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Abstract
We study the rank of the Sum of Squares (SoS) hierarchy over the Boolean hypercube for Symmetric
Quadratic Functions (SQFs) in n variables with roots placed in points k ´ 1 and k. Functions of
this type have played a central role in deepening the understanding of the performance of the SoS
method for various unconstrained Boolean hypercube optimization problems, including the Max
Cut problem. Recently, Lee, Prakash, de Wolf, and Yuen proved a lower bound on the SoS rank
for SQFs of Ωp

a

kpn ´ kqq and conjectured the lower bound of Ωpnq by similarity to a polynomial
representation of the n-bit OR function.

Leveraging recent developments on Chebyshev polynomials, we refute the Lee–Prakash–de Wolf–
Yuen conjecture and prove that the SoS rank for SQFs is at most Op

?
nk logpnqq.

We connect this result to two constrained Boolean hypercube optimization problems. First,
we provide a degree Op

?
nq SoS certificate that matches the known SoS rank lower bound for an

instance of Min Knapsack, a problem that was intensively studied in the literature. Second, we
study an instance of the Set Cover problem for which Bienstock and Zuckerberg conjectured an
SoS rank lower bound of n{4. We refute the Bienstock–Zuckerberg conjecture and provide a degree
Op

?
n logpnqq SoS certificate for this problem.
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1 Introduction

Semialgebraic proof systems, also called certificates of nonnegativity, are systematic methods
to prove nonnegativity of polynomials over semialgebraic sets. One of the most successful
approaches for constructing theoretically efficient algorithms for polynomial optimization
problems is the Sum of Squares (SoS) certificate [17, 38, 39, 46],

For a wide variety of combinatorial optimization problems, SoS provides the best available
algorithms [1, 14, 5, 19, 34]. The strength of this method has also come to light for Max
CSP [32] and problems in robust estimation [21], dictionary learning [3, 45], tensor completion
and decomposition [4, 20, 41], and problems arising from statistical physics [13].
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However, the SoS algorithm also admits certain weaknesses. It is known to struggle with
solving certain combinatorial optimization problems, e.g., [7, 10, 18, 26, 49]. In a seminal
example, Grigoriev showed that a Ωpnq degree SoS certificate is needed to detect a simple
integrality argument for the Knapsack problem [15], see also [16, 24, 31]. A degree nΩpεq

SoS algorithm was proved to be unable to asymptotically certify an upper bound smaller
than 2 times the optimal value for Sherrington-Kirkpatric Hamiltonian [23, 13]. Moreover,
the degree Ωp

?
nq SoS hierarchy was proved to have problems scheduling unit size jobs on a

single machine to minimize the number of late jobs, see [27], even though the problem is
known to be solvable in polynomial time using the Moore-Hodgson algorithm [36]. Finally,
various examples where the SoS hierarchy fares very badly have been shown for the planted
clique [2, 35] and Max CSP problems [22, 48].

The discrepancy between the excellent performance of the SoS hierarchy and its severe
weaknesses has been studied extensively throughout the last decade. Thus, a natural question
arises: what factors determine the difficulty of solving a problem for the SoS method?

A prominent example that was studied through the lens of this question is the Max
Cut problem, which not only lies at the center of SoS research but was also one of the
first problems for which lower bounds of the SoS rank were studied. Grigoriev proved that
SoS needs at least degree t n

2 u to certify the size of the maximum cut in an odd clique of n

vertices [15], for alternative proofs see also [16, 24, 31]. In a breakthrough paper nearly two
decades later, Parrilo showed that the Grigoriev lower bound is tight by proving that every
n-variate polynomial of degree 2, nonnegative over Boolean hypercube has an SoS certificate
of degree at most r n

2 s, see [12]. Subsequently, the analog of the results by Grigoriev and
Parrilo for higher degree symmetric functions recently appeared in [25, 44], respectively.

Many of the problem instances with large lower bounds of the SoS rank target known
limitations of the SoS method such as an issue with dealing with integrality constraints.
Indeed, certifying the size of the maximum cut in a clique can be transformed into the
problem of proving nonnegativity of the Symmetric Quadratic Function (SQF) of the form
qr n

2 spxq over the Boolean hypercube, where, throughout this paper, qk : t0, 1un Ñ R is a
multivariate polynomial of the form

qkpxq :“ p|x| ´ kqp|x| ´ k ` 1q. (1.1)

The optimization of degree 2 polynomials over the Boolean hypercube plays a central
role in Theoretical Computer Science. This claim is supported by the fact that high degree
optimization problems attracted limited attention, especially since solving an NP-complete
problem can be reduced in polynomial time to proving nonnegativity of a degree-4 even
form [37]. Moreover, if an SQF has a complex root with a corresponding conjugate root, the
polynomial is globally nonnegative and admits an SoS certificate of degree 2. Similarly, there
exists an SoS certificate of nonnegativity of degree 2 for SQFs over the Boolean hypercube if
the roots are real and placed outside the interval r0, ns. Hence, the only interesting case is
when the roots are real and located within some interval rk ´ 1, ks for k P t1, . . . , nu.

Finding an SoS representation of the symmetric function qk has gained significant attention
in the SoS community. However, up to this day, the exact SoS rank for qk is not known. The
most recent result towards a characterization of the SoS rank of qk provides a lower and upper
bound of the SoS degree that approximates the function qk with SoS polynomials in l1 and l8

norm [33]. However, since finding an exact SoS certificate is at least as difficult as providing an
approximate SoS representation, the result implies that for k ě 2, qk does not admit an SoS
certificate of degree smaller than Ω

´

a

kpn ´ kq

¯

. Moreover, in [33], Lee, Prakash, de Wolf,
and Yuen conjectured that the lower bound of the SoS approximate representation with error
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at most ε in the l8 norm is expected to be Ω
´

a

kpn ´ kq `
a

n logp1{εq

¯

. They support
the conjecture by arguing about similarity with approximating n-bit OR functions [40, 50].
This conjecture, if true, would imply a lower bound on the exact SoS certificate for SQFs of
Ωpnq, even for small, constant values of k. Proving this conjecture is left as an open question
in [33]. In this paper, we refute the Lee–Prakash–de Wolf–Yuen (LPdWY) conjecture. We
show that certifying SQFs is easier than representing n-bit OR functions. More specifically,
we prove the following theorem.

▶ Theorem 1. For any k P t2, . . . , r n
2 su, there exists a degree Op

?
nk logpnqq SoS certificate

of nonnegativity for the Boolean function qk as in (1.1).

We motivate the research on the SoS degree of the SQFs qk by connecting it to two
combinatorial optimization problems. We first consider the instance of the Min Knapsack
(MK) problem. For P ě 2, the problem is defined as:

MK: min
ÿ

iPrns

xi s.t.
ÿ

iPrns

xi ě
1
P

, x P t0, 1un. (1.2)

For P “ 2, the problem was previously considered by Cook and Dash [11]. They proved that
the Lovasz-Schrijver hierarchy rank is n. For the Sherali-Adams hierarchy, Laurent proved
that the rank is also equal to n and raised the open question to find the rank for the SoS
hierarchy [30]. For n “ 2, they also proved that the SoS rank is 2, but the discussion of
general n was left as an open question. Currently, it is known that the SoS rank of the MK
problem falls within Ωp

?
nq and r

n`4r
?

ns

2 s, see [28]. In this paper, we prove an upper bound
on the SoS rank for the MK problem.

▶ Theorem 2. The SoS rank for the MK problem is Ωp
?

n logpP qq.

The existing lower bound for general P (see Lemma 14 of [28]) is Ωp
a

n logpP qq, so this is
tight when P is constant, though for larger P there is a gap of Op

a

logpP qq.
We also consider the following instance of the Set Cover (SC) problem:

SC: min
ÿ

iPrns

xi s.t.
ÿ

iPrnsztju

xi ě 1 @j P rns, x P t0, 1un. (1.3)

This instance was considered in [8] and it is known that the SoS hierarchy cannot solve this
problem with a degree smaller than Ωp

?
nq [28]. In [8], Bienstock and Zuckerberg raised

the question of what the actual SoS rank of this polytope is, conjecturing that, based on
numerical experiments, the SoS rank is at least n

4 . In this paper, using the SoS certificate
for SQFs in Theorem 1, we refute the Bienstock–Zuckerberg conjecture and provide a nearly
tight SoS rank for the SC problem:

▶ Theorem 3. The SoS rank for the SC problem is at most Op
?

n logpnqq.

2 Preliminaries

For n P N, let rns “ t1, . . . , nu. For x P Rn, let Rrxs “ Rrx1, . . . , xns be the ring of n-variate
real polynomials. For a set of polynomials G Ď Rrxs, the corresponding semialgebraic set is

G` :“ tx P Rn | gpxq ě 0 for all g P Gu Ď Rn.

Throughout this paper, we consider optimization problems on the Boolean hypercube t0, 1un

and therefore, for H :“ t˘px2
1 ´ x1q, . . . , ˘px2

n ´ xnqu, we assume that G is of the form

G :“ H Y tg1, . . . , gm : gi P Rrxs for all i P rmsu,

ICALP 2021
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where m P Ną0. This implies that G` Ď t0, 1un. Moreover, define the cone of nonnegative
polynomials with respect to a given semialgebraic set, G`, as

KpG`q :“ tf P Rrxs | fpxq ě 0 for all x P G`u.

For given f P Rrxs and G Ď Rrxs, define the corresponding Constrained Polynomial Optimiz-
ation Problem (CPOP) as

f˚ :“ mintfpxq | x P G`u “ maxtλ P R | f ´ λ P KpG`qu.

Generally, since CPOP is NP-hard, it is desirable to find a proper subset that is a good inner
approximation of KpG`q such that the corresponding program is computationally tractable.

The SoS method approximates the cone KpG`q by using the set of sum of square polyno-
mials. We define the set of finite sum of squares polynomials as Σ :“ ts | s “

řk
i“1 s2

i , si P

Rrxs @i P rks, k P Ną0u and let Σn,d :“ ts | s “
řk

i“1 s2
i , si P Rrxs ^ degpsiq ď d @i P rks, k P

Ną0u denote the polynomials which are sums of squares of polynomials of degree at most d.
We define the hierarchy of certificates of nonnegativity depending on d, n P N as

ΣG
n,d :“

#

s0 `

m
ÿ

i“1
sigi | si P Σn,d, gi P G @i P rms and s0 P Σ

n,2
Q

2d`degpGq

2

U

+

,

where degpGq “ maxtdegpgq | g P Gu. The degree d SoS certificate for f being nonnegative
over G` is f P ΣG

n,d. Moreover, throughout the paper we say that a multivariate polynomial f

is a degree d SoS modulo Boolean axioms if f P ΣH
n,d. The degree d SoS program for CPOP is

fd
Σ :“ maxtλ P R | f ´ λ P ΣG

n,du (2.1)

and is called exact if fd
Σ “ f˚. The smallest degree d such that the degree d SoS program is

exact is called the SoS rank. Over the Boolean hypercube, the degree d SoS program can be
solved via a semidefinite program (SDP) of size Opm

řd
k“0

`

n
k

˘

q. Moreover, the degree n SoS
program is exact, see, e.g., [6, 29, 30].

Throughout this paper, we often encounter the following type of multivariate polynomials.

▶ Definition 4. A polynomial f : t0, 1un Ñ R is symmetric if there exists a univariate
polynomial f̃ : R Ñ R such that fpxq “ f̃

`
řn

i“1 xi

˘

for all x P t0, 1un.

With this in mind, let |x| :“
řn

i“1 xi for any x P t0, 1un. To prove SoS rank upper bounds,
we consider symmetric multivariate polynomials over t0, 1un as univariate polynomials over
r0, ns and apply one of the many results on SoS certificates for univariate polynomials.
▶ Remark 5. Throughout this paper, we make frequent use of the fact that SoS certificates for
polynomials over r0, ns translate to SoS certificates for symmetric polynomials over t0, 1un.
More formally, if a univariate polynomial f̃ : R Ñ R has an univariate SoS certificate of
degree d on r0, ns, then the multivariate polynomial f : t0, 1un Ñ R such that fpxq :“ f̃p|x|q

has a degree d SoS certificate of nonnegativity over the Boolean hypercube.
In this paper, we use the following theorem to prove the SoS rank for univariate polynomials.

▶ Theorem 6 ([9, Theorem 3.72]). Let a ă b. Then the univariate polynomial ppxq is
nonnegative on ra, bs if and only if it can be written as

$

&

%

ppxq “ spxq ` px ´ aqpb ´ xq ¨ tpxq if degppq is even,
ppxq “ px ´ aq ¨ spxq ` pb ´ xq ¨ tpxq if degppq is odd,

where s, t are sum of squares. In the first case, we have degppq “ 2d, degpsq ď 2d, and
degptq ď 2d ´ 2. In the second, degppq “ 2d ` 1, degpsq ď 2d, and degptq ď 2d ´ 2.
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Finally, throughout the paper we use degree-d Chebyshev polynomials of the first type,
which were used is several applications for bounds of sum of squares ranks, i.e., [28, 47, 42].
We frequently use the following lemma.

▶ Lemma 7. Let n, d P N such that d ď n. Then,

1. For all c P r0, ns, T 2
d

`

´1 ´ c
n

˘

ě 1
4

ˆ

´1 ´

b

2c
n

˙2d

and T 2
d

`

´1 ´ c
n

˘

ď

ˆ

´1 ´ 2
b

2c
n

˙2d

.

Moreover, for constant c and n big enough, T 2
d

`

´1 ´ c
n

˘

ď

ˆ

´1 ´

b

2c`1
n

˙2d

.

2. For all c P pn, 8q, T 2
d

`

´1 ´ c
n

˘

ď
`

´1 ´ 3 c
n

˘2d.

Proof. It holds that:
1. Consider the characterization of Chebyshev polynomials given in [43, Equation 1.12]:

Tdpxq “ 1
2

ˆ

´

x ´
?

x2 ´ 1
¯d

`

´?
x2 ´ 1 ` x

¯d
˙

. For x “ ´1 ´ c
n and c P r0, ns, we

have T 2
d

`

´1 ´ c
n

˘

ě 1
4

ˆ

`

´1 ´ c
n

˘

´

b

`

´1 ´ c
n

˘2
´ 1

˙2d

ě 1
4

ˆ

´1 ´

b

2c
n

˙2d

and

T 2
d

ˆ

´1 ´
c

n

˙

ď

¨

˝

ˆ

´1 ´
c

n

˙

´

d

ˆ

´1 ´
c

n

˙2

´ 1

˛

‚

2d

ď

˜

ˆ

´1 ´
c

n

˙

´

c

2c

n
`

c2

n2

¸2d

ď

˜

´1 ´

c

c

n
´

c

2c

n
`

c

n

¸2d

ď

˜

´1 ´ 2
c

2c

n

¸2d

. (2.2)

Moreover, we have T 2
d

`

´1 ´ c
n

˘

ď

ˆ

`

´1 ´ c
n

˘

´

b

`

´1 ´ c
n

˘2
´ 1

˙2d

ď

ˆ

´1 ´

b

2c`1
n

˙2d

,

where the last inequality holds for n large compared to c.
2. For x “ ´1 ´ c

n and c P pn, 8q, we have

T 2
d

ˆ

´1 ´
c

n

˙

ď

¨

˝

ˆ

´1 ´
c

n

˙

´

d

ˆ

´1 ´
c

n

˙2
´ 1

˛

‚

2d

ď

˜

ˆ

´1 ´
c

n

˙

´

c

2c

n
`

c2

n2

¸2d

ď

˜

´1 ´
c

n
´

c

2c2

n2 `
c2

n2

¸2d

ď

ˆ

´1 ´ 3 c

n

˙2d

. (2.3)

◀

3 SoS rank for SQFs

In this section, we refute the LPdWY conjecture stated in [33] by proving Theorem 1. To
prove Theorem 1, it is sufficient to prove the following theorem.

▶ Theorem 8. For all n P N and all k P rns, there exists a polynomial spxq of degree
Op

?
kn logpnqq such that

1. s
`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms).
2. For all x P r0, ns, px ´ k ` 1qpx ´ kq ´ spxq ě 0.

ICALP 2021
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Indeed, by Theorem 8 and Theorem 6, there exist sum of squares polynomials s, s1 and
s2 of degree Op

?
kn logpnqq s.t.

px ´ k ` 1qpx ´ kq “ spxq ` s1pxq ` s2pxqxpn ´ xq.

We now make the following observations:
1. By Theorem 8, sp

řn
i“1 xiq is a sum of squares polynomial modulo the Boolean axioms.

2. s1p
řn

i“1 xiq, s2p
řn

i“1 xiq are sum of squares polynomials.
3.

řn
i“1 xi “

řn
i“1 x2

i ´
řn

i“1
`

x2
i ´ xi

˘

is a sum of squares polynomial modulo the Boolean
axioms.

4. n ´
řn

i“1 xi “
řn

i“1 p1 ´ xiq “
řn

i“1

´

pxi ´ 1q
2

´
`

x2
i ´ xi

˘

¯

is a sum of squares polyno-
mial modulo the Boolean axioms.

Putting everything together, the multivariate polynomial qkpxq has an Op
?

kn logpnqq SoS
certificate modulo the Boolean axioms of the form

qk pxq “ s

˜

n
ÿ

i“1
xi

¸

` s1

˜

n
ÿ

i“1
xi

¸

` s2

˜

n
ÿ

i“1
xi

¸ ˜

n
ÿ

i“1
xi

¸ ˜

n ´

n
ÿ

i“1
xi

¸

.

Before we prove Theorem 8, we make the following observation which shows that our upper
bound for qkpxq applies for any symmetric quadratic function with roots in rk ´ 1, ks.

▶ Corollary 9. For any k P t1, . . . , rn{2su and any a ď b P rk ´ 1, ks, a polynomial fk :“
px ´ aqpx ´ bq admits an SoS certificate over the Boolean hypercube of degree at most the
degree of an SoS certificate over the Boolean hypercube for polynomial qk.

Proof. We have fkpxq ě
`

pk ´ aqpb ´ k ` 1q ` pk ´ bqpa ´ k ` 1q
˘

qkpxq as

p|x| ´ aqp|x| ´ bq

“
`

pk ´ aqp|x| ´ k ` 1q ` pa ´ k ` 1qp|x| ´ kq
˘ `

pk ´ bqp|x| ´ k ` 1q ` pb ´ k ` 1qp|x| ´ kq
˘

“ pk ´ aqpk ´ bqp|x| ´ k ` 1q
2

` pa ´ k ` 1qpb ´ k ` 1qp|x| ´ kq
2

`
`

pk ´ aqpb ´ k ` 1q ` pk ´ bqpa ´ k ` 1q
˘

p|x| ´ k ` 1qpx ´ |k|q

and invoke Theorem 1 to conclude the proof. ◀

3.1 Proof of Theorem 8
We construct spxq in two steps. We first construct a polynomial s1pxq which is a sum of
squares (modulo the Boolean axioms), is less than or equal to px ´ k ` 1qpx ´ kq on the
interval r0, 2k ´ 1s, and is not too large on the interval r2k ´ 1, ns. We then construct a
polynomial s2pxq which is a sum of squares, is less than or equal to 1 on the intervals r0, k ´1s

and rk, 2k ´ 1s, is greater than or equal to 1 on the interval rk ´ 1, ks, and is very small
on the interval r2k ´ 1, ns. We then take spxq “ s1pxqs2pxq. More precisely, we have the
following conditions on s1 and s2:
1. s1

`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and s2pxq is a sum of
squares.

2. For all x P rk ´ 1, ks, s1pxq

px´k`1qpx´kq
ě 1 and s2pxq ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s1pxq

px´k`1qpx´kq
ď 1 and s2pxq ď 1.

4. For all x P r2k ´ 1, ns,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k and s2pxq ď n´40k.

5. s1pxq has degree Opkq and s2pxq has degree Op
?

nk logpnqq.
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▶ Proposition 10. If s1pxq and s2pxq satisfy the above conditions and we take spxq “

s1pxqs2pxq then s
`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and for all
x P r0, ns, px ´ k ` 1qpx ´ kq ´ spxq ě 0.

Proof. We make the following observations:
1. Since s1

`
řn

i“1 xi

˘

is a sum of squares (modulo the Boolean axioms) and s2pxq is a sum of
squares, the product s

`
řn

i“1 xi

˘

“ s1
`
řn

i“1 xi

˘

s2
`
řn

i“1 xi

˘

is a sum of squares (modulo
the Boolean axioms).

2. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, since px ´ k ` 1qpx ´ kq ě 0, s1pxq

px´k`1qpx´kq
ď 1, and

0 ď s2pxq ď 1,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0.

3. For all x P rk ´ 1, ks, since px ´ k ` 1qpx ´ kq ď 0, s1pxq

px´k`1qpx´kq
ě 1, and s2pxq ě 1,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0.

4. For all x P r2k ´ 1, ns, since px ´ k ` 1qpx ´ kq ě 0,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k and |s2pxq| ď

n´40k,

px ´ k ` 1qpx ´ kq ´ spxq “ px ´ k ` 1qpx ´ kq

ˆ

1 ´ s2pxq
s1pxq

px ´ k ` 1qpx ´ kq

˙

ě 0. ◀

Thus, we have an SoS proof of degree Op
?

knlogpnqq that p|x| ´ k ` 1qp|x| ´ kq ě 0.

3.1.1 Constructing the polynomial s1pxq

We now construct the polynomial s1pxq.

▶ Lemma 11. For n P N and all k P rns, there exists a polynomial s1pxq such that
1. s1

`
řn

i“1 xi

˘

has a degree Opkq sum of squares (modulo the Boolean axioms) certificate.
2. For all x P rk ´ 1, ks, s1pxq

px´k`1qpx´kq
ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s1pxq

px´k`1qpx´kq
ď 1.

4. For all x P r2k ´ 1, ns,
ˇ

ˇ

ˇ

s1pxq

px´k`1qpx´kq

ˇ

ˇ

ˇ
ď n40k.

Proof. For k “ 1, we can take s1pxq “ xpx ´ 1q so we can assume that n ě k ě 2. For k ě 2,
we use the following construction.1

▶ Definition 12. For all natural numbers k ě 2, define gkpxq to be the polynomial

gkpxq “ x16kpx ´ 2k ` 1q16k
ź

iPt0,...,2k´1uztk´1,ku

px ´ iq.

▶ Definition 13. Given a natural number n and k P t2, 3, . . . , nu, we define s1pxq as follows:
1. If k is odd, then we define s1pxq “

gkpxq

gkpk´1q
px ´ k ` 1qpx ´ kq.

2. If k is even, then we define s1pxq “ ´
gkpxqpx`1qpx´2kq

gkpk´1qkpk`1q
px ´ k ` 1qpx ´ kq.

1 Definitions 12 and 13 are only used in the current section, Section 3.
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We verify the desired properties. We first show that s1
`
řn

i“1 xi

˘

is a sum of squares (modulo
the Boolean axioms). If k is odd, then since gkpk ´ 1q ą 0,

ś2k´1
i“0

´

`
řn

i“1 xi

˘

´ i
¯

is a sum
of squares (modulo the Boolean axioms), and by [33, Lemma 4.4],

s1

˜

n
ÿ

i“1
xi

¸

“

`
řn

i“1 xi

˘16k
p
`
řn

i“1 xi

˘

´ 2k ` 1q16k

gkpk ´ 1q

2k´1
ź

i“0

¨

˝

˜

n
ÿ

i“1
xi

¸

´ i

˛

‚

is a sum of squares (modulo the Boolean axioms). If k is even, then since gkpk ´ 1q ă 0,
`
řn

i“1 xi

˘

` 1 and
ś2k

i“0

´

`
řn

i“1 xi

˘

´ i
¯

are sum of squares (modulo the Boolean axioms),

s1

˜

n
ÿ

i“1
xi

¸

“ ´

`
řn

i“1 xi

˘16k
p
`
řn

i“1 xi

˘

´ 2k ` 1q16k

gkpk ´ 1qkpk ` 1q

¨

˝

˜

n
ÿ

i“1
xi

¸

` 1

˛

‚

2k
ź

i“0

¨

˝

˜

n
ÿ

i“1
xi

¸

´ i

˛

‚

is a sum of squares (modulo the Boolean axioms). Finally, to argue about the degree, note
that by [33, Lemma 4.4],

ś2k´1
i“0

´

`
řn

i“1 xi

˘

´ i
¯

has a sum of squares (modulo the Boolean
axioms) certificate of degree 2k and thus, for all k, s1

`
řn

i“1 xi

˘

has a sum of squares (modulo
the Boolean axioms) certificate of degree Opkq.

For the fourth property, observe that for x P r0, ns, every term in the numerator (except
for px ` 1q when k is even) has magnitude at most n, every term in the denominator has
magnitude at least 1, and there are less than 40k terms in the numerator.

The second and third properties follow immediately from the following lemma.

▶ Lemma 14. For all natural numbers k ě 2, gkpxq satisfies the following properties:
1. For all x P r0, 2k ´ 1s, gkp2k ´ 1 ´ xq “ gkpxq.
2. For all x P rk ´ 1, ks, gkpxq

gkpk´1q
ě 1.

3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s,
ˇ

ˇ

ˇ

gkpxq

gkpk´1q

ˇ

ˇ

ˇ
ď 1.

Proof. Since the first and second properties hold for every term in the product gkpxq “

p´1qk´1 `

xpx ´ 2k ` 1q
˘16k

´

śk´2
i“0 px ´ iqp2k ´ 1 ´ x ´ iq

¯

, they hold for gkpxq as well.
By symmetry, it suffices to show the third property for x P r0, k ´1s. For x P t0, 1, . . . , k ´

2u, gkpxq “ 0 and for x P pk ´ 2, k ´ 1q, the third property holds for every term in
this product, so it holds for gkpxq as well. To show that the third property holds for
x P r0, k ´ 2szt0, 1, . . . , k ´ 2u, we compare gkpx ´ mq and gkpxq, where x P pk ´ 2, k ´ 1q

and m P t0, 1, . . . , k ´ 2u. For this, we decompose gkpxq as gkpxq “ akpxqbkpxq16k, where
akpxq “

ś

iPt0,...,2k´1uztk´1,kupx ´ iq and bkpxq “ xp2k ´ 1 ´ xq.

▶ Lemma 15. Let akpxq “
ś

iPt0,...,2k´1uztk´1,kupx ´ iq “

´

śk´2
i“0 px ´ iq

¯ ´

ś2k´1
i“k`1 px ´ iq

¯

.

For all x P pk ´ 2, k ´ 1q and all m P t1, . . . , k ´ 2u,
ˇ

ˇ

ˇ

akpx´mq

akpxq

ˇ

ˇ

ˇ
ď e

16m2
k .

Proof. Observe that
ˇ

ˇ

ˇ

ˇ

akpx ´ mq

akpxq

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

śm
j“1 px ´ k ` 2 ´ jq
śm

j“1 px ` 1 ´ jq
¨

śm
j“1 px ´ 2k ` 1 ´ jq
śm

j“1 px ´ k ´ jq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

śm
j“1 pk ´ 2 ´ x ` jq
śm

j“1 pk ´ x ` jq
¨

śm
j“1 p2k ´ x ´ 1 ` jq
śm

j“1 px ´ m ` jq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

.
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We distinguish between two cases.
1. If m ď 3k

4 ´ 1, observe that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

m
ź

j“1

ˆ

1 `
m ` 3

k ´ 2 ´ m ` j

˙

ď

m
ź

j“1

ˆ

1 `
m ` 3

k ´ m ´ 1

˙

ď

m
ź

j“1
e

m`3
k´m´1 “ e

mpm`3q

pk´m`1q ď e
16m2

k .

2. If m ą 3k
4 ´ 1, then m ě 3k

4 ´ 3
4 ě 3k

8 (as k ě 2). Thus,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m
ź

j“1

ˆ

k ` 1 ` j

k ´ 2 ´ m ` j

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k´2
ź

j“1

ˆ

k ` 1 ` j

j

˙

“
p2k ´ 1q!

pk ´ 2q!pk ` 1q! ď 22k´1 ď e
16m2

k . ◀

▶ Lemma 16. Let bkpxq “ xp2k ´ 1 ´ xq. For x P pk ´ 2, k ´ 1q and m P rk ´ 2s,
ˇ

ˇ

ˇ

bkpx´mq

bkpxq

ˇ

ˇ

ˇ
ď

e´ m2
k2 .

Proof. Observe that

bkpx ´ mq

bkpxq
“

px ´ mqp2k ´ 1 ` m ´ xq

xp2k ´ 1 ´ xq
“

xp2k ´ 1 ´ xq ´ p2k ´ 1 ´ 2xqm ´ m2

xp2k ´ 1 ´ xq

ď 1 ´
m2

xp2k ´ 1 ´ xq
ď 1 ´

m2

k2 ď e´ m2
k2 . ◀

▶ Corollary 17. For all x P pk ´ 2, k ´ 1q and m P t1, . . . , k ´ 2u,
ˇ

ˇ

ˇ

gkpx´mq

gkpxq

ˇ

ˇ

ˇ
ď 1.

Proof. By Lemmas 15 and 16,
ˇ

ˇ

ˇ

gkpx´mq

gkpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

akpx´mq

akpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

bkpx´mq

bkpxq

ˇ

ˇ

ˇ

16k

ď e
16m2

k

ˆ

e´ m2
k2

˙16k

“ 1.

◀

◀

◀

3.1.2 Constructing the polynomial s2pxq

We now construct the polynomial s2pxq.

▶ Lemma 18. For all n P N and all k P rns, there exists a polynomial s2pxq of degree
Op

?
knlogpnqq satisfying the following properties:

1. s2pxq is a sum of squares.
2. For all x P rk ´ 1, ks, s2pxq ě 1.
3. For all x P r0, k ´ 1s Y rk, 2k ´ 1s, s2pxq ď 1.
4. For all x P r2k ´ 1, ns, s2pxq ď n´40k.

Proof.

▶ Lemma 19. For C :“ e8
?

3 and k P t0, . . . , rn{2su, Hk “ T 2?
n
k

´

2 x
n ´ 1 ´ 2 2k´1

n

¯

satisfies
the following properties:
1. For all x P r2k ´ 1, ns, Hkpxq ď 1.
2. For all k P r0, 2k ´ 1s, H 1

kpxq ă 0.
3. Hkp0q ď C.
4. Hkpkq ě 1.5.
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Proof. Note that Hkpxq “ T 2?
n
k

´

2 x
n ´ 1 ´ 2 2k´1

n

¯

. Hence, Hkp2k´1q “ T 2?
n
k

p´1q “ 1 and

Hkpnq “ T 2?
n
k

´

1 ´ 2 2k´1
n

¯

ď 1, which implies the first property. We prove Properties (2)
and (3). By Lemma 7, for k such that 4k ´ 2 ď n, we have

Hkp0q “ T 2?
n
k

ˆ

´1 ´
4k ´ 2

n

˙

ď

˜

1 `

c

32k ´ 16
n

¸2
?

n
k

ď e2
?

32k´16
k ď e8

?
3

and for k such that 4k ´ 2 ě n, by Lemma 7, for c ě n, we have

Hkp0q “ T 2?
n
k

ˆ

´1 ´
4k ´ 2

n

˙

ď

ˆ

1 `
12k

n

˙2
?

n
k

ď

˜

1 `

c

12k

n

¸4
?

n
k

ď e4
?

12k
k ď e8

?
3.

Moreover, by Lemma 7 we have

Hkpkq “ T 2?
n
k

ˆ

´1 ´
2k ´ 2

n

˙

ě
1
4

˜

1 `

c

4k ´ 4
n

¸2
?

n
k

ě
1
4

˜

1 `

c

2k

n

¸2
?

n
k

,

where the last inequality holds because k ě 2. Finally, since n ě 2k,

1
4

˜

1 `

c

2k

n

¸2
?

n
k

ě
1
422

?
n
k

?
2k
n “

1
422

?
2 ě 1.5. ◀

▶ Lemma 20. For any constants a, b, C such that 1.5 ď a ă b ă C, there is a sum of squares
polynomial pa,b,Cpxq of degree at most 8rC2s such that the following hold:
1. For all x P ra, bs, pa,b,Cpxq ě 1.
2. For all x P r0, 1s, |pa,b,Cpxq| ď 1

2 .
3. For all x P r0, as Y rb, Cs, |pa,b,Cpxq| ď 1.

Proof. We can take the polynomial

pa,b,Cpxq “

ˆ

1 ´
px ´ aqpx ´ bq

C2

˙4rC2
s

.

We now make the following observations:
1. For all x P ra, bs, 1 ´

px´aqpx´bq

C2 ě 1 so pa,b,Cpxq ě 1.
2. For all x P r0, 1s, |1 ´

px´aqpx´bq

C2 | ď 1 ´ 1
4C2 so |pa,b,Cpxq| ď

`

1 ´ 1
4C2

˘4rC2
s

ď 1
2 .

3. For all x P r0, as Y rb, Cs, |1 ´
px´aqpx´bq

C2 | ď 1 so |pa,b,Cpxq| ď 1. ◀
We construct the polynomial s2pxq. For k P t2, . . . , rn{2su, let s2pxq :“
pa,b,C

`

Hkpxq
˘40rk logpnqs

, where a “ Hkpkq, b “ Hkpk ´ 1q, and C “ e8
?

3 is the constant
given by Lemma 19.

▶ Lemma 21. For any k P t2, . . . , rn{2su, s2pxq satisfies the properties in Lemma 18.

Proof. We make the following observations:
1. For all x P r0, k´1sYrk, 2k´1s, Hkpxq P r0, HkpkqsYrHkpk´1q, Cs so |pa,b,CpHkpxqq| ď 1

and thus s2pxq “ pa,b,C

`

Hkpxq
˘40rk logpnqs

ď 1.
2. For all x P rk ´ 1, ks, Hkpxq P rHkpkq, Hkpk ´ 1qs so pa,b,CpHkpxqq ě 1 and thus s2pxq “

pa,b,C

`

Hkpxq
˘40rk logpnqs

ě 1.
3. For all x P r2k ´ 1, ns, Hkpxq P r0, 1s so |pa,b,CpHkpxqq| ď 1 and thus, s2pxq “

pa,b,C

`

Hkpxq
˘40rk logpnqs

ď n´40k. ◀
◀
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4 SoS rank upper bound for the MK problem via SQF certification

In this section, we prove an upper bound of Op
?

n logpP qq on the SoS rank for the MK problem,
which, together with the lower bound presented in [28], constitutes proof of Theorem 2.

We first discuss the necessary properties a candidate SoS certificate for the MK problem
has to satisfy. A degree d SoS certificate for the MK problem is of the form

ř

iPrns xi ´ 1 “

s0pxq ` s1pxq

´

ř

iPrns xi ´ 1
P

¯

, where s0, s1 are SoS polynomials of degree 2d ` 2 and 2d,
respectively. Through permutation of indices, the existence of an SoS certificate for the
MK problem implies the existence of an SoS certificate such that s1 is symmetric, that is,
there exists s̃1 : R Ñ R such that s1pxq “ s̃1p|x|q for all x P t0, 1un. Since s0 is globally
nonnegative, s̃1 needs to satisfy

|x| ´ 1 ě s̃1p|x|q

ˆ

|x| ´
1
P

˙

for all x P t0, 1un. (4.1)

Thus, s̃1p0q ě P , s̃1p1q “ 0, and s̃1pxq ď x´1
x´ 1

P

for x P t2, . . . , nu.
We will construct a sum of squares polynomial s̃1 which satisfies the following slightly

stronger conditions:
1. s̃1p0q ą P

2. For all x P r1, 2s, s̃1pxq ď x´1
2

3. For all x P r2, ns, s̃1pxq ď 1
2

We will then observe that these conditions imply that

s̃0p|x|q “ |x| ´ 1 ´ s̃1p|x|q

ˆ

|x| ´
1
P

˙

is positive for all x P t0u Y p1, ns which is sufficient to show that s̃0pxq is a sum of squares
modulo the Boolean constraints.

A polynomial T2
?

np x´1`r0
n ´1q, where r0 is the smallest root of the polynomial T2

?
np x

n ´

1q, which for P “ 2 satisfies similar requirements was constructed in [28, Lemma 15] using
properties of Chebyshev polynomials.

To obtain our polynomial s̃1pxq, we generalize this construction using three parameters,
the degree d of the Chebyshev polynomial, a scaling factor α, and an even power m.

▶ Definition 22. Given an α ą 0, a natural number d, and an even natural number m, define
s̃α,d,mpxq :“ αTd

´

x´1`r0
n ´ 1

¯m

, where r0 is the smallest root of the polynomial Td

`

x
n ´ 1

˘

.

▶ Lemma 23. r0 ď π2n
4d2 .

Proof. Observe that Tdpxq “ cospd cos´1pxqq so the first zero of Tdpxq is cos
`

´π ` π
2d

˘

ď

´1 ` π2

4d2 . Thus, the first zero of Td

`

x
n ´ 1

˘

is at most π2n
4d2 . ◀

▶ Lemma 24. For d ą π
2

?
n the polynomial s̃α,d,mpxq satisfies the following properties:

1. For all x P r1, ns, s̃α,d,mpxq ď min t αd2

n px ´ 1q, αu.

2. s̃α,d,mp0q ě α

˜

1
4

ˆ

1 `

b

2p1´r0q

n

˙d
¸m

.
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Proof. For the first statement, observe that by the Markov Brothers’ Theorem, since |Tdpxq| ď

1 for all x P r´1, 1s, |T 1
dpxq| ď d2 for all x P r´1, 1s. This implies that

ˇ

ˇ

ˇ

ˇ

T 1
d

´

x´1`r0
n ´ 1

¯

ˇ

ˇ

ˇ

ˇ

ď d2

n

for all x P r1 ´ r0, 2n ` 1 ´ r0s. Since Td

´

x´1`r0
n ´ 1

¯

“ 0, when x “ 1,
ˇ

ˇ

ˇ

ˇ

Td

´

x´1`r0
n ´ 1

¯

ˇ

ˇ

ˇ

ˇ

ď

min t
d2

px´1q

n , 1u for all x P r1, ns, which implies the result.

For the second statement, by Lemma 7, if 0 ď c ď n then |Tdp´1 ´ c
n q| ě 1

4

ˆ

1 `

b

2c
n

˙d

.

Applying this lemma with c “ 1 ´ r0, the result follows. ◀

▶ Corollary 25. If the conditions
1. d ě 3

?
n,

2. α ď n
2d2 ď 1

2 ,
3. m ą

lnpP q´lnpαq

d ln
ˆ

1`

b

2p1´r0q

n

˙

´lnp4q

,

are satisfied, then the following properties hold:
1. s̃α,d,mp0q ą P .
2. For all x P r1, 2s, s̃α,d,mpxq ď x´1

2 .
3. For all x P r2, ns, s̃α,d,mpxq ď 1

2 .
Thus, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ą 0 whenever x P t0u Y p1, ns.

Proof. The first statement follows from algebraic manipulations provided that
1
4

ˆ

1 `

b

2p1´r0q

n

˙d

ě 1. To confirm that this holds, observe that r0 ď π2n
4d2 ď 1

2 . Thus,

˜

1 `

c

2p1 ´ r0q

n

¸d

ě

ˆ

1 `
1

?
n

˙d

ě 2
d?
n ě 8.

For the second and third statements, we use the facts that for all x P r1, ns, s̃α,d,mpxq ď
αd2

n px ´ 1q and s̃α,d,mpxq ď α, respectively.
To show that px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ą 0 whenever x P t0u Y p1, ns, we make the
following observations:
1. For x “ 0, ´1 ´ s̃α,d,mp0qp´ 1

P q ą ´1 ´ P
`

´ 1
P

˘

“ 0.
2. For x P p1, 2s, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ď px ´ 1q ´ x´1
2

`

x ´ 1
P

˘

ą 0.
3. For x P r2, ns, px ´ 1q ´ s̃α,d,mpxqpx ´ 1

P q ď px ´ 1q ´ 1
2

`

x ´ 1
P

˘

ą 0. ◀

We now confirm that

s̃0 “ px ´ 1q ´ s̃α,d,mpxq

ˆ

x ´
1
P

˙

is a sum of squares modulo the Boolean axioms. To see this, observe that since s̃0pxq ą 0
for x P t0u Y p1, ns, s̃0pxq must have an even number of roots in p0, 1s and no other roots in
r0, ns. Thus, we can write

s̃0pxq “ p
l

ź

i“1
px ´ aiqpx ´ biq

for some polynomial p which is positive on r0, ns and some real roots a1, . . . , al, b1, . . . , bl P

p0, 1s. Since p is positive on r0, ns, p is a sum of squares modulo the Boolean axioms. By
Corollary 9, since |x|p|x| ´ 1q is a sum of squares modulo the Boolean axioms, for each i P rls,
px ´ aiqpx ´ biq is also a sum of squares modulo the Boolean axioms. Thus, s̃0pxq is a sum
of squares modulo the Boolean axioms.
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Finally, we observe that we can satisfy the required conditions on d, α, and m by taking
d “ r3

?
ns, α “ 1

2d2 « 1
18n , and m “ OplogpP qq, which gives a sum of squares certificate of

degree Op
?

n logpP qq.

5 SoS rank upper bound for the SC problem via SQF certification

In this section, we refute the Bienstock–Zuckenberg conjecture for the SC problem. We
provide a degree Op

?
n logpnqq SoS certificate for the SC problem on the Boolean hypercube,

thus proving Theorem 3. For this proof, we use the SoS rank for certifying SQFs for k “ 2 in
Theorem 1. We present an alternative direct proof in Section 6.

We begin this section with a discussion on the properties necessary for an SoS polynomial
s to even be considered as a possible candidate for an SoS certificate for the SC problem. An
SoS certificate for the SC problem is of the form

ř

iPrns xi ´ 2 “ s0pxq `
ř

iPrns sipxqgipxq,

where gipxq “

´

ř

jPrnsztiu xj ´ 1
¯

. As opposed to the discussion in Section 4, an SoS
certificate for the SC problem not only has multiple constraints but also displays a certain
type of asymmetry, which is present in the formulation of the polynomials gi for i P rns. One
could hope to abuse this asymmetry by constructing different SoS polynomials si P Σn,d for
certain d P rns, but for this proof, we proceed in a similar fashion as for the MK problem
and instead construct only one symmetric SoS polynomial s : t0, 1un Ñ R and look for
the certificate of the form

ř

iPrns xi ´ 2 “ s0pxq `
ř

iPrns spxqgipxq. Through permutation of
indices, the existence of an SoS certificate for the SC problem implies the existence of an SoS
certificate such that s is symmetric, that is, there exists an s̃ : R Ñ R such that spxq “ s̃p|x|q

for all x P t0, 1un. As for the MK problem, we are interested in the requirements that
polynomial s̃ needs to satisfy such that s constitutes part of an SoS certificate for the SC
problem. Let gpxq :“

ř

iPrns gipxq “ pn ´ 1qp
řn

i“1 xiq ´ n and note that g is a symmetric
polynomial; there exists a univariate polynomial g̃ such that g̃p|x|q “ gpxq for all x P t0, 1un.
Since s0 is globally nonnegative, this implies that s needs to satisfy

|x| ´ 2 ě s̃p|x|q
`

|x|p|x| ´ 2q ` pn ´ |x|qp|x| ´ 1q
˘

“ s̃p|x|qppn ´ 1q|x| ´ nq “ s̃p|x|qg̃p|x|q for all x P t0, 1un. (5.1)

This implies that s̃p0q ě 2
n , s̃p1q ě 1, s̃p2q “ 0 and s̃pxq ď x´2

3pn´1qx´n for all x P t3, 4, . . . , nu.
We will construct a sum of squares polynomial s̃pxq which satisfies the following slightly
stronger conditions:
1. s̃pxq ě 1 for all x P r0, 1s.
2. For all x P r1, 2q, s̃pxq

x´2 ă 0 and s̃pxq

x´2 is increasing.
3. s̃pxq ď

px´2q

2n for all x P r2, 3s.
4. s̃pxq ď 1

2n for all x P r3, ns.
We will then observe that these conditions imply that s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is
positive for x P r0, 1q Y p2, ns and has exactly two zeros in the interval r1, 2s, one of which is
x “ 2. We can then use Theorem 1 and Corollary 9 to show that s̃0 is a sum of squares of
degree degps̃q ` Op

?
n logpnqq modulo the Boolean axioms.

▶ Lemma 26. For d “ 3
?

n, α “ 1
18n , and m “ 2rlog2p

?
18nqs the polynomial s̃pxq “

s̃α,d,mpx ´ 1q satisfies the following properties:
1. s̃pxq ě 1 for all x P r0, 1s.
2. For all x P r1, 2q, s̃pxq

x´2 ă 0 and s̃pxq

x´2 is increasing.
3. s̃pxq ď

px´2q

2n for all x P r2, 3s.
4. s̃pxq ď 1

2n for all x P r3, ns.
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Proof. For the first statement, just as in the proof of Corollary 25, r0 ď π2n
4d2 ď 1

2 . Thus,

˜

1 `

c

2p1 ´ r0q

n

¸d

ě

ˆ

1 `
1

?
n

˙d

ě 2
d?
n ě 8

Hence, by Lemma 24, s̃p1q “ s̃α,d,mp0q ě α2m ě 1. Since degps̃q is even, all roots of s̃ are
real and the smallest root of s̃ is 2, s̃ is positive and decreasing when x ă 2 so s̃pxq ě 1
whenever x P r0, 1s, as needed.

For the second statement, observe that since degps̃q is even, all roots of s̃ are real and
the smallest root of s̃ is 2, s̃pxq

x´2 is negative and increasing whenever x ă 2.
For the third statement, observe that by Lemma 24, for all x P r2, 3s, s̃pxq “ s̃α,d,mpx´1q ď

α d2

n px ´ 2q ď x´2
2n .

For the fourth statement, observe that by Lemma 24, for all x P r3, ns, s̃pxq “ s̃α,d,mpx ´

1q ď α ă 1
2n . ◀

▶ Corollary 27. For d “ 3
?

n, α “ 1
n , m “ 2rlog2pnqs, and s̃pxq “ s̃α,d,mpx ´ 1q the

polynomial s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is positive for x P r0, 1q Y p2, ns and has exactly
two zeros in the interval r1, 2s, one of which is x “ 2.

Proof. We make the following observations:
1. For all x P r0, 1q,

s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´ ppn ´ 1qx ´ nq “ pn ´ 2qp1 ´ xq ą 0.

2. For all x P r1, 2s, s̃0
x´2 “ 1 ´ ppn ´ 1qx ´ nq s̃

x´2 . When x P r n
n´1 , 2s, ppn ´ 1qx ´ nq s̃

x´2 ď 0
so s̃

x´2 ą 0. When x P r1, n
n´1 q, both ppn ´ 1qx ´ nq and s̃

x´2 are negative and increasing
so ppn´1qx´nq s̃

x´2 is positive and decreasing and thus s̃0
x´2 is increasing. Since s̃0p1q

1´2 ď 0
and s̃0p n

n´1 q
n

n´1 ´2 ą 0, s̃0pxq

x´2 must have exactly one zero in the interval r1, n
n´1 s.

3. For all x P p2, 3s, s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´
pn´1qx´n

2n px ´ 2q ą 0.
4. For all x P r3, ns, s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq ě x ´ 2 ´

pn´1qx´n
2n ą x

2 ´ 3
2 ě 0.

◀

▶ Corollary 28. s̃0p|x|q is a sum of squares of degree Op
?

n logpnqq modulo the Boolean
axioms.

Proof. Since s̃0pxq “ x ´ 2 ´ s̃pxqppn ´ 1qx ´ nq is positive for x P r0, 1q Y p2, ns and has
exactly two zeros in the interval r1, 2s, one of which is x “ 2, we can write

s̃0pxq “ p̃px ´ aqpx ´ 2q,

for some a P r1, 2q where p̃pxq is positive for has no real roots in the interval r0, ns. Since
p̃pxq is positive and has no real roots in the interval r0, ns, p̃p|x|q is a sum of squares modulo
the Boolean axioms. By Theorem 1 and Corollary 9, px ´ aqpx ´ 2q is a sum of squares of
degree Op

?
n logpnqq modulo the Boolean axioms. ◀

Thus, there exists a degree Op
?

n logpnqq SoS certificate of nonnegativity for the SC problem.
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6 Alternative Proof for the SoS rank upper bound for the SC problem

In this section, we provide an alternative proof of Theorem 3. More precisely, we prove an
Op

?
n logpnqq upper bound on the SoS rank for the SC problem without using Theorem 1.

By the problem formulation, Definition (1.2), and Equation (2.1), the SoS rank for the SC
Problem is the smallest d for which there exist SoS polynomials s0 P Σn,2d`2 and si P Σn,2d

for i P rns such that

n
ÿ

i“1
xi ´ 2 “ s0pxq `

n
ÿ

i“1
si

¨

˚

˚

˝

n
ÿ

j“1
j‰i

xj ´ 1

˛

‹

‹

‚

.

Equivalently, it is the smallest positive integer d such that
řn

i“1 xi ´ 2 P ΣG
n,d.

To prove the SoS rank upper bound for the SC problem, we define the polynomials
h1pxq :“ |x| ´ 1 and h2pxq :“ |x|

`

|x| ´ 2
˘

and require the following lemma, in which we use
the asymmetry inherent to the constraints of the SC problem.

▶ Lemma 29. For polynomials h1, h2 it holds that h1pxq P ΣG
n,0 and h2pxq P ΣG

n,1.

Proof. Consider the first polynomial, h1, and note that

n
ÿ

i“1
xi ´ 1 “

1
n ´ 1

n
ÿ

i“1

¨

˚

˚

˝

n
ÿ

j“1
j‰i

xj ´ 1

˛

‹

‹

‚

`
1

n ´ 1 P ΣG
n,0.

Polynomial h2 can be written as

n
ÿ

j“1

xj

¨

˝

n
ÿ

i“1

xi ´ 2

˛

‚“

n
ÿ

j“1

¨

˚

˝

xj

¨

˝

n
ÿ

i“1

xi ´ xj ´ 1

˛

‚` px2
j ´ xjq

˛

‹

‚

“

n
ÿ

j“1

¨

˚

˚

˚

˝

x2
j

¨

˚

˚

˝

n
ÿ

i“1
i‰j

xi ´ 1

˛

‹

‹

‚

´ px2
j ´ xjq

¨

˚

˚

˝

n
ÿ

i“1
i‰j

xi ´ 1

˛

‹

‹

‚

` px2
j ´ xjq

˛

‹

‹

‹

‚

P ΣG
n,1. ◀

Although Lemma 29 uses asymmetry in the constraints of the SC problem, both h1 and
h2 are symmetric polynomials. We can thus define polynomials h̃1, h̃2 : R Ñ R such that
h̃1p|x|q “ h1pxq, and h̃2p|x|q “ h2pxq, respectively. We are working towards a proof of the
existence of polynomials p1, p2 : R Ñ R such that

px ´ 2q ´ p1pxqh̃1pxq ´ p2pxqh̃2pxq ě 0 for all x P r0, ns. (6.1)

6.1 Construction of polynomials p1, p2

We consider necessary, but not sufficient requirements that the polynomials p1 and p2 have to

satisfy, that is, p1p2qh̃1p2q`p2p2qh̃2p2q “ 0,
”

p1h̃1 ` p2h̃2

ı

1

p2q “ 1, and
”

p1h̃1 ` p2h̃2

ı

2

p2q ă

0. It is easy to check that these requirements are satisfied if p1 has a double root at x “ 2,
p2p2q “ 1{2, and 1 ` 4p

1

2p2q ` 2 p1p2q

px´2q2 ă 0. We use these guidelines to construct polynomials

p1pxq :“ 1
2n2c1

px ´ 2q2 T 2
2

?
n logpnq

ˆ

2x ´ 2
n

´ 1
˙

, (6.2)

p2pxq :“ 1
2nc2

T 2
2

?
n logpnq

ˆ

2x ´ 3
n

´ 1
˙

,
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where c1 and c2 are constants equal to 1
2n2 T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

and 1
n T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

,
respectively, such that p1p1q “ 1 and p2p2q “ 1{2.

▶ Lemma 30. There exists C P N such that for n ě C, the polynomial p1 satisfies the
following properties:
1. p1pxq ě 4 for x P r0, 1

2 s.
2. p1pxq ď

`

´0.9px ´ 1q ` 1
˘

px ´ 2q2 for x P r1, 2s.
3. p1pxq ď 1

2n2 px ´ 2q2 for x P r2, ns.

Proof. Since p1pxq is decreasing for x ď 1, to prove Property (1) it is enough to show that
p1p 1

2 q ě 4. By Lemma 7 and for sufficiently big n, it holds

p1p1{2q “

9
4 T 2

2
?

n logpnq

`

´3
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘ ě
1
2

¨

˚

˝

1 `

b

6
n

1 `

b

5
n

˛

‹

‚

4
?

n logpnq

.

Since 1
2

ˆ

1`
?

6
n

1`
?

5
n

˙4
?

n logpnq

ě 4 for n ě 32 and by monotonicity, Property (1) is satisfied.

To prove Property (3), note that for every x P r2, ns and d P N we have T 2
d p2x´2

n ´

1q ď 1 and for every n ě 2, by Lemma 7, we have c1 “ 1
2n2 T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

ě

1
2n2

1
4

ˆ

1 `

b

4
n

˙4
?

n logpnq

ě 1.

To prove Property (2), we show that 1
2n2 T 2

2
?

n logpnq

`

2 x´2
n ´ 1

˘

ď
`

´0.9px ´ 1q ` 1
˘

for
every x P r1, 2s. By construction, it is satisfied for x “ 1 and by Property (3), it is satisfied for
x “ 2. Since the function T 2

2
?

n logpnq

`

2 x´2
n ´ 1

˘

is convex in the interval r1, 2s, the property
is satisfied for x P r1, 2s. ◀

▶ Lemma 31. There exists a constant C P N such that for n ě C, the polynomial p2 satisfies
the following properties:
1. p2pxq ě 4 for x P r0, 1s.
2. p2p2q “ 1

2 .
3. p

1

2pxq ď ´1 for x P r1, 2s.
4. p2pxq ď ´0.45px ´ 2q ` 1

2 for x P r2, 3s.
5. p2pxq ď 1

2n for x P r3, ns.

Proof. Since p2pxq is decreasing for x ď 1, to prove Property (1), it is enough to show that
p2p1q ě 4. For sufficiently big n we get:

p2p1q :“
1
2 T 2

2
?

n logpnq

`

´ 4
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘ ě
1
8

¨

˚

˝

´1 ´

b

8
n

´1 ´

b

5
n

˛

‹

‚

4
?

n logpnq

.

Since 1
8

ˆ

´1´
?

8
n

´1´
?

5
n

˙4
?

n logpnq

ě 4 for n ě 13 and by monotonicity, Property (1) is satisfied.

Property (2) is satisfied by construction.
Since for every x P r3, ns and d P N we have

∣∣Tdp2 x´3
n ´ 1q

∣∣ ď 1 and for every n ě 2, by

Lemma 7, we have c2 “ 1
n T 2

2
?

n logpnq

`

´ 2
n ´ 1

˘

ě 1
n

1
4

ˆ

´1 ´

b

4
n

˙4
?

n logpnq

ě 1, Property (5)

is satisfied.
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Since p2pxq is convex for x P r1, 2s, to prove Property (3), it is enough to show p
1

2p2q ď ´1.
Note that BTdpxq

Bx “ dUd´1pxq and BT 2
d pxq

Bx “ 2dTdpxqUd´1pxq, where Udpxq is a Chebyshev
polynomial of the second type. Thus,

p
1

2pxq “

4 logpnqT2
?

n logpnq

´

2px´3q

n ´ 1
¯

U2
?

n logpnq´1

´

2px´3q

n ´ 1
¯

?
nT2

?
n logpnq

`

´1 ´ 2
n

˘ ,

which implies that

p
1

2p2q “
4 logpnqU2

?
n logpnq´1

`

´1 ´ 2
n

˘

?
nT2

?
n logpnq

`

´1 ´ 2
n

˘ “

«

B

Bx

T2
?

n logpnq

`

2 x´3
n ´ 1

˘

T2
?

n logpnq

`

´1 ´ 2
n

˘

ff

p2q .

Since T2
?

n logpnq

`

2 x´3
n ´ 1

˘

for x “ 2.5 takes at most half of the value for x “ 2 and since
T2

?
n logpnq

`

2 x´3
n ´ 1

˘

is convex in the interval r2, 3s, p
1

2pxq ď ´1. By Lemma 7,

T 2
2

?
n logpnq

`

´ 2
n ´ 1

˘

T 2
2

?
n logpnq

`

´ 1
n ´ 1

˘ ě
1
4

¨

˚

˝

´1 ´

b

4
n

´1 ´

b

3
n

˛

‹

‚

2
?

n logpnq

.

Since 1
4

ˆ

´1´
?

4
n

´1´
?

3
n

˙2
?

n logpnq

ě 2 for n ě 100 and by monotonicity, Property (3) is satisfied.

By Property (2), Property (4) holds for x “ 2. By Property (5), it holds for x “ 3 and
n ě 10. Since p2pxq is convex for x P r2, 3s, the property holds for x P r2, 3s. ◀

Now we are ready to prove the main lemma of this section.
▶ Lemma 32. It holds that

fpxq :“ x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq ě 0 for x P r0, ns. (6.3)

Proof. Note that h1pxq, h2pxq ď 0 for x P r0, 1s. For all x P r0, 1
2 s, p1pxq is decreasing and

h1pxq is increasing in x. Thus, by Property (1), for x P r0, 1
2 s, fpxq ě x ´ 2 ´ p1pxqh1pxq ě

´2 ´ p1p1{2qh1p1{2q ě ´2 ` 4 ¨ 1
2 ě 0. For x P r 1

2 , 1s, both p2pxq and h2pxq are decreasing.
Thus, for x P r 1

2 , 1s and by Property (1), fpxq ě x ´ 2 ´ p2pxqh2pxq ě ´ 3
2 ´ p2p1qh2p1{2q ě

´ 3
2 ` 4 ¨ 3

4 ě 0. To prove the statement for x P r1, 2s, we show that for every a P r0, 1s,
we have fp2 ´ aq ě 0. By construction, we have fp2q “ 0. Thus, the property holds
for a “ 0. By Property (2), for polynomial p1, we have p1p2 ´ aq ď p0.9a ` 0.1qa2. By
Properties (2) and (3), for polynomial p2, we have p2p2 ´ aq ě 1{2 ` a. Thus, fp2 ´ aq ě

´a ´ p0.9a ` 0.1qa2p1 ´ aq ` p1{2 ` aqap2 ´ aq “ a2pp0.9a ´ 1.8qa ` 1.4q, which is nonnegative
for a P r0, 1s. This proves the statement for x P r1, 2s.

To prove the statement for x P r2, 3s we show that for every a P r0, 1s, it holds that
fp2`aq ě 0. By Property (3), for x P r2, 3s and n ě 2, we get p1p2`aq ď 1

4 a2. By Property (4),
we get that p2p2`aq ď ´0.45a` 1

2 . Thus, fp2`aq ě a´ 1
4 a2p1`aq´

`

´0.45a ` 1
2

˘

p2`aqa “

p0.15 ` 0.2aqa2, which is non-negative for a P r0, 1s. This proves the statement for x P r2, 3s.
Finally, for x P r3, ns, we have fpxq ě x ´ 2 ´ 1

2n2 px ´ 2q2px ´ 1q ´ 1
2n xpx ´ 2q ě 0. ◀

6.2 Proof of Theorem 3
By Lemma 32, x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq ě 0 for x P r0, ns and the degree of the
polynomial on the LHS is at most Op

?
n logpnqq. Thus, by Theorem 6, there exist SoS

polynomials s0, s1 such that x ´ 2 ´ p1pxqh1pxq ´ p2pxqh2pxq “ s0pxq ` xpn ´ xqs1pxq. Thus,
x ´ 2 “ s0pxq ` xpn ´ xqs1pxq ` p1pxqh1pxq ` p2pxqh2pxq. Remark 5 and the fact that
|x|pn ´ |x|q has a degree 1 SoS certificate over the Boolean hypercube imply the existence of
a degree Op

?
n logpnqq certificate over the Boolean hypercube for the polynomial

řn
i“1 xi ´ 2.
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