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Abstract
Nearly all quadratic lower bounds conditioned on the Strong Exponential Time Hypothesis (SETH)
start by reducing k-SAT to the Orthogonal Vectors (OV) problem: Given two sets A,B of n binary
vectors, decide if there is an orthogonal pair a ∈ A, b ∈ B. In this paper, we give an alternative
reduction in which the set A does not depend on the input to k-SAT; thus, the quadratic lower
bound for OV holds even if one of the sets is fixed in advance.

Using the reductions in the literature from OV to other problems such as computing similarity
measures on strings, we get hardness results of a stronger kind: there is a family of sequences
{Sn}∞

n=1, |Sn| = n such that computing the Edit Distance between an input sequence X of length n

and the (fixed) sequence Sn requires n2−o(1) time under SETH.
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1 Introduction

The first step in nearly all hardness proofs for polynomial time problems, that are conditioned
on the Strong Exponential Time Hypothesis (SETH), is a seminal reduction of Williams [42]
from k-SAT to the Orthogonal Vectors problem.

▶ Definition 1 (The OV Problem). Given two sets A, B ⊆ {0, 1}d(n) of n binary vectors of
dimension d(n), decide if there is a pair a ∈ A, b ∈ B that are orthogonal, i.e. ∀i ∈ [d(n)] :
a[i] = 0 ∨ b[i] = 0.

The SETH states that k-SAT cannot be solved in (2−ε)n time, where ε > 0 is independent
of k. The aforementioned reduction takes such a k-CNF formula on n variables and produces
two sets of N = 2n/2 binary vectors in d(N) = O(log N) dimensions. Thus, a subquadratic
O(N2−ε) algorithm for OV gives a (2 − ε′)n algorithm for k-SAT and refutes SETH. The
current best algorithms for OV are mildly subquadratic O(N2/f(N)) where f(N) = No(1)

[11, 25].
It turns out that OV is at the core of so many other problems, making their complexity

quadratic. Dozens of fine-grained reductions from OV to various important problems from
diverse fields have been designed in the last decade, resulting in a long list of quadratic
SETH-based lower bounds [40]. For example, to prove their n2−o(1) lower bound for the Edit
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7:2 Fine-Grained Hardness for Edit Distance to a Fixed Sequence

Distance problem, Backurs and Indyk [14] encode each set of vectors A, B with a sequence
SA, SB of length O(nd(n)), such that the edit distance between them reveals the existence
of an orthogonal pair.

1.1 Results
In this paper we revisit the simple reduction of Williams from k-SAT to OV, that has been
presented in countless lectures on fine-grained complexity, and expose a surprising room for
improvement: there is an alternative reduction (with vectors of a mildly larger dimension)
that encodes the k-CNF formula with only one of the sets. That is, the set of vectors A is
fixed in all the instances produced by the new reduction. The implications for the SETH-hard
problems may sound bizarre: it takes n2 time to compute the Edit Distance even if one
of the two sequences is always the same (for all inputs of length n). Before discussing the
implications further, let us try to clarify the result with a high level technical overview.

1.1.1 Main idea
The difference between the two reductions is simple to explain. Assume we are given a k-CNF
formula ϕ on n variables x1, . . . , xn and m clauses C1, . . . , Cm such that ϕ = (C1 ∧ · · · ∧ Cm).
In both reductions, we enumerate all partial assignments α ∈ {false, true}n/2 to the first
half of the variables x1, . . . , xn/2, and also all partial assignments β ∈ {false, true}n/2 to
the other half of the variables xn/2+1, . . . , xn, and the goal is to find a satisfying pair, i.e. a
pair α, β that when put together make a full satisfying assignment (αβ).

To do this, Williams encodes each partial assignment, α or β, with a binary vector in m

dimensions that has a 0 at the jth coordinate if the partial assignment satisfies the clause
Cj and 1 otherwise; it follows that a pair of vectors is orthogonal iff (αβ) is a satisfying
assignment. The vectors corresponding to the α’s (the partial assignment to the first half of
variables) go to the set A and the vectors corresponding to the β’s go to the set B; notice
that the vectors in both sets depend on the clauses of ϕ.

In the new reduction, the vectors corresponding to the α’s are defined as if ϕ has all
possible clauses of size k, i.e. as if ϕ is the complete k-CNF formula. The jth coordinate
depends on whether α satisfies the jth clause in a certain canonical ordering of all k-CNF
clauses over n variables. Thus, the set A does not depend on the (real) input formula ϕ.
Then, the definition of the vectors for the β’s is similar but with an extra condition: the jth

coordinate is automatically set to 0 if the jth clause in the canonical ordering does not exist
in ϕ, regardless of whether β satisfies it or not. As a result, all clauses that do not appear in
ϕ cannot affect the orthogonality of any pair in A × B, and the correctness of the reduction
is maintained.

The only downside of the new reduction is that the size of the vectors grows from
m = O(n) (because of the sparsification lemma) to O(n2k). That is, from O(log N) to
logO(1) N . However, the dimension is still No(1) and this is sufficient to deduce many n2−o(1)

SETH-based lower bounds. Indeed, as often observed, these lower bounds can be based on the
(safer than SETH) hypothesis that OV is hard when the dimension is No(1).1 Some exceptions,
where the reductions crucially rely on the dimension being logarithmic, are [7, 27, 31].

To formalize the new result as a theorem, in Section 2 we introduce the OVA problem
in which we are given as input only one set B of n vectors and are asked if there is an
orthogonal pair in An × B where An is the nth set in an (efficiently producible) family of
sets A = {An}∞

n=1.

1 Recent works [33, 5] have shown that refuting this “moderate dimension OV” hypothesis has consequences
that are potentially more remarkable than refuting SETH.
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1.1.2 Implications for other problems
Combining the new reduction with the existing reductions from OV in a black-box way
leads to some interesting consequences. For example, the reductions from OV to the
computation of certain distance measures on pairs of sequences, curves, or time-series, such
as Edit Distance [14], Longest Common Subsequence [3, 22, 19], Local Alignment [9], Fréchet
Distance [20], and Dynamic Time Warping Distance [22, 3], all proceed by encoding each of
the sets A, B independently with a sequence SA, SB . Therefore, the quadratic n2−o(1) lower
bounds implied by SETH hold even if only one sequence SB is given as input, while SA only
depends on n = |SB |. Another example is the regular expression matching problem [15, 21]
of deciding whether a string x can be generated from a regular expression y. Again, the
new reduction shows a quadratic lower bound even if the string (or the expression) are fixed.
We find it surprising that such severe-looking restrictions of the problems do not reduce the
complexity.

The corollaries go beyond sequence problems. The lower bounds for Bichromatic Closest
Pair [12, 28] now also hold when one of the two sets is fixed; note that this is incomparable
to the recent lower bound for Monochromatic Closest Pair [30]. In the Subtree Isomorphism
problem we are given two rooted, unordered, unlabelled trees and are asked if one is contained
in the other (a pattern and a host). The quadratic lower bound [2] can now be shown even
for a fixed pattern or a fixed host. The implications are less clear-cut for many other graph
problems; for example, the basic reduction from OV to diameter in sparse graphs [39] may
now produce slightly simpler graphs but it is hard to characterize in what way. It is likely
that a white-box usage of the new reduction will lead to interesting results; we leave this for
future work.

1.1.3 Generalizing to k-OV
The SETH lower bound for OV generalizes to an nk−o(1) lower bound, for all k ≥ 2, for the
k-OV problem: given k sets of binary vectors A1, . . . , Ak in d dimensions, decide if there are
k vectors ai ∈ Ai that are orthogonal in the sense that ∀j ∈ [d] : (a1[j] ∧ · · · ∧ ak[j]) = 0.
The hardness of k-OV has been used to prove the hardness of several other problems (where
a reduction from 2-OV is not known) [8, 10, 33, 38, 1, 16, 32, 29, 23]; e.g. an nk−o(1) lower
bound for k-LCS, the problem of computing the longest common subsequence of k strings.

The reduction to OV extends to k-OV in the same way: instead of partitioning the
variables into two sets of size n/2, we split them into k sets of n/k, resulting in k sets of
N = 2n/k vectors. Applying the new idea, in Section 3, we get a reduction to instances
where the first k − 1 sets are fixed, and only one set is given as input. Consequently, the
k-LCS problem has an nk−o(1) lower bound even if k − 1 of the sequences are fixed.

1.1.4 Hardness for compressible instances
A surprising feature of SETH-based hardness results for problems in P is that they are proved
for highly compressible instances. The reductions produce OV instances of size N = 2n/2

that are fully determined by a k-CNF formula of size O(nk) and can therefore be losslessly
encoded with O(log N) bits. This is surprising because a priori one might expect the worst
case instances to require Ω(N) bits to specify. The reductions can even be adapted (with
major modifications) [1] to prove the hardness for instances where the data is compressible
with standard grammar-compression schemes such as the Lempel-Ziv family. The new results
go a step further: the hardness holds even if one of the inputs is fully determined.

ICALP 2021
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The preprocessing model

A few recent papers study the complexity of the central problems of fine-grained complexity
in models with preprocessing [17, 24, 35, 36, 34]. For instance, it was shown that if we can
preprocess one of the strings of an Edit Distance instance in near-linear time, then we can
obtain a better approximation in sublinear time [34].

It is not difficult to get strong lower bounds for OV (and Edit Distance) in these models
by combining the old reduction with a partitioning trick (similar to [41]): an algorithm that
solves OV in subquadratic time n2−ε after preprocessing each set (separately) in arbitrary
polynomial time, say n100, also refutes SETH, because we can split A and B into n2−1/200

sets of size n1/200, preprocess each in a total of n1−1/200 · n100/200 < n1.5 and then solve OV
for each pair of parts in a total of n2(1−1/200) · n1/200(2−ε) = n2−ε′ .

The new reduction gives even more power since it implies the hardness with a fixed set,
that intuitively, can be preprocessed indefinitely; formally, we get conditional lower bounds
even against algorithms with preprocessing using arbitrary polynomial space, rather than time
(see Section 5).2 This also has implications for dynamic algorithms where a preprocessing
phase is often allowed [8, 37], strengthening the lower bounds from polynomial time to space.
Observe that if we relax the requirements further to allow exponential space, a linear time
algorithm becomes possible: using 2O(n) space we can construct a look-up table storing the
answers to all possible inputs.

1.1.5 Generalization to Formula-SAT

Hansen, Williams, and the authors [6] have observed that Edit Distance and other problems
in P are even harder than OV; if we solve them in subqadratic time, not only do we solve
SAT faster on CNF formulas (the simplest kind of formulas), but we also solve it on arbitrary
formulas, small depth circuits, and branching programs. Thus, the quadratic lower bounds
for Edit Distance and LCS (but not OV) can be based on the safer Formula-SETH (or
BP-SETH or NC-SETH): the hypothesis that SAT on arbitrary formulas of size 2o(n) cannot
be solved in (2 − ε)n time [6, 4, 26]. These reductions start by reducing Formula-SAT to a
problem similar in spirit to OV, called Formula-Satisfying-Pair, that can then be reduced to
Edit Distance. It turns out that the new idea of encoding the formula only in one set can be
applied in this case as well (see Section 6), and so all the Formula-SETH lower bounds still
hold if one of the sequences is fixed.

1.1.6 Roadmap and preliminaries

We start with the new reduction from k-SAT to OV in Section 2. Then, in Section 3, we
generalize it to OV on k ≥ 2 sets. In Section 4 we explain the implication for Edit Distance.
Then, we discuss conditional lower bounds for the preprocessing model in Section 5. And
finally, in Section 6 we extend the new reduction to formulas beyond CNF’s.

We use the notation [n] = {1, . . . , n} and false, true for boolean truth values.

2 These results were mentioned in [34] and credited to this work as a personal communication.
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2 The new reduction: k-SAT to OV with a fixed set

In this section we give the main result of the paper: a reduction from k-SAT to the Orthogonal
Vectors problem (Definition 1) where one of the two sets is fixed for all inputs of size n.

To formalize this, we define the OVA problem, which is the same as OV but where the
input set A is not given as input. Instead, if the input set B has size n, then we will always
choose A to be the set An ∈ A where A = {An}∞

n=1 is a family of vector sets, containing
one set of each size n. The formal definition below also incorporates the dimension of the
vectors d(n) which is taken to be a function of the number of vectors n, as is standard when
studying OV.

▶ Definition 2 (The OVA Problem). For a family A = {An}∞
n=1 of vector-sets, such that

An ⊆ {0, 1}d(n) is a set of n binary vectors of dimension d(n), we define the OVA problem as:
Given a set B of n binary vectors of dimension d(n) decide if there is a pair a ∈ An, b ∈ B

that are orthogonal, i.e. ∀i ∈ [d(n)] : a[i] = 0 ∨ b[i] = 0.

We can now give the main theorem of this paper, giving a quadratic lower bound for
OVA under SETH. The family A for which the result holds will be clarified in the proof; we
remark that it is quite natural and that is easy to produce each set An algorithmically in
linear time.

▶ Theorem 3 (Main). For any function d(n) = logω(1) n, there is a family of vector-sets
A = {An}∞

n=1 of dimension d(n) such that the OVA problem requires n2−o(1) under SETH.
Moreover, each set An can be produced in O(n · d(n)) time and log space.

Proof. Fix integers n, k ≥ 1, and let Cn,k be the set of width k clauses over n variables,

Cn,k = {(ℓ1 ∨ · · · ∨ ℓk) | ∀i ∈ [k] : ℓi ∈ {x1, . . . , xn} ∪ {x1, . . . , xn}} ,

and pick an arbitrary ordering over the clauses such that Cn,k = {C1, . . . , CM } where
M =

(2n
k

)
= O(n2k).

We now define the set AN ∈ A for N = 2n/2 as follows.3 For each truth assignment
α to the variables x1, . . . , xn/2, i.e. a partial assignment, we create a vector vα. That is,
∀α ∈ {false, true}n/2 representing the assignment x1 = α(1), . . . , xn/2 = α(n/2), we define
the vector vα as follows:

∀j ∈ [M ] : vα[j] =
{

0, if α satisfies the clause Cj

1, otherwise.

That is, to set the jth coordinate of vα we check if the partial assignment α already
satisfies the clause Cj (the jth clause in C) and choose 0 if so, and 1 otherwise.

Notice that the dimension of the vectors is O(n2k) = logO(1) N and it is asymptotically
dominated by d(N) = logω(1) N . Moreover, AN can be produced in 2n/2 · n2k = O(Nd(N))
time, and O(n + k log n) = O(log N) space.

We are now ready to reduce k-SAT to the OVA problem. Given a k-CNF formula ϕ

on n variables x1, . . . , xn as input, we define a set B of N = 2n/2 vectors as follows. For
each truth assignment β ∈ {false, true}n/2 to the variables xn/2+1, . . . , xn, i.e. a partial
assignment to the second half of the variables, we create a vector vβ such that:

∀j ∈ [M ] : vβ [j] =
{

0, if either β satisfies the clause Cj , or Cj ̸∈ ϕ

1, otherwise, i.e. Cj ∈ ϕ but β does not satisfy it.

3 While this only defines AN for values of N that are equal to 2n/2 with integer n, it is easy to extend
these AN ’s into a family A, e.g. by padding with dummy vectors that are all 1.

ICALP 2021
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Thus, while vα considered all clauses Cj ∈ C similarly, the vectors vβ ∈ B depend on the
input formula ϕ and automatically set to 0 all coordinates corresponding to clauses that do
not appear in ϕ.

Finally, we claim that B is a “yes” OVA instance iff ϕ is satisfiable, and therefore if
OVA can be solved in truly subquadratic time then for all k, k-SAT can be solved in
(2n/2)2−ε = 2(1−ε/2)n for some ε > 0, refuting SETH. The correctness follows from the
following claim proved below.

▷ Claim 4. There is an orthogonal pair a ∈ AN , b ∈ B iff ϕ is satisfiable.

There exist a pair a ∈ AN , b ∈ B that are orthogonal iff there are partial assignments
α, β to the first and second half of the variables, respectively, such that vα ∈ AN and vβ ∈ B

are orthogonal, meaning that for all j ∈ [M ] either vα[j] = 0 or vβ = 0, i.e. either α satisfies
Cj or β satisfies Cj or Cj is not a clause in ϕ at all. The latter is equivalent to saying that
the truth assignment (αβ) composed of α and β satisfies all clauses that are in ϕ, and we
conclude that there is an orthogonal pair iff ϕ has a satisfying assignment. ◀

3 Extension to k-OV

In this section we extend the result of Section 2 to the k-OV problem.

▶ Definition 5 (The k-OV Problem). Given k sets A1, . . . , Ak ⊆ {0, 1}d(n) of n binary
vectors of dimension d(n), decide if there are k vectors ai ∈ Ai that are orthogonal, i.e.
∀j ∈ [d(n)] : a1[j] = 0 ∨ · · · ∨ ak[j] = 0.

As before, we define a version of the problem in which only one of the sets is given as
input and the other k − 1 are fixed.

▶ Definition 6 (The k-OVA1,...,Ak
Problem). For any k−1 families Ai = {Ai,n}∞

n=1, i ∈ [k−1]
of vector-sets, such that ∀i ∈ [k−1] : Ai,n ⊆ {0, 1}d(n) is a set of n binary vectors of dimension
d(n), we define the k-OVA1,...,Ak

problem as: Given a set Ak of n binary vectors of dimension
d(n) decide if there are k vectors ∀i ∈ [k − 1] : ai ∈ Ai,n and ak ∈ Ak that are orthogonal,
i.e. ∀j ∈ [d(n)] : a1[j] = 0 ∨ · · · ∨ ak[j] = 0.

We are now ready to extend Theorem 3.

▶ Theorem 7. For all k ≥ 2 and any function d(n) = logω(1) n, there exist k − 1 families of
vector-sets Ai = {Ai,n}∞

n=1, i ∈ [k − 1] of dimension d(n) such that the k-OVA1,...,Ak
problem

requires nk−o(1) under SETH. Moreover, each set Ai,n can be produced in O(n · d(n)) time
and log space.

Proof. Recall from the proof of Theorem 3, the definition of Cn,w the set of all width w

clauses over n variables.4
For all i ∈ [k − 1], we define the set Ai,N ∈ Ai, where N = 2n/k as follows. For each

partial assignment α(i) to the variables x(i−1)·n/k+1, . . . , xi·(n/k), we create a vector vα(i) and
add it to Ai,N . Let Cj denote the jth clause in a canonical ordering of the clauses in Cn,w

and define vα(i) as:

4 Note that we changed the notation of the clause size from k to w to avoid conflict with k the number of
sets. That is, we are now reducing w-SAT to k-OV.
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∀j ∈ [|Cn,w|] : vα(i) [j] =
{

0, if α(i) satisfies the clause Cj

1, otherwise.

Notice that the dimension of the vectors is O(n2w) = logO(1) N and it is asymptotically
dominated by d(N) = logω(1) N . Moreover, Ai,N can be produced in 2n/k · n2k = O(Nd(N))
time, and O(n + w log n) = O(log N) space.

We are now ready to reduce w-SAT to the k-OVA1,...,Ak
problem. Given a w-CNF formula

ϕ on n variables x1, . . . , xn as input, we define a set Ak of N = 2n/k vectors as follows. For
each partial assignment α(k) to the variables x(k−1)·n/k+1, . . . , xn, we create a vector vα(k)

such that:

∀j ∈ [|Cn,w|] : vα(i) [j] =
{

0, if either α(k) satisfies the clause Cj , or Cj ̸∈ ϕ

1, otherwise, i.e. Cj ∈ ϕ but α(k) does not satisfy it.

Thus, while vα(i) ∈ Ai,N for i ∈ [k − 1] considered all clauses Cj ∈ Cn,w similarly, the
vectors vα(k) ∈ Ak depend on the input formula ϕ and automatically set to 0 all coordinates
corresponding to clauses that do not appear in ϕ.

Finally, we claim that Ak is a “yes” k-OVA1,...,Ak
instance iff ϕ is satisfiable, and therefore

if k-OVA1,...,Ak
can be solved faster than nk−o(1) time then for all w, w-SAT can be solved

in (2n/k)k−ε = 2(1−ε/k)n for some ε > 0, refuting SETH. The correctness follows from the
following claim, which can be proved similarly to Claim 4.

▷ Claim 8. There exist k-orthogonal vectors ai ∈ Ai,N for i ∈ [k − 1] and ak ∈ Ak iff ϕ is
satisfiable. ◀

4 Corollaries for Edit Distance and other problems

The hardness of OVA has immediate consequences to all the many OV-hard problems,
establishing their hardness even in restricted settings. Let us formalize the implication for
Edit Distance, and briefly remark on how it applies to the other problems.

▶ Definition 9 (The Edit Distance Problem). Given two sequences X, Y of length n, return
the minimum number operations that can transform X into Y . The allowed edit-operations
are insertions, deletions, and substitutions of single characters.

In a similar way to our definition of OVA in Section 2, we formalize a restricted problem
where only one of the two sequences is given as input.

▶ Definition 10 (The EDX Problem). For a family X = {Xn}∞
n=1 of sequences, such that

Xn is a sequence of length n, we define the EDX problem as: Given a sequence Y of length
n, return the minimum number edit-operations that can transform Xn into Y .

We can now prove the statement in the title of the paper, showing a quadratic SETH
lower bound for EDX .

▶ Theorem 11. There is a family of sequences X = {Xn}∞
n=1, |Xn| = n such that the EDX

problem requires n2−o(1) under SETH. Moreover, each sequence Xn can be produced in O(n)
time and log space.

ICALP 2021



7:8 Fine-Grained Hardness for Edit Distance to a Fixed Sequence

Proof. By Theorem 3 it is enough to reduce the OVA problem to EDX . To do that, we start
with an OVA instance B of size n and dimension d(n) = no(1), for the family A constructed
by Theorem 3, and we apply the reduction of Backurs and Indyk [14] (or the later one
which uses a smaller alphabet [22]) to B and An. We get two sequences X = SX(An) and
Y = SY (B) of length N = f(n) = O(n · d(n)), for some specific function f : N → N, such
that the Edit Distance between X and Y is less than a certain value τn iff A, B contains
an orthogonal pair. Moreover, the encodings SX and SY have the property that they take
linear time and log space to compute, and most importantly, that SX only depends on An

and n but not on B. Therefore, we can construct the family of sequences X by setting
XN = SX(An) where N = f(n). We get that solving EDX in O(N2−ε) time, for some ε > 0,
leads to an O(n2−ε′) time algorithm for solving OVA , for some ε′ > 0, refuting SETH. ◀

To get the corollaries for LCS, k-LCS, Subtree Isomorphism, and the other problems
mentioned in Section 1.1, the same arguments work: we simply have to check that the
reductions from OV operate on each set separately.

5 Lower bounds for the Preprocessing model

In this section we present the implications of the new reductions for the limitations of
preprocessing. As discussed in Section 1.1, any quadratic lower bound for OV already implies
a quadratic lower bound even if the algorithm is allowed to preprocess one of the sets in
arbitrary polynomial time. However, having a reduction from k-SAT to OV with a fixed set
leads to stronger conditional lower bounds that address algorithms with arbitrary polynomial
space preprocessing. These lower bounds are no longer based on SETH but on a plausible
strengthening of it to nonuniform algorithms.

Recall [13] that TIME[T (n)]/A(n) is the class of problems that can be solved by an
O(T (n)) time algorithm that is given an advice string Xn of length O(A(n)) for all inputs of
size n.

▶ Hypothesis 12 (Nonuniform-SETH). There is no ε > 0 such that for all k ≥ 3 the k-SAT
problem is in TIME[(2 − ε)n]/2(1+o(1))·n/2.

This is a strong hypothesis, but it is not at all clear how the nonuniformity can help
in solving SAT faster, and therefore it might be as plausible as SETH. Moreover, even the
extreme version of this hypothesis, where the size of the advice is increased from 2n/2·(1+o(1))

all the way to 2n·(1−ε) remains plausible. In fact, for our conditional lower bound below, we
can weaken the hardness hypothesis to allow significantly smaller advice length: O(2εn) for
any constant ε > 0, and the same conclusion for OV would follow. To obtain this stronger
result it suffices to give a modification to Theorem 3 so that it reduces to asymmetric OVA
where the sets A and B have different sizes; the details of this standard modification are
omitted from this paper. In any case, the main message of the following theorem is to
highlight a connection between algorithms in the preprocessing model and a breakthrough in
the nonuniform complexity of SAT.

▶ Theorem 13. Suppose there is an algorithm that, given two sets A, B of n binary vectors in
d(n) = logω(1) n dimensions, can preprocess the set A using S(n) = O(nc) bits of space, and
subsequently solve OV on A, B in O(n2−ε) time, for some ε > 0, c ≥ 1. Then, Nonuniform-
SETH is false.

Proof. Fix ε > 0, c ≥ 1 and suppose that an algorithm ALG can solve OV in subquadratic
O(n2−ε) time after preprocessing the set A using S(n) = nc space. We start by reducing
k-SAT on N variables to OVA on sets of size n = 2N/2 using Theorem 3. Then, to solve
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OVA instances of size n using ALG we can take the set An and split it into n1−1/tc instances
of size n1/tc each, for some t ≥ 2 to be specified later. We use ALG to preprocess each of
these parts in an unknown amount of time but only O((n1/tc)c) space; the total space that
it uses for all the parts is sn = n1−1/tc · O(nc/tc) = O(n1+1/t−1/tc). Let Xn be the bit-string
of length sn that encodes the state of the memory after the algorithm is done preprocessing
these sets, i.e. the concatenation of the n1−1/tc memory tapes. Observe, crucially, that the
string Xn only depends on n, even though generating it might have take an unknown amount
of time. We will choose it to be the advice string for our algorithm for all inputs of size n.
Then, using the string Xn our algorithm can solve any OVA instance B of size n in truly
subquadratic time: we split B into n1−1/tc parts of size n1/tc each, and then solve each pair
of parts using ALG and the string Xn in subquadratic (n1/tc)2−ε time, giving a total of
(n1−1/tc)2 · (n1/tc)2−ε = n2−ε′ time, for ε′ = ε/tc > 0. Going back to k-SAT, our algorithm
runs in time 2N/2·(2−ε′) time and has used O(n1+1/t) = O(2N/2·(1+1/t)) = 2N/2·(1+o(1)) bits
of advice, where the latter equality holds because we can choose t to be arbitrarily large,
refuting Nonuniform-SETH. ◀

6 Extension to Formula-SAT and Formula-Satisfying-Pair

In this section, we extend the results of Section 2 so that the starting point is Formula-SAT
rather than CNF-SAT, and the end problem is Formula-Satisfying-Pair (with a fixed formula
and set A) rather than OV (with a fixed set A). Throughout, we consider deMorgan formulas
that have AND/OR gates of fan-in two, and we assume that all the NOT gates are at the
bottom, meaning that the leaves of each formula are either variables or their negation. The
size of a formula is the total number of gates and the depth is the maximum number of levels
from root to leaf.

▶ Definition 14 (Formula-SAT). Given a formula F over n variables, decide if it is satisfiable.

Notice that CNF formulas are a special kind of depth 2 formulas. The following hypothesis
is a more believable version of SETH.

▶ Hypothesis 15 (Formula-SETH [6]). There is no ε > 0 such that Formula-SAT on formulas
of size 2o(n) can be solved in O((2 − ε)n) time.

This hypothesis is sometimes referred to as Branching-Program-SETH (BP-SETH) since
it is equivalent to a hypothesis about SAT on branching programs, or as NC-SETH which is
a similar assumption about SAT on polylog depth circuits, which are equivalent to formulas
of 2poly log n size.

Just like the SETH-based lower bounds go via the OV problem, the Formula-SETH lower
bounds often go via a problem such as the Formula-Satisfying-Pair problem.

▶ Definition 16 (Formula-Satisfying-Pair [4]). Given a formula F = F (x1, . . . , xm, y1, . . . , ym)
of size 2m where each variable is used exactly once, and two sets A, B ⊆ {0, 1}m of size n,
decide whether there is a pair a ∈ A, b ∈ B such that F (a1, . . . , am, b1, . . . , bm) = true.

A simple reduction, similar to the one by Williams [42], shows an n2−o(1) lower bound
for Formula-Satisfying-Pair with m = no(1) under the Formula-SETH. And with intricate
gadgetry, Formula-Satisfying-Pair can be reduced to Edit Distance, LCS, Fréchet, and other
problems establishing Formula-SETH lower bounds for them as well [6, 4]. The main result
of this section is to prove a Formula-SETH lower bound for Formula-Satisfying-Pair with a
fixed formula F and a fixed set A. As a result, the Formula-SETH lower bounds for Edit
Distance and the other problems also hold when one sequence is fixed.
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▶ Definition 17 (FSPF,A ). For a family A = {An}∞
n=1 of vector-sets, such that An ⊆

{0, 1}d(n) is a set of n binary vectors of dimension d(n), and a family F = {Fn}∞
n=1 of

formulas, such that Fn is over d(n) variables and has size 2d(n) we define the FSPF,A
problem as: Given a set B of n binary vectors of dimension d(n) decide if there is a pair
a ∈ An, b ∈ B such that Fn(a, b) = true.

After formalizing the problem with fixed formula and set A we are ready to state the
theorem. The rest of this section is dedicated to the proof.

▶ Theorem 18. There is a family of vector-sets A = {An}∞
n=1 of dimension d(n) = no(1)

and a family of formulas F = {Fn}∞
n=1 over d(n) variables and of size 2d(n) such that the

FSPF,A problem requires n2−o(1) under Formula-SETH. Moreover, each set An and formula
Fn can be produced in O(n · d(n)) time.

Our approach is to imitate the main idea in the proof of Theorem 2. There, we looked at
the set of all clauses, which is similar to thinking about the super-set of all k-CNF formulas.
Now, we are faced with arbitrary formulas, and it is not so clear what the corresponding
super-set would be: the set of all gates does not make much sense. To make this work, we
go through the following intermediate problem, which is similar to Formula-SAT but has a
structure that is easier to work with when constructing a fixed formula for FSPF,A .

For a depth bound depth(n) we define the Canonical-Depth-d(n) formula to be the formula
over n variables defined by a full binary tree in which all the gates are (?) indicating a gate
that could either be AND or OR. Moreover, each leaf pointing to a variable xi is also labelled
with a (?) indicating that it could either be xi or x̄i. We also fix a canonical numbering of
the s(n) = 2d(n) gates of this formula. To get a “real” formula, we must specify s(n) bits
indicating for each (?) gate whether it is AND, OR, or if it is a leaf whether it is a negation
or not. A natural way to make the specification is to make the jth gate AND if the jth bit is
1 and OR otherwise, and to make a leaf-gate a negation iff the corresponding bit is 1.

▶ Definition 19 (Canonical-Formula-SAT). Given s(n) bits for specifying the gates of a
canonical-depth-d(n) formula over n variables, decide if the resulting formula is satisfiable.

The reduction has two steps, described in Sections 6.1 and 6.2.

6.1 From Formula-SAT to Canonical-Formula-SAT

This step is not immediate only because an arbitrary s(n)-sized formula could have a structure
that is very far from a full-binary tree. Nonetheless, we can transform it into such using
standard techniques without blowing up the size by more than polynomial factors. And since
our interest is in s(n) = 2o(n), polynomial blowups do not matter.

Given a formula F of size s(n) we begin by applying the depth-reduction of Bonet-Buss
[18] to get an equivalent formula F ′ of depth depth(n) = O(log s(n)). Then, we enforce that
all paths from root to leaves have length exactly d(n): if a leaf is higher, we add an equivalent
subtree, e.g. by replacing xi with (xi ∧ true) ∧ (true ∧ true) and so on. The total size of
the final formula F ′′ is 2depth(n) = sO(1).

Then, to complete the reduction, we simply go over the gates of F ′′ and generate a
string g of s(n) bits that encodes it with the above natural representation. Thus, g is a “yes”
instance for Canonical-Formula-SAT iff F is satisfiable.
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6.2 From Canonical-Formula-SAT to FSPF ,A

The next idea is to transform the canonical formula F (?) that is full of (?) gates along with a
bit-string g specifying the gates, into a formula F with real gates that takes the bits of g as
inputs. In more details, we take the jth gate in F (?), that takes input from the two gates G1
and G2 and we replace it with the following subformula (a similar but different formula is
used for leaf-gates):

Gj = (gj ∧ (G1 ∧ G2)) ∨ (ḡj ∧ (G1 ∨ G2))

This subformula encodes our natural representation where gj = 1 iff the gate is AND.
After these transformations, the size of the formula blows up by 2depth(n) since we have to
make two copies of each subformula at every level, but this is still sO(1). Notice that the
formula F is now fixed, and the formula we started from is only encoded with the gj ’s which
can be thought of as inputs to F (note that, as opposed to the xi’s these inputs are not free,
and so they do not increase the complexity of SAT).

We are now ready to define the FSPF,A instances that encode the satisfiability of F . Let
N = 2n/2. We define the formula FN , i.e. the N th member of the family of formulas F , to
be equal to F after we duplicate each variable so that it is used once in the formula. The
vectors a ∈ AN have dimension O(s(n)) = No(1) and are defined as follows. For each partial
assignment α ∈ {true, false}n/2 to the variables x1, . . . , xn/2 we define the vector a such
that for all j ∈ [s(n)] aj is set to 1 iff the jth gate in F is a leaf gate marked with a literal
xh or x̄h and α makes this literal true. Note that the vectors in A do not depend on the gj ’s
at all.

Finally, the vectors b ∈ B do depend on the gj ’s. For each partial assignment β to the
variables xn/2+1, . . . , xn, we construct a vector b. For all j ∈ [s(n)] we set bj as follows. If
the jth gate in F is a leaf gate marked with a literal xh or x̄h and β makes this literal true,
then we set bj = 1. If the jth gate is a leaf gate marked with a variable gh (or its negation)
then we set bj = gh (or its negation). Notice that the g’s affect all vectors in B in the same
way (as is the case in the proof of Theorem 3).

To conclude the correctness of this reduction, observe that an evaluation of FN on a pair
of vectors a, b is equivalent to the evaluation of F on the corresponding partial assignments
α, β and the given g.
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