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Abstract
Correlated random variables are a key tool in cryptographic applications like secure multi-party
computation. We investigate the power of a class of correlations that we term group correlations: A
group correlation is a uniform distribution over pairs (x, y) ∈ G2 such that x + y ∈ S, where G is a
(possibly non-abelian) group and S is a subset of G. We also introduce bi-affine correlations, and
show how they relate to group correlations. We present several structural results, new protocols and
applications of these correlations. The new applications include a completeness result for black box
group computation, perfectly secure protocols for evaluating a broad class of black box “mixed-groups”
circuits with bi-affine homomorphisms, and new information-theoretic results. Finally, we uncover a
striking structure underlying OLE: In particular, we show that OLE over F2n , is isomorphic to a
group correlation over Zn
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1 Introduction

A central concept in secure multiparty computation (MPC) is that of correlated random
variables. If Alice and Bob are given correlated random variables, they can later use them
to securely compute any function, with information-theoretic security [22, 20]. This model
has been a key ingredient in many theoretical and practical results in MPC. While the class
of 2-party correlations that information-theoretically secure computation can be based on
(i.e., “complete” correlations) is well-understood [23, 24], not all complete correlations are
used in practical protocols. Instead, several “standard” correlations which have additional
structure, like Oblivious Transfer (OT), Oblivious Linear function Evaluation (OLE) and
Beaver’s Multiplication Triplets (BMT) [2] are used in practice. The main motivation in
this work is to systematically study the additional structure that protocols can exploit, and
develop a deeper and broader foundation for such correlations.
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Apart from uncovering the beautiful mathematical structures from which these correlations
derive their power, another motivation for our work is to expand the applicability of correlated
random variables to secure computation involving black-box algebraic structures which can
be less structured than finite fields or rings. Consider the following seemingly disparate
problems of information-theoretically secure 2-party computation:

Blackbox Group Computation: If the function is given as a circuit over a blackbox
(non-abelian) group, how can two parties securely compute it with perfect security? The
complete correlation proposed in [10] (namely, oblivious transfer of group elements),
yielded only statistical security.
Generating and Processing Correlations over a Blackbox Ring: If correlated
random variables over a blackbox ring (e.g., OLE) are acquired by a pair of parties from
a trusted server, can they be efficiently rerandomized (e.g., for “forward security” against
future corruption of the server)? Efficiency relates to both the use of correlations as well
as communication and number of rounds.
How efficiently can such correlations be generated, using a less structured primitive like
string OT?
Circuits Using Alternate Algebraic Structures: Traditionally, MPC literature has
considered algebraic circuits to be over fields or rings, and these protocols breakdown if
the algebraic structure underlying the circuit has less structure. Can alternate protocols
be devised for computation over (say) distributive near-rings or non-associative algebras,
or when multiple such algebraic structures are used in the same circuit?

We introduce bi-affine correlations as an abstraction of a broad class of cryptographically
interesting correlations, and address all of the above problems in terms of them. Perhaps more
importantly, we undertake a study of the fundamental properties of bi-affine correlations and
the underlying mathematical structure of bi-affine homomorphisms, without being confined to
immediate applications. This leads us to the definition of Group Correlations and Subgroups
Correlations as a generalization of bi-affine correlations, that brings out additional hidden
structure of bi-affine correlations.

Interestingly, while “additive correlations” (the abelian version of group correlations) and
“bilinear correlations” (a special case of bi-affine correlations) have been explicitly considered
before in various applications, most notably in the rich line of work on function/homomorphic
secret-sharing (F/HSS) and pseudorandom correlation generators (PCG) [8, 9, 5, 7, 6],1 it
was not realized that the former is a generalization of the latter, underlining the need for
studying them abstractly.

1.1 Our Contributions
We develop a theory of group correlations and subgroups correlations, with a focus on the
subclass of bi-affine correlations. A group correlation, specified by a group G and a subset
S ⊆ G, is simply an additive secret-sharing of a random element in S, or equivalently,
a uniform distribution over {(x, y) | x, y ∈ G, x + y ∈ S}. A subgroups correlation is a
restriction of such a group correlation correlation to the universe G1 ×G2 where G1 and G2
are subgroups of G, with a regularity condition on S (so that the resulting correlation has

1 In these works, bi-linear correlations were often termed simple bi-linear correlations. For consistency
with the terminology in the current work, we avoid this term. What was termed (general) bi-linear
correlations there would correspond to correlations of the form BAσ⟨2⟩ in this work.
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uniform marginal distributions). Within this simple framework, a rich variety of structures
arise based on how the groups and the set S are defined. Our contributions include the
following:

A Theory of Group Correlations: This includes several new definitions of structures
and properties, as well as connections between them. (Section 3).
Information-Theoretic Results: We give new results on information theoretic quan-
tities (specifically, residual information) that can be used to analyze the optimality of
secure protocols. (Section 4).
New Protocol Building-Blocks: We present a suite of protocols for various function-
alities involving bi-affine correlations, with applications to 2-Party secure computation.
(Section 5).
Applications: The above building-blocks can be put together to yield various information-
theoretically secure computation protocols. In particular, we show:

There exists a complete correlation for 2-party perfectly passive-secure evaluation of
a black-box (non-abelian) group circuit – called the Zero Alternating Sum (ZAS)
correlation. ZAS is a bi-affine correlation, and hence this could seen as a special case
of the following results. In contrast, previously the complete correlation proposed in
[10] (namely, OT with group elements), yielded only statistical security.
When the circuit has logarithmic depth, or is in the form of polynomial-sized formula,
we obtain a 2-round UC secure protocol.
A GMW-style 2-Party protocol for evaluating a black-box “mixed-group circuit” with
homomorphism and bi-affine homomorphism gates, which requires 2 rounds of interac-
tion per layer.
2-Party protocols for rerandomizing and testing bi-affine correlations obtained from a
semi-trusted source (who will not collude with either party until after the protocol is
over) (Section 5.1, Section 5.4). We also discuss how this can be viewed as a solution
to sampling correlations in the single-server version of the commodity based model [4].
A 2-Party protocol for securely sampling bi-affine correlations using string OTs, gener-
alizing a protocol of Gilboa [19]. Using our information-theoretic results, we establish
its optimality for a class of bi-affine correlations (including the ones considered in [19]).
(Section 5.3).

A Surprising Structure. Finally, we uncover a striking structure underlying OLE. In
particular, we show that OLE over F2n , is isomorphic to a group correlation over Zn

4 .
Given that OLE has been widely studied and used, it is remarkable that such a structure
has remained hidden so far.

Details of the protocols and applications can be found in the full version.

Discussion
Here we elaborate on some of the above contributions.

Hidden Structures. We point out two instances of hidden structure in well-studied objects
that are revealed by our abstractions. OLE and BMT are two correlations that have been
extensively studied both in terms of their applications, and in terms of protocols generating
them. However, while abstracting them as bi-linear correlations (see Footnote 1), they are
treated somewhat differently. For instance, in [5], PCGs for bi-linear correlations are given,
which directly applies to OLE; and then a PCG for BMT is provided by reducing BMT
to OLE. However, a consequence of our results is that BMT is already a (simple) bi-linear
correlation, but with a bi-linear operator different from that of OLE: while OLE uses a

ITC 2021



1:4 Group Structure in Correlations and Its Applications in Cryptography

map σ(a, b) = ab, BMT uses σ((a, b), (c, d)) = ad + bc (all variables belonging to a ring).
This results in a more efficient protocol since reducing one BMT to two OLE correlations is
wasteful (a reduction in the opposite direction is not possible).

The second instance of a hidden structure is that of OLE which has a complicated
structure due to the interaction of field multiplication with the addition structure of the
field. As such, one may not expect OLE (over large fields) to be a group correlation. But we
show that every symmetric bi-affine correlation (of which OLE is an example) is in fact a
group correlation. Even more surprisingly, for the special case of OLE over the field F2n , the
underlying group turns out to be Zn

4 . Thus OLE over F2n can be seen as sampling an element
uniformly from a (non-obvious) set S ⊆ Zn

4 , and then simply additively secret-sharing it
coordinate-wise. While we do not offer any immediate applications of this particular structure,
as a fundamental property of an extremely useful cryptographic primitive, it is an interesting
result.

ZAS: A Bi-Affine Correlation in a Group. An interesting application we present is that of
a complete correlation for 2-party secure computation over a black-box group, with perfect
security. In contrast to the prior approach which relied on OT with group elements, and only
obtained statistically secure protocols [10], we rely on a deceptively simple correlation, called
the Zero Alternating Sum (ZAS) correlation. In a ZAS correlation over a (non-abelian) group
G, Alice and Bob get random pairs (a, c) ∈ G2 and (b, d) ∈ G2 such that a+ b+ c+ d = 0.

Note that defining ZAS does not require anything more than the group operation.
This demonstrates the generality of bi-affine homomorphisms, compared to bi-linear maps.
While bi-linear maps are used to capture the multiplication operation in a ring, bi-affine
homomorphisms can equally well capture the alternating sum structure in a group. Concretely,
the function σ : G2 → Gop, defined as σ(x, y) = −(x+y) where Gop is the opposite group of G
(whose group operation is the same as that of G, but applied to the operands in the opposite
order), is a bi-affine homomorphism w.r.t. the subgroups T = G× {0} and U = {0} ×G of
the group G2.

Optimality of Gilboa’s Reduction. As a corollary of our information-theoretic results
pertinent to bi-affine correlations, we show that Gilboa’s reduction from OLE over F2n to
string OT [19] is optimal in the number of string OTs used (n string OTs per OLE instance),
and cannot be improved upon even with amortization. In fact, this extends to OLE over Fpn

if Gilboa’s protocol is modified to use 1-out-of-p string OTs.

Mixed-Groups Circuit with Bi-Affine Homomorphism Gates. Conventionally, MPC litera-
ture has considered boolean or arithmetic circuits over a given ring or field. A variant of this
considers the underlying algebraic structure to be given as a black box to the protocol (e.g.,
[11, 21] for rings and [17, 16, 10] for groups). Motivated by practical applications, MPC
protocols for computation that uses multiple representations has received attention (e.g., the
ABY framework [15] and subsequent works). More recently, circuits with bi-linear gates over
multiple black box groups has been considered in [9].

Our applications use a similar circuit paradigm as [9], and use two types of gates (1) group
operations (2) gates for group homomorphisms and bi-affine homomorphisms. Bi-Affine
Homomorphisms are quite general, and can correspond to multiplication in distributive
near-rings or non-associative rings, or even (negated) addition in a non-abelian group. As
such, this is a powerful computational model that subsumes arithmetic circuits over a
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ring. Nevertheless, the bi-affine homomorphism structure lets us build perfectly secure
2-party protocols for all such circuits, using bi-affine correlations for the corresponding
bi-affine homomorphisms (if necessary, along with “Zero Alternating Sum” correlations for
the non-abelian groups).

1.2 Related Work
Correlations have received much attention in cryptography, especially since Beaver’s proposal
of using them as cryptographic commodities [3] and the emergence of the pre-processing
model as a common approach to theoretically and practically efficient MPC. They have
been put to great use for MPC, both in the passive and active corruption settings, in theory
and practice (see. e.g., the SPDZ family of protocols [14] and subsequent work). All these
works develop and use several building blocks like self-reduction and self-testing for their
correlations.

The recent line of works on Pseudorandom Correlation Generators and Function Secret
Sharing [9, 5, 7, 8, 6], which consider bi-linear and additive correlations are most closely
related to our work. Briefly, they answer two important questions. (1) how to perform secure
computation over bi-linear gates (2) how to efficiently generate these correlations. In contrast
to our work, these results were focussed on exploiting computational hardness, and restricted
themselves to bi-linear correlations and abelian groups.

Secure Multi Party Computation over non-abelian Black-Box groups has been well studied
in the honest-majority setting [17, 16, 10]. In the two-party setting Cohen et al. [10] gave a
passive statistically secure protocol for evaluating circuits over black-box groups in the OT
hybrid model and used the IPS compiler [20] to achieve security against active corruption.
In this work, we use a stronger primitive – namely Zero Alternating Sum correlations – but
are able to obtain a simple perfectly secure protocol against active adversaries without the
use of expensive compilers for log-depth circuits.

Protocols for rerandomization and testing of correlations have appeared previously in the
literature but their focus has remained on specific correlations such as BMT, squaring tuples
etc., [13]. The commodity based model first introduced by Beaver in [4] has been revisited
recently in [12, 27] to sample OLE and BMT correlations.

1.3 Technical Overview
In this section we present the highlights of our results, informally. Several additional technical
details and generalizations are deferred to the subsequent sections and the full version.

1.3.1 Definitions
We consider several classes of flat correlations – i.e., distributions that are uniform over their
support. Below we use support and distribution interchangeably.

Group Correlations and Subgroups Correlations. A group correlation defined w.r.t a group
G and a subset S ⊆ G is the uniform distribution over all pairs (g1, g2) ∈ G2 such that
g1 + g2 ∈ S. A subgroups correlation embedded in this group correlation is obtained by
requiring g1 ∈ G1 and g2 ∈ G2, where G1, G2 are subgroups of G with the property that the
marginal distributions of g1 and g2 are both uniform. This subgroups correlation is said to
be compact if |G| < |G1||G2|.

ITC 2021
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(b) Bipartite graph of the OT correlation.

Bi-Affine Homomorphisms. A linear function (or a group homomorphism) ϕ : G → H

satisfies ϕ(a+ b) = ϕ(a) + ϕ(b) (where the addition and subtraction are in the appropriate
groups). An “affine” function ψ is such that ϕ defined by ϕ(x) := ψ(x)− ψ(0) is linear; i.e.,
ψ(a+ b) = ψ(a)− ψ(0) + ψ(b). A bi-affine function could be defined as a function of two
inputs, which is affine in each of them; i.e., for groups T,U,H, a function e : T × U → H

such that

e(t, u+ u′) = e(t, u)− e(t, 0) + e(t, u′) and e(t+ t′, u) = e(t, u)− e(0, u) + e(t′, u). (1)

Note that if we required e(t, 0) = e(0, u) = 0, then the conditions above would collapse
to e being bi-linear. Examples of functions that satisfy (1) but are not bi-linear include
e : G×G→ G defined as e(a, b) = a+ b or as e(a, b) = −a− b.

For notational simplicity in our results, we define a bi-affine homomorphism as a unary
function σ : Q → H, (Q,H being groups) with respect to subgroups T,U ⩽ Q so that
e : T × U → H defined as e(t, u) := σ(t+ u) satisfies (1). An equivalent definition, in terms
of group homomorphisms, is given in Definition 7.

Bi-Affine Correlation. Given a bi-affine homomorphism σ as above, the support of the
corresponding bi-affine correlation correlation BAσ ⊆ (T ×H)× (U ×H) is defined as

BAσ = {((t, a), (u, b)) | σ(t+ u) = a+ b}.

Examples. As shown in Figure 1a, the most commonly used correlations indeed fall under
the class of bi-affine correlations.

Oblivious Linear Evaluation (OLE): Defined over a ring A as
(
(t, a), (u, b)

)
such that

a+b = tu, OLE is isomorphic to a bi-affine correlation with σ(t, u) = tu, where σ : A2 → A

is a bi-affine homomorphism with respect to T = A× {0} and U = {0} ×A.
Beaver’s Multiplication Triples (BMT): Defined over a ring A as

(
(t1, u1, a), (t2, u2, b)

)
such that a+ b = (t1 + t2)(u1 + u2), BMT is isomorphic to a bi-affine correlation with
σ((t1, u1), (t2, u2)) = t1u2 + t2u1, where σ : A4 → A is a bi-affine homomorphism with
respect to T = A2 × {0}2 and U = {0}2 ×A2.
Zero Alternating Sum (ZAS): Defined over a (possibly non-abelian) group D as(
(a, c), (b, d)

)
such that a + b + c + d = 0, ZAS is isomorphic to a bi-affine correla-

tion BAσ, where σ : D2 → Dop defined as σ(c, d) = −(c+ d) is a bi-affine homomorphism
with respect to T = D × {0} and U = {0} ×D.
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Powers of a Bi-Affine Homomorphism. Given a bi-affine homomorphism σ : Q→ H w.r.t.
subgroups T,U , we can define new bi-affine homomorphisms as “powers” of σ. There are a
few different useful notions of such powers that emerge in the sequel, which we call σn, σ(n)

and σ⟨n⟩.
σn : Qn → Hn is simply the coordinate-wise application of σ.
σ(n) : Qn → Hn corresponds to a “vector” variant of σ, generalizing how string-OT or
vector-OLE are vector variants of OT and OLE respectively; it is in fact the same as σn, but
considered as a bi-affine homomorphism w.r.t. Tn and U (n) = {(u, . . . , u)|u ∈ U} ⊆ Un.
BAσ(n) .
σ⟨n⟩ : Qn → H is an inner-product version of σ, generalizing how BMT is isomorphic to
BAσ⟨2⟩ , where σ is the multiplication in a ring (so that BAσ corresponds to OLE over
that ring).

There exists a non-interactive, UC-secure protocol to securely sample one instance of BAσ⟨ℓ,m⟩

from ℓ + m instances of BAσ. A special case of this protocol is the reduction of a BMT
correlation to two OLE correlations. See full version for details.

1.3.2 Connections
We uncover some surprising connections between the different classes of correlations mentioned
above (Theorem 9).
1. Every symmetric bi-affine correlation is a group correlation. In particular, OLE over a

ring A is isomorphic to a group correlation w.r.t the group KA over A×A whose group
operation is defined as (a, b)⊙(c, d) = (a+ c, b+ d− ac), and subset S = {(a, 0) | a ∈ A}.

2. Every bi-affine correlation is a compact subgroups correlation. Note that an asymmetric
bi-affine correlation, like a vector OLE, cannot be a group correlation. But this result
shows that it is a subgroups correlation compactly embedded in a group correlation. In
particular, n-dimensional vector OLE over a ring A is embedded in the group correlation
over the group An×A×An with subset S = {(t, u, tu)|t ∈ An, u ∈ A}. Interestingly, when
instantiated for OLE (n = 1), it shows that OLE is embedded in the BMT correlation.

3. If σ is a semi-abelian bi-affine homomorphism, then BAσ is embedded in BAσ⟨2⟩ . This
serves as an alternate way of viewing the embedding of OLE in BMT, since OLE is BAσ and
BMT is BAσ⟨2⟩ where σ is the 1multiplication operation in the (possibly non-commutative)
ring.

As mentioned, OLE over a ring is a group correlation, over the group K. We explore this
group and discover more unexpected structure:

When A has an element η such that η + η = 1, Kσ is isomorphic to the group A × A
(considering only the addition operation in the ring).
When A is F2n then Kσ is isomorphic to Zn

4 . (See Section 1.3.5).

1.3.3 Information-Theoretic Results
Wyner residual information (RIw) (5) is an information theoretic measure which describes
how “correlated” two random variables are. This measure is a monotone and cannot be
increased through communication. Concretely, Prabhakaran et. al. [25] showed that if
m independent instances of one type of correlation (C) can be reduced to n independent
instances of another type of correlation (C ′), then m ·RIw(C) ≤ n ·RIw(C ′) (Proposition 10).

In this work, we compute the Wyner Residual Information for a subset of bi-affine
correlations which satisfy the non-defective property (Definition 7). A consequence of our
results is that, for any field F , RIw(olen

F ) = log |F |. In fact, the above result extends to

ITC 2021



1:8 Group Structure in Correlations and Its Applications in Cryptography

domains rather than fields. (A domain is a ring with the “zero-product property,” i.e., if
ab = 0 then a = 0 or b = 0.) These results play a crucial role in later sections where we prove
optimality of reductions from bi-affine correlations to oblivious transfer. Furthermore, we
show that the bi-partite graph of a group correlation is a single connected component iff the
set {s− s′ | s, s′ ∈ S} is a generating set for the group G by appealing to the Gács-Körner
common information (Lemma 11).

1.3.4 Constructions
We present several constructions (Section 5), which relate to various conditional sampling
functionalities that complete a bi-affine correlation. Let Fσ be an ideal sampling functionality
that samples an instance of the correlation and gives each party its side of the correlation.
Similary, let F̃σ be a biasable sampling functionality (where the adversary is allowed to pick
its side of a valid correlation). Now, we define three completion functionalities – depending
on how many variables are fixed – for bi-affine correlations.

Conditional Sampling Functionalities Fσ|u, Fσ|tu and Fσ|tau
(where σ : Q→ H is a bi-affine homomorphism w.r.t. T, U ⩽ Q)

Inputs: t, a from Alice, and u ∈ U from Bob, where

t = a = ⊥ for Fσ|u t ∈ T, a = ⊥ for Fσ|tu t ∈ T, a ∈ H for Fσ|tau.

Outputs: (t̃, ã) to Alice and (ũ, b̃) to Bob, where ((t̃, ã), (ũ, b̃))← BAσ conditioned on ũ = u,
t̃ = t if t ̸= ⊥, and ã = a if a ̸= ⊥.

We then present various protocols that implement the above functionalities (Section 5):

UC secure protocols for Fσ|u, Fσ|tu and Fσ|tau in the Fσ-hybrid model (Figure 2). The
protocols remain secure even if Fσ is replaced by an “adversarially controlled” version
F̃σ (which still only provides instances in the support of the correlation BAσ).

These protocols, denoted as Compσ|u, Compσ|tu and Compσ|tau, can be used for multiple
purposes. In particular, it allows for rerandomizing a sample, and also as a tool for
non-destructively checking the validity of a sample (in the protocols TRSampσ and
altTRSampσ below). Our protocols are optimal in multiple ways: there is only one
message (or in the case of Compσ|tau, two messages) and a single instance of the
correlation is “consumed” per instance produced. For the basic forms of these tasks
(without the extension to F̃σ), similar constructions have been previously developed,
but only for specific correlations like OLE, BMT etc., [13].

We also develop a new set of protocols for realizing the above functionalities using a
“tamperable” version F̂σ (which, when the two parties are honest, allows the adversary to
specify arbitrary pairs, possibly outside the support of BAσ), instead of F̃σ. We present
two such protocols, trading-off generality with efficiency.

The first protocol, TRSampσ (Figure 5) works for all bi-affine homomorphisms σ, but
consumes ω(log λ) (purported) samples of BAσ to produce a single (good) instance. This
protocol relies on an error-preservation property of the protocol Compσ|tau, whereby it
can be checked if two purported samples have identical “error,” by consuming only
one of them. This allows checking that a set of samples all have the same error,
while leaving one of them unconsumed. This still admits the possibility that all of
the samples have the same non-zero error. To detect this (except with negligible
probability), a cut-and-choose step is employed.



G.-V. Policharla, M. Prabhakaran, R. Raghunath, and P. Vyas 1:9

The second protocol, altTRSampσ (Figure 6) achieves a rate of 1/2, but relies on
additional algebraic structure in the groups underlying σ. The main component of
this protocol is an error rerandomization step (Figure 7), which we instantiate for a
variety of bi-affine homomorphisms σ : Q→ H, where:
∗ σ corresponds to multiplication in a vector space over a large field (or more generally,

a module of appropriate complexity),
∗ H is abelian and its order has no small prime factors,
∗ H is non-abelian and |{r + x− r | r ∈ H} is large for all x ̸= 0.

We give a semi-honest secure protocol (Figure 4) for efficiently sampling a bi-affine
correlation BAσ from string-OTs. This protocol relies on additional structure in the
groups underlying the σ, and requires (slight) non-blackbox access to them. The additional
structure is used to represent every group element as a small sum of elements from a
“basis.” The protocol is a generalization of a protocol by Gilboa [19] for sampling OLE
over a ring using string OTs, to bi-affine correlations over a wide range of groups. We also
show, using our results on residual information from above, that when the basis allows a
tight representation of the group elements, then, with some additional constraints on σ,
the protocol is optimal in the number of string-OTs used (Lemma 15).

1.3.5 A Surprising Structure for OLE
It is easy to see that OT (i.e., OLE over F2) can be written as a group correlation over Z4,
by “drawing” the correlation as a bipartite graph and observing that it forms a cycle (see
Figure 1b). A surprising result we obtain is that OLE over F2n is in fact a group correlation
over Zn

4 . We illustrate this for n = 2 in the full version.
We give a detailed description and proof in the full version, but provide a high level

overview here. To show that oleF2n is a group correlation we give an isomorphism ϕ from
F2n × F2n to Zn

4 along with a subset S ⊂ Zn
4 and show that field elements (t, a), (u, b) form

an OLE correlation (a + b = tu) iff the sum of elements g1 = ϕ(t, a), g2 = ϕ(u, b) lies
within S. The isomorphism itself is highly non-trivial as it needs to handle the interaction of
multiplicative and additive operations of the field in a purely additive sense. The isomorphism
and subset are given by

ϕ(x, y) = [[[x]]]− 2 ·

√ ∑
i:xi=1

ξ(i)(x)i

 + 2 · [[[√y ]]]

S = {[[[x]]]− 2 ·

√ ∑
i:xi=1

ξ(i)(x)i

 | x ∈ F2n}

where [[[x]]] denotes the embedding from F2n to Zn
4 , obtained by interpreting x ∈ {0, 1}n as

x ∈ {0, 1, 2, 3}n, {ξ(i)}i∈[0,n−1] is an arbitrary basis of F2n with ξ(0) = 1, and (x)i is the field
element obtained by zeroing out all coordinates greater than or equal to i.

1.3.6 Applications
Using our constructions from Section 5 we show how to perform secure 2-Party computation
of “mixed-groups” circuits in the semi-honest setting. The mixed-groups circuit model uses
wires which carry group elements and group/bi-affine homomorphism gates in addition to
gates implementing standard group operations.
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The first setting is semi-honest 2-Party computation in the Fσ, FZAS hybrid model,
where σ is the bi-affine homomorphism corresponding to the bi-affine homomorphism gate
being evaluated. Throughout the evaluation we maintain the invariant that all wires are
secret shared between the two parties. At each bi-affine gate, two bi-affine correlations
and one ZAS correlation (in the group of the output wire) is consumed and at most two
rounds of communication are needed to evaluate each level of the circuit. We achieve
perfect security in this setting.

As a corollary, we show that the ZAS correlation is complete for passively secure
2-Party secure computation over black-box groups. This is immediate as all group
operations can be implemented using ZAS correlations only.
For the special case of formulas (or log-depth circuits) we present a two round perfectly
secure protocol where the communication is proportional to the number of terms in
the formula. Note that a formula can be written as an alternating sum of Alice and
Bob’s private inputs f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1(xi + yi). Alice pads each term

of the formula with randomness and sends terms which contain her input in the clear.
Alice and Bob invoke FZAS to compute terms containing Bob’s inputs. Bob then
sums up the terms sent by Alice and his output from FZAS invocations to compute
f(x1, . . . , xn, y1, . . . , yn) =

∑n
i=1(xi + yi).

We also show how the same task can be achieved in a different manner using the
Function Secret Sharing based approach of Boyle et al. [9].

The second setting we consider is the commodity based model introduced by Beaver
[4]. Here a semi-trusted server which provides Alice and Bob with (possibly incorrect)
correlations and is guaranteed to not collude with either party. Incorrect correlations are
identified by using either TRSampσ or altTRSampσ, after which the computation can be
done in a manner identical to the previous setting.

Full descriptions of these protocols can be found in the full version.

2 Preliminaries

All the sets (and in particular, groups, rings and fields) we consider in this work are finite.
For groups, we typically use additive notation. When several groups are used together, we
often assign different symbols like ⊙ , ⊕ and + for their operators. The unary negation
symbol (−x) is used across all groups to indicate the inverse; also, the binary subtraction
symbol (x− y) is used to denote x+ (−y), when the group operation is +. We use upright
capital letters to denote random variables, as X, Y etc. Through out the paper, 2-party
secure computation, unless otherwise qualified, refers to information-theoretic security against
passive corruption.

We recall that given a subgroup T of a group (G,+), its right and left cosets containing
an element g ∈ G are defined as T + g = {t+ g | t ∈ T}, g + T = {g + t | t ∈ T}. We define
“shifted groups” over these cosets, by redefining the group operation.

▶ Definition 1 (Shifted Group Operation). Given a group (G,+), and g ∈ G, the operation
+g is defined as x+g y = x− g + y.

It can be seen that +g is associative, as (x+g y) +g z = x+g(y+g z) = x− g + y − g + z.
For any subgroup T ⊆ G, it can be verified that (T + g,+g) and (g + T,+g) are both groups
with identity element g and the inverse of x given by g − x+ g. They are both subgroups
of (G,+g).
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▶ Definition 2 (Flat Correlation). A flat correlation over sets X,Y is defined to be the uniform
distribution over a set C ⊆ X × Y . It is said to be regular if there are integers dX , dY such
that ∀x ∈ X, |C ∩ ({x} × Y )| = dX and ∀y ∈ Y , |C ∩ (X × {y})| = dY .

Above, C is called the support of the correlation, and is also used to denote the correlation
itself. Given a flat correlation over X,Y with support C, its graph GC is defined as the
bipartite graph with vertices X∪̇Y (disjoint union) and the set of edges C.

▶ Definition 3 (Isomorphic Correlations). Flat correlations C ⊆ X × Y and C ′ ⊆ X ′ × Y ′

are said to be isomorphic to each other if there exist bijections α : X → X ′ and β : Y → Y ′

such that C ′ = {
(
α(x), β(y)

)
| (x, y) ∈ C}.

▶ Definition 4 (Sampling Functionalities FC , F̃C , F̂C). For a flat correlation C, we define
three functionalities as follows.

Sampling Functionality FC : Uniformly samples a pair (x, y) ← C, and gives x to
Alice and y to Bob.
Biasable Sampling Functionality F̃C : If Alice is corrupt, then it takes x ∈ X from
Alice, and outputs y ← {y′|(x, y′) ∈ C} to Bob; similarly, if Bob is corrupt, it takes y
from Bob and outputs x← {x′|(x′, y) ∈ C} to Alice. But if both parties are honest then
it lets the adversary specify a valid sample, i.e., (x, y) ∈ C, instead of sampling one itself.
Tamperable Sampling Functionality F̂C : It behaves like F̃C , but if both Alice and
Bob are honest, then it lets the adversary specify an arbitrary pair (x, y) (rather than
only a valid pair).

3 Definitions and Connections

3.1 Group Correlations and Subgroups Correlations
▶ Definition 5 (Group Correlation). A flat correlation C ⊆ X × Y is said to be a group
correlation if there exists a group G and a subset S ⊆ G such that C is isomorphic to the
flat correlation C ′ ⊆ G×G given by C ′ = {(x, y) | x+ y ∈ S}. In this case, we say that C is
a group correlation of the form GCG,S. A group correlation of the form GCG,S is said to be
abelian if the group G is abelian.

Regularity. Let G1, G2 be subgroups of G, and S ⊆ G. S is said to be regular with respect
to (G1, G2) if, for all g2, g

′
2 ∈ G2, we have |S ∩ (G1 + g2)| = |S ∩ (G1 + g′

2)|, and for all
g1, g

′
1 ∈ G1, we have |S ∩ (g1 +G2)| = |S ∩ (g′

1 +G2)|. We call degL = |S ∩ (g1 +G2)| and
degR = |S ∩ (G1 + g2)| the left and right degree of the subgroups correlation respectively.

We say that a group correlation GCG,S is regular w.r.t. a pair of subgroups (G1, G2) of
G if S is regular w.r.t. (G1, G2).

▶ Definition 6 (Subgroups Correlation). A flat correlation C ⊆ X × Y is said to be a
subgroups correlation if there exists a group correlation C ′ that is regular w.r.t. a pair
of subgroups (G1, G2), and C is isomorphic to the correlation C ′′ ⊆ G1 × G2 defined as
C ′′ = C ′ ∩ (G1 ×G2). In this case, we say C is of the form GCG,S

G1,G2
, and is embedded in

C ′. Further, if |G| < |X||Y |, we say that C is a compact subgroups correlation.

If C is a regular flat correlation, then it can be seen to be a (non-compact) subgroups
correlation of the form GCG,S

G1,G2
where, identifying X and Y with arbitrary groups of the

same sizes (say Z|X| and Z|Y |), we let G = X × Y , G1 = X × {0
Y
}, G2 = {0

X
} × Y , and

S = C. Conversely, a subgroups correlation is a regular flat correlation. Hence, without
restricting to being compact, subgroups correlations and regular flat correlations are the
same. A compact subgroups correlation entails more structure than just being regular.
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3.2 Bi-Affine Correlations
We start by defining a generalization of the notion of a homomorphism, called bi-affine
homomorphism. Note that the definition below refers to homomorphisms between “shifted”
groups, using the shifted group operation (Definition 1).

▶ Definition 7 (Bi-Affine Homomorphism). For groups (Q,+) and (H,⊕), and subgroups
T,U ⩽ Q, a function σ : Q→ H is said to be a bi-affine homomorphism w.r.t. (T,U), if the
following are group homomorphisms

σ|T +u : (T + u,+u)→ (H,⊕σ(u)) ∀u ∈ U
σ|t+U : (t+ U,+t)→ (H,⊕σ(t)) ∀t ∈ T.

Further, σ is said to be semi-abelian if H is an abelian group; it is said to be abelian if
both Q and H are abelian. It is said to be symmetric if it is semi-abelian and Q = D×D,T =
D × {0}, U = {0} ×D for some group D. If either σ|T +u is surjective for every u ∈ U , or
σ|t+U is surjective for every t ∈ T , σ is called a surjective bi-affine homomorphism. If there
is no pair (t, u) ∈ (T \ {0})× (U \ {0}) such that σ(t+ u) = σ(t)− σ(0) + σ(u), σ is said be
to non-defective2.

These homomorphism conditions over the shifted groups can be equivalently written as,
∀t, t′ ∈ T, u, u′ ∈ U ,

σ(t+ t′ + u) = σ(t+ u)⊕−σ(u)⊕σ(t′ + u)
σ(t+ u+ u′) = σ(t+ u)⊕−σ(t)⊕σ(t+ u′).

(where we used (t+ u) +u(t′ + u) = t+ t′ + u and (t+ u) +t(t+ u′) = t+ u+ u′).

▶ Definition 8 (Bi-Affine Correlation). Given groups (Q,+) and (H,⊕), and a bi-affine
homomorphism σ : Q→ H w.r.t. (T,U), the correlation BAσ ⊆ (T ×H)× (U ×H) is defined
as

BAσ = {((t, a), (u, b)) | σ(t+ u) = a⊕ b}

A flat correlation C is said to be a bi-affine correlation if there exists σ as above such that it
is isomorphic to BAσ. Further, C is said to be semi-abelian, abelian or symmetric if σ has
the corresponding property.

Bi-linear correlations. It is instructive to compare bi-affine homomorphisms with bi-linear
maps. For groups (T,+), (U,+) and (H,⊕), where the last one is abelian, a function
e : T × U → H is said to be a bi-linear map if e left and right distributes over the group
operations: i.e., for all t1, t2 ∈ T and u1, u2 ∈ U , e(t1 + t2, u1) = e(t1, u1)⊕ e(t2, u1), and
e(t1, u1 +u2) = e(t1, u1)⊕ e(t1, u2).

It is easy to see that a bi-linear map is a special case of a bi-affine homomorphism: Let
Q = T × U , T ′ = T × {0

U
} and U ′ = {0

T
} × U . Then, σ : Q→ H is a bi-linear map iff it

is a semi-abelian bi-affine homomorphism w.r.t. (T ′, U ′), with the additional property that
σ(x) = 0 for all x ∈ T ′ ∪ U ′. If a bi-affine homomorphism σ is a bi-linear map, then we say
that a correlation of the form BAσ is a bi-linear correlation. For bi-linear σ, non-defective

2 This condition corresponds to K2,2 freeness of the bi-affine correlation. Proof can be found in the full
version.
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reduces to not having non-zero t ∈ T, u ∈ U such that σ(t+ u) = 0. An example of such a
bi-affine correlation is given by OLE (or vector OLE) over a domain. A domain is a ring
with the “zero-product property,” i.e., if ab = 0 then a = 0 or b = 0 (with fields being a
special case of domains).

3.3 Powers of Bi-Affine Homomorphisms
Given a bi-affine homomorphism σ, one can define related bi-affine homomorphisms as various
“powers”. In this section, we describe some standard transformations to do this, and in
Section 3.5 give some important examples of correlations in the literature that illustrate
these transformations. Let σ : Q→ H be a bi-affine homomorphism w.r.t subgroups T,U .

We define σn : Qn → Hn as simply the coordinate-wise application of σ. That is,
σn(q1, ..., qn) = (σ(q1), ..., σ(qn)). If σ is a bi-affine homomorphism w.r.t. subgroups
T,U ⩽ Q, then σn is readily seen to be a bi-affine homomorphism w.r.t. subgroups
Tn, Un ⩽ Qn.
It is interesting to view σn as a bi-affine homomorphism w.r.t. other subgroups within
Tn, Un. In particular, we define σ(n) to be the same as σn but considered as a bi-affine
homomorphism w.r.t. Tn, U (n), where U (n) = {(u, . . . , u)|u ∈ U} ⊆ Un.

When H is abelian, we also define an aggregating version σ⟨ℓ,m⟩ : Qℓ+m → H, as
σ⟨ℓ,m⟩(q1, . . . , qℓ, q

′
1, . . . , q

′
m) =

∑ℓ
i=1 σ(qi)⊕

∑m
i=1 σ(−q′

i) where the summations refer to
the operation ⊕ in the group H. σ⟨ℓ,m⟩ can be seen to be a bi-affine homomorphism
w.r.t. (T ℓ × Um, U ℓ × Tm). We shall simply write σ⟨n⟩ for the symmetric bi-affine
homomorphism σ⟨⌈n/2⌉,⌊n/2⌋⟩.

These powers of a bi-affine homomorphism are in fact bi-affine homomorphisms. We prove this
in the full version. We can now define BAσn , BAσ(n) and BAσ⟨n⟩ as the bi-affine correlations
corresponding to σn, σ(n) and σ⟨n⟩ respectively.

3.4 Group Structure of Bi-Affine Correlations
In this section we show connections between (sub)group correlations and bi-affine correlations,
which can be summarized as follows:

▶ Theorem 9. For any bi-affine homomorphism σ,
1. BAσ is a compact subgroups correlation;
2. if σ is symmetric, then BAσ is a group correlation;
3. if σ is semi-abelian, then BAσ is embedded in BAσ⟨2⟩ , and more generally, BAσ⟨ℓ,m⟩ is

embedded in BAσ⟨2m′⟩ for all m′ ≥ max(ℓ,m).
We present the key ingredients of the above connections here. Details omitted from here can
be found in the full version.

Groups J and K. To capture the structure of bi-affine correlations as (sub)group correlations,
we define two groups.

If σ : Q→ H is a bi-affine homomorphism w.r.t. (T,U), the group Jσ is defined as the
direct product T × U ×H. Then it is easy to see that BAσ is a subgroups correlation
of the form GCG,S

G1,G2
where G = Jσ and S = {(t, u, σ(t + u)) | t ∈ T, u ∈ U}, with

G1 = T × {0} ×H,G2 = {0} × U ×H. This is a compact subgroups correlation because
|G1||G2| = |T ||U ||H|2 > |T ||U ||H| = |G|.
If σ : D×D → H is a symmetric bi-affine homomorphism, then Kσ is defined as (D×H,⊙),
where ⊙ is given by (d, h)⊙(d′, h′) = (d+ d′, h⊕h′⊕σ(d, 0)⊕σ(0, d′)⊕−σ(d, d′)). It
can now be shown that BAσ is a group correlation of the form GCKσ,S , where S =
{(d+ d′, σ(d, 0)⊕σ(0, d′))|d, d′ ∈ D}.
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In particular, if σ : A×A→ A for a ring A, with σ(a, b) = ab (multiplication in the ring),
then the operation ⊙ is defined as (t, a)⊙(u, b) = (t + u, a + b − tu). This group, which
we denote as KA, encodes both the addition and multiplication operations in the ring (as
(0, a)⊙(0, a′) = (0, a+ a′), and (a, 0)⊙(a′, 0) = (a+ a′,−aa′)).

3.5 Some Noteworthy Examples
Here we consider several cryptographically interesting examples and show that they are (sub)
group correlations and also explore connections between them. More examples along with a
tabular summary can be found in the full version.

Oblivious Linear function Evaluation and Beaver’s Multiplication Triples. OLE and BMT
over an arbitrary ring A are defined as follows:

oleA := {
(
(p, a), (q, b)

)
| a+ b = pq},

bmtA := {
(
(a1, b1, c1), (a2, b2, c2)

)
| c1 + c2 = (a1 + a2)(b1 + b2)}.

Consider the symmetric bi-affine homomorphism σ : A × A → A defined with respect to
subgroups T = A× {0} and U = {0} ×A as σ(p, q) = pq. It can be seen that the bi-linear
correlation BAσ is isomorphic to oleA. oleA is also a group correlation (Theorem 9).

It is straightforward to see that BMT is a group correlation with G = A× A× A and
S = {(a, b, ab) | a, b ∈ A}. Furthermore, BMT is isomorphic to the bi-linear correlation

BAσ⟨2⟩ := {
(
(ã1, 0), (0, b̃2), c̃1

)
,
(
(0, b̃1), (ã2, 0), c̃2

)
| ã1b̃1 + ã2b̃2 = c̃1 + c̃2},

This can be seen by defining isomorphisms

α(a1, b1, c1) =
(
(a1, 0), (0, b1), c1 − a1b1

)
and β(a2, b2, c2) =

(
(0, b2), (a2, 0), c2 − a2, b2

)
.

It can now be checked that(
(a1, b1, c1), (a2, b2, c2)) ∈ bmtA ⇔

(
α(a1, b1, c1), β(a2, b2, c2)) ∈ BAσ⟨2⟩ .

Zero-Alternating Sum Correlation. We introduce an important correlation, called Zero
Alternating Sum (ZAS) correlation over any (possibly non-abelian) group (D,+). ZAS is a
flat correlation zasD ⊆ D2 ×D2, defined as

zasD := {
(
(a, c), (b, d)

)
| a+ b+ c+ d = 0}.

We remark that if D is an abelian group, then zasD is a trivial correlation.3

zasD as a Bi-Affine Correlation. Somewhat surprisingly, ZAS turns out to be a bi-affine
correlation. We define the corresponding bi-affine homomorphism σ : D ×D → H, where
H = Dop, the opposite group of D (i.e., H has the same elements as D and has a group
operation ⊕ defined by a⊕ b = b + a). We let σ(x, y) = −(x + y). Then, clearly, ZAS is
isomorphic to the flat correlation {((c, a), (d, b)) | σ(c, d) = a+ b}. It is straightforward to
verify that σ is indeed a bi-affine homomorphism. For completeness, we present a proof in
the full version. Later, we refer to the bi-affine homomorphism σ defined above as σzas

D .

3 A secure protocol for sampling from zasD, when D is abelian, is as follows: Alice samples x ← D
to Bob; Alice then picks a random a ← D and outputs (a, x − a); Bob samples b ← D and outputs
(b,−x− b).
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zasD as a Group Correlation. When D is not abelian, σ defined above is not semi-abelian,
and hence zasD is not symmetric. As such, Theorem 9 does not apply to zasD. Nevertheless,
we show below that zasD over any group D is a group correlation of the form GCG,S , where
the group G is D ×D, with coordinate-wise addition, and S = {(g,−g) | g ∈ D}.

((a, c), (b, d)) ∈ zasD ⇔ a+ b+ c+ d = 0⇔ a+ b = −(c+ d)
⇔ (a+ b, c+ d) ∈ S ⇔ (a, c) + (b, d) ∈ S.

4 Information Theoretic Results

Common-Information. For a pair of correlated random variables (X,Y), two important
information-theoretic measures of correlation are the well-known quantity of mutual infor-
mation I(X; Y) [26] and the lesser known notions of common information. Specifically, there
are two measures of common information due to Gács and Körner [18] and due to Wyner
[28], which can defined as below:

CIgk(X; Y) = I(X; Y)−RIgk(X; Y) (2)
CIw(X; Y) = I(X; Y) +RIw(X; Y) (3)
RIgk(X; Y) = inf

Q
I(X; Y|Q), such that H(Q|X) = H(Q|Y) = 0 (4)

RIw(X; Y) = inf
Q
I(Y; Q|X) + I(X; Q|Y), such that I(X; Y|Q) = 0 (5)

where the infimum is over all random variables Q that are jointly distributed with (X,Y).
Here RIgk and RIw are (respectively) Gács-Körner and Wyner residual information.

We shall write RIw(C) etc. as a short hand for RIw(X; Y), where the random variables
(X,Y) are uniformly distirbuted over C. We will use the following proposition that is a
special case of a “monotonicity” result in [25].

▶ Proposition 10 ([25]). If m independent instances of FC can be securely computed using
n independent instances of FC′ , then m ·RIw(C) ≤ n ·RIw(C ′).

Also, C is a trivial correlation – i.e., there exists an information theoretically secure
2-party protocol to sample from C – iff RIw(C) = 0 (or equivalently, RIgk(C) = 0).

▶ Lemma 11. Suppose C is a group correlation of the form GCG,S. Then:
1. C is trivial iff S is a (left or right) coset of a subgroup of G.
2. CIgk(C) = 0 iff the set {s− s′ | s, s′ ∈ S} is a generating set for the group G.
3. If for all s1, s2, s3, s4 ∈ S, s1 − s2 + s3 − s4 = 0 ⇒ {s1, s3} = {s2, s4}, then RIw(C) =

log |S| viz. C is K2,2 free.

Now, we state our main technical result in this section. Recall that in a non-defective
bi-affine homomorphism, there is no pair (t, u) ∈ (T \ {0})× (U \ {0}) such that σ(t+ u) =
σ(t)− σ(0) + σ(u).

▶ Lemma 12. If σ is a non-defective bi-affine homomorphism w.r.t. (T,U), then RIw(BAσ) =
log min(|T |, |U |).

An example of a non-defective bi-affine homomorphism is multiplication in a domain. As
a result, we have RIw(olen

A) = log |A| if A is a domain.
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5 Protocols for Bi-Affine Correlations

In this section, we present several protocols pertinent to bi-affine correlations. These protocols
realize several basic functionalities related to “completing” a correlation (i.e., sampling from
a correlation conditioned on certain variables being fixed), given access to a random instance
of the same correlation which could be obtained from a semi-trusted source modeled by the
biasable sampling functionality. The same protocols can also be used to “rerandomize” for
forward security. Missing details of the constructions and their proofs can be found in the
full version.

In the following, let σ : Q → H be a bi-affine homomorphism from a group (Q,+) to
group (H,⊕) w.r.t subgroups T,U ⩽ Q.

5.1 Completing a Bi-Affine Correlation
We first define the conditional sampling functionality that completes a bi-affine correlation,
by sampling an instance of the correlation conditioned on its inputs.

Conditional Sampling Functionalities Fσ|u, Fσ|tu and Fσ|tau
(where σ : Q→ H and T, U ⩽ Q)

Inputs: t ∈ T, a ∈ H from Alice, and u ∈ U from Bob, where

t = a = ⊥ for Fσ|u t ∈ T, a = ⊥ for Fσ|tu t ∈ T, a ∈ H for Fσ|tau.

Outputs: (t̃, ã) to Alice and (ũ, b̃) to Bob, where ((t̃, ã), (ũ, b̃))← BAσ conditioned on ũ = u,
t̃ = t if t ̸= ⊥, and ã = a if a ̸= ⊥.

Functionalities Fσ|t and Fσ|tub are defined symmetric to Fσ|u and Fσ|tau, respectively.
All functionalities allow the adversary to selectively abort output delivery to honest parties
(after seeing its own output, if any).

Figure 2 contains UC secure protocols for the functionalities Fσ|u, Fσ|tu and Fσ|tau in
the F̃σ hybrid model (Definition 4) with only one invocation of F̃σ. The first two protocols
require one round of communication while Compσ|tau needs two rounds of communication.

▶ Lemma 13. Compσ|u, Compσ|tu and Compσ|tau (Figure 2) UC-securely realize functional-
ities Fσ|u, Fσ|tu and Fσ|tau respectively in the F̃σ hybrid.

We prove this lemma in the full version. Here, we point out that if both parties are
honest, then Alice and Bob output (t, a) and (u, b) such that:

a⊕ b = [σ(t+ ∆u)⊕−σ(t)]⊕[ã⊕ b̃]⊕[−σ(ũ)⊕σ(∆t + ũ)]
= [σ(t+ ∆u)⊕−σ(t)]⊕[σ(t̃+ ũ)]⊕[−σ(ũ)⊕σ(∆t + ũ)]
= [σ(t+ ∆u)⊕−σ(t)]⊕[σ((t̃+ ũ) +ũ(∆t + ũ)]
= σ((t+ ∆u) +t(t+ ũ))
= σ(t+ u)

where, we use the properties of σ (Definition 7) and the fact that ã⊕ b̃ = σ(t̃+ ũ). Also note
that to prove Compσ|tau realizes Fσ|tau, it is sufficient to show that Πσ is a secure realization
of Fσ|tau (and then appeal to the UC theorem to implement Fσ|tu with protocol Compσ|tu

in the F̃σ hybrid model). Correctness of Πσ, when the parties are honest, follows from the
fact that a⊕ b = a⊕∆a⊕ b̃ = ã⊕ b̃ = σ(t + u). UC security follows from the observation
that in Πσ, the inputs to Fσ|tu and the message that Alice sends to Bob can be arbitrary
and would still correspond to valid input choices of the parties (or aborting).
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Protocols Compσ|u and Compσ|tu in the F̃σ hybrid model

Inputs: Bob receives u ∈ U . In Compσ|tu, Alice receives t ∈ T , as well.

Invocation of F̃σ: Alice gets (t̃, ã) and Bob gets (ũ, b̃) from F̃σ, s.t. ã⊕ b̃ = σ(t̃ + ũ).
In Compσ|u, Alice sets t = t̃.
Alice ↔ Bob:

Alice sends ∆t to Bob, where ∆t := −t̃ + t. (In Compσ|u, ∆t = 0T and this message can
be omitted.)
Bob sends ∆u to Alice, where ∆u := u− ũ.

Output: Alice outputs (a, t) where a := σ(t + ∆u)⊕−σ(t)⊕ ã, and Bob outputs (u, b)
where b := b̃⊕−σ(ũ)⊕σ(∆t + ũ). (In Compσ|u, b = b̃.)

Protocol Πσ in the Fσ|tu hybrid model

Inputs: Alice receives (t, a) ∈ T ×H, and Bob receives u ∈ U .
Invocation of Fσ|tu: Alice inputs t, Bob inputs u to Fσ|tu, and receive outputs (t, ã) and
(u, b̃) respectively s.t. ã⊕ b̃ = σ(t + u).
Alice → Bob: Alice sends ∆a to Bob, where ∆a := −a⊕ ã.
Output: Alice outputs (t, a) and Bob outputs (u, b), where b := ∆a⊕ b̃.

Protocol Compσ|tau in the F̃σ hybrid model
Compσ|tau is obtained by composing Πσ with Compσ|tu (as an implementation of Fσ|tu).

Figure 2 UC-secure protocols for Fσ|t, Fσ|tu and Fσ|tau in the F̃σ hybrid model. All protocols
use a single invocation to the functionality F̃σ. The first two protocols have a single round of
message exchange, while the latter requires two rounds.

5.2 Inner-Product Bi-Affine Correlations from Bi-Affine Correlations

If Alice and Bob hold ℓ + m instances of any semi-abelian bi-affine correlation BAσ (in
appropriate directions), they can non-interactively extract an instance of BAσ⟨ℓ+m⟩ .

Protocol to sample BAσ⟨ℓ,m⟩ in the Fσ hybrid model

Invocation of Fσ:
Fσ is invoked ℓ times, at the end of which Alice holds (r1, . . . , rℓ, x1, . . . , xℓ) and Bob holds
(s1, . . . , sℓ, y1, . . . , yℓ) such that σ(ri + si) = xi⊕ yi where ri ∈ T, si ∈ U and xi, yi ∈ H

for all i ∈ [ℓ].
Fσ is invoked m times in the opposite direction, at the end of which Alice receives
(s′1, . . . , s′m, y′1, . . . , y′m) and Bob receives (r′1, . . . , r′m, x′1, . . . , x′m), such that σ(r′i + s′i) =
x′i⊕ y′i where r′i ∈ T, s′i ∈ U and x′i, y′i ∈ H for all i ∈ [m].

Outputs: Alice outputs ti = ri, u′j = −s′j , h1 =
∑ℓ

k=1 xk ⊕
∑m

k=1 y′k and Bob outputs
t′j = −r′j , ui = si, h2 =

∑ℓ

k=1 yk ⊕
∑m

k=1 x′k for all i ∈ [ℓ], j ∈ [m].

Figure 3 A protocol for sampling BAσ⟨ℓ,m⟩ in the Fσ, FZAS|tu hybrid model.
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The correctness of the protocol in Figure 3 can be seen as follows. Recall that the support of
σ⟨ℓ,m⟩ is defined as

(
(t1, . . . , tℓ, u′

1, . . . , u
′
m, h1), (u1, . . . , uℓ, t

′
1, . . . , t

′
m, h2)

)
satisfying

σ⟨ℓ,m⟩(t1 + u1, . . . , tℓ + uℓ, u
′
1 + t′1, . . . , u

′
m + t′m) = h1⊕h2 (6)

The L.H.S of (6) can be expanded to verify correctness.

ℓ∑
i=1

σ(ti + ui) +
m∑

i=1
σ(−t′i − u′

i) =
ℓ∑

i=1
σ(ri + si) +

m∑
i=1

σ(r′
i + s′

i)

=
ℓ∑

i=1
(xi + yi) +

m∑
i=1

(x′
i + y′

i)

= h1⊕h2.

5.3 Bi-Affine Correlations from String OT
We sample bi-affine correlations by first constructing a protocol for Fσ|tau in the string OT
hybrid model. This implies a semi-honest secure protocol for Fσ when Alice and Bob sample
their inputs uniformly at random. As the first step in a protocol for Fσ|tau, Alice and Bob
agree upon a generator matrix MU of dimensions k × d such that every element u ∈ U can
be expressed as u =

∑k
i=1 MU (i, ci) where MU (i, j) denotes the element in the i-th row and

j-th column and the vector c is the decomposition of element u w.r.t the generator matrix
MU . Given such an generator matrix, our protocol needs k instances of

(
d
1
)
-otℓ string OTs.4

Figure 4 describes the protocol for Fσ|tau in the string OT hybrid model.

Protocol Compσ|tau in the
(

d
1

)
-otℓ Hybrid model

Parameters: Groups (T, +), (U, +), (H,⊕) and a generator matrix of U , MU ∈ Uk×d.
Inputs: Alice has input t ∈ T, a ∈ H and Bob has input u ∈ U .

Alice samples {ri}i∈[2,k] ← H and sets r1 = a.
For each i ∈ [k− 1], Alice and Bob invoke

(
d
1

)
-otℓ. Alice’s input is the tuple {−ri⊕σ(t +

MU (i, j))⊕−σ(t)⊕ ri+1}j∈[d] and Bob’s input is a choice integer ci ∈ [d] such that u =∑k

j=1 MU (j, cj) where MU (i, j). Bob receives mi = −ri⊕σ(t + MU (i, ci))⊕−σ(t)⊕ ri+1.
For i = k, Alice’s input is the tuple {−rk ⊕σ(MU (i, j))}j∈[d] and Bob’s input is the choice
integer ck ∈ [d]. Bob receives mk = −rk ⊕σ(t + MU (k, ck)).

Bob combines the messages he received to compute b =
∑k

i=1 mi

Figure 4 A semi-honest secure protocol realising Fσ|tau in the
(

m
1

)
-otℓ-Hybrid model.

▶ Lemma 14. Compσ|tau (Figure 4) is a semi-honest secure protocol realising Fσ|tau.

Note that |U | ≤ dk, since every element in U can be represented as the summation of k
elements, each chosen from a d-dimensional row of MU . The following lemma considers the
case when this representation is tight.

4 Effectively, we require oblivious transfer over group elements and hence the length of strings must be
long enough to send the description of an element.
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▶ Lemma 15. If σ is non-defective and |U | = dk ≤ |T |, then Compσ|tau is optimal in the
number of instances of

(
d
1
)
-otℓ used (for any length ℓ) for semi-honest securely realizing one

instance of BAσ.

▶ Lemma 16. If C is a regular correlation then RIw(C) ≤ log min(degL(C),degR(C)).
Further, if C is K2,2-free, then RIw(C) = log min(degL(C),degR(C)).

Lemma 15 follows from the fact that RIw(
(

d
1
)
-otℓ) ≤ log(d).5 Also, by Lemma 12,

RIw(BAσ) ≤ log |U | = k log d. Then, by Proposition 10, at least k instances of
(

d
1
)
-otℓ are

needed to securely sample one instance of BAσ, proving the lemma.

Comparison with Gilboa’s protocol. In [19], Gilboa gave a protocol to generate OLE
correlations over a ring A. Their protocol requires the ring to have a bit-decomposition
which is equivalent to demanding the existence of a generator matrix MA of dimension
log |A| × 2. When A = F(2n), Gilboa’s protocol uses n instances of

(2
1
)
-otℓ. By appealing to

Lemma 16, Proposition 10 and the fact that RIw(
(2

1
)
-otℓ) = 1, it can be argued that this is

the minimum number of OTs that must be invoked (in either direction and per correlation
if amortised) to obtain an information-theoretically secure 2-Party protocol that samples
oleF2n correlations.

5.4 Biasable Correlations from Tamperable Correlations
The protocol TRSampσ in Figure 5 gives a secure protocol for F̃σ in the F̂σ hybrid model.
With no assumptions on the structure of the correlation, Alice and Bob can consume
log(λ) correlations and output one correlation which they are guaranteed is correct with
overwhelming probability. The main insight in our tamper resistant protocols is to use the
following error preservation property of Compσ|tau to check correlations against each other in
a “tournament” style and thereby amplify the probability of catching incorrect correlations.

Error-Preservation Property. When Compσ|u, Compσ|tu and Compσ|tau are instantiated
in the F̂σ-hybrid, errors in the correlation output by parties is related to the error in the
correlation which parties receive from F̂σ. Recall that when both Alice and Bob are honest,
F̂σ allows the adversary to feed an arbitrary pair ((t̂, â), (û, b̂)) to the parties. Suppose,
â⊕ b̂ = σ(t̂+û)⊕ ê. In this case, the outputs (t, a) and (b, u) are such that a⊕ b = σ(t+u)⊕ e,
where e = x⊕ ê⊕−x (for x = −σ(t+ û)⊕σ(t̂+ û)). In particular, e = 0

H
iff ê = 0

H
; further,

when H is abelian, e = ê.

▶ Lemma 17. TRSampσ (Figure 5) securely realizes the functionality F̃σ against passive
corruption, with statistical security.

A More Efficient Version. While applicable to all bi-affine correlations, TRSampσ has a
rate of o(1/log λ) in the security parameter λ. Here we present a template which can be used
to obtain (a much better) constant rate (in our instantiations, 1/2, without amoritization)
in many common examples of bi-affine correlations over large groups. This template is in
the form of a passive-secure protocol for F̃σ in the (F̂σ, Eσ)-hybrid, where Eσ is an “error

5 An upperbound on
(

d
1

)
-otℓ can be computed by setting Q = Y in (5), where X = (m1, . . . , md) and

Y = (b, mb). Then I(Y; Y|X) = H(Y|X) = log(d) since the only remaining entropy in Y given X is the
d different choices of b.
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Protocol TRSampσ in the F̂σ hybrid model

Parameter: Let n := ω(log λ).
Invocation of F̂σ: Alice gets {(ti, ai)}i∈[n] and Bob gets {(ui, bi)}i∈[n] from n invocations
of F̂σ.
[Cut-and-Choose] Bob → Alice:

Bob samples a random permutation σ ∈ Sn, and sends σ to Alice. Both reorder their
correlations as per σ: in the following, we let ti := tσ(i), etc.
Bob sends {(ui, bi)}1≤i≤n

2
to Alice. Alice aborts if for any i ≤ n

2 , ((ti, ai), (ui, bi)) ̸∈ C.
[Consistency Check] For each i such that n

2 +1 < i ≤ n, Alice and Bob check the instances
i and i− 1 for consistency:

Alice and Bob invoke Comp(ti−1,ai−1),(ui−1,bi−1)
σ|tau on inputs (ti, ai) and ui respectively, and

Bob gets output b∗i .
Bob aborts if b∗i ̸= bi.

Output: Alice outputs (tn, an) and Bob outputs (un, bn).

Figure 5 A passive secure protocol for F̃σ in the F̂σ hybrid model.

randomization” functionality. Then, Eσ itself is securely realized in the F̂σ-hybrid, depending
on the specifics of the map σ. We implement this latter step only for large groups which
satisfy one of three different structural properties.

▶ Lemma 18. altTRSampσ (Figure 6) passive-securely realizes the functionality F̃σ, in the
F̂σ, Eσ hybrid model

Error Randomization Functionality. The error randomization functionality Eσ outputs
two instances of the correlation ((t1, a1), (u1, b1)) and ((t2, a2), (u2, b2)) such that either the
latter is a valid correlation in BAσ, or the former has a “high min-entropy error”. Relying on
this altTRSampσ checks one correlation against the other and catches erroneous correlations
with overwhelming probability. In our instantiations of Eσ, the latter is obtained through an
invocation of F̂σ and the former is a “randomised” version of the latter such that the new
error (if non-zero) has large min-entropy. For details of the error randomization functionality
see Figure 7. Depending on the structure of the bi-affine homomorphism σ : Q → H, the
instantiations need different algebraic properties from the group H:

Modules: A group H is said to be a right-module of a ring R if there is a bi-linear map
σ : H×R→ H (i.e., σ((h+h′), r) = σ(h, r)+σ(h′, r) and σ(h, (r+r′)) = σ(h, r)+σ(h, r′))
with the additional properties that σ(σ(h, r), r′) = σ(h, (rr′)) (where the multiplication
rr′ is from the ring) and σ(h, 1) = h, where 1 stands for the multiplicative identity in R.
Let units(R) denote the set of ring elements r ∈ R that have a multiplicative inverse in
the ring. We define minimgR(H) to be the minimum size of the image of units(R) under
the map r 7→ x · r, over all non-zero elements x in the module H. i.e.,

minimgR(H) = min
x∈H\{0

H
}
|{x · r|r ∈ units(R)}|.

We require that minimgR(H) is super-polynomial in the security parameter. An example is
the case when R is a large enough field andH is a vector-space overR, then minimgR(H) =
|R| − 1.
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Semi-Abelian Bi-affine correlations: For a group H, we define minord(H) as the
order of the smallest non-trivial subgroup of H. Consequently, for all 0 < k < minord(H),
for all h ∈ H \{0

H
}, we have h+ · · ·+ h︸ ︷︷ ︸

k times

̸= 0. minord(H) equals the smallest prime factor

of the order of H. For security we require that minord(H) is super-polynomial in the
security parameter. An example is a large prime order group H, where minord(H) = |H|.
Surjective Bi-affine Correlations: For a (non-abelian) group D, we define minorbit(D)
to be the size of the smallest conjugacy class of D, excluding {0}. That is,

minorbit(D) := min
x∈D\{0}

|{r + x− r|r ∈ D}|.

This instantiation requires the minorbit(D) must be super-polynomial in security param-
eter. As an example consider the group SL(2, 2n)6 – i.e., 2× 2 matrices over F2n , with
determinant 1, where minorbit(SL(2, 2n)) ≥ 2n [1].

Descriptions of instantiations for the above algebraic objects can be found in the full version.

Protocol altTRSampσ in the F̂σ, Eσ hybrid model

Invocation of F̂σ: Alice gets (t0, a0) and Bob gets (u0, b0) from F̂σ.
Error-Rerandomization: Alice and Bob invoke Eσ and receive (t1, a1), (t2, a2) and (u1, b1),
(u2, b2) respectively.
Verification:

Alice and Bob invoke Comp(t0,a0),(u0,b0)
σ|tau on inputs (t1, a1) and u1 respectively, and Bob

gets output b∗.
Bob aborts if b∗ ̸= b1.

Output: Alice outputs (t2, a2) and Bob outputs (u2, b2).

Figure 6 A passive-secure protocol for F̃σ in the F̂σ, Eσ hybrid model.
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