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Abstract
Tree edit distance is a well-studied measure of dissimilarity between rooted trees with node labels.
It can be computed in O(n3) time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007], and
fine-grained hardness results suggest that the weighted version of this problem cannot be solved in
truly subcubic time unless the APSP conjecture is false [Bringmann, Gawrychowski, Mozes, and
Weimann, SODA 2018].

We consider the unweighted version of tree edit distance, where every insertion, deletion, or
relabeling operation has unit cost. Given a parameter k as an upper bound on the distance,
the previous fastest algorithm for this problem runs in O(nk3) time [Touzet, CPM 2005], which
improves upon the cubic-time algorithm for k ≪ n2/3. In this paper, we give a faster algorithm
taking O(nk2 log n) time, improving both of the previous results for almost the full range of
log n ≪ k ≪ n/

√
log n.
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1 Introduction

Many tasks involve measuring the similarity between two sets of data. When the data is
naturally represented as a string of characters, one of the most popular and well-studied ways
of measuring similarity is via the (string) edit distance, defined to be the minimum number
of characters that must be deleted, inserted, and substituted to turn one string into the
other. Although edit distance is a fundamental problem in computer science and has been
employed to great effect in many other areas, it can be less useful for applications where we
are interested in comparing data that is not just linearly ordered, but has some hierarchical
organization. When the data admits a tree structure, a natural measure of similarity is the
tree edit distance, first introduced by Tai [34] as a generalization of the string edit distance
problem [38]. Computing this metric has a wide variety of applications in a diverse array of
fields including computational biology [22, 32, 23, 39], structured data analysis [14, 16, 21],
and image processing [7, 26, 25, 31].

Given two rooted ordered trees with node labels, the tree edit distance is the minimum
number of node deletions, insertions, and relabelings needed to turn one tree into the other.
When we delete a node, its children become children of the parent of the deleted node.
Beyond this widely studied definition, there are many other variants of the tree edit distance
problem, including those defined for unrooted trees or unordered trees, or parameterized
by the depth or the number of leaves, which we do not consider in this paper. We refer
interested readers to the survey by Bille [8] for a comprehensive review.
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12:2 Faster Algorithms for Bounded Tree Edit Distance

We now recount the development of exact algorithms for tree edit distance. In 1979,
Tai [34] gave the first algorithm that computes the tree edit distance between two node-labeled
rooted trees on n nodes in O(n6) time. The time complexity was improved to O(n4) by
Zhang and Shasha [40] using a dynamic programming approach. Later, Klein [24] applied
the heavy-light decomposition technique to obtain an O(n3 log n) time algorithm. Finally,
Demaine, Mozes, Rossman, and Weimann [17] improved the running time by a log-factor
to O(n3), and further showed that this running time is optimal among a certain class of
dynamic programming algorithms termed decomposition strategy algorithms by Dulucq and
Touzet [19, 20]. When the two input trees have different sizes m ≤ n, their algorithm runs
in O

(
nm2(1 + log n

m )
)

time.

All algorithms mentioned above actually compute tree edit distance in the general weighted
setting where the cost of deleting, inserting, or relabeling is a function of the labels (so
that deleting nodes with certain labels might be cheaper than deleting other nodes with
different labels). In this setting, Bringmann, Gawrychowski, Mozes, and Weimann [13]
showed conditional hardness results for the tree edit distance problem: a truly subcubic time
algorithm for this problem would imply a truly subcubic time algorithm for the All-Pairs
Shortest Paths (APSP) problem (assuming alphabet of size Θ(n)), and an O(nk(1−ε)) time
algorithm for the Max-weight k-clique problem (assuming a sufficiently large constant-size
alphabet). However, the instances produced by their fine-grained reduction have non-unit
edit costs, and it is not clear yet how to prove a conditional hardness result for the unweighted
tree edit distance problem with unit edit costs. In contrast, the quadratic-time fine-grained
lower bound for the string edit distance problem (based on the Strong Exponential Time
Hypothesis) holds for unit-cost operations [6, 1].

Therefore, it is natural to consider the unweighted unit-cost setting, where every ele-
mentary operation has cost 1, independent of the labels. In this case, the distance between
two trees of sizes n and m cannot be larger than n + m, and is arguably even smaller in
practical scenarios. In 2005, Touzet [35, 36] gave an algorithm in this context that computes
the unweighted tree edit distance in O(nk3) time, assuming the distance is at most k. When
k = Θ(n), Touzet’s algorithm has the same performance as the O(n4) time algorithm by
Zhang and Shasha [40]. However, the running time significantly improves if the upper
bound k is much smaller than n. We remark that similar progress was shown earlier for
the string edit distance problem: although the best known running time for the general
case is O(n2/ log2 n) [29, 9], when the distance is at most k, Ukkonen [37] gave an O(nk)
time algorithm, which was later improved to Õ(n + k2) time1 by Myers [30], Landau and
Vishkin [28] using suffix trees.

Although we focus on exact algorithms in this work, approximation algorithms for the
tree edit distance problem have also been studied [2, 11]. Boroujeni, Ghodsi, Hajiaghayi,
and Seddighin [11] showed an algorithm that computes a (1 + ε)-approximation of the tree
edit distance in Õ(ε−3n2) time. If an upper bound k on the distance is known, the running
time can be improved to Õ(ε−3nk). For the easier problem of approximating string edit
distance, there is a longer line of research [5, 3, 10, 15, 12, 27] culminating in a near-linear
time constant-factor approximation algorithm [4].

1 In this paper, Õ(f) stands for f · (log f)O(1).
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1.1 Our contribution
We present a faster algorithm for exactly computing the unweighted tree edit distance (where
every elementary operation has unit cost), with a parameter k ≤ O(n) given as an upper
bound on the distance.

▶ Theorem 1. Given two node-labeled rooted trees T1, T2 each of size at most n, we can
compute the unweighted tree edit distance between T1 and T2 exactly in O(nk2 log n) time,
assuming the distance is at most k.

When the distance parameter k is constant our algorithm runs in quasilinear time, and
as k reaches its upper bound O(n) we recover the O(n3 log n) time algorithm by Klein
[24]. Our algorithm outperforms the O(n3) time algorithms of Demaine et al. [17] when
k = o(n/

√
log n). As mentioned earlier, the previous best algorithm for bounded tree edit

distance by Touzet [36] takes O(nk3) time. The time complexity of our algorithm improves
upon this prior work whenever k = ω(log n).

1.2 High-level Overview
Touzet’s O(nk3)-time algorithm is based on Zhang and Shasha’s O(n4)-time dynamic pro-
gramming algorithm [40]. The improvement was achieved by pruning unuseful DP states, and
only considering O(nk3) many states instead of O(n4). This pruning technique was inspired
by an idea used in the previous O(nk)-time algorithm for string edit distance [37]: for input
strings whose edit distance is at most k, when building the dynamic programming table for
computing the edit distance, it suffices to only compute entries of the table corresponding
to prefixes whose lengths differ by at most k. Touzet’s improvement for tree edit distance
employs a similar technique and relies on measuring the “distance” between two DP states
with respect to the preorder tree traversal, which is compatible with the DP transitions of
Zhang and Shasha.

We modify Klein’s O(n3 log n) time algorithm by further reducing the number of useful
states, similar in spirit to the algorithm by Touzet [36]. The main difficulty in adapting
this idea is that unlike the algorithm of Zhang and Sasha, Klein’s DP algorithm does not
follow the same preorder traversal of the nodes. Hence we need completely new arguments
to bound the number of useful DP states. Beyond considering the sizes of the subproblems
generated, our proofs examine how various subforests are generated by different transition
rules and employ some combinatorial arguments about how the subgraphs of deleted nodes
can be structured when the edit distance is known to be bounded.

1.3 Paper Organization
In Section 2 we formally define the tree edit distance problem and introduce the notation
used throughout the rest of the paper. Next, in Section 3, we review Klein’s algorithm [24]
which our algorithm builds off of. Then, in Section 4, we present our improved algorithm.
Finally, we conclude by mentioning several open questions relevant to our work in Section 5.

2 Preliminaries

In this paper, we consider rooted trees that are ordered, meaning that the order between
siblings is significant. We also consider forests consisting of disjoint rooted trees, where the
order between these trees is also significant. It is convenient to treat the tree roots of a forest
as the children of a virtual root node. Let par(v) denote the parent node of v, or the virtual
root node if v is a tree root in the forest.

ICALP 2021
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Figure 1 To turn T1 and T2 into the same tree with a minimum number of operations, we can
delete a node from each and relabel a node in T1. So in this example ed(T1, T2) = 3.

L′
F

RF

R◦
F

rF

Figure 2 The example forest F above is partitioned into L′
F , rF , and R◦

F .

We define the node removal operation in the following natural way: after removing a
node v from the forest F , the children of v become children of par(v), preserving the same
relative order. We use F − v to denote the forest obtained by removing v from F .

We now formally define the tree edit distance as a metric on ordered rooted trees with
node labels.

▶ Definition 2 ((Unweighted) Tree Edit Distance). Let T1 and T2 be two ordered rooted trees
whose nodes are labeled with symbols from some alphabet Σ. There are two types of allowed
operations:

Relabeling: change the label of a node from one symbol in Σ to another.
Deletion: remove a node.

Then the tree edit distance between T1 and T2, denoted by ed(T1, T2), is the minimum number
of operations that must be performed on T1 and T2 to obtain two identical forests.

Figure 1 provides an example of these operations in action.
▶ Remark 3. An alternative definition of tree edit distance is the minimum number of
insertions, deletions, and relabeling needed to turn one tree into the other. It is easy to see
that these two definitions are equivalent.

Since the operations of relabeling and deletion also apply to labeled forests, the above
definition naturally extends to measure the edit distance between two forests F1 and F2, and
for the rest of the paper we write ed(F1, F2) to denote this edit distance as well.

Given a forest F , we write LF (or RF ) to denote the leftmost (or rightmost) tree in F ,
and write ℓF (or rF ) to denote the root of LF (or RF ). For convenience, let L′

F denote
F −RF , and let R◦

F denote RF − rF (similarly, R′
F = F − LF and L◦

F = LF − ℓF ). Hence,
the nodes of a nonempty forest F can be partitioned into three parts: L′

F , rF , and R◦
F (an

example is given in Figure 2). Finally, size(F ) or |F | denote the number of nodes in F (where
F can also be any subset of nodes).
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1

2 4 5

3 6

Figure 3 The subforests of this rooted tree are: {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {3, 4, 5, 6}, {4, 5, 6},
{5, 6}, {6}, ∅,{2, 3, 4, 6}, {3, 4, 6}, {4, 6}, {2, 3, 4}, {3, 4}, {4}, {2, 3}, {3}. For example, the subforest
{3, 4, 6} can be obtained by first removing the leftmost root 1, then removing the rightmost root 5,
and finally removing the leftmost root 2.

▶ Definition 4 (Subforest). Given a rooted tree T , we say F is a subforest of T if we can
obtain F from T by repeatedly deleting the leftmost or rightmost root.

An example illustrating the definition of subforests is given in Figure 3.

▶ Proposition 5. A rooted tree T of n nodes has at most O(n2) subforests.

Proof. Although a subforest may result from interleaving operations of removing the leftmost
root and removing the rightmost root, it is not hard to see that every such subforest F can
also be obtained from T by first removing the leftmost root a times, and then removing the
rightmost root b times, for some nonnegative integer a, b with a + b ≤ n. Specifically, let u be
the node in F with the smallest index pre(u) in the preorder traversal of T (1 ≤ pre(u) ≤ n),
and we can set a = pre(u) − 1 and b = n − a − size(F ). The claim then follows from the
number of choices of (a, b). ◀

For a subforest F of T , define LCAT (F ) as the lowest common ancestor in T of all nodes
in F . When the identity T is clear from context, we may write LCA(F ) and leave the
underlying tree implicit. Observe that LCA(F ) is in F precisely when F is a subtree of T .

Throughout, we use T1, T2 to denote the input trees (or T if we do not specify which one
of the two) we want to compute the edit distance between.

3 Review of Klein’s Algorithm

We briefly review Klein’s algorithm [24] in the context of computing the unweighted tree
edit distance ed(T1, T2) (see [17, 8, 18] for other overviews of this algorithm).

The algorithm uses dynamic programming (DP) over pairs (F1, F2), where F1, F2 are
subforests of T1, T2, respectively. Let the node relabeling cost δ(x, y) = 1 if nodes x, y have
different labels, and δ(x, y) = 0 otherwise. Then ed(F1, F2) can be computed recursively as
follows [40]:

The base case is where either of F1, F2 is empty (denoted as ∅), and we have

ed(F1, ∅) = size(F1), ed(∅, F2) = size(F2). (1)

When both F1, F2 are nonempty, if size(LF1) > size(RF1), then we recurse with

ed(F1, F2) = min


ed(F1 − rF1 , F2) + 1
ed(F1, F2 − rF2) + 1
ed(R◦

F1
, R◦

F2
) + ed(L′

F1
, L′

F2
) + δ(rF1 , rF2).

(2)

ICALP 2021
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Otherwise, size(LF1) ≤ size(RF1), and we recurse with

ed(F1, F2) = min


ed(F1 − ℓF1 , F2) + 1
ed(F1, F2 − ℓF2) + 1
ed(L◦

F1
, L◦

F2
) + ed(R′

F1
, R′

F2
) + δ(ℓF1 , ℓF2).

(3)

Taking Equation (2) as an example, the recursion considers three options concerning the
rightmost roots of F1, F2: (1) rF1 is removed. (2) rF2 is removed. (3) The two roots are
matched to each other, generating two subproblems of matching their subtrees R◦

F1
, R◦

F2
,

and matching the remaining parts L′
F1

, L′
F2

. The other recursion rule in Equation (3) is
symmetric and considers the leftmost roots.

We can easily verify that, if we compute ed(T1, T2) using this recursion, the DP states
visited by the recursion are indeed pairs of subforests of T1 and T2. We call a subforest F1 or
F2 which appears in the above dynamic programming procedure a relevant subforest. Klein
showed the following bound on the number of relevant subforests F1 of T1 generated by the
DP procedure.

▶ Lemma 6 (Lemma 3 of [24]). If we use top-down dynamic programming to compute
ed(T1, T2) with respect to the recursion defined in Equations (1)–(3), we only ever need to
compute ed(F1, F2) for O(|T1| log |T1|) distinct subforests F1 of T1.

The proof of this lemma uses a heavy-light decomposition argument, which crucially relies
on choosing the “direction” of recursion (Equations (2) and (3)) based on the sizes of the
leftmost and rightmost trees in F1. This improves upon the previous DP algorithm by Zhang
and Shasha [40], which always recurses on the rightmost roots and could only give an O(|T1|2)
bound instead of O(|T1| log |T1|).

Since there are only O(|T2|2) possible subforests F2 of T2 (Proposition 5), Lemma 6 shows
that we can compute ed(T1, T2) in O(|T1||T2|2 log |T1|) time. In the next section, we show
how to use the assumption that ed(T1, T2) ≤ k to bound the number of relevant F2 as well,
and through this get a faster algorithm.

4 Improved Algorithm

4.1 DP state transition graph
Our algorithm builds on Klein’s DP algorithm described in Section 3. For the sake of analysis,
it is helpful to consider the DP state transition graph, which is a directed acyclic graph with
vertices representing the DP states (F1, F2) and edges representing DP transitions. Each
edge is associated with a proxy cost that lower bounds the true incurred cost when using
this transition in the actual DP. These will be based off the trivial lower bound

ed(F1, F2) ≥ |size(F1)− size(F2)| , (4)

which holds because each operation changes the size of a tree by at most 1, and at the end
of applying ed(F1, F2) operations the trees must have the same size.

To define the DP state transition graph, we distinguish three types of DP transition
that can occur from following the recursion of Klein’s algorithm described in Equations (2)
and (3). The first type corresponds to the first two cases of Equations (2) and (3) where we
delete the rightmost or leftmost root of the forest. The second and third types of transition
capture the two subproblems generated from the third case of Equations (2) and (3) where
we match nodes in the trees. Hence, the edges in the DP state transition graph and their
proxy costs are defined as follows:



S. Akmal and C. Jin 12:7

Type 1 (Node Removal) We delete the rightmost (or leftmost) root of F1 (or F2).
For example, we can transition (F1, F2)→ (F1 − rF1 , F2). This transition has cost 1.

Type 2 (Subtree Removal) We remove the rightmost (or leftmost) subtrees of F1 and F2.
For example, we can transition (F1, F2) → (L′

F1
, L′

F2
). This transition costs at least

|size(RF1)− size(RF2)| by Equation (4) and the last case of Equation (2).
Type 3 (Subtree Selection) We focus on the subtrees below the rightmost (or leftmost)

roots of F1 and F2.
For example, we can transition (F1, F2) → (R◦

F1
, R◦

F2
). This transition costs at least

|size(L′
F1

)− size(L′
F2

)| by Equation (4) and the last case of Equation (2).

4.2 Pruning DP states
Each pair of subforests (F1, F2) is a potential state in the DP table. We say a state (F1, F2)
is “not useful” or useless if we do not need to evaluate ed(F1, F2) to compute the overall tree
edit distance ed(T1, T2). Having defined the DP state transition graph, we use the following
simple observation to label some states as useless.

▶ Proposition 7 (DP State Pruning Rule 1). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
Then if a state cannot be reached from (T1, T2) by traversing a sequence of edges with total
cost at most k in the DP state transition graph, that state is useless.

We will also make use of the following pruning rule, which is a direct application of Equa-
tion (4).

▶ Proposition 8 (DP State Pruning Rule 2). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
If |size(F1)− size(F2)| > k, then the DP state (F1, F2) is useless.

The two pruning rules will enable us to prove the following core result, which shows that
when the tree edit distance is bounded, each relevant subforest cannot occur in too many
useful states.

▶ Lemma 9 (Number of useful DP states). Suppose input trees T1, T2 satisfy ed(T1, T2) ≤ k.
For each relevant subforest F1 of T1, there are at most O(k2) subforests F2 of T2 such that
(F1, F2) is a useful DP state.

Lemma 9 together with Lemma 6 immediately shows an O(nk2 log n) bound on the
number of useful DP states, which will suffice to prove Theorem 1, so in the remainder of
this section, we setup the proof of this lemma.

▶ Definition 10 (Upper parts). Given a subforest F of T , we partition the nodes of T \ F

into three disjoint upper parts MUF , LUF , and RUF as follows.
The middle upper part MUF contains the nodes on the path from the root of T to LCA(F )
(excluding LCA(F ) if LCA(F ) ∈ F ).
The left upper part is defined as LUF := {u ∈ T \MUF | pre(u) < pre(v) for all v ∈ F},
where pre(u) denote the index of u in the preorder traversal of T (1 ≤ pre(u) ≤ |T |).
The right upper part RUF is defined symmetrically using the postorder traversal of T .
Intuitively, LUF consists of the nodes to the left of the path MUF , and RUF consists of
the nodes to the right of this path.

See Figure 4 for some examples.
If a DP state (G1, G2) can be reached from (T1, T2) in the DP state transition graph, it

means that we obtain G1 and G2 by removing some nodes in T1 and T2 respectively, following
the DP transition rules. We classify the removed nodes in T1 \ G1 according to which of

ICALP 2021
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F

LUF RUF

MUF

F

LUF RUF

MUF

LUF RUF

MUF

F

Figure 4 Three examples of subforests F in different underlying trees, with upper parts labeled.

the three upper parts they belong to. For node v ∈ T1 \ G1, if v ∈ LUG1 (or v ∈ RUG1 ,
v ∈MUG1), then we say v is left-removed (or right-removed, middle-removed) with respect
to subforest G1. If during a DP transition (F1, F2) → (G1, G2), a node v ∈ F1 \ G1 is
left-removed (or right-removed, middle-removed) with respect to not only G1, but also all
subforests G′

1 ⊆ G1 (which may be reached by later DP transitions), then we simply say
v is left-removed (or right-removed, middle-removed) during this DP transition, without
specifying the subforest G1. The above discussion also similarly applies to the second input
tree T2 and its subforests.

By inspecting the DP transition rules described in Section 4.1, we immediately have the
following simple but useful observation.

▶ Lemma 11. Let (F1, F2) be a DP state. The following hold:
A type 2 transition from this state either right-removes size(RF1) nodes, or left-removes
size(LF1) nodes from F1, depending on whether the right or left subtree were removed.
A type 3 transition from this state either left-removes size(F1 −RF1) nodes and middle-
removes one node, or right-removes size(F1 − LF1) nodes and middle-removes one node
from F1, depending on whether the transition zoomed in on the right or left subtree.

Similar statements hold for removals in F2.

Note that in the case of type 1 transitions, we cannot tell whether the node being removed
was a left, middle, or right-removal. However, we observe that a type 1 transition always has
cost 1. Combining this observation with Lemma 11 and the pruning rule in Proposition 7,
we obtain the following property of useful DP states (G1, G2):

▶ Lemma 12. If DP state (G1, G2) survives the pruning rule in Proposition 7, then

|size(LUG1)− size(LUG2)| ≤ k,

and

|size(RUG1)− size(RUG2)| ≤ k.

Proof. Consider the sets LUG1 and LUG2 of left-removed nodes in G1 and G2. Suppose k1
nodes of LUG1 and k2 nodes of LUG2 were removed by type 1 transitions, incurring a total
cost of k1 + k2. The remaining size(LUG1)− k1 nodes in LUG1 and size(LUG2)− k2 nodes in
LUG2 must be the result of type 2 and 3 transitions.
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From Lemma 11 and the discussion in Section 4.1, we know that when a type 2 or 3
transition t left-removes c

(t)
1 nodes from T1 and c

(t)
2 nodes from T2, the incurred cost is at

least |c(t)
1 − c

(t)
2 |. Then by triangle inequality, the total cost from all type 2 and 3 transitions

is at least∑
t

∣∣∣c(t)
1 − c

(t)
2

∣∣∣ ≥ ∣∣∣∣∣∑
t

c
(t)
1 −

∑
t

c
(t)
2

∣∣∣∣∣ = |(size(LUG1)− k1)− (size(LUG2)− k2)| ,

where the sum is over all type 2 and 3 transitions t leading from state (T1, T2) to state
(G1, G2). Then, by applying triangle inequality once more, the total cost from all transitions
is at least

k1 + k2 + |(size(LUG1)− k1)− (size(LUG2)− k2)| ≥ |size(LUG1)− size(LUG2)| .

This proves the first inequality. The second inequality follows from identical reasoning,
applied to the right-removed instead of the left-removed nodes of G1 and G2. ◀

We have just derived the useful Lemma 12 from the first pruning rule in Proposition 7.
To prove Lemma 9, we still need to apply the second pruning rule in Proposition 8 as well.
We will use the following lemma.

▶ Lemma 13. Given three integers a, b, c, the number of subforests F of a tree T which
simultaneously satisfy |size(LUF )− a| ≤ k, |size(RUF )− b| ≤ k, and |size(F )− c| ≤ k is at
most O(k2).

Before proving Lemma 13, we show that it implies the desired upper bound on the number
of useful DP states that survive both pruning rules in Proposition 7 and Proposition 8.

Proof of Lemma 9 given Lemma 13. We are given a relevant subforest F1 of T1, and want
to bound the number of subforests F2 of T2 such that (F1, F2) is a useful state. By Lemma 12,
the state (F1, F2) is useful only if

|size(LUF2)− a| , |size(RUF2)− b| ≤ k

for a = size(LUF1) and b = size(RUF1). Moreover, by Proposition 8 if the state is useful then

|size(F2)− c| ≤ k

for c = size(F1). Hence, applying Lemma 13 with T = T2 immediately implies that there are
O(k2) possibilities for F2, which proves the desired result. ◀

4.3 Proof of Lemma 13
Suppose size(LUF ) = ℓ and size(RUF ) = r for some integers ℓ and r within k of a and
b respectively. Then we claim the following algorithm outputs all possible subforests F

satisfying the hypotheses of the lemma:
1. Initialize F = T as the given tree.
2. While ℓ ̸= 0 or r ̸= 0:

a. If F has only root remaining, delete this root (middle-removal) from F

b. Otherwise, F has more than one root remaining:
i. If size(LF ) ≤ ℓ: remove the leftmost tree and update ℓ← ℓ− size(LF )
ii. Else if size(RF ) ≤ r: remove the rightmost tree and update r ← r − size(RF )
iii. Otherwise remove the leftmost root ℓ times, remove the rightmost root r times, and

return F (unique solution case)

ICALP 2021



12:10 Faster Algorithms for Bounded Tree Edit Distance

3. If F has one root remaining: repeatedly remove the only root (middle-removal) until we
no longer have a single root. Return all the forests encountered during this procedure as
possible solutions of F (multiple solutions case)

4. Otherwise, F has more than one root remaining: return F (unique solution case)

r = 2

F

ℓ = 2

Figure 5 An example of the unique solution case, where ℓ = 2 and r = 2.

At each step of the algorithm, we are either at a state with multiple roots or at a state
with one root. In the former case, we have to left-remove or right-remove which we do (unless
we have already left-removed ℓ times and right-removed r times, in which case we halt). In
the latter case, if we still have not left-removed or right-removed the full number of times,
we must keep middle-removing until we can make left or right removals. Terminating in one
of these states corresponds to the unique solution cases of the algorithm (at step 2(b)iii or
step 4). An example is given in Figure 5.

In these situations, the algorithm halts on the unique subforest F of T with size(LUF ) = ℓ

and size(RUF ) = r. Since there are O(k) possible values for ℓ and r individually, we get that
there are at most O(k2) distinct subforests F which can be outputted as a “unique solution”
in the above procedure.

The only other possibility is that we find ourselves in step 3 of the algorithm at a point
where we have already left-removed ℓ times and right-removed r times, and there is only
one root u remaining. In this case F might not be uniquely determined: we can continue
to middle-remove the remaining root for some number of times and then return a possible
solution of F . Formally, let w be the deepest descendant of the remaining root u, such that
for every node v on the path from w to u, v has no siblings. Then, for every such node v, the
subtree rooted at v (denoted Tv) and Tv − v can be a valid solution for F . This describes
the multiple solutions case annotated in step 3 of the above procedure. An example of the
multiple solutions case is given in Figure 6.

By the above discussion, a subforest F from the multiple solutions case can be determined
uniquely by the identity of the lowest common ancestor v = LCA(F ), and the choice of
whether v is in F or not. We now prove that, over all choices of valid ℓ and r, there are only
O(k) many possibilities for the node v. Combined with the unique solution case, this will
immediately finish the proof of the lemma.
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ℓ = 3 r = 3

u

w

x y

F

Figure 6 An example of the multiple solutions case, where l = 3, r = 3. Before executing step 3
of the algorithm, the remaining F consists of {u, w, x, y}. Then the algorithm returns three possible
solutions: {u, w, x, y}, {w, x, y}, and {x, y}.

We first consider the case where, among all possible node choices for v, there are two such
that neither is an ancestor of the other. Then pick the leftmost (with respect to post-order
traversal) and the rightmost (with respect to preorder traversal) of such possibilities for v,
denoted v1 and v2 respectively. Let G1 and G2 be the subtrees in T rooted at v1 and v2,
respectively. Then by the assumptions on F we necessarily have

|size(RUG1)− b|, |size(RUG2)− b| ≤ k.

Note that RUG2 ⊆ RUG1 . Write D = RUG1 \RUG2 for the difference of the right upper part
of G1 and the right upper part G2. Thus, by triangle inequality, we get that

size(D) = size(RUG1)− size(RUG2) ≤ 2k.

By our choice of v1 and v2, we know that any possible choice for v is either a node in
D or an ancestor of v1. For the former case, we have already shown that there are at most
O(k) nodes in D. In the latter case, each distinct v which is an ancestor of v1 determines a
subforest F of a different size. Then because we are assuming that |size(F )− c| ≤ k, there
are only O(k) possibilities for the choices of v which are ancestors of v1.

The previous argument applies whenever there are two choices for v, neither of which is an
ancestor of the other. If there do not exist such options for v, then all possible choices of v lie
on the a single root-to-leaf path of T . By the same reasoning as before, the number of possible
cases for v here is again at most O(k), because each v would determine a different-sized
subforest and size(F ) is allowed to take on O(k) distinct values.

This completes the proof of Lemma 13. As noted earlier, this implies Lemma 9. We
conclude by tying these results back to our main theorem.

Proof of Theorem 1. Set up a table which can be indexed by pairs of subforests (F1, F2)
of T1 and T2. Begin using Klein’s dynamic programming approach outlined in Section 3
and Lemma 6 but avoid generating subproblems according to the pruning rules described
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in Proposition 7 and Proposition 8, and store solutions ed(F1, F2) produced. In particular,
when Klein’s algorithm would normally generate a subproblem, we first check if the produced
subproblem would be a useful state according to our previous definitions. Proposition 8 and
the proof of Lemma 13 make it clear that we can quickly check if a state is useful provided
we know the sizes of F1, F2, LUF1 , RUF1 , LUF2 , and RUF2 , and this information can be kept
track of easily simply by updating the sizes according to the type of transition we follow in
the table.

So, we can compute ed(T1, T2) while only computing ed(F1, F2) for useful states. By
Lemma 6 there are O(n log n) possibilities for F1 and by Lemma 9 there are O(k2) choices for
F2 for each F1. So overall we only fill in at most O(nk2 log n) entries of the DP table. Since
we do a constant amount of work to get the value at each entry of the table, our algorithm
has the desired running time. ◀

5 Open problems

For trees of bounded edit distance k = O(1) our algorithm runs in linear time. However, for
larger tree edit distances k = Θ(n) our algorithm requires O(n3 log n) time, which is slower
than the fastest known algorithm [17] for general tree edit distance by a logarithmic factor.
This motivates the question: can we solve the bounded tree edit distance problem in O(nk2)
time instead of O(nk2 log n)?

The easier problem of string edit distance can be solved in Õ(n + k2) time [30, 28], which
is quasilinear even for super constant distance parameter k = O(

√
n). This motivates the

question of whether it is possible to get similar speedups for tree edit distance. It would
be especially interesting to see if the bounded tree edit distance problem can be solved
in Õ(n + k3) time. Perhaps the suffix tree techniques used in [33] (and discussed in [11,
Appendix]) could prove useful in showing such a result.

Regarding variants of tree edit distance, it remains an open question to get faster
algorithms for the harder problem of unrooted tree edit distance [24, 18] (where the elementary
operations are edge contraction, insertion, and relabeling) when the distance is bounded by
k. The best known algorithm for unrooted tree edit distance was recently given by Dudek
and Gawrychowski [18] and runs in O(n3) time. The previous O(n3 log n) time algorithm
by Klein [24] also applies to the unrooted setting. Although we extended Klein’s algorithm
to tackle the rooted tree edit distance problem in O(nk2 log n) time, it is not obvious how
to extend their approach to the unrooted bounded distance setting. This is because Klein
solves the unrooted version of the problem by dynamic programming over the subproblems
generated by all possible rootings of T2. This is fine for computing general edit distance
because the number of subforests over all possible rootings is O(n2) just like the number
of subforests for a fixed rooted tree on n nodes. However, when the tree edit distance is
bounded, the number of possible relevant subproblems over all possible rootings can be Ω(n)
even when k is small. Although our algorithm can be used to recover a near quadratic time
algorithm for unrooted tree edit distance when k = O(1) is constant, it remains open whether
we can obtain a quasilinear time algorithm in this setting.

Finally, although general tree edit distance with arbitrary weights cannot be solved in
truly subcubic time unless certain popular conjectures are false [13], analogous fine-grained
hardness results rule out truly subquadratic time algorithms for string edit distance even
when deletions and insertions have unit cost [6]. Can we show conditional hardness for tree
edit distance with unit costs, or can we find a subcubic time algorithm for this problem?
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