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—— Abstract

With a wide range of applications, stochastic matching problems have been studied in different

models, including prophet inequality, Query-Commit, and Price-of-Information. While there have
been recent breakthroughs in all these settings for bipartite graphs, few non-trivial results are known
for general graphs.

In this paper, we study the random order vertex arrival contention resolution scheme for matching

in general graphs, which is inspired by the recent work of Ezra et al. (EC 2020). We design an
8
15
algorithms for all the three models. Our results are the first non-trivial results for random order

%—selectable batched RCRS for matching and apply it to achieve -=-competitive/approximate

prophet matching and Price-of-Information matching in general graphs. For the Query-Commit
model, our result substantially improves upon the 0.501 approximation ratio by Tang et al. (STOC
2020). We also show that no batched RCRS for matching can be better than % + ﬁ ~ 0.567-
selectable.
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1 Introduction

Matching is a fundamental object of algorithmic studies, with wide applications. Its recent
use in e-commerce often presents two general features: (i) one does not see the entire
input graph in the beginning, but there is often prior stochastic information on each
edge’s value or presence, thanks to accumulated data from the past; depending on the
application, the actual value/presence is revealed either according to some order or at
the control of the matching algorithm; (ii) in either case, the matching algorithm must
be online — that is, once an edge’s information is revealed, the algorithm must make
an irrevocable decision whether to include the edge in the matching. Examples of such
applications include online advertisement [26, 10, 25], kidney exchange [9], and ride-sharing
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platforms [4, 19, 20]. Mathematically, this type of scenarios has been modeled as prophet
inequality (e.g. [24]), Query-Commit [9], and Price of Information [27] problems, according
to the way the information is revealed.

The Online Contention Resolution Scheme (OCRS), first proposed by Feldman et al. [14],
is a powerful framework that has found applications in various online decision problems such
as prophet inequalities [14, 13], oblivious posted pricing [7], and stochastic probing [17]. Ezra
et al. [13] recently proposed a generalization of OCRS, that with batched arrivals, and used
it to give prophet inequalities for matching in bipartite graphs when vertices on both sides
arrive online.

Our main results are two-fold. We follow Ezra et al. and define a batched OCRS for
matching in general graphs with vertex arrival, and give the first non-trivial such OCRS for
random arrival order. We then give an alternative perspective on Gamlath et al. [15]’s recent
progress for the Query-Commit and Price of Information problems on bipartite matching;
viewing their algorithms as reductions to batched OCRS with random batched arrivals, we
immediately obtain similar reductions and consequently the first non-trivial results for the
Query-Commit and Price of Information problems for matching in general graphs. Before
elaborating on these results, we give more background on the connection between contention
resolution schemes and online decision problems, and motivate the batched OCRSs we study.

Contention Resolution Schemes (CRSs) are first proposed as rounding algorithms in
submodular maximization [8]. Such an algorithm treats a fractional solution @ as a product
distribution, samples elements according to it so that each element ¢ is active independently
with probability z;, and selects a feasible subset of active elements, guaranteeing that each
element, when active, is selected with probability at least a > 0, which in turn guarantees
that the selected subset retains performance comparable in expectation to (typically at least
« fraction of) that of x. Such a CRS is said to be a-selectable.

The Online Contention Resolution Schemes (OCRSs) were introduced by Feldman et
al. [14]. Its difference from a CRS is that the algorithm does not see the set of active
elements upfront, but observes each element’s status (of being active or not) one by one
online as each element arrives. Intuitively, in an online stochastic decision problem, the
expected performance of the offline optimal can be calculated as a fractional solution: a
realization of the stochastic procedure gives rise to an optimal (integral) solution, and taking
expectation over the stochastic procedure is equivalent to taking a convex combination
of these solutions, yielding a fractional solution. An online algorithm, to be competitive,
emulates the performance of the fractional solution but only sees partial realizations of the
stochastic procedure in an online fashion. For example, in the prophet inequality problem,
one has prior knowledge in the form of a distribution over the elements’ values, but the
online algorithm only sees an element’s value when it arrives and has to decide immediately
whether to keep the element in the solution.

From this perspective, while Feldman et al. [14]’s setup of OCRS neatly fits the needs of
many online decision problems, for other problems it is natural to go beyond and, as Ezra et
al. [13] did, to consider settings in which (i) the elements arrive not necessarily one by one
but in batches, and (ii) the elements’ being active may not be independent events (which
treats the fractional solution as a product distribution) but correlated ones. Ezra et al. [13]
termed such schemes batched OCRSs. The concrete choices in the batched OCRS should
adapt to the underlying online decision problem being solved.

For example, in online matching, it is often interesting to consider vertex arrival rather
than edge arrival — with vertex arrival, the vertices arrive one by one, and at the arrival
of each vertex, all the edges connecting it to the vertices that have arrived are revealed
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in a batch (i.e., simultaneously), whereas with edge arrival, individual edges arrive one by
one. Correlation in elements’ status (of being active or not) arises naturally when such
batch arrivals are allowed. For example, consider prophet inequalities in bipartite matching
with vertex arrival: in a given graph G = (U, V, E), each edge e € F has a value v, > 0
drawn independently from a given distribution F., and the goal is to obtain a matching
with maximum value. The offline (fractional) solution z € [0,1]¥ has x. representing the
probability that edge e is in the maximum value matching. In the standard reduction from
edge arrival prophet inequality to OCRS, when an element e arrives and reveals its value v,
one (re)samples the values of all the other edges according to their distributions, and labels
e active if v, is high enough to make e in the maximum value matching among the sampled
edges. Now with vertex arrival, when vertex v arrives, the information of all edges connecting
v to the vertices that arrived before v is revealed. Let B, denote this set of edges. It is
natural for the reduction to sample values for all the other edges, and labels at most one
edge in B, as active if that edge is in the maximum value matching among the (re)sampled
edges. Here, the status of the edges in B, in the (batched) OCRS are naturally correlated,
even though their values in the original prophet inequality problem are independent.!

The batched OCRS we study in this work precisely results from this reduction, when
the vertices arrive in an order that is uniformly at random. To be precise, we are given a
vector = € [0,1]¥, such that for each vertex v, > ces(v) Te < 1, where §(v) denotes the set of
edges incident to v. Vertices arrive in an order uniformly at random; when vertex v arrives,
the status of all edge in B, are revealed: each edge e € B, is active with probability z., but
at most one of them is active. If an edge is active, we must decide immediately whether to
select it into the solution. We must keep the set of selected edges a valid matching and, for
as large a constant a > 0 as possible, guarantee that any edge is selected with probability at
least ax.. We refer to such an algorithm an a-selectable batched Random order Contention
Resolution Scheme (RCRS).? The existence of a 3-selectable batched RCRS is known, after
all, Ezra et al. [13] constructed a simple %—Selectable batched OCRS for arbitrary vertex
arrival order. Their method is very similar to the %-selectable OCRS for rank 1 matroid due
to Alaei [2]. On the contrary, we were unable to generalize existing RCRS (e.g., [23]) to a
batched RCRS with a selectability better than % Instead, we construct an %—selectable
batched RCRS via a prune-greedy algorithm, which is our main technical result. As with
other settings of RCRS, getting beyond the simplest algorithm is technically involved; in
contrast with most other RCRS with non-trivial selectability guarantees [23, 1], our batched
RCRS is non-adaptive, in the sense that the algorithm’s decision to select an edge does not
depend on the time when it arrives, besides checking the feasibility of selecting it.

We also show that such batched RCRSs find applications beyond prophet inequalities
as in [13]. Recently there is a breakthrough by Gamlath et al. [15] on the Query-Commit
and Price of Information problems, where they gave (1 — %)—approximation algorithms for
both problems by reducing them to the prophet secretary problem in [12, 11]. We notice
that the prophet secretary algorithm can be easily replaced by the (1 — %)-selectable RCRS
for rank 1 matroid in [23] and still resulting a (1 — %)-approximation algorithm. We find
this perspective is not only conceptually simpler, but also powerful in the sense that if we
replace RCRS for rank 1 matroid by our batched RCRS, their algorithms (with a slight
modification) also apply for general graphs. As a result, we show that our batched RCRSs
imply best-known results for Query-Commit and Price of Information for matching in general
graphs.

! See [13] for details of this reduction.
2 As explained above, batched OCRS as defined by Ezra et al. is more general. Our shorthand term
should cause no confusion, as we consider only one OCRS setting in this work.
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In the Query-Commit matching problem [9], we are given a graph G = (V, E), a
probability p. for each edge e with which e is present, independently of the other edges, and a
value v, of e if e is present. At each step, we may choose to query an edge, but we must take
it if it is present. At all times, we must keep the set of edges taken a valid matching, and our
goal is to maximize the expected sum of values of the edges taken. Gamlath et al. [15] gave
a clever algorithm that is (1 — %)-competitive for bipartite graphs. Their algorithm solves
an offline linear program relaxation and rounds the solution through a prophet secretary
algorithm. We show that this rounding algorithm can be seen as a reduction to a batched
RCRS with random one-sided vertex arrival. This perspective allows us to directly derive an
%-competitive algorithm on general graphs, using our new batched RCRS.

In the same work, Gamlath et al. [15] gave a (1 — 1)-approximation algorithm for the
closely related Price of Information (Pol) problem for matching in bipartite graphs. The
Pol problems were introduced by Singla [27] as a generalization of the Pandora’s Box problem
from the consumer search literature [29, 22|, which in turn is closely related to Bayesian
bandits. In the Pol problem for matching [15], we are given a graph G = (V, E), a search cost
c. and a value distribution F, for each edge e. An invisible value v, is drawn independently
from F¢, and is revealed only when the algorithm chooses to search the edge e, at the cost
of c.. Our goal is to maximize, in expectation, the maximum value of matching among
searched edges, minus the search costs paid along the way. From a new proof for the optimal
algorithm for the Pandora’s Box problem, given by Kleinberg et al. [22], surfaced a reduction
from Pol with Bernoulli distributions to Query-Commit. This reduction was generalized
by Singla [27]. Gamlath et al. [15] showed that their algorithm for Query-Commit admits
some modifications that allow it to give a (1 — é)—approximation for the general Pol problem
for bipartite matching. Our perspective of their algorithm as a reduction to RCRS with
random vertex arrival admits the same modifications, and therefore we immediately obtain

an %—approximation for the Pol problem for matching in general graphs.

Other Related Works. Naturally, the most related work is the recent paper by Gamlath
et al. [15]. They studied the query-commit matching problem and the price-of-information
problem in bipartite graphs and achieved (1 — é) approximation ratios for both settings.
Their paper has a comprehensive review of the related literature, and we only discuss briefly
some most related works that are not covered there.

A closely related setting is the oblivious matching problem. It is also a query-commit
model, while the input instance is adversarial rather than stochastic. In other words, there
is no information about the existence probabilities of edges. Obviously, results in this harder
model directly apply to our setting. The celebrated Ranking algorithm by Karp et al. [21]
gives a (1 — %)—approximation for the unweighted oblivious matching problem in bipartite
graphs. Later, the Ranking algorithm is extended to general graphs and shown to achieve
an approximation ratio of 0.526 [6]. Another well-studied algorithm in this literature is
called modified randomized greedy. It was introduced by Aronson et al. [3] and shown to be
(0.5 4+ Q(1))-approximate in general graphs. The approximation ratio was recently improved
to 0.531 by Tang et al. [28]. For the edge-weighted case, Tang et al. [28] achieved the first
non-trivial 0.501-approximation. As we remarked, this result applies to the Query-Commit
setting studied in our current work, but our approximation ratio is significantly larger.
Moreover, our techniques are entirely different from the previous papers and we believe they
provide novel insights on the problem.
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Offline contention resolution schemes for matchings also achieved some progress recently.

Bruggmann and Zenklusen [5] gave an optimal monotone contention resolution scheme for
bipartite matching with its application to submodular maximization, and Guruganesh and
Lee [18] studied the connection between correlation gap and contention resolution scheme.

Gupta et al. [16] introduced a Markovian price of information model and use online
contention resolution schemes to round the optimum of linear programming. However, as

our RCRS is vertex-arrival model and batched, it can not be directly applied to their result.

2 Preliminaries

Price of Information. 1In a Price of Information problem, we are given a universe U and a
feasibility system F C 2V. For each element i € U, we are also given a search cost ¢; € Ry
and a distribution F; from which an invisible value v; > 0 is independently drawn. In a valid
algorithm for the problem, at each step we may choose to terminate the search or to inquire
a new element ¢; when we choose to do the latter, we incur a cost ¢;, and the value v; ~ F;
is revealed. At the termination of the algorithm, if S is the set of elements inquired by
the algorithm, our utility is maxacs.aer D ;cq Vi — ;g Ci- Our goal is to maximize the
expected utility, where expectation is taken over both the realization of the values and the
internal randomness of our algorithm. In this paper, we focus on the problem where the
universe is the set of edges F in a given graph G = (V, E), and F is the set of all matchings
in E. An algorithm is said to be a-approximation if it achieves at least « fraction of the
optimal utility. That is, we compare to the optimal algorithm.

The Query-Commit Problem for Matching. In a Query-Commit problem, we are given a
universe U, a feasibility system F C 2V and, for each element i € U, a probability p; € [0, 1]
and a value v; > 0. Each element ¢ € U is active independently with probability p;, but this
status can be known only via a query. For the Query-Commit problem, at each step our
algorithm can choose to query the status of an element; if the queried element is active, it
must be accepted to the solution. At all time, we need to make sure that the set of accepted
elements is feasible (i.e., in F). Let S be the set of elements accepted by an algorithm by
the time it terminates, the performance of the algorithm is ), ¢ v;, the total value of the
accepted elements. An algorithm is «-competitive if its performance is at least « fraction
of the offline optimal, i.e., the expected performance of an algorithm that knows the set of
active elements beforehand. In this work, we focus on the case where the universe U is the
edge set E of a given graph G = (V| E), and F is the set of all matchings in G.

Batched RCRS for Matching in General Graphs. We are given a graph G = (V, E, x),

where z € [0, 1]¥ satisfies z,, % Decs(u) Te < 1 for each u € V. All vertices of G arrive

online in a uniformly random order. Upon the arrival of a vertex v, the status of the edges

connecting v and the vertices that have arrived are sampled and revealed to the algorithm.

The sampling is such that, each edge e of these is active with probability x., and at most one

of these edges can be active; that is, these edges’ being active are mutually exclusive events.

We refer to this sampling scheme as S. A batched random order contention resolution scheme
for matching (henceforth batched RCRS) decides, upon the arrival of each vertex, irrevocably
whether to select the active edge (if any exists). At any point in time, the selected edges
must form a matching. A batched RCRS is c-selectable if Prle is selected | e is active] > ¢
for every e € E.

Throughout the paper, we use d(u) C E to denote the set of edges incident to a vertex u.

68:5
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3 Batched RCRS for Matching In General Graphs

In this section we give an %—selectable batched RCRS for matching in general graphs.

3.1 Batched RCRS and Its Proof Sketch

» Theorem 1. There is a polynomial-time computable, %—selectable batched RCRS for
matching in general graphs with random vertex arrival.

Our proof consists of two steps. Given a graph G = (V, E, ). Let S be the corresponding
sampling scheme defined in Section 2. An instance is called 1-regular if z,, = 1 for all u. We
refer to x,, as the degree of u. Our first lemma states that without loss of generality, we can
focus on designing batched RCRS for 1-regular instances.

» Lemma 2. If c-selectable batched RCRS exists for all 1-reqular instances, then c-selectable
batched RCRS exists for all instances.

Proof. Assume c-selectable batched RCRS exists for all 1-regular instances. Consider an
arbitrary instance G = (V, E, x), we first convert it into a 1-regular instance G’ by introducing
dummy vertices and edges. Let S be the associated sampling scheme of the instance G. We
correspondingly construct a sampling scheme S’ on G’ from S by simulating the arrival of
dummy vertices. Finally, we apply the c-selectable batched RCRS in the converted 1-regular
instance to achieve c-selectability in the original instance G.

For the first step, there can be multiple ways of converting a graph into a 1-regular graph.
We give a concrete construction below and remark that the reduction does not rely on the
details of the construction. Let n = |V| be the number of vertices of G. We introduce n
dummy vertices into the graph. For each vertex u € V, we add n dummy edges between
u and all dummy vertices, where each edge has active probability z/, = 1‘% Note that
now every vertex in V has degree 1 and all dummy vertices have the same degree. Finally,
we add a clique to all dummy vertices and set the weight/active probability of those edges
appropriately so that all vertices have degree 1.

Recall G’ is the converted instance and let ' be the corresponding vector of active
probability. Next, we show how to construct the corresponding sampling scheme S’ from
S. There are 2n time slots in total for vertex arrivals. We select uniformly at random n of
them to pair with n dummy vertices uniformly at random. Upon the arrival of a dummy
vertex, we sample at most one of the edges connecting it to previously arrived vertices with
probability consistent with x’. Upon the arrival of an empty slot, we pair it with the next
vertex arrival in the original instance and call S. If there exists an active edge realized by
S, let it also be active in the new instance. Otherwise, we further sample at most one of
the dummy edges connecting the current vertex to previously arrived dummy vertices with
appropriate probability, so that the overall active probability is consistent with x’. This is
implementable since the degree of each vertex is exactly 1.

Now, we have defined a sampling scheme S’. Together with G’ and #’, it is a 1-regular
instance and we can apply the c-selectable batched RCRS for 1-regular instances. Whenever
an edge of G (i.e., edges between real vertices) is selected by the batched RCRS, we also select
it in the real run of the instance. It is straightforward to verify that this is a c-selectable
batched RCRS for the original instance. <

Next, we design an %—selectable batched RCRS for 1-regular instances.

» Lemma 3. For every 1-regular instance, there exists an %—selectable batched RCRS.
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Before going into the details of our analysis, we present our algorithm and provide a
proof sketch to highlight the essential ideas. The actual proof of Lemma 3 is deferred to
Section 3.3.

Proof Sketch. Consider a 1-regular instance G = (V, E, x). We apply the following prune-

greedy algorithm: 1) Prune the active probability of each edge from z. to f(z.) et 3_‘1%%, )

Run greedy on the pruned instance.

The first step is a preprocessing step and we refer to it as the pruning step. Before the
instance starts, we independently flip a coin for each edge e and decide whether to consider it
later. In particular, an edge e survives with probability % and otherwise we would ignore
it regardless being active or not in the future. The second step is just a greedy algorithm,
that always select an active edge if adding it does not violate the matching constraint. This
procedure is equivalent to assuming that each edge is active with probability f(z.) and we
run greedy. For the ease of presentation, in the rest of the proof, we assume that each edge
e is active with probability f(z.). Our specific choice of the function f is to benefit the
analysis, and it be explained in the full proof.

For analysis purpose, we use the following interpretation of the random arrival order
assumption. Let ¢, be the arrival time of each vertex w € V', that is drawn independently
from UJ0,1]. All vertices arrive in the ascending order of their arrival times.

Fixing an arbitrary edge (u,v) € E, we use v — u to denote the event that edge (u,v) is
selected by our algorithm upon the arrival of vertex v. To prove the selectability, we need a
lower bound on Pr[v — u]. Fixing the arrival time ¢, = ¢, since we use a greedy algorithm,
this event happens if 1) u arrives before ¢; 2) u remains unmatched at ¢; 3) (u,v) is active.

Thus,

Prlv = u | t, = t] = Pr[t, < t,u unmatched Qt, (u,v) active | ¢, = ]
= f(2yy) - Pr[ty < t,u unmatched @t | ¢, = ]
= f(@yy) - (t — Pr{u matched @t | ¢, =t]). ()

Consider the following warm-up analysis,

Prlu matched @t | £, =#] = > Pr[(u, z) matched before ¢ [ t, =] < > #*f(z,.) < 1%,

ZFu,v z#u,v

where the inequality follows since the probability that both w, z arrives before ¢t is t2 and
the edge is matched only if it is active, that happens with probability f(z,.). Applying
this relaxation to equation (x) and integrating over ¢ gives a simple but weak bound of the
selectablity of our algorithm, where the ratio is smaller than % Observe that the warm-up
analysis does not make use of the pruning step, as well as the 1-regularity of the instance.
Instead, we do recursive type of analysis for Pr[(u, z) matched before t | t, = t]:

Pr[(u, z) matched before ¢ | t,, = ]

t
:/ (Pr[u—)z\tu:s,tv:t]+Pr[z—>u|tz:s,tv:t])ds. (%)
0

We can thus expand the term Prlu — z | t, = t,t, = s] as in (x), and we would have
a term Pr[z matched before s | t, = s,t, = t] therein. However, since our final goal is to
derive a lower bound of (x), we need a lower bound of this term rather than an upper bound
as we derived in the warm-up analysis. This is where we use the 1-regularity of the instance.
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Intuitively, the larger the degree of a vertex, the larger the probability it is matched. It is not
difficult to construct a counterexample showing that our prune-greedy algorithm is indeed
worse than %—selectable for non 1-regular instances. For technical reasons, we also want to
avoid edges with large active probabilities and our pruning step is designed to take care of
such edges.

Roughly speaking, (x) together with (xx) expands Pr[v — wu | ¢, = t] to terms of form
Prlu — z | t, = s,t, = t]. The formal analysis recursively applies such expansion for
two steps and uses the simple bound in the warm-up analysis in the last step to bound
Pr[j matched Qr | t, =t,t, = s,t; = r]. We defer the proof to Section 3.3.

3.2 Hardness

We complement our positive result with a hardness result, showing that no algorithm can be
better than % + ﬁ ~ 0.567-selectable.
» Theorem 4. No batched RCRS for matching is better than (5 + 55 )-selectable.

X

Proof. Consider a complete graph G with n vertices. Each edge e has z. = n%l Fix an
algorithm and let y; - n be the number of matched vertices after the arrival of the i-th
vertex, where y; € [0, 1] is increasing and y; = 0. Notice that all edges are symmetric and
every vertex has degree 1, the selectability of the algorithm is thus upper bounded by E[y,,].

Moreover, we have that

i
E[yit1 |yl <vi+2- (nl—yi),
since we can select an edge only if 1) there exists an active edge, which happens with
probability —= and 2) the corresponding vertex is unmatched. Taking expectation over y;,
we have that

Elyi] -Ey] <2 (nll ~E [yi]) .

When n goes to infinity, the above family of inequalities converges to % < 2-(t—z), where
2; corresponds to E[y|..,,|]. Solving the differential equation gives us

1 1
2 <t— 5+§e—2t,vte [0,1] .

Hence, the total portion of matched vertices is upper bounded by z; < % + ﬁ when n goes
to infinity, that implies no RCRS can be better than (% + ﬁ) ~ 0.567-selectable. |

3.3 Proof of Lemma 3

Proof of Lemma 3. Fix an edge (u,v), our goal is to lower bound the probability of
1
Prlv — u] = / Prjv — u | t, = ry]dr,. (1)
0

As we discussed in the proof sketch, the probability term on the right side can be expanded
as following
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Prjv — u | ty = ry]

= f(Zuv) - (Pru arrives before t,] — Pr[u is matched at ¢,])

= f(zw) - | to — Z Pr[(u, ) is selected before &y | t, = 74]

(u,i)€E
itu,v

= f@u)- | to— Y (Prlu—iand ty <t,|t,=r]+Prli > wand t; <t |t, =71,])

(u,i)EE
i#u,v

(2)

Since both terms in the right side of (2) are symmetric, we will only show how to upper
bound the first term Pr{u — ¢ and ¢, < ¢, | t, = 7,]. As explained in the sketch, we further
recursively expand it in essentially the same way as Pr[v — u | t, = 7).

Prlu — i and t, <t, | t, = 7y

ty
= / Prlu — i | ty = 1y, ty = 1u]dry
0

to
= / f(@yi)(ty, — Prfi is matched at t, | t, = 74, 6y = ry])dry
0

ty
= f(xu)- / ty — Z Pr[(4,7) is selected before t,, | ty, = 7y, ty = 14] | dry
0

(i,J)€EE
AU

ty
:f(xuz)/ <tu_ Z (Pr[i%jvtigtu|tu:Tuatv:rv]
0

(i,j)EE
JFLu,v

+Prlj =i, t; <ty |ty =ruty= rv])>dru. (3)

Now we further expand the last equation and apply similar argument as the warm up
analysis in the proof sketch.

Prli = gt <ty |ty = ru,ty = 1]

t’(l/
= / Pr[i — j | t; =7ty = Tu,ty = 1]dry
0
tu
= / f(xij) (tz — PI‘[] is matched at ti | t; = Tiatu = Tuatv = Tv]) dri. (4)
0
As in the proof sketch, we enumerate the vertex k& which j is matched to.

Pr[j is matched at t; | t; = 1y, ty = 7w, ty = 1)

= Z Pr[(j, k) is selected before t; | t; = ri,ty = Tu,ty =14].  (5)

(4,k)EE
k#i,j,u,v

Notice that if an edge (4, k) is selected by the algorithm R before time ¢;, it has to satisfy
at least three conditions:
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1. j arrives before t;;

2. k arrives before t;;
3. the edge is sampled by the sampling scheme S and selected by the algorithm

One can observe that these three events are independent. In order to bound (4), we can

apply the trivial upper bound to (5)

Pr[(j, k) is selected before t; | t; = ri, ty = Ty, by = 1] < t?f(a:jk)

and we obtain

Pr[i = gt <ty | by =Ty, ly = TU]

tu
Zf(ffij)'/o tif 1=t > flapw) |dt

(G,k)EE
k#i,j,u,v

> flwig) - /0 ti- (L—t; - (1 —wij))dt; = flziy) - (;ti - %ti(l xij)) :

Similarly, it also holds that

1 1
Prlj — i, t; <ty [ty = rusty = 10]) > f(245) - (2753 - gti(l - %‘)) :

Now we start to plug them back to the two-level recursive analysis. First, plugging these two
inequalities into (3), we can bound the first term in the right side of (2).

Prlu—iand t, <t, | t, =1y)

< i) [ [0m s (8- 300-50) |

(i,j)EE
J#bu,v

= [(@us) - *t2 > flwy)- ( t?’—étﬁ(l—%‘))

(i,j)EE
JFi,u,v

By symmetry,

1
Prli —» wand t; <t, |ty = ry] < f(Tui)- ftQ Z f(xuj) ( 3 — gti(l - xu])>

(u,j)EE
JFiu,v

Then, by plugging in both terms back to (2), we have

<2>zf<xm>.<tv Y flw)- ftz > fai) (vétiuxij))

(u,i)EE (i)ER
iAu,v JFiu,v

3 1 4
Z f(xUZ) : v - Z f Z‘,U tv - 7tu(1 - x’uj) .
(u,i)EE 2 (u,j)EE 3 6
i#u,v JFL,u,v

Therefore, (1) can be further bounded as follows:
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1 1 1 1 1
= f(l’uv) . 5~ Z f(zm) . 6 - Z %Iij Z f xm) 6 — Z %xu]
(u,i)eE (i.j)EE J)EE (u,j)EE
i,y PR #u v s,
1 1 1
= flaw) - | 5 - Z P (5 = 951 = 2us = 20) = 55 (1 = i = )
)eE
= f(xuv) . 5 Z f(xuz) < 7 (Zqu + Twi + xuv))
30
)eE

» Remark. Note here for the first equality, we use the fact that f(z) (55 + 557) = cx
for ¢ = %. (Actually, we only need one side that it is larger than cz.) The choice of
flx) = 3-?;sz is to maximize ¢ while keeping f(z) < z for all z € [0, 1] so that it is a valid
pruning. For the second equality (where again we only need one side), we use the fact that

D Gpes Tij > 1 — Xy — Xy, which follows from the 1-regularity of our graph.
JjFi,u,v
Finally we are ready to bound Pr[(u,v) is selected]. Without loss of generality, we can

assume that z,, = 0 for those (u,v) ¢ E. Recall that Pr[(u,v) is selected] = Pr[u —
v] + Pr[v — u] by definition and we have

Pr[(u,v) is selected]

> f(zuw) - (1 - Z <f($m) . (% + %(2561” + xvi + mw)) +
i#u,v
(2Tvi + Tuws + muv)) ))

= (1 - g = 2 (- (370 + g2t )

iFu,v

v

f(@oi) - <3 +

3
8|~

(@) (370 + 10 (2wi + x”)))

1 7
iFu,v

1 7
= f@u) - (1= g — 55 2~ 20m))
e (BLLLNLE
C 342w, \15 0 307" T 157
Here the second inequality uses the fact that 37,  f(ui) <32, Tui S land 32, f(20i) <
> ituw Toi < 1. We are left to prove the third inequality, which we state as the following

lemma.
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» Lemma 5. The inequality
7 1 7 1
| =+ =(2 =4+ =(2 <
/(@) (30 + 55 x+y)) + f(v) (30 + 55 y+x)) <

holds for every x,y > 0.

(z+y)

gl~

Proof. It is equivalent to prove that

(= f(z) +y—fy)-

gl ~

o /(@) +9) + 5 f(0) 2y +2) <

Expand f(x) and we get

1 32 312 1 3xy 3xy 7 32 3y
— + + o + < + .
0 \3F52z 3+2y) "20\3%22 "3¥2) " 15\3%20 342y

Rewriting the formula, we find that it’s equivalent to prove

3022 + 30y% — 5dxy + 222y + 22 > 0.

Notice that x,y > 0, thus 222y + 2xy? > 0. Also, 3022 + 30y? — 54y > 3022 + 30y — 60xy >
30(z — y)? > 0, which completes our proof. <

This finishes the proof of Lemma 3. |

4 Applications

Our definition of the batched RCRS for matching with random vertex arrival is inspired
by the standard reduction from prophet matching to online contention resolution schemes.
Therefore, Theorem 1 immediately implies the first nontrivial result for prophet matching in
general graphs with random vertex arrival.

» Theorem 6. There is an %—competitive algorithm for prophet matching in general graphs
with random vertex arrival.

In this section, we mainly discuss the application of our batched RCRS in Query-
Commit and Price-of-Information problems for matching. The algorithms below can be
seen as reinterpretations of Gamlath et al. [15]’s algorithms for the problems on bipartite
matching. For Query-Commit, their algorithm first solves a linear program relaxation of the
corresponding problem, then, using characterization of polymatroids, interprets the fractional
solution as follows: each vertex u on the left samples a permutation over the edges in d,,, and
proposes to query these edges in that order; literally following these proposals for every vertex
obviously leads to collisions, and so vertices on the right need to resolve potential collisions
by turning down some of the proposals. The algorithm lets the vertices on the left arrive in
a uniformly random order to propose their permutations. Each vertex on the right then runs
a prophet secretary algorithm, which guarantees that, in expectation, the proposed queries
turned down by the nodes on the right do not carry too much value. We suggest that, one
may bypass the more complex prophet secretary setup, by seeing the last step as an online
contention resolution step with random vertex arrival: when vertex u arrives and proposes
its permutation, if we let edge e € §,, be active if it is the first edge present when we query
the edges following the proposed order, then a c-selectable batched RCRS with vertex arrival
keeps each active edge with probability at least ¢, which leads to a c-approximation algorithm.
The description at this level omits many details and twists, and the Price-of-Information
algorithm has even more of those. Nonetheless, our perspective easily generalizes to the
non-bipartite cases, and allows us to use the batched RCRS in Section 3 to these problems.
We give the details below.
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4.1 The (Weighted) Query-Commit Problem for Matching

We now present an %-Competitive algorithm for the Query-Commit problem by a reduction
to batched RCRS.

» Theorem 7. There is a polynomial-time computable, %—competitive algorithm for the

Query-Commit problem for weighted matching in graphs not necessarily bipartite.

4.1.1 Bounding the optimal utility

First we construct a linear program, where for every edge e € F, x. represents the probability
that e is present and included in the solution. We show that the value of the linear program
is an upper bound on even the offline optimal. Therefore, if we implement an algorithm so
that each edge e is selected with probability at least « -z}, then the competitive ratio of the
algorithm will be at least a.

Think of z. as the probability with which edge e is present and included in the offline
solution. For a subset of edges F' C E, let f(F) be the probability that at least one edge
in F exists, i.e., f(F)) =1—]].cp
than one edge in F' can be in the solution, ) .z, is the probability any edge in F' is in
the offline solution, and this should be upper bounded by the probability any edge in F is
present. The following linear program LPqc therefore upper bounds the offline optimal:

max: E Te * Ve

(1 —pe). For any F C ¢,, since in a matching no more

eckE

st Y 3 < f(F), Yu € V,F C 6y;
ecF
T, >0, Ve e E.

» Lemma 8 ([15]). In the edge-weighted Query-Commit problem for matching, the offiline
optimal is upper bounded by the value of LPqc. Furthermore, LPqc is polynomial-time
solvable.

Lemma 8 is a straightforward generalization of Lemma 2.1 and Lemma 2.2 in [15]. In the
following, we need to assume 0 < p, < 1 for every e € F since some proofs requires strict
monotonicity and strict submodularity of f. It turns out that we can ignore those edges with
zero probabilities and scale down probabilities by 1 — « for other edges due to the following
lemma.

» Lemma 9 (Lemma 2.3 of [15]). For 0 <~ < 1, let p. = (1 — y)p. for every e € E. Define
f using p instead of p. Similarly, define LPqc use p, f instead of of p, f. Then the value of
LPqc is at least (1 — ) times the value of LPqc.

For any solution « to LPqc, the following lemma defines a “decomposition into permuta-
tions” over (subsets of) d,, for each v € V. It is essentially Lemma 2.6 in [15] restated on
general graphs.

» Lemma 10 ([15]). Suppose 0 < p, < 1 for every e € E. Let x* be an optimal solution
to LPqc. For every u € V, fix any subset §,, C 0,. Then there exists a polynomial-time
samplable distribution DC over the permutations on subsets of &, so that, if one queries
according to the permutation sampled from DRC, each edge e is the first present one with
probability x7.

The meaning that the permutations are over subsets of 4., is that some edges may not be
present in the permutation (which indicates that they should not be queried).
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4.1.2 Rounding with batched RCRS

The game plan becomes clearer with the decomposition from Lemma 10. Ideally, if one may
naively follow the permutation sampled from DQC for each u, and take the first present edge,
then one may recover the offline optimal. This is of course infeasible, because matching
constraints may be violated by collisions caused by doing this for different vertices. Gamlath
et al. [15] handled this via a clever application of prophet secretary algorithms. Instead, we
replace this with a reduction to the batched RCRS we developed in Section 3.

We may view the naive algorithm which always commits to the first present edge in
Oy ~ DSC as a sampling scheme Sqc that indicates the first present edge as active, and
apply our batched RCRS. The matching constraint is then respected by the feasibility of
RCRS solutions. However, there is one more subtlety: in the Query-Commit problem, we
must commit to the edge we just queried, whereas a batched RCRS assumes that it can see
an active edge and discards it. Therefore Sqc should not query the presence of an edge if the
batched RCRS algorithm R would not accept it even if it is present. To handle this issue,
we need to change the order of the events by modifying the sampling scheme Sqc: upon
the arrival of each vertex u, Sqc first obtains an indicator vector I from the batched RCRS
algorithm R, where I, = 1 if and only if R is willing to accept edge e if Sqc indicates that e
is active. If I, = 0, instead of actual querying the presence of edge e, Sqc simply tosses a
coin to simulate a query. We remark that Gamlath et al’s algorithm has a similar argument.
Following is the formal description for our reduction from a Query-Commit problem to
batched RCRS.

Our algorithm. Our algorithm first solves LPqc to get an optimal solution *. Let R be a
batched RCRS instance corresponding to graph (V, E, x*). Let Sqc be the sampling scheme
to be defined later. Additionally, for each vertex u € V' we sample ¢, ~ U|0, 1] as its arrival
time. We define 0], = {(u, w) € 0, | tw < t,} to be the edges batch that arrives with wu.

Our algorithm iterates over all vertices u € V' in the increasing order of ¢,. For each
vertex u, it first obtains the indicator vector I where I, indicates whether R is willing to
accept e if it is active. Passing I to the sampling scheme Sqc, it obtains the active edge
e € ¢!, for RCRS algorithm R. We commit to e if R accepts it.

The sampling scheme Sqc. Let u be the vertex just arrived in batched RCRS. First
sample a permutation o, from DSC by Lemma 10, which is a permutation containing a
subset of 4/,. Consider each edge e = (u,w) in the order of o,,. There are two cases:
If I, = 1: query if e is active in the query-commit instance. If it is active, report e as the
active edge to R and exit; otherwise continue to the next edge.
If I, = 0: with probability p., report e as the active edge to R and exit; otherwise
continue to the next edge.

For the analysis, we should first verify that Sqc is a valid sampling scheme. First, it will
sample at most one active edge for a vertex, and the sampling result is independent from the
indicator vector I since when considering an edge e, in both cases it essentially do a coin
flip which heads up with probability p. and use the result to determine whether e is active.
Having observed the independency, we can show that x¥ is the probability of edge e being
active in Sqc for any arrival times by using Lemma 10.

» Lemma 11. Fix arrival times {t,}uecv. For every vertex w € V and every edge e € 0.,
the probability of e being active in Sqc upon the arrival of u equals ;.



H. Fu, Z.G. Tang, H. Wu, J. Wu, and Q. Zhang

Proof. Fixing a vertex u € V, we have that the probability of every edge e € 4!, being the
first active edge in the random permutation o, equals x}, according to Lemma 10. The
problem is that in the second case, the algorithm does not even check whether an edge is
active in the query-commit instance.

Nevertheless, in both cases each edge e will be active independently with probability pe,
which is exactly the probability of e being active in the query-commit instance. Therefore,
the random process for determining the active edge is identical to finding the first active

element in 0,,. And we have the probability of e being active is exactly z}. <

At last, ) o 5, Lo < 1 hold for every u € V trivially by constraints in LPgc. We conclude
the validity of Sqc with Lemma 12.

» Lemma 12. Sqc is a valid sampling scheme for batched RCRS. In particular, the following
three conditions hold:

1. each time Sqc will sample at most one edge and the result is independent from I;

2. each edge e € E will be active with probability x for any arrival times {ty fuev;

3. > ees, To <1 holds for everyu € V.

We now are ready to prove the competitive ratio for the algorithm by the selectability of
the batched RCRS.

Proof of Theorem 7. The validity of batched RCRS is already proven in Lemma 12. We
start the rest of the proof by showing the correctness of the reduction. First, those committed
edges must form a matching by the correctness of R. And once a query of e has succeed,
R will always decide to take e because we only query e when the indicator vector I, = 1.
Finally, no edge will be committed without a query since every edge e that has not been
queried will be active to R only when I, = 0.

Then we can easily show the ratio of the reduction equals the selectability of the batched
RCRS. By Lemma 11 and the fact that U,y 0!, = E, the probability of every edge e € E
being active in R is «}. By Theorem 1, the expected utility for our algorithm is at least
23 .cp T - ve. Further by Lemma 8, we conclude it is an $x-competitive algorithm for
the query-commit problem on general graphs. <

4.2 The Price of Information Problem for Matching

The Price of Information (PoI) problem has search costs but imposes no obligation on an
algorithm to immediately accept a queried element regardless of what is revealed. Kleinberg
et al. [22] upper bounded the optimal utility using a variant of query-commit, by giving
a new proof for the optimal algorithm in the special case where F is the set of singleton
sets (known as the Pandora’s Box problem [29]); Singla [27] generalized the bound and
proposed approximation algorithms using the bound. Gamlath et al. [15] studied the Price
of Information problem for bipartite matching and made use of the upper bound.

Their method converts the original “price-of-information” world to “free-information”
world by setting a threshold value 7; for each element. In “free-information” world, there is
no search cost ¢;, but the algorithm gets a lower utility x; = min{v;, 73} (instead of v;) for
accepting an element i. Intuitively, the (v; — 7;)4 part® of the utility pays for the search cost.
However, this is only the case if the algorithm accepts element ¢ in the end. If the algorithm
queried element ¢ without accepting it, the utility of the algorithm in “free-information” world

3 (2)4 denotes max{z,0}
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will only be an upper bound of that in the “price-of-information” world. In Section 4.2.1,
we upper bound the optimal utility in “free-information” world. Therefore, to match this
upper bound, the algorithm has to always accept element ¢ whenever element ¢ is queried
and v; > 7;.

The intuition above is summarized by the following lemma from [27].

» Lemma 13 ([27]). In any instance of Price of Information problem, for each element
i € U, let 1; be the unique solution to the equation B, g, [(v; —T;)+] = ¢i, where (z)+ denotes
max{z,0}. Let k; be min{v;,7;}. Then no algorithm’s utility exceeds E[maxscr Y ;cg Kil.
In particular, in order for algorithm A to match this upper bound, A must accept each element
i such that i is queried by A and v; > ;.

Similar as query-commit setting, our algorithm is essentially the same as that of [15],
but we provide the perspective that the use of prophet secretary in [15] can be replaced by
batched RCRS and extend their results to general graphs.

» Theorem 14. There is a polynomial time, %—approximate algorithm for the price of

information problem for weighted matching in graphs not necessarily bipartite.

4.2.1 Bounding the optimal utility

We start by presenting the LP which upper bounds the optimal utility in the “free-information”
world. Therefore by Lemma 13, it is also an upper bound for the optimal utility in the
“price-of-information” world. The LP and the proofs are essentially the same as that in [15]
with the only difference that this is for general graph.

Recall in the Pol problem for matching, there is an undirected graph G = (V, F). For
each edge e € F, its value is a random variable v, ~ F,. Then we set 7. and k. as in
Lemma 13.

Without loss of generality, we assume that the distributions of k. are discrete.* Let K,
be the set of possible values of k.. For all u € V, let E,, = {(e,k) : ¢ € §y,k € K.} be
the edge-value pairs incidents to u and F,; = Uyucy Ey be the set of all edge-value pairs in
the graph. For each F C E,, we define f(F) be the probability that k. = x for at least
one of the edge-value pair (e,x) € F. Namely f(F) = [[,ev (1 = > (¢ n)er Pex) Where
De,x = Pr[ke = K].

For any algorithm A for the Pol problem for matching, let z. , be the probability that
A accepts edge e and k. = k. For any F' C E,, similar with Section 4.1, we know that
Z(e’ﬁ)eF Tex < f(F). Therefore it is natural to consider the following LP, which is called
LPpor.

max: g Tew K

(E,I{)EEau
s.t. me < f(F), Vu€eV,F C E,;
(e,r)EF
ze >0, Ve € Eqa-

We restate Lemma 3.2 and Lemma 3.3 of [15] below for general graphs.

4 In the case where the distributions are continuous. We can discretize them by geometric grouping edge
weights into classes.
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» Lemma 15 ([15]). In the price of information problem for matching, the optimal expected
utility OPTpor is upper bounded by the value of LPpor. Furthermore, LPpo1 is polynomial-time
solvable.

4.2.2 Rounding with batched RCRS

Let * be an optimal solution of LPpy,;. We proceed to “round” it to an algorithm for the
Pol problem. Let (V, E, xpo1) be the batched RCRS instance. Note the graph of the RCRS
instance is the same as the original graph. Before the formal description of Sper, we first
sketch it here:

From the LP solution x*, we first obtain a polynomial-time samplable distribution DF°!
over permutations of edge-value pairs (e, k). Spor first draw a permutation o from DF°L.
An edge-value pair (e, k) is said to be active if k. = k. Roughly speaking, Sp,1 returns the
first active edge-value pair in o as the active edge. However, as Lemma 15 suggests, our
algorithm must accept edge e if e is queried and v, = 7.. Therefore, there is an additional
requirement that in each o drawn from DI°!. the edge-value pairs of the same edge should
be in decreasing order of their values. Hence (e, 7.) is always the first pair associated with
edge e in 0.

The following lemma formally defines the distribution Dl It is a restatement of
Lemma 3.6 in [15].

» Lemma 16 ([15]). Suppose 0 < p . < 1 for every (e,k) € Ean. Let * be an optimal
solution to LPpo. For everyu € V, fiz any subset 8., C d,, and let E], = {(e, k) € Ey,e € 4,,}
be the corresponding edge-value pairs.
We call an edge-value pair (e, k) active if k. = k. Let
Y = a~D51?>¥,{ne}[(e’ K) is the first active pair in ol.
Then there erists a polynomial-time samplable distribution DL°l over the permutations on
(subsets of) E!, such that the following holds:
1. For all permutation o drawn from DL°L, if edge-value pair (e, k) appears in o, then the
edge-value pair (e, w) appears before (e, k) in o for all w € K. such that w > k.
2. Y ek, Yo = Donck, T for all e €5,
3. Y ek, Yo 'K > D ek, To ok forall e € 0y,.

Now we formally define the sampling scheme Sp,;. Initially, each vertex w € V has its
arrival time ¢, ~ U0, 1]. We define ¢, = {(u,w) € §, | ty < t,} to be the edges batch that
arrives with u, and let E, = {(e, k) | e € d.,,k € K.} be the corresponding edge-value pairs.
When v arrives, using Lemma 16, Spor draw a permutation o from DF°! over (subsets of)

The subtlety in Sqc still exists in Spor, i.e., Spor should not query the value of an edge
if batched RCRS algorithm R do not accept it. Therefore, Spo; first obtains an indicator
vector I from RCRS algorithm R. I, = 1 if and only if R would accept edge e if Sp,; choose
it to be active. Spoy draws variables k., from the same distribution of k. for all e € §/,. If
I. = 0, namely R will not take the edge, instead of query the true ., Spor simply use &, to
replace it. In this way, the exact behavior of Spo; depends on I. Nevertheless, the returned
edge of Spe is still independent of I.

Spor handles each pair o; = (e;, ;) in order as follows:

If I, = 1: Spor queries the value of k., if it is not queried before. If ke, = k;, Spor returns

e; as active edges. Otherwise, it continues to the next edge.

If I, = 0: Spor looks at &, instead since R will not accept the edge anyway. If i, = &,

Spor returns e; as the active edges. Otherwise, it continues to the next edge.
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The proof of validity for Spor is similar to the proof for Sqc.

» Lemma 17. Sp.1 is a valid sampling scheme for batched RCRS. In particular, the following

three conditions hold:

1. each time Spor will sample at most one edge and the result is independent from I.

2. Each edge e € E is active with probability x. = ) . w7 . for any arrival times {t,}uev .
Specifically, the probability that Spor returns at edge-value pair (e, k) is exactly ye . as
defined in Lemma 16.

3. Y s, Te <1 forallueV.

Proof. Firstly, by the procedure of Sp,r, it returns only one edge. Since k' and x has the
same distribution, the edge returned by Spe; is independent of I. Secondly, because of
this independence, if we define y. , as in Lemma 16, the probability of Spor to return at
edge-value pair (e, k) is exactly ¥ .. By the definition of z. and part 2 of Lemma 16, we
know that z. = ZKGKC Yerw = ZKGKE x} .. Thirdly, from the definition of LPp., when
F=E,, wehave } , cp 7, <1 Namely, > 5 z. <1 <

In order to let the (ve — 7 )+ part of the utility pays for the search cost, the algorithm
must accept an edge e if its v, is larger than 7. (which only happens when k. = 7). The
definition of Sp,; guarantees such property, and it will be useful in the proof of Theorem 14.

» Lemma 18. Suppose an edge e is queried by the reduction and k. = T.. Then the edge e
s always accepted in the end.

Proof. Since e is queried by the reduction, we know that I, = 1, namely the RCRS algorithm
R is willing to take this edge. By part 1 of Lemma 16, if (e, 7.) is the first edge-value pair
associated with e in . Therefore, as e is queried by Sp,r, it returns e as the active edge
when handling (e, 7). Since I, = 1, R accepts edge e as well. |

Now we are ready to prove Theorem 14, i.e. the approximation ratio of the algorithm.

Proof of Theorem 14. By Lemma 15, we know the optimum of LPp.; is an upper bound
of the optimal utility for the price of information problem for weighted matching. Namely,
Z(e,m)eEa“ x;,@ -k > OPTper. Recall K, is the set of possible values of k., and let V. be the
set of possible values of v,.

On the other hand, by Lemma 18 we know when v, > 7, the edge is always accepted
when queried. Together with the definition of 7., we know that the cost of query is

Z Prle is queried] - ¢, = Z Prle is queried] - Ey,~p; [(Ve — Te) 4]
eclE ecE

= Z Prle is accepted] - By, v F, [(Ve — Te)+] -
eceE

The utility of our algorithm is therefore

Z Z Pr[e is accepted and v, = v] - v — Z Prle is accepted] - Ey, w5, [(ve — Te) ]
ecEveVe ecE

= Z Z Prle is accepted and k. = K] - k.
eeFE keK,

The equality follows from ke = ve — (Ve — Te)+. Let Y, be defined as Lemma 16. By
Lemma 17, Spor is a valid sampling scheme. So we can apply the batched RCRS in Theorem 1.
Since the only use of k. is to determine the active edge in Sp,r, conditioning on e is active,
whether e is accepted is independent of k..
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Hence

Pr[e is accepted and k. = K|
Prle is accepted | e is active and k. = k] - Prle is active and k. = &
Prle is accepted | e is active] - Prle is active and &, = K]

8
15ye,/<;~

Then by part 2 of Lemma 16, the utility of our algorithm is

Z Z %ye,ne 'KZ %Z Z (E;K"U: %OPTPOL

e€eFE keEK, e€eE reEK,
where the inequality follows from part 3 of Lemma 16. <
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