
Logarithmic Weisfeiler-Leman Identifies All Planar
Graphs
Martin Grohe #

RWTH Aachen University, Germany

Sandra Kiefer #

University of Warsaw, Poland
RWTH Aachen University, Germany

Abstract
The Weisfeiler-Leman (WL) algorithm is a well-known combinatorial procedure for detecting
symmetries in graphs and it is widely used in graph-isomorphism tests. It proceeds by iteratively
refining a colouring of vertex tuples. The number of iterations needed to obtain the final output is
crucial for the parallelisability of the algorithm.

We show that there is a constant k such that every planar graph can be identified (that is,
distinguished from every non-isomorphic graph) by the k-dimensional WL algorithm within a
logarithmic number of iterations. This generalises a result due to Verbitsky (STACS 2007), who
proved the same for 3-connected planar graphs.

The number of iterations needed by the k-dimensional WL algorithm to identify a graph
corresponds to the quantifier depth of a sentence that defines the graph in the (k + 1)-variable
fragment Ck+1 of first-order logic with counting quantifiers. Thus, our result implies that every
planar graph is definable with a Ck+1-sentence of logarithmic quantifier depth.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Graph theory

Keywords and phrases Weisfeiler-Leman algorithm, finite-variable logic, isomorphism testing, planar
graphs, quantifier depth, iteration number

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.134

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/abs/2106.16218

Funding Sandra Kiefer : supported by the European Research Council under the European Union’s
Horizon 2020 research and innovation programme (ERC consolidator grant LIPA, agreement no.
683080).

1 Introduction

The Weisfeiler-Leman (WL) algorithm is a combinatorial procedure for detecting symmetries
in graphs. It is widely used in approaches to tackle the graph-isomorphism problem, both
from a theoretical ([4, 5, 24]) and from a practical perspective ([7, 23, 31, 32]). The algorithm
is derived from a technique called naïve vertex classification (or Colour Refinement), which
may be viewed as the 1-dimensional version WL1 of the WL algorithm. For every k ≥ 1,
the k-dimensional WL algorithm (WLk) iteratively colours k-tuples of vertices of a graph
by propagating local information until it reaches a stable colouring. Weisfeiler and Leman
introduced the 2-dimensional version WL2, today known as the classical WL algorithm,
in [37]. The algorithm WLk can be implemented to run in time O(nk+1 logn) on graphs of
order n [22].

The algorithm has striking connections to numerous areas of mathematics and computer
science, which surely is a reason why research on it has been active since its introduction
over half a century ago. For example, there are tight connections to linear and semidefin-

EA
T

C
S

© Martin Grohe and Sandra Kiefer;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 134; pp. 134:1–134:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grohe@cs.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:kiefer@cs.rwth-aachen.de
https://orcid.org/0000-0003-4614-9444
https://doi.org/10.4230/LIPIcs.ICALP.2021.134
https://arxiv.org/abs/2106.16218
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

134:2 WL on Planar Graphs

ite programming [2, 3, 20], homomorphism counting [8, 10], and the algebra of coherent
configurations [6]. Most recently, the WL algorithm has been applied in several interesting
machine-learning contexts [1, 16, 33, 34, 39].

A very strong and highly exploited link between the algorithm and logic was established
by Immerman and Lander [22] and Cai, Fürer, and Immerman [5]: WLk assigns the same
colour to two k-tuples of vertices if and only if these tuples satisfy the same formulas of the
(k + 1)-variable fragment Ck+1 of first-order logic with counting quantifiers. Cai, Fürer, and
Immerman [5] used this correspondence and an Ehrenfeucht-Fraïssé game that characterises
equivalence for the logic Ck+1 to prove that, for every k, there are non-isomorphic graphs
of order O(k) that are not distinguished by WLk. Here we say that WLk distinguishes two
graphs if WLk computes different stable colourings on them, that is, there is some colour
such that the numbers of k-tuples of that colour differ in the two graphs.

We say that WLk identifies a graph G if it distinguishes G from all graphs G′ that are
not isomorphic to G. It has been shown that for suitable constants k, the algorithm WLk

identifies all planar graphs [13], all graphs of bounded tree width [18], and all graphs in many
other natural graph classes [12, 14, 15, 17, 19]. For some of these classes, fairly tight bounds
for the optimal value of k, called the Weisfeiler-Leman (WL) dimension, are known. Notably,
interval graphs have WL dimension 2 [12], graphs of tree width k have WL dimension in the
range ⌈k/2⌉ − 3 to k [26], and, most relevant for us, planar graphs have WL dimension 2
or 3 [27].

Another parameter of the WL algorithm that has received recent attention is the number
of iterations it needs to reach its final, stable colouring. Since a set of size nk can only be
partitioned nk − 1 times, a natural upper bound on the number of iterations to reach the
final output is nk − 1 (n always denotes the number of vertices of the input graph). This
bound cannot be improved for WL1, since there are infinitely many graphs on which the
algorithm takes n− 1 iterations to compute its final output [25]. However, for WL2, it was
shown that the bound Θ(n2) is asymptotically not tight [28]. Currently, the best upper
bound on the iteration number for WL2 is O(n logn) [30].

The number of iterations of WLk is crucial for the parallelisability of the algorithm: for
ℓ ≥ logn, it holds that ℓ iterations of WLk can be simulated in O(ℓ) steps on a PRAM with
O(nk) processors [21, 29]. In particular, if for a class C of graphs, all G,G′ ∈ C (of order
n) can be distinguished by WLk in O(logn) iterations, then the isomorphism problem for
graphs in C is in the complexity class AC1. Grohe and Verbitsky [21] proved that this is the
case for all classes of graphs of bounded tree width and all maps (graphs embedded into a
surface together with a rotation system specifying the embedding), and Verbitsky [36] proved
it for the class of 3-connected planar graphs.

Our results

We say that WLk distinguishes two graphs in ℓ iterations if the colouring obtained by WLk

in the ℓ-th iteration differs among the two graphs, and we say WLk identifies a graph in ℓ

iterations if it distinguishes the graph from every non-isomorphic graph in ℓ iterations.

▶ Theorem 1. There is a constant k such that WLk identifies every n-vertex planar graph
in O(logn) iterations.

The correspondence between WLk and the logic Ck+1 can be refined to a correspondence
between the number of iterations and the quantifier depth: WLk assigns the same colour to
two k-tuples of vertices in the ℓ-th iteration if and only if these two k-tuples satisfy the same
Ck+1-formulas of quantifier depth ℓ. Thus, the following theorem is equivalent to Theorem 1.

M. Grohe and S. Kiefer 134:3

▶ Theorem 2. There is a constant k such that for every n-vertex planar graph G, there is
a Ck-sentence of quantifier depth O(logn) that identifies G (that is, characterises G up to
isomorphism).

We exploit the logical characterisation of the WL algorithm in our proof, so it is actually
Theorem 2 that we prove. We first show that every planar graph G has a tree decomposition
of logarithmic height where each bag consists of at most four 3-connected components of G
and the adhesion is at most 6. Then we inductively construct a formula to identify G by
ascending through the tree, encoding all information about isomorphism types of the parsed
subgraphs in subformulas. At each node of the tree, we use Verbitsky’s result to deal with
the 3-connected components.

2 Preliminaries

All graphs in this paper are finite, simple, and undirected. For a graph G, we denote by V (G)
and E(G) its set of vertices and edges, respectively. The order of G is |G| := |V (G)|. We
write edges without parenthesis, as in vw. For v ∈ V (G), we let NG(v) := {w | vw ∈ E(G)}.

A subgraph of G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). We set NG(H) :=⋃
v∈V (H) NG(v) \ V (H). We call a graph H a topological subgraph of G if a subdivision of H

(i.e., a graph obtained from H by replacing some edges with paths) is a subgraph of G. For
W ⊆ V (G), we let G[W] := (W,E(G) ∩ {uv | u, v ∈ W}) and, for arbitrary sets W , we let
G \W := G[V (G) \W].

A graph G is k-connected if |G| > k and there is no set S ⊆ V (G) with |S| ≤ k − 1 such
that G \ S is disconnected.

2.1 Logic
We denote by C the extension of first-order logic FO by counting quantifiers ∃≥mx with the
obvious meaning. C is only a syntactical extension of FO, because ∃≥mxφ(x) is equivalent to
∃x1 . . . ∃xm

(∧
i ̸=j xi ̸= xj ∧

∧
i φ(xi)

)
. However, we are mainly interested in the fragments

Ck of C consisting of all formulae with at most k variables (which can, however, be reused
within the formula). If m > k, then ∃≥mx cannot be expressed in the k-variable fragment of
FO, this is why we add the counting quantifiers.

We write φ(x1, . . . , xℓ) to indicate that the free variables of φ are among x1, . . . , xℓ.
Then for a graph G and vertices u1, . . . , uℓ ∈ V (G), we write G |= φ(u1, . . . , uℓ) to denote
that G satisfies φ if, for all i, the variable xi is interpreted by ui. Moreover, we write
φ[G, u1, . . . , ui, xi+1, . . . , xℓ] to denote the set of all (ℓ − i)-tuples (ui+1, . . . , uℓ) such that
G |= φ(u1, . . . , uℓ).

The quantifier depth qd(φ) of a formula φ ∈ C is its depth of quantifier nesting. More
formally,

if φ is atomic, then qd(φ) = 0.
qd(¬φ) = qd(φ).
qd(φ1 ∨ φ2) = qd(φ1 ∧ φ2) = max{qd(φ1), qd(φ2)}.
qd(∃≥pxφ) = qd(φ) + 1.

We denote the set of all Ck-formulas of quantifier depth at most ℓ by Ck
ℓ .

It will often be convenient to use asymptotic notation, such as CO(1)
O(log n). The parameter

n always refers to the order of the input graph, and we will typically make assertions such
as: For every n, there exists a CO(1)

O(log n)-formula φ(n)(x) such that for all graphs G of order
|G| = n and all v ∈ V (G), [something holds]. What this means is that there is a constant
k and a function ℓ(n) ∈ O(logn) such that for every n, there exists a Ck

ℓ(n)-formula φ(n)(x)
such that for all graphs G of order |G| = n and all v ∈ V (G), [something holds].

ICALP 2021

134:4 WL on Planar Graphs

Throughout this paper, we will have to express properties of graphs and their vertices
using CO(1)

O(log n)-formulas. The basic building blocks that we use are connectivity statements
with formulas of logarithmic quantifier depth, as illustrated in the following example.

▶ Example 3. For every k ≥ 0, we define a C3
⌈log n⌉-formula dist≤k such that for every graph

G of order at most n and all vertices u, u′ ∈ V (G), it holds that G |= dist≤k(u, u′) if and
only if u and u′ have distance at most k in G. We let

dist’≤k(x, x′) :=

x = x′ if k = 0
E(x, x′) ∨ x = x′ if k = 1
∃yk

(
dist’≤⌊ k

2 ⌋(x, yk) ∧ dist’≤⌈ k
2 ⌉(yk, x

′)
)

otherwise.

Thus, for k ≤ n, the quantifier depth of dist’≤k is bounded by ⌈logn⌉. Now, it suffices to
note that we can actually get by with the three variables x, x′, yk by reusing them in the
subformulas that are defined inductively. We hence obtain the desired C3

⌈log n⌉-formula dist≤k.
Note that, for k ≥ 1, the C3

⌈log n⌉-formula dist=k(x, x′) := dist≤k(x, x′) ∧ ¬dist≤k−1(x, x′)
states that x and x′ have distance exactly k. Moreover, in every graph of order at most
n, the C3

⌈log n⌉-formula comp(x, x′) := dist≤n−1(x, x′) states that x and x′ lie in the same
connected component and the C3

⌈log n⌉-sentence connn := ∀x∀x′dist≤n−1(x, x′) states that the
graph is connected. ⌟

2.2 The WL Algorithm
We briefly review the WL algorithm. For details, we refer to the recent survey [24].

Let k ≥ 1. The atomic type atp(G, ū) of a k-tuple ū = (u1, . . . , uk) of vertices of a graph
G is the set of all atomic facts satisfied by these vertices, that is, all adjacencies and equalities
between the vertices. Hence, tuples ū = (u1, . . . , uk) and v̄ = (v1, . . . , vk) of vertices of
graphs G,H, respectively, have the same atomic type if and only if the mapping ui 7→ vi is
an isomorphism from the graph G[{u1, . . . , uk}] to H[{v1, . . . , vk}].

The algorithm WLk (the k-dimensional Weisfeiler-Leman algorithm) takes a graph G

as input and computes the following sequence of colourings wlki of V (G)k for i ≥ 0, until it
returns wlk∞ := wlki for the smallest i such that, for all ū, v̄, it holds that wlki (ū) = wlki (v̄) ⇐⇒
wlki+1(ū) = wlki+1(v̄). Set wlk0(ū) := atp(G, ū). In the (i+ 1)-st iteration, the colouring wlki+1
is defined by wlki+1(ū) :=

(
wlki (ū),Mi(ū)

)
, where, for ū = (u1, . . . , uk), we let Mi(ū) be the

multiset{{(
atp(G, (u1, . . . , uk, v)),wlki (u1, . . . , uk−1, v),

wlki (u1, . . . , uk−2, v, uk), . . . ,wlki (v, u2, . . . , uk)
)

| v ∈ V
}}

The algorithm WLk distinguishes two graphs G, H in ℓ iterations if there is a colour c in
the range of wlkℓ such that the number of tuples ū ∈ V (G)k with wlkℓ (ū) = c is different from
the number of tuples v̄ ∈ V (H)k with wlkℓ (v̄) = c. In this case, we say WLk

ℓ distinguishes
G and H. Moreover, WLk

ℓ identifies G if it distinguishes G from all graphs H that are not
isomorphic to G.

▶ Theorem 4 ([5, 22]). Let k ∈ N. Let G and H be graphs with |G| = |H| and let
ū := (u1, . . . , uk) ∈ V (G)k and v̄ := (v1, . . . , vk) ∈ V (H)k. Then, for all i ∈ N, the following
are equivalent.
1. wlki (ū) = wlki (v̄).
2. G |= φ(u1, . . . , uk) ⇐⇒ H |= φ(v1, . . . , vk) holds for every Ck+1

i -formula φ(x1, . . . , xk).

M. Grohe and S. Kiefer 134:5

3 3-Connected Planar Graphs

Verbitsky [36] proved that WLO(1)
O(log n) distinguishes any two 3-connected planar graphs. Before

we discuss the specific version of this result that we need here, let us briefly review some
background on planar graphs. Intuitively, a plane graph is a graph drawn into the plane
with no edges crossing. A planar graph is an abstract graph G isomorphic to a plane graph;
an isomorphism from G to a plane graph is a planar embedding of G. Now suppose G is a
plane graph. If we cut the plane along all edges of the graph, the pieces that remain are the
faces of G (note that one of these faces is unbounded). The closed walk along the vertices
and edges in the boundary of a face is the facial walk associated with this face. If G is
2-connected, then every facial walk is a cycle. If G is 3-connected, we can describe the facial
cycles combinatorially: a cycle C is a facial cycle of G if and only if C is an induced subgraph
of G and G \ V (C) is connected. (This is the statement of Whitney’s Theorem [38].) This
implies that all planar embeddings of a 3-connected planar graph have the same facial cycles,
which can be interpreted as saying that, combinatorially, all planar embeddings of the graph
are the same. Another way of describing a planar embedding combinatorially is by specifying,
for each vertex, the cyclic order in which the edges incident to this vertex appear. This is
what is known as a rotation system. It is easy to see that a rotation system determines all
facial walks, and, conversely, the facial walks determine the rotation system. One last fact
that we need to know about plane graphs is Euler’s formula: if G is a connected plane graph
with n vertices, m edges, and f faces, then n−m+ f = 2. (For details and more background,
we refer the reader to [9].)

Let us now turn to the version of Verbitsky’s theorem about 3-connected planar graphs
that we need here. It says that, in a 3-connected planar graph, we can find three vertices such
that once these vertices are fixed, we can identify every other vertex by a CO(1)

O(log n)-formula.

▶ Theorem 5 ([36]). Let n ∈ N and let G be a 3-connected planar graph of order |G| ≤ n

and v1v2 ∈ E(G). Then there is a v3 ∈ NG(v2) and for every w ∈ V (G) a CO(1)
O(log n)-

formula idw(x1, x2, x3, y) such that G |= idw(v1, v2, v3, w) and G ̸|= idw(v1, v2, v3, w
′) for all

w′ ∈ V (G) \ {w}.

The key step in Verbitsky’s proof is to define the rotation system underlying the unique
planar embedding of a 3-connected planar graph. To state this formally, we use the termino-
logy of [13, 15]. An angle of a plane graph G at a vertex v is a triple (w, v, w′) of vertices
such that vw and vw′ are successive edges in a facial walk of G. Two angles (v1, v2, v3) and
(w1, w2, w3) are aligned if w1 = v2 and w2 = v3 and both angles appear in the same facial
walk. Observe that, if we know all angles at a vertex v, we can define the cyclic permutation
of the edges incident with v induced by the embedding. If we know all angles of G and the
alignment relation between them, we can define the rotation system. By Whitney’s Theorem,
all planar embeddings of a 3-connected planar graph G have the same angles; we call them
the angles of G. Similarly, we can define abstractly if two angles of a 3-connected planar
graph are aligned.

▶ Lemma 6 ([36]). There are CO(1)
O(log n)-formulas ang(n)(x1, x2, x3) and aln(n)(x1, x2, x3, x4)

such that for all 3-connected planar graphs G of order |G| = n and all v1, v2, v3, v4 ∈ V (G),
we have

G |= ang(n)(v1, v2, v3) ⇐⇒ (v1, v2, v3) is an angle of G,

G |= aln(n)(v1, . . . , v4) ⇐⇒ (v1, v2, v3), (v2, v3, v4) are aligned angles of G.

ICALP 2021

134:6 WL on Planar Graphs

(a) (b)

Figure 1 Defining the faces of a 3-connected planar graph: (a) shows a 3-connected planar graph
G with 3 regions formed by faces with at most 6 edges in their boundary; (b) shows the derived
graph G(1); the faces of G(1) are in one-to-one correspondence to the white faces of G.

This lemma is an easy consequence of the results in [36, Section 4]. The terminology
there is different, the notion corresponding to (aligned) angles is that of a layout system.
Verbitsky’s proof is based on a careful (and tedious) analysis of how two paths between the
neighbours of a vertex may intersect.

To give the reader some intuition about the lemma, we sketch an alternative proof, which
is based on ideas from [14] (also see [15, Section 10.4]). Let G be a 3-connected planar graph,
and let us think of G as being embedded in the plane. It follows from Euler’s formula that
in every plane graph of minimum degree 3, a constant fraction of the edges is contained
in facial walks of length at most 6. Using Whitney’s Theorem, we can define the set of all
6-tuples that determine a facial cycle of length at most 6 using a C9-formula of logarithmic
quantifier depth. This gives us all the angles associated with these cycles and the alignment
relation on these angles. The faces corresponding to these facial cycles of size at most 6 can
be partitioned into regions, where two faces belong to the same region if their boundaries
share an edge (see Figure 1(a)).

We define a new graph G(1) as follows: for every region R of G, we delete all vertices
contained in the interior of R, all vertices on the boundary of R that have no neighbours
outside the region, and all edges that are either in the interior or on the boundary of the
region. Then we add a fresh vertex vR and edges from vR to all vertices that remain in the
boundary of the region R (see Figure 1(b)). Each face of G(1) corresponds to a face of G that
we have not found yet. Applying Euler’s formula again, we can prove that a constant fraction
of the edges of G that remain edges of G(1) are contained in facial walks of G(1) that contain
at most six vertices of degree ≥ 3. We can define the facial walks of the corresponding edges
in G, again using Whitney’s Theorem to test if a cycle is facial. Note that, for this, we do
not need G(1) to be 3-connected (in general, it is not); we always define facial cycles in the
original graph G. The new facial cycles together with those found in the first step give us
new regions (covering more faces of G), and from these, we construct a graph G(2). Iterating
the construction, we obtain a sequence of graphs G(i). The construction stops once we have
found all facial walks of G. Since we always use a constant fraction of the edges, this happens
after at most logarithmically many iterations. This completes our proof sketch of Lemma 6.

M. Grohe and S. Kiefer 134:7

Proof of Theorem 5. Let G be a 3-connected planar graph of order |G| = n. For angles
v = (v1, v2, v3), w = (w1, w2, w3), we write v ↷ w if v, w are aligned, and we write v ' w

if w1 = v3 and w2 = v2 and w3 ̸= v1. Note that, for every angle v, there is a unique w
such that v ↷ w, because, by the 3-connectedness of G, every angle is in the boundary of
a unique face, and the aligned angle belongs to the same face. There is also a unique w′

such that v ' w′, determined by the cyclic order of the edges and faces around a vertex. An
angle walk is a sequence v0, . . . , vℓ of angles such that for all i ∈ [ℓ], we have vi−1 ↷ vi or
vi−1 ' vi. The direction of the angle walk v0, . . . , vℓ is the tuple δ = (δ1, . . . , δℓ) ∈ {↷,'}ℓ

such that for every i ∈ [ℓ], we have vi−1δivi. Using Lemma 6, it is straightforward to prove
that for every δ ∈ {↷,'}≤n, there is a CO(1)

O(log n)-formula awalk(n)
δ

(x, y) such that for all
v, w ∈ V (G)3, we have G |= awalk(n)

δ
(v, w) if and only if there is an angle walk of direction

δ from v to w. Now let v1v2 ∈ E(G). Then there is a v3 such that (v1, v2, v3) is an angle.
Let v := (v1, v2, v3). Note that, for every w ∈ V (G) \ {v1, v2, v3}, there is an angle walk of
length at most n from v to some w = (w1, w2, w3) with w3 = w, simply because every path
in G can be extended to an angle walk. Let ∆(w) be the set of all directions δ of length
at most n such that there is an angle walk of direction δ̄ from v to some w = (w1, w2, w3)
with w3 = w. Note that the sets ∆(w) for w ∈ V (G) \ {v1, v2, v3} are mutually disjoint.
Let idδ̄(x1, x2, x3, y) := ∃y1∃y2awalk(n)

δ
(x1, x2, x3, y1, y2, y). Then for δ̄ ∈ ∆(w), we have

G |= idδ̄(v1, v2, v3, w) and G ̸|= idδ̄(v1, v2, v3, w
′) for all w′ ̸= w. ◀

4 Decomposition into Blocks

Let G be a graph. A tree decomposition of G is a pair (T, β) where T is a tree and
β : V (T) → 2V (G) is a function such that for every v ∈ V (G), the set {t ∈ V (T) | v ∈ β(t)}
is non-empty and induces a connected subgraph in T , and for every e ∈ E(G), there is a
t ∈ V (T) such that e ⊆ β(t). For t ∈ V (T), we call β(t) a bag of (T, β). The adhesion of
(T, β) is ad(T, β) := max

{
|β(t) ∩ β(u)|

∣∣ tu ∈ E(T)
}

(or 0 if E(T) = ∅). The width of (T, β)
is wd(T, β) := maxt∈V (T) |β(t)| − 1.

We denote the root of a rooted tree T by rT . For better readability, if the rooted tree is
referred to as T ∗, we set r∗ := rT ∗ . The height of T is the maximum length of a path from
rT to a leaf of T . We denote the descendant order of T by ⊴T . That is, t ⊴T u if t occurs
on the path from rT to u. A rooted tree decomposition is a tree decomposition where the
tree is rooted.

▶ Lemma 7 (Folklore). Let T be a tree and χ : V (T) → R≥0. Then there is a node t ∈ V (T)
such that for every connected component C of T \ {t}, it holds that∑

t∈V (C)

χ(t) ≤ 1
2
∑

t∈V (T)

χ(t).

Proof. Orient all edges towards the larger sum of χ-weights in the connected components
that the removal of the edge would induce, breaking ties arbitrarily. There will be a node
such that all incident edges are oriented towards it. This node has the desired property. ◀

The following lemma is known in its essence (for example, [11]), though we are not aware
of a reference where it is stated in this precise form, which we will need later.

▶ Lemma 8. Let T be a tree, and let B ⊆ V (T) be a set of size |B| ≤ 3. Then there
is a rooted tree decomposition (T ∗, β∗) of T with B ⊆ β∗(r∗) and the following additional
properties:

ICALP 2021

134:8 WL on Planar Graphs

(i) The height of T ∗ is at most 2 log |T |.
(ii) The width of (T ∗, β∗) is at most 3.
(iii) The adhesion of (T ∗, β∗) is at most 3.
(iv) For every t∗∈V (T ∗) and every child u∗ of t∗, the graph T

[
(
⋃

v∗⊵T ∗ u∗ β∗(v∗)) \ β∗(t∗)
]

is connected.

Proof. Condition (iv) is something that we can easily achieve for every rooted tree decom-
position: if, for the rooted subtree at some node, the subgraph induced by the bags in
this subtree is not connected, we simply create one copy of the subtree for each connected
component and only keep the vertices of that connected component in the copy. Moreover,
the adhesion of a tree decomposition of width 3 can only be larger than 3 if there are adjacent
nodes with the same bag. If this is the case, we can simply contract the edge between the
nodes. Repeating this, we can turn the decomposition into a decomposition of adhesion at
most 3. So we only need to take care of Conditions (i) and (ii).

The proof is by induction on n := |T |. We prove a slightly stronger statement; in addition
to B ⊆ β∗(r∗), we require |β∗(r∗) \B| ≤ 1.

The base case n ≤ 4 is easy: for n = 1, the 1-node tree decomposition of height 0 has
all the desired properties, and for 2 ≤ n ≤ 4, we can take a 2-node tree decomposition of
height 1 where the root bag is B and the leaf bag is V (T).

For the inductive step, suppose n > 4.
Case 1: |B| < 3.

By Lemma 7, there is a node b ∈ V (T) such that for every connected component C of
T \ {b}, it holds that |V (C)| ≤ n

2 .
Let C1, . . . , Cm be the vertex sets of the connected components of T \ {b}. For every
i ∈ [m], let ci be the unique neighbour of b in Ci, and let Bi := (B ∩ V (Ci)) ∪ {ci}. Note
that |Bi| ≤ 3.
By the induction hypotheses, for every i, there is a rooted tree decomposition (Ti, βi) of
Ci with the desired properties. In particular, the height of Ti is at most 2 log(n/2) =
2 logn− 2.
For every i, let ri be the root of Ti. We form a new tree T ∗ by taking the disjoint union
of all the Ti, adding fresh nodes r∗ and r∗

i for i ≤ m, and adding edges r∗r∗
i , r∗

i ri for all
i ∈ [m]. We define β∗ : V (T ∗) → 2V (T) by

β∗(t) :=

B ∪ {b} if t = r∗,

Bi ∪ {b} if t = r∗
i ,

βi(t) if t ∈ V (Ti).

Then (T ∗, β∗) is a tree decomposition of T of width at most 3 and height at most 2 logn.
Case 2: |B| = 3.

By Lemma 7 applied to the characteristic function of B, there is a node b ∈ V (T) such
that for every connected component C of T \ {b}, it holds that |V (C) ∩B| ≤ 1.
Let C1, . . . , Cℓ be the connected components of T \{b}, and for every i, let Bi := B∩V (Ci).
Then |Bi| ≤ 1.

▷ Claim 9. For every i ∈ [ℓ], there is a tree decomposition (Ti, βi) of width at most 3
such that the height of Ti is at most 2 logn − 1 and for the root ri of Ti it holds that
Bi ⊆ βi(ri) and |β(ri)| ≤ 2.

M. Grohe and S. Kiefer 134:9

Proof. Let ∈ [ℓ] and ni := |Ci|. By Lemma 7, there is a c ∈ V (Ci) such that for every
connected component D of Ci \ {c}, it holds that |D| ≤ ni/2. Choose such a c and let
D1, . . . , Dm be the connected components of Ci \ {c}. For every j ∈ [m], let dj be the
unique neighbour of c in Dj . Let Bij := (Bi ∩Dj) ∪ {dj}. Then |Bij | ≤ 2.
By the induction hypotheses, for every j, there is a rooted tree decomposition (Tij , βij) of
Dj of width 3 such that the height of Tij is at most 2 log |Di| ≤ 2 log(ni/2) ≤ 2 logn− 2.
Furthermore, for the root rij of Tij , it holds that Bij ⊆ βij(rij) and |βij(rij) \Bij | ≤ 1.
This implies |βij(rij)| ≤ 3.
We form a new tree Ti by taking the disjoint union of all the Tij for j ∈ [m], adding a
fresh node ri, and adding edges rij for all j ∈ [m]. We define βi : V (Ti) → 2V (Ci) by

βi(t) :=

Bi ∪ {c} if t = ri,

βij(rij) ∪ {c} if t = rij ,

βij(t) if t ∈ V (Tij) \ {rij}.

Then (Ti, βi) is a tree decomposition of Ci with the desired properties. ◁

To complete the proof of the lemma, we form a new tree T ∗ by taking the disjoint union
of the Ti of Claim 9 for i ∈ [ℓ], adding a fresh node r∗, and adding edges r∗ri for all
i ∈ [ℓ]. We define β∗ : V (T ∗) → 2V (T) by

β∗(t) :=

B ∪ {b} if t = r∗,

β(ri) ∪ {b} if t = ri,

βi(t) if t ∈ V (Ti) \ {ri}.

Then (T ∗, β∗) is a tree decomposition of T of width at most 3 and height at most
2 logn. ◀

Let us now turn to decompositions of a graph into its 3-connected components. We need
a few more definitions. In the following, let G be a connected graph and X ⊆ V (G). The
torso of X is the graph GJXK with vertex set X and edge set{

vw ∈
(
X

2

) ∣∣∣ vw ∈ E(G) or v, w ∈ NG(C) for some connected component C of G \X
}
.

The adhesion of X is the maximum of |NG(C)| for all connected components C of G \X. It
is easy to see that if the adhesion of X is at most 2, then the torso GJXK is a topological
subgraph of G and if the adhesion of X is at most 1, then the torso GJXK is just the induced
subgraph G[X].

A block1 of G is a set B ⊆ V (G) such that
either GJBK is 3-connected and the adhesion of B is at most 2,
or GJBK is a complete graph of order 3 and the adhesion of B is at most 2,
or GJBK is a complete graph of order 2 and the adhesion of B is at most 1.

We call blocks with 3-connected torsos proper blocks and blocks of cardinality at most 3
degenerate blocks of order 3 and 2, respectively. It is easy to see that for distinct blocks
B,B′, neither B ⊆ B′ nor B′ ⊆ B holds and, furthermore, |B ∩B′| ≤ 2. A block separator

1 Our usage of the term “block” is non-standard. If anything, what we call a “block” might better be
called “2-block”. But just using “block” is more convenient.

ICALP 2021

134:10 WL on Planar Graphs

is a set S ⊆ V (G) such that there are distinct blocks B,B′ with S = B ∩B′, and the two
sets B \ S and B′ \ S belong to different connected components of G \ S. Note that by the
definition of blocks, block separators have cardinality at most 2.

Observe that the torsos of all blocks of a graph are topological subgraphs. As all
topological subgraphs of a planar graph are planar, the torsos of the blocks of a planar graph
are planar. In particular, the torsos of proper blocks are 3-connected planar graphs. This
will be important later.

Call a tree decomposition (T, β) small if for all distinct nodes t, u ∈ V (T), it holds that
β(t) ̸⊆ β(u).

▶ Lemma 10 ([35]). Every connected graph G has a small tree decomposition (T, β) of
adhesion at most 2 such that for all t ∈ V (T), the bag β(t) is a block of G.

The decomposition in this lemma is essentially Tutte’s well-known decomposition of a
graph into its 3-connected components described in a slightly non-standard way. The two main
differences are that, normally, the decomposition is only described for 2-connected graphs,
whereas arbitrary connected graphs are first decomposed into their 2-connected components.
We merge these decompositions into one. The second difference is that Tutte decomposes a
2-connected graph into 3-connected pieces (our proper blocks) and cycles. Instead of cycles,
we only allow triangles, i.e., degenerate blocks of order 3. This is possible because every
cycle can be decomposed into triangles. What we lose with our form of decomposition is
the canonicity: a graph may have several structurally different decompositions of the form
described in the lemma.

In the following, we apply Lemma 8 to the tree of the decomposition of Lemma 10 and
obtain a decomposition of logarithmic height that is still essentially a decomposition into
3-connected components.

▶ Lemma 11. Every connected graph G has a rooted tree decomposition (T ∗, β∗) with the
following properties.

(i) The height of T ∗ is at most 2 log |G|.
(ii) For every t∗ ∈ V (T ∗), there are sets B1, . . . , B4 (not necessarily distinct or disjoint)

such that β∗(t∗) =
⋃4

i=1 Bi and each Bi is either a block or a block separator.
(iii) The adhesion of (T ∗, β∗) is at most 6.
(iv) For every t∗ ∈ V (T ∗) and every child u∗ of t∗, the induced subgraph

G

(⋃
v∗⊵T ∗ u∗

β∗(v∗)
)

\ β∗(t∗)

is connected.

Proof. Let (T, β) be the decomposition of G into its blocks obtained from Lemma 10. Let
(T ∗, β∗

T) be the rooted tree decomposition of T obtained from Lemma 8. Let r∗ be the root
of T ∗, and let ⊴∗ := ⊴T ∗ be the partial descendant order associated with T ∗. For every
t∗ ∈ V (T ∗), let

γ∗
T (t∗):=

⋃
u∗⊵∗t∗

β∗
T (u∗)

and

σ∗
T (t∗):=

{
∅ if t∗ = r∗,

β∗
T (s∗) ∩ β∗

T (t∗) for the parent s∗ of t∗ in T ∗, otherwise .

M. Grohe and S. Kiefer 134:11

For every t ∈ V (T), we let min∗(t) be the unique ⊴∗-minimal node t∗ ∈ V (T ∗) such that
t ∈ β∗

T (t∗). The uniqueness follows from the fact that the set of all t∗ ∈ V (T ∗) with t ∈ β∗
T (t∗)

is connected in T ∗.
Let us call t ∈ V (T) active in t∗ ∈ V (T ∗) if t ∈ β∗

T (t∗) and t∗ ̸= min∗(t) and there is a
u ∈ NT (t) such that t∗ ⊴ min∗(u). We call u an activator of t in t∗.

▷ Claim 12. Suppose that t ∈ V (T) is active in t∗ ∈ V (T ∗). Then there is a unique activator
of t in t∗.

Proof. Since t ∈ β∗
T (t∗) and t∗ ̸= min∗(t), we have min∗(t)◁t∗ and t ∈ β∗

T (min∗(t))∩β∗
T (t∗) ⊆

σ∗
T (t∗). Moreover, for every activator u of t, it holds that t∗ ⊴ min∗(u), which implies
u ∈ γ∗

T (t∗) \ σ∗
T (t∗).

Suppose towards a contradiction that t has two activators u1, u2 in t∗. Then u1, u2 ∈
NT (t) ∩

(
γ∗

T (t∗) \ σ∗
T (t∗)

)
. By Lemma 8(iv), the induced subgraph T [γ∗

T (t∗) \ σ∗
T (t∗)] is

connected. Thus, there is a path from u1 to u2 in T [γ∗
T (t∗) \ σ∗

T (t∗)]. As u1, u2 ∈ NT (t) and
t ∈ σ∗

T (t∗), there is a cyle in T , which is a contradiction. ◁

Hence, in the following we can speak of the activator of a node. Observe that if t is active
in t∗, then t is also active in all u∗ with min∗(t) ◁ u∗ ◁ t∗, with the same activator.

Now we are ready to define our tree decomposition (T ∗, β∗) of G. The tree T ∗ is the
same as in the decomposition (T ∗, β∗

T) of T . We define β∗ : V (T ∗) → 2V (G) by letting β∗(t∗)
for t∗ ∈ V (T ∗) be the union of the following sets:

for all t ∈ β∗
T (t∗) such that t∗ = min∗(t): the block β(t), and

for all t ∈ β∗
T (t∗) such that t is active in t∗ with activator u: the block separator β(t)∩β(u).

▷ Claim 13. (T ∗, β∗) is a tree decomposition of G.

Proof. Every edge e ∈ E(G) is contained in some bag β(t), and β(t) ⊆ β∗(min∗(t)).
Now consider a vertex v ∈ V (G). Let

Sv := {t ∈ V (T) | v ∈ β(t)},
S∗

v := {t∗ ∈ V (T ∗) | Sv ∩ β∗
T (t∗) ̸= ∅}.

Since (T, β) is a tree decomposition, Sv is connected in T , and as (T ∗, β∗
T) is a tree decom-

position, S∗
v is connected in T ∗. Thus, there is a unique ⊴∗-minimal node s∗ in S∗

v . Let
s ∈ Sv ∩ β∗

T (s∗). Then s∗ = min∗(s) and therefore v ∈ β∗(s∗).
Let t∗ ∈ V (T ∗) such that v ∈ β∗(t∗). We shall prove that v ∈ β∗(v∗) for all v∗ on

the path from t∗ to s∗. This will prove that the set of all t∗ for which v ∈ β∗(t∗) holds is
connected in T ∗.

By the definition of β∗, since v ∈ β∗(t∗), there is a t ∈ β∗
T (t) such that v ∈ β(t) and either

t∗ = min∗(t) or t is active in t∗. We choose such a t. Then t ∈ Sv and therefore t∗ ∈ S∗
v . By

the minimality of s∗, this implies s∗ ⊴∗ t∗.
The proof that v ∈ β∗(v∗) holds for all v∗ on the path from t∗ to s∗ is by induction on

the distance d between t∗ and s∗. The base case d = 0 is trivial. So let us assume that d ≥ 1.
It follows from the definition of β∗ that v ∈ β∗(v∗) holds for all v∗ on the path from t∗ to
min∗(t). Thus, without loss of generality, we may assume that t∗ = min∗(t).

Let t = t1, . . . , tm = s be the path from t to s in T . Note that v ∈ β(ti) holds for all
i ∈ [m]. The edge tt2 = t1t2 must be covered by some bag β∗

T (u∗) that contains both t and
t2. Since t∗ = min∗(t), we have t∗ ⊴∗ u∗. As the pre-image of the path t1, . . . , tm in T ∗ is
connected and s∗ ⊴∗ t∗ ⊴∗ u∗, there is an i > 1 such that ti ∈ β∗(t∗). If min∗(ti) = t∗, we
find a j > i such that tj ∈ β∗(t), and, repeating this, we eventually arrive at a tk ∈ β∗(t) such

ICALP 2021

134:12 WL on Planar Graphs

that min∗(tk) ◁ t∗. Arguing as above, we find that v ∈ β∗(v∗) holds for all v∗ on the path
from t∗ to min∗(tk). Since min∗(tk) is closer to s∗ than t∗, we can now apply the induction
hypothesis to conclude that v ∈ β∗(v∗) holds for all v∗ on the path from min∗(tk) to s∗. ◁

Let us turn to proving that the tree decomposition (T ∗, β∗) has the desired properties.
Since (T, β) is a small decomposition, we have |T | ≤ |G|. Thus, Condition (i) follows

from Lemma 8(i). Also, Condition (ii) follows from Lemma 8(ii) and the definition of β∗(t).
To prove Condition (iii), let u∗ be a child of t∗. Let us assume that β∗

T (t∗) = {t1, . . . , t4}
and β∗

T (u∗) = {u1, . . . , u4} with t1 = u1, t2 = u2, and t3 = u3 and t4 ̸= ui, u4 ≠ ti for i ∈ [4].
The cases of smaller bags β∗

T (t∗), β∗
T (u∗) or a smaller intersection between them can be dealt

with similarly.
Let us first deal with the common elements ti = ui for i ∈ [3]. Note that min∗(ti) ⊴ t∗◁u∗.

If ti is not active in u∗, then it does not contribute to the β∗(u∗) and hence not to the
intersection of the two bags. If ti is active in u∗, say, with activator vi, then the block
separator Si := β(ti)∩β(vi) is contained in β∗(u∗). To simplify the notation, in the following,
we let Si := 0 if ti is not active in u∗.

Either ti is active in t∗ as well with the same activator and we have Si ⊆ β∗(t∗), or
t∗ = min∗(ti) and Si ⊆ β(ti) ⊆ β∗(t∗). In both cases,

Si ⊆ β∗(t∗) ∩ β(u∗). (1)

Next, let us look at the contribution of t4 and u4. The contribution of t4 to β∗(t∗) is contained
in β(t4), and the contribution of u4 to β∗(u∗) is contained in β(u4). Since the only neighbour
of ti in γ∗

T (u∗) \ σ∗
T (u∗) = γ∗

T (u∗) \ {t1, t2, t3} is vi (if ti is active in u∗, otherwise there is no
neighbour), all paths from ti to u4 go through vi. This implies that

β(ti) ∩ β(u4) ⊆ β(ti) ∩ β(vi) = Si. (2)

All paths from t4 to u4 go through t1, t2, t3, and therefore

β(t4) ∩ β(u4) ⊆
3⋃

i=1
β(ti) ∩ β(u4) ⊆ S1 ∪ S2 ∪ S3. (3)

Thus, overall, we have β∗(t∗) ∩ β∗(u∗) ⊆ S1 ∪ S2 ∪ S3.
To prove that Condition (iv) holds, let t∗ ∈ V (T ∗) and and let u∗ be a child of t∗. To

simplify the notation, let σ∗(u∗) := β(u∗) ∩ β∗(t∗) and

γ∗(u∗) :=
⋃

v∗⊵u∗

β∗(v∗). (4)

We need to prove that G[γ∗(u∗) \ σ∗(u∗)] is connected. The key observation is that

γ∗(u∗) \ σ∗(u∗) =
⋃

t∈γ∗
T

(u∗)\σ∗
T

(u∗)

β(t). (5)

The reason for this is that, for all t ∈ γ∗
T (u∗) \ σ∗

T (u∗), it holds that u∗ ⊴ min∗(t), which
implies that β(t) ⊆ β∗(min∗(t)) appears on the right-hand side of (4). It follows from
Lemma 8(iv) that the set γ∗

T (u∗) \ σ∗
T (u∗) is connected in T , and this implies that the union

on the right-hand side of (5) is connected. ◀

Our next goal will be to define the decomposition in the logic CO(1)
O(log n). The following

lemma yields a way to define blocks via triplets of vertices.

M. Grohe and S. Kiefer 134:13

▶ Lemma 14. Let G be a graph, and let B be a proper block of G. Let b1, b2, b3 ∈ B be
pairwise distinct vertices. Then B is the set of all v ∈ V (G) such that there is no set
S ⊆ V (G) \ {v} of cardinality at most 2 separating v from {b1, b2, b3}.

Proof. Let v ∈ B. Since GJBK is 3-connected, there are paths Pi ⊆ GJBK from v to bi that
are internally disjoint, that is, V (Pi) ∩ V (Pj) = {v} for i ̸= j. As GJBK is a topological
subgraph of G, these paths can be expanded to paths P ′

i from v to bi in G, and the P ′
i are

still internally disjoint. Since every S ⊆ V (G) \ {v} of cardinality at most 2 has an empty
intersection with at least one of the paths P ′

i , it does not separate v from {b1, b2, b3}.
Conversely, let v ∈ V (G) \ B, and let C be the connected component of G \ B with

v ∈ V (C), and let S := NG(C). Then |S| ≤ 2. Then S separates v from {b1, b2, b2}. ◀

Let G be a graph and S,X ⊆ V (G). We say that S separates X if there are two distinct
connected components C1, C2 of G \ S such that X ∩ V (Ci) ̸= ∅ for both i = 1, 2.

▶ Lemma 15. Let G be a graph, and let b1, b2, b3 ∈ V (G) be mutually distinct. Then there
is a proper block B with b1, b2, b3 ∈ B if and only if there is a vertex b4 ∈ V (G) \ {b1, b2, b3}
such that no set S ⊆ V (G) of cardinality at most 2 separates {b1, b2, b3, b4}.

Proof. For the forward direction, suppose that B is a proper block with b1, b2, b3 ∈ B. Let
b4 ∈ B \ {b1, b2, b3}. Then it follows from Lemma 14 that there is no S of cardinality at most
2 that separates {b1, b2, b3, b4}.

For the backward direction, let B be the set of all v ∈ V (G) such that no set S ⊆ V (G)\{v}
of cardinality at most 2 separates v from {b1, b2, b3}. Then b1, b2, b3 ∈ B and |B| ≥ 4. It is
easy to prove that B is a block. ◀

▶ Lemma 16. For all n ∈ N, there exist CO(1)
O(log n)-formulas block(n)(x1, x2, x3, y) and

torso(n)(x1, x2, x3, y, z) such that for all graphs G of order at most n and all b1, b2, b3, v ∈
V (G), we have

G |= block(n)(b1, b2, b3, v)

if and only if one of the following holds:
either {b1, b2, b3} is a degenerate block and v ∈ {b1, b2, b3},
or b1, b2, b3 are mutually distinct and there is a proper block B such that b1, b2, b3, v ∈ B.

Moreover, for all b1, b2, b3, v, w ∈ V (G), we have

G |= torso(n)(b1, b2, b3, v, w)

if and only if G |= block(n)(b1, b2, b3, v) and G |= block(n)(b1, b2, b3, w) and vw is an edge of
the torso of the block determined by b1, b2, b3.

Proof. It is easy to express in CO(1)
O(log n) that {b1, b2, b3} is a degenerate block. For proper

blocks, we use Lemmas 14 and 15. ◀

As an immediate consequence, we obtain a formula to define a block separator.

▶ Corollary 17. For all n ∈ N, there exists a CO(1)
O(log n)-formula blocksep(n)(x1, x2) such that

for all graphs G of order at most n and all s1, s2 ∈ V (G), we have

G |= blocksep(n)(s1, s2)

if and only if {s1, s2} is a block separator of G.

ICALP 2021

134:14 WL on Planar Graphs

We are ready to define the formula that yields the decomposition from Lemma 11.

▶ Lemma 18. For all h ≥ 0, n ≥ 1, there is a CO(1)
O(h+log n)-formula dec(n)

h (xj
i , yk | i ∈ [4], j ∈

[3], k ∈ [6]) such that the following holds. Let G be a graph of order |G| ≤ n and bj
i , sk ∈ V (G)

for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct). Then

G |= dec(n)
h (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6])

if and only if the following conditions are satisfied.
(i) For all i ∈ [4], either Bi := {b1

i , b
2
i , b

3
i } is a block separator or Bi := {b1

i , b
2
i , b

3
i } is a

degenerate block or b1
i , b

2
i , b

3
i are mutually distinct and there is a (unique) block Bi that

contains b1
i , b

2
i , b

3
i .

Let B := B1 ∪ . . . ∪B4.
(ii) S := {s1, . . . , s6} ⊂ B.
(iii) There is a (unique) connected component C of G \ S such that B ⊆ S ∪ V (C).
(iv) The induced subgraph G[S ∪ V (C)] has a rooted tree decomposition (T ∗, β∗) of height

at most h with B = β∗(r∗) for the root r∗ of T ∗.
(v) The tree decomposition (T ∗, β∗) satisfies Conditions (ii)–(iv) of Lemma 11, where all

blocks are blocks of the graph G (rather than of the subgraph G[S ∪ C]).

Proof. The proof is by induction on h ≥ 0.
However, before we begin the induction, we observe that using Lemma 16 and Corollary 17,

we can write a formula in the variables xj
i that expresses Condition (i). It is straightforward

to express Condition (ii), and, again using Lemma 16, to express Condition (iii). So in the
induction, we will focus on Conditions (iv) and (v).

For the case h = 0, observe that a decomposition of height 0 consists of a single node that
covers the whole graph. So we need to express that for the component C we obtain in (iii),
we have V (C) ∪ S = B. Then the 1-node tree decomposition of G[B] satisfies (iv) and (v).

For a 1-node decomposition, Conditions (iii) and (iv) of Lemma 11 are void, and Condi-
tion (ii) of Lemma 11 follows from Condition (i) of this lemma.

For the inductive step h → h+1, suppose we have a graph G and elements bj
i , sk satisfying

Conditions (i)–(iii) for suitable sets B,S,C. It suffices to express that for each connected
component C ′ of G[S ∪ V (C)] \B, we can find a decomposition of height h that covers C ′

and attaches to B in a way that satisfies the conditions of Lemma 11.
So let G′ := G[S∪V (C)], and let C ′ be a connected component of G′\B. Let S′ := NG(C ′).

If |S′| > 6, then there definitely is no decomposition with the desired properties. Suppose
that S′ = {s′

1, . . . , s
′
6}. Then, if there are b′j

i ∈ S′ ∪ V (C ′) such that G |= dec(n)
h (b′j

i , s
′
k |

i ∈ [4], j ∈ [3], k ∈ [6]), the desired decomposition that covers C ′ exists by the induction
hypothesis. If this is the case for all C ′, we can combine the decompositions to form the
desired decomposition of G′. Conversely, if there is a decomposition of G[S′ ∪ V (C ′)] of
height h in the sense of Lemma 11 such that for the root u∗, the bag β∗(u∗) contains S′,
then there are blocks or block separators B′

1, . . . , B
′
4 such that β∗(u∗) = B′

1 ∪ . . .∪B′
4. From

the B′
i, we obtain b′j

i such that G |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]), again by the

induction hypothesis.
To conclude, in addition to the subformulas taking care of Conditions (i)–(iii), the

formula dec(n)
h+1 must have a subformula stating that, for all connected components C ′ of

G′ \ B, there exist s′
k ∈ B for k ∈ [6] and b′j

i ∈ S′ ∪ V (C ′) for i ∈ [4], j ∈ [3] such that
{s′

1, . . . , s
′
6} = NG(C ′) and dec(n)

h (b′j
i , s

′
k | i ∈ [4], j ∈ [3], k ∈ [6])

M. Grohe and S. Kiefer 134:15

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Figure 2 A (simplified) schematic visualisation of the rooted tree decomposition (T ∗, β∗) from
Lemma 11. For simplicity, all Bi in the bag of the purple node are depicted as distinct proper blocks.

Note that, in each step h → h+ 1, we need to use formulas of quantifier depth O(logn) to
express the desired connectivity conditions, for example to speak about components C ′, and
to express that the bj

i define blocks. However, the formula dec(n)
h occurs only in the scope of

constantly many (19, to be precise) quantifiers ranging over an element of the component(s)
C ′ and the b′j

i , s
′
k. Overall, the quantifier depth will be O(h) +O(logn). ◀

5 Canonisation

In this section, we finally prove Theorems 1 and 2. By the logical characterisation of the WL
algorithm given in Theorem 4, we obtain Theorem 1 as a corollary from Theorem 2, which
we prove below.

In the following, for a graph G and a list of vertices v1, . . . , vℓ ∈ V (G), we denote by
(G, v1, . . . , vℓ) the graph G with individualised vertices v1, . . . , vℓ. That is, (G, v1, . . . , vℓ)
and (G′, v′

1, . . . , v
′
ℓ′) have the same isomorphism type if and only if ℓ = ℓ′ and there is an

isomorphism from G to G′ that maps vi to v′
i for every i ∈ [ℓ].

▶ Lemma 19. For all h ≥ 0, n ≥ 1 and all connected planar graphs G of order |G| ≤ n, and
all bj

i , sk ∈ V (G) for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct) such that

G |= dec(n)
h (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]),

there is a CO(1)
O(h+log n)-formula iso(n)

h (xj
i , yk | i ∈ [4], j ∈ [3], k ∈ [6]) (which depends on

the bj
i and the sk) such that the following holds. Let H be a connected graph of order

|H| ≤ n and b′j
i , s

′
k ∈ V (H) for i ∈ [4], j ∈ [3], k ∈ [6] (not necessarily distinct) and assume

H |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]). Then

H |= iso(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])

if and only if for the connected components CG, CH that Lemma 18 yields for G and H, it
holds that

(
H[{s′

1, . . . , s
′
6} ∪ V (CH)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])

) ∼=
(
G[{s1, . . . , s6} ∪

V (CG)], (bj
i , sk | i ∈ [4], j ∈ [3], k ∈ [6])

)
.

Proof. For the following arguments, see also Figure 2 for a better intuition.
Let n ∈ N and let G be a connected planar graph with |G| ≤ n. The proof is by induction

on h ≥ 0.

ICALP 2021

134:16 WL on Planar Graphs

First, given a second connected graph H of order at most |G| that satisfies the dec(n)
h -

formula, we can assume that the first four triplets of vertices form the same types of blocks
and block separators (of corresponding sizes), respectively, in H as in G, since otherwise we
can distinguish the graphs using the formulas from Lemma 16 and Corollary 17.

Note that there is a formula bag(n)(x1
1, . . . , x

3
4, y) ∈ CO(1)

O(log n) such that for all graphs
H of order at most n and all b′1

1 , b
′2
1 , b

′3
1 , . . . , b

′1
4 , b

′2
4 , b

′3
4 , v ∈ V (H), it holds that H |=

bag(n)(b′1
1 , . . . , b

′3
4 , v) if and only if each set {b′j

i | j ∈ [3]} for i ∈ [4] is a block separator Bi

or a degenerate block Bi or contained in a proper block Bi of H and v is in B :=
⋃4

i=1 Bi.
The case that h = 0 follows analogously as the formula for the isomorphism type of the

root bag in the inductive step. We therefore focus on the inductive step. Assume that for
every list of vertices (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]) ∈ V (G)18, where

G |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]),

there is a CO(1)
O(h+log n)-formula

isoG,(b′j
i

,s′
k

|i∈[4],j∈[3],k∈[6])(x
′1
1 , . . . , x

′3
4 , y

′
1, . . . , y

′
6)

that defines the isomorphism type of (G[{s′
1, . . . , s

′
6}∪V (C ′)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])),

where C ′ is the connected component from Parts (iii)–(v) in Lemma 18.
Let (bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]) ∈ V (G)18 be a list of vertices such that

G |= dec(n)
h+1(bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]).

For B1, B2, B3, B4, B,C, S as described in Lemma 18, let (T ∗, β∗) be the rooted tree decom-
position from Condition (iv) in Lemma 18. Let r∗ be the root of T ∗. By Condition (iv) in
Lemma 18, it holds that β∗(r∗) = B =

⋃4
i=1 Bi. Consider a Bi with |Bi| ≥ 4. Then Bi

is a proper block, in which, by Theorem 5, we can find vertices v1
i , v

2
i , v

3
i such that for all

w ∈ Bi, there is a CO(1)
O(log n)-formula id′

w(x1
i , x

2
i , x

3
i , y) such that G[[Bi]] |= id′

w(v1
i , v

2
i , v

3
i , w)

and G[[Bi]] ̸|= id′
w(v1

i , v
2
i , v

3
i , w

′) for every w′ ∈ Bi \ {v}. (In every Bi with |Bi| ≤ 3, such
vertex-identifying formulas with four free variables exist trivially and they also identify the
vertex the entire graph G.)

For simplicity, first assume that for all i with |Bi| ≥ 4, the vertex vj
i equals bj

i for
j ∈ [3]. Then by replacing in id′

v(x1
i , x

2
i , x

3
i , y) every subformula of the form ∃≥kxψ with

∃≥kx(ψ ∧ block(n)(x1
i , x

2
i , x

3
i , x)) and every E(x, y) with torso(n)(x1

i , x
2
i , x

3
i , x, y), we easily

obtain for each v ∈ B a CO(1)
O(log n)-formula idv(x1

1, . . . , x
3
4, y) with idv[G, b1

1, . . . , b
3
4, y] = {v}.

Now we can use these formulas to address each vertex individually. More formally, we
can define the edge relation of G[B] by setting, for v, w ∈ B with v ̸= w,

φv,w(x, y) :=
{
E(x, y) if vw ∈ E(G),
¬E(x, y) otherwise.

Then the CO(1)
O(log n)-formula

isoB(x1
1, . . . , x

3
4) :=

∧
v,w∈B

∃=1x
(

idv(x1
1, . . . , x

3
4, x) ∧ ∃=1x′(idw(x1

1, . . . , x
3
4, x

′) ∧ φv,w(x, x′)
))

∧ ¬∃x
(

bag(n)(x1
1, . . . , x

3
4, x) →

∧
w∈B

¬idw(x1
1, . . . , x

3
4, x)

)
∧

∧
v ̸=w∈B

¬∃x
(

idv(x1
1, . . . , x

3
4, x) ∧ idw(x1

1, . . . , x
3
4, x)

)
defines the isomorphism type of (G[B], b1

1, . . . , b
3
4) (see the purple bag in Figure 2).

M. Grohe and S. Kiefer 134:17

We now construct a formula that describes how the connected components of G[S ∪
V (C)] \B are attached to G[B]. Let G′ := G[S ∪V (C)]. By Condition (iii) in Lemma 11, for
every connected component C ′ of G′ \B, it holds that |NG(C ′)| ≤ 6 (see the coloured shapes
attached to the purple one in Figure 2). Hence, we iterate over all tuples (s′

1, . . . , s
′
6) ∈ B6:

let Ms′
1,...,s′

6 be the multiset of isomorphism types of the graphs (G[S′ ∪ C ′], s′
1, . . . , s

′
6),

where S′ := {s′
i | i ∈ [6]} and C ′ is a connected component of G′ \B with NG(C ′) = S′.

Since G |= dec(n)
h+1(bj

i , sk | i ∈ [4], j ∈ [3], k ∈ [6]), for every (s′
1, . . . , s

′
6) ∈ B6 and

every connected component C ′ of G′ \ B with NG(C ′) = {s′
1, . . . , s

′
6}, there exist vertices

(b′j
i | i ∈ [4], j ∈ [3]) ∈ (S′ ∪ V (C ′))12 such that

G[S′ ∪ V (C ′)] |= dec(n)
h (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6]).

So, by the induction hypothesis, there is a formula isoM (x′1
1 , . . . , x

′3
4 , y

′
1, . . . , y

′
6) ∈ CO(1)

O(h+log n)

for the isomorphism type M of (G[{s′
1, . . . , s

′
6} ∪ V (C ′)], (b′j

i , s
′
k | i ∈ [4], j ∈ [3], k ∈ [6])).

Note that by Condition (ii) in Lemma 18, at least one of the vertices b′j
i will lie outside B.

Using the counting quantifiers, we can use the isoM to make sure that every isomorphism
type appears with the correct multiplicity. More precisely, we first group all components
with equal isomorphism types. The fact that they are of the same size enables us to define
their number (e.g. the three green shapes in Figure 2). This then allows us to build a formula
iso′

M(y′
1, . . . , y

′
6) which identifies the graph (G[S′ ∪

⋃
C′:NG(C′)=S′ V (C ′)], s′

1, . . . , s
′
6) (where

M := Ms′
1,...,s′

6 and the C ′ are connected components of G′ \B). Using the dec(n)
h -formula,

we can turn iso′
M(y′

1, . . . , y
′
6) into a formula isoM(x1

1, . . . , x
3
4, y1, . . . , y6, y

′
1, . . . , y

′
6) that en-

sures that isoM(b1
1, . . . , b

3
4, s1, . . . , s6, s

′
1, . . . , s

′
6) describes for S′ := {s′

1, . . . , s
′
6} the subgraph

(G[S′ ∪
⋃

C′:NG(C′)=S′ V (C ′)], s′
1, . . . , s

′
6), where the C ′ are connected components of G′ \B,

up to isomorphism.
Hence, it suffices to conjugate isoB(x1

1, . . . , x
3
4) with a conjunction over all (s′

1, . . . , s
′
6) ∈ B6

of the following formula

∃y′
1 . . . ∃y′

6

(6∧
i=1

ids′
i
(x1

1, . . . , x
3
4, y

′
i) ∧ isoM(x1

1, . . . , x
3
4, y1, . . . , y6, y

′
1, . . . , y

′
6)
)
,

where M := Ms1,...,s6 , to obtain the desired isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6).

We now consider the general case where it does not necessarily hold for all i, j that
vj

i = bj
i . We assume for notational simplicity that for all i, the b1

i , b
2
i , b

3
i define a block. It is

easy to adapt the following construction to the situation that block separators are present.
We introduce one nested existential quantifier ∃x̃j

i for each of the vj
i so that our resulting

formula isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6) looks as follows:

∃x̃1
1 . . . ∃x̃3

4

(3∧
j=1

4∧
i=1

block(n)(x1
i , x

2
i , x

3
i , x̃

j
i) ∧ isoB(x̃1

1, . . . , x̃
3
4) ∧

∧
(s′

1,...,s′
6)∈B6

∃y′
1 . . . ∃y′

6

(6∧
i=1

ids′
i
(x̃1

1, . . . , x̃
3
4, y

′
i) ∧

isoM(x1
1, . . . , x

3
4, y1, . . . , y6, y

′
1, . . . , y

′
6)
))

.

The bounds on the quantifier depth and the number of variables follow similarly as in
the proof of Lemma 18. ◀

ICALP 2021

134:18 WL on Planar Graphs

Applying Lemma 8, we can deduce Theorem 2.

Proof of Theorem 2. Let n ∈ N and let G be a planar graph with order |G| = n. If G is
not connected, we construct one formula for each connected component of G (as described in
the following) and join them to obtain the identifying sentence.

So suppose G is connected. Then by Lemma 11, G has a rooted tree decomposition
(T ∗, β∗) of logarithmic height and adhesion at most 6 for which every bag is a union of four
(not necessarily distinct) blocks or block separators and also Condition (iv) of the lemma
holds. Let b1

1, . . . , b
3
4 be vertices that determine the blocks and block separators in the root

bag B of (T ∗, β∗).
If there is a vertex s ∈ B such that there is a unique connected component C of G \ {s}

with B ⊆ {s} ∪ V (C), then there are vertices bj
i , sk for i ∈ [4], j ∈ [3], k ∈ [6] (e.g. sk = s for

all k) such that G satisfies dec(n)
2 log |G|(b

j
i , sk | i ∈ [4], j ∈ [3], k ∈ [6]). Then the sentence

∃x1
1 . . . ∃x3

4∃y1 . . . ∃y6isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6])(x

1
1, . . . , x

3
4, y1, . . . , y6)

identifies G, where isoG,(bj
i
,sk|i∈[4],j∈[3],k∈[6]) is the formula from Lemma 19.

Otherwise, let s ∈ B be a vertex such that G \ {s} has multiple connected components
Ci and let Gi := G[V (Ci) ∪ {s}]. Then the restriction of (T ∗, β∗) to each Gi still satisfies
the conditions of Lemma 11, because the block structure of Gi is just the block structure
induced by G on V (Gi) (that is, the blocks of Gi are precisely those blocks of G contained
in V (Gi), and similarly for the block separators). This yields by Lemma 19 an identifying
formula φi(y) for each (Gi, s), which we can join by isomorphism type of (Gi, s) to obtain
an identifying sentence. ◀

We can directly deduce Theorem 1.

Proof of Theorem 1. The theorem follows from Theorems 2 and 4. ◀

6 Conclusion

We prove that planar graphs are identified by the WL algorithm with constant dimension
in a logarithmic number of iterations, thereby completing a project started by Verbitsky
fourteen years ago with his proof of the same result in the special case of 3-connected planar
graphs. Our proof is based on the careful analysis of a novel logarithmic-depth decomposition
of graphs into their 3-connected components.

It is unclear which dimension of the WL algorithm is necessary to identify planar graphs
in logarithmically many iterations and if there is a (provable) trade-off between dimension
and iteration number. This is not only interesting for planar graphs, and many questions
remain open.

We leave it as another interesting open project whether our result can be extended
to graph classes of bounded genus. As it stands, our proof heavily relies on properties
of 3-connected planar graphs that are not shared by 3-connected graphs of higher genus.
Similarly, we pose as a challenge to find good bounds on the iteration number of the WL
algorithm on other parameterised graph classes, such as graphs with a certain excluded minor
or graphs of bounded rank width.

M. Grohe and S. Kiefer 134:19

References
1 B. Ahmadi, K. Kersting, M. Mladenov, and S. Natarajan. Exploiting symmetries for scaling

loopy belief propagation and relational training. Machine Learning Journal, 92(1):91–132,
2013. doi:10.1007/s10994-013-5385-0.

2 A. Atserias and E. N. Maneva. Sherali-Adams relaxations and indistinguishability in counting
logics. SIAM Journal on Computing, 42(1):112–137, 2013. doi:10.1137/120867834.

3 A. Atserias and J. Ochremiak. Definable ellipsoid method, sums-of-squares proofs, and the
isomorphism problem. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS ’18), pages 66–75, 2018. doi:10.1145/3209108.3209186.

4 L. Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC ’16), pages 684–697, 2016. doi:10.1145/
2897518.2897542.

5 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for
graph identification. Combinatorica, 12:389–410, 1992. doi:10.1007/BF01305232.

6 G. Chen and I. Ponomarenko. Lectures on coherent configurations. Lecture notes available at
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf, 2019.

7 P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure in symmetry
detection for CNF. In Proceedings of the 41st Design Automation Conference (DAC ’04),
pages 530–534. ACM, 2004. doi:10.1145/996566.996712.

8 H. Dell, M. Grohe, and G. Rattan. Lovász meets Weisfeiler and Leman. In Proceedings of
the 45th International Colloquium on Automata, Languages, and Programming (ICALP ’18),
pages 40:1–40:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.40.

9 R. Diestel. Graph Theory. Springer Verlag, 5th edition, 2016.
10 Z. Dvorák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory,

64(4):330–342, 2010. doi:10.1002/jgt.20461.
11 M. Elberfeld, A. Jakoby, and T. Tantau. Logspace versions of the theorems of Bodlaender and

Courcelle. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’10), pages 143–152, 2010. doi:10.1109/FOCS.2010.21.

12 S. Evdokimov, I. N. Ponomarenko, and G. Tinhofer. Forestal algebras and algebraic forests
(on a new class of weakly compact graphs). Discrete Mathematics, 225(1-3):149–172, 2000.
doi:10.1016/S0012-365X(00)00152-7.

13 M. Grohe. Fixed-point logics on planar graphs. In Proceedings of the 13th IEEE Symposium on
Logic in Computer Science (LICS ’98), pages 6–15, 1998. doi:10.1109/LICS.1998.705639.

14 M. Grohe. Isomorphism testing for embeddable graphs through definability. In Proceedings
of the 32nd ACM Symposium on Theory of Computing (STOC ’00), pages 63–72, 2000.
doi:10.1145/335305.335313.

15 M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory,
volume 47 of Lecture Notes in Logic. Cambridge University Press, 2017. doi:10.1017/
9781139028868.

16 M. Grohe. The logic of graph neural networks. In Proceedings of the 36th ACM-IEEE Sym-
posium on Logic in Computer Science (LICS ’21)), 2021. arXiv version at arXiv:2104.14624.

17 M. Grohe and S. Kiefer. A linear upper bound on the Weisfeiler-Leman dimension of graphs of
bounded genus. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming (ICALP ’19), pages 117:1–117:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.
117.

18 M. Grohe and J. Mariño. Definability and descriptive complexity on databases of bounded
tree-width. In Proceedings of the 7th International Conference on Database Theory (ICDT
’99), volume 1540 of Lecture Notes in Computer Science, pages 70–82. Springer, 1999. doi:
10.1007/3-540-49257-7_6.

19 M. Grohe and D. Neuen. Canonisation and definability for graphs of bounded rank width. In
Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS
’19), pages 1–13, 2019. doi:10.1109/LICS.2019.8785682.

ICALP 2021

https://doi.org/10.1007/s10994-013-5385-0
https://doi.org/10.1137/120867834
https://doi.org/10.1145/3209108.3209186
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/BF01305232
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://doi.org/10.1145/996566.996712
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://doi.org/10.1002/jgt.20461
https://doi.org/10.1109/FOCS.2010.21
https://doi.org/10.1016/S0012-365X(00)00152-7
https://doi.org/10.1109/LICS.1998.705639
https://doi.org/10.1145/335305.335313
https://doi.org/10.1017/9781139028868
https://doi.org/10.1017/9781139028868
https://arxiv.org/abs/2104.14624
https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.4230/LIPIcs.ICALP.2019.117
https://doi.org/10.1007/3-540-49257-7_6
https://doi.org/10.1007/3-540-49257-7_6
https://doi.org/10.1109/LICS.2019.8785682

134:20 WL on Planar Graphs

20 M. Grohe and M. Otto. Pebble games and linear equations. Journal of Symbolic Logic,
80(3):797–844, 2015. doi:10.1017/jsl.2015.28.

21 M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a game. In
Proceedings of the 33rd International Colloquium on Automata, Languages and Programming
(ICALP ’06), pages 3–14, 2006. doi:10.1007/11786986_2.

22 N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canonization.
In Complexity theory retrospective, pages 59–81. Springer-Verlag, 1990.

23 T. A. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and
sparse graphs. In Proceedings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX ’07). SIAM, 2007. doi:10.1137/1.9781611972870.13.

24 S. Kiefer. The Weisfeiler-Leman algorithm: An exploration of its power. ACM SIGLOG News,
7(3):5–27, 2020. doi:10.1145/3436980.3436982.

25 S. Kiefer and B. D. McKay. The iteration number of Colour Refinement. In Proceedings of
the 47th International Colloquium on Automata, Languages, and Programming (ICALP ’20),
volume 168 of LIPIcs, pages 73:1–73:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020. doi:10.4230/LIPIcs.ICALP.2020.73.

26 S. Kiefer and D. Neuen. The power of the Weisfeiler-Leman algorithm to decompose graphs. In
Proceedings of the 44th International Symposium on Mathematical Foundations of Computer
Science (MFCS ’19), volume 138 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 45:1–45:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/
LIPIcs.MFCS.2019.45.

27 S. Kiefer, I. Ponomarenko, and P. Schweitzer. The Weisfeiler-Leman dimension of planar
graphs is at most 3. J. ACM, 66(6):44:1–44:31, 2019. doi:10.1145/3333003.

28 S. Kiefer and P. Schweitzer. Upper bounds on the quantifier depth for graph differentiation in
first-order logic. Log. Methods Comput. Sci., 15(2), 2019. doi:10.23638/LMCS-15(2:19)2019.

29 J. Köbler and O. Verbitsky. From invariants to canonization in parallel. In Proceedings of the 3rd
International Computer Science Symposium in Russia (CSR ’08), volume 5010 of Lecture Notes
in Computer Science, pages 216–227. Springer, 2008. doi:10.1007/978-3-540-79709-8_23.

30 M. Lichter, I. Ponomarenko, and P. Schweitzer. Walk refinement, walk logic, and the iteration
number of the Weisfeiler-Leman algorithm. In Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’19), pages 1–13. IEEE, 2019. doi:10.1109/
LICS.2019.8785694.

31 B. D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.
32 B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94–112,

2014. doi:10.1016/j.jsc.2013.09.003.
33 C. Morris, M. Ritzert, M. Fey, W. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.

Weisfeiler and Leman go neural: Higher-order graph neural networks. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence, 2019. doi:10.1609/aaai.v33i01.33014602.

34 N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12:2539–2561, 2011.

35 W. T. Tutte. Graph Theory. Addison-Wesley, 1984.
36 O. Verbitsky. Planar graphs: Logical complexity and parallel isomorphism tests. In Proceedings

of the 24th Annual Symposium on Theoretical Aspects of Computer Science (STACS ’07),
pages 682–693, 2007. doi:10.1007/978-3-540-70918-3_58.

37 B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series 2, 1968. English translation by G. Ryabov available at
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

38 H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of Mathem-
atics, 54:150–168, 1932.

39 K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
Proceedings of the 7th International Conference on Learning Representations (ICLR ’19), 2019.

https://doi.org/10.1017/jsl.2015.28
https://doi.org/10.1007/11786986_2
https://doi.org/10.1137/1.9781611972870.13
https://doi.org/10.1145/3436980.3436982
https://doi.org/10.4230/LIPIcs.ICALP.2020.73
https://doi.org/10.4230/LIPIcs.MFCS.2019.45
https://doi.org/10.4230/LIPIcs.MFCS.2019.45
https://doi.org/10.1145/3333003
https://doi.org/10.23638/LMCS-15(2:19)2019
https://doi.org/10.1007/978-3-540-79709-8_23
https://doi.org/10.1109/LICS.2019.8785694
https://doi.org/10.1109/LICS.2019.8785694
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1609/aaai.v33i01.33014602
https://doi.org/10.1007/978-3-540-70918-3_58
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

	1 Introduction
	2 Preliminaries
	2.1 Logic
	2.2 The WL Algorithm

	3 3-Connected Planar Graphs
	4 Decomposition into Blocks
	5 Canonisation
	6 Conclusion

