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Abstract
We recently introduced the notion of twin-width, a novel graph invariant, and showed that first-order
model checking can be solved in time f(d, k)n for n-vertex graphs given with a witness that the
twin-width is at most d, called d-contraction sequence or d-sequence, and formulas of size k [Bonnet
et al., FOCS ’20]. The inevitable price to pay for such a general result is that f is a tower of
exponentials of height roughly k. In this paper, we show that algorithms based on twin-width need
not be impractical. We present 2O(k)n-time algorithms for k-Independent Set, r-Scattered
Set, k-Clique, and k-Dominating Set when an O(1)-sequence of the graph is given in input. We
further show how to solve the weighted version of k-Independent Set, Subgraph Isomorphism,
and Induced Subgraph Isomorphism, in the slightly worse running time 2O(k log k)n. Up to
logarithmic factors in the exponent, all these running times are optimal, unless the Exponential
Time Hypothesis fails. Like our FO model checking algorithm, these new algorithms are based on a
dynamic programming scheme following the sequence of contractions forward.

We then show a second algorithmic use of the contraction sequence, by starting at its end and
rewinding it. As an example of such a reverse scheme, we present a polynomial-time algorithm that
properly colors the vertices of a graph with relatively few colors, thereby establishing that bounded
twin-width classes are χ-bounded. This significantly extends the χ-boundedness of bounded rank-
width classes, and does so with a very concise proof. It readily yields a constant approximation for
Max Independent Set on Kt-free graphs of bounded twin-width, and a 2O(OPT)-approximation for
Min Coloring on bounded twin-width graphs. We further observe that a constant approximation
for Max Independent Set on bounded twin-width graphs (but arbitrarily large clique number)
would actually imply a PTAS.

The third algorithmic use of twin-width builds on the second one. Playing the contraction
sequence backward, we show that bounded twin-width graphs can be edge-partitioned into a linear
number of bicliques, such that both sides of the bicliques are on consecutive vertices, in a fixed
vertex ordering. This property is trivially shared with graphs of bounded average degree. Given that
biclique edge-partition, we show how to solve the unweighted Single-Source Shortest Paths and
hence All-Pairs Shortest Paths in time O(n log n) and time O(n2 log n), respectively. In sharp
contrast, even Diameter does not admit a truly subquadratic algorithm on bounded twin-width
graphs, unless the Strong Exponential Time Hypothesis fails.

The fourth algorithmic use of twin-width builds on the so-called versatile tree of contractions
[Bonnet et al., SODA ’21], a branching and more robust witness of low twin-width. We present
constant-approximation algorithms for Min Dominating Set and related problems, on bounded
twin-width graphs, by showing that the integrality gap is constant. This is done by going down the
versatile tree and stopping accordingly to a problem-dependent criterion. At the reached node, a
greedy approach yields the desired approximation.
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1 Introduction

As the title suggests, this is the third paper of a series [4, 3] devoted to a new graph invariant
called twin-width. All the results presented in this paper are self-contained as the relevant
background is given in Section 2. In the same section, the reader can find the definitions of
contraction sequences and twin-width. For now, we are content with some intuition on these
notions. This will be enough to sketch the ideas and techniques leading to our results, while
sparing this introduction from too much formalism.

The twin-width of a graph is a non-negative integer measuring its distance to being a
cograph. Among the several characterizations of cographs, a possible definition goes as
follows. A graph is a cograph if one can find therein two twins,1 identify them, and iterate
this process until there is only one vertex left. This corresponds to what we define as a
0-sequence in Section 2, witnessing that cographs have twin-width 0. Conversely it is also
true that graphs with twin-width 0 are cographs. We generalize this identification process by
allowing a controlled error on the contracted pairs of vertices. An error graph or red graph
keeps the faulty adjacencies appearing between a contracted pair and the vertices that are
neighbor of only one vertex of the pair. A d-sequence is an indentification or contraction
sequence such that the maximum degree of the error graph never exceeds d. The existence
of such a sequence entails that the initial graph has twin-width at most d.

As it turns out, many graph classes have bounded twin-width: planar graphs and more
generally proper minor-closed classes, bounded rank-width or clique-width graphs, proper
hereditary subclasses of permutation graphs, unit interval graphs, and some particular class
of cubic expanders, to name only a few.2 Considering the wide variety of these classes, it
might seem that our cograph generalization has gone too far to allow for a unified algorithmic
treatment of bounded twin-width graphs. The first paper of the series [4] and the current
one show that this is not the case. Graphs of bounded twin-width admit algorithms whose
running times are provably unattainable in general graphs. We will now detail that point.

After defining any graph parameter κ, a natural question is whether some computationally
hard problems can be solved more efficiently on graphs where κ is bounded. When this
turns out to be the case for several problems, it may sometimes lead to a powerful meta-
theorem. A standard way of capturing a large set of problems within the same framework is
through the use of logic formulas over graphs, or more generally over relational structures.
In the language of parameterized algorithms, one may ask for the existence of a Fixed-
Parameter Tractable (FPT) algorithm parameterized by κ and the size of the graph formula
φ to be tested: More precisely, an algorithm deciding in time f(|φ|, κ(G))nO(1), or better

1 i.e., two vertices with the same neighborhood beside them
2 A more exhaustive list is given in Theorem 7.
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f(|φ|, κ(G))n, whether an n-vertex graph G satisfies φ, where f is some computable function.
Certainly the most famous result of that kind is the celebrated Courcelle’s theorem, where
the parameter κ is tree-width, and the formula φ ranges over Monadic Second Order logic
(MSO2) formulas [5]. On a slightly less general logic (namely MSO1, where quantification over
edge sets is disallowed), the result holds for the smaller parameter clique-width [6]. It implies,
for instance, that deciding whether a graph on n vertices contains a subset of k pairwise
non-adjacent vertices (i.e., solving k-Independent Set) can be done in linear time on
graphs of constant clique-width, while in general graphs it cannot be solved in polynomial
time unless P=NP, nor in time f(k)nO(1) unless FPT=W[1]. Such a result is unlikely for
twin-width as k-Independent Set remains NP-hard in planar graphs, which have constant
twin-width. Nevertheless, when parameterized by the solution size k, an FPT algorithm is
known in planar graphs, and more generally in any proper minor-closed graph class. Actually,
on the latter class, every problem expressible by a first-order (FO) formula φ can be solved
in FPT time parameterized by |φ| [9]. In the first paper of our series [4], we extended this
result and obtained the following meta-theorem for twin-width.

▶ Theorem 1 ([4]). Given an n-vertex graph G, a d-sequence of G, and a first-order
formula φ, one can decide G |= φ in time f(|φ|, d)n for some computable function f .

The main drawback of this kind of algorithm is the obtained running time: The function
f is a tower of exponentials whose height depends on the size of the formula. This is an
unavoidable price to pay to solve at once all graph problems expressible in first-order logic.
Indeed, it is known that testing first-order formulas on trees requires a running time whose
dependence in the size of the formula is a non-elementary function, unless P = NP [10].
Furthermore the running time of our FO model checking algorithm does not get better on
“seemingly simpler” formulas, such as for instance, with few quantifier alternations.

Our results

We show that twin-width and its associated contraction sequence can also give rise to
practical algorithms for some individual classic graph problems. In particular, we consider
the following NP-complete problems, given a graph G and an integer k, decide if:

k-Independent Set: there are k pairwise non-adjacent vertices.
k-Clique: there are k pairwise adjacent vertices.
(k, r)-Scattered Set: there are k vertices pairwise at distance at least r.
k-Dominating Set: there is a set S of k vertices such that for every vertex v of G,
either v ∈ S or v has a neighbor in S.
(k, r)-Dominating Set: there is a set S of k vertices such that every vertex of G is at
distance at most r of some vertex in S.

These problems, parameterized by k, are W[1]-hard (the last two are even W[2]-complete),
thus unlikely to admit an FPT algorithm, i.e., one with running time f(k)nO(1), on general
graphs. We obtain single-exponential parameterized algorithms for all these problems when
a contraction sequence witnessing “twin-width at most d” is given. When considering the
unparameterized optimization variant, we denote these five problems by Max Independent
Set (and MIS for short), Max Clique, Distance-(r − 1) MIS, Min Dominating Set,
and Min r-Dominating Set, respectively.

▶ Theorem 2. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned five problems can be solved in time 2Od(k)n.

ICALP 2021
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We then consider some W[1]-complete generalizations of k-Independent Set or of
k-Clique. Namely:

Weighted Max Independent Set: given a graph G with a weight function on vertices
w : V (G)→ R and an integer k, decide whether there exists a set S of size exactly k of
pairwise non-adjacent vertices such that

∑
v∈S w(v) is maximum.

Induced Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide
whether there exists a set S ⊆ V (G) such that G[S], the subgraph of G induced by S, is
isomorphic to H.
Subgraph Isomorphism: given a graph H on k vertices and a graph G, decide whether
there exists a set S ⊆ V (G) such that H is isomorphic to a subgraph of G[S].

Unlike the other two problems, Subgraph Isomorphism is not a generalization of
k-Independent Set. Though it does generalize k-Clique. Once the formal definition
of a contraction sequence is given, it will be clear that a d-sequence for G readily yields a
d-sequence for its complement, G. Thus in the context of bounded twin-width graphs, an
algorithm solving Subgraph Isomorphism can be used to solve k-Independent Set. For
these three problems, we now get slightly superexponential parameterized algorithms.

▶ Theorem 3. Given an n-vertex graph G and a d-sequence G = Gn, . . . , G1 = K1, the
above-mentioned three problems can be solved in time 2Od(k log k)n.

The algorithms behind Theorems 2 and 3 follow the same general plan. Let us consider
the n successive red graphs Rn, . . . , R1 (error graphs) obtained after each vertex contraction.3
Rn is the edgeless n-vertex graph (since there are initially no errors) and R1 is the 1-vertex
graph. We maintain optimum partial solutions populating connected subgraphs of bounded
size in each Ri. Initially in Rn, the connected subgraphs are only made of single vertices
(there are no edges). So the optimum partial solutions are trivial to compute. The partial
solutions for Ri are built from the partial solutions of Ri+1 in the following way. Every
partial solution not involving the newly contracted vertex is simply kept. Every partial
solution involving the newly contracted vertex is computed by merging a bounded number of
previous partial solutions on pairwise disconnected sets. The key is that, by design, there is
no error between the latter partial solutions. Thus the presence or absence of edges can be
decided regardless of the forgotten choices of precise vertices within the solution. Eventually
a (partial) solution is computed in R1, which constitutes an actual solution in the entire
initial graph G. In a nutshell, the algorithms may be summarized as dynamic programming
over connected sets of the red graphs.

For k-Independent Set there is not much more to it than the previous sketch. For
(Induced) Subgraph Isomorphism the algorithms become more technical. Also conceptu-
ally, partial solutions are no longer necessarily feasible. For k-Dominating Set some new
challenges appear. The partial solutions and their actual specification are not straightforward
to define, as it is for k-Independent Set.

One may wonder if subexponential parameterized algorithms are possible for any of
the eight problems considered so far. We will observe that even k-Independent Set
cannot be solved in time 2o(k/ log k)nO(1) on graphs given with an O(1)-sequence, unless the
Exponential Time Hypothesis fails. With a similar argument, the same lower bound applies
to k-Dominating Set. Thus, up to logarithmic factors in the exponent, the running times
of Theorems 2 and 3 are optimal. Actually we will see that even algorithms running in time
2o(n/ log n) are unlikely.

3 A reader who would want precise definitions at this point is welcome to read first the couple of paragraphs
of Section 2.1.
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All the previous algorithms exploit the contraction sequence forward. They follow the
identification process from the initial graph G to the 1-vertex graph. What if we would
start at the end, and maintain solutions as the vertices are iteratively split until the initial
graph G is formed? We exemplify the idea of using the contraction sequence backward with
an essentially greedy coloring procedure that is not optimal but still uses relatively few colors.

Let us be more specific. A proper k-coloring of a graph G is a mapping c : V (G) →
{1, . . . , k} such that c(u) ̸= c(v) whenever uv ∈ E(G). The chromatic number, denoted
by χ(G), is the smallest integer k such that G admits a proper k-coloring. It can be seen
that χ(G) ⩾ ω(G), where ω(G) denotes the size of a largest clique in G, whereas many
constructions of triangle-free (that is, with ω(G) ⩽ 2) graphs G with arbitrarily large χ(G)
are known. A class of graphs C is χ-bounded if there is a function f such that for any graph
G ∈ C, we have χ(G) ⩽ f(ω(G)). Our coloring algorithm (d + 2)-colors any triangle-free
graph of twin-width at most d, and more generally (d + 2)ω(G)−1-colors any graph G given
with a d-sequence. In particular, it shows the following.

▶ Theorem 4. Every graph class with bounded twin-width is χ-bounded.

Algorithmically this has some direct consequences for approximating the chromatic
number, as well as, in the subcase of Kt-free graphs, the independence number.

The same idea of considering the contraction sequence backward is then used to show
that every graph given with an O(1)-sequence admits an edge partition into O(n) bicliques,
each side of which is on consecutive vertices, for a fixed vertex ordering. We use this edge
partition to tackle the unweighted version of some classic polynomial-time solvable problems:

Single-Source Shortest Paths: given a graph G and a source s, find a shortest-path
tree rooted at s, spanning the connected component of s.
All-Pairs Shortest Paths: given a graph G, find the distances in G between every
pair of vertices.
Diameter: given a graph G, report the largest distance in G between two vertices.

We show how breadth-first search (BFS) can be mimicked, when replacing “traversing an
edge” by “traversing a biclique all at once”. A subtlety of the algorithm, beside the necessary
data structures to get Single-Source Shortest Paths sublinear in the total number of
edges, lies in the fact that bicliques, contrary to single edges, can be traversed twice (once in
both directions) before being discarded.

▶ Theorem 5. If the input graph comes with an O(1)-sequence, Single-Source Shortest
Paths can be solved in O(n log n) time, thus All-Pairs Shortest Paths and Diameter
can be solved in O(n2 log n) time. In contrast, Diameter cannot be solved in O(n2−ε) for
any ε > 0, even in that scenario, unless the Strong Exponential Time Hypothesis fails.

Our algorithm inherently relies on unweighted edges. Nonetheless vertex-weights can be
supported with the same running time.

Min Dominating Set is known to be as approximable as the Set Cover problem.
Thus, by classic papers by Johnson [14] and by Lovász [15], it admits a ln n-approximation
and the integrality gap (i.e., the ratio between the optimum of the original problem and the
optimum of the LP relaxation) of its standard LP formulation is also ln n. In sharp contrast,
unless P=NP, Min Dominating Set cannot be approximated in polynomial-time within
factor (1− o(1)) ln n on n-vertex general graphs [7].

We show that, on bounded twin-width classes, the integrality gap of Min Dominating
Set is constant. This uses the versatile trees of contractions developed in the second paper of
the series [3]. These are more robust witnesses of low twin-width which, instead of providing

ICALP 2021
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a single contraction in a given trigraph, give linearly many disjoint ones. Placing ourselves
at a right node of the versatile tree, we show that a greedy strategy in the corresponding
trigraph yields a constant approximation in the original graph.

▶ Theorem 6. If the input graph comes with an O(1)-sequence, Min Dominating Set,
Distance-2 MIS, and more generally Min r-Dominating Set, Distance-2r MIS for
every positive r, admit O(1)-approximation algorithms.

These results are particular cases of the fact that when the twin-width of a matrix A is
bounded, there is a linear gap between the packing number and the minimum hitting set of
the hypergraph with incidence matrix A. Bounded twin-width matrices might more generally
provide linear programs with bounded duality gap. It is noteworthy that Max Independent
Set (which corresponds to Distance-1 MIS) is not covered by the previous theorem. We
further give some evidence that MIS may have a very different approximability status than
Min Dominating Set on bounded twin-width graphs.

2 Preliminaries

We denote by [i, j] the set of integers {i, i + 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].
If X is a set of sets, we denote by ∪X their union. The notation Od(·) gives an asymptotic
behavior when d is seen as a constant. The notation O∗(·) suppresses polynomial factors.

Unless stated otherwise, all graphs are assumed undirected and simple, that is, they
do not have parallel edges or self-loops. We denote by V (G) and E(G) the set of vertices
and edges respectively of a graph G. For S ⊆ V (G), we denote the open neighborhood (or
simply neighborhood) of S by NG(S), i.e., the set of neighbors of S deprived of S, and the
closed neighborhood of S by NG[S], i.e., the set NG(S) ∪ S. We may omit the subscript if
the graph is clear from the context. We denote by G[S] the subgraph of G induced by S,
and G− S := G[V (G) \ S]. A connected subset (or connected set) S ⊆ V (G) is one such that
G[S] is connected. Two distinct vertices u, v such that N(u) = N(v) are called false twins,
and true twins if N [u] = N [v]. Two vertices are twins if they are false twins or true twins.

A graph is H-free if it does not contain H as an induced subgraph. However we make an
exception for H = Kt,t. A Kt,t-free graph is a graph with no biclique Kt,t as a subgraph. A
class4 C of graphs has property Π if every graph of C has property Π. A class is hereditary if
it is closed under taking induced subgraphs.

2.1 Trigraphs, contraction sequences, and twin-width of a graph
A trigraph G has vertex set V (G), (black) edge set E(G), and red edge set R(G) (the error
edges), with E(G) and R(G) being disjoint. The set of neighbors NG(v) of a vertex v in a
trigraph G consists of all the vertices adjacent to v by a black or red edge. A d-trigraph is a
trigraph G such that the red graph (V (G), R(G)) has degree at most d. In that case, we also
say that the trigraph has red degree at most d. A (vertex) contraction or identification in a
trigraph G consists of merging two (non-necessarily adjacent) vertices u and v into a single
vertex z, and updating the edges of G in the following way. Every vertex of the symmetric
difference NG(u)△NG(v) is linked to z by a red edge. Every vertex x of the intersection
NG(u)∩NG(v) is linked to z by a black edge if both ux ∈ E(G) and vx ∈ E(G), and by a red

4 That is, a set of graphs closed under isomorphism.
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u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

u v z

u1 u2 x1 x2 x3 x4 x5 x6 x7 v1 v2

Figure 1 Contraction of vertices u and v, and how the edges of the trigraph are updated.

edge otherwise. The rest of the edges (not incident to u or v) remain unchanged. We insist
that the vertices u and v (together with the edges incident to these vertices) are removed
from the trigraph. See Figure 1 for an illustration.

A d-sequence (or contraction sequence) is a sequence of d-trigraphs Gn, Gn−1, . . . , G1,
where Gn = G, G1 = K1 is the graph on a single vertex, and Gi−1 is obtained from Gi by
performing a single contraction of two (non-necessarily adjacent) vertices. We observe that
Gi has precisely i vertices, for every i ∈ [n]. The twin-width of G, denoted by tww(G), is
the minimum integer d such that G admits a d-sequence.

For u ∈ V (Gi), we denote by u(G) the subset of V (G) that was contracted to the
single vertex u in Gn, Gn−1, . . . , Gi. Twin-width and d-sequences can be equivalently seen
as a partition refinement process on V (G). We start with the finest partition Pn = {{v} :
v ∈ V (G)}, and end with the coarsest partition P1 = {V (G)}. There is a partition
sequence Pn,Pn−1, . . . ,P2,P1 mimicking the contraction sequence, where the contraction
of u, v ∈ V (Gi) corresponds to the merge of parts u(Gi), v(Gi) ∈ Pi to form the part
u(Gi) ∪ v(Gi) = z(Gi−1) ∈ Pi−1, while all the other parts are unchanged from Pi to Pi−1.
The red degree (bounded by d) of a part P ∈ Pi now corresponds to the number of other
parts P ′ ∈ Pi which are not fully adjacent nor fully non-adjacent to P in G. We may denote
by GP the trigraph corresponding to partition P over V (G). Thus Gi = GPi .

2.2 Classes with bounded twin-width and how the sequences are given
The current paper is devoted to presenting efficient algorithms when the input has bounded
twin-width, and the contraction sequence is given. It is therefore important to know how
realistic this scenario is. Fortunately, in the first two papers of the series [4, 3] we showed
that many central sparse and dense (di)graph classes have bounded twin-width.

▶ Theorem 7 ([4, 3]). The following classes have bounded twin-width, and O(1)-sequences
for n-vertex members can be computed in O(n2) time.

Bounded clique-width/rank-width, and more generally, boolean-width graphs,
every hereditary proper subclass of permutation graphs,
posets of bounded antichain size (seen as digraphs),
unit interval graphs,
Kt-minor free graphs,
map graphs (given with an embedding),
subgraphs of d-dimensional grids,
Kt-free unit d-dimensional ball graphs,
Ω(log n)-subdivisions of all the n-vertex graphs,
cubic expanders defined by iterative random 2-lifts from K4,
strong products of two bounded twin-width classes one of which has also bounded degree,
any subgraph closure of a Kt,t-free bounded twin-width class, and
any first-order transduction of a bounded twin-width class.

ICALP 2021
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2.3 Selected results for the short version
Due to space constraints, we select a representative sample of the results announced in the
introduction. This sample covers at least partially Theorems 2–4 and 6. We present the
following four items on bounded twin-width classes, where the input graph comes with an
O(1)-sequence; each item sharply contrasting with what is possible on general graphs.

In Section 3 we give a linear FPT algorithm for k-Independent Set.
In Section 4 we give a linear FPT algorithm for k-Dominating Set.
In Section 5 we show a constant approximation for Min Dominating Set.
In Section 6 we show that bounded twin-width graphs are χ-bounded.

That selection presents our new conceptual ideas in their simplest form, while echoing
the title of the paper. For more details on these results or for the proofs not covered in the
short version, we refer the reader to the long version in appendix.

3 Practical algorithm for k-Independent Set

The running time analysis of the forthcoming algorithm is based on a folklore bound on the
number of connected subsets of size at most k in a bounded-degree graph.

▶ Lemma 8. The number of connected vertex sets of size at most k, intersecting a set X, in
a graph of maximum degree d is at most (d2k−2 + 1)|X|. Furthermore they can be enumerated
in time O(d2k−2|X|).

We show how to solve k-Independent Set by dynamic programming on the connected
subsets of size at most k in the red graphs of a d-sequence given with the input graph.

▶ Theorem 9. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Independent Set can be solved in time O(k2d2kn) = 2Od(k)n.

Proof. Our algorithm maintains a set of optimum partial solutions in the current trigraph,
starting from G, and progressively going along the d-sequence. Let us start with a definition
of the partial solutions and of their optimality.

A partial solution in the trigraph Gi is a pair (T, S) where T ⊆ V (Gi) is a vertex
set inducing a connected subgraph in the red graph (V (Gi), R(Gi)), and S ⊆ V (G) is an
independent set of G such that S ⊆

⋃
u∈T u(G) and for every u ∈ T , S ∩u(G) ̸= ∅. A partial

solution (T, S) is said optimum if there is no partial solution (T, S′) such that |S| < |S′|.
A set T ⊆ V (Gi) is said realizable (in Gi) if there is an S ⊆ V (G) such that (T, S) is a partial
solution in Gi. Notice that not every connected subset in the red graph is realizable. For
instance, it is easy to engineer a situation where there is no independent set intersecting the
three vertices of a 3-vertex red path. Initially, in G, the only connected subgraphs of the red
graph are singletons (since there is no red edge). So there are exactly n (optimum) partial
solutions in G = Gn: Each vertex v of G induces a partial solution ({v}, {v}). We denote by
Sn this set of n optimum partial solutions. It boils down to determining if there is a partial
solution (_, S) in G1 (or actually in any Gi) with |S| ⩾ k. For i going from n − 1 down
to 1, we will build a set of optimum partial solutions Si in Gi from the set Si+1, keeping the
invariant that for every realizable set T ⊆ V (Gi), there is a unique optimum partial solution
(T, S) stored in Si (and no other partial solution in Si).

We shall then describe how we update the set of optimum partial solutions after a
single contraction. Two partial solutions (T, _) and (T ′, _) in Gi are disjoint if T ∩ T ′ = ∅,
and separate, if they are disjoint and there is no red edge uu′ ∈ R(Gi) with u ∈ T and
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u′ ∈ T ′. Two separate partial solutions (T, _) and (T ′, _) are compatible if there is no edge
uu′ ∈ E(Gi) ∪R(Gi) with u ∈ T and u′ ∈ T ′. The union of two compatible partial solutions
(T1, S1) and (T2, S2) as (T1, S1) ∪ (T2, S2) := (T1 ∪ T2, S1 ∪ S2). By definition, such a union
is not a partial solution since T induces two connected components in its current red graph.
Nevertheless we will build the new (connected) partial solutions of Gi by making unions of
up to d + 2 pairwise compatible partial solutions in Gi+1. These unions will be connected in
Gi, hence will correspond to partial solutions as well.

Let us be more specific. Say u, v ∈ V (Gi+1) are contracted into z ∈ V (Gi) to form Gi.
We say that a partial solution (T, _) in Gi intersects a set X ⊆ V (Gi) if T ∩X ≠ ∅. We
initialize Si with all the partial solutions of Si+1 not intersecting {u, v}. We now add one
partial solution in Si per realizable set T ∋ z in Gi, of size at most k. For every T ⊆ V (Gi)
such that z ∈ T and T induces a connected subgraph on at most k vertices in the red
graph (V (Gi), R(Gi)), we observe three possibilities for a potential partial solution (T, S).
Either S intersects u(G) and v(G), or it intersects only u(G), or it intersects only v(G).
(It is not possible that S ∩ (u(G) ∪ v(G)) = ∅ since T contains z.) Therefore we take the
best (meaning with the largest S, breaking ties arbitrarily) of the potential partial solutions⋃

dec(T \{z}∪{u, v}),
⋃

dec(T \{z}∪{u}),
⋃

dec(T \{z}∪{v}), where dec(X) is the set with
one partial solution per connected component of X in its red graph (here (V (Gi+1), R(Gi+1)).
See Figure 2 for an illustration of this decomposition.

Gi

z

Gi+1

u

v

Figure 2 Right: In gray, a connected vertex set T in the red graph of Gi in the vicinity of the
just contracted vertex z ∈ T . Left: The decomposition dec(T \ {z} ∪ {v}) in the previous trigraph
Gi+1, where each color represents a connected component. If every color class is a realizable set in
Gi+1, then T is realizable in Gi, with (optimum) partial solution

⋃
dec(T \ {z} ∪ {v}). Note that,

due to black edges between u and some vertices of T , the partial solutions in dec(T \ {z} ∪ {u, v})
and in dec(T \ {z} ∪ {u}) cannot be pairwise compatible.

In the very possible event that at least one such connected component of X is not realizable,
dec(X) = None. The union

⋃
dec(X) of all the partial solutions of dec(X) is None if dec(X) =

None or if there is at least one black edge between two connected components. Otherwise⋃
dec(X) is a pair (T, S) as defined in the previous paragraph, since the partial solutions of

dec(X) are pairwise compatible. Since T is chosen connected in (V (Gi), R(Gi)), (T, S) is
indeed a partial solution in Gi. If

⋃
dec(T\{z}∪{u, v}),

⋃
dec(T\{z}∪{u}),

⋃
dec(T\{z}∪{v})

all three evaluate to None, then best{
⋃

dec(T \ {z} ∪ {u, v}),
⋃

dec(T \ {z} ∪ {u}),
⋃

dec(T \
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{z} ∪ {v})} also returns None. This would mean that T is not realizable. If instead T is
realizable, we get a partial solution (T, S) that we put in Si. If |S| ⩾ k, we already have a
large enough independent set; the algorithm outputs it and terminates.

If we finally build S1, and no independent set of size at least k was found, we output
S, the unique set such that (_, S) ∈ S1. S1 is indeed a singleton since there is only one
realizable set in G1. That finishes the description of the algorithm.

Details on the correctness and running time can be found in the long version. The correct-
ness uses the classic inductive arguments for an algorithm based on dynamic programming.
The claimed running time for k-IndSet essentially follows from Lemma 8.

Optimizations. We suggest some improvements or variations of k-IndSet to generally
improve over the worst-case running time of the inner for loop. A lot of sets T will trivially
be not realizable because they induce a black edge. When enumerating the walks starting
at z of length at most 2k − 3, one can abort every branch zv1 . . . vh inducing at least one
black edge. It can even be done in a way that the enumeration takes time O(t) where t is
the number of sets T ∋ z of size at most k, such that T is connected in the red graph, and
an independent set in the black graph.

Even if a set T satisfies those properties, we have no guarantee that T is realizable. In
very dense instances, it is imaginable that the realizable sets are very rare. In that case,
we will lose a lot of time generating sets T to observe immediately after that there is no
associated partial solution (T, S). An alternative to k-IndSet is to build the new partial
solutions of Si directly as unions of pairwise compatible partial solutions of Si+1, without
anticipating the nature of the possibly realizable set T ⊆ V (G).

Let us be more precise. Let Rz be the set of red neighbors of z in Gi. For every set
of at most max(2, d + 1) partial solutions (T1, S1), . . . , (Th, Sh) ∈ Si+1 intersecting Rz, at
least one of which intersects {u, v}, if the partial solutions are pairwise compatible, we
update the realizable set

⋃
i∈[h] Ti with the partial solution

⋃
i∈[h](Ti, Si) if

⋃
i∈[h] Si is larger

than the current best solution. Following the first improvement, we can only generate the
sets that are pairwise compatible. As we know, there are at most three ways to reach
a given set T ⊆ V (Gi) as a union of pairwise compatible partial solutions in Si+1. The
running time of this variation of k-IndSet is O∗(Σi∈[n]|Snew

i |), where Snew
i := Si \ Si−1

(and Snew
n := Sn) represents the new partial solutions computed at step i. In practice, this

can be significantly better than O(k2d2kn). Such a dynamic programming, only generating
“positive” subinstances, dubbed positive-instance driven by Tamaki, led to a breakthrough
and current state-of-the-art practical algorithm for computing optimally the treewidth of a
graph [17]. ◀

Without too many changes, k-IndSet may support weights, that is, find an independent
set of size exactly min(k, α(G)) with largest total weight. Instead of keeping one solution S

per realizable set T , we keep up to k solutions, one per pair (T, j) with j ∈ [|T |, k]. A partial
solution (T, j, S) is defined as before except S is required to have size exactly j. To compute
the new partial solutions, we add a third nested for loop after line 6: We iterate over all
the ways of distributing j ⩽ k units between the red connected components induced by
T ′ ∈ {T \ {z} ∪ {u, v}, T \ {z} ∪ {u}, T \ {z} ∪ {v}} so that each connected component gets
a positive integer (at least equal to its size). We then add to Si one partial solution (T, j, S)
(if at least one exists) maximizing the weight of S for fixed T and j. We also skip lines 8 and
9 of k-IndSet.

This comes with a slight increase in the running time. Namely, there is an extra 2O(k log k)

factor accounting for the ordered partition of integer j ⩽ k into positive integers. Thus the
overall running time with weights is 2O(k log k)d2kn.
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As twin-width and d-sequences are preserved when complementing the graph, we also
solve k-Clique in the same running time. One may wonder if the dependency in k of our
2Od(k)n-time algorithm can be improved. It turns out that this running time is essentially
optimal. Due to the Sparsification Lemma [13] and folklore reductions, MIS restricted to
subcubic n-vertex graphs cannot be solved in 2o(n), under the Exponential Time Hypothesis5

(ETH) [12]. Thus, by the classic self-reduction consisting of performing an even subdivision of
each edge [16], MIS cannot be solved in time 2o(n/ log n) on 2⌈log n⌉-subdivisions of n-vertex
subcubic graphs, unless the ETH fails. In [3], we show how to find O(1)-sequences in
polynomial time for 2⌈log n⌉-subdivisions of n-vertex graphs. Therefore this lower bound
holds even if we are given the d-sequence. In particular, no algorithm solves k-Independent
Set in time 2od(k/ log k)nO(1), unless the ETH fails.

4 A practical algorithm for k-Dominating Set

We solve k-Dominating Set with a more involved instantiation of the scheme of the
previous section. We face some new conceptual difficulties compared to the algorithm for
k-Independent Set. For one thing, the partial solutions that we maintain are not feasible
solutions in the whole graph. Also we now consider balls of radius f(d)k in the red graphs,
and not merely of radius k. In general, the arguments are more subtle to handle partially and
fully dominated vertex sets, as well as the solution trace. This entails a worse dependency
in d, but the same essentially optimal 2O(k)n when d is treated as a constant.

▶ Theorem 10. Given an n-vertex graph G, a positive integer k, and a d-sequence G =
Gn, . . . , G1 = K1, k-Dominating Set can be solved in time O(22(d2+1)(2+log d)kn) = 2Od(k)n.

Proof. As was the case with k-Independent Set, the algorithm sequentially considers each
trigraph in the d-sequence Gn, . . . , G1 starting from Gn, and inductively updates a set of
optimal partial solutions of the trigraph Gi to yield the next set for Gi−1. We recall that
E(Gi) and R(Gi) respectively refer to the black and red edge set of the trigraph Gi. The
ball of radius at most r in the red graph (V (Gi), R(Gi)) centered at a vertex x ∈ V (Gi) is
denoted as Br

i (x).

Profile of a partial solution. A profile (of a partial solution) of Gi is a triple (T, D, M) of
vertex sets of V (Gi) such that (i) T forms a connected set in the red graph (V (Gi), R(Gi)),
(ii) D, M ⊆ T , and (iii)

⋃
x∈D B2

i (x) ⊆ T . The first entry T of a profile P = (T, D, M) is
called the ground set of P , and the size of P is defined as the size of its ground set. A profile
(T, D, M) is said to be a k-profile if |D| ⩽ k. When the profile under consideration is clear
from the context, we denote T \D and T \M by D̄ and M̄ respectively.

We say that a profile (T, D, M) is realizable with S ⊆ V (G) if the following conditions
hold.
1. S ⊆

⋃
x∈T x(G),

2. for every x ∈ V (Gi), x ∈ D if and only if x(G) ∩ S ̸= ∅, and
3. for every x ∈ V (Gi), x ∈M if and only if x(G) is (fully) dominated by S.

A profile is said to be realizable if there exists S with which it is realizable.
Suppose that x, y ∈ V (Gi+1) are contracted to yield Gi with z being the new vertex. For

a vertex set T ⊆ V (Gi) connected in the red graph V (Gi, Ri) and containing z, let T1, . . . , Tℓ

be the red connected components of T ′ = (T \ z) ∪ {x, y} in Gi+1, i.e. the partition of T ′

5 The assumption that there is a constant δ > 0, such that 3-SAT cannot be solved in time 2δn.
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into maximal vertex sets each of which is connected in V (Gi+1, Ri+1). The number of these
red subgraphs does not exceed d + 2 because each Ti either contains x or y, or one of the
newly created red neighbors of z. Notice also that ℓ can be equal to 1, which means that x

and y belong to the same connected component of (V (Gi+1), R(Gi+1)).
For a k-profile (T, D, M) of Gi such that z ∈ T , we say that a set P = {(T1, D1, M1), . . . ,

(Tℓ, Dℓ, Mℓ)} of k-profiles of Gi+1 is consistent with (T, D, M) if the following holds. Let
T ′ := (T \ z) ∪ {x, y}, D′ :=

⋃ℓ
j=1 Dj and M ′ :=

⋃ℓ
j=1 Mj .

1. The ground sets of the profiles in P are precisely the red components of T ′ in Gi+1.
2. D \ z = D′ \ {x, y}.
3. z ∈ D if and only if x ∈ D′ or y ∈ D′.
4. For every u ∈ T \ z, u ∈M if and only if u ∈M ′ or there exists v ∈ D′ such that uv is a

black edge in Gi+1.
5. z ∈ M if and only if for each u ∈ {x, y}, it holds that: u ∈ M ′ or there exists v ∈ D′

such that uv is a black edge in Gi+1.

Algorithm, and how to compute τi from τi+1. At each iteration along the d-sequence,
we maintain one mapping τi from k-profiles P = (T, D, M) of Gi with |T | < (d2 + 1)k to a
subset of

⋃
t∈T t(G). The assignment τi(P ) = nil is interpreted as that P is not realizable

whereas τi(P ) ̸= nil is intended to be a minimum-size vertex set of V (G) realizing P . Again
let Gi be obtained by contracting the vertices x, y ∈ V (Gi+1) and z be the new vertex. Our
goal is to compute τi from τi+1, assuming τi+1 has been computed correctly. Note that a
k-profile P = (T, D, M) of Gi such that z /∈ T is also a profile of Gi, and trivially one is
realizable with S if and only if the other is realizable with S. Therefore, τi simply inherits
the assignment of τi+1 in this case as depicted in lines 6-7.

If P = (T, D, M) has z in its ground set, the algorithm k-DomSet inspects all sets P
of k-profiles of Gi+1 consistent with (T, D, M) and among the unions

⋃
P ∈P τi+1(P ) over

all such P, outputs the best one as τi(T, D, M), that is, the one of minimum cardinality is
chosen. If

⋃
P ∈P τi+1(P ) = nil for each consistent P , the algorithm concludes that (T, D, M)

is not realizable and assigns nil. The case when P contains a k-profile P with ground set
of size at least (d2 + 1)k, a special step is taken as τi+1 is not defined on such P . In this
situation, a vertex v ∈ T ′ \

⋃
t∈D′ B2

i+1(t) is chosen, and the query at (T ′ \ v, D′ \ v, M ′ \ v)
is made instead. Lines 15-18 handle this case. The uniqueness of k-profile in P in line 16
and the existence of such v in line 17 will be discussed in the correctness proof.

Correctness. To show the correctness of Algorithm 1, it suffices to prove the following.

(⋆) For every i ∈ [n] and every k-profile P of Gi, we have τi(P ) ̸= nil if and only if P

is realizable with a set of size at most k. Furthermore, if τi(P ) ̸= nil, then τi(P ) is a
set of minimum size with which P is realizable.

We prove (⋆) by induction. In the base case when i = n, the claim trivially holds. Assume
i < n and let x, y be the vertices of Gi+1 which were contracted to yield Gi, where z is the
newly obtained vertex of Gi. By induction hypothesis, for any k-profile (T, D, M) of Gi with
z /∈ T the claim holds as it is a k-profile of Gi+1 as well.

Therefore, we assume that z ∈ T and let T ′ = (T \ z) ∪ {x, y}.

▷ Claim 11. Assume that (⋆) holds for all i′ > i and let P = (T, D, M) be a k-profile of Gi.
If P is realizable with a set of size at most k, then τi(P ) ̸= nil.
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Proof. Suppose that P = (T, D, M) is realizable with S ⊆ V (G) of size at most k. Let
T1, . . . , Tℓ be the red connected components of T ′ in Gi, and let Sj = S ∩

⋃
t∈Tj

t(G) for
every j ∈ [ℓ]. The pairs Tj and Sj for j = 1, . . . , ℓ define a set of ℓ k-profiles (Tj , Dj , Mj) of
Gi+1 in a canonical way: Dj is precisely the set of vertices t ∈ Tj such that t(G) ∩ Sj and
Mj is the set of vertices t ∈ Tj such that t(G) is (fully) dominated by Sj . By construction,
each k-profile (Tj , Dj , Mj) is realizable with Sj .

We argue that the set P = {(Tj , Dj , Mj) : j ∈ [ℓ]} is consistent with P = (T, D, M).
The first and the second conditions for consistency are clearly satisfied. To verify the third
condition, consider a vertex u ∈ T distinct from z and without loss of generality we assume
u ∈ Tj∗ . If u ∈M and u /∈Mj∗ , this means that Sj∗ does not dominate u(G) because Sj∗

realizes (Tj∗ , Dj∗ , Mj∗). From u ∈M and the fact that S realizes (T, D, M), we know that
S dominates u(G) and thus there is at least one vertex S \ Sj∗ which is adjacent (in G) with
some vertex of u(G). Consider an arbitrary vertex v ∈ T to which some of S \ Sj∗ contracts
to, and observe that v /∈ Tj∗ . This means that uv is a black edge. The converse direction
of the third condition is clearly met. The fourth condition of consistency can be verified
similarly as the third condition. If P does not contain any k-profile whose ground set has
size at least (d2 + 1)k, now the claim is immediate because each (Tj , Dj , Mj) is realizable
with Sj : by induction hypothesis, we have τi+1(Tj , Dj , Mj) ̸= nil, and thus τi(T, D, M) is
set to ̸= nil at line 14.

Suppose that P contains a k-profile whose ground set has size at least (d2 + 1)k. One
can easily see that in this case, ℓ = 1 or equivalently T ′ is a red connected component in
(V (Gi+1), R(Gi+1)) consisting of exactly (d2 +1)k vertices. Since the union of at most k balls
of radius at most 2 which is connected in (V (Gi+1), R(Gi+1)) have less than (d2 +1)k vertices,
there exists v ∈ T ′ \

⋃
t∈D′ B2

i+1(t). Moreover, by the choice of v, (T ′ \ v, D′ \ v, M ′ \ v)
is now a k-profile of Gi+1. To conclude that τi(T, D, M) ̸= nil, it suffices to prove that
τi+1(T ′ \ v, D′ \ v, M ′ \ v) ̸= nil. We do this by showing that (T, D, M), (T ′, D′, M ′) and
(T ′ \ v, D′ \ v, M ′ \ v) are equivalent in regards to realizability.

The equivalence of the first two is obvious. For the equivalence of the last two, note
that if S realizes (T ′, D′, M ′), S does not intersect v(G), and thus S trivially realizes
(T ′ \ v, D′ \ v, M ′ \ v). Conversely, suppose that (T ′ \ v, D′ \ v, M ′ \ v) is realizable with S′.
The crucial observation is that v has no red neighbor in D′ since otherwise, v belongs to
the union

⋃
t∈D′ B2

i+1(t), contradicting the choice of v. Therefore, we know that v ∈M ′ if
and only if there exists u ∈ D′ \ v such that uv is a black edge. In the case when v ∈ M ′,
there exists a black neighbor u ∈ D′ \ v of v, and any S′ realizing (T ′ \ v, D′ \ v, M ′ \ v)
intersects u(G). If follows that S′ fully dominates v(G) and S′ realizes (T ′, D′, M ′). Else if
v /∈M ′, this means that not only the red neighbors of v are disjoint from D′ but also no black
neighbor of v is contained in D′. As a consequence v(G) is not dominated by S′, thus S′

realizes (T ′, D′, M ′). This proves the equivalence of (T ′, D′, M ′) and (T ′ \ v, D′ \ v, M ′ \ v),
and completes the proof of the claim. ◁

To establish the other direction, suppose that τi(T, D, M) ̸= nil and let P∗ be the set
consistent with P such that τi(T, D, M) =

⋃
P ∈P∗ τi+1(P ) or τi(T, D, M) = τi+1(T ′ \ v, D′ \

v, M ′ \ v) for some v. Such P∗ clearly exists since otherwise only nil can be output. In
the former case, it is tedious to verify that if each (Ti, Di, Mi) of P∗ is realizable with Si,
then

⋃
i∈[ℓ] Si realizes (T, D, M). In the latter case, we simply recall that (T, D, M) and

(T ′ \ v, D′ \ v, M ′ \ v) are equivalent in regards to realizability. This completes the proof of
the first statement of (⋆). The second statement immediately follows.
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Algorithm 1 k-DomSet.

Input : A graph G, a positive integer k, and a d-sequence G = Gn, . . . , G1 = K1.
Output : A dominating set of G of size at most k, or report nil (No-instance).

1 for v ∈ V (Gn) do
2 τn({v}, {v}, {v}) = {v}, τn({v}, ∅, ∅) = ∅, τn(P ) = nil for all other k-profiles P

3 for i = n− 1→ 1 do
4 x, y ← contracted pair in Gi+1 → Gi

5 z ← contraction of x and y in Gi

6 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z /∈ T do
7 τi(T, D, M)← τi+1(T, D, M)
8 for every k-profile (T, D, M) of Gi of size less than (d2 + 1)k s.t. z ∈ T do
9 τi(T, D, M)← nil

10 T ′ ← (T \ z) ∪ {x, y}
11 for every set P of k-profiles of Gi+1 consistent with (T, D, M) do
12 if each k-profile of P has size less than (d2 + 1)k then
13 if τi+1(P ) ̸= nil for all P ∈ P then
14 τi(T, D, M)← best{τi(T, D, M),

⋃
P ∈P τi+1(P )}

15 else
16 Let (T ′, D′, M ′) be the unique k-profile contained in P.
17 Choose v ∈ T ′ \

⋃
t∈D′ B2

i+1(t)
18 τi(T, D, M)← best{τi(T, D, M), τi+1(T ′ \ v, D′ \ v, M ′ \ v)}

19 if τi(T, D, M) ̸= nil and has size larger than k then
20 τi(T, D, M)← nil

21 return τ1(V (G1), V (G1), V (G1))

Running time. In an actual implementation of Algorithm 1, we maintain a single mapping τ .
As we proceed from Gi+1 to Gi, we modify the domain of τ consisting of k-profiles so that new
k-profiles involving z are added and after calculating the assignments for the new k-profiles,
all the domains and corresponding assignments involving x or y shall be discarded. Therefore,
it suffices to check the running time for updating τ , which is performed in the inner loop of
lines 6-20. By Lemma 8, there are O(d2(d2+1)k−2 · 22(d2+1)k) new profiles of Gi to compute.
For each k-profile (T, D, M) with z ∈ T , the ground sets T1, . . . , Tℓ of a potentially consistent
set P is already determined. Hence, we exhaust all possibilities of appending each Ti by Mi

and Di to form a k-profile and the inner loop of 8-20 will consider at most 2(d2+1)k · 2(d2+1)k

sets P. The consistency of P with (T, D, M) can be routinely verified. This establishes the
claimed running time. ◀

5 Approximation algorithms

5.1 Constant approximation for Min Dominating Set

In this section, we prove that Min Dominating Set has bounded integrality gap in classes
of bounded twin-width. A constant factor approximation algorithm readily follows. We will
use the following technical lemma from the second paper of the series.
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▶ Theorem 12 (Section 3, Lemma 20 in [3]). For every integer t, there are integers s and t′

such that every graph G with a t-sequence admits a rooted tree T with the following properties.
Every node of T is labeled by a t′-trigraph.
The root of T is labeled by G.
All the leaves of T are labeled by the 1-vertex graph K1.
If a node x of T is labeled by H, and a child node of x is labeled by H ′, there is a
t′-contraction in H that yields H ′. In particular |V (H)| = |V (H ′)|+ 1.
Every internal node of T labeled by H has at least |V (H)|/s children coming from
t′-contractions on pairwise disjoint pairs of vertices of H.

Such a tree is called an s-versatile tree of t′-contractions. Informally Theorem 12 says
that, by degrading the twin-width bound, one can move away from the “linear nature” of
the contraction sequence to a profusely branching contraction witness.

Theorem 12 is effective: The s-versatile tree of t′-contractions can be computed in
polynomial time, if a t-sequence for G is provided.

▶ Theorem 13. In classes of bounded twin-width, Min Dominating Set has bounded
integrality gap.

Proof. Let G be a graph of twin-width at most t. By Theorem 12, there exist t′, s functions
of t only such that G admits an s-versatile tree of t′-contraction. Let w∗ : V (G)→ [0, 1] be
the weight function of a minimum fractional dominating set, with total weight γ∗. Thus w∗

is an optimum solution of the linear program

minimize
∑

x∈V (G)

w(x)

with ∀x ∈ V (G),
∑

y∈N [x]

w(y) ⩾ 1, and 0 ⩽ w(x) ⩽ 1,

and γ∗ =
∑

x∈V (G) w∗(x). The weight function w∗ is extended to subsets of vertices by sum.
We assume that G has at least one vertex, so γ∗ ⩾ 1.

We now greedily perform contractions in G following the versatile tree of contractions
with a restriction: contractions involving a part of total weight at least 1

2(t′+1) are forbidden.
Let us explain what this means in more detail. We start at the root, labeled G, of the
versatile tree. We move to a(ny) child node along an edge corresponding to a non-forbidden
t′-contraction. A non-forbidden contraction is one of u, v with w∗(u(G)) < 1

2(t′+1) and
w∗(v(G)) < 1

2(t′+1) . We iterate that until we get stuck (every child of the current node
entails a forbidden contraction).

We adopt the partition viewpoint of the t′-sequence. Let P be the partition of V (G)
obtained when this process finishes, and let GP be the corresponding trigraph (that is, the
label of the node where we stop). We observe that we cannot end at a leaf of the versatile
tree. Indeed that would mean that the last contraction merged a bipartition {X, Y } of V (G)
into {V (G)}. As γ∗ ⩾ 1, this would imply that w∗(X) ⩾ 1/2 or w∗(Y ) ⩾ 1/2, contradicting
max(w∗(X), w∗(Y )) < 1

2(t′+1) .

▷ Claim 14. The partition P has at most 2s(t′ + 1)γ∗ classes.

Proof. As we explained, we cannot end up with a partition P at a leaf of the versatile tree.
Thus at least |P|/s disjoint pairs of vertices are t′-contractions in GP . Therefore all these
contractions must be forbidden by our restriction imposed on the weights. It follows that at
least |P|/s parts of P have weight at least 1

2(t′+1) . Since the sum of all weights in P is γ∗, it
follows that |P| ⩽ 2s(t′ + 1)γ∗. ◁
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▷ Claim 15. Let P ∈ P be any part. Either w∗(P ) < 1
t′+1 or P is a singleton.

Proof. Let P ∈ P, and assume that P is not a singleton. Then P has been obtained by
contracting two parts P1, P2 during the contraction sequence leading to P. The restriction
on the contraction sequence ensures that w∗(P1) < 1

2(t′+1) and w∗(P2) < 1
2(t′+1) . Therefore

w∗(P ) = w∗(P1) + w∗(P2) < 1
t′+1 . ◁

Let D ⊆ V (G) be obtained by picking arbitrarily one vertex xP in each part P ∈ P. By
Claim 14, |D| ⩽ 2s(t′ + 1)γ∗, which is linear in γ∗ when t is fixed. Let us prove that D is a
dominating set. We let P ∈ P, and prove that all vertices of P are dominated by D.

Suppose first that there exists P ′ ∈ P such that P, P ′ is a black edge in GP . Then
xP ′ ∈ P ′ is adjacent to all vertices of P , which are thus dominated by D.

Hence we may instead assume that P does not have any black neighbor in GP . Consider
any vertex y ∈ P , and let P1, . . . , Pk the parts of P \ {P} such that there exists an edge
between y and some vertex of Pi. Then P1, . . . , Pk are neighbors of P in GP , and must be
red neighbors since P has no black neighbor. Since GP is a t′-trigraph, it follows that k ⩽ t′.

We now claim that one of the parts P, P1, . . . , Pk must be a singleton. Indeed, since w∗

is a fractional dominating set, and since P ∪
⋃k

i=1 Pi contains y and its neighborhood, it
must be that w∗(P ) +

∑k
i=1 w∗(Pi) ⩾ 1. Because k ⩽ t′, it follows that one part among

P, P1, . . . , Pk has weight at least 1
t′+1 . By Claim 15, that same part Ph must be a singleton.

Let z be the single vertex in Ph. Necessarily z ∈ D. If this singleton part is P , then z = y.
Otherwise z is a neighbor of y by definition of P1, . . . , Pk. In either case y is dominated in D

by z. ◀

5.2 A constant approximation for MIS would imply a PTAS
A pessimistic stance on the result of this section is that, perhaps surprisingly, the constant
approximation of Min Dominating Set is unlikely to be generalizable to the closely related
MIS. We indeed observe that the self-improving reduction of Feige et al. [8] preserves the twin-
width. As a consequence a constant approximation for MIS would provide a polynomial-time
approximation scheme (PTAS).

▶ Theorem 16. If Max Independent Set on graphs of twin-width at most d has a
constant-approximation algorithm, then it admits a PTAS.

For G1 and G2 two non-empty graphs, and u ∈ V (G1), we denote by G1(u← G2) the
substitution in G1 of u by G2. That is, u is replaced by G2, and every vertex of V (G1) \ {u}
initially adjacent to u is made adjacent to the whole V (G2).

▶ Lemma 17. tww(G1(u← G2)) = max(tww(G1), tww(G2)).

For G a graph, let Gt be the graph on the vertex set V (G)t, such that for x̄ = (x1, . . . , xt),
ȳ = (y1, . . . , yt) distinct vertices, x̄ȳ ∈ E(Gt) if and only if xiyi ∈ E(G) where i is the
smallest index such that xi ̸= yi. This definition can be restated inductively: G0 is the
1-vertex graph, and Gt is obtained from G by substituting each vertex by a copy of Gt−1.
With the notations of the initial definition, for x ∈ V (G), the set of vertices of Gt of the
form (x, x2, . . . , xt) is a copy isomorphic to Gt−1.

The following holds as a direct consequence of Lemma 17.

▶ Lemma 18. For any graph G and integer t > 0, tww(Gt) = tww(G).

We now show that the independence number of Gt is tightly related to the one of G.
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▶ Lemma 19. For any graph G, both following conditions hold.
1. Given any independent set of size k in G, one can compute an independent of size kt

in Gt, in time O(kt).
2. Given any independent set of size k′ in Gt, one can compute an independent of size

at least t
√

k′ in G, in time O(k′).

As an immediate corollary, α(Gt) = α(G)t where, we recall, α(H) denotes the size of a
maximum independent set in H.

Proof of Theorem 16. Assume there is a polynomial-time β-approximation for MIS on
graphs of twin-width at most d. Let G be a graph with twin-width at most d. By Lemma 18
the algorithm can be ran on Gt to obtain an independent set of size at least α(Gt)

β = α(G)t

β .
By Lemma 19, this independent set in Gt can be turned into an independent set in G of size
at least α(G)/ t

√
β. This gives a polynomial-time t

√
β-approximation for arbitrary t. Thus

the approximation ratio can be made arbitrarily close to 1. ◀

6 Bounded twin-width classes are χ-bounded

So far, our algorithms use the contraction sequence (or tree) “forward”. This is the original
scheme of Guillemot and Marx [11], and of our model checking algorithm [4]. We now see
how it can be useful to consider the contraction process “backward”. We start with the case
of triangle-free graphs, which will be the base case for the proof of the χ-boundedness.

▶ Theorem 20. Every triangle-free graph with twin-width at most d is (d + 2)-colorable.

Proof. Let G be an n-vertex triangle-free graph of twin-width at most d, and let G =
Gn, . . . , G1 = K1 be a d-sequence of G. We show how to color G with d + 2 colors starting
from G1, and iteratively coloring Gi+1 based on the coloring of Gi. We give the unique vertex
of G1 = K1 color 1. This defines coloring C1. For every i from 1 to n− 1, let z be the vertex
of Gi split into u, v ∈ V (Gi+1). In coloring Ci+1, every vertex of V (Gi+1) \ {u, v} keeps the
color it received by Ci. Vertex u receives color Ci(z). Finally, v receives color Ci(z) if uv

is a non-edge in Gi+1, and the smallest positive integer not appearing in its neighborhood
(black and red neighbors) in Gi+1, otherwise. We will now show that Cn is a proper coloring
of G using at most d + 2 distinct colors.

We show by induction on i that Ci is a proper (d + 2)-coloring of the graph G′
i :=

(V (Gi), E(Gi) ∪R(Gi)). Coloring C1 is indeed proper in G′
1 and uses 1 ⩽ d + 2 color. We

assume that Ci is a proper (d+2)-coloring of G′
i, and distinguish two cases. If there is a black

edge yz ∈ E(Gi) (recall that z is the vertex split into u, v), then uv has to be a non-edge
in Gi+1. Otherwise there is at least one edge between u(G) and v(G), and this edge forms
a triangle with any vertex in y(G). Thus in that case, Ci+1(u) = Ci+1(v) = Ci(z). So the
number of distinct colors given by Ci+1 is still at most d + 2 (see Figure 3).

And Ci+1 is a proper coloring of G′
i+1 since NG′

i+1
({u, v}) = NG′

i
(z). If instead z has only

red neighbors in Gi, then z has at most d neighbors in G′
i. Furthermore let us assume that

uv ∈ E(G′
i+1), otherwise we conclude as previously. In that case, v is properly colored by

Ci+1 in G′
i+1 by construction, and vertex u as well, since NG′

i+1
(u) \ {v} ⊆ NG′

i
(z). Finally

Ci+1(v) is the smallest positive integer not appearing in a set of at most d+1 positive integers.
Thus Ci+1(v) ⩽ d + 2, and Ci+1 is overall a proper (d + 2)-coloring of G′

i+1 (see Figure 4).
In particular, Cn is a proper (d + 2)-coloring of G′

n = Gn = G. ◀

As a side note, it is, to our knowledge, possible that every triangle-free Kt-minor free
graph has twin-width O(t). If this turns out to be true, it offers a seemingly different
approach to getting improved bounds in the triangle-free case of the Hadwiger’s conjecture:
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NGi
[z] NGi+1 [u, v]

Figure 3 Split, when z is incident to a black edge in Gi. As G is triangle-free, there cannot be
an edge (red or black) between u and v. Thus both u and v can take the color of z, which does not
appear in their neighborhood.

NGi [z] NGi+1 [u, v]

Figure 4 Split, when z is only incident to red edges. Even if the red neighbors of z have d distinct
colors, vertex v can find a color in [d + 2] which avoids these d colors plus the color of z and u.

Instead of trying to color these graphs, one could try to design contraction sequences for
them. We now show how to color any Kt-free graph G given with a d-sequence, with at most
(d + 2)t−2 colors.

▶ Theorem 21. For every integer t ⩾ 3, every Kt-free graph with twin-width at most d is
(d + 2)t−2-colorable.

Proof. Let Gn, . . . , G1 be a d-sequence of a Kt-free graph G with t ⩾ 3. In Theorem 20,
whenever a vertex x ∈ V (Gi+1) was incident to a black edge for the first time (going from
G1 to Gn), the color of all the vertices in x(G) was eventually set to the same value, namely
Ci+1(x). Now such a set x(G) is not necessarily an independent set, but rather induces a
Kt−1-free graph. Indeed, a Kt−1 in G[x(G)] would form a Kt in G with any vertex of y(G),
where xy ∈ E(Gi+1). By induction on t, we may color G[x(G)] with tuples of at most t− 3
integers of [d + 2], and prepends Ci+1(x) to these tuples. The base case t = 3 is Theorem 20.
We make the general idea a bit more precise.

For every i ∈ [n], we define G∗
i as the graph obtained from Gi by blowing every vertex

x ∈ V (Gi) into G[x(G)] whenever x is incident to a black edge, and then turning every
red edge into a black edge. We define the successive colorings C ′

1, . . . , C ′
n of G∗

1, . . . , G∗
n,

respectively, following the algorithm of Theorem 20. While there are no black edge in the
current trigraph Gi, we set C ′

i := Ci, where Ci is the coloring in the triangle-free case. Say, at
least one black edge appears for the first time in Gi+1 (this is well-defined since Gn has only
black edges). Again we adopt the convention that z ∈ V (Gi) was split into u, v ∈ V (Gi+1).
Let S be the set of (at most d + 2) vertices with an incident black edge in Gi+1. (One may
notice that S ⊆ {u, v} ∪NGi

(z) and S ∩ {u, v} ≠ ∅.) Every vertex w ∈ V (Gi+1) \ S receives
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color Ci+1(w). As we observed, for every x ∈ S, G[x(G)] is Kt−1-free. By induction there is
a coloring Cx of G[x(G)] with tuples of at most t− 3 integers from [d + 2]. We permanently
color every vertex y ∈ x(G) by (Ci+1(x), Cx(y)). This defines the coloring C ′

i+1 of G∗
i+1.

We continue to follow Theorem 20, with the ensuing precisions. We go through all
the splits, including the ones between two permanently colored vertices, since they may
make some other vertices incident to a black edge for the first time. If the split vertex
z ∈ V (Gj) is not such that z(G) was already permanently colored, the colors of the new
vertices u, v ∈ V (Gj+1) are chosen according to the rules of Theorem 20 where we consider
the trigraphs Gj and Gj+1 (and not the graphs G∗

j and G∗
j+1), and the coloring Cj of V (Gj)

is defined as: Cj(y) is the first coordinate of C ′
j(y) (or C ′

j(y) itself if it is not a tuple) if
y ∈ V (G∗

j ), and the first coordinate of the color of any vertex in y(G), otherwise. (One may
observe that Cj is not necessarily a proper coloring of (V (Gj), E(Gj) ∪R(Gj)), but all the
conflict edges lie within a permanently colored subgraph.) Every time a vertex x becomes
incident to a black edge, we permanently color x(G). This defines the sequence of colorings
C ′

1, . . . , C ′
n.

We show by induction on i that C ′
i properly colors G∗

i . Coloring C ′
1 is indeed a proper

coloring of G∗
1 = K1. We assume that C ′

i is a proper coloring of G∗
i , and let xy be any

edge in E(G∗
i+1). By the outermost induction on t, if xy lies within a Kt−1-free graph

permanently colored, then C ′
i+1(x) ̸= C ′

i+1(y). If instead x and y belong to two distinct
vertices of Gi+1, by the proof of Theorem 20 and the fact that C ′

i is a proper coloring of G∗
i ,

the first coordinate of C ′
i+1(x) and of C ′

i+1(y) differ. In particular C ′
n is a proper coloring of

G∗
n = Gn = G. We pad every tuple C ′

n(x) of length t′ < t with t − t′ entries 1. From the
previous proof, it can be observed that this new coloring of G is still proper, and uses at
most (d + 2)t−2 colors. ◀

Theorem 21 directly implies that, provided O(1)-sequences are given, Min Coloring
can be 2O(OPT)-approximated on bounded twin-width graphs, and Max Independent Set
can be O(1)-approximated on Kt-free graphs of bounded twin-width. It would be interesting
to determine if bounded twin-width classes are polynomially χ-bounded, that is, satisfies for
some constant c, χ(G) = O(ω(G)c) for every graph G in the class. Bounded clique-width or
rank-width classes were shown polynomially χ-bounded only recently [2]. We show however
that bounded twin-width classes satisfy the related strong Erdős-Hajnal property. We recall
that a class C of graphs satisfies the strong Erdős-Hajnal property if there exists an ε > 0 such
that every G ∈ C contains two disjoint subsets of vertices X, Y , both of size at least ε|V (G)|,
with either all edges or no edges between X and Y . The strong Erdős-Hajnal property of a
hereditary class implies the existence of a clique or a stable set of polynomial size, that is,
the Erdős-Hajnal property [1].

▶ Theorem 22. The class of graphs with twin-width at most d satisfies the strong Erdős-
Hajnal property with ε = 1/(d + 4).

Proof. Let G be an n-vertex graph with twin-width at most d. Consider in a fixed d-
sequence Gn, . . . , G1 the maximum index i such that there is a vertex z ∈ V (Gi) satisfying
|z(G)| ⩾ n/(d + 4). Since X := z(G) is the union of u(G) and v(G) for some u, v ∈ V (Gi+1),
its size is at most 2n/(d + 4). Vertex z has at most d red neighbors in Gi. These neighbors
constitute a set S ⊆ V (G) of at most d · n/(d + 4) vertices. Thus |V (G) \ (z(G) ∪ S)| ⩾
n− 2n/(d + 4)− dn/(d + 4) = 2n/(d + 4). By construction, every vertex in V (G) \ (z(G)∪S)
is fully adjacent to X or fully non-adjacent to X. Let Y ⊆ V (G) \ (z(G) ∪ S) be the subset
of all vertices in the majority regarding these two outcomes. Set Y has size at least n/(d + 4)
vertices and X, Y is therefore an appropriate pair. ◀
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