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Abstract
Given a set of polynomial equations over a field F , how hard is it to prove that they are simultaneously
unsolvable? In the last twenty years, algebraic proof systems for refuting such systems of equations
have been extensively studied, revealing close connections to both upper bounds (connections
between short refutations and efficient approximation algorithms) and lower bounds (connections to
fundamental questions in circuit complexity.)

The Ideal Proof System (IPS) is a simple yet powerful algebraic proof system, with very close
connections to circuit lower bounds: [2] proved that lower bounds for IPS imply V NP ̸= V P , and
very recently connections in the other direction have been made, showing that circuit lower bounds
imply IPS lower bounds [3, 1].

In this talk I will survey the landscape of algebraic proof systems, focusing on their connections
to complexity theory, derandomization, and standard proposional proof complexity. I will discuss
the state-of-the-art lower bounds, as well as the relationship between algebraic systems and textbook
style propositional proof systems. Finally we end with open problems, and some recent progress
towards proving superpolynomial lower bounds for bounded-depth Frege systems with modular gates
(a major open problem in propositional proof complexity).
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