Inference Systems with Corules for Fair Subtyping
and Liveness Properties of Binary Session Types

Luca Ciccone
University of Torino, Italy

Luca Padovani
University of Torino, Italy

—— Abstract

Many properties of communication protocols stem from the combination of safety and liveness

properties. Characterizing such combined properties by means of a single inference system is
difficult because of the fundamentally different techniques (coinduction and induction, respectively)
usually involved in defining and proving them. In this paper we show that Generalized Inference
Systems allow for simple and insightful characterizations of (at least some of) these combined
inductive/coinductive properties for dependent session types. In particular, we illustrate the role of
corules in characterizing weak termination (the property of protocols that can always eventually
terminate), fair compliance (the property of interactions that can always be extended to reach client
satisfaction) and also fair subtyping, a liveness-preserving refinement relation for session types.

2012 ACM Subject Classification Theory of computation — Axiomatic semantics; Theory of
computation — Type structures; Theory of computation — Program specifications

Keywords and phrases Inference systems, session types, safety, liveness, induction, coinduction
Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.125
Category Track B: Automata, Logic, Semantics, and Theory of Programming

Supplementary Material The Agda formalization of the notions and results presented in the paper

is available at

Model (Agda Formalization): https://github.com/boystrange/FairSubtypingAgda/tree/v1.0
archived at swh:1:rev:6d00f452a8380c2aacc659b2a69b9f4b3accfal?

Acknowledgements We are grateful to Francesco Dagnino for his feedback on an early version of
this paper. The anonymous ICALP reviewers provided useful comments and suggestions that helped
us improving the paper.

1 Introduction

Session types [21, 22, 4, 23] describe communication protocols at the type level. By making
sure that processes use session channels according to their session type, a session type system
enables the modular enforcement of various desirable properties, including the absence of
communication errors, protocol fidelity and in some cases deadlock freedom. These are
all examples of safety properties, which are informally identified by the motto “nothing
bad ever happens” [28]. Less frequent are (session) type systems also enforcing liveness
properties, those identified by the motto “something good eventually happens”. In a network of
communicating processes, a typical example of liveness property is the fact that a protocol or
a process can always eventually terminate. It is well known that characterizations and proofs
of safety and liveness properties rely on fundamentally different (dual) techniques [24, 2, 3, 8]:
safety properties are usually based on invariance (coinductive) arguments, whereas liveness
properties are usually based on well foundedness (inductive) arguments. As a consequence,
it is generally difficult to characterize and enforce complex properties that exhibit a mixture
of safety and liveness by means of a single inference system (such as a session type system),
in which the inference rules are interpreted either all inductively or all coinductively.
? Luca Ciccone and .Luca Padovani;.

37 icensed under Creative Commons License CC-BY 4.0
48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 125; pp. 125:1-125:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-9515-5280
https://orcid.org/0000-0001-9097-1297
https://doi.org/10.4230/LIPIcs.ICALP.2021.125
https://github.com/boystrange/FairSubtypingAgda/tree/v1.0
https://archive.softwareheritage.org/swh:1:rev:6d00f452a8380c2aacc659b2a69b9f4b3accfa27;origin=https://github.com/boystrange/FairSubtypingAgda;visit=swh:1:snp:359811a208b5c3d78df06d0ab580bc7f02218689
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

125:2

Inference Systems with Corules for Fair Subtyping

To tame such difficulty, in this work we advocate the use of Generalized Inference Systems
(GISs) [5, 16]. A GIS allows for the definition of predicates that are a fixed point of the
inference operator associated with the inference system, but not necessarily the least or the
greatest one. This is made possible by coaxioms and corules, whose purpose is to provide
an inductive definition of a space within which a coinductive definition is used. A recurring
example in the literature of GISs is the predicate maxzElem(l,), asserting that x is the
maximum element of a possibly infinite list [. If we consider the inference system

mazElem(l,y)

mazElem(zx :: A, x) mazElem(x :: 1, max{z,y})

where A denotes the empty list and :: is the constructor, we can give two natural interpretations
to these rules. The inductive one, obtained by taking the least fixed point of the inference
operator, restricts the set of derivable judgments to those for which there is a well-founded
derivation tree. In this case, the maxzFElem predicate is sound but not complete, since it does
not hold for any infinite list, even those for which the maximum exists. The coinductive
interpretation of these rules, obtained by taking the greatest fixed point of the inference
operator, allows us to derive judgments by means of non-well-founded derivation trees. In this
case, the mazFlem predicate is complete but not sound. In particular, it becomes possible
to derive any judgment maxElem(l,z) where x is greater than the elements of the list, but is
not an element of the list.

This is one situation in which the sought predicate is neither the least nor the greatest
fixed point of a given inference operator, but is somewhere “in between” the two extremes.
We can repair the above inference system by adding the following coaziom:

mazElem(x :: [, x)

Read naively, this coaxiom seems to assert that the first element of any list is also its
maximum. In the context of a GIS, however, its effect is that of ruling out those judgments
maxzElem(l,z) in which z is not an element of the list. In a sense, the coaxiom adds a
well-foundedness element to the derivability of a judgment mazFElem(l, x), by requiring that
2 must be found in — at some finite distance from the head of — the list .

The main contribution of this work is the realization that corules can be used to eas-
ily characterize properties of session types involving a mixture of coinduction/safety and
induction/liveness. We consider three such properties: weak termination (the property of
protocols that can always eventually terminate), fair compliance (the property of client/server
interactions that can always be extended to reach client satisfaction) and fair subtyping (a
liveness-preserving refinement relation for session types). We show how to provide sound and
complete characterizations of these properties just by adding a few corules to the inference
systems of their “unfair” counterparts, those focusing on safety but neglecting liveness. Not
only the added corules shed light on the liveness(-preserving) property of interest, but we can
conveniently appeal to the bounded coinduction principle of GISs [5] to prove the completeness
of the provided characterizations, thus factoring out a significant amount of work. We also
make two side contributions. First, the aforementioned characterizations are given for a
family of dependent session types [33, 34, 32, 14] in which the length and structure of the
protocol may depend in non-trivial ways on the content of exchanged messages. Thus, we
extend previously given characterizations of fair subtyping [29, 30] to a much larger class
of protocols. Second, we provide an Agda [27] formalization of all the notions and results
stated in the paper. In particular, we give the first machine-checked formalization of a
liveness-preserving refinement relation for (dependent) session types.

L. Ciccone and L. Padovani

The rest of the paper is structured as follows. We quickly recall the key definitions of GISs
in Section 2 and describe syntax and semantics of (dependent) session types in Section 3. We
define and characterize weak termination, fair compliance and fair subtyping in Sections 4—6

and conclude in Section 7. The Agda formalization is accessible from a public repository [15].

2 Generalized Inference Systems

In this section we briefly recall the key notions of Generalized Inference Systems (GISs). In
particular, we see how GISs enable the definition of predicates whose purely (co)inductive
interpretation does not yield the intended meaning and we review the canonical technique to
prove the completeness of a defined predicate with respect to a given specification. Further
details on GISs may be found in the existing literature [5, 16].

An inference system [1] T over a universe U of judgments is a set of rules, which are pairs

(pr,j) where pr C U is the set of premises of the rule and j € U is the conclusion of the rule.

A rule without premises is called aziom. Rules are typically presented using the syntax

pr
where the line separates the premises (above the line) from the conclusion (below the line).

» Remark 2.1. In many cases, and in this paper too, it is convenient to present inference
systems using meta-rules instead of rules. A meta-rule stands for a possibly infinite set of

rules, which are obtained by instantiating the meta-variables occurring in the meta-rule.

For example, the rules for mazFElem discussed in Section 1 are meta-rules referring to the
meta-variables x, y and . The actual rules of the discussed inference system result from all
possible instantiations of such meta-variables with numbers and (possibly infinite) lists. In
the rest of the paper we will not insist on this distinction and we will use “(co)rule” even
when referring to meta-(co)rules. If necessary, we will use side conditions to constrain the
valid instantiations of the meta-variables occurring in such meta-(co)rules. J

An interpretation of an inference system 7 identifies a subset of &/ whose elements are
called derivable judgments. To define the interpretation of an inference system Z, consider
the inference operator associated with Z, which is the function Fz : p(U) — p(U) such that

Fr(X)={j el |3pr S X : (pr.j) € T}

for every X C U. Intuitively, Fz(X) is the set of judgments that can be derived in one step
from those in X by applying a rule of Z. Note that F7 is a monotone endofunction on the
complete lattice p(U), hence it has least and greatest fixed points.

» Definition 2.2. The inductive interpretation Ind[Z] of an inference system T is the least
fized point of Fr and the coinductive interpretation Colnd[Z] is the greatest one.

From a proof theoretical point of view, Ind[Z] and Colnd[Z] are the sets of judgments
derivable with well-founded and non-well-founded proof trees, respectively.

Generalized Inference Systems enable the definition of (some) predicates for which neither
the inductive interpretation nor the coinductive one give the expected meaning.

» Definition 2.3 (generalized inference system). A generalized inference system is a pair
(T,T.) where T and I, are inference systems whose elements are called rules and corules,
respectively. The interpretation of a generalized inference system (I,I.), denoted by
Gen[Z,Zc], is the greatest post-fized point of Fr that is included in Ind[[Z U Z].

125:3

ICALP 2021

125:4

Inference Systems with Corules for Fair Subtyping

From a proof theoretical point of view, a GIS (Z,Z,) identifies the set of judgments that
are derivable with an arbitrary (not necessarily well-founded) proof tree in Z and whose nodes
(the judgments occurring in the proof tree) are all derivable with a well-founded proof tree in
ZUZe. Recalling maxElem from Section 1, the judgments referring to a “maximum” which
does not belong to the list are ruled out since they cannot be derived using a well-founded
proof tree in the inference system with the coaxiom.

Consider now a specification S C U that contains the valid judgments. We can relate
S to the interpretation of a (generalized) inference system using one of the following proof
principles. The induction principle allows us to prove the soundness of an inductively defined
predicate by showing that S is closed with respect to Z. That is, whenever the premises of a
rule of Z are all in S, then the conclusion of the rule is also in S.

» Proposition 2.4. If F7(S) C S, then Ind[Z] C S.

The coinduction principle allows us to prove the completeness of a coinductively defined
predicate by showing that S is consistent with respect to Z. That is, every judgment of S is
the conclusion of a rule whose premises are also in S.

» Proposition 2.5. If S C F(S), then S C Colnd[Z].

The bounded coinduction principle allows us to prove the completeness of a predicate
defined by a generalized inference system (Z,Z.,). In this case, one needs to show not
only that S is consistent with respect to Z, but also that S is bounded by the inductive
interpretation of the inference system Z U Z.,. Formally:

» Proposition 2.6. If S C Ind[Z UZ,] and S C Fz(S), then S C Gen[Z,Z].

Proving the boundedness of S amounts to proving the completeness of ZUZ, (inductively
interpreted) with respect to S. All of the GISs that we are going to discuss in Sections 4-6
are proven complete using the bounded coinduction principle.

3 Syntax and Semantics of Dependent Session Types

We assume a set V of values that can be exchanged in communications. This set may include
booleans, natural numbers, strings, and so forth. Hereafter, we assume that V contains at
least two elements, otherwise branching protocols cannot be described and the theoretical
development that follows becomes trivial. We use x, y, z to range over the elements of V.

We define the set S of dependent session types over V using coinduction, to account for
the possibility that session types (and the protocols they describe) may be infinite.

» Definition 3.1. Let S be the largest set such that T € S implies either T' = nil or T =7f or
T =f where f € V— S is a total function fromV to S. We use T', S and R to range over
elements of S and f, g to range over elements of V.— S. We say that T € S is a (dependent)
session type over V and that f € V— S is a continuation over V.

A session type can be of three forms. An input session type 7f describes a channel used
first for receiving a message x € V and then according to f(x). An output session type
!f describes a channel used first for sending a message € V and then according to f(z).
Finally, the session type nil describes an unusable session channel. As we will see shortly, we
use nil in combination with input and output session types to describe unexpected inputs
and impossible outputs. We call the functions f continuations since they take as input a
message (the one being exchanged on the session channel) and compute the session type that
describes the usage of the channel after the exchange. Continuations allow us to describe

L. Ciccone and L. Padovani

protocols whose structure depends on previously exchanged messages. We do not detail
the concrete language in which continuations are specified, but in practice they will be a
small subset of the computable functions. For example, in our Agda formalization [15, file
SessionType.agda] continuations are well-typed Agda functions. This way, we can leverage
on Agda and its library [27] for constructing dependent session types.

» Remark 3.2. Session types as defined in Definition 3.1 are isomorphic to the possibly
infinite trees coinductively generated by the productions

S, T == nil | Yo : Tpteev | Yo : Tutaev

where we represent continuations f with their graph {x : f(z)},ev. The structure of session
types we have chosen in Definition 3.1, besides suggesting an effective representation of
dependent session types, is also aimed at streamlining as much as possible not only the
syntax but also the semantics of session types. In the end, this choice allowed us to reduce
the inevitable complexity bloat that we had to face when formalizing these notions and the
related proofs in Agda [15]. a

It is convenient to introduce some notation for presenting session types in a more readable
and familiar form. Given a set X C V of values, we write X.T for the continuation

T ifzeX

nil otherwise

(X.T)(x) = {

so that we can write session types like IB.T" (send a boolean and continue as T') and 7N.S
(receive a natural number and continue as S). We abbreviate {z} with when no confusion

may arise. So we write !true.T instead of !{true}.7. We let ?end = ?0.nil and lend = !(.nil.

Both 7end and !end describe session channels on which no further communications may occur,
although they differ slightly with respect to the session types they can be safely combined
with (more on this later). We also define a partial binary operation U on session types
such that nil LT = T Unil = T and that is undefined otherwise. We extend this operation
pointwise to continuations, so that (f U g)(x) = f(z) U g(x). It is intended that f U g is
undefined if so is f(z) U g(x) for some z € V. We can now express the familiar external and
internal choice of session types as the (partial) operations + and @ defined by

29 ENfUg) f@lg=N(fug)

It it easy to see that + and @ are commutative and associative and respectively have

“won

?end and !end as units. We assume that they bind less tightly than the “.” in continuations.

def

Finally, we let dom(f) = {x € V| f(x) # nil} be the proper domain of the continuation f,
namely the set of messages for which f yields a session type other than nil.

» Example 3.3. The session types T7 and S; that satisfy the equations
T, = true.N.T} @ !false.?end S1 = ltrue.IN*..S; @ !false.?end

both describe a channel used for sending a boolean. If the boolean is false, the communication
stops immediately (?end). If it is true, the channel is used for sending a natural number (a
strictly positive one in S7) and then according to T or S; again. Notice how the structure
of the protocol after the output of the boolean depends on the value of the boolean.

The session types T5 and Sy that satisfy the equations

Ty = ?true.!N.Th + ?false.?end Sy = ?true.IN*. S5 + ?false.?end

differ from 73 and S; in that the channel they describe is used initially for receiving a boolean.

125:5

ICALP 2021

125:6

Inference Systems with Corules for Fair Subtyping

As a final example, the session type T3 = !f where

fO)=T5 fn+1)=1B.f(n)

describes an channel used for sending streams of sequences beginning with a natural number
n followed by n boolean messages. J

We define the operational semantics of session types by means of a labeled transition
system. Labels, ranged over by «, 3, 7, have either the form 7z (input of message x) or the
form !z (output of message z). Transitions T —+ S are defined by the following axioms:

[T-INPUT] [T-OUTPUT]

= o x € dom(f)
U= fl) = fx)

There is a fundamental asymmetry between send and receive operations: the act of
sending a message is active — the sender may choose the message to send — while the act of
receiving a message is passive — the receiver cannot cherry-pick the message being received.
We model this asymmetry with the side condition = € dom(f) in [T-ouTPuT] and the lack
thereof in [T-INPUT]: a process that uses a session channel according to !f refrains from
sending a message x if « € dom(f), whereas a process that uses a session channel according to
?f cannot decide which message x it will receive, but the session channel becomes unusable if
an unexpected message arrives. These transition rules allow us to appreciate a little more the
difference between lend and ?end. While both describe a session endpoint on which no further
communications may occur, lend is “more robust” than ?end since it has no transitions,
whereas 7end is “more fragile” than lend since it performs transitions, all of which lead to nil.
For this reason, we use lend to flag successful session termination (Section 5), whereas 7end
only means that the protocol has ended.

To describe sequences of consecutive transitions performed by a session type we use
another relation == where o and 1 range over strings of labels. As usual, ¢ denotes the
empty string and juxtaposition denotes string concatenation. The relation £ is the least
one such that T == T and if T -+ S and S == R, then T =% R.

4 Weak Termination

A session type is weakly terminating if it preserves the possibility of reaching !end or 7end
along all of its transitions that do not lead to nil. Weak termination of 7" does not necessarily
imply that there exists an upper bound to the length of communications that follow the
protocol T', but it guarantees the absence of “infinite loops” whereby the communication is
forced to continue forever.

To formalize weak termination we need the notion of ¢race, which is a finite sequence of
actions performed on a session channel while preserving usability of the channel.

» Definition 4.1 (traces and maximal traces). The traces of T' are defined as tr(T) = {¢ |
35:T =% S+ nil}. We say that ¢ € tr(T) is maximal if oy € tr(T) implies 1p = €.

For example, we have tr(nil) = @) and tr('end) = tr(?end) = {¢}. Note that !end and
?end have the same traces but different transitions (hence different behaviors). A mazimal
trace is a trace that cannot be extended any further. For example ¢ is a maximal trace of
both lend and 7end but not of !B.7end whereas !true and !false are maximal traces of !B.7end.

L. Ciccone and L. Padovani

[N1L] [IN] [ouT] [CO-IN] [co-ouT]

(VzeV) (VzeV)
S f() FY - gomn L doms)
nill 21 'l 2fl 'fU

Figure 1 Generalized inference system (7, Tc) for weak termination.

» Definition 4.2 (weak termination). We say that T is weakly terminating if, for every
p € tr(T), there exists ¥ such that iy € tr(T) and v is mazimal.

» Example 4.3. All of the session types presented in Example 3.3 except T3 are weakly
terminating. The session type T3 is not weakly terminating because no trace of T3 can
be extended to a maximal one. Note that also S5 = !true.T3 & !false.?end is not weakly
terminating, even though there is a path leading to 7end, because weak termination must be
preserved along all possible transitions of the session type, whereas S;3 ltrue, T3 and T3 is not

weakly terminating. Finally, nil is trivially weakly terminating since it has no trace. J

To find an inference system for weak termination observe that the set W of weakly
terminating session types is the largest one that satifies the following two properties: (1) it
must be possible to reach either lend or 7end from every T' € W \ {nil}; (2) the set W must
be closed by transitions, namely if 7 € W and T -+ S then S € W. Neither of these two
properties, taken in isolation, suffices to define W: the session type Ss from Example 4.3
enjoys property (1) but is not weakly terminating; the set S is obviously the largest one with
property (2), but not every session type is weakly terminating. This suggests the definition
of W as the largest subset of S satisfying (2) and whose elements are bounded by property
(1), which is precisely what corules allow us to specify.

Figure 1 shows a GIS (T, Tco) for weak termination, where T consists of all the (singly-
lined) rules whereas 7T, consists of all the (doubly-lined) corules (we will follow these naming
and syntactic conventions also in the subsequent GISs). The axiom [niL] indicates that nil
is weakly terminating in a trivial way (it has no trace), while rules [iN] and [ouT] indicate
that weak termination is closed by transitions. Note that these three rules, interpreted
coinductively, are satisfied by all session types, hence {T'| T} € Colnd[T]} =S.

» Theorem 4.4. T is weakly terminating if and only if Ty € Gen[T, Tco]-

The proof of the “if” part of Theorem 4.4 crucially relies on the corules to extend each trace
of T to a maximal one. Indeed, suppose T € Gen[T, 7] and consider a trace ¢ € tr(T).
That is, T == S for some S # nil. Using] and [out] we deduce S| € Gen[T,Teo] by
means of a simple induction on ¢. Now S| € Gen[[T,Ts] implies S € Ind[T U Te] by
Definition 2.3. Another induction on the (well-founded) derivation of this judgment, along
with the witness messages of [co-IN] and [co-ouT], allows us to find 1 such that @i is a
maximal trace of T.

5 Compliance

In this section we define and characterize two compliance relations for session types, which
formalize the “successful” interaction between a client and a server connected by a session.
The notion of “successful interaction” that we consider is biased towards client satisfaction,
but see Remark 6.7 below for a discussion about alternative notions. To formalize compliance
we need to model the evolution of a session as client and server interact. To this aim, we
represent a session as a term R || T where R describes the behavior of the client and T that
of the server. Sessions reduce according to the rule

125:7

ICALP 2021

125:8

Inference Systems with Corules for Fair Subtyping

—— RS R and T -1

R|T—R|S
where @ is the complementary action of a defined by 72 = !z and !z = ?2. We extend ~ to
traces in the obvious way and we write = for the reflexive, transitive closure of —. We write
R|T— it R||T— R || T for some R and 7" and R || T - if not R || T —.

The first compliance relation that we consider requires that, if the interaction in a session
stops, it is because the client “is satisfied” and the server “has not failed” (recall that a
session type can turn into nil only if an unexpected message is received). Formally:

» Definition 5.1 (compliance). We say that R is compliant with T if R|| T = R' || T/ »
implies R' = lend and T' # nil.

This notion of compliance is an instance of safety property in which the invariant being
preserved at any stage of the interaction is that either client and server are able to synchronize
further, or the client is satisfied and the server has not failed.

The second compliance relation that we consider adds a liveness requirement namely
that, no matter how long client and server have been interacting with each other, it is always
possible to reach a configuration in which the client is satisfied and the server has not failed.

» Definition 5.2 (fair compliance). We say that R is fair compliant with T if R || T = R’ || T"
implies R’ || T" = lend || T" with T" # nil.

It is easy to show that fair compliance implies compliance, but there exist compliant
session types that are not fair compliant, as illustrated in the following example.

» Example 5.3. Recall Example 3.3 and consider the session types R; and Ry such that
Ry = ?true.?N.R; + ?false.lend Ry = 'true.(?0.!end + ?N".R5)

Then R; is fair compliant with both 7} and S; and Ry is compliant with both 75 and Ss.
Even if 57 exhibits fewer behaviors compared to T} (it never sends 0 to the client), at the
beginning of a new iteration it can always send false and steer the interaction along a path
that leads R; to success. On the other hand, R, is fair compliant with 75 but not with Ss.
In this case, the client insists on sending true to the server in hope to receive 0, but while
this is possible with the server T5, the server S; only sends strictly positive numbers.

This example also shows that weak termination of both client and server is not sufficient,
in general, to guarantee fair compliance. Indeed, both Ry and S5 are weakly terminating,
but they are not fair compliant. The reason is that the sequences of actions leading to !end
on the client side are not necessarily the same (complemented) traces that lead to ?end on
the server side. Fair compliance takes into account the synchronizations that can actually
occur between client and server. a

Figure 2 presents the GIS (C,C) for fair compliance. Rule [wiN] relates a satisfied
client with a non-failed server. Rules [IN-ouT] and [ouT-IN] require that, no matter which
message is exchanged between client and server, the respective continuations are still fair
compliant. The side conditions dom(f) # @ and dom(g) # () guarantee progress by making
sure that the sender is capable of sending at least one message. As we will see, the coinductive
interpretation of C, which consists of these three rules, completely characterizes compliance
(Definition 5.1). However, these rules do not ensure that the interaction between client and
server can always reach a successful configuration as required by Definition 5.2. For this, the
corules [co-IN-0UT] and [CO-OUT-IN] are essential.

L. Ciccone and L. Padovani

[IN-OUT] [OUT-IN]

4 (Vxzedom(g)) - (Vxzedom(f))
e domig #0 T dom() 0
[WIN] [CO-IN-OUT)] [co-oUT-1N]

——— T #nil &)———vwig_,—(ﬁxedom(g) M x € dom(f)
lend 4T 2f1g 1f - 7g

Figure 2 Generalized inference system (C,Cco) for fair compliance.

» Theorem 5.4 (compliance). For every R,T € S, the following properties hold:
1. R is compliant with T if and only if R4 T € Colnd[C];
2. R is fair compliant with T if and only if R 1T € Gen[C,Co]-

To illustrate the role of the corules, let us sketch the proof that the GIS in Figure 2 is
sound with respect to fair compliance. Suppose that R 4 T € Gen|[C,C] and consider a
reduction R || T'= R’ || 7. An induction on the length of this reduction, along with [IN-oUT]
and [ouT-In], allows us to deduce R' 4 T" € Gen[C, Ce]l. Then we have R’ 4 T" € Ind[C UCq]
by Definition 2.3. An induction on this (well-founded) derivation allows us to find a reduction
R || T’ = lend || T" such that T" % nil.

Observe that the corules are at once essential and unsound. For example, without them
we would be able to derive the judgment Ry 4 S5 despite the fact that R is not fair compliant
with So (Example 5.3). At the same time, if we treated corules as plain rules, we would be able
to derive the judgment !N.lend 4 70.7end despite the reduction !N.lend || 70.7end — lend || nil
since there erxists an interaction that leads to the successful configuration lend || 7end (if the
client sends 0) but none of the others does.

6 Subtyping

The notions of compliance given in Section 5 induce corresponding semantic notions of
subtyping, which embed a substitution principle for session types. The key idea is the same
used for defining testing equivalences for processes [26, 20, 31], except that we use the term
“client” instead of the term “test”. Therefore, T is a subtype of S if any client that successfully
interacts with T' does so with S as well.

» Definition 6.1 (subtyping). We say that T is a subtype of S if R compliant with T implies
R compliant with S for every R.

» Definition 6.2 (fair subtyping). We say that T is a fair subtype of S if R fair compliant
with T implies R fair compliant with S for every R.

According to these definitions, when T is a (fair) subtype of S, a process that behaves
according to T' can be replaced by a process that behaves according to S without compromising
(fair) compliance with the clients of T. At first sight this substitution principle appears to be
just the opposite of the expected/intended one, whereby it is safe to use a session channel of
type T where a session channel of type S is expected if T is a subtype of S. The mismatch
is only apparent, however, and can be explained by looking carefully at the entities being
replaced in the substitution principles recalled above (processes in one case, session channels
in the other). The interested reader may refer to Gay [18] for a nice study of these two

125:9

ICALP 2021

125:10

Inference Systems with Corules for Fair Subtyping

[NIL] [END] [CONVERGE]
T Vo € tr(T)\ tr(S) : I < g,z € V: T(Ylx) < S(yYlx)
nil< T pend < T 7 TS
[IN] [ouT]
(@) < g(@) CTEmD) gom gy 2 F@) < g(x) e gomig) £ 0
7f < 79 dom(f) C dom(g) If <lg dom(g) C dom(f)

Figure 3 Generalized inference system (F, Fco) for fair subtyping.

different, yet related viewpoints. What matters here is that the above notions of subtyping
are “correct by definition” but do not provide any hint as to the shape of two session types
T and S that are related by (fair) subtyping. This problem is well known in the semantic
approaches for defining subtyping relations [17, 7] as well as in the aforementioned testing
theories for processes [26, 20, 31], which the two definitions above are directly inspired from.
Therefore, it is of paramount importance to provide equivalent characterizations of these
relations, particularly in the form of inference systems.

The GIS (F,Fe) for (fair) subtyping is shown in Figure 3 and described hereafter.
Rule [N1L] states that nil is the least element of the subtyping preorder, which is justified
by the fact that no client successfully interacts with nil. Rule [END] establishes that 7end
and lend are the least elements among all session types different from nil. In our theory, this
relation arises from the asymmetric form of compliance we have considered: a server pend
satisfies only lend, which successfully interacts with any server different from nil. Rules [IN]
and [ouT] indicate that inputs are covariant and outputs are contravariant. That is, it is safe
to replace a server with another one that receives a superset of messages (dom(f) C dom(g)
in [IN]) and, dually, it is safe to replace a server with another one that sends a subset of
messages (dom(g) € dom(f) in [ouT]). The side condition dom(g) # @ in [ouT] is important
to preserve progress: if the server that behaves according to the larger session type is unable
to send any message, the client may get stuck waiting for a message that is never sent. On
the other hand, the side condition dom(f) # @ is unnecessary from a purely technical view
point, since the rule [Iv] without this side condition is subsumed by [Exp]. We have included
the side condition to minimize the overlap between different rules and for symmetry with
respect to [ouT]. Overall, these rules are aligned with those of the subtyping relation for
session types given by Gay and Hole [19] (see also Remark 6.7).

To discuss the corule [CONVERGE] that characterizes fair subtyping we need to introduce
one last piece of notation concerning session types.

» Definition 6.3 (residual of a session type). Given a session type T and a trace ¢ of T we
write T'(¢) for the residual of T after ¢, namely for the session type S such that T £ S.

The notion of residual is well defined since session types are deterministic: if T = 5
and T =% S,, then S; = Sy. It is implied that T(¢) is undefined if ¢ & tr(T).

For the sake of presentation we describe the corule [cCONVERGE] incrementally, showing
how it contributes to the soundness proof of the GIS in Figure 3. In doing so, it helps bearing
in mind that the relation T' < S is meant to preserve fair compliance (Definition 5.2), namely
the possibility that any client of T' can terminate successfully when interacting with S. As a
first approximation observe that, when the traces of T" are included in the traces of S, the
corule [cCONVERGE] boils down to the following coaxiom:

L. Ciccone and L. Padovani

tr(T) C tr(S)

TS

Now consider a client R that is fair compliant with 7. It must be the case that R || T =

lend || T’ for some T” # nil, namely that R =% lend and T' == T for some sequence ¢ of
actions. The side condition tr(7T) C tr(S) ensures that ¢ is also a trace of S, therefore
R S = lend | S for the S’ # nil such that S == S’. In general, we know from rule [ouT]
that S may perform fewer outputs than 7', hence not every trace of T is necessarily a trace
of S. Writing < for the prefix order relation on traces, the premises

Vo e tr(T)\ tr(S): I < p,x e V: T(Ylx) < S(lx)

of [cONVERGE| make sure that, for every trace ¢ of 1" that is not a trace of S, there exists a
common prefix ¢ of T and S and an output action !z shared by both T'(¢)) and S(¢) such
that the residuals of T and S after !z are one level closer, in the proof tree for T < S, to
the residuals of T" and S for which trace inclusion holds. The fact that 1) must be followed by
an output !z is fundamental, since the client R must be able to accept all the outputs of T'.

Note that the corule is unsound in general. For instance, !0.7end < !IN.7end is derivable
by [coNnvERGE] since tr(10.7end) C tr(IN.?end), but !0.7end is not a subtype of IN.7end.

» Example 6.4. Consider once again the session types T; and S; of Example 3.3. It is easy
to see that T; < S; € Colnd[F] for i = 1,2. In order to derive T; < S; in the GIS (F, Feo)
we must find a well-founded proof tree of T' < S in F U F, and the only hope to do so
is by means of [coNVERGE], since T; and S; share traces of arbitrary length. Observe that
every trace o of T} that is not a trace of S; has the form (ltruelpy)*!truel0... where p;, € N*.
Thus, it suffices to take ¢ = € and x = 0, noted that 71 (!0) = S;(!0) = ?end, to derive

?end < ?end

<
<5

s

with two applications of [cCONVERGE]. On the other hand, every trace ¢ € tr(Ts) \ tr(Ss2)
has the form (?truelpy)¥?true!0... where p; € N*. All the prefixes of such traces that are
followed by an output and are shared by both Ty and Sy have the form (?true!p;,)*?true where
pr € N* and To(¢lp) = To and Sy (¢!p) = S for all such prefixes and p € N*. It follows that
we are unable to derive Ty < So with a well-founded proof tree in F U F.,. This is consistent
with the fact that, in Example 5.3, we have found a client Ry that is fair compliant with
T but not with Sy. Intuitively, Ry insists on poking the server waiting to receive 0. This
can eventually happen with T5, but not with Sy. In the case of T} and S; no such client can
exist, since the server may decide to interrupt the interaction at any time by sending a false
message to the client. N

Example 6.4 also shows that fair subtyping is a context-sensitive relation in that the
applicability of a rule for deriving T' < S may depend on the context in which T and S occur.
For instance, in the non-well-founded derivation

51 (1)

T, <
————— [ouT) ———— [BEND
IN.T} < IN*.S; ?end < ?end

T <5

[ouT]

125:11

ICALP 2021

125:12

Inference Systems with Corules for Fair Subtyping

the rule [ouT] is used infinitely many times to relate the output session types IN.7T; and
IN*.S5. In this context, rule [ouT] can be applied harmlessly. On the contrary, if we attempt
to find a derivation for T5 < S we obtain the non-well-founded tree

T5 < Sy (2)
27 (ovr] ——— [enD)
'NTQ < !N+.SQ ?end < ?end

Ty < 52
which is isomorphic to the one shown in Equation (1) with the difference that some applications
of [ouT] have been replaced by applications of [IN]. Here too [ouT] is used infinitely many
times, but this time to relate the output session types IN.7T; and IN*.S5. This derivation

allows us to prove Ty < Sy € Colnd[F], but not T < Sy € Gen[F, Fe,|, because [ouT]
removes the 0 output from Sy that a client of 75 may depend upon.

[1N]

» Remark 6.5. As observed by one reviewer, rule [CONVERGE] is hard not only to understand,
but also to formalize in Agda. We have been unable to conceive a sound and complete GIS
for fair subtyping that is based on simpler corules, but it should be noted that the property
enforced by [coNnvERGE] is fundamentally non-local and therefore difficult to express in terms
of immediate subtrees of a session type. To illustrate the point, consider the following
alternative set of corules meant to replace [CONVERGE] in Figure 3:

[cO-INC] [cO-IN] [co-ouT]
(Vxzedom(f))
er(T) Crr(s) LS IE) 1@ S 9@ ¢ gom(f)ndomi(s)
r<s f<?g lf<lg

It is easy to see that these rules provide a sound approximation of [CONVERGE], but they are
not complete. Indeed, consider the session types T' = 7true.T + ?false.(!true.?end @ !false.”end)
and S = 7true.S + 7false.!true.”end. We have T' < S and yet T <jnq S cannot be proved with
the above corules: it is not possible to prove T jng S using [co-INc] because tr(T') € tr(S).
If, on the other hand, we insist on visiting both branches of the topmost input as required
by [co-IN], we end up requiring a proof of T' <j,q S in order to derive T Kjpg S. a

» Theorem 6.6. For every T,S € S the following properties hold:
1. T is a subtype of S if and only if T < S € Colnd[F];
2. T is a fair subtype of S if and only if T < S € Gen[F, Feol-

» Remark 6.7. Most session type theories adopt a symmetric form of session type compatibility
whereby client and server are required to terminate the interaction at the same time. It is easy
to define a notion of symmetric compliance (also known as peer compliance [7]) by turning
T’ # nil into T’ = 7end in Definition 5.1. The subtyping relation induced by symmetric
compliance has essentially the same characterization of Definition 6.1, except that the axiom
[EnD] is replaced by the more familiar pend < gend [19]. On the other hand, the analogous
change in Definition 5.2 has much deeper consequences: the requirement that client and
server must end the interaction at the same time creates a large family of session types that
are syntactically very different, but semantically equivalent. For example, the session types
T and S such that T'=?N.T and S = !B.S, which describe completely unrelated protocols,
would be equivalent for the simple reason that no client successfully interacts with them
(they are not weakly terminating, since they do not contain any occurrence of end). We
have not investigated the existence of a GIS for fair subtyping induced by symmetric fair
compliance. A partial characterization (which however requires various auxiliary relations) is
given by Padovani [30]. 4

L. Ciccone and L. Padovani

7 Concluding Remarks

We have shown that generalized inference systems are an effective framework for defining
sound and complete proof systems of (some) combined safety and liveness properties of
(dependent) session types (Definitions 4.2 and 5.2), as well as of a liveness-preserving subtyping
relation (Definition 6.2). We think that this achievement is more than a coincidence. One
of the fundamental results in model checking states that every property can be expressed
as the conjunction of a safety property and a liveness property [2, 3, 6]. The connections
between safety and liveness on one side and coinduction and induction on the other make
GISs appropriate for characterizing combined safety and liveness properties.

Murgia [25] studies a wide range of compliance relations for processes and session types,
showing that many of them are fixed points of a functional operator, but not necessarily the
least or the greatest ones. In particular, he shows that progress compliance, which is akin to
our compliance (Definition 5.1), is a greatest fixed point and that should-testing compliance,
which is akin to our fair compliance (Definition 5.2), is an intermediate fixed point. These
results are consistent with Theorem 5.4. We have extended these results to subtyping
(Definition 6.1) and fair subtyping (Definition 6.2). Previous alternative characterizations
of fair subtyping and the related should-testing preorder either require several different

relations [29, 30] or are denotational in nature [31] and therefore not as insightful as desirable.

Using GISs, we have obtained complete characterizations of fair compliance and fair subtyping
by simply adding a few corules to the proof systems of their “unfair” counterparts.

We have coded all the notions and results discussed in the paper in Agda [27], thus
providing the first machine-checked formalization of liveness properties and liveness-preserving
subtyping relations for dependent session types. Theorem 4.4 and item (2) of Theorems 5.4
and 6.6 are proved considering V = B instead of an arbitrary set of values. This is because
the version of the Agda library for GISs [11, 13] used for the formalization does not support
(co)rules with infinitely many premises, which are necessary if V is infinite. However, all of the
key aspects of the characterizations of weak termination, fair compliance and fair subtyping
already emerge in this simplified setting. The Agda formalization is not entirely constructive
since it makes use of three postulates: the law of excluded middle, the extensionality axiom
and the duality between a universally quantified, inductive characterization of convergence
(see [convERGE] in Figure 3) and its negation, which is characterized using an existentially
quantified, coinductive definition. Note that the Agda library for GISs is a standalone
development [11, 13, 12], on top of which we have built our own [15]. This makes it easy to
extend our results to other families of processes or to different properties.

In this paper we have focused on properties of session types alone. The most important
piece of future work that we plan to carry out next is the development of a session type

system making use of fair subtyping for the enforcement of liveness properties of processes.

This problem has remained open for a long time [29, 30] because the integration of fair

subtyping into a coinductively-interpreted session type system is (unsurprisingly) challenging.

By contrast, session type systems making use of safety-preserving subtyping relations are
quite widespread [19, 9, 23, 10]. The achievements described in this paper suggest that GISs
could provide just the right framework for defining such type system. Somewhat connected
with this future development is also the handling of delegation and therefore of higher-order
session types. Previous developments [30] have shown that delegation is orthogonal to the
characterizing features of fair subtyping, since the communication of session channels does not

(usually) affect the branching structure of session types (but there are a few exceptions [9, 10]).
For this reason, we think that this extension can be accounted for without substantial issues.

125:13

ICALP 2021

125:14

Inference Systems with Corules for Fair Subtyping

—— References

1

10

11

12

13

14

15

16

Peter Aczel. An introduction to inductive definitions. In Jon Barwise, editor, Handbook of
Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
739-782. Elsevier, 1977. doi:10.1016/S0049-237X(08)71120-0.

Bowen Alpern and Fred B. Schneider. Defining liveness. Inf. Process. Lett., 21(4):181-185,
1985. doi:10.1016/0020-0190(85)90056-0.

Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Comput.,
2(3):117-126, 1987. doi:10.1007/BF01782772.

Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova,
Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral
types in programming languages. Found. Trends Program. Lang., 3(2-3):95-230, 2016.
doi:10.1561/2500000031.

Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 29-55. Springer, 2017.
doi:10.1007/978-3-662-54434-1_2.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.
Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model session
types. Log. Methods Comput. Sci., 12(2), 2016. doi:10.2168/LMCS-12(2:10)2016.

Julian C. Bradfield and Colin Stirling. Modal mu-calculi. In Patrick Blackburn, J. F. A. K.
van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic
and practical reasoning, pages 721-756. North-Holland, 2007. doi:10.1016/s1570-2464(07)
80015-2.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.
Foundations of session types. In Anténio Porto and Francisco Javier Lépez-Fraguas, editors,
Proceedings of the 11th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, September 7-9, 2009, Coimbra, Portugal, pages 219-230. ACM,
2009. doi:10.1145/1599410.1599437.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.
Foundations of session types: 10 years later. In Ekaterina Komendantskaya, editor, Proceedings
of the 21st International Symposium on Principles and Practice of Programming Languages,
PPDP 2019, Porto, Portugal, October 7-9, 2019, pages 1:1-1:3. ACM, 2019. doi:10.1145/
3354166.3356340.

Luca Ciccone. Flexible coinduction in agda. Master’s thesis, DIBRIS, Universita di Genova,
Italy, 2020. arXiv:2002.06047.

Luca Ciccone, Francesco Dagnino, and Elena Zucca. Flexible coinduction in Agda. In
Schloss Dagstuhl Leibniz-Zentrum fiir Informatik, editor, Proceedings of the 12th conference
on Interactive Theorem Proving, ITP 2021, 2021. to appear.

Luca Ciccone, Francesco Dagnino, and Elena Zucca. Inference Systems in Agda, 2021. URL:
https://github.com/LcicC/inference-systems-agda [cited Feb 1, 2021].

Luca Ciccone and Luca Padovani. A Dependently Typed Linear m-Calculus in Agda.
In PPDP’20: 22nd International Symposium on Principles and Practice of Declarative
Programming, Bologna, Italy, 9-10 September, 2020, pages 8:1-8:14. ACM, 2020. doi:
10.1145/3414080.3414109.

Luca Ciccone and Luca Padovani. Fair Subtyping in Agda, 2021. URL: https://github.com/
boystrange/FairSubtypingAgda/tree/v1.0 [cited May 1, 2021].

Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Log.
Methods Comput. Sci., 15(1), 2019. doi:10.23638/LMCS-15(1:26)2019.

https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.1007/BF01782772
https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.2168/LMCS-12(2:10)2016
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1016/s1570-2464(07)80015-2
https://doi.org/10.1145/1599410.1599437
https://doi.org/10.1145/3354166.3356340
https://doi.org/10.1145/3354166.3356340
http://arxiv.org/abs/2002.06047
https://github.com/LcicC/inference-systems-agda
https://doi.org/10.1145/3414080.3414109
https://doi.org/10.1145/3414080.3414109
https://github.com/boystrange/FairSubtypingAgda/tree/v1.0
https://github.com/boystrange/FairSubtypingAgda/tree/v1.0
https://doi.org/10.23638/LMCS-15(1:26)2019

L. Ciccone and L. Padovani

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing set-
theoretically with function, union, intersection, and negation types. J. ACM, 55(4):19:1-19:64,
2008. doi:10.1145/1391289.1391293.

Simon J. Gay. Subtyping supports safe session substitution. In Sam Lindley, Conor McBride,
Philip W. Trinder, and Donald Sannella, editors, A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume
9600 of Lecture Notes in Computer Science, pages 95—-108. Springer, 2016. doi:10.1007/
978-3-319-30936-1_5.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191-225, 2005. doi:10.1007/s00236-005-0177-z.

Matthew Hennessy. Algebraic theory of processes. MIT Press series in the foundations of
computing. MIT Press, 1988.

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509-523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, Tth European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122—138. Springer, 1998. doi:10.1007/BFb0053567.

Hans Hiittel, Ivan Lanese, Vasco T. Vasconcelos, Luis Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, Anténio Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1-3:36, 2016. doi:10.1145/2873052.

Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333-354,
1983. d0i:10.1016/0304-3975(82)90125-6.

Maurizio Murgia. A note on compliance relations and fixed points. In Massimo Bartoletti,
Ludovic Henrio, Anastasia Mavridou, and Alceste Scalas, editors, Proceedings 12th Interaction
and Concurrency Experience, ICE 2019, Copenhagen, Denmark, 20-21 June 2019, volume 304
of EPTCS, pages 38-47, 2019. doi:10.4204/EPTCS.304.3.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theor. Comput.
Sci., 34:83-133, 1984. doi:10.1016/0304-3975(84)90113-0.

Ulf Norell. Towards a Practical Programming Language Based on Dependent Type Theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technology,
Goteborg, Sweden., 2007. URL: http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf.

Susan S. Owicki and Leslie Lamport. Proving liveness properties of concurrent programs.

ACM Trans. Program. Lang. Syst., 4(3):455-495, 1982. doi:10.1145/357172.357178.

Luca Padovani. Fair subtyping for open session types. In Fedor V. Fomin, Rusins Freivalds,
Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming
- 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,

Part 11, volume 7966 of Lecture Notes in Computer Science, pages 373-384. Springer, 2013.

do0i:10.1007/978-3-642-39212-2_34.

Luca Padovani. Fair subtyping for multi-party session types. Math. Struct. Comput. Sci.,
26(3):424-464, 2016. doi:10.1017/S096012951400022X.

Arend Rensink and Walter Vogler. Fair testing. Inf. Comput., 205(2):125-198, 2007. doi:
10.1016/j.1ic.2006.06.002.

Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proc. ACM
Program. Lang., 4(POPL):67:1-67:29, 2020. doi:10.1145/3371135.

125:15

ICALP 2021

https://doi.org/10.1145/1391289.1391293
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/2873052
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.4204/EPTCS.304.3
https://doi.org/10.1016/0304-3975(84)90113-0
http://www.cse.chalmers.se/~ulfn/papers/thesis.pdf
https://doi.org/10.1145/357172.357178
https://doi.org/10.1007/978-3-642-39212-2_34
https://doi.org/10.1017/S096012951400022X
https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.1016/j.ic.2006.06.002
https://doi.org/10.1145/3371135

125:16

Inference Systems with Corules for Fair Subtyping

33

34

Bernardo Toninho, Luis Caires, and Frank Pfenning. Dependent session types via intuitionistic
linear type theory. In Peter Schneider-Kamp and Michael Hanus, editors, Proceedings of
the 13th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 20-22, 2011, Odense, Denmark, pages 161-172. ACM, 2011. doi:10.1145/
2003476.2003499.

Bernardo Toninho and Nobuko Yoshida. Depending on session-typed processes. In Christel
Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures -
21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10803 of Lecture Notes in Computer Science, pages 128-145. Springer,
2018. doi:10.1007/978-3-319-89366-2_7.

https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-319-89366-2_7

	1 Introduction
	2 Generalized Inference Systems
	3 Syntax and Semantics of Dependent Session Types
	4 Weak Termination
	5 Compliance
	6 Subtyping
	7 Concluding Remarks

