmost server and g_{ℓ} be the number of origins to its left. Note that if g_{ℓ} equals respectively ℓ or $\ell-1$, the ℓ^{th} origin is the first immediately to the left, or to the right of S_{ℓ} ; and since the first round placed one origin in every subinterval of size 2, such an origin is within distance 3 of S_{ℓ} . By the same token, denoting by δ_{ℓ} the quantity $|g_{\ell} - (\ell - \frac{\ell}{n+1})|$, the ℓ^{th} leftmost origin is within distance $2\delta_{\ell} + 3$ of S_{ℓ} . Note that δ_{ℓ} is the absolute deviation from the mean of r_{ℓ} , since r_{ℓ} is the sum of n independent indicator random variables each denoting whether a given origin was placed to the left of S_{ℓ} , with total expectation $\frac{n}{n+1}\ell = \ell - \frac{\ell}{n+1}$ (by construction, the expected density of origins is constant throughout the main interval). At most one such variable in a given round has variance greater than 0, albeit obviously at most 1/4: that corresponding to the origin placed in a subinterval holding S_{ℓ} strictly in its interior. Adding the individual variances we obtain that the variance of r_{ℓ} , i.e. the expectation of δ_{ℓ}^2 , is at most $\log_2(n+1)/4$; and since by Jensen's inequality $E[\delta_{\ell}] \leq E[\delta_{\ell}^2]^{\frac{1}{2}}$, the expected distance between S_{ℓ} and the ℓ^{th} leftmost origin is at most $\sqrt{\log_2(n+1)} + 3$.

▶ Lemma 2. Any randomized online matching algorithm incurs an expected cost greater than (n+1)/12 in each round.

Proof. Consider an origin placed uniformly at random in a subinterval of size 2^r during the r^{th} round. Assume m unmatched servers in the interior points of that subinterval divide it into m+1 segments of (integer) length d_0, \ldots, d_m . Then the probability the corresponding request falls within a segment of length d is $d/2^r$, in which case the expected distance of the request from the segment's closer endpoint is d/4. Adding over all the s_r segments in all the round's subintervals, applying Jensen's inequality, and noting that s_r does not exceed the number of subintervals (i.e. $(n+1)/2^r$) plus the total number of unmatched servers (i.e. $(n+1)/2^{r-1}-1$), the expected cost to service all requests in the round is at least:

$$\sum_{h=1}^{s_r} \frac{d_h}{4} \cdot \frac{d_h}{2^r} \ge \frac{1}{4 \cdot 2^r} s_r \left(\frac{n+1}{s_r}\right)^2 > \frac{(n+1)^2}{4 \cdot 2^r} \cdot \frac{2^r}{3(n+1)} = \frac{n+1}{12}.$$

We can then easily prove the following:

▶ **Theorem.** The competitive ratio of any randomized online matching algorithm for the line exceeds $\sqrt{\log_2(n+1)}/15$ for all $n=2^i-1$: $i \in \mathbb{N}$.

Proof. Let $C_A(\sigma)$ be the expected cost incurred by a randomized online matching algorithm ALG on a request sequence σ , and $C_O(\sigma)$ the offline cost; and let p_σ be the probability of generating σ through the origin-request process described earlier. Since $\forall a_i, b_i > 0$ we have that $(\sum_i a_i)/(\sum_i b_i)$ is a convex linear combination of the individual ratios a_i/b_i , focusing on the case $\sqrt{\log_2(n+1)}/15 \ge 1$ for which $\sqrt{\log_2(n+1)} + 3 + 2^{-n} < (5/4)\sqrt{\log_2(n+1)}$:

$$\max_{\sigma: p_{\sigma} \neq 0} \frac{C_{A}(\sigma)}{C_{O}(\sigma)} \geq \frac{\sum\limits_{\sigma: p_{\sigma} \neq 0} C_{A}(\sigma) p_{\sigma}}{\sum\limits_{\sigma: p_{\sigma} \neq 0} C_{O}(\sigma) p_{\sigma}} > \frac{(n+1) \log_{2}(n+1)/12}{n(\sqrt{\log_{2}(n+1)} + 3 + 2^{-n})} > \frac{\sqrt{\log_{2}(n+1)}}{15}.$$

▶ Remark. Without discretized requests the term $\sum_{\sigma:p_{\sigma}\neq 0} C_A(\sigma)p_{\sigma}$ in the theorem's proof would have been an integral, potentially ill-defined (for example, if ALG serviced requests for rational points in an interval with one server and for irrational points with another).

References

- Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michael Scquizzato. A o(n)-competitive deterministic algorithm for online matching on a line. Algorithmica, 81(7):2917–2933, 2019.
- 2 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon. Online metric algorithms with untrusted predictions. In *Proceedings of the 37th ICML*, pages 345–355, 2020.
- 3 Antonios Antoniadis, Carsten Fischer, and Andreas Tönnis. A collection of lower bounds for online matching on the line. In *Proceedings of the 13th LATIN*, pages 52–65, 2018.
- 4 Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. Online matching on a line. *Theor. Comput. Sci.*, 332(1-3):251–264, 2005.
- 5 Anupam Gupta and Kevin Lewi. The online metric matching problem for doubling metrics. In Proceedings of the 39th ICALP, pages 424–435, 2012.
- 6 Varun Gupta, Ravishankar Krishnaswamy, and Sai Sandeep. Permutation strikes back: The power of recourse in online metric matching. In *Proceedings of the 23rd APPROX*, pages 40:1–40:20, 2020.
- 7 Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488, 1993.
- 8 Bala Kalyanasundaram and Kirk Pruhs. Online network optimization problems. In *Online Algorithms: The State of the Art*, pages 268–280. Springer-Verlag, 1998. From the Dagstuhl Seminar on Online Algorithms, 1996.
- 9 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted bipartite matching and stable marriages. *Theor. Comput. Sci.*, 127(2):255–267, 1994.
- 10 Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In *Proceedings* of the 1st WAOA, pages 179–191, 2003.
- 11 Nicole Megow and Lukas Nölke. Online minimum cost matching with recourse on the line. In *Proceedings of the 23rd APPROX*, pages 37:1–37:16, 2020.
- 12 Krati Nayyar and Sharath Raghvendra. An input sensitive online algorithm for the metric bipartite matching problem. In *Proceedings of the 58th IEEE FOCS*, pages 505–515, 2017.
- Sharath Raghvendra. Optimal analysis of an online algorithm for the bipartite matching problem on a line. In *Proceedings of the 34th SoCG*, pages 67:1–67:14, 2018.
- Rob van Stee. SIGACT news online algorithms column 27: Online matching on the line, part 1. SIGACT News, 47(1):99–110, 2016.