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Abstract
We present algorithms that break the Õ(nr)-independence-query bound for the Matroid Intersection
problem for the full range of r; where n is the size of the ground set and r ≤ n is the size of
the largest common independent set. The Õ(nr) bound was due to the efficient implementations
[CLSSW FOCS’19; Nguyễn 2019] of the classic algorithm of Cunningham [SICOMP’86]. It was
recently broken for large r (r = ω(

√
n)), first by the Õ(n1.5/ε1.5)-query (1 − ε)-approximation

algorithm of CLSSW [FOCS’19], and subsequently by the Õ(n6/5r3/5)-query exact algorithm of
BvdBMN [STOC’21]. No algorithm – even an approximation one – was known to break the Õ(nr)
bound for the full range of r. We present an Õ(n

√
r/ε)-query (1 − ε)-approximation algorithm and

an Õ(nr3/4)-query exact algorithm. Our algorithms improve the Õ(nr) bound and also the bounds
by CLSSW and BvdBMN for the full range of r.
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1 Introduction

Matroid Intersection is a fundamental problem in combinatorial optimization that has been
studied for more than half a century. The classic version of this problem is as follows: Given
two matroids M1 = (V, I1) and M2 = (V, I2) over a common ground set V of n elements,
find the largest common independent set S∗ ∈ I1 ∩I2 by making independence oracle queries1

of the form “Is S ∈ I1?” or “Is S ∈ I2?” for S ⊆ V . The size of the largest common
independent set is usually denoted by r.

Matroid intersection can be used to model many other combinatorial optimization
problems, such as bipartite matching, arborescences, spanning tree packing, etc. As such,
designing algorithms for matroid intersection is an interesting problem to study.

In this paper, we consider the task of finding a (1−ε)-approximate solution to the matroid
intersection problem, that is finding some common independent set S of size at least (1− ε)r.
We show an improvement of approximation algorithms for matroid intersection, and as a
consequence also obtain an improvement for the exact matroid intersection problem.

1 There are also other oracle models considered in the literature (e.g. rank-oracles), but in this paper
we focus on the independence query model. Whenever we say query in this paper, we thus mean
independence query.
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31:2 Breaking O(nr) for Matroid Intersection

Previous work. Polynomial algorithms for matroid intersection started with the work
of Edmond’s O(n2r)-query algorithms [6, 7, 8] in the 1960s. Since then, there has been
a long line of research e.g. [1, 2, 3, 4, 5, 9, 10]. Cunningham [5] designed a O(nr1.5)-query
blocking-flow algorithm in 1986, similar to that of Hopcroft-Karp’s bipartite-matching or
Dinic’s maximum-flow algorithms. Chekuri and Quanrud [4] pointed out that Cunningham’s
classic algorithm [5] from 1986 is already a O(nr/ε)-query (1− ϵ)-approximation algorithm.
Recently, Chakrabarty-Lee-Sidford-Singla-Wong [3] and Nguyễn [11] independently showed
how to implement Cunningham’s classic algorithm using only Õ(nr) independence queries.
This is akin to spending Õ(n) queries to find each of the so-called augmenting paths. A
fundamental question is whether several augmenting paths can be found simultaneously to
break the Õ(nr) bound.

This question has been answered for large r (r = ω(
√

n)), first by the Õ(n1.5/ε1.5)-
query (1− ϵ)-approximation algorithm of Chakrabarty-Lee-Sidford-Singla-Wong2 [3], and
very recently by the randomized Õ(n6/5r3/5)-query exact algorithm of Blikstad-v.d.Brand-
Mukhopadhyay-Nanongkai [2]. Whether we can break the O(nr)-query bound for the full
range of r remained open even for approximation algorithms.

Our results. We break the O(nr)-query bound for both approximation and exact algorithms.
We first state our results for approximate matroid intersection.3

▶ Theorem 1 (Approximation algorithm). There is a deterministic algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common

independent set S ∈ I1 ∩ I2 with |S| ≥ (1− ε)r, using O

(
n
√

r log r

ε

)
independence queries.

Plugging Theorem 1 in the framework of [2], we get an improved algorithm – more efficient
than the previous state-of-the-art – for exact matroid intersection which we state next.

▶ Theorem 2 (Exact algorithm). There is a randomized algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common independent set
S ∈ I1 ∩I2 of maximum cardinality r, and w.h.p.4 uses O(nr3/4 log n) independence queries.
There is also a deterministic exact algorithm using O(nr5/6 log n) queries.

▶ Remark 3. Although we only focus on the query-complexity in this paper, we note
that the time-complexity of the algorithms are dominated by query-oracle calls. That
is, our approximation algorithm runs in Õ(n

√
rTind/ε) time, and the exact algorithms in

Õ(nr3/4Tind) (randomized) respectively Õ(nr5/6Tind) time (deterministic), where Tind denotes
the time-complexity of the independence-oracle.

1.1 Technical Overview
Approximation algorithm. Our approximation algorithm (Theorem 1) is a modified version
of Chakrabarty-Lee-Sidford-Singla-Wong’s Õ(n1.5/ε1.5)-query approximation algorithm [3,
Section 6]. The algorithm is based on the ideas of Cunningham’s classic blocking-flow

2 In the same paper they also show a Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm.
3 The Õ(n2r−1ε−2 + r1.5ε−4.5)-query algorithm of [3] is the only previous algorithm which is more

efficient than our algorithm in some range of r and ε. Actually, since the Õ(n2r−1ε−2 + r1.5ε−4.5)-query
algorithm use the Õ(n1.5/ε1.5) algorithm as a subroutine, we do get a slightly improved version by
using our Õ(n

√
r/ε) algorithm as the subroutine instead: Õ(n2r−1ε−2 + r1.5ε−4).

4 w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large constant c.
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algorithm [5] and runs in O(1/ε) phases, where in each phase the algorithm seeks to find
a maximal set of augmentations in the exchange graph. Given a common independent
set S ∈ I1 ∩ I2, the exchange graph G(S) is a directed bipartite graph (with bipartition
(S + {s, t}, V \ S)). Finding a shortest (s, t)-path, called an augmenting path, in G(S) means
one can increase the size of the common independent set S by 1. Since the exchange graph
changes after each augmentation,5 and we do not know how to find a single augmenting path
faster than Ω(n) queries, the need to find several augmentations in parallel arises. [3, Section 6]
introduces the notion of augmenting sets: a generalization of the classical augmenting paths
but where one can perform many augmentations in parallel.

So the revised goal of the algorithm is to, in each phase, efficiently find a maximal
augmenting set (akin to a blocking-flow in bipartite matching or flow algorithms). Towards
this goal, the algorithm maintains a relaxed version of augmenting set – called a partial
augmenting set – and keeps refining it to make it “better” (i.e. closer to a maximal augmenting
set). Here we give two independent improvements on top of the algorithm of [3]:
1. The algorithm of [3] refines the partial augmenting set by a sequence of operations on

two adjacent distance layers in the exchange graph. In our algorithm, we instead consider
three consecutive layers for our basic refinement procedures. This lets us focus our analysis
on what happens in S – the “left” side of the bipartite exchange graph – which contains at
most r elements in total (in contrast to [3] where the performance analysis is dependent
on all n elements). The number of times we need to run the refinement procedures thus
depends on r, instead of n, which makes the algorithm faster when r = o(n).

2. When the partial augmenting set is “close enough” to a maximal augmenting set, [3] falls
back to finding the remaining augmenting paths one at a time. In our algorithm, we
also change to a different procedure when the partial augmenting set is close enough to
maximal. The difference is that, instead of finding arbitrary augmenting paths, we find a
special type of valid paths with respect to the partial augmenting set, so that these paths
can be used to further improve (refine) the partial augmenting set. The number of valid
paths we need to find is less than the number of augmenting paths [3] needs to find. This
decreases the dependency on ε in the final algorithm.

The first improvement (Item 1) replaces the
√

n term with a
√

r term in the query complexity
of the algorithm. The second improvement (Item 2) shaves off a 1/

√
ε term from the query

complexity. Together they thus bring down the query complexity from Õ(n
√

n
ε
√

ε
) in [3] to

Õ(n
√

r
ε ) as in our Theorem 1. Note that these two improvements are independent of each

other, and can be applied individually.

Exact algorithm. To obtain the exact algorithm (Theorem 2), we use the framework of
Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai’s Õ(n6/5r3/5)-query exact algorithm [2]. The
main idea of this algorithm is to combine approximation algorithms – which can efficiently
find a common independent set only εr away from the optimal – with a randomized Õ(n

√
r)-

query subroutine to find each of the remaining few, very long augmenting paths. The
Õ(n6/5r3/5)-query exact algorithm [2] currently uses Chakrabarty-Lee-Sidford-Singla-Wong’s
Õ(n1.5/ε1.5) approximation algorithm [3] as a subroutine. Simply replacing it with our
improved approximation algorithm (Theorem 1) yields our Õ(nr3/4)-query exact algorithm.

5 Unlike what happens in augmenting path algorithms for flow and bipartite matching, where the
underlying graphs remain the same.
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2 Preliminaries

We use the standard definitions of matroid M = (V, I); rank rk(X) for any X ⊆ V ; exchange
graph G(S) for a common independent set S ∈ I1 ∩ I2; and augmenting paths in G(S)
throughout this paper. For completeness, we define them below. We also need the notions of
augmenting sets introduced by [3], which we also define in later this section.

Matroids

▶ Definition 4 (Matroid). A matroid is a tuple M = (V, I) of a ground set V of n elements,
and non-empty family I ⊆ 2V of independent sets satisfying
Downward closure: if S ∈ I, then S′ ∈ I for all S′ ⊆ S.
Exchange property: if S, S′ ∈ I, |S| > |S′|, then there exists x ∈ S\S′ such that S′∪{x} ∈ I.

▶ Definition 5 (Set notation). We will use A + x and A− x to denote A ∪ {x} respectively
A \ {x}, as is usual in matroid intersection literature. We will also use Ā := V \ A,
A + B := A ∪B, and A−B := A \B.

▶ Definition 6 (Matroid rank). The rank of A ⊆ V , denoted by rk(A), is the size of the
largest (or, equivalently, any maximal) independent set contained in A. It is well-known
that the rank-function is submodular, i.e. rk(A + x)− rk(A) ≥ rk(B + x)− rk(B) whenever
A ⊆ B ⊆ V and x ∈ V \B.6 Note that rk(A) = |A| if and only if A ⊆ I.

▶ Definition 7 (Matroid Intersection). Given two matroids M1 = (V, I1) and M2 = (V, I2)
over the same ground set V , a common independent set S is a set in I1 ∩ I2. The matroid
intersection problem asks us to find the largest common independent set – whose cardinality
we denote by r. We use rk1 and rk2 to be the rank functions of the corresponding matroids.

The Exchange Graph

Many matroid intersection algorithms, e.g. those in [1, 2, 5, 7, 9, 11], are based on iteratively
finding augmenting paths in the exchange graph.

▶ Definition 8 (Exchange graph). Given two matroids M1 = (V, I1) and M2 = (V, I2) over
the same ground set, and a common independent set S ∈ I1 ∩I2, the exchange graph G(S) is
a directed bipartite graph on vertex set V ∪ {s, t} with the following arcs (or directed edges):
1. (s, b) for b ∈ S̄ when S + b ∈ I1.
2. (b, t) for b ∈ S̄ when S + b ∈ I2.
3. (a, b) for b ∈ S̄, a ∈ S when S + b− a ∈ I1.
4. (b, a) for b ∈ S̄, a ∈ S when S + b− a ∈ I2.
We will denote the set of elements at distance k from s by the distance-layer Dk.

▶ Definition 9 (Shortest augmenting path). A shortest (s, t)-path p = (s, b1, a1, b2, a2, . . . ,

aℓ, bℓ+1, t) (with bi ∈ S̄ and ai ∈ S) in G(S) is called a shortest augmenting path. We can
augment S along the path p to obtain S′ = S ⊕ p = S + b1 − a1 + b2 − a2 . . . + bℓ+1, which is
well-known to also be a common independent set (with |S′| = |S|+ 1) [5]. Conversely, there
must exist a shortest augmenting path whenever |S| < r.

The following lemma is very useful for (1−ε)-approximation algorithms since it essentially
says that one needs only to consider paths up to length O( 1

ε ).

6 Usually denoted as the diminishing returns property of submodular functions.
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▶ Lemma 10 (Cunningham [5]). If the length of the shortest (s, t)-path in G(S) is at least
2ℓ + 2, then |S| ≥ (1−O(1/ℓ))r.

▶ Lemma 11 (Exchange discovery by binary search [3, 11]). Suppose M = (V, I) is a matroid,
Y ⊆ X ∈ I, and b ̸∈ X such that X + b /∈ I. Then, using O(log |Y |) independence queries
one can find some a ∈ Y such that X + b− a ∈ I or determine that none exist.7

Augmenting Sets

A generalization of the classical augmenting paths – called augmenting sets – play a key
role in the approximation algorithm of [3], and therefore also in the modified version of this
algorithm presented in this paper. In order to efficiently find “good” augmenting sets, the
algorithm works with a relaxed form of them instead: partial augmenting sets. The following
definitions and key properties of (partial) augmenting sets are copied from [3] where one can
find the corresponding proofs.

▶ Definition 12 (Augmenting Sets, from [3, Definition 24]). Let S ∈ I1 ∩ I2 and G(S) be
the corresponding exchange graph with shortest (s, t)-path of length 2(ℓ + 1) and distance
layers D1, D2, . . . , D2ℓ+1. A collection of sets Πℓ := (B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) form an
augmenting set (of width w) in G(S) if the following conditions are satisfied:
(a) For 1 ≤ k ≤ ℓ + 1, we have Ak ⊆ D2k and Bk ⊆ D2k−1.
(b) |B1| = |A1| = |B2| = · · · = |Bℓ+1| = w

(c) S + B1 ∈ I1
(d) S + Bℓ+1 ∈ I2
(e) For all 1 ≤ k ≤ ℓ, we have S −Ak + Bk+1 ∈ I1
(f) For all 1 ≤ k ≤ ℓ, we have S −Ak + Bk ∈ I2

▶ Definition 13 (Partial Augmenting Sets, from [3, Definition 37]). We say that Φℓ :=
(B1, A1, B2, A2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set if it satisfies the conditions (a),
(c), (d), and (e) of an augmenting set, plus the following two relaxed conditions:
(b) |B1| ≥ |A1| ≥ |B2| ≥ · · · ≥ |Bℓ+1|.
(f) For all 1 ≤ k ≤ ℓ, we have rk2(S −Ak + Bk) = rk2(S).

▶ Theorem 14 (from [3, Theorem 25]). Let Πℓ := (B1, A1, B2, A2, · · · , Bℓ, Aℓ, Bℓ+1) be the
an augmenting set in the exchange graph G(S). Then the set S′ := S ⊕Πℓ := S + B1 −A1 +
B2 − · · ·+ Bℓ −Aℓ + Bℓ+1 is a common independent set.8

We also need the notion of maximal augmenting sets, which naturally correspond to a
maximal ordered collection of shortest augmenting paths, where, after augmentation, the
(s, t)-distance must have increased. The following are due to [3].

▶ Definition 15 (Maximal Augmenting Sets, from [3, Definition 35]). Let Πℓ = (B1, A1, B2, · · · ,

Bℓ, Aℓ, Bℓ+1) and Π̃ℓ = (B̃1, Ã1, B̃2, · · · , B̃ℓ, Ãℓ, B̃ℓ+1) be two augmenting sets in G(S). We
say Π̃ℓ contains Πℓ if Bk ⊆ B̃k and Ak ⊆ Ãk, for all k. An augmenting set Πℓ is called
maximal if there exists no other augmenting set Π̃ℓ containing Πℓ.

▶ Theorem 16 (from [3, Theorem 36]). An augmenting set Πℓ is maximal if and only if there
is no augmenting path of length at most 2(ℓ + 1) in G(S ⊕Πℓ).

7 When X = S, we can use this to find edges of type 3 and 4 in the exchange graph.
8 Note that |S′| = |S| + w, where w is the width of Πℓ. In particular, an augmenting set with width

w = 1 is exactly an augmenting path.

ICALP 2021
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3 Improved Approximation Algorithm

Our algorithm closely follows the algorithm of Chakrabarty-Lee-Sidford-Singla-Wong [3,
Section 6]. The algorithm runs in phases, where in each phase the algorithm finds a maximal
set of augmentations to perform, so that the (s, t)-distance in the exchange graph increases
between phases. By Lemma 10, only O(1/ε) phases are necessary.

In the beginning of a phase, the algorithm runs a breadth-first-search to compute the
distance layers D1, D2, . . . D2ℓ+1 in the exchange graph G(S), where S is the current common
independent set. The total number of independence queries, across all phases, for these
BFS’s can be bounded by O(n log(r)/ε). We refer to [3, Algorithm 4, Lemma 19, and Proof
of Theorem 21] for how to implement such a BFS efficiently.

After the distance layers have been found, the search for a maximal augmenting set begins.
We start by summarizing on a high level how the algorithm of [3] does this in two stages:
1. The first stage keeps track of a partial augmenting set which it keeps refining by a series

of operations on adjacent distance layers in the exchange graph, to make it closer to a
maximal augmenting set.

2. When we are “close enough” to a maximum augmenting set, the second stage handles
the last few augmenting paths – for which the first stage slows down – by finding the
remaining augmenting paths individually one at a time.

Here we give two independent improvements over the algorithm of [3], one for each stage.
The first improvement is to replace the refine operations in the first stage by a new subroutine
RefineABA (Section 3.1.2) working on three consecutive layers instead of two. This allows us
to measure progress in terms of r instead of n. The second improvement is for the second
stage where we, instead of finding arbitrary augmenting paths, work directly on top of the
output of the first stage and find a specific type of valid paths with respect to the partial
augmenting set, using a new a subroutine RefinePath (Section 3.2).

3.1 Implementing a Phase: Refining
The basic refining ideas and procedures in this section are the same as in [3]. The goal is to
keep track of a partial augmenting set Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1) which is iteratively
made “better” through some refine procedures. Eventually, the partial augmenting set will
become a maximal augmenting set, which concludes the phase. Towards this goal, we
maintain three types of elements in each layer:

Selected. Denoted by Ak or Bk. These form the partial augmenting set Φℓ = (B1, A1, B2, . . . ,

Aℓ, Bℓ+1).
Removed. Denoted by Rk. These elements are safe to disregard from further computation

(i.e. deemed useless) when refining Φℓ towards a maximal augmenting set.
Fresh. Denoted by Fk. These are the elements that are neither selected nor removed.

Elements can change their types from fresh → selected → removed, but never in the other
direction. Initially, we start with all elements being fresh.9 For convenience, we also define
“imaginary” layers D0 and D2ℓ+2 with A0 = R0 = F0 = D0 = Aℓ+1 = R2ℓ+2 = F2ℓ+2 =
D2ℓ+2 = ∅. The algorithm maintains the following phase invariants (which are initially
satisfied) during the refinement process:

9 This differs slightly from [3], where the initially B1 is greedily picked to be maximal so that S + B1 ∈ I1,
while the rest of the elements are fresh.
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Figure 1 An illustration of a few neighboring layers. Note that (Bk, R2k−1, F2k−1) form a
partition of odd layer D2k−1 ⊆ S̄, and (Ak, R2k, F2k) form a partition of even layer D2k ⊆ S.

▶ Definition 17 (Phase Invariants, from [3, Section 6.3.2]). The phase invariants are:
(a-b) Φℓ = (B1, A1, B2, . . . , Aℓ, Bℓ+1) forms a partial augmenting set.10

(c) For 1 ≤ k ≤ ℓ, for any X ⊆ Bk+1 + F2k+1 = D2k+1−R2k+1, if S − (Ak + R2k) + X ∈ I1
then S −Ak + X ∈ I1. 11

(d) rk2(W + R2k−1) = rk2(W ) where W = S − (D2k −R2k) + Bk.

▶ Remark 18. Invariant (c) essentially says that if R2k+1 is “useless”, then so is R2k. Similarly,
Invariant (d) says that if R2k is “useless”, then so is R2k−1. Together they imply that we
can safely ignore all the removed elements.

▶ Lemma 19. Suppose that (i) the phase invariants hold; (ii) |B1| = |A1| = · · · = |Bℓ+1|;
and (iii) B1 is a maximal subset of D1 \R1 satisfying S + B1 ∈ I1. Then (B1, A1, . . . , Bℓ+1)
is a maximal augmenting set.

Proof idea. (See [3, Proof of Lemma 44] for a complete proof). If it was not maximal, there
exists an augmenting path (b1, a1, . . . , bℓ+1) in the exchange graph after augmenting along
(B1, A1, . . . , Bℓ+1). However, (iii) then says that b1 must have been removed since it cannot
be fresh. But if b1 is removed, then so was a1, then so was b2 etc., by invariants (c) and (d)
(this requires a technical, but straightforward, argument). However, bℓ+1 cannot have been
removed (by invariant (d)), which gives the desired contradiction. ◀

3.1.1 Refining Two Adjacent Layers
We now present the basic refinement procedures from [3], which are operations on neighboring
layers. There is some asymmetry in how (odd, even) and (even, odd) layer-pairs are handled,
arising from the inherent asymmetry of the independence query between S and S̄, but the
ideas are the same.
RefineAB(k) extends Bk+1 as much as possible while respecting invariant (a-b) (Lines 1-2).

Then a maximal collection of element in Ak which can be “matched” to Bk+1 is found,
and the others elements in Ak are removed (Lines 3-4).

10 The naming of this invariant as (a-b) is to be consistent with [3] where this condition is split up into
two separate items (a) and (b).

11 An equivalent condition for (c) is: rk1(W −R2k) = rk1(W )−|R2k|, where W = S−Ak+(D2k+1−R2k+1).

ICALP 2021



31:8 Breaking O(nr) for Matroid Intersection

RefineBA(k) finds a maximal subset Bk that can be “matched” to Ak + F2k, and removes
the other elements of Bk (Lines 1-2). Then Ak is extended with elements from F2k which
are the endpoints of the above “matching” (Lines 3-4).

Algorithm 1 RefineAB(k). (called Refine1 in [3, Algorithm 9])

1: Find maximal B ⊆ F2k+1 s.t. S −Ak + Bk+1 + B ∈ I1
2: Bk+1 ←− Bk+1 + B, F2k+1 ←− F2k+1 −B

3: Find maximal A ⊆ Ak s.t. S −Ak + Bk+1 + A ∈ I1
4: Ak ←− Ak −A, R2k ←− R2k + A

Algorithm 2 RefineBA(k). (called Refine2 in [3, Algorithm 10])

1: Find maximal B ⊆ Bk s.t. S − (D2k −R2k) + B ∈ I2
2: R2k−1 ←− R2k−1 + Bk\B, Bk ←− B

3: Find maximal A ⊆ F2k s.t. S − (D2k −R2k) + Bk + A ∈ I2
4: Ak ←− Ak + F2k\A, F2k ←− A

The following properties of the RefineAB and RefineBA methods are proven in [3].

▶ Lemma 20 (from [3, Lemmas 40-42]). Both RefineAB and RefineBA preserve the invariants.
Also: after RefineAB(k) is run, we have |Ak| = |Bk+1| (unless k = 0). After RefineBA(k) is
run, we have |Bk| = |Ak| (unless k = ℓ + 1).

▶ Lemma 21 (from [3, Lemma 45]). RefineAB can be implemented with O(|D2k|+ |D2k+1|)
queries. RefineBA can be implemented with O(|D2k−1|+ |D2k|) queries.

▶ Observation 22. Lemma 20 is particularly interesting. It says that at least |Aold
k | − |Bold

k+1|
(respectively |Bold

k | − |Aold
k |) elements change type when running RefineAB (respectively

RefineAB).

▶ Remark 23. Observation 22 is used in [3] to bound the number of times one needs to refine
the partial augmenting set. Indeed, every element can only change its type a constant number
of times. In a single refinement pass, procedures RefineAB(k) and RefineBA(k) are called
for all k, and we obtain a telescoping sum guaranteeing us that |Bold

1 | − |Bold
ℓ+1| elements have

changed their types. Hence, after O(
√

n) refinement passes we have |B1| − |Bℓ+1| ≤
√

n, and
we are “close” to having a maximal augmenting set – only around

√
n many augmenting paths

away. This is essentially what lets [3] obtain their subquadratic Õ(n1.5/poly(ε)) algorithm.

3.1.2 Refining Three Adjacent Layers
We are now ready to present the new RefineABA method (Algorithm 3), which is not present
in [3]. This method works similarly to RefineAB and RefineBA, but on three (instead of
two) consecutive layers (D2k, D2k+1, D2k+2) with the corresponding sets (Ak, Bk+1, Ak+1).

The motivation for this new procedure is that we can get a stronger version of Observa-
tion 22: after running RefineABA(k) we want that at least |Aold

k | − |Aold
k+1| element in even

layers have changed types. Note that there are at most |S| ≤ r elements in the even layers
(as opposed to n elements in total, which can be much larger), so this means we need to
refine the partial augmenting set fewer times when using RefineABA compared to when just
using RefineAB and RefineBA. In particular, we will get that after O(

√
r) refinement passes,

|B1| − |Bℓ+1| ≤
√

r.
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▶ Remark 24. A natural question to ask is if it actually could be the case that only elements
in odd layers (i.e. those in S̄ which there are up to n many of) change their type (while
elements in even layers do not) during the refinement passes in the algorithm of [3] (which
only uses the two-layer refinement procedures)? That is, is the new three-layer refinement
procedure necessary? The answer is yes. Consider for example the case with 5 layers
B1 ⊆ D1; A1 ⊆ D2; B2 ⊆ D3; A2 ⊆ D4; B3 ⊆ D5 where q := |B1| = |A1| and |A2| = |B3| = 0.
Refining the consecutive pair (B1, A1) or (A2, B3) will not do anything. When refining
(A1, B2) it could be the case that only B2 increases (say any q-size subset in D3 can be
“matched” with A1). Similarly, when refining (B2, A2) it could be the case that only B2
decreases (say there is only a single element in D3 which could be “matched” with anything
in the next layer D4, then it is unlikely that this specific element is already selected in B2).
In this case, we would need to run the two-layer refinement procedures around |D3|/q ≈ n/q

times before anything other than B2 changes. In contrast, the new RefineABA method would,
when run on (A1, B2, A2), terminate with |A1| = |B2| = |A2| (that is it would have found
the “special” element in D3 the first time it is run).

D2k

Ak

D2k−1

Bk

RefineBA

D2k+1

Bk+1

D2k

Ak

RefineAB

D2k+1

Ak+1

D2k

Ak

RefineABA

Bk+1

D2k+2

Figure 2 An illustration how the different refine methods change the partial augmenting sets.
Newly selected elements are marked in green, while newly removed elements are marked in red.

To explain how RefineABA works, let us start with a simple case, namely when S = ∅,
i.e. there is only one layer between s and t in the exchange graph. Here, finding a maximal
augmenting set is the same as finding some maximal set B which is independent in both
matroids. Running RefineAB would extend this B with elements as long as it is independent
in the first matroid (ignoring the second matroid), while RefineBA would throw away elements
from B until it is independent in the second matroid (now ignoring the first matroid). If we
just alternate running RefineAB and RefineBA we would in the worst case need to do this
up to n times (which is too expensive). Instead, there is a very simple greedy algorithm that
efficiently finds a maximal set B independent in both of the matroids12: for each element,
include it in B if this does not break independence for either matroid. This is akin to how
our RefineABA method works: it looks at the constraints from both matroids simultaneously
(both neighboring layers) and greedily selects B.

In the general case, RefineABA can be seen as running RefineAB and RefineBA simultan-
eously. The algorithm starts by asserting |Bk+1| = |Ak+1| (so that S + Bk+1 −Ak+1 ∈ I2)
by running RefineBA. So now we have both S + Bk+1 −Ak ∈ I1 and S + Bk+1 −Ak+1 ∈ I2,
and the algorithm proceeds to greedily extend Bk+1 while it is still consistent with both the
previous layer Ak and the next layer Ak+1 + F2k+2. Some care has to be taken here to also
mark elements as removed to preserve the phase invariants. Finally, the algorithm decreases
the size of Ak, respectively increases the size of Ak+1, to both match |Bk+1|.

12 This algorithm on its own is a well-known 1
2 -approximation algorithm for matroid intersection.
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Algorithm 3 RefineABA(k).

1: RefineBA(k + 1)
2: for x ∈ F2k+1 do
3: if S −Ak + Bk+1 + x ∈ I1 then
4: if S −Ak+1 − F2k+2 + Bk+1 + x ∈ I2 then
5: Bk+1 ← Bk+1 + x, F2k+1 ← F2k+1 − x ▷ Select x

6: else
7: R2k+1 ← R2k+1 + x, F2k+1 ← F2k+1 − x ▷ Remove x

8: RefineBA(k + 1)
9: RefineAB(k)

We now state some properties of RefineABA. These properties are relatively straightfor-
ward, although technical and notation-heavy, to prove.

▶ Lemma 25. RefineABA(k) preserves the phase invariants.

▶ Lemma 26. After RefineABA(k) is run, we have |Ak| = |Bk+1| = |Ak+1| (unless k = 0 or
k = ℓ, where the sets A0 = Aℓ+1 = ∅ are “imaginiary”).

▶ Lemma 27. RefineABA(k) uses O(|D2k|+ |D2k+1|+ |D2k+2|) independence queries.

Proof of Lemma 25. Intuitively, the only tricky part is showing that invariant (c) is pre-
served when some x is removed in line 7. We can pretend that we add x to Bk+1 temporarily,
and then run RefineBA(k + 1) in a way which would remove this x immediately (and thus
removing x did indeed preserve the invariants). We present a formal proof below.

We already know that RefineAB and RefineBA preserve the invariants by Lemma 20, so
it suffices to check that the for-loop starting in line 2 preserves the invariants. We verify
that this is the case after processing each x ∈ F2k+1 in the for-loop:
Invariant (a-b) holds by design: when x is added to Bk+1 we know both that S−Ak +Bk+1 +

x ∈ I1 and rk2(S−Ak+1 +Bk+1) cannot decrease. Note also that rk2(S−Ak+1 +Bk+1) ≤
rk2(S) when k + 1 ≤ ℓ too (so it cannot increase either), since otherwise there must exist
some b ∈ Bk+1 so that S + b ∈ I2 (by the matroid exchange property) which is impossible
since we are not in the last layer (the layer preceding t in G(S)).

Invariant (c) trivially holds, since the set Bk+1 + F2k+1 will only decrease, which only
restricts the choice of X ⊆ Bk+1 + F2k+1.

Invariant (d) will also be preserved. We need to argue that this is the case when x is
removed in line 7. Let W := S −Ak+1 − F2k+2 + Bk+1 = S − (D2k+2 −R2k+2) + Bk+1,
and Rold

2k+1 be the set R2k+1 before x was added to it. First note that W ∈ I2, since
this holds after the RefineBA call in line 1, (since |Ak+1| = |Bk+1| after this call) and
Bk+1 is only extended with elements which preserve this property. This means that
rk2(W + x) = rk2(W ) = |W |, since W + x = S −Ak+1 − F2k+2 + Bk+1 + x /∈ I2. Since
the invariant held before, we also know that rk2(W + Rold

2k+1) = rk2(W ) = |W |. Hence W

is a maximal independent (in M2) subset of W + Rold
2k+1 + x, as neither x nor elements

from Rold
2k+1 can be used to extend it. Hence rk2(W + Rold

2k+1 + x) = |W | = rk2(W ); that
is invariant (d) is preserved. ◀

Proof of Lemma 26. We focus our attention on the RefineBA and RefineAB calls in lines 8-
9, and argue that they do not change Bk+1. This would prove the lemma, since by Lemma 20
we would then have |Ak| = |Bk+1| and |Bk+1| = |Ak+1|.
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Indeed, RefineBA(k +1) finds a maximal B ⊆ Bk+1 such that S−(D2k+2−R2k+2)+B ⊆
I2, and remove all elements not in B from Bk+1. Here, B = Bk+1 will be found, since
S − (D2k+2 −R2k+2) + Bk+1 ∈ I2 after the for-loop in line 2 of RefineABA.

Similarly, we see that RefineAB(k) finds a maximal B ⊆ F2k+1 such that S−Ak +Bk+1 +
B ∈ I1, and extend Bk+1 with this B. However, only B = ∅ works, since each x ∈ F2k+1 for
which S −Ak + Bk+1 + x ∈ I1 was either selected or removed in lines 5 or 7. ◀

Proof of Lemma 27. RefineAB(k) uses O(|D2k| + |D2k+1|) queries, and RefineBA(k + 1)
uses O(|D2k+1|+ |D2k+2|) queries. The for-loop in line 2 will use O(|D2k+1|) queries. ◀

3.1.3 Refinement Pass

We can now present the full Refine method (Algorithm 4), which simply scans over the
layers and calls RefineABA on them. Our Refine is a modified version of Refine from [3,
Algorithm 11] using our new RefineABA method instead of just RefineAB and RefineBA. Just
replacing the Refine method in the final algorithm of [3] with our modified Refine below
leads to an Õ(n

√
r/ε1.5)-query algorithm (compared to their Õ(n1.5/ε1.5)), and concludes

our first improvement (as discussed in Item 1 in Section 1.1).

Algorithm 4 Refine(k).

1: for k = ℓ, ℓ− 1, ℓ− 2, . . . , 1, 0 do
2: RefineABA(k)

The following Lemma 28 will be useful to bound the number of Refine calls needed in
our final algorithm, and closely corresponds to [3, Corollary 43]. Our Refine implementation
has the advantage that it only counts the elements in the even layers, of which there are at
most r.

▶ Lemma 28. Let (Bold
1 , Aold

1 , . . .) and (Bnew
1 , Anew

1 , . . .) be the sets before and after Refine
is run. Then at least |Bnew

1 | − |Bnew
ℓ+1 | elements in even layers have changed types.

Proof. Note that whenever Ak changes, it is because some elements changed it types in D2k.
In particular, if the size of Ak increases (respectively decreases) by z, at least z elements will
change types from fresh to selected (respectively from selected to removed) in D2k.

After the first iteration |Aℓ| = |Bnew
ℓ+1 |, so at least |Aold

ℓ |− |Bnew
ℓ+1 | elements in D2ℓ changed

types. Similarly, after the iteration when k = i (for 1 ≤ i ≤ ℓ− 1), |Ai| = |Ai+1|, and hence
at least |Aold

i | − |Ai| elements in D2i changed types plus at least |Ai+1| − |Aold
i+1| elements

in D2i+2 changed types.13 Finally, after the last iteration |A1| = |Bnew
1 |, and hence at least

|Bnew
1 | − |Aold

1 | elements in D2 changed types.
The above terms telescope, and we conclude that at least |Bnew

1 | − |Bnew
ℓ+1 | elements in

the even layers changed its types when Refine was run. ◀

▶ Lemma 29. Refine uses O(n) independence queries.

Proof. This follows directly by Lemma 27. ◀

13 |Ai+1| ≤ |Aold
i+1| just before the RefineABA(i) call, since earlier iterations can only have decreased the

size of |Ai+1|.
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3.2 Refining Along a Path
If we just run Refine until we get a maximal augment set (i.e. until |B1| = |Bℓ+1|) we
need to potentially run Refine as many as Θ(r) times, which needs too many independence
queries. Lemma 28 tells us that Refine makes the most “progress” while |B1| − |Bℓ+1| is
large: in fact, only O(r/p) calls to Refine is needed until |B1|− |Bℓ+1| ≤ p. The idea in [3] is
thus to stop refining when |B1| − |Bℓ+1| is small enough and fall back to finding augmenting
paths one at a time (they prove that one needs to find at most O((|B1| − |Bℓ+1|)ℓ) many).
We use a similar idea in that we swap to a different procedure when |B1| − |Bℓ+1| is small
enough, the difference being that we still work with the partial augmenting set. This will let
us show that only O(|B1| − |Bℓ+1|) many “paths” need to be found, saving a factor ℓ ≈ 1

ε

compared to [3].
This section thus describes the second improvement (as discussed in Item 2 in Section 1.1).

Note that this improvement is independent of the first improvement (i.e. the three-layer
refine). We aim to prove the following lemma.

▶ Lemma 30. There exists a procedure (RefinePath, Algorithm 5), which uses O(n log r)
independence queries, preserves the invariants, and either:

(i) Increases the size of Bℓ+1 by at least 1.
(ii) Terminates with (B1, A1, . . . , Bℓ+1) being a maximal augmenting set.

RefinePath attempts to find what we call a valid path. What we want is a sequence of
elements which we can add to the partial augmenting set without violating the invariants and
the properties of the partial augmenting set. It turns out (not very surprisingly) that such
sequences of elements can be characterized by a notion of paths in something which resembles
the exchange graph with respect to our partial augmenting set. This is what motivates the
definition of valid paths below.

D2k−1

F2k−1

Bk

D2k−2

F2k−2

Ak−1

· · ·

D2`+1

F2`+1

B`+1

D2`

F2`

A`

t

b`+1
a`bk

Figure 3 A valid path (bk, . . . , aℓ, bℓ+1, t) “starting” from the partial augmenting set at Ak−1, so
that we can use Lemma 33 and augment along it.

▶ Definition 31 (Valid path). A sequence (bi, ai, bi+1, . . . , bℓ+1, t) (or (ai, bi+1, . . . , bℓ+1, t))
is called a valid path (with respect to the partial augmenting set) if for all k ≥ i:
(a) ak ∈ F2k and bk ∈ F2k−1.
(b) S + Bℓ+1 + bℓ+1 ∈ I2.
(c) S −Ak + Bk − ak + bk ∈ I2.
(d) S −Ak + Bk+1 − ak + bk+1 ∈ I1.

▶ Remark 32. Compare the properties of valid paths with the edges in the exchange graph
from Definition 8. A valid path is essentially a path in the exchange graph after we have
already augmented S by our partial augmenting set (even though this exchange graph is not
exactly defined, since it is not guaranteed that S remains a common independent set when
augmented by a partial augmenting set).



J. Blikstad 31:13

▶ Lemma 33. If p = (bi, ai, bi+1, . . . , bℓ+1, t) is a valid path starting at bi, such that S −
Ai−1 + Bi + bi ∈ I1, then (B1, A1, . . . , Bi−1, Ai−1, Bi + bi, Ai + ai, . . . , Bℓ+1 + bℓ) is a partial
augmenting set satisfying the invariants.

Proof. That it forms a partial augmenting set is true by the definition of valid paths, and
the fact that S −Ai−1 + Bi + bi ∈ I1. Indeed, it cannot be the case that |Ai−1| < |Bi + bi|
when i > 1, since then rk1(S − Ai−1 + Bi + bi) > |S| = rk1(S) implies that some element
x ∈ (Bi + bi) satisfies S + x ∈ I1 (i.e. it is in the first layer D1) by the exchange property
of matroids. Invariants (c) and (d) are trivially true since the sets Ak and Bk are only
extended. ◀

The goal of RefinePath (Algorithm 5) is thus to find a valid path satisfying the conditions
in Lemma 33. Towards this goal, RefinePath will start from the last layer D2ℓ+1 and “scan
left” in a breadth-first-search manner while keeping track of valid paths starting at each
fresh vertex x (the next element on such a path will be stored as next[x]). If at some point
one valid path can “enter” the partial augmenting set in a layer, we are done and can use
Lemma 33. We also show that it is safe (i.e. preserves the invariants) to remove all the fresh
elements x for which we cannot find a valid path starting at x.

To efficiently find the “edges” during our breadth-first-search using only independence-
queries, we use the binary-search trick from Lemma 11. However, this relies on the partial
augmenting set being locally “flat” in the layers we are currently exploring, i.e. |Bk| = |Ak|
respectively |Bk| = |Ak+1|. We can ensure this by running RefineAB respectively RefineBA
while performing the scan.

Now we are ready to present the pseudo-code of the RefinePath method (Algorithm 5).
Due to the asymmetry between even/odd layers and independence queries, we need to handle
moving from layer B to A and from A to B a bit differently, but the ideas are similar.

▶ Lemma 34. RefinePath preserves the invariants.

Proof. The proof is relatively straightforward, but technical. The only non-trivial part is
showing that invariants (c) and (d) are preserved after we remove something in line 8 or
line 20. Intuitively, if we remove b in line 8, we can instead think of temporarily adding b

to Bk and running RefineBA(k) in such a way so that b is immediately removed. A similar
intuitive argument works for line 20. We next present a formal proof.

We know that RefineAB and RefineBA preserve the invariants, by Lemma 20. We also
know by Lemma 33 that adding a valid path to the partial augmenting set also preserves the
invariants. So what remains is to show that the invariants are preserved after:
Line 8. We only need to check invariant (d), the other ones trivially hold. Let W =

S − Ak − F2k + Bk = S − (D2k − R2k) + Bk and Rold
2k−1 be R2k−1 before b was added

to it. Note that b is such that W + b /∈ I2, and we know that W ⊆ S − Ak + Bk ∈ I2
and hence rk2(W + Rold

2k−1) = rk2(W ) = |W | and rk2(W + b) = rk2(W ) = |W |. We thus
need to show that rk2(W + Rold

2k−1 + b) = |W | too, which is clear since W is a maximal
independent subset of W + Rold

2k−1 + b (it can neither be extended with elements from
Rold

2k−1 nor with b).
Line 20. We only need to check invariant (c), the other ones trivially hold. We imagine we

add the a ∈ Q to R2k−2 one-by-one, and show that the invariant (c) is preserved after
each such addition. So consider some a ∈ Q which will be removed, and let Rold

2k−2 be the
set R2k−2 just before we added a to it. First note that rk1(S−Ak−1 + Bk + F2k−1−a) =
rk1(S − Ak−1 + Bk + F2k−1)− 1 = |S − Ak−1 + Bk| − 1, as otherwise there must exist
some b ∈ F2k−1 such that S−Ak−1 +Bk + b−a ∈ I1 (by the matroid exchange property),
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Algorithm 5 RefinePath.

1: for k = ℓ + 1, ℓ, . . . , 2, 1 do
▷ Process (Bk, Ak)

2: RefineBA(k)
3: if some element a was added to Ak in the above refine-call then
4: Add the valid path starting at next[a] to the partial augmenting set
5: return
6: for each element b ∈ F2k−1 do
7: if S −Ak − F2k + Bk + b /∈ I2 then
8: Remove b, that is: F2k−1 ← F2k−1 − b, R2k−1 ← R2k−1 + b

9: else
10: Find an a ∈ F2k such that S −Ak + Bk + b− a ∈ I2. Let next[b] = a.
11: (Or, if k = ℓ + 1, just let next[b] = t)

▷ Process (Ak−1, Bk)
12: if some element b ∈ F2k−1 satisfies S −Ak−1 + Bk + b ∈ I1 then
13: Add the valid path starting at b to the partial augmenting set.
14: return
15: RefineAB(k − 1)
16: Q← F2k−2.
17: for each element b ∈ F2k−1 do
18: while can find a ∈ Q such that S −Ak−1 + Bk + b− a ∈ I1 do
19: Q← Q− a. Let next[a] = b.
20: Remove all elements in Q, that is: F2k−2 ← F2k−2 −Q, R2k−2 ← R2k−2 + Q.

21: If we reached here, (B1, A1, . . . , Bℓ+1) is a maximal augmenting set.

and a would have been discovered in line 18 and therefore been removed from Q. So
the “return” of adding a to S −Ak−1 + Bk + F2k−1 − a is increasing the rank by 1. Now
consider some arbitrary X ⊆ Bk + F2k−1 such that S − Ak−1 + X − Rold

2k−2 − a ∈ I1.
We need to show that S − Ak−1 + X ∈ I1. Note that S − Ak−1 + X − Rold

2k−2 − a ⊆
S −Ak−1 + Bk + F2k−1 − a. Hence, by the diminishing returns (of adding a) we know
rk1(S−Ak−1 +X−Rold

2k−2) ≥ rk1(S−Ak−1 +X−Rold
2k−2−a)+1 = |S−Ak−1 +X−Rold

2k−2|,
or equivalently that S − Ak−1 + X − Rold

2k−2 ∈ I1. Since the invariant held before, we
conclude that S −Ak−1 + X ∈ I1 too, which finishes the proof. ◀

Valid paths. The algorithm keeps track of a valid path starting at each fresh vertex it has
processed. That is, after processing layer Dk, all elements in Fk must be the beginning of a
valid path, else they were removed. In particular, the algorithm remembers the valid path
starting at x as (x, next[x], next[next[x]], . . .). It is easy to verify that this sequence does
indeed satisfy the conditions of valid paths by inspecting lines 10 and 18.

We also discuss what happens when the algorithm chooses to add a valid path to the
partial augmenting set (i.e. in line 4 or 13). If we are in Line 13, we can directly apply
Lemma 33. Say we instead are in Line 4, and some a which was previously fresh has been
added to Ak. The RefineBA call can only have increased Ak (that is Ak ⊇ Aold

k + a), so
S −Ak + Bk+1 + b ∈ I1 will holds for b = next[a] and we can apply Lemma 33 here too.
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When no path is found. In the case when no valid path to add to the partial augmenting
set is found, RefinePath must terminate with |B1| = |A1| = · · · = |Bℓ+1|. This is because
the RefineAB and RefineBA will never select any new elements. That is RefineBA will not
change Ak (as otherwise we enter the if-statement at line 4), and RefineAB will not change
Bk (since if b ∈ F2k−1 with S − Ak−1 + Bk + b ∈ I1 existed we would have entered the
if-statement at line 13). We also remark that RefinePath ends with B1 being a maximal
subset of D1 \R1, as otherwise some b would have been found in line 12. Hence Lemma 19
implies that (B1, A1, . . . , Bℓ+1) now forms a maximal augmenting set.

Query complexity. The RefineAB and RefineBA calls will in total use O(n) queries. The
independence checks at Lines 7 and 12 happens at most once for each element, and thus use
O(n) queries in total. Lines 10 and 18 can be implemented using the binary-search-exchange-
discovery Lemma 11. Hence Line 10 will use, in total, O(n log r) queries and Line 18 will
use, in total, O(n log r) queries (since each a ∈ Q will be discovered at most once). So we
conclude that Algorithm 5 uses O(n log r) independence queries.

3.3 Hybrid Algorithm

Now we are finally ready to present the full algorithm of a phase, which is parameterized
by a variable p. The following algorithm is similar to that of [3, Algorithm 12] but uses our
improved Refine method and finds individual paths using the RefinePath method.

Algorithm 6 Phase ℓ.

1: Calculate the distance layers by a BFS.
2: Run Refine (Algorithm 4) until |B1| − |Bℓ+1| ≤ p, but at least once.
3: Run RefinePath (Algorithm 5) until (B1, A1, . . . Bℓ+1) is maximal. Augment along it.

▶ Lemma 35. Except for line 1, Algorithm 6 uses O(nr/p + np log r) queries.14

Proof. Lemma 28 tells us that Refine changes types of at least p elements in even layers (i.e.
elements in S) every time it is run, except maybe the last time. Thus we only run Refine
O(|S|/p + 1) times. Each call takes O(n) queries (Lemma 29), for a total of O(nr/p) queries
in line 2 of the algorithm.

Now we argue that B1 can never become larger than what it was just after line 2 was
run. This is because Refine will run at least once, and ends with a RefineABA(0) call which
in turn ends with a RefineAB(0) call – which extends B1 to be a maximal set in D1 \ R1
for which S + B1 ⊆ I1 holds.15

Lemma 30 tells us that each (except the last) time RefinePath is run, Bℓ+1 increases
by 1. This can happen at most p times, so line 3 uses a total of O(np log r) queries. ◀

Now it is easy to prove Theorem 1, which we restate below.

14 Compare this to O(n2/p + npℓ log r) in [3]. The improvement from n2/p to nr/p comes from the use of
the new three-layer RefineABA method, and the (independent) improvement from npℓ log r to np log r
comes from the use of the new RefinePath method.

15 Indeed, since M1 is a matroid, all such maximal sets have the same size, so we can never obtain
something larger later.
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▶ Theorem 1 (Approximation algorithm). There is a deterministic algorithm which given
two matroids M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common

independent set S ∈ I1 ∩ I2 with |S| ≥ (1− ε)r, using O

(
n
√

r log r

ε

)
independence queries.

Proof. Pick p =
√

r/ log r.16 Then each phase will use O(n
√

r log r) independence queries
(by Lemma 35), plus a total of O( 1

ε n log r) to run the BFS’s across all phases (see [3] for
details on the BFS implementation). Since we need only run O( 1

ε ) phases (by Lemma 10
and Theorem 16), in total the algorithm will use O( 1

ε n
√

r log r) queries. ◀

4 Exact Matroid Intersection

In this section, we prove Theorem 2 (restated below) by showing how our improved approx-
imation algorithm leads to an improved exact algorithm when combined with the algorithms
of [2].

▶ Theorem 2 (Exact algorithm). There is a randomized algorithm which given two matroids
M1 = (V, I1) and M2 = (V, I2) on the same ground set V , finds a common independent
set S ∈ I1 ∩ I2 of maximum cardinality r, and w.h.p.17 uses O(nr3/4 log n) independence
queries. There is also a deterministic exact algorithm using O(nr5/6 log n) queries.

Approximation algorithms are great at finding the many, very short augmenting paths
efficiently. Blikstad-v.d.Brand-Mukhopadhyay-Nanongkai [2, Algorithm 2] very recently
showed how to efficiently find the remaining few, very long augmenting paths, with a
randomized algorithm using Õ(n

√
r) queries per augmentation (or, with a slightly less efficient

deterministic algorithm using Õ(nr2/3) queries). In the randomized Õ(n6/5r3/5)-query exact
algorithm of [2, Algorithm 3], the current bottleneck is the approximation algorithm used.
Replacing the use of the Õ(n1.5/ε1.5)-query approximation algorithm from [3] with our
improved version we obtain the more efficient randomized18 Õ(nr3/4)-query Algorithm 7.

Algorithm 7 Exact Matroid Intersection. (Modified version of [2, Algorithm 3])

1: Run the approximation algorithm (Theorem 1) with ε = r−1/4 to obtain a common
independent set S of size at least (1− ε)r = r − r3/4.

2: Starting with S, run Cunningham’s algorithm (as implemented by [3]), until the distance
between s and t becomes larger than r3/4.

3: Keep finding augmenting paths – one at a time – to augment along, using the randomized
O(n
√

r log n)-query algorithm of [2, Algorithm 2]. When no (s, t)-path can be found in
the exchange graph, S is a largest common independent set.

Query complexity. We analyse the individual lines of Algorithm 7.
Line 1. We see that the approximation algorithm uses O(nr3/4 log n) queries in line 1.
Line 2. One need to (i) compute distances up to d = r3/4, and (ii) perform at most O(r3/4)

augmentations. [2, 3, 11] show how to do (i) in O(nd log n) = O(nr3/4 log n) queries in
total over all phases of Cunningham’s algorithm, and how to do (ii) using O(n log n)
queries per augmentation (for a total of O(nr3/4 log n) queries).

16 Compare this to p =
√

nε/ log r in [3].
17 w.h.p. = with high probability meaning with probability 1 − n−c for some arbitrarily large constant c.
18 The deterministic algorithm of Theorem 2 is obtained in the same fashion but by using the deterministic

version of the augmenting path finding algorithm [2, Algorithm 2].
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Line 3. By Lemma 10, line 3 runs O(r1/4) times – each using O(n
√

r log n) queries – for a
total of O(nr3/4 log n) queries.

▶ Remark 36. In Algorithm 7, the bottleneck between line 1-2 and line 2-3 now matches
(which was not the case in [2]). This means that if one wants to improve the algorithm
by replacing the subroutines in line 1 and 3, one need to both improve the approximation
algorithm (line 1) and the method to find a single augmenting-path (line 3).
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