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Abstract
This is a survey of the exciting recent progress made in understanding the complexity of distributed
subgraph finding problems. It overviews the results and techniques for assorted variants of subgraph
finding problems in various models of distributed computing, and states intriguing open questions.
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1 Introduction

Distributed subgraph finding is motivated by considering a user in a network whose con-
nections are unknown to its users. Typical examples could be friends or followers in social
networks, or computing devices in large networks. A prime question is what is the local
structure of the network, e.g., do two connected users share common connections, or are
they part of a slightly larger cycle or clique? While some social networks provide the user
with information about common connections they have with their connections, the general
fundamental question that arises is that of finding small subgraphs in such distributed settings.
This type of questions also emerges when processing huge graphs by distributed systems.
For example, Hirvonen, Rybicki, Schmid, and Suomela [33] study distributed algorithms for
finding large cuts in triangle-free graphs, and Pettie and Su [46] study coloring in triangle-free
graphs.

This article surveys the state-of-the-art in distributed subgraph finding. We focus on
synchronous settings, in which the main complexity measure is the number of communication
rounds that is required in order to find a subgraph H. We will elaborate on the computational
models and on the possible interpretations of what it means to find a subgraph, but let us
start with a warm-up.

Warm-up: locality. The first simple observation is that in a synchronous network with no
additional restrictions, the round complexity of finding a subgraph H by the devices in the
network is Θ(k), where k is the diameter of H. The reason for this is that in a single round
of communication, all nodes of the network can learn the neighbors of their neighbors,1 and
by induction, within t rounds each node can learn the topology within its t-neighborhood.

1 This assumes that all nodes begin with knowledge of their neighbors. Removing this assumption incurs
another round of communication to this argument.
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3:2 Distributed Subgraph Finding: Progress and Challenges

To be more precise, what we get is that within O(k) rounds, each node is able to list all
the instances of H to which it belongs. This is the most powerful variant of subgraph finding.

The clear drawback of the above example is that it sweeps the under the carpet the
complexity of sending potentially very large messages in a single round. Therefore, while the
above classic LOCAL model [42] is suitable for studying many other tasks, it misrepresents
the complexity of subgraph finding. We will thus focus mainly on two distributed settings
that capture limited bandwidth, and in which the complexity of some subgraph finding
problems is related. Additional settings will be discussed towards the end of the survey.

Computational models. The standard model that imposes restrictions on the bandwidth
over the above setting is the CONGEST model [45]. This is a synchronous model, in which
each of n nodes can send a message to each of its neighbors in every round, where the size of
messages is bounded by O(log n) bits. This choice of this bound on the size of messages allows
sending a node identifier within a single message. Typically, the graph that is processed is
the graph that underlies the communication network.

Another important model is the CONGESTED CLIQUE model [43], which we will abbrevi-
ate as the CLIQUE model in this document, in which the n nodes are part of a fully connected
network, with the same message bound of O(log n) bits as in the CONGEST model. Here,
the input graph is an arbitrary graph G on n nodes, which is typically assigned through a
bijection to the nodes of the CLIQUE, such that each node receives as input the edges in G

that are adjacent to its assigned node.

Subgraph finding. The extreme case mentioned above, where each node in the system lists
all instances of H to which it belongs is referred to as membership listing (or sometimes
local listing or local enumeration). In settings with bounded bandwidth, this is typically a
difficult variant that is known to require many rounds of computation for many subgraphs
(see, e.g., discussion about triangle finding in Section 2). A weaker variant is that of listing
or enumeration, in which it is required that every instance of the subgraph H is output by
some node, but not necessarily a node which belongs to that instance.

Apart from these two listing variants, it is in many cases important to merely detect
whether the input contains a copy of H or not. The standard formalization of distributed
detection is that if there is no copy of H then all nodes output false, and otherwise at
least one node outputs true. The reason for not demanding a unanimous output is to avoid
incurring an overhead just for propagating the information of existence of H, for example if a
graph contains a single copy of H and has many nodes that are very far from that instance.

Similarly to the case of listing, the detection problem also has a membership variant,
which requires each node to output true or false based on whether it is a part of a copy of
H or not.

Outline. Section 2 overviews the case in which H is a triangle. It covers both the CLIQUE
and the CONGEST models. Sections 3 and 4 address larger cliques and larger cycles in both
models, respectively. Finally, Section 5 briefly mentions additional subgraphs and additional
settings.

2 Triangle Finding

A naïve simulation of the warm-up algorithm for membership listing in the CONGEST or
CLIQUE models, in which all neighbors are sent to each other neighbor one by one, gives
a trivial O(∆)-round algorithm for triangle membership listing, where ∆ is the maximum
degree in the graph. However, it is possible to do better, as we overview in this section.
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2.1 Triangle Finding in the CLIQUE Model

We begin with the CLIQUE model.

Triangle listing in the CLIQUE model. The first non-trivial algorithm for triangle finding
is due to Dolev, Lenzen, and Peled [19]. This is a deterministic triangle listing algorithm
for the CLIQUE model, which has a complexity of O(n1/3/ log n) rounds. The simplicity of
this algorithm turned out to be a huge advantage for later additional results, as we will see.
The algorithm works as follows: The vertices of the graph are partitioned into n1/3 subsets
S1, . . . , Sn1/3 , each of n2/3 nodes. Each of the n nodes receives a different tuple of three of
these subsets. A node that receives Si1 , Si2 , Si3 for indices 1 ≤ i1, i2, i3 ≤ n1/3 (that are not
necessarily different) collects all edges with one endpoint in one of the three subsets and one
endpoint in another, that is, this node collects all edges in E(Si1 , Si2)∪E(Si1 , Si3)∪E(Si2 , Si3),
and reports all triangles that it finds. It is straightforward to see that all triangles are listed
by this algorithm since the number of 3-tuples of subsets is n and so each is handled by some
node.

The round complexity of the algorithm follows by proving that each node needs to send
and receive O(n4/3) edges in total, which are to and from locations that are known to
all nodes (we will discuss this knowledge property later), since the partition to subsets is
hardcoded and so it is known to all nodes. Sending: Take a node v and assume that it is
in the subset Si. There can be at most n2/3 edges between v and nodes in Sj and these
edges need to be sent to all nodes that have Si and Sj in their 3-tuple. Since there are n1/3

such 3-tuples, these n2/3 edges need to be sent to n1/3 nodes. Repeating this for all n1/3

possibilities for j gives a total of n2/3+1/3+1/3 = n4/3 edges that v has to send. Receiving:
Each node needs to learn 3 subsets of edges, each containing at most n2/3 · n2/3 = n4/3 edges.
To conclude the complexity analysis, one can use the simple claim that [19] proves, which
states that a routing task in which each node needs to send and receive n messages in a
known pattern can be done in 2 rounds. This means that the O(n4/3) sent and received
messages per node are divided by n, yielding a complexity of O(n1/3) rounds. Noticing that
the partition and routing are fixed, one can refrain from sending actual edge identifiers and
replace them with a bit mask, which saves a logarithmic factor and results in a complexity
of O(n1/3/ log n) rounds.

This complexity turns out to be optimal. The first lower bound for this task was of
Ω(n1/3/ log3 n) rounds given by Pandurangan, Robinson and Scquizzato [44], and it was
followed by a tight lower bound of Ω(n1/3/ log n) rounds given by Izumi and Le Gall [36]. The
lower bound is proven using an information-theoretic argument, which bounds by Ω(n4/3)
the entropy of the transcript that a certain node sees on a random graph in which each edge
appears independently at random with probability 1/2. As the entropy of the transcript is a
lower bound on its length, and since each node can receive at most O(n log n) bits per round,
the lower bound on the round complexity follows. This approach also allowed [36] to obtain
a lower bound of Ω(n/ log n) rounds for local listing of triangles, in which each node needs to
output a list of all the triangles which include it.

In addition to the aforementioned algorithm, [19] also gives a triangle-listing algorithm
whose complexity improves upon the above in the case that the graph contains many
triangles. Specifically, they provide a randomized algorithm that completes in O(n1/3/(t2/3 +
1) + 1) rounds in expectation, where t is the number of triangles in the graph, and in
O(min{n1/3 log2/3 n/(t2/3 + 1), n1/3}) rounds with high probability.
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Triangle detection in the CLIQUE model. The approach of [19] inherently lists all triangles.
A natural question is whether the decision problem of triangle detection is easier than listing,
for which the answer turns out to be affirmative. Censor-Hillel, Kaski, Korhonen, Lenzen,
Paz, and Suomela [12] show how to perform matrix multiplication over a ring in the CLIQUE
model within O(n0.158) rounds. More precisely, the complexity is O(n1−2/ω) rounds, where
ω is the matrix multiplication exponent, currently known to be bounded by 2.3728596 due
to Alman and Vassilevska-Williams [2]. Ring matrix multiplication directly carries over
to triangle detection with the same complexity. The main approach of [12] is to simulate
matrix multiplication algorithms for parallel settings in the CLIQUE model. This includes
the so-called parallel 3D matrix multiplication, as well as bilinear Strassen-like algorithms.

Elaborating upon the matrix multiplication algorithms is beyond the scope of this survey.
Yet, we must mention a crucial component that underlies these CLIQUE algorithms, as well
as numerous additional CLIQUE algorithms for various tasks, which is the ingenious routing
technique of Lenzen [41]. In a nutshell, this technique provides a way to route in O(1) rounds
any set of messages in which each node needs to send and receive at most n messages.

The above complexity of O(n0.158) rounds for triangle detection in the CLIQUE model is
the current state-of-the-art. For reasons that will be explained shortly, unlike the Ω(n1/3)
lower bound for triangle listing in this model, there is no known lower bound for triangle
detection. We thus have the following major open problem in distributed triangle finding.

▶ Open Problem 2.1. What is the complexity of triangle detection in the CLIQUE model? In
particular, is there an algorithm that is faster than O(n0.158) rounds? Can any lower bound
be proven?

The second part of the above question which asks for a lower bound for triangle detection
in the CLIQUE model is considered hard: Very roughly speaking, Drucker, Kuhn, and
Oshman [20] show that the CLIQUE model is strong enough to simulate certain circuits,
which implies that for a wide range of problems, any super-constant lower bound in the
CLIQUE model would result in a major breakthrough in circuit complexity. It is noteworthy
that the problem of triangle listing does not fall into this category of problems due to its
large outputs, which explains why this does not contradict the aforementioned lower bound
of Ω(n1/3) rounds for triangle listing.

For the broadcast version of this model, a.k.a. the BROADCAST CONGESTED CLIQUE
model, in which the messages sent by a node in a certain round must all be identical, an
Ω(n/eO(

√
log n) log n)-round lower bound on deterministic triangle detection is given by [20],

through a reduction from 3-party number-on-forehead set disjointness.

Triangle listing in sparse graphs in the CLIQUE model. The first algorithms for triangle
finding in sparse graphs were given by Dolev, Lenzen, and Peled [19]. One algorithm has
a round complexity of O(∆2/n + 1) and another has a round complexity of O(A2/n +
log2+n/A2 n), where A is the arboricity of the graph.2 The latter implies a round complexity
of O(m2/n3), in terms of the number of edges, m.

Pandurangan, Robinson, and Scquizzato [44] give a randomized triangle listing algorithm
that completes within Õ(m/n5/3 + 1) rounds, w.h.p. At the heart of the algorithm lies the
partitioning approach of [19], but more is needed in order to exploit sparsity. In [44], the

2 The arboricity of a graph is the minimal number of forests that contain all of its edges. While bounded
by the maximum degree ∆, the arboricity can in some cases be much smaller, e.g., a star has a linear
maximum degree but its arboricity is 1.
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partition is random, and the routing of edges to the nodes to which they are assigned is done
in a randomized load balanced manner. This approach is what handles load balancing of the
information that needs to be routed in the system in a way which is sensitive to the sparsity
of the graph, rather than optimizing only for the worst case. Moreover, the aforementioned
Ω̃(n1/3) lower bound of [44] for triangle listing in general graphs follows from a Ω̃(m/n5/3)
lower bound for graphs with m edges.3

Censor-Hillel, Leitersdorf, and Turner [14] obtained an algorithm for sparse graphs, with a
complexity of O(m/n5/3 +1) which is similar to, but slightly improves upon, the complexity of
the algorithm of [44], by polylogarithmic factors. The algorithm of [14] is deterministic and is
based on an algorithm for sparse matrix multiplication, which completes in O((ρSρT n)1/3 +1)
rounds, where S and T are the input matrices and ρA is the average number of non-zero
elements per row of a matrix A (i.e., it is the number of non-zero elements of A, divided by
n).4 While the aforementioned semi-ring matrix multiplication algorithm of [12] assigns the
n3 element-wise multiplication to the nodes in an optimal manner, it applies to the worst
case. The general approach used by [14] for sparse matrix multiplication is to assign the
element-wise multiplications to nodes in a way which is optimal given the input sparsity.
The way this is done is by load balancing the number of non-zero elements that each node
needs to send and receive in order for all element-wise multiplications to be computed.

Notes on matrix multiplication in the CLIQUE model. The first algorithm for matrix
multiplication in this model is due to Drucker, Kuhn, and Oshman [20], who showed a
randomized complexity of O(nω−2) ≈ O(n0.373) rounds with high probability, for semirings.
A deterministic O(n1/3)-round algorithm for matrix multiplication over a semiring is given
in [12].

Censor-Hillel, Dory, Korhonen, and Leitersdorf [8] provide two additional sparse matrix
multiplication algorithms, used for distance computations. Compared to [14], these algorithms
also benefit from sparsity of the output matrix P = ST . More concretely, their first algorithm
completes in O((ρSρT ρP )1/3/n2/3 +1) rounds. This matches the complexity algorithm of [14]
for a general P , but improves upon it for sparse output matrices (recall that the multiplication
of two sparse matrices need not be sparse in general). The second algorithm of [8] pays an
additive log n over the first one, i.e., has a round complexity of O((ρSρT ρ)1/3/n2/3 + log n),
but here ρP is replaced by ρ, which stands for the number of elements per row that are
needed. That is, there is no need to compute any element in the output matrix P that is not
among the ρ smallest ones in its row (given an appropriate definition of the total order on
matrix elements). In other words, the complexity of this algorithm does not depend on the
sparsity of P = ST , but on some sparsity parameter that is given as input.

Additional algebraic algorithms in the CLIQUE model with important applications were
given by Le Gall [27]. These include fast algorithms for rectangular matrix multiplications,
as well as for multiple instances of matrix multiplication.

As explained earlier, we do not expect a lower bound for matrix multiplication in the
CLIQUE model. However, it is shown in [12] that a near-linear number of rounds is required
in the BROADCAST CONGESTED CLIQUE model.

Finally, we mention that matrix multiplication based algorithms also give results for
counting for some small subgraphs [12,14].

3 In fact, the results of [44] hold for the k-machine model (see Klauck, Nanongkai, Pandurangan, and
Robinson [39]), which is similar to the CLIQUE model, but has k nodes rather than n. For a general k,
the complexity of the algorithm is Õ(m/n5/3 + n/k4/3), and the lower bound is Ω̃(m/k5/3).

4 The sparse matrix multiplication algorithm of [14] can also be converted to the k-machine model, in
which it has a complexity of O(n4/3(ρSρT )1/3/k5/3 + 1) rounds.
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2.2 Triangle Finding in the CONGEST Model
We now move to triangle finding problems in the CONGEST model.

The first breakthroughs in this model are the first non-trivial (sublinears) algorithms
due to Izumi and Le Gall [36]. These are randomized algorithms for triangle listing and
detection in O(n3/4 log n) and O(n2/3 log2/3 n) rounds w.h.p., respectively. The approach
of these algorithms is to split the task of finding triangles into two parts: one which looks
for triangles that are ϵ-heavy and another which looks for other triangles, where an ϵ-heavy
triangle is one in which at least one of its edges appears in at least nϵ triangles. Very roughly
speaking, heavy triangles can be detected within O(n1−ϵ) rounds by randomly sampling
which edges to send, and can be listed in O(n1−ϵ/2) rounds by randomly hashing the edges
sent to different neighbors. A more involved argument shows that non-heavy triangles can
be listed in O(n1−ϵ + n(1+ϵ)/2 log n) rounds, w.h.p. Carefully plugging in the right values of
nϵ = Õ(n1/3) and nϵ = Õ(n1/2) then gives the round complexities for triangle detection and
listing.

The breakthrough that came after [36] is due to Chang, Pettie, and Zhang [15], who
showed triangle listing (and thus also detection) in the CONGEST model in Õ(n1/2) rounds,
w.h.p. In a nutshell, the main methodology of this algorithm has two elements: One element
is an algorithm for decomposing the graph into well-connected components which could
behave somewhat similarly to the CLIQUE model. The second element is to have the nodes
of each component search for triangles that have an edge in the component.

In more detail, [15] showed how to compute the following expander decomposition in
O(n1/2) rounds. This decomposition is a partition of the set of edges of the graph into
three sets. In the first set Em, each connected component has minimum degree n1/2 and
conductance Ω(1/ polylog n). The graph induced by the edges in the second set, Es, is such
that its arboricity is at most n1/2. The third set of remaining edges, Er is at most a constant
fraction of the total number of edges, and the triangle listing algorithm which we discuss in
what follows recurses over this remaining set of edges. The algorithm for the decomposition
itself is beyond the scope of this survey, and here we only mention that it is rather far from
being merely a distributed implementation of its centralized counterpart.5

The triangle listing algorithm over the two first sets above then works as follows. Since
the arboricity in Es is bounded by n1/2, triangles with at least one edge in this set are listed
in a straightforward manner, using an orientation that is deduced by the decomposition
algorithm. Then, triangles with an edge in any high-conductance component (i.e., in Em) are
listed by having the nodes of each component mimic a variant of the triangle listing algorithm
in the CLIQUE model of Dolev, Lenzen, and Peleg [19]. This mimicking has three aspects.
First, it replaces the deterministic partition of [19] with a randomized partition, in order to
have a good probability for a good balance of information within the component. Second, the
fact that a component has large conductance indeed implies that it has a small mixing time,
but this alone is insufficient for efficiently exchanging large amounts of information within
the component. To this end, the algorithm makes use of the random-walk based routing
techniques of Ghaffari, Kuhn, and Su [28] and Ghaffari and Li [29], whose complexities
improve as the mixing time decreases. Finally, even with these ingredients, some nodes of a
component may have too many edges that touch them that are not inside the component,
preventing them from efficiently using their inner-component edges for routing this large
amount of information. Thus, some additional edges are added to the set Er of remaining
edges that the decomposition left for recursing over.

5 The actual decomposition result is more general, with a parameter δ which is tuned here to be δ = 1/2
in order to optimize the running time of the triangle listing algorithm that uses it.
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The decomposition approach was refined by Chang and Saranurak [16], allowing the
complexity of triangle listing to drop to Õ(n1/3) rounds, w.h.p. Since the Ω̃(n1/3) lower
bound for triangle listing in the CLIQUE model directly applies also in CONGEST, this
complexity is near-optimal (up to polylog n factors). At a high level, the decomposition
obtained in [16] improves upon the one in [15] in that it does not have Es at all (the bounded
arboricity part) and in the complexity of obtaining it. In addition, a somewhat modified
version of the routing algorithms of [28,29] is introduced, for the triangle listing usage of the
decomposition.

Chang and Saranurak [17] then show deterministic algorithms for expander decomposition
and for expander routing. These yield round complexities of O(n0.58) and n2/3 + o(1) for
deterministic triangle detection and triangle listing, respectively.

An additional algorithm for deterministic triangle listing is given by Huang, Pettie, Zhang,
and Zhang [34]. The complexity of this algorithm, given in terms of the maximum degree ∆,
is O(∆/ log n + log log ∆) rounds, w.h.p. For ∆ = Õ(n1/3), this is faster compared with the
algorithm of [17], while the latter is faster for the larger range of ∆.

Since the complexities of both [17] and [34] do not reach yet the lower bound of Ω̃(n1/3)
rounds, we note the following open question.

▶ Open Problem 2.2. What is the complexity of deterministic triangle listing in the
CONGEST model? Does randomization help for this problem?

The above are triangle listing algorithms so they clearly also solve the detection variant.
However, as opposed to triangle listing, for triangle detection we currently do not have good
lower bounds. What we do know is the following. Abboud, Censor-Hillel, Khoury, and
Lenzen [1] showed that triangle detection cannot be solved in the CONGEST model within a
single round by a deterministic algorithm. Specifically, they showed that any single-round
algorithm requires a bandwidth of ∆ log n bits. Fischer, Gonen, Kuhn, and Oshman [24]
showed that this also holds for randomized algorithms, by showing that randomized single-
round algorithms require a bandwidth of ∆ bits. Both works also addressed the round
complexity of 1-bit bandwidth algorithms, with a lower bound of Ω(log∗ n) rounds given
in [1], which was improved to Ω(log n) rounds in [24].6

We will later (Section 4) describe some lower bounds for finding other subgraphs in the
CONGEST model which are based on reductions from 2-party communication complexity
problems, and there we will see why these techniques do not give any meaningful lower bound
for triangles. Moreover, in the spirit of the aforementioned argument of Drucker, Kuhn,
and Oshman [20], Eden, Fiat, Fischer, Kuhn, and Oshman [21] showed that a lower bound
of ω(log n) for triangle detection in CONGEST would imply major breakthroughs in circuit
complexity. This leaves us with another curious gap in our knowledge of triangle finding in
this model.

▶ Open Problem 2.3. What is the complexity of triangle detection in the CONGEST model
(randomized and deterministic)?

3 Finding Larger Cliques

The CLIQUE model. The deterministic triangle listing algorithm of [19] for the CLIQUE
model can be easily generalized to list larger cliques. To find cliques of size p for some integer
p ≥ 3, the set of nodes is partitioned into n1/p sets. Each node is assigned a p-tuple of sets

6 The function log∗ n counts the number of times the logarithm function needs to be applied starting
from n until the value drops to at most 1.
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and learns all edges between any two of its sets. A similar argument to that of triangles
shows that indeed all p-cliques are listed by this algorithm, and that its round complexity
is O(n1−2/p/ log n). In fact, it is easy to see that this algorithm lists all instances of any
subgraph H of p nodes.

This complexity is optimal, due to a lower bound of Ω̃(n1−2/p) rounds by Fischer, Gonen,
Kuhn, and Oshman [24], which generalizes the aforementioned lower bound for triangle listing
of [44] and [36], using additional machinery. In the BROADCAST CONGESTED CLIQUE
model, Drucker, Kuhn, and Oshman [20] show that Ω(n/ log n) rounds are needed for p-
cliques, even for the stronger detection variant, for almost all values of p ≥ 4 (as long as
p ≤ (1 − ϵ)n for some constant ϵ > 0).

For sparse graphs, Censor-Hillel, Le Gall, and Leitersdorf [11] show that listing can be
complete within Õ(m/n1+2/p + 1) rounds, for p ≥ 3. This follows from their CONGEST
approach which is discussed below, and is tight up to polylogarithmic factors using the lower
bound technique of [24,36,44].

As opposed to the listing variant, for p-clique detection the aforementioned hardness
of obtaining lower bounds in the CLIQUE model by [20] kicks in, and we do not know any
non-constant lower bound (or any larger than 1 lower bound, for that matter), leaving the
complexity of p-clique detection open for p > 4.

▶ Open Problem 3.1. What is the complexity of p-clique detection in the CLIQUE model
(randomized and deterministic), for p ≥ 4?

The CONGEST model. Algorithms for finding larger cliques in the CONGEST model, as in
the case of triangles, are also based on the conductance decomposition algorithms of Chang,
Pettie, and Zhang [15] and of Chang and Saranurak [16]. The first sublinear algorithms for
larger cliques in CONGEST are due to Eden, Fiat, Fischer, Kuhn, and Oshman [21]. They
show that 4-cliques can be listed in Õ(n5/6+o(1)) rounds and that 5-cliques can be listed in
Õ(n21/22+o(1)) rounds, w.h.p. These listing algorithms are more involved compared with the
triangle listing algorithm, due to the need to handle, for example, a 4-clique with one edge
within a certain component and another edge within a different component, which imposes a
complex challenge that becomes even worse as p grows.

Following [21], the work of Censor-Hillel, Le Gall, and Leitersdorf [11] provided algorithms
for listing p-cliques in Õ(np/(p+2)) rounds, w.h.p., for all p ≥ 4 except for p = 5. For p = 5,
this work gave an algorithm which completes in Õ(n3/4+o(1)) rounds, w.h.p. The main
approach of these algorithms is iterating over the decomposition in a way that balances the
minimum degree and the arboricity thresholds. Within each cluster, sparsity-aware listing
helps speeding up the computation. While these algorithms improved upon the state-of-the-
art for p = 4, 5 and were the first sublinear algorithms for p ≥ 6, they fell short of the [24]
lower bound of Ω̃(n1−2/p) rounds. The question of whether clique listing in the CONGEST
model is as easy as, or harder than, its CLIQUE counterpart, was recently answered by Censor-
Hillel, Chang, Le Gall, and Leitersdorf [7], using the newer conductance decomposition of
Chang and Saranurak [16] and additional mechanisms for optimal sparsity-aware listing and
for efficient transmission of edges in the clutsers.

For p = 4, the tight listing of [7] also implies that 4-clique detection is not easier than
its listing counterpart in the CONGEST model. This is due to a lower bound of Ω̃(n1/2) for
4-clique detection in CONGEST, by Czumaj and Konrad [18]. The lower bound of [18] is
more general, and says that detecting p-cliques in the CONGEST model requires Ω̃(n1/2/p)
rounds for p ≤ n1/2, and Ω̃(n/p) rounds for p ≥ n1/2. Thus, for values of p larger than 4,
there is still a gap between detection and listing.
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▶ Open Problem 3.2. What is the complexity of p-clique detection in the CONGEST model
(randomized and deterministic), for p > 4?

The lower bound of [18] uses a reduction from 2-party set disjointness. The same work
also shows that listing can be done sufficiently fast by the two parties, which shows that if
the detection problems are harder, a different lower bound technique must be used.

4 Finding Larger Cycles

The CLIQUE model. Since the algorithm of [19] easily lists any subgraph of p nodes, we
have that, in particular, p-cycles can be listed in the CLIQUE model within O(n1−2/p) rounds
(deterministically).

The detection variant was then addressed by Censor-Hillel, Kaski, Korhonen, Lenzen, Paz,
and Suomela [12], who show a deterministic constant-round algorithm for detecting 4-cycles.
In addition, they show an O(n0.158)-round algorithm for detecting p-cycles, for any constant
p. More accurately, the complexity is 2O(p)n0.158 rounds. This is a randomized algorithm
that relies on the color coding technique of Alon, Yuster, and Zwick [3], in order to avoid too
much congestion that would be caused by collecting all possible candidates for cycle nodes.
More recently, Censor-Hillel, Fischer, Gonen, Le Gall, Leitersdorf, and Oshman [10] showed
that 2p-cycles can be detected in O(1) rounds for any p, using a technique which also allows
fast girth approximation. This is, notably, a deterministic algorithm. For odd values of p, it
is still not known whether there is a constant-round p-cycle detection algorithm.

▶ Open Problem 4.1. What is the complexity of p-cycle detection in the CLIQUE model
(randomized and deterministic), for odd values of p?

The CONGEST model. For 4-cycle detection, Drucker, Kuhn, and Oshman [20] provide a
tight complexity of Θ̃(n1/2), by providing both an algorithm and a lower bound. They also
show that for any odd value of p, detecting p-cycles requires Ω̃(n) rounds. The upper bound
is obtained by setting a threshold of T = 2n1/2, and defining heavy nodes as nodes with at
least T neighbors. First, all non-heavy nodes send all their neighbors to all their neighbors,
in T rounds. This detects 4-cycles which have at least 2 non-neighboring non-heavy nodes.
Then, a heavy node v with more than T heavy neighbors reports that there exists a 4-cycle.
Finally, a heavy node v with at most T heavy neighbors sends its heavy neighbors to all of
its neighbors, again in T rounds. The reason for which too many heavy neighbors imply a
4-cycle is because this means that the total number of neighbors of heavy neighbors is at least
T 2, which is more than 2n, and so there must be a node other than v which is connected
to two of the neighbors of v, and hence we have a 4-cycle. Otherwise, if v sends its heavy
neighbors to all of its neighbors, then any 4-cycle with two neighboring nodes that are heavy
is detected by one of its nodes (by a simple case analysis).

The matching lower bound for 4-cycles is a good point of reference for understanding
lower bounds for the CONGEST model that rely on reductions from 2-party communication
complexity. It relies on the fact that there is a 4-cycle-free graph G on n nodes with Θ(n3/2)
edges, due to Erdös [22], whose work implies that this is the Turán Number of 4-cycles [48].
The setting is as follows. Each of two players, Alice and Bob, has an input string of k bits,
x = (x1, . . . , xk) and y = (y1, . . . , yk), respectively. By communicating with each other, the
players need to compute the set disjointness function Disj(x, y), whose value is 1 if and only
if the input strings represent disjoint subsets of the set {1, . . . , k}, that is, if and only if there
is no index 1 ≤ i ≤ k such that xi = yi = 1. The 2-party set disjointness problem is known
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to require exchanging Ω(k) bits, even by randomized protocols, due to Kalyanasundaram
and Schnitger [38], Razborov [47], and Bar-Yossef, Jayram, Kumar, and Sivakumar [4]. The
reduction to distributed detection of 4-cycles is as follows. Each of the two players takes a
subgraph of the 4-cycle free graph G according to their respective input. That is, the edges
of G are mapped to the set {1, . . . , k}, with a value of n for which k = Θ(n3/2). Each player
imagines a subgraph of G that has an edge for any index in which their input is 1. The
players then imagine that their two subgraphs are connect by a perfect matching: each node
in Alice’s subgraph is connected to the respective node in Bob’s subgraph (the nodes of both
subgraphs are the nodes of G). Now, it is easy to see that the combined graph contains a
4-cycle if and only if the input strings x, y are disjoint, as the only 4-cycles that can occur
are those that have two edges from the perfect matching, and two edges that represent
the same index in the bit strings of the players. Thus, if Alice and Bob can simulate a
distributed algorithm for 4-cycle detection, they solve set disjointness. They simulate a given
algorithm as follows. Any message that the algorithm sends between two nodes that are in
the same subgraph (either that of Alice of that of Bob) can be internally simulated by the
respective player. The only messages that need to be explicitly sent between the two players
are those that are sent along the edges of the perfect matching. There are n such edges, and
so simulating a round of the detection algorithms costs O(n log(n)) bits of communication
between the two players. Since Ω(k) = Ω(n3/2) is a lower bound on the total number of bits
that need to be exchanged for solving set disjointness, we get that the distributed 4-cycle
detection algorithm must consist of at least Ω(k/n log(n)) = Ω(n3/2/n log(n)) = Ω̃(n1/2)
rounds.

A remark on triangle detection. While this approach for reductions which imply CONGEST
lower bounds is heavily used in the literature, it is doomed to fail for triangle detection. The
reason is that any triangle in a graph has at least one player which knows at least two of its
nodes and thus all of its edges, which nullifies any attempt for a lower bound constructions,
regardless of the 2-party problem or the graph construction.

Korhonen and Rybicki [40] then showed that the Ω̃(n1/2) lower bound for 4-cycles can be
extended and applies to p-cycles for all even values of p. Notably, in the spirit of the results
of [20], it is shown in Censor-Hillel, Fischer, Gonen, Oshman, Le Gall, and Leitersdorf [10]
that going above this lower bound for p = 6 would imply new lower bounds in circuit
complexity, which are considered hard to obtain. The reason that this barrier for lower
bounds works in the CONGEST model is because it is shown that it is sufficient to consider
high-conductance clusters, and that these can simulate circuits in a similar manner to the
CLIQUE model.

On the upper bound side, Korhonen and Rybicki [40] showed that p-cycle detection for
any constant p can be done in a linear in n number of rounds. For odd values of p, this is
optimal due to the above lower bound. They also showed that this can be done faster for
degenerate graphs. Fischer, Gonen, Kuhn, and Oshman [24] showed how to detect 2p-cycles
within O(n1−1/p(p−1)) rounds, for p ≥ 2. This was subsequently improved by Eden, Fiat,
Fischer, Kuhn, and Oshman [21], who showed how to detect 2p-cycles in Õp(n1−2/(p2−p+2))
rounds for odd p ≥ 3, and in Õp(n1−2/(p2−2p+4)) rounds for even p ≥ 4. They also show that
as opposed to the case of 4-cliques, the listing variant of 4-cycles is harder than its detection
counterpart, requiring Ω̃(n) rounds. For p = 3, 4, 5, Censor-Hillel, Fischer, Gonen, Oshman,
Le Gall, and Leitersdorf [10] then showed improved algorithms (randomized) for detecting
2p-cycles, which completes within Õ(n1−1/p) rounds. Still, the upper bounds here are above
the respective Ω̃(n1/2) lower bound.

▶ Open Problem 4.2. What is the complexity of p-cycle detection in the CONGEST model
(randomized and deterministic), for even value of p ≥ 6?
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5 Additional Variants of Distributed Subgraph Finding

Finding Other Subgraphs. The literature has also been studying additional subgraphs,
apart from cliques and cycles.

Drucker, Kuhn, and Oshman [20] study the complexity of finding trees and complete
bipartite subgraphs in the BROADCAST CONGESTED CLIQUE model. Korhonen and Ry-
bicki [40] show that trees can be detected in O(1) rounds in the BROADCAST CONGEST
model.

On the lower bound front, Gonen and Oshman [31] showed lower bounds for finding
subgraphs that are created from smaller ones using certain allowed operations. Fischer,
Gonen, Kuhn, and Oshman [24] showed that for any p ≥ 4, there exists a subgraph H of
size p such that H detection requires Ω̃(n2−Θ(1/p)) rounds. Eden, Fiat, Fischer, Kuhn, and
Oshman [21] showed that this complexity is roughly the right one, by providing an upper
bound of Õ(n2−2/(3p+1) + o(1)) rounds. In particular, their result shows that there does not
exist a constant-sized subgraph for which detection requires a truly quadratic number of
rounds.

Subgraph Freeness Testing. The variant of testing for H-freeness has also been studied in
the distributed setting, initially introduced by Brakerski and Patt-Shamir [6].

The definition of distributed testing for H-freeness requires that if there is no instance of
H in the graph then all the nodes output true, but instead of requiring at least one node
to output false in case there is an instance of H as would be an analog to the detection
problem, testing only requires at least one node to output false in case the graph is far from
being H-free. Here, being ϵ-far from having a property is the same as its standard definition
by Goldreich, Goldwasser, and Ron [30], and means that no matter which ϵ-fraction of the
graph is changed (removed, in the case of H-freeness), the resulting graph must still have
a copy of H. For triangles and other small subgraphs, this typically means that there are
many instances of H in a graph that is far from being H-free.

For testing triangle-freeness, Censor-Hillel, Fischer, Schwartzman, and Vasudev [9] showed
a O(1/ϵ2)-round algorithm. This was later improved by Even, Fischer, Fraigniaud, Gonen,
Levi, Medina, Montealegre, Olivetti, Oshman, Rapaport, and Todinca [23] and Fraigniaud
and Olivetti [25] to a complexity of O(1/ϵ) rounds. These, along with the work of Fraigniaud,
Rapaport, Salo, and Todinca [26] also show fast testing for larger cliques, cycles, and
additional subgraphs.

Subgraph Finding in Dynamic Networks. Subgraph finding has also been studied from the
perspective of dynamic networks. Bonne and Censor-Hillel [5] characterize the bandwidth
that is required for various clique finding problems by algorithms that work in a dynamic
setting and must produce the correct answer immediately at the end of the round in which a
topology change occurs.

Subgraph finding in a harsh dynamic setting in which the number of topology changes
per round is unlimited, was studied by Censor-Hillel, Kolobov, and Schwartzman [13], who
showed upper and lower bounds for small subgraphs.

Subgraph Finding in Quantum Networks. Izumi, Le Gall, and Magniez [37] have shown
that in a quantum CONGEST model, triangle detection can be solved within Õ(n1/4) rounds,
using a distributed version developed by Izumi and Le Gall in [35] of a Grover Search [32].
We note that the listing variant for triangles cannot be improved using quantum tools, since
it is obtained through information theoretic arguments, which apply to this setting as well.
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