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Abstract
We study the classical problem of moment estimation of an underlying vector whose n coordinates
are implicitly defined through a series of updates in a data stream. We show that if the updates to
the vector arrive in the random-order insertion-only model, then there exist space efficient algorithms
with improved dependencies on the approximation parameter ε. In particular, for any real p > 2, we
first obtain an algorithm for Fp moment estimation using Õ

(
1

ε4/p · n1−2/p
)

bits of memory. Our
techniques also give algorithms for Fp moment estimation with p > 2 on arbitrary order insertion-only
and turnstile streams, using Õ

(
1

ε4/p · n1−2/p
)

bits of space and two passes, which is the first optimal
multi-pass Fp estimation algorithm up to log n factors. Finally, we give an improved lower bound
of Ω

(
1

ε2 · n1−2/p
)

for one-pass insertion-only streams. Our results separate the complexity of this
problem both between random and non-random orders, as well as one-pass and multi-pass streams.
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1 Introduction

The efficient computation of statistics has emerged as an increasingly important goal for large
databases storing information generated from financial markets, internet traffic, IoT sensors,
scientific observations, etc. The one-pass streaming model formally defines an implicit and
underlying dataset through sequential updates that arrive one at a time and describe the
evolution of the dataset over time. The goal is to aggregate or approximate some statistic of
the input data using space that is sublinear in the size of the input.

The frequency moment estimation problem is fundamental to data streams. Since
the celebrated paper of Alon, Matias, and Szegedy [1], the frequency moment estimation
problem has been a central problem in the streaming model; more than two decades of
research [1, 14, 4, 33, 24, 23, 29, 27, 26, 17, 10, 9, 6, 11, 19, 35] has studied the space or
time complexity of this problem. We first consider the insertion-only model, where updates
take the form u1, . . . , um in a stream of length m and each update ut is in [n] = {1, 2, . . . , n}
for t ∈ [m]. We assume for simplicity that m ≤ poly(n). The updates implicitly define a
frequency vector f ∈ Rn so that each update effectively increases a coordinate of f in the
sense that fi = |{t : ut = i}| for each i ∈ [n]. Given p, ε > 0, the Fp moment estimation
problem is to approximate Fp =

∑
i∈[n](fi)p within a (1 ± ε) factor. The complexity of
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112:2 Separations for Estimating Large Frequency Moments on Data Streams

this problem differs greatly for the range of p. For p > 2, [4, 14] showed that even for the
streaming model, the space usage for Fp-estimation requires polynomial factors in n and m,
whereas polylogarithmic factors are achievable for p ≤ 2 [1, 23, 29, 27, 26, 6].

We initially focus on the frequency moment estimation problem in the random-order
model, where the set of stream updates to the underlying frequency vector is worst case,
but the order of their arrival is uniformly random. As usual, the algorithms we initially
consider are only permitted a single pass over the stream, though we later relax this
constraint to permit adversarial ordering of updates, as well as both positive and negative
integer updates (with magnitude bounded by poly(n)) to the coordinates of the frequency
vector in the turnstile model. Random-order streams have been shown to be a natural
assumption for problems of sorting and selecting in limited space [32] and many other
real-world applications [21, 22, 16, 13]. Interestingly, there has sometimes been a significant
qualitative difference between random-order streams and adversarial (or arbitrary) order
streams [28, 9, 11]. In particular for Fp-moment estimation, the best known lower bound is
Ω

( 1
ε2

)
[12]. While the best known upper bound for p ∈ (0, 2] on arbitrary order insertion-only

streams is O
( 1

ε2 log n
)

[1, 27, 26], Braverman et. al. [11] gave an algorithm for p ∈ (0, 2) on
random-order streams that only used Õ

( 1
ε2 + log n

)
space, where for a function g(n, ε), we

use Õ (g(n, ε)) to denote a function bounded by g(n, ε) · polylog(g(n, ε)). They also gave an
algorithm for F2-moment estimation that only uses Õ

( 1
ε2 + log n

)
space, but requires the

assumption that F2 ≥ F1 · log n, i.e., the second moment must be a logarithmic factor larger
than the length of the stream.

The above works raise a number of important questions. A tantalizing open question,
studied extensively in [25], and dating back to the original work of Alon, Matias, and
Szegedy [1], is the exact space complexity of Fp-moment estimation in insertion-only streams.
For p > 2, the best known upper bound for Fp-moment estimation on arbitrary order
insertion-only streams is the minimum of O

(
n1−2/p

ε20

)
[9] and Õ

( 1
ε2 · n1−2/p

)
[17, 19]. For

insertion-only streams, the best known lower bound is Ω̃
(

n1−2/p

ε2 log n

)
[18]. We summarize these

results in Figure 1. There are also major gaps in our understanding for Fp-moment estimation

Reference Space Complexity Order
[24, 31, 2] Õ

(
n1−2/pε−O(1)) Arbitrary

[9] O
(
n1−2/pε−20)

Arbitrary
[3] Õ

(
n1−2/pε−2−6/p

)
Arbitrary

[5] Õ
(
n1−2/pε−2−4/p

)
Arbitrary

[17, 19] Õ
(
n1−2/pε−2)

Arbitrary
This work Õ

(
n1−2/pε−4/p

)
Random or Two-Pass Arbitrary

[1, 33] Ω
(
n1−5/p + ε−2)

Arbitrary
[14] Ω

(
n1−2/pε−2/p

)
Arbitrary

[34] Ω
(
n1−2/pε−4/p/ logO(1) n

)
Arbitrary, O (1)-Passes

[18] Ω
(
n1−2/pε−2/ log n

)
Arbitrary

[12] Ω(n1−2.5/p + ε−2) Random
This work Ω

(
n1−2/pε−2)

Arbitrary

Figure 1 Summary of recent work for large frequency moment estimation.
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for p > 2 in random order streams. The best known1 lower bound is Ω(n1−2.5/p + ε−2) [12],
while no upper bounds that do better in random order streams than in arbitrary insertion
streams are known.

1.1 Our Results
In this paper, we show a separation not only between random-order and arbitrary insertion-
only streams for the Fp moment estimation problem, but also one-pass and multi-pass streams.
We first show improved bounds for the Fp moment estimation problem for every p > 2 in
the random-order insertion-only streaming model.

▶ Theorem 1.1. For p > 2, there exists an algorithm that outputs a (1 + ε)-approximation
to the Fp moment of a random-order insertion-only stream with probability at least 2

3 , while
using total space (in bits) Õ

( 1
ε4/p · n1−2/p

)
.

Theorem 1.1 utilizes the random-order model to improve the algorithm on arbitrary-order
insertion-only streams using Õ

( 1
ε2 · n1−2/p

)
space [17, 19], in terms of the dependence on 1

ε .
We then give an algorithm that uses roughly the same bounds even for the two-pass streaming
model, even if the order of the updates is adversarial.

▶ Theorem 1.2. For p > 2, there exists a two-pass streaming algorithm that outputs a
(1 + ε)-approximation to the Fp moment with probability at least 2

3 .
If the stream is insertion-only, the algorithm uses Õ

( 1
ε4/p · n1−2/p

)
bits of space (see

Theorem 3.6).
If the steam has turnstile updates, the algorithm uses Õ

( 1
ε4/p · n1−2/p

)
bits of space (see

Theorem 3.5).
Theorem 1.2 is the first algorithm to match the lower bound of Ω̃

( 1
ε4/p · n1−2/p

)
for multi-pass

frequency moment estimation [34] up to log n factors.
By contrast, we give a lower bound for Fp estimation in the one-pass insertion-only

streaming model when the order of the updates is adversarial.

▶ Theorem 1.3. For any constant p > 2 and parameter ε = Ω
( 1

n1/p

)
, any one-pass

insertion-only streaming algorithm that outputs a (1 + ε)-approximation to the Fp moment
of an underlying frequency vector with probability at least 9

10 requires Ω
( 1

ε2 · n1−2/p
)

bits of
space.

Theorem 1.3 improves the lower bound of Ω
(

1
ε2 log n · n

1−2/p
)

for general insertion-only
streams for p > 2 by [17]. Together, Theorem 1.1 and Theorem 1.3 for small enough
ε > 0 show a somewhat surprising result that random-order streams are strictly easier than
arbitrary insertion-only streams. Similarly, Theorem 1.2 and Theorem 1.3 together show
that multiple passes are strictly easier than a single pass on arbitrary insertion-only streams.

1.2 Our Techniques
We first describe our random-order insertion-only algorithm. At a high level, our algorithm
interleaves the recent heavy-hitters algorithm of [7] with a subsampling procedure to estimate
the contributions of various level sets toward the frequency moment.

1 After discussion with the authors, there appears to be an error in [20], which claims a stronger lower
bound.
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Approximate frequencies of heavy-hitters. The heavy-hitters algorithm of [7] partitions
the updates of a random-order stream into blocks of updates. It then randomly chooses a
number of coordinates from the universe [n] to test in each block. The heavy-hitters will pass
the test and subsequently be tracked across a number of following blocks before estimates
for their frequencies are output. Due to the uniformity properties of the random-order
stream, the heavy-hitters are sufficiently “spread out”, so the algorithm crucially outputs
a (1 + ε)-approximation to the frequency of each heavy-hitter; algorithms with the same
guarantee and space complexity for arbitrary-order streams do not exist [18].

Using level sets to estimate frequency moments. Given the subroutine for finding (1 + ε)-
approximations to the frequencies of heavy-hitters, we now build upon a standard subsampling
approach to estimate the frequency moment. Informally, we conceptually define the level
sets so that level set Λi contains the coordinates k ∈ [n] such that fp

k ∈
[

Fp

2i ,
2Fp

2i

]
. Since the

level sets partition the universe, it is easy to see that if we define the contribution Ci of a
level set Λi by the sum of the contributions of all their coordinates, Ci :=

∑
k∈Λi

fp
k , then

Fp is just the sum of all the contributions of the level sets, Fp =
∑

i Ci.
[24] showed that the contributions of each “significant” level set can be estimated by

subsampling at exponentially smaller rates and considering the approximate frequencies of
the heavy-hitters in each of the subsamples. For example, a single item with contribution
Fp will be detected at the top level, while n items with contribution 1 will be detected
at a subsampling level where there are roughly Θ

( 1
εp

)
survivors in expectation. Crucially,

(1 + ε)-approximations to the contribution of the surviving heavy-hitters in each subsampling
level can then be rescaled by the sampling rate to obtain “good” approximations to the
contributions of each significant level set; these very good estimates are not available in
standard subsampling schemes for arbitrary order streams.

We adapt this approach for p > 2 to obtain Theorem 1.1. The first observation is that
an item i with fp

i ≥ ε2Fp should be identified to control the variance but also satisfies
f2

i ≥ ε4/p/n1−2/p · F2, so we can identify these items using the heavy-hitter algorithm of [7]
with the corresponding threshold; this induces the overall n1−2/p/ε4/p dependency. Moreover
as we subsample, the space of the universe decreases in expectation from n to n/2 to n/4 and
so forth. Thus determining the Lp-heavy hitters at lower subsampling rates can be done using
significantly less space. We can take advantage of this by requiring that our heavy-hitter
algorithm aggressively seeks heavy-hitters with lower thresholds at lower subsampling rates.
We can thus achieve a geometric series and avoid an additional O (log n) factor in our space.

From random-order to two-pass arbitrary order. As stated, our algorithm necessitates the
random-order model so that the heavy-hitter subroutine can output (1 + ε)-approximations
to the frequencies of heavy-hitters across different subsampling levels; these approximations
are then used to obtain (1 + ε)-approximations to the contributions of each level set. The
state-of-the-art heavy-hitter algorithms in insertion-only [8] or turnstile [15] streams with
arbitrary arrival order do not give a (1 + ε)-approximation to the frequency of each heavy-
hitter while still using space dependency 1

ε2 . Fortunately, our approach can be remedied in
two-passes over the data stream by first using a pass to identify each of the heavy-hitters
across the different subsampling levels and then using the second pass to exactly count their
frequencies; note that since n1−2/p/ε4/p ≥ 1

ε2 for n ≥ 1
ε2 , we are still permitted space to

track the frequencies of min
(
n, 1

ε2

)
items. We can then obtain (1 + ε)-approximations to the

contributions of each significant level set, thus obtaining a (1 + ε)-approximation to the Fp

frequency moment.
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Source of the separation. In summary, our improved upper bounds in both the random-
order and multi-pass models exploit each model to obtain (1 + ε)-approximate frequencies of
the heavy-hitters in each subsampling level. Due to the uniformity of heavy-hitters across
the stream in the random-order model, we are able to obtain (1 + ε)-approximate frequencies
by simply tracking the frequency of the heavy-hitters within a small block of the stream
and then scaling by the entire length of the stream. For multi-pass models, we are able to
identify heavy-hitters in the first pass and exactly track their frequencies in the second pass.
By contrast, obtaining (1 + ε)-approximate frequencies in adversarially ordered insertion-only
streams with the same space guarantees in a single pass cannot be done [18].

Lower bound. To prove our improved lower bound, we first recall the standard approach
for showing Fp moment estimation lower bounds in insertion-only streams for p > 2 that
uses the multiplayer set disjointness problem, e.g., [4, 18]. In this problem, t players have
binary vectors of length n and the promise is that the largest coordinate in the sum of all
vectors is either (1) at most 1 or (2) exactly t. For t = ε1/pn1/p, the Fp frequency moment
of the sum of the binary vectors differs by a factor of (1 + ε) between the two cases, so that
a (1 + ε)-approximation to Fp solves the multiplayer set disjointness problem. The total
communication complexity of the multiplayer set disjointness problem is Ω

(
n
t

)
so one of the

t players communicates Ω
(

n
t2

)
bits, and thus a lower bound of Ω

( 1
ε2/p · n1−2/p

)
follows.

To improve the ε dependency in the lower bound to 1
ε2 , we define the (t, ε, n)-player set

disjointness estimation problem so that there are t + 1 players P1, . . . , Pt+1 with private coins
in the standard blackboard model. The first t players each receive a vector vs ∈ {0, 1}n for
s ∈ [t], while player Pt+1 receives an index j ∈ [n] and a bit c ∈ {0, 1}. For u =

∑
s∈[t] vs,

the inputs are promised to satisfy ui ≤ 1 for each i ̸= j and either uj = 1 or uj = t,
similar to the multiparty set disjointness problem. With probability at least 9

10 , Pt+1 must
differentiate between the three possible input cases (1) uj + ct

ε ≤ t, (2) uj + ct
ε ∈

{
t
ε , t

ε + 1
}

,
or (3) uj + ct

ε = (1 + ε) t
ε , where ε ∈ (0, 1). We call coordinate j ∈ [n] the spike location

and show that the (t, ε, n)-player set disjointness estimation problem requires Ω
(

n
t

)
total

communication by using a direct sum embedding to decompose the conditional information
complexity into a sum of n single coordinate problems. The intuition is that the first t

players do not know the spike location, so they must effectively solve the problem on each
coordinate. We then bound the conditional information complexity of each single coordinate
problem by the Hellinger distances between inputs for which the outputs differ. We thus
apply the same reduction and set t = Θ

( 1
ε · n

1/p
)

to obtain the desired lower bound.
We remark that the (t, ε, n)-player set disjointness estimation problem can be seen as a

generalization of the augmented L∞ promise problem introduced by [30]. In the augmented
L∞ promise problem, there are only three players, but each coordinate in the first two players’
input vectors can be as large as εk for some fixed parameter k. [30] used the augmented L∞

promise problem to give a lower bound of Ω
(

log n
ε2 · n1−2/p

)
for Fp moment estimation on

turnstile streams. However, since their reduction crucially allows players to use turnstile
updates, we cannot adapt their techniques to obtain a reduction for insertion-only streams.

1.3 Preliminaries

For a positive integer n, we use the notation [n] to denote the set of integers {1, 2, . . . , n}.
For a frequency vector f with dimension n and p ≥ 2, we define the Fp moment function
by Fp(f) :=

∑
k∈[n] |fk|p and the Lp norm of f by Lp(f) = (Fp(f))1/p. When f is defined

through the updates of a insertion-only data stream, we simply use Fp to denote Fp(f).

ICALP 2021
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Thus for a subset I ⊆ [n], the notation Fp(I) is understood to mean
∑

k∈I fp
k . We also use

the notation ∥f∥p to denote the Lp norm of f . The Fp moment estimation problem and
the norm estimation problem are often used interchangeably, as a (1 + ε)-approximation
algorithm to one of these problems can be modified to output a (1 + ε)-approximation to the
other using a rescaling of ε, for constant p > 0.

We use log and ln to denote the base two logarithm and natural logarithms, respectively.
We use poly(n) to denote a fixed constant degree polynomial in n and 1

poly(n) to denote some
arbitrary degree polynomial in n corresponding to the choice of constants in the algorithms.
We use polylog(n) to denote polylogarithmic factors of n.

The Lp-heavy hitters problem is to output all coordinates i such that fi ≥ ε · Lp; such a
coordinate is called a heavy-hitter. The problem allows coordinates j with fj ≤ ε · Lp to be
output, provided that fj ≥ ε

2 · Lp. Moreover, each coordinate output by the algorithm must
also have a frequency estimation with additive error at most ε

2 · Lp.

2 Fp Estimation for p > 2 in Random-Order Streams

In this section, we give our Fp estimation algorithm for p > 2. We first introduce an algorithm
CountHH on random-order insertion-only streams that outputs an approximate frequency
for each L2 heavy-hitter.

▶ Theorem 2.1 (Theorem 28 in [7]). There exists a one-pass algorithm CountHH on
random-order insertion-only streams that outputs a list H of ordered pairs (j, f̂j) such that
f̂j = (1± 2ε)fj, for each j ∈ H, where f is the underlying frequency vector. Moreover, we
have that j ∈ H for each j ∈ [n] with f2

j ≥ ε2 ·F2 and j ̸∈ H for each j with f2
j ≤ ε2

2 ·F2. The
algorithm uses O

( 1
ε2

(
log2 1

ε + log2 log m + log n
)

+ log m
)

bits of space and succeeds with
probability at least 38/39.

A standard heavy-hitter algorithm such as CountSketch [15] or BPTree [8] outputs
each j ∈ [n] with f2

j ≥ ε2

2 ·F2 but only finds a constant-factor approximation to the frequency
of each heavy-hitter. By comparison, CountHH crucially uses the random-order stream to
output a (1 + ε)-approximation to the frequency of each heavy-hitter; we defer the full details
of the algorithm to the full version of the paper [36]. We use CountHH in a subsampling
approach to approximate the contributions of each of the level sets, defined as follows:

▶ Definition 2.2 (Level sets and contribution). Given F̂p such that F̂p ≤ Fp ≤ 1.01 · F̂p and a
uniformly random ζ ∈ [1, 2], we define the level set Λi for each i ∈ [log 4n] so that

Λi :=
{

k | fp
k ∈

[
ζ · F̂p

2i
,

2ζ · F̂p

2i

]}
.

Then we define the contribution Ci of level set Λi to be Ci :=
∑

k∈Λi
fp

k . We define the
fractional contribution ϕi of level set Λi to be the ratio ϕi := Ci

ζF̂p

, so that ϕi ∈ [0, 1.01].
For a stream of length m = poly(n), let α be an integer such that 2α > mp. We say a

level set Λi is significant if its fractional contribution ϕi is at least ε
2α log n . Otherwise, we

say the level set is insignificant.

Observe that it suffices to obtain a multiplicative
(
1 + ε

2
)
-approximation to the contribution

of each significant level set and estimate the contributions of the insignificant level sets to
be zero, since there are at most α log n level sets and thus the total additive error from the
insignificant level sets is at most ε

2α log n · Fp · α log n = ε
2 · Fp.
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To estimate the contribution of each level set, we use a combination of CountHH and
subsampling to approximate the frequencies of a number of heavy-hitters. The main idea is
that subsampling induces a separate substream with a frequency vector with a smaller Fp.
Thus the items in the level sets Λi with small i will be heavy-hitters of the frequency vector
while the items in the level sets Λi with larger i will be heavy-hitters of the substreams with
smaller sampling rates (if the items are subsampled), due to the lower Fp of the substreams.
We can then use a (1 + ε)-approximation to the frequency of each sampled heavy-hitter
to estimate a (1 + ε)-approximation to the contribution of the level set, due to uniformity
properties of random-order streams. Note that this is where we crucially use CountHH over
other possible heavy-hitter algorithms, due to its advantage of providing (1 + ε)-approximate
frequencies in the random-order model. We describe our algorithm for Fp estimation with
p > 2 for random-order insertion-only streams in Algorithm 1.

Algorithm 1 Fp Estimation in the Random-Order Insertion-Only Model, p > 2.

Input: Accuracy parameter ε ∈ (0, 1), F̂p ≤ Fp ≤ 1.01 · F̂p

Output: (1 + ε)-approximation to Fp.
1: Let ζ ∈ [1, 2] be chosen uniformly at random and α be a positive integer such that

2α > mp.
2: Let η >

∑
j≥0 2−j(p/16−1/8) be a sufficiently large constant.

3: γ ← 211, ni ← min
((

16αp log n
ε1−2/p

)(2p)/(p−2)
, 10γn

2i

)
, εi = ε

16η·2i(p/16−1/8) log 1
ε2

4: Let Ir
i be a (nested) subset of [n] subsampled at rate pi := min(1, 2−iγ).

5: Let Hr
i be the output of CountHH with threshold parameter (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

on
the substream induced by Ir

i .
6: for i ∈ [α log n], r ≤ O (log log n) do
7: ℓi := min{k : 2k > 2i · ε2

k}

8: Let Sr
i be the set of ordered pairs (j, f̂j) in Hr

ℓi
with

(
f̂j

)p

∈
[

ζF̂p

2i ,
2ζF̂p

2i

]
.

9: Ĉi ← medianr
1

pℓi
·
(∑

(j,f̂j)∈Sr
i

(
f̂j

)p)
10: return F̃p :=

∑
i Ĉi

▶ Remark 2.3. We remark that Algorithm 1 is written requiring an input F̂p such that
F̂p ≤ Fp ≤ 1.01 · F̂p in order to correctly index the level sets defined by Definition 2.2.
Algorithm 1 can be rewritten by setting X = (F1)p to be an upper bound on Fp and
redefining the level sets in Definition 2.2 so that Λi :=

{
k | fp

k ∈
[

ζ·X
2i , 2ζ·X

2i

]}
. Then we

again have Fp =
∑

i Ci across the contributions of all the level sets.
We first show that there exists a subsampling rate such that items in each level set will be

reported as a heavy-hitter if they are successfully subsampled. Moreover, each item reported
as a heavy-hitter will also be reported with an “accurate” estimate of its frequency.

▶ Lemma 2.4. Let ε ∈ (0, 1), Λi be a fixed level set, and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}.

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ .
Conditioned on E1 and E2, there exists a (j, f̂j) in Sr

i for each j ∈ Λi ∩ Ir
ℓ such that with

probability at least 7
8 ,(

1− ε

8α log n

)
· fp

j ≤
(

f̂j

)p

≤
(

1 + ε

8α log n

)
· fp

j .

ICALP 2021
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Proof. Recall that Algorithm 1 considers Hr
ℓ across r ≤ O (log log n) independent subsamples

of [n], to construct Ĉi by subsampling at rate pℓ := min(1, 2−ℓγ).
Suppose 2i · ε2 < γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≤ log γ since εk ≤ ε for all k.
Then pℓ = min(1, 2−ℓγ) = 1 and all items are subsampled, i.e., Hr

ℓ = [n]. By Definition 2.2

of the level sets, each item j ∈ Λi satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. Since ε2 ≥ 1

2i , then we have

fp
j ≥ ε2 · F̂p. We also have F̂p ≤ Fp ≤ 1.01 · F̂p and n1/2−1/p · F 1/p

p ≥ F
1/2
2 . Thus, each item

in j ∈ Λi satisfies

fj ≥
ε2/p

1.011/p
· F 1/p

p ≥ ε2/p

1.011/pn1/2−1/p
· F 1/2

2 ,

so that f2
j ≥ ε4/p

1.01n1−2/p F2. Then by Theorem 2.1, each item j ∈ Λi corresponds to some

estimate
(

f̂j

)2
reported by Hr

ℓ output by CountHH with threshold (εℓ)2/p

80γ , as εℓ ≤ ε and

nℓ = n. Hence, f̂p
j is a

(
1 + ε

8α log n

)
-approximation to fp

j . Furthermore, CountHH rounds

the estimate of the frequency of each heavy-hitter to the nearest power of
(

1 + ε
16pα log n

)
.

Hence, f̂p
j is a

(
1 + ε

8α log n

)
-approximation to fp

j .
Now suppose 2i · ε2 ≥ γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≥ log γ and pℓ :=
min(1, 2−ℓγ) ≥ γ

2·2iε2
ℓ

. Again by Definition 2.2 of the level sets, each item j ∈ Λi satisfies

fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. Now if j /∈ Ir

ℓ , then it will not be reported by CountHH. Thus we

assume that j ∈ Ir
ℓ .

Conditioning on the event E2, we have that

Fp(Ir
ℓ ) ≤ 10γFp

2ℓ
≤ 20γFp

2iε2 .

Since F̂p ≤ Fp ≤ 1.01 · F̂p, then we have that fp
j ≥ ε2

80γ · Fp(Ir
ℓ ) and thus

fj ≥
ε2/p

(80γ)1/p
· F 1/p

p (Ir
ℓ ).

Instead of applying the inequality n1/2−1/p · F 1/p
p ≥ F

1/2
2 , we note that conditioning on

the event E1, we have that |Ir
ℓ | ≤ nℓ = 10γn

2ℓ . Hence, the frequency vector defined by the
substream Ir

ℓ potentially has much smaller support size than n. Thus we have

fj ≥
ε2/p

(80γ)1/p
·
(

1
nℓ

)1/2−1/p

· F 1/2
2 (Ir

ℓ ).

By Theorem 2.1, each item j ∈ Λi∩Ir
ℓ corresponds to some estimate f̂j reported by Hr

ℓ output

by CountHH with threshold (εℓ)2/p

80γ ·
(

1
nℓ

)1/2−1/p

, since εℓ ≤ ε. Moreover, the estimate of the

frequency of each heavy-hitter reported by CountHH is within a factor of
(

1 + ε
16pα log n

)
of the true frequency, since ni ≥

(
16αp log n

ε1−2/p

)(2p)/(p−2)
implies that the threshold is at most

ε
16pα log n . Hence for sufficiently small ε,

(
f̂j

)p

is a
(

1 + ε
8α log n

)
-approximation to fp

j . ◀

In summary, an item k ∈ Λi may not always be sampled by Ir
ℓ , but CountHH outputs a

quantity f̂k such that
(

f̂k

)p

is a
(

1 + ε
8α log n

)
-approximation to fp

k if k ∈ Ir
ℓ .
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These approximations allow us to recover a (1 + ε)-approximation to the Fp moment
through Lemma 2.5, which is our main correctness statement and which we now show.
Lemma 2.5 claims that the output F̃p of our algorithm serves as a (1 + ε)-approximation to
the Fp moment of the underlying frequency vector. The proof of Lemma 2.5 first considers
an idealized process and shows that we obtain “good” approximations to the contributions of
each significant level set. Since the contributions of the insignificant level sets can be ignored,
we thereby obtain a (1 + ε)-approximation to the Fp moment. We then show that when the
process is not idealized, the estimate F̃p only occurs a small error and thus still guarantees a
(1 + ε)-approximation to the Fp moment.

▶ Lemma 2.5. With probability at least 2
3 , we have that |F̃p − Fp| ≤ ε · Fp.

Proof. Let Λi be a fixed level set and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}. Let k ∈ Λi ∩ Sr

ℓ ,

so that fp
k ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
and k is subsampled at the level in which its estimated frequency(

f̂k

)p

is used to estimate the contribution Ci of level set Λi. Then Lemma 2.4 shows that

we obtain an estimate
(

f̂k

)p

such that

(
1− ε

8α log n

)
· fp

k ≤
(

f̂k

)p

≤
(

1 + ε

8α log n

)
· fp

k ,

with constant probability. In an idealized process, we would have

ζ · F̂p

2i
≤

(
f̂k

)p

≤ 2ζ · F̂p

2i
,

so that the estimate
(

f̂k

)p

is used toward the estimation Ĉi of contribution Ci of level
set Λi. However, this may not always be the case because the value of fp

k may be near the

boundary of the interval
[

ζ·F̂p

2i ,
2ζ·F̂p

2i

]
and the value of the estimate

(
f̂k

)p

may lie outside

of the interval, so that the estimate
(

f̂k

)p

is used toward the estimation of some other level

set Λi′ . We first analyze an idealized process, so that
(

f̂k

)p

is correctly classified for all k

across all level sets, and show that the output is a (1 +O (ε))-approximation to Fp. We then
argue that because we randomize the boundaries of each interval due to the selection of ζ,
the overall guarantee is only slightly worsened but remains a (1 + ε)-approximation to Fp.

Idealized process. We first show that for an idealized process where
(

f̂k

)p

is correctly

classified for all k across all level sets, then for a fixed level set i, we have |Ĉi −Ci| ≤ εℓ

2 · Fp

with probability at least 1 − 1
polylog(n) . Let E1 be the event that |Ir

ℓ | ≤
10γn

2ℓ and let E2

be the event that Fp(Ir
ℓ ) ≤ 10γFp

2ℓ . Lemma 2.4 shows that conditioned on E1 and E2, then
CountHH outputs a

(
1 + ε

8α log n

)
-approximation to fp

k if k ∈ Ir
ℓ . We thus analyze the

approximation Ĉr
i to Ci for a given set of subsamples, where we define

Ĉr
i := 1

pℓi

·
∑

(k,f̂k)∈Sr
i

(
f̂k

)p

,

ICALP 2021
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so that Ĉi = medianr Ĉr
i . Conditioned on E1 and E2, we note that Ĉr

i is a
(

1 + ε
8α log n

)
-

approximation to

Dr
i := 1

pℓi

·
∑

k∈Sr
i

∩Λi

fp
k .

We thus analyze the expectation and variance of Dr
i .

We first analyze the expectation of Dr
i . Note that

E [Dr
i ] = 1

pℓ
·

∑
k∈Λi

pℓ · fp
k = Ci.

We next analyze the variance of Dr
i , which results from whether items k ∈ Λi are sampled

by Ir
ℓ . Since pℓ ≥ γ

2·2iε2
ℓ

, we have

Var(Dr
i ) = 1

p2
ℓ

·
∑

k∈Λi

pℓf
2p
k ≤

∑
k∈Λi

2 · 2iε2
ℓ

γ
· f2p

k .

Observe that for each k ∈ Λi, we have f2p
k ≤

16(Fp)2

22i and |Λi|
2i ≤ ϕi ≤ 1. Thus for γ = 211,

Var(Dr
i ) ≤ |Λi| ·

2 · 2iε2
ℓ

γ
· 16(Fp)2

22i
≤ ϕiε

2
ℓ(Fp)2 ≤ ε2

ℓ

64(Fp)2.

Hence, by Chebyshev’s inequality, we have that

Pr
[
|Dr

i − Ci| ≥
εℓ

2 · Fp

]
≤ 1

16 .

Since Ci ≤ Fp and Ĉr
i is a

(
1 + ε

8α log n

)
-approximation to Dr

i , then Ĉr
i gives an approx-

imation to Ci with additive error at most
(

ε
4α log n + εℓ

)
· Fp with probability at least 15

16 ,
conditioned on the events E1 and E2, and the correctness of the subroutine CountHH. By
Theorem 2.1, the correctness of CountHH occurs with probability at least 38

39 . By a union
bound, we have that conditioned on E1 and E2, then

Pr
[
|Ĉr

i − Ci| ≤
(

ε

4α log n
+ εℓ

)
· Fp

]
≥ 7

8 .

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤
10γFp

2ℓ . Recall that Ir
ℓ is a nested subset of [n] subsampled at rate pℓ := min(1, 2−ℓγ). Thus

we have E [|Ir
ℓ |] ≤

γn
2ℓ , so that by Markov’s inequality, we have that Pr [E1] ≥ 9

10 . Similarly,
we have E [Fp(Ir

ℓ )] ≤ γFp

2ℓ , so that by Markov’s inequality, we have that Pr [E2] ≥ 9
10 . Hence

by a union bound, Pr [E1 ∧ E2] ≥ 8
10 .

By Lemma 2.4, conditioned on the events E1 and E2, we have that |Ĉr
i − Ci| ≤(

ε
4α log n + εℓ

)
· Fp for a fixed r, with probability at least 7

8 . Thus by a union bound,

we have that |Ĉr
i − Ci| ≤

(
ε

4α log n + εℓ

)
· Fp for a fixed r, with probability at least 5

8 .

Since Ĉi = medianr Ĉr
i across r ≤ O (log log n) iterations, then we have that |Ĉi − Ci| ≤(

ε
4α log n + εℓ

)
· Fp with probability at least 1− 1

polylog(n) .
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By a union bound over the α log n level sets, then with probability at least 1− 1
polylog(n) ,

we have that |Ĉi − Ci| ≤
(

ε
4α log n + εℓi

)
· Fp simultaneously for all i ∈ [α log n], where

ℓi := min{k : 2k > 2i ·ε2
k}. We form our estimate F̃p to Fp by setting F̃p :=

∑
i Ĉi and we have

Fp =
∑

i Ci. Since i ∈ [α log n], ℓi := min{k : 2k > 2i · ε2
k}, and εℓi = ε

16η·2ℓi(p/16−1/8) log 1
ε2

,
then

|F̃p − Fp| =

∣∣∣∣∣∑
i

Ĉi −
∑

i

Ci

∣∣∣∣∣ ≤∑
i

|Ĉi − Ci| ≤
∑

i

(
ε

4α log n
+ εℓi

)
· Fp

≤
∑

i∈[α log n]

ε

4α log n
· Fp +

∑
i:ℓi≤log 1

ε2

εℓi · Fp +
∑

i:ℓi>log 1
ε2

εℓi · Fp

≤ ε

4 · Fp + log 1
ε2 ·

ε

16 log 1
ε2

· Fp + ε

16 · Fp,

where the last bound on the last term follows from η >
∑

j≥0 2−j(p/16−1/8). Thus we have
that |F̃p − Fp| ≤ ε

2 · Fp with probability at least 1− 1
polylog(n) in an idealized process.

Effects of randomized boundaries. We say that for a fixed r, an item k ∈ [n] is misclassified
if there exists a level set Λi such that

ζ · Fp

2i
≤ fp

k ≤
2ζ · Fp

2i
,

but for an estimate
(

f̂k

)p

output by CountHH on the set Sr
ℓi

, we have

ζ · Fp

2i
≤

(
f̂k

)p

≤ 2ζ · Fp

2i
.

Recall that by Lemma 2.4, we have for any fixed value of ζ that(
1− ε

8α log n

)
· fp

k ≤
(

f̂k

)p

≤
(

1 + ε

8α log n

)
· fp

k .

Since ζ ∈ [1, 2], then the probability that item k ∈ [n] is misclassified is at most ε
2α log n .

Moreover, in the event that item k ∈ Λi is misclassified, it can only be misclassified into either
level set Λi+1 or level set Λi−1, since

(
f̂k

)p

is a
(

1± ε
8α log n

)
multiplicative approximation

to fp
k .
Thus in the event that item k ∈ [n] is misclassified, then

(
f̂k

)p

will be rescaled by an
incorrect probability, but only by at most a factor of two. Hence the error in the computation
of the contribution of fp

k to some level set Λi is at most 2fp
k . Then in expectation across all

k ∈ [n], the error due to the misclassification is at most 2Fp · ε
2α log n = ε

α log n · Fp. Hence by
Markov’s inequality for sufficiently large n, the misclassification error is at most an additive
ε
2 · Fp with probability at least 3

4 . Therefore in total, we have that |F̃p − Fp| ≤ ε · Fp with
probability at least 2

3 . ◀

It remains to analyze the space complexity of the algorithm as well as remove some additional
unnecessary assumptions.

▶ Theorem 1.1. For p > 2, there exists an algorithm that outputs a (1 + ε)-approximation
to the Fp moment of a random-order insertion-only stream with probability at least 2

3 , while
using total space (in bits) Õ

( 1
ε4/p · n1−2/p

)
.
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Proof. We first observe that we only require a 1.01-approximation F̂p to Fp as the input
of Algorithm 1 to create the level sets and analyze accordingly. However, we can instead
define the level sets using any upper bound X on F̂p by setting level set Λi to be the indices

k ∈ [n] for which fp
k ∈

[
ζX
2i , 2ζX

2i

]
, rather than

[
ζF̂p

2i ,
2ζF̂p

2i

]
, and the same analysis will

follow (see Remark 2.3). Intuitively, the fluidity of the definition of the level sets can be
seen from the fact that we randomize the boundaries by going through a multiplicative ζ

chosen randomly from [1, 2] anyway, and additional empty level sets will not change the
approximation guarantee. Thus by Lemma 2.5, there exists an algorithm that outputs a
(1 + ε)-approximation to the Fp moment.

It remains to analyze the space complexity. By Theorem 2.1, CountHH with threshold
ε requires O

( 1
ε2

(
log2 1

ε + log2 log m + log n
)

+ log m
)

bits of space. Algorithm 1 runs a

separate instance of CountHH with threshold (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i

for r ≤ O (log log n), where γ is a sufficiently large constant. Thus the total space for the
CountHH instances across all i for a fixed r is at most

C1 log n +
(
C2

1 log n
)
·

∑
i∈[α log n]

C1(ni)1−2/p

(εi)4/p
,

for some positive constants C1, α > 0. In particular, we have εi = ε
16η·2i(p/16−1/8) log 1

ε2
and

ni = min
((

16αp log n
ε1−2/p

)(2p)/(p−2)
, 10γn

2i

)
for a sufficiently large constant η. Then the total

space for the CountHH instances across all i for a fixed r is at most

C1 log n +
(
C1 log2 n

)
·

α log n∑
i=1

(
C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) log2 1
ε

+ C2 log2 n

ε2

)
,

for some positive constants C1, C2 > 0. Observe that
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =
∑∞

i=1
1

23i(1−2/p)/4

is a geometric series that is upper bounded by an absolute constant. Hence, the total space
across all i for a fixed r is at most O

( 1
ε4/p · n1−2/p log2 n log2 1

ε + 1
ε2 log5 n

)
and the total

space across all r ≤ O (log log n) is

O
(

1
ε4/p

· n1−2/p log2 n log2 1
ε

log log n + 1
ε2 log5 n log log n

)
,

which is Õ
( 1

ε4/p · n1−2/p
)

space in total, since n ≥ 1
ε2 implies 1

ε4/p · n1−2/p ≥ 1
ε2 . ◀

3 Fp Estimation for p > 2 in Two-Pass Streams

In this section, we consider two-pass algorithms for Fp estimation, with p > 2. For turnstile
streams, we require the guarantees of the well-known CountSketch algorithm for finding
heavy-hitters.

▶ Theorem 3.1 ([15]). There exists an algorithm CountSketch that reports all items
i ∈ [n] such that fi ≥ εL2 and no items j ∈ [n] such that fj ≤ ε

2 ·L2 in the turnstile streaming
algorithm. The algorithm uses O

( 1
ε2 log2 n

)
bits of space and succeeds with probability

1− 1
poly(n) .

For insertion-only streams, we use the more space-efficient BPTree algorithm for finding
heavy-hitters.
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▶ Theorem 3.2 ([8]). There exists an algorithm BPTree that reports all items i ∈ [n] such
that fi ≥ εL2 and no items j ∈ [n] such that fj ≤ ε

2 · L2 in the turnstile streaming algorithm.
The algorithm uses O

( 1
ε2 log n

)
bits of space and succeeds with probability 0.99.

Recall that the main idea of our one-pass algorithm in the random-order insertion-only
streaming model was to subsample at different rates and find (1 + ε)-approximations to
the frequencies of the heavy-hitters in each subsampling rate, which are then used to form
estimates of the contributions of each level set and ultimately estimate of the frequency
moment. The random-order setting crucially allowed us to obtain (1 + ε)-approximations
to the frequencies of the heavy-hitters. By contrast, in an adversarial-order setting, by the
time a possible heavy-hitter is detected, a significant fraction of its frequency may have
already appeared in the stream if we use a heavy-hitter algorithm with space dependency 1

ε2 .
Fortunately, in a two-pass setting, we can use the first pass to identify possible heavy-hitters
and the second pass to find their frequencies. We give the full details in Algorithm 2, where
the subroutine HeavyHitters denotes the algorithm CountSketch of Theorem 3.1 for
turnstile streams and BPTree of Theorem 3.2 for insertion-only streams.

Algorithm 2 Fp Estimation on Two-Pass Streams, p > 2.

Input: Accuracy parameter ε ∈ (0, 1), F̂p ≤ Fp ≤ 1.01 · F̂p

Output: (1 + ε)-approximation to Fp

1: Let η >
∑

j≥0 2−j(p/16−1/8) be a sufficiently large constant.
2: γ ← 211, ni ← 10γn

2i , εi = ε
16η·2i(p/16−1/8) log 1

ε2

3: Let Ir
i be a (nested) subset of [n] subsampled at rate pi := min(1, 2−iγ).

4: for first pass i ∈ [α log n], r ≤ O (log log n): do
5: Let Hr

i be the output of HeavyHitters with threshold parameter (εi)2/p

80γ ·(
1

ni

)1/2−1/p

on the substream induced by Ir
i .

6: for second pass do
7: Track the frequency fk for any coordinate k ∈ ∪Hr

i .

8: Let Sr
i be the items k ∈ [n] with fp

k ∈
[

F̂p

2i ,
2F̂p

2i

]
.

9: ℓi ← min{k : 2k > 2i · ε2
k}

10: Dr
i ← 1

pℓi
·
(∑

k∈Sr
i

fp
k

)
11: Ĉi ← medianr Dr

i

12: return F̃p :=
∑

i Ĉi

Using CountSketch as the subroutine for HeavyHitters on two-pass turnstile streams
and BPTree as the subroutine for HeavyHitters on two-pass insertion-only streams, we
obtain the following guarantees for Algorithm 2. We first show that there exists a subsampling
rate such that items in each level set will be reported as a heavy-hitter. The proof is similar
to the proof of Lemma 2.4, but we no longer require each reported item to also be reported
with a (1 + ε)-approximation to their frequency. In fact, this cannot be done in a single pass;
we will instead track their frequencies in the second pass.

▶ Lemma 3.3. Let ε ∈ (0, 1), Λi be a fixed level set, and let ℓ := ℓi := min{k : 2k > 2i · ε2
k}.

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ .
Conditioned on E1 and E2, then HeavyHitters reports j ∈ Sr

i for each j ∈ Λi ∩ Ir
ℓ with

probability at least 1− 1
poly(n) .
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Proof. We consider casework on the value of i. First suppose 2i · ε2 < γ, so that ℓ :=
ℓi = min{k : 2k > 2i · ε2

k} ≤ log γ since εk ≤ ε for all k. By Definition 2.2 of the level

sets, each item j ∈ Λi satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. We also have F̂p ≤ Fp ≤ 1.01 · F̂p and

n1/2−1/p · F 1/p
p ≥ F

1/2
2 . Thus, each item in j ∈ Λi satisfies

fj ≥
ε2/p

1.011/p
· F 1/p

p ≥ ε2/p

1.011/pn1/2−1/p
· F 1/2

2 ,

so that f2
j ≥ ε4/p

1.01n1/2−1/p F2. Then by Theorem 3.1 or Theorem 3.2, each item j ∈ Λi is
reported by CountSketch or BPTree with threshold (εℓ)2/p

80γ , as εℓ ≤ ε and nℓ = n.
Otherwise, suppose 2i · ε2 ≥ γ, so that ℓ := ℓi = min{k : 2k > 2i · ε2

k} ≥ log γ and
pℓ := min(1, 2−ℓγ) ≥ γ

2·2iε2
ℓ

. Again by Definition 2.2 of the level sets, each item j ∈ Λi

satisfies fp
j ∈

[
ζ·F̂p

2i ,
2ζ·F̂p

2i

]
. If j /∈ Ir

ℓ , then j certainly will not be reported by HeavyHitters

(regardless of whether HeavyHitters is CountSketch or BPTree). Hence, we assume
that j ∈ Ir

ℓ .
Conditioning on the event E2,

Fp(Ir
ℓ ) ≤ 10γFp

2ℓ
≤ 20γFp

2iε2 .

Given F̂p ≤ Fp ≤ 1.01 · F̂p, then fp
j ≥ ε2

80γ · Fp(Ir
ℓ ). Therefore,

fj ≥
ε2/p

(80γ)1/p
· F 1/p

p (Ir
ℓ ).

Rather than applying the inequality n1/2−1/p · F 1/p
p ≥ F

1/2
2 , we observe that conditioning

on the event E1, it follows that |Ir
ℓ | ≤ nℓ = 10γn

2ℓ . Thus, the frequency vector defined by the
substream Ir

ℓ has significantly smaller support size than n, which we can leverage to use a
heavy-hitter algorithm with a lower threshold. We have

fj ≥
ε2/p

(80γ)1/p
·
(

1
nℓ

)1/2−1/p

· F 1/2
2 (Ir

ℓ ).

Therefore by Theorem 3.1 or Theorem 3.2, each item j ∈ Λi ∩ Ir
ℓ will be reported by Hr

ℓ

output by HeavyHitters with threshold (εℓ)2/p

80γ ·
(

1
nℓ

)1/2−1/p

, since εℓ ≤ ε. ◀

We now show our main correctness statement for our two-pass algorithms. Lemma 3.4 proves
that the output F̃p of our algorithm gives a (1 + ε)-approximation to the Fp moment of
the underlying frequency vector. Although the guarantees of Lemma 3.4 are similar to
the guarantees of Lemma 2.5 are similar, the proof of Lemma 3.4 is much simpler. We
show that we obtain (1 + ε)-approximations to the contributions of each significant level set,
thus obtaining a (1 + ε)-approximation to the Fp moment, since the contributions of the
insignificant level sets can be ignored. Unlike Lemma 2.5, we need not concern about an
idealized process since the frequency of each heavy-hitter is exactly tracked in the second pass
of the algorithm over the data stream, so no heavy-hitters can be accidentally misclassified
into an incorrect level set.

▶ Lemma 3.4. With probability at least 2
3 , we have that |F̃p − Fp| ≤ ε · Fp.
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Proof. Let Λi be a fixed level set and ℓ := min{k : 2k > 2i · ε2
k}. Let E1 be the event that

|Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤ 10γFp

2ℓ . By Lemma 3.3, CountSketch
returns each k ∈ Λi∩Ir

ℓ in Sr
i , conditioned on E1 and E2. Thus in the second pass, Algorithm 2

tracks the contribution fp
k explicitly, by tracking fk. We first analyze the approximation Ĉr

i

to Ci for a given set of subsamples, where we define

Dr
i := 1

pℓ
·

∑
k∈Λi∩Ir

ℓ

fp
k .

so that Ĉi = medianr Dr
i . Conditioned on E1 and E2, we note that

E [Dr
i ] = 1

pℓ
·

∑
k∈Λi

pℓ · fp
k = Ci.

We also have

Var(Dr
i ) = 1

p2
ℓ

·
∑

k∈Λi

pℓf
2p
k ≤

∑
k∈Λi

2 · 2iε2
ℓ

γ
· f2p

k ,

since pℓ ≥ γ
2·2iε2

ℓ

. Observe that for each k ∈ Λi, we have f2p
k ≤

16(Fp)2

22i and |Λi|
2i ≤ ϕi ≤ 1.

Thus for γ = 211,

Var(Dr
i ) ≤ |Λi| ·

2 · 2iε2
ℓ

γ
· 16(Fp)2

22i
≤ ϕiε

2
ℓ(Fp)2 ≤ ε2

ℓ

64(Fp)2.

Hence, by Chebyshev’s inequality, we have that

Pr
[
|Dr

i − Ci| ≥
εℓ

2 · Fp

]
≤ 1

16 .

In summary, Dr
i gives an approximation to Ci with additive error at most εℓ

2 · Fp with
probability at least 15

16 , conditioned on the events E1 and E2, and the correctness of the
subroutine CountSketch. Since CountSketch fails with probability at most 1− 1

poly(n)
by Theorem 3.1, then by a union bound, we have that conditioned on E1 and E2,

Pr
[
|Dr

i − Ci| ≤
(

ε

4α log n
+ εℓ

)
· Fp

]
≥ 7

8 .

For a fixed r, let E1 be the event that |Ir
ℓ | ≤

10γn
2ℓ and let E2 be the event that Fp(Ir

ℓ ) ≤
10γFp

2ℓ . Recall that Ir
ℓ is a nested subset of [n] subsampled at rate pℓ := min(1, 2−ℓγ), so that

E [|Ir
ℓ |] ≤

γn
2ℓ . Thus by Markov’s inequality, Pr [E1] ≥ 9

10 . Similarly, E [Fp(Ir
ℓ )] ≤ γFp

2ℓ . Thus
by Markov’s inequality, Pr [E2] ≥ 9

10 . By a union bound, we first have Pr [E1 ∧ E2] ≥ 8
10 .

Applying another union bound, we have that |Dr
i −Ci| ≤ εℓ

2 ·Fp for a fixed r, with probability
at least 5

8 . Since Ĉi = medianr Dr
i across r ≤ O (log log n) iterations, then we have that

|Ĉi − Ci| ≤ εℓ

2 · Fp with probability at least 1− 1
polylog(n) .

By a union bound over the indices i ∈ [α log n], corresponding to the α log n level sets,
then with probability at least 1− 1

polylog(n) , we have that |Ĉi − Ci| ≤ εℓ

2 · Fp simultaneously
for all i ∈ [α log n], where ℓi := min{k : 2k > 2i · ε2

k}. We form our estimate F̃p to Fp by
setting F̃p :=

∑
i Ĉi and we have Fp =

∑
i Ci. Since i ∈ [α log n], ℓi := min{k : 2k > 2i · ε2

k},
and εℓi = ε

16η·2ℓi(p/16−1/8) log 1
ε2

, then
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|F̃p − Fp| =

∣∣∣∣∣∑
i

Ĉi −
∑

i

Ci

∣∣∣∣∣ ≤∑
i

|Ĉi − Ci| ≤
∑

i

(
ε

4α log n
+ εℓi

)
· Fp

≤
∑

i∈[α log n]

ε

4α log n
· Fp +

∑
i:ℓi≤log 1

ε2

εℓi · Fp +
∑

i:ℓi>log 1
ε2

εℓi · Fp

≤ ε

4 · Fp + log 1
ε2 ·

ε

16 log 1
ε2

· Fp + ε

16 · Fp,

where the last bound on the last term follows from η >
∑

j≥0 2−j(p/16−1/8). Therefore with
probability at least 1− 1

polylog(n) , we have that |F̃p − Fp| ≤ ε
2 · Fp. ◀

We now justify the full guarantees claimed by Theorem 1.2. We first handle two passes
over a turnstile stream.

▶ Theorem 3.5. For p > 2, there exists a two-pass turnstile streaming algorithm that
outputs a (1 + ε)-approximation to the Fp moment with probability at least 2

3 , while using
O

( 1
ε4/p · n1−2/p log2 n log log n

)
bits of space.

Proof. Our analysis is similar to the proof of Theorem 1.1. We again observe that by
redefining the level sets according to any upper bound on Fp, we do not require a 1.01-
approximation F̂p to Fp as the input of Algorithm 2. Thus by Lemma 3.4, there exists an
algorithm that outputs a (1 + ε)-approximation to the Fp moment on two pass turnstile
streams and it remains to analyze the space complexity. By Theorem 3.1, CountSketch
with threshold ε requires O

( 1
ε2 log2 n

)
bits of space to output the indices of the heavy-hitters.

Algorithm 2 runs a separate instance of CountSketch with threshold (εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i for r ≤ O (log log n), where γ is a sufficiently large constant. Thus the

total space in the first pass across all indices i for a fixed r is at most

(
C1 log2 n

)
·

∑
i∈[α log n]

(ni)1−2/p

(εi)4/p
,

for some positive constants C1, α > 0. In particular, we have ni = 10γn
2i and εi =

ε
16η·2i(p/16−1/8) log 1

ε2
for a sufficiently large constant η. Then the total space in the first

pass across all indices i for a fixed r is at most

(
C1 log2 n

)
·

∞∑
i=1

C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) ,

for some positive constants C1, C2 > 0. Since
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =
∑∞

i=1
1

23i(1−2/p)/4 is a
geometric series that is upper bounded by a fixed constant, the total space in the first pass
across all i for a fixed r is O

( 1
ε4/p · n1−2/p log2 n

)
. Because r ∈ O (log log n), then the total

space is O
( 1

ε4/p · n1−2/p log2 n log log n
)
.

In the second pass, we track the frequencies of each item reported by some instance of
CountSketch. Since at most O

( 1
ε4/p · n1−2/p log log n

)
indices can be reported across

all instances of CountSketch and O (log n) bits of space can be used to track the
frequency of each reported index, then the total space for the second pass is at most
O

( 1
ε4/p · n1−2/p log n log log n

)
. Thus, the total space is O

( 1
ε4/p · n1−2/p log2 n log log n

)
. ◀
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Finally, we note that to report at most O
( 1

ε4/p · n1−2/p log log n
)

indices of possible heavy-
hitters in turnstile streams, CountSketch uses at most O

( 1
ε4/p · n1−2/p log2 n log log n

)
space. By the same reasoning, we use space O

( 1
ε4/p · n1−2/p log n log log n

)
in insertion-only

streams by using the more space efficient BPTree.

▶ Theorem 3.6. For p > 2, there exists a two-pass insertion-only streaming algorithm that
outputs a (1 + ε)-approximation to the Fp moment with probability at least 2

3 , while using
O

( 1
ε4/p · n1−2/p log n log log n

)
bits of space.

Proof. The proof of correctness is exactly the same as that of Theorem 3.5 since using
BPTree as the subroutine for HeavyHitters rather than CountSketch offers the same
guarantee for insertion-only streams. By Theorem 3.2, BPTree with threshold ε requires
O

( 1
ε2 log n

)
bits of space to output the indices of the heavy-hitters. To analyze the space

complexity, note that Algorithm 2 runs a separate instance of BPTree with threshold
(εi)2/p

80γ ·
(

1
ni

)1/2−1/p

to output a set Hr
i for r ≤ O (log log n), where γ is a sufficiently large

constant. Hence, the first pass across all indices i for a fixed r uses space at most

(C1 log n) ·
∑

i∈[α log n]

(ni)1−2/p

(εi)4/p
,

for some absolute constants C1, α > 0. Since ni = 10γn
2i and εi = ε

16η·2i(p/16−1/8) log 1
ε2

for a
sufficiently large constant η, the first pass uses space at most

(C1 log n) ·
∞∑

i=1

C2n1−2/p

ε4/p
· 2i(1/4−1/(2p))

2i(1−2/p) ,

for some absolute constants C1, C2 >0, across all indices i for a fixed r. As
∑∞

i=1
2i(1/4−1/(2p))

2i(1−2/p) =∑∞
i=1

1
23i(1−2/p)/4 is a geometric series that is upper bounded by some constant, then the

total space in the first pass is O
( 1

ε4/p · n1−2/p log n
)

across all indices i for a fixed r. Since
r ≤ O (log log n), then the total space in the first pass is O

( 1
ε4/p · n1−2/p log n log log n

)
.

The second pass tracks the frequencies of each item reported by some instance of
BPTree. Since at most O

( 1
ε4/p · n1−2/p log log n

)
indices can be reported across all instances

of BPTree and O (log n) bits of space can be used to track the frequency of each reported
index, then the total space for the second pass is at most O

( 1
ε4/p · n1−2/p log n log log n

)
.

Thus, the total space is O
( 1

ε4/p · n1−2/p log n log log n
)
. ◀

4 Lower Bounds

In this section, we first consider the standard blackboard communication model, where a
number of players each have a local input and the goal is to solve some predetermined
communication problem by sending messages to a shared medium. Each player is assumed
to have access to an unlimited amount of private randomness. The sequence of messages on
the shared blackboard is called the transcript and the maximum length of the transcript over
all inputs is the communication cost of a given protocol. The communication complexity of
f , denoted by Rδ(f), is the minimal communication cost of all protocols that succeed with
probability at least 1− δ for all legal inputs to f .
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▶ Definition 4.1. In the (t, ε, n)-player set disjointness estimation problem (t, ε, n) −
DisjInfty, there are t + 1 players P1, . . . , Pt+1 with private coins in the standard blackboard
model. For s ∈ [t], each player Ps receives a vector vs ∈ {0, 1}n and player Pt+1 receives
both an index j ∈ [n] and a bit c ∈ {0, 1}. For u =

∑
s∈[t] vs, the inputs are promised to

satisfy ui ≤ 1 for each i ̸= j and either uj = 1 or uj = t. With probability at least 9
10 , Pt+1

must differentiate between the three possible input cases:
(1) uj + ct

ε ≤ t

(2) uj + ct
ε ∈

{
t
ε , t

ε + 1
}

(3) uj + ct
ε = (1 + ε) t

ε ,
where ε ∈ (0, 1). We call coordinate j ∈ [n] the spike location.

Direct sum embedding. We use the direct sum technique by showing that even in the
case where ui ≤ 1 for all i ∈ [n], the information cost of the players is sufficiently high.
We describe the embedding performed by each player to sample coordinates independently
conditioned on the auxiliary variable D. We define the auxiliary variable D = (D1, . . . , Dn)
by first defining a distribution µ for Di and vs,i, for each fixed coordinate i ∈ [n] and across
all players s ∈ [t]:
(1) Di ∼ [t] uniformly at random, so that Di determines a player whose input bit will be

randomized while the remaining players have input bit zero.
(2) Conditioned on Di = s, then each player Pr with r ̸= s sets vr,i = 0 while player Ps

independently and uniformly sets vs,i ∈ {0, 1}.
We define the distribution ζ := µn so that the auxiliary random variable D = (D1, . . . , Dn)
is the vector whose i-th coordinate determines the player PDi

whose i-th bit vDi,i in their
input vector will vary, while the other players Ps have i-th bit vs,i zero in their vectors, for
s ≠ Di. Observe that under the distribution ζ, we indeed have ui ≤ 1 for each coordinate
i ∈ [n] of u =

∑
s∈[t] vs. Finally, we fix the input c = 0 to player Pt+1 and pick j ∈ [n]

according to any arbitrary distribution.

▶ Theorem 4.2. The total communication complexity for the (t, ε, n)-player set disjointness
estimation problem is Ω

(
n
t

)
.

We remark that the communication complexity of Theorem 4.2 matches the communica-
tion complexity of t-player set disjointness. However, since the problem requires correctness
on all inputs, then we can distinguish between the possible input cases by focusing on the
specific coordinate j given to player Pt+1. By contrast, the reduction of [18] from t-player set
disjointness requires an algorithm to “test” all coordinates i ∈ [n] for the spike location. Thus
the reduction requires that an Fp moment estimation algorithm succeeds with probability
1− 1

poly(n) , thereby losing a multiplicative O (log n) factor and achieving Ω
(

n1−2/p

ε2 log n

)
in the

space lower bound for Fp moment estimation. Since our communication problem gives
the specific spike location as input, our reduction only requires an Fp moment estimation
algorithm that succeeds with constant probability. We remark that a similar technique was
used in [30] for the L∞ promise problem.

Reduction. Let t = Θ
( 1

ε · n
1/p

)
. We reduce (1 + ε)-approximate Fp moment estimation

to an instance of (t, ε) − DisjInfty as follows. Let A be any fixed randomized one-pass
insertion-only streaming algorithm that outputs a

(
1 + ε

3
)
-approximation to the Fp moment

of the underlying frequency vector with probability at least 2
3 . Recall that the first t players

each receive a vector vs with s ∈ [t] and player Pt+1 receives both a special index j ∈ [n]
and a bit c ∈ {0, 1}.
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For each s ∈ [t], player Ps takes the state of the algorithm A, inserts the coordinates of
vector vs, and passes the state of the algorithm to player Ps+1.
Player Pt+1 takes the state of A, adds the vector ct

ε ·ej , where ej is the elementary vector
with a one in position j and zeros elsewhere, and then queries the state of A to obtain a(
1 + ε

3
)
-approximation to the Fp moment of underlying frequency vector.

▶ Theorem 4.3. For any constant p > 2 and parameter ε = Ω
( 1

n1/p

)
, any one-pass

insertion-only streaming algorithm that outputs a (1 + ε)-approximation to the Fp moment
of an underlying frequency vector with probability at least 9

10 requires Ω
( 1

ε2 · n1−2/p
)

bits of
space.

Proof. Player Pt+1 receives the state of A on the input u =
∑

s∈[t] vs and induces a frequency
vector x := u+ ct

ε ·ej . Recall that the inputs are promised to satisfy ui ≤ 1 for each i ̸= j and
either uj = 1 or uj = t. If c = 0, then x = u so that for a constant C > 0 and t = C

ε · n
1/p,

∥x∥p
p ≤ F0 + tp ≤ n + Cp

εp
· n.

If c = 1 and uj ≤ 1, then for t = C
ε · n

1/p, we have ∥x∥p
p ≥

(
t
ε

)p = Cp

ε2p · n and thus

∥x∥p
p ≤ F0 +

(
1 + t

ε

)p

≤ n + p + p · Cp

ε2p
· n.

Finally, if c = 1 and uj = t, then

∥x∥p
p ≥

(
t + t

ε

)p

=
(

1 + 1
ε

)p

· Cp

ε2p
· n.

For sufficiently small ε ∈ (0, 1) with ε = Ω
( 1

n1/p

)
and constant p > 2, there exists a constant

C > 0 such that these three cases are separated by a multiplicative (1 + ε). Since A outputs
a

(
1 + ε

3
)
-approximation to the Fp moment of the underlying frequency vector, then player

Pt+1 obtains a
(
1 + ε

3
)
-approximation to ∥x∥p

p and can differentiate between the three cases,
thus solving (t, ε)−DisjInfty with probability at least 9

10 . By Theorem 4.2, A uses Ω
(

n
t

)
total communication across the t + 1 players. Therefore, the space complexity of A is
Ω

(
n
t2

)
= Ω

( 1
ε2 · n1−2/p

)
for t = Θ

( 1
ε · n

1/p
)
. The result then follows from rescaling ε. ◀
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