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—— Abstract

Py-free graphs— also known as cographs, complement-reducible graphs, or hereditary Dacey graphs—
have been well studied in graph theory. Motivated by computer science and information theory
applications, our work encodes (flat) joint probability distributions and Boolean functions as bipartite
graphs and studies bipartite Ps-free graphs. For these applications, the graph properties of edge
partitioning and covering a bipartite graph using the minimum number of these graphs are particularly
relevant. Previously, such graph properties have appeared in leakage-resilient cryptography and
(variants of) coloring problems.

Interestingly, our covering problem is closely related to the well-studied problem of product
(a.k.a., Prague) dimension of loopless undirected graphs, which allows us to employ algebraic lower-
bounding techniques for the product/Prague dimension. We prove that computing these numbers is
NP-complete, even for bipartite graphs. We establish a connection to the (unsolved) Zarankiewicz
problem to show that there are bipartite graphs with size-N partite sets such that these numbers
are at least ¢ - N'72¢, for e € {1/3,1/4,1/5,...}. Finally, we accurately estimate these numbers
for bipartite graphs encoding well-studied Boolean functions from circuit complexity, such as set
intersection, set disjointness, and inequality.

For applications in information theory and communication & cryptographic complexity, we
consider a system where a setup samples from a (flat) joint distribution and gives the participants,
Alice and Bob, their portion from this joint sample. Alice and Bob’s objective is to non-interactively
establish a shared key and extract the left-over entropy from their portion of the samples as
independent private randomness. A genie, who observes the joint sample, provides appropriate
assistance to help Alice and Bob with their objective. Lower bounds to the minimum size of the
genie’s assistance translate into communication and cryptographic lower bounds. We show that (the
log, of) the Ps-free partition number of a graph encoding the joint distribution that the setup uses
is equivalent to the size of the genie’s assistance. Consequently, the joint distributions corresponding
to the bipartite graphs constructed above with high Ps-free partition numbers correspond to joint
distributions requiring more assistance from the genie.

As a representative application in non-deterministic communication complexity, we study the
communication complexity of nondeterministic protocols augmented by access to the equality oracle
at the output. We show that (the log, of) the P4-free cover number of the bipartite graph encoding
a Boolean function f is equivalent to the minimum size of the nondeterministic input required by the
parties (referred to as the communication complexity of f in this model). Consequently, the functions
corresponding to the bipartite graphs with high Ps-free cover numbers have high communication
complexity. Furthermore, there are functions with communication complexity close to the naive
protocol where the nondeterministic input reveals a party’s input. Finally, the access to the equality
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oracle reduces the communication complexity of computing set disjointness by a constant factor
in contrast to the model where parties do not have access to the equality oracle. To compute the
inequality function, we show an exponential reduction in the communication complexity, and this
bound is optimal. On the other hand, access to the equality oracle is (nearly) useless for computing
set intersection.
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1 Introduction

A graph is Py-free if no four vertices induce a path of length three. Since the 1970s, Py-free
graphs — also known as cographs, complement-reducible graphs, or hereditary Dacey graphs
from empirical logic [22] — have been widely studied in graph theory [45, 46, 36, 60, 62].
Motivated by computer science and information theory applications, our work encodes joint
probability distributions and Boolean functions as bipartite graphs and studies bipartite
P,-free graphs.? For these applications, the graph properties of edge partitioning and covering
a bipartite graph using the minimum number of these graphs are particularly relevant.?

The Py-free partition number of a bipartite graph G is the minimum number of P,-free
subgraphs partitioning G’s edges, denoted by Ps-fp (G). Similarly, the Py-free cover number
of a bipartite graph G is the minimum number of Pys-free subgraphs covering G’s edges,
denoted by Ps-fc (G). The definition extends to general graphs; however, our study focuses on
bipartite graphs. We are given a bipartite graph as input, and the objective is to partition or
cover its edges using P,-free bipartite graphs. Py-free partition and cover numbers are natural
extensions of fundamental graph properties, such as product/Prague dimension, equivalence
cover number, biclique partition, and cover numbers, arboricity, and star arboricity (refer
to [63] for definitions). In turn, these graph properties have applications to theoretical
computer science, information theory, and combinatorial optimization; for a discussion of
these connections, see Appendix E in the full version.

1 A bipartite Py-free graph is a disjoint union of bicliques.
2 In contrast, [31] introduced the vertez partitioning a graph into different color-classes so that the vertices
of any color-class induces a Ps-free graph.
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In addition to being motivated by intellectual curiosity, our work illustrates that the Pj-
free partition and cover numbers appear in diverse computer science and information theory
problems (refer to problems A and B in Section 1.1). Section 1.2 presents the equivalence
between the Py-free partition number and Problem A, and the consequences of the graph
theory results for problem A. Next, Section 1.3 demonstrates the equivalence of Problem
B and the Pj-free cover number, and the implications of the graph results for problem B.
Interestingly, we prove that the Ps-free cover number of a bipartite graph is either identical
to or one less than the well-studied product/Prague dimension [54, 55] of the complement
graph (interpreted as a loopless undirected graph). Our work proves the following graph
theory results (refer to Section 2 for formal statements).

1. Determining the Ps-free partition and cover numbers of general graphs, even bipartite
ones, is NP-complete.

2. There are bipartite graphs with size-IN partite sets whose Pj-free partition and cover
numbers are at least e - N172¢ for constant ¢ € {1/3,1/4,1/5,...}. Furthermore,
Erdds-Rényi graphs (with constant parameter) have P,-free partition and cover numbers
> N/log N, asymptotically almost surely.

3. Finally, we encode the Boolean set intersection and disjointness functions, and the
inequality function as bipartite graphs. We present tight estimates of the P,-free partition
and cover numbers of these graphs.

1.1 Motivating Problems

We encode joint probability distributions and Boolean functions as equivalent bipartite
graphs and study the P,-free partition and cover numbers of these graphs. Leveraging
this connection, we present representative applications of these graph properties and their
estimates to information theory and circuit complexity. In particular, consider the fol-
lowing illustrative representative problems from information theory and communication &
cryptographic complexity motivating this study.

1.1.1 Problem A. Assistance for Correlation Distillation

Extracting randomness [32, 56], establishing secret keys [49, 50, 51, 1, 2], and performing
general secure computation [16, 17, 40, 41, 19, 42, 18, 64, 65, 39, 13] with maximum effi-
ciency and resilience from noise sources is fundamental to theoretical computer science and
information theory. Towards that objective, we study the communication and cryptographic
complexity of parties to agree on a shared secret and extract private local randomness from
a source.

A setup (see part (a) of Figure 1), the only source of randomness in the system, samples
(z,y) according to the joint probability distribution pxy, and (privately) sends x to Alice
and y to Bob. Alice and Bob’s objective is to agree on a shared secret key and private
(independent) randomness without any additional public communication. A genie, who
observes the sample (x,y), provides a public k-bit assistance z to Alice and Bob to facilitate
their efforts. We emphasize that all agents Alice, Bob, and the genie are deterministic. After
that, Alice and Bob locally compute the shared key s from their respective local views (z, 2)
and (y, z). Finally, Alice extracts the left-over entropy from z (conditioned on (s, z)) as her
local private randomness r 4. Similarly, Bob extracts his local private randomness rp from
the left-over entropy of .

For the security of Bob’s local randomness, an honest but curious Alice cannot obtain
any additional information on rp beyond what is already revealed by z and s. Analogously,
Bob’s view should contain no additional information on Alice’s view conditioned on z and s.
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Figure 1 Part (a). A pictorial summary of the system in our motivating problem A.
Part (b). The setup samples (z,y) according to the distribution pxy and sends z to Alice and y to Bob.
Alice and Bob use F' adaptively multiple times to communicate with each other; F' delivers its output to
both Alice and Bob. The functionality F' may be a communication protocol (i.e., a message forwarding
functionality), or help Alice and Bob evaluate any (possibly, a stateful) functionality of their inputs. The
objective of Alice and Bob is to generate a shared secret key s at the end of the protocol and extract the
left-over entropy in their shares as independent local randomness.

Intuitively, conditioned on the genie’s assistance Z, Alice-Bob samples’ joint distribution
splits into shared randomness and local independent randomness.

What is the minimum length k of the genie’s assistance sufficient for Alice and Bob
to agree on a shared key and obtain secure private randomness? In particular, which
distributions pxy need no assistance at all?

Mutual information and other common information variants (refer to Appendix D in the
full version for discussion) cannot accurately measure this information-theoretic property;
thus, motivating our study. This problem is equivalent to computing the P;-free partition
number of a bipartite graph encoding the (flat) joint probability distribution pxy. In
particular, lower bounds to k translates into lower bounds on (interactive) communication
and cryptographic complexity (see part (b) of Figure 1).

1.1.2 Problem B. Nondeterministic Communication Complexity relative
to the Equality Oracle

The nondeterministic communication complexity of the equality function is high [44]. However,
what is the additional utility of an oracle call to the equality function in computing other
functions?

Suppose Alice has input € X, Bob has input y € Y, and are interested in computing the
Boolean function f: X x Y — {0,1} of their private inputs. They have access to an equality
oracle EQ: {0,1}" x {0,1}" — {0,1} defined by EQ(a,b) = 1 if and only if a = b. They are
interested in computing f(z,y) using this equality oracle and a k-bit nondeterministic input
without any additional communication.

The functions A: X x {0,1}* — {0,1}* and B: Y x {0,1}* — {0,1}" satisfying the
following constraints define a nondeterministic protocol for f relative to the equality oracle.
1. For every input-pair (z,y) € X X Y such that the output f(z,y) = 1, there exists a

nondeterministic input z € {0,1}* ensuring EQ( A(z,z) , B(y,2) ) = 1.

2. For every input-pair (x,y) € X x Y such that the output f(z,y) = 0, for all nondetermin-

istic inputs z € {0,1}*, we have EQ( A(z, 2) , B(y,z)) = 0.
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The communication complexity of this protocol is k, i.e., the length of the nondeterministic
input. What is the minimum communication complexity k& of the function f?

Intuitively, we are augmenting the nondeterministic communication protocols with an
equality oracle at the output. If the EQ oracle is useful to compute a function f, then
its communication complexity in our model shall be significantly lower than where the
parties cannot access the EQ oracle. We show that this problem is identical to the Pj-free
cover number of a bipartite graph encoding the Boolean function f. Our results show that
the access to the equality oracle reduces the communication complexity of computing set
disjointness by a constant factor compared to the model where parties do not have access to
the equality oracle. To compute the inequality function, perhaps surprisingly, we show an
exponential reduction in the communication complexity. On the other hand, access to the
equality oracle is virtually useless to computing the set intersection. Section 1.3 provides the
details.

1.1.3 Additional Applications and History

In Appendix F of the full version, we present a representative scheduling problem that
naturally reduces to computing P,-free partition/cover numbers. Beyond the applications
above, this example highlights the innate ability of P,-free graphs to encode scheduling
problems that are amenable to parallelization.

Edge-partitioning graphs using the minimum number of Ps-free graphs have found
applications in leakage-resilient cryptography [9]. In particular, if k-bits of genie’s assistance
suffices for the setup in problem A, then k-bits of leakage also suffices for the adversary to
destroy the possibility of performing general secure computation. Identifying a large P,-free
subgraph of a given graph is studied in clustering. For example, an exclusive row and column

bicluster [48, 37| is identical to a Py-free graph, with applications in analyzing biological data.

[15] used Py-free partition and cover numbers to approach a coloring conjecture (a variant of
Ryser’s conjecture) for bipartite graphs.

1.1.4 Related graph properties: Equivalence Cover Number and
Product/Prague Dimension

The following discussion is specific to loopless undirected graphs. An equivalence graph is a
(disjoint) union of cliques. The equivalence cover number of a graph G is the minimum number
d of equivalence sub-graphs that cover the edges of G [54, 55]. Note that the Py-free cover
number is an extension of this concept to bipartite graphs. Furthermore, the equivalence
cover number of G is identical to the product/Prague dimension of the complement of the
graph G [63, 30], the minimum d € N such that the complement of the graph G is an induced
subgraph of K& (the d-fold product of the infinite complete graph Ky). Computing the
equivalence cover number or the product dimension of a graph is NP-complete [54].

The Ps-free cover number (for bipartite graphs) has a close connection to the product
(a.k.a., Prague) dimension.

» Proposition 1. If a redundancy-free® bipartite graph G = (L, R, E) has a size-d Py-free
edge-covering, then the complement bipartite graph G = (L, R,L x R\ E) is an induced
subgraph of Ko x K.

3 A graph is redundancy-free if no two vertices have an identical neighborhood.
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The converse of the proposition does not hold exactly (refer to Section 7). However, if G
is an induced subgraph of Ky x K¢, then G has a size-(d + 1) Py-free cover. We prove
that Py-fc (G) € {pdim (H),pdim (H) — 1}, where G = (L,R,E C L x R) is a bipartite
graph, H = (LUR, L x R\ E) is the loopless undirected graph representing the complement
of the bipartite graph G, and pdim (H) is the product/Prague dimension of H (refer to
Corollary 34 in Section 7). Figure 7 presents a graph showing the necessity of this slack
in the characterization. However, for most applications, an additive slack of one should
be acceptable. This proposition facilitates lower-bounding the Py-fc (G) using the algebraic
lower-bounding techniques for the product/Prague dimension [47, 4, 63, 5].

Despite this similarity, extremal properties of the equivalence cover number and pro-
duct/Prague dimension need not translate into extremal properties of the P,-free cover
number. For example, an N-vertex star has an equivalence cover number (N — 1) [63]. On
the other hand, the Ps-free cover number of any bipartite graph with size-IN partite sets
is at most its star arboricity (because star forests are Py-free), which is at most (roughly)
N/2 [3]. The bottleneck here is that the Ps-fc (G) is close to pdim (H), where H represents a
bipartite graph, i.e., the graph H is structured (triangle-free in this particular case). The
graphs realizing the extremal properties for equivalence cover number and product/Prague
dimension need not have this structure. In particular, the construction of bipartite graphs
with high Ps-free cover and partition numbers turns out to be non-trivial, and our work
establishes a connection to the well-known (unsolved) Zarankiewicz problem [11] and relies
on probabilistic techniques to demonstrate their existence.

Section 7 also presents a variant of the product/Prague dimension to estimate the Py-free
partition number (see Corollary 37). A lower bound for the Py-free partition number is
non-trivial if it is not already a lower bound to the P,-free cover number. Unfortunately,
no non-trivial lower-bounding techniques for general graphs are known for this new graph
embedding property. When non-trivial lower bounds for this variant of the product/Prague
dimension is proven, they shall transfer to the P,-free partition number.

Among several notions of product dimension for graphs [30], most of which are unrelated
to the property we wish to capture,* the graph property mentioned above is the closest and
most relevant.

1.2 P,-free Partition Number

We reduce problem A to computing the Py-free partition number. We present the reduction’s
highlight. A bipartite graph G naturally represents a (flat) joint distribution pxy, where
the edge-set is the support of pxy (see Figure 2 for examples). If G is already Py-free, then
Alice and Bob need no assistance from the genie; the connected component’s identity is their
shared key s, and (conditioned on the identity of the shared key) their samples r4 = (x|s) and
rp = (y|s) are independent private randomness. If G is not P,-free, the genie decomposes G
into Gy, ...,G4 such that each G; is Py-free and the edge sets E(G1),... .E(Gq) partition
the edge set E(G). For a joint sample (u,v) € E(G), the genie reveals the (unique) z =i
such that (u,v) € E(G;). Conditioning on the genie’s assistance z = 4, Alice-Bob’s samples
come from the joint distribution G;, which is Py-free, so they agree on their shared key
and secure private randomness as above. To minimize the genie’s assistance, one needs to
minimize d € N, identical to Py-fp (G).

4 Even the notions of dimension that are deceptively similar sounding, for example, the “product dimension
of bipartite graphs” introduced by [59], are unrelated to the graph properties that this paper studies.
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(a) Forward or flip. (b) Noisy typewriter.

Figure 2 Pictorial representation of the probability distributions (a) forward or flip, and (b) noisy
typewriter distributions, for n = 2. Rows correspond to Alice samples, and columns correspond to Bob
samples. The (i, j)-th entry of a matrix being 1 represents that (¢, 7) is in the support of the distribution.
The distribution is a uniform distribution over all the elements in the support. Let G, be the bipartite
graph whose adjacency matrix is defined by the matrix representation of the forward and flip distribution.
The graph G, is a disjoint union of 2"~! copies of the K22 biclique. Note that G, is Ps-free, and,
hence, Ps-fp (Go) = 1. Let G} be the bipartite graph whose adjacency matrix is defined by the matrix
representation of the noisy typewriter distribution. The graph Gy is a cycle of length 2”71, Note that G
is not Py-free, and Ps-fp (Gy) = 2 (the graph decomposes into two matchings).

1.2.1 Discussion on Problem A

We begin by expanding how lower-bounding the information-theoretic measure in problem
A translates into communication and cryptographic lower bounds (as in [8]). Suppose, in
our model, one proves that the genie’s assistance must be k > k* bits. Now consider the
setting in part (b) of Figure 1 where there is no genie; however, the parties have access
to a functionality F'. The functionality F' may be an arbitrary communication protocol or
multiple calls to arbitrary interactive stateful functionalities that receive adaptive inputs
from Alice and Bob. In particular, F may be multiple copies of the NAND-functionality,
which is sufficient for general secure computation [68, 27, 42]. Observe that the genie can
simulate the functionality F’s entire output with access to (z,y). Consequently, we have the
following result.

» Proposition 2. If pxy needs k > k* bits of assistance from the genie in our model, then
Alice and Bob need to receive at least k* bits from F in the Figure 1 part (b) model to
establish a shared key s and extract the left-over entropy in their sample as independent
private randomness.

In information theory, Gray-Wyner systems/networks are well-studied [66]. However,
existing measures like mutual information and various notions of common information are
inadequate to capture the information-theoretic property in Problem A accurately. For
example, there are two joint distributions with identical (Shannon’s) mutual information [61];
however, one needs no assistance while the other needs one-bit assistance.® Refer to Figure 2
for the following discussion. Consider the first distribution (namely, the forward or flip
distribution), where Alice gets i.i.d. uniformly random bits © = (21,22, ...,%,), and Bob
either (with probability half) gets y = z or y = (Z71,...,Z5), i.e., every bit of x is flipped. In
the second distribution (the noisy typewriter distribution), Alice gets a uniformly random
sample x € {0,1,...,2" — 1}, and Bob either gets y = z or y = (z + 1) mod 2" with
probability half. The bipartite graph corresponding to the forward or flip distribution is,
indeed, Py-free, and the bipartite graph corresponding to the noisy typewriter distribution

5 By tensorizing the distributions, one can increase the gap in the necessary assistance arbitrarily.
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has Py-free partition number 2 (i.e., one-bit assistance is necessary and sufficient). Both
distributions have (n — 1) bits of mutual information; however, the first distribution needs
no assistance, but the second distribution needs one-bit assistance® to agree on a secret key.

Wyner’s common information [66] estimates the minimum assistance that removes any
dependence between Alice-Bob samples. This quantity is a significant overestimation (for ex-
ample, in the forward or flip distribution, it needs (n—1)-bits of assistance z = (z1,...,Zn—-1)),
and Wyner’s assistance eliminates the possibility of Alice and Bob agreeing on a secret key,
which defeats the objective of this problem. Gacs-Korner common information [25] estimates
the length of the secret key that Alice and Bob can generate without any assistance from the
genie, which results in pessimistic estimates. For example, starting with samples from the
noisy typewriter distribution, Alice and Bob cannot even agree on a one-bit secret; however,
appropriate one-bit assistance would help them generate an (n — 1)-bit secret. Likewise, non-
interactive correlation distillation [53, 52] enables parties to agree on a secret non-interactively
without any assistance. However, even without the necessity to generate independent local
randomness, strong hardness of computation results are known [53, 52, 67, 10, 14].

Refer to Appendix D in the full version for additional discussion on various forms of
common information.

1.2.2 Our results for Problem A

Observe that the naive assistance that reveals the XOR of the parties’ inputs suffices; however,
the minimum assistance may be exponentially smaller. Our work relies on suitably encoding
(flat) joint distributions as bipartite graphs. We prove in Theorem 5 that ascertaining the
minimum assistance is, in general, difficult. Furthermore, there are joint distributions where
the minimum assistance that is needed is close to the naive assistance mentioned above,
yielding lower bounds in communication and cryptographic complexity. In other words, we
obtain the following as a corollary to Theorem 6.

» Corollary 3. Let Qx = Qy = {0,1}". Fiz t € N. There are joint distributions over the

sample space Qx X Qy that require Alice and Bob to (each) receive at least (1 — t%) n bits
of communication in the model in Figure 1 part (b).

Finally, we upper-bound the minimum assistance needed for a few well-studied probability
distributions i.e. when pxy is the INT,” or the DISJ,® joint distribution, then [n/2]-bit
assistance suffices (we explicitly provide the assistance that the genie provides and it is
efficient to compute, see Theorem 8). For INEQy, where N = 2™, the genie needs to provide
[logn] bits of assistance. The assistance for INEQ is optimal because we prove a matching
lower bound. In general, min{log, NV, % log,|Supp(pxy )|} bits of assistance suffices.’

The genie notifies the parties whether y = x or not.

7 Alice receives random X C {1,2,...,n}, and Bob receives random Y C {1,2,...,n} conditioned on
XNnY #0.

8 Alice receives random X C {1,2,...,n}, and Bob receives random Y C {1,2,...,n} conditioned on
Xny =0

9 Because, Pi-fp (G) < sa (G) < O( \E(G)|) The last bound on the star arboricity of G follows from

an averaging argument and the bound of [3].
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1.3 P,-free Cover Number

We reduce Problem B to the Py-free cover number. Boolean functions naturally encode a
bipartite graph’s adjacency matrix; an input-pair that evaluates to 1 denotes an edge in the
graph. If the graph G (of a function f) is P,-free, then parties need no nondeterministic
input; they can evaluate f using the EQ oracle.!® Otherwise, decompose G into P-free
G1,...,G4 such that the union of the edge-sets of G1,...,Gq is the edge-set of G. For input
(z,y) such that f(z,y) =1, the nondeterministic input is ¢ € {1,...,d}, where the edge-set
of G; contains the edge (x,y). Next, given this nondeterministic input, parties can evaluate
f. For input (z,y) such that f(z,y) = 0, no nondeterministic input can make Alice and Bob
output 1. One minimizes d € N to minimize the nondeterministic communication complexity,
which is identical to Py-fc (G).

1.3.1 Discussion on Problem B

The equality function in the standard nondeterministic communication complexity model
(where parties do not have access to the EQ oracle) has high nondeterministic communication
complexity. Determining the minimum nondeterministic input is equivalent to covering the
input-pairs where the output is 1 using a minimum number of combinatorial rectangles, a.k.a.,
the biclique cover number [35]. The motivating problem’s objective is to characterize the
utility of oracle access to the EQ function in computing other functions. If the EQ oracle
is useful, then the nondeterministic communication complexity relative to the EQ oracle
shall be lower than without accessing the EQ oracle. The particular notion of “reduction”
considered above is similar to Karp-reduction [38], which permits only one call to the oracle
and no post-processing of the oracle’s output. Similarly, in circuit complexity, it is typical to
augment a circuit class with a more expressive gate at the output that is not computable by
circuits in that class. For example, one studies the effects of augmenting AC® circuits with
a MAJ (majority) gate or a THR (threshold) gate at the output [7, 26, 33, 29], enabling a
controlled exploration of the gap between the power of AC® and TC circuits.

1.3.2 Our results for Problem B

Similar to the result for P,-free partition number, we prove that computing the P4-free cover
number is difficult (see Theorem 5), and there are functions that need nondeterministic input
(roughly) the size of the parties’ inputs, in other words, we obtain the following as a corollary
to Theorem 6.

» Corollary 4. Fizt € N. There are Boolean functions f:{1,2,..., N} x {1,2,...,N} —
{0,1} requiring at least (1 — H%) logy, N bits of nondeterministic input in the communication
complexity model where parties have access to the EQ oracle.

These functions are analogs of the “fooling sets” in our communication model. In the standard
nondeterministic communication model, the EQ function is hard-to-compute and needs n-bits
of nondeterministic input. The “fooling set” lower-bounding technique draws inspiration
from this result. For a general f, this argument demonstrates pairs of Alice and Bob’s
input-sets where only the diagonal elements are 1; and the rest are 0. That is, the function
f has an embedded EQ function. The size of this “embedded EQ” (a.k.a., the fooling set) in

10 Parties compute the connected component where their private input belongs. Then, they use the EQ
oracle to test if they belong to the same connected component.
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f suffices to prove lower bounds on the nondeterministic input needed to compute f. In our
setting, these functions that require (1 — t%)n—bit nondeterministic input serve as “fooling
sets” in the nondeterministic communication complexity model where parties can access the
EQ oracle.

Next, we provide estimates for some well-known functions in communication complexity
(see Theorem 8). We prove that the Py-free cover number of DISJ,, is (roughly) < +/N. That
is, only n/2 bits of nondeterministic input suffices to compute this function. Recall that,
in the standard model, the function DISJ,, requires n-bit nondeterministic input because
{(XA{L,2,..,n\ X))} ycqi0,. 0y 18 a fooling set. Consequently, our result demonstrates a
linear gap in the number of bits needed in our model, which indicates that the EQ oracle
is non-trivially useful to compute DISJ,,. We prove a lower bound showing that 0.085n-bit
assistance is necessary.

Next, we prove that the Py-free cover number of INT,, is between n and n(1 — %)
Observe that the nondeterministic communication complexity of INT,, (without access to the
EQ oracle) is already [log, n] bits. Consequently, EQ oracle’s access is practically useless
because the difference between the ceiling of the log of the lower and the upper bounds is at
most 1 (asymptotically).

Finally, we show that INEQy needs only log, log, N bit nondeterministic input using
the EQ oracle. Intuitively, if N = 22" and all inputs are 2°-bit binary strings, then the
nondeterministic input is the s-bit index where the parties’ input differ. Recall that in the
standard model (without access to the EQ oracle), INEQy requires log, N-bit nondeterministic
input, which is exponentially higher. Furthermore, using the algebraic technique of [47, 63], we
prove a matching lower bound to the Py-free cover number of INEQy. Observe that we prove
that Py-fp (INEQy ), not just Ps-fc (INEQy ), matches the lower bound for the Py-fc (INEQy).

2  Our Contribution

We prove the NP-completeness of determining the Py-free partition and cover numbers of a
bipartite graph.

» Theorem 5 (Hardness of P,-free Partition and Cover). The following languages are NP-
complete.

P,-FREE-PART = { (G) | G is a bipartite graph and Py-fp (G) < 2},
P,-FREE-COV = { (G) | G is a bipartite graph and Py-fc (G) < 2}.

Similar problems, for example, calculating the biclique partition number/cover [57] and star
arboricity [34] (even for bipartite graphs) are NP-complete.

Next, we prove that there are graphs G with large Py-free partition and cover numbers.
Note that for a bipartite graph G = (L, R, E), we have Ps-fc (G) < Py-fp (G) < min{|L|, |R|}
by decomposing the graph into stars rooted at vertices of the smaller partite set. Towards
understanding the tightness of this naive upper-bound, we show that, for any N € N
and constant € € {1/3,1/4,...}, there are bipartite graphs with size-N partite sets and
Py-fp (G) > Py-fc (G) > Q(e - N1=2¢) (roughly).

» Theorem 6 (High P;- Free Partition and Cover Numbers). Let C' be an appropriate positive
absolute constant and t € N be a parameter. There exists Ng € N such that for all N € N
and N > Ny, there is a graph Gy = (L, R, E) such that (1) |L| = |R| = N, and (2)
Pyfp (G t) > Pa-fe (Gny) > C - L. N7,
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Our constructions rely on extremal bipartite graphs that avoid K;yj ¢+1-subgraphs (the
unsolved Zarankiewicz problem [11]), for which only probabilistic constructions are known
(refer to the discussion in Section 4). Explicit constructions are known only for very specialized
values of t. However, the P;-free partition and cover numbers of Gy + cannot be too large. For
any sparse bipartite graph G, using an averaging argument, its star-arboricity has the upper
bound sa (G) < (9( \E(G)|) [3]. Since star forests are Ps-free and Gy, has C’)(NQ_H%)

edges, it implies that Py-fp (G i) < (Q(Nl_“%2 .

In problem A, the joint distributions corresponding to these bipartite graphs require a lot
of assistance from the genie. Consequently, these lower bounds translate into communication
and cryptographic complexity lower bounds. The functions corresponding to these bipartite
graphs are difficult to compute for parties with nondeterministic input and access to the EQ
oracle. If these functions are embedded in another function, then that function must have
high nondeterministic communication complexity as well.

As a corollary (of the proof technique presented above), we prove the following result for
dense bipartite graphs drawn from the Erdds-Rényi distribution with (constant) parameter

€ (0,1). Graphs drawn from ER(N, N, p) avoid bicliques with size-(2log, N) partite sets.

Therefore, we have the following result.

» Corollary 7 (High Ps-Free Partition and Cover Number of Erdés-Rényi Graphs). Let p € (0,1)
be a constant parameter. Let ER(N, N, p) represent the distribution over the sample space of all
bipartite graphs over size-IN partite sets that includes every edge into the graph independently
with probability p. Then, for a =1/p, we have

pN

3
> — — : G <~ ER(N,N >1- .
= Ilog, N (1-o(1)) ER(N,N,p)| > 1—o0(1)

Pr|Py-fp (G) > Py-fc (G)
Upper bounds to the P,-free cover and partition numbers for bipartite Erdés-Rényi graphs is
potentially an extremely challenging problem. Upper-bounding the Py-free partition number
of Erdos-Rényi bipartite graphs remains open.

Finally, we estimate the P4-free partition and cover numbers for the graphs INT,,, DISJ,,,
and INEQy that are well-studied functions from communication theory and are defined
below.

1. The Intersection Graph. For n € N, let INT,, = ({0,1}",{0,1}", E) be the bipartite
graph defined as follows. For any u,v € {0,1}", we have (u,v) € E if and only if the set

U C{1,2,...,n} indicated by u, intersects the set V' C {1,2,...,n} indicated by v.

2. The Disjointness Graph. For n € N, let DISJ,, = ({0,1}",{0,1}", E) be the bipartite
graph defined as follows. For any u,v € {0,1}", we have (u,v) € E if and only if the set

U C{1,2,...,n} indicated by u, is disjoint from the set V' C {1,2,...,n} indicated by v.

3. The Inequality Graph. For N € N, let INEQy = ({1,2,...,N},{1,2,...,N}, E) be
the bipartite graph defined as follows. For any w,v € {1,2,..., N}, we have (u,v) € E if
and only if u # v.

» Theorem 8 (Estimates for Particular Graphs). For all n, N € N, the following statements

hold.

1.n — %lg(n) - 00 < Py-fc (INT,,) < n, and Py-fp(INT,) <
2.2n/2 _ 9 even n, and
3.200=1/2 _ 9 odd n.

2. 20:085n < P, fc(DISJ,) < Py-fp (DISJ,,) < 2/m/21.
3. Py-fc (INEQy) = Py-fp (INEQy) = [log, N
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Recall that for any Boolean function f, parties can calculate it with [log, Py-fc (G(f))]-
bit nondeterministic input and one call to the EQ oracle, where G(f) is the bipartite
graph representing the Boolean function f. Therefore, the bounds above translate into
communication bounds.

Observe the exponential gap between the upper bounds on the Ps-free cover and partition
numbers of INT,,. We conjecture that similar to the exponential gaps in the biclique cover
and partition number of some graphs [58], INT,, is a candidate bipartite graph witnessing
an exponential gap in its Py-free cover and partition numbers. Currently, the authors are
unaware of any general non-trivial lower bounding technique for the partition number that is
not a lower bound to the cover number for this problem.

Lower-bounding the P,-free cover numbers of INEQy and INT,, relies on Proposition 1
and the algebraic technique of [47, 63]. Furthermore, the Ps-free cover and partition numbers
of INEQy are exact, previously unknown for the partition number. Finally, the lower bound
on the Py-free cover number of DISJ,, uses a new counting strategy.

3 Hardness of P,-free Partition and Cover Numbers

In this section, we will prove Theorem 5. Our proof of hardness for both partition and cover
number is based on a result from [28], which shows that computing the edge partition of a
bipartite planar graph into two star forests is NP-complete.

» Definition 9. A star is a tree with one internal node, in other words, a biclique in which
either the left partite set or the right partite set has size one. A star forest is a forest whose
connected components are stars. The star arboricity of a graph, represented by sa (G), is the
minimum number of star forests that a graph can be partitioned into.

» Imported Theorem 10 (Gongalves and Ochem [28]). For any g > 3, deciding whether a
bipartite planar graph G with girth'! at least g and mazimum degree 3 satisfies sa (G) < 2 is
NP-complete.

Proof of Theorem 5. First we show the decision problem is in NP, that is, given a partition
of the edge set of G into < 2 components we can verify in polynomial time whether it is a
P,-free partition of size < 2 of G or not. This can be done in polynomial time by checking if
any set of four vertices (two in the left set and two in the right set) in each component is
P,-free.

Next we show that the decision problem from Theorem 10 is polynomial-time reducible
to the Py-free partition and cover number on bipartite graphs. The decision problem in
Theorem 10 is NP-complete for any bipartite planar graph of girth at least g > 3; in
particular, it holds for g > 6. Suppose we have a bipartite planar graph G with girth g > 6
and maximum degree 3. Since G has girth at least 6, there are no cycles of length less than 6
in G. It implies that K3 o is not a subgraph of G. Therefore, any disjoint union of bicliques
in G is a star forest. This implies that sa (G) = Pa-fp (G) = Py-fc (G), since K o-free graphs
have the property that the P,-free partition and cover numbers are both identical to the star
arboricity. Thus, the star arboricity of G is < 2 if and only if the P;-free partition number
of Gis < 2. |

1 The girth of an undirected graph is the length of the shortest cycle in the graph.
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4 High P,-free Partition and Cover Numbers

We shall prove Theorem 6 and Corollary 7 in this section. We begin with some terminologies
in extremal graph theory. Fix a graph H. A classical problem in graph theory is to find the
maximum number of edges in a graph on N vertices that does not contain a copy of H.

» Definition 11 (Turdn number). Turdn number denoted by ex(N, H) is the mazimum number
of edges in an N -vertex graph that does not contain a copy of H.

A sub-problem of special interest is when H is a complete bipartite graph, this problem is
commonly referred to as the Zarankiewicz problem.

» Definition 12 (Zarankiewicz function). Zarankiewicz function, denoted by z(M, N; s,t),
is the mazimum number of edges in a bipartite graph G = (L, R, E), where |L| = M and
|R| = N, that does not contain a sub-graph of the form K.

The Zarankiewicz function is well-studied [24]. The best general lower bound obtained by
the probabilistic method [20] yields the following bound.

» Imported Theorem 13 (Erd6s and Spencer [20]). For all a,b € N, we have ex(N, K, ) >

_a+b—2 . L.
C - N*~"@=1 | where C is a positive absolute constant.

An explicit construction for K41 41-avoiding graphs for ¢ = 2 is known [12], which has
%N i+ o(N %) edges.'? Using norm graphs, constructions of K; s-avoiding graphs for fixed
t > 2 and s > (t — 1)! are known as well [43, 6]. Note that the latter set of constructions do
not apply to our setting for ¢ > 3. Considering the adjacency matrix of a K, p-free graph on
n vertices, we get z(N, N, a,b) > 2ex(N, Kq ).

Let G = (L, R, E) be a bipartite graph. A combinatorial rectangle is a set of the form Ax B,
where A C L and B C R. Observe that a combinatorial rectangle corresponds to a biclique if
we restrict ourselves to rectangles of the form {4 x B : (u,v) € A x B <= (u,v) € E}. We
shall use this fact in the sequel to show that the P,-free partition number of a K1 +41-free
bipartite graph is high.

» Lemma 14. For a bipartite graph G = (L, R, E) such that |L| = |R| = N, if G is
e(G

Ky11,441-free for some t > 0, then Py-fp (G) > 2(Nt)

Proof. Consider the adjacency matrix of the bipartite graph G. A biclique in G can be
represented as a combinatorial rectangle in the adjacency matrix of G (as explained above).
The width of this combinatorial rectangle is the smaller of its two dimensions, and the length
of this combinatorial rectangle is the larger of the two dimensions. Observe that any P,-free
bipartite graph is the union of non-intersecting combinatorial rectangles.

Let G’ be a P,-free bipartite sub-graph of G. It is instructive to refer to Figure 3. For
any combinatorial rectangle in G’, length < 2N and width < t, since if width =t + 1 < length,
then there exists a K;41,41-subgraph in G. This observation implies that e(G’) < 2Nt, and

consequently P,-fp (G) > 62(1\%) : )

The proof of Theorem 6 follows from the fact about Zarankiewicz function of Ky 1 ¢41-free
bipartite graphs and Lemma 14.

12For t = 1, Levi graph of a finite projective plane yields an explicit construction.
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Figure 3 Let t € N be a parameter. Proof intuition underlying the fact that a K¢y1 ¢41-free bipartite
graph cannot have a dense Ps-free subgraph.

Proof of Theorem 6. We construct a bipartite graph G = (L, R, F) such that |L| = |R| = N
and it is K41 +41-free. By Imported Theorem 13,

e(G) = 2(N,Nit+ 1,t + 1) > 2ex(N, Ky41.441) > 20N?" 77,
where C' is a positive absolute constant. By Lemma 14, we get that

2
e(G) 20N* w= I
= =C.---N"#2, |
2Nt 2Nt t
Similarly, to prove that ER(N, N,p) have high P,-free partition and cover numbers

Pi-fp (G) =

(Corollary 7), we rely on the following two observations.

1. The number of edges in a bipartite graph G & ER(NV, N, p) is at least pN? - (1 — o(1)),
with probability 1 — o(1).

2. Furthermore, G & ER(N, N,p) is Ky 41 +1-avoiding with high probability, where ¢ + 1 =
[2log, N.

The proof of the second observation follows from the standard outline for first moment

techniques, see, for example, [23] Chapter 7.2. More concretely, let ¢t + 1 = [2log, N]. Let

N¢y1 be the random variable counting the number of K141 bicliques in G. Then, we have

2 2t41 er1\ 2(t+1)
NN e (N VY e [eNp
E[Ny 1] = P < P =
t+1 —\t+1 t+1

eN-L 2(t+1)
= ( t+{v> =o(l)

Therefore, with probability 1 — o(1), there are no K;y; ¢+1 bicliques in G.

5 Upper Bounds for INT,,, DISJ,,, and INEQy

In this section, we establish the upper bounds for DISJ,, INT,,, and INEQy as stated in
Theorem 8. We also exhibit a non-trivial gap between the star arboricity, and the Py-free
partition number of DISJ,, (see Eq. 2 of Theorem 19).

5.1 P,-free Partition/Cover Number and Graph Products

First, we introduce the notion of a graph product, and state some properties regarding the
behavior of Py-free partition/cover number on graph products. These concepts are used to
solve recurrence relations for DISJ,, and INT,, in the sequel.
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» Definition 15 (Graph Product). Let Gy = (L1, Ry, E1) and Gy = (La, Ra, E2) be two
bipartite graphs. Let G denote the tensor product of the two bipartite graphs Gy, and Gs,
represented by G1 X Go. The partite sets of G are Ly X Ly and Ry X Ra, and the edge set is
E(G) :=={( (u,a),(v,b) ) : (u,v) € E1,(a,b) € Es}.

> Claim 16 (Product of P,-free bipartite graphs is Py-free). Let G and H be two Py-free
bipartite graphs, then G x H is also Py-free.

> Claim 17 (Sub-multiplicativity of the Ps-free Partition Number). Let G and H be two
bipartite graphs, then the following holds for their graph product.

Ps-fp (G x H) < Ps~fp (G) - Ps-fp (H)
Similarly, the P,-free cover number is also sub-multiplicative.

> Claim 18 (Sub-multiplicativity of the Py-free Cover Number). Let G and H be two bipartite
graphs, then the following holds for their graph product.

P4-fC (G X H) < P4-fC (G) . P4—fC (H)

5.2 Bound on DISJ,,

We show an upper bound for Ps;-fp (DISJ,,) using the fact that DISJ,, is the tensor product
DISJ;", and we show a lower bound for sa (DISJ,,), thus exhibiting a gap between the two
measures.

» Theorem 19. For any n € N, the following bounds hold.
1. Py-fp (DISJ,) = P4-fp (DISJ?) < 2["/21 and
2. sa(DISJ,) > [(3/2)"] = [2.25™/2].

Proof. For the first bound, the proof proceeds by induction on n. For the base cases, observe
that Ps-fp (DISJ;) = Ps-fp (DISJ2) = 2. Next, for any 2 < n € N, we have

P4-fp (DISJ,) = Pa-fp (DISJ,,_5 x DISJs)

< Py-fp (DISJp_s) - Pa-fp (DISJs) (Claim 17)
< 2ln=2/21 .9 (Inductive Hypothesis)
_ ofn/2]

This observation completes the inductive proof.

For the second bound, note that a star forest over partite sets L and R has < |L|+ |R| =
2 - 2™ edges in it. Note that e(DISJ,) = 3". Therefore, one needs > [(3/2)™] star forests to
partition the edges of DISJ,,. |

5.3 Bound on INT,,

First, we show that Py-fc (INT,,) < n. Let [n] denote the set {1,2,...,n}. For each 1 <14 <n,
construct a subgraph G; = (L;, R;, E;) of INT,, that connect all sets that contain the element

i in [n]. More formally, L; = R; = {S C [n]: S 2 i}, and E; = {(S,T): S € L;,T € R;}.

Note that G; is a biclique and it has 4"~! edges. Note also that every edge in INT,, is
covered by at least one graph G;, for some i € [n] that witnesses the intersection of the
two sets. It implies that G1,Gs, ..., G, is a Py-free cover of INT,,. Therefore, it holds that
P4-fc (INT,) <n=1gN.
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Figure 4 Partition of edges of INT,, into two sets.
@) @) @) @) @) @)

T

Figure 5 Partition of G1 in Lemma 20 into two Ps-free graphs.

Next, we prove the upper bound for P;-fp (INT,,). Before we discuss our result, it is
instructive to see that Py-fp (INT,,) < P4-fp (INT,,—1) + Ps-fp (DISJ,,—1), and by working out
this recurrence relation we could have obtained a worse bound of P4-fp (INT,,) < 3-27%/2 — 3.

KA

Figure 6 Partition of H; in Lemma 20 into two Pys-free graphs.

» Lemma 20. For alln € N and n > 3, Py-fp (INT,,) < 2P,-fp (INT,,_5) + 2

Proof. Consider the graph INT,,. We partition the edges of INT,, into two sets. Consider
an edge (u,v) where u,v € {0,1}". Let «’ € {0,1}* represent the two most significant bits
in u, define v’ similarly. Let b,, be an indicator variable that takes value 1 when »’' and v’
intersect, and 0 otherwise.

If for the edge (u,v), by, = 1, then we add the edge to the “bold” set. When b,,,, = 0, we
add the edge in the “dashed” set (refer to Figure 4). Let G be the subgraph induced by the
bold edges, and let H be the subgraph induced by the dashed edges.
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Next, we note that G = Kjn-29n—2 x G where Gy is a graph with Ps-free partition
number 2. See Figure 5 for an illustration. Similarly, H = INT,,_s X H; where H; has P,-free
partition number 2. See Figure 6 for an illustration. Combing the above observations, we
get that

Ps~fp (INT,,) < Ps-fp (G) + Ps-fp (H)

< P4—]cp (Kgn—272n72 X Gl) + P4—fp (INTn_Q X Hl)
< Py-fp (Kgn-2 gn-2) - P4-fp (G1) + Py-fp (INT,,—2) - P4-fp (H;)  (Claim 17)
< 2+2P4—fp (lNTn_Q) <

Applying Lemma 20 inductively, we have the following result as a consequence.

2.92n/2 _ 9 for even n,

» Theorem 21. P,-fp (INT,,) <
e ) {3~2("_1)/2—27 for odd n.

5.4 Bound on INEQy

In fact, we prove a more general result.

> Claim 22 (Complement of a Py-free graph has a small Py-free partition number). Let H be

a Py-free bipartite graph with ¢ € N connected components. Let G be the complement of H.

Then, the following bound holds.

[log, ], if H has no isolated vertex,
Ps-fc (G) < Pi-fp (G) < ¢ [log, c] + 1, if H has isolated vertices and ¢ > 1, and
2, if H has isolated vertices and ¢ = 1.

Proposition 1 (along with a suitable embedding ¢) implies the upper bound P,-fc (G) <

[log, ¢]. However, we prove the stronger result that Py-fp (G) < [log, c].

Our objective is to demonstrate a Py-free partition for G of size [log, ¢]. The proof starts
by kernelizing the graph G using the rules in [21]. Essentially, without loss of generality, one
can assume that H is a matching. For simplicity assume that H is a matching with ¢ edges
and assume that it has ¢ vertices in each partite set (i.e., there are no isolated vertices).

Next, the idea is to break the problem into half the size while including only one Ps-free
graph in the partition of G. Assume, without loss of generality, that the partite sets are
L={1,...,c} and R={1,...,c}, and the edges in H are (i,i), for 1 <1i <.

Define Ly :={1,...,|¢/2]} and Ly := L\ L. Similarly, define Ry := {1,...,|¢/2]} and
Ry := R\ Ry. Observe the following.

1. The edges induced by (Lo, R1) and (L1, Rp) in G are disjoint bicliques. Together, they
shall form one P,-free subgraph of G.

2. Next, the edges induced by (Lo, Ro) and (L1, R1) in G are disjoint and complements of
matchings as well; albeit the matchings are of size |¢/2] and [c¢/2], respectively. We
recursively partition the disjoint union of these graphs.

Hence, Claim 22 is proved. Applying this claim for G = INEQy and H = EQ, we have the

following result.

» Theorem 23. For any N € N, it holds that Py-fp (INEQy) < log, N.

6 Lower Bounds for INT,,, DISJ,,, and INEQx

This section presents the proofs of the lower bounds in Theorem 8.
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6.1 Bound for INEQy

We begin with a lower bound on Ps-fc (INEQ ) by outlining the proof of Proposition 1 below.
Given a size-d Py-free cover {Gq,...,G4} of a bipartite graph G = (L, R, E) consider the
following function ¢: LU R — {1,2} x N%. For i € {0,1,...,d}, ¢(u); refers to the i-th
coordinate of the mapping ¢(u). Define ¢(u)p := 1 if u € L; otherwise, if v € R, define
o(u)o == 2. If the edge (u,v) € E is covered in the G; by the k-th connected component, then
define p(u); = ¢(v); := k. Since each connected component of G; is a biclique, there are no
inconsistencies introduced in defining the mapping . All remaining undefined coordinates
of the mapping ¢ are completed with unique entries.

Observe that the mapping ¢ has the following property. For any u € L and v € R, we have
(u,v) € E if and only if o(u)o # »(v)o, and there exists i € {1, ..., d} such that p(u); = ©(v);.
Equivalently, by taking the negation, one concludes that (u,v) € L x R\ E if and only if, for
alli € {0,1,...,d}, we have p(u); # ¢(v);. Therefore, the complement of the bipartite graph
G is a subgraph of K5 x K& if  is injective. Note that a redundancy-free graph cannot
have p(u) = ¢(v), for distinct vertices u and v. Consequently, we have Proposition 1. The
other direction of the proposition does not hold because the first coordinate of the mapping
© need not be constant restricted over the vertices in L or R. However, given ¢ one can
prepend a coordinate that is 1 for the vertices in L and 2 for the vertices in R. Therefore, if
G is an induced subgraph of K x KI%, then G has a size-(d 4+ 1) Py-free cover.

For deriving the lower bound, consider G = INEQy, i.e., G = EQy. Using the algebraic
lower-bounding technique of [47, 4, 63], one concludes d > [logy N'|. Therefore, we have the
following result.

» Theorem 24. For any N € N, it holds that Ps-fc (INEQy) > [log, N.

6.2 Bound on DISJ,,

We rely on a counting technique to obtain this lower bound. Intuitively, existing algebraic
technique are useful to obtain logarithmic lower bounds. However, in this problem, we seek
to prove a polynomial lower bound.

» Theorem 25. For alln € N, the following bound holds.
P4-fp (DISJ,,) > Py-fc (DISJ,,) > N'0g23-3/2 » 0085
The following lemma is the key for the proof of Theorem 25.
» Lemma 26. Any Ps-free subgraph of DISJ, has at most Nv/N edges.
To prove Lemma 26, we shall use the following claims (see full version for their proofs).
> Claim 27. Any biclique subgraph of DISJ,, has at most N edges.
> Claim 28. Let {(a;, b;) }ien be a sequence of non-negative numbers. Then,

> aib; < <m€aNxab> (Za) <Z b)

€N i€N ieN

Furthermore, equality holds if and only if (a) for all 7 € N, one has a; > 0 iff b; > 0. (b)
all positive a; are constant, and (c¢) all positive b; are constant.
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Proof of Lemma 26. Suppose G is a Ps-free subgraph of DISJ,. Let
Koy bys Kag sy - - -y Ka,, b, be the (biclique) connected components of G, where a; € N, b; € N
for every 1 <14 < m and m € N. The total number of edges in G is ZZl a;b;. We shall show
that 2111 a; - b; < NVN. By Claim 27, it holds that a; - b; < N for every 1 <i < m. Since
all the left partite sets of Ko, by, Kaybss- - -+ Ka, b, arve disjoint, it holds that > /", a; < N.

Similarly, Y"1, b; < N. Therefore, applying Claim 28, the following inequality holds.

éaibi < || (maxab;) (i?) (ib)

<VN-N.-N=N>?
Thus, any Ps-free subgraph of DISJ,, has at most N3/2 edges. <

Now, we are ready to prove Theorem 25.

Proof of Theorem 25. First, observe that there are 3" edges in DISJ,,. By Lemma 26, any
Py-free subgraph of DISJ,, has at most N VN edges. Therefore, we have

n

NVN

as desired. |

P4-fp (DISJ,,) > Py-fc (DISS,,) > = Nlog23-3/2 o 0085

6.3 Bounds on P;-free Cover Number of INT,,

We shall prove the following lower bound on the P,-free cover number of INT,,.

» Theorem 29. For alln € N, the following bounds hold.
1 n+1 1 1
- =1 g —+-+——— < Pyfc(INT,,).
n 2(g7r+g( 5 +4+64(n+1)))_ 4-fc (INT,)
First, we state claims needed for the proof of Theorem 29 (see full version for their proofs).

> Claim 30. For every n € N, the following bound holds.

() 272 (o655 4 1))

> Claim 31. Let G be a bipartite graph. Then, for every induced subgraph H of G, the
following inequality holds.

P4—fC (H) < P4-fC (G)
Proof of Theorem 29. Consider the induced subgraph G = (L', R',E’) of INT,,, where
L'={SC[n]:|S|=|2]}, R ={T C[n]: |T| = [2]}. Observe that each vertex S € L’ is
connected to every T' € R’ except when T' = [n] \ S. Thus, graph G is the complement of a
matching of size M, where M = (Ln% J)‘ Using the algebraic lower-bounding technique of
[47] and Proposition 1, one concludes that

1 n+1l 1 1
Py-fc (G) > NlgM] >n— = (1 L e e
wfe (G) 2 [lg M] = n 2(gﬂ+g( 2 +N64(n+1)>)’

where the last inequality follows from Claim 30. Finally, by Claim 31, P4-fc (G) < Py-fc (INT,,).

Therefore, we have

1 n+l 1 |
—lgr g (P S )} < Pefc (INT
" z(g”Jrg( 2 +4+64(n+1)))_ +fe (INT=),

as desired. <
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7 Relation to Graph Embedding

This section presents the connection between Py-free partition/cover number and product/-
Prague dimension.

7.1 P,-free Cover Number

> Claim 32. If a bipartite graph G = (L, R, E) has a size-d Py-free covering, then the
complement bipartite graph G = (L, R, L x R\ E) is an induced subgraph of K, x Kg.

Proof. Let G1,...,Gq be a size-d Py-free cover of G. Define a vertex mapping ¢: LU R —
Ky x K& as follows. Let op(u); denote the i-th coordinate of the mapping ¢(u). Define
o(u)g = 0, for all u € L, and ¢(v)g = 1, for all v € R. For i € {1,...,d}, define
o(u); = p(v); = k, for every edge (u,v) in the k-th connected component of G;. All
remaining entries of ¢ are filled with unique values. One can verify that (u,v) € L x R\ E
if and only if ¢(u) and ¢(v) differ in every coordinate, that is, ¢(u); # @(v); for every
i € {0,1,...,d}. Therefore, the complement bipartite graph G is an induced subgraph of
KQ X KI%

We emphasize that the vertex mapping ¢ has the additional property that ¢(u) and ¢(v)
have ¢ identical coordinates if and only if the edge (u,v) is covered in ¢ Ps-free graphs among
G1,...,G4. This property shall be useful in the proof of Claim 35. <

> Claim 33. If a loopless undirected graph H = (L U R, E) is an induced subgraph of K¢
and E C L x R, then the bipartite graph H' = (L, R, L x R\ E) has a size-d Py-free covering.

Proof. Suppose a loopless undirected graph H = (L U R, E) is an induced subgraph of K¢
and £ C L x R. Then, there exists a vertex mapping ¢: L U R — N? such that (u,v) € E
if and only if there exists ¢ € {1,2,...,d} such that p(u); = ¢(v);. Define a new vertex
mapping ¢t : LUR — {1,2} x N? as follows.

) = (1,p(u)), ifwuel
e (w) {(2,<,0(u))7 otherwise.

Fori € {1,2,...,d}, define G; = (L, R, E;) such that FE; is the set of allu € Land v € R
such that ¢t (u); = ¢ ™ (v);. Observe that the set of vertices u € L such that ¢ (u); = k and
the set of vertices v € R such that ¢* (u); = k for some k € N form a biclique, and each E;
is a disjoint union of bicliques. Furthermore, an edge (u,v) € E if and only if there exists
an i € {1,2,...,d} such that p(u); = p(v); which is equivalent to ¢+ (u); = ¢ ™ (v);. This
implies that E; cover the edge (u,v). Therefore, Ey, Fs, ..., Eq is a Py-free cover of H.

The Gy,...,G4 have the property that if an edges (u,v) is covered ¢ times by these
Py-free graphs, then ¢t (u) intersects p™(v) in exactly ¢ coordinates. This property of the
vertex mapping shall be useful in the proof of Claim 36. <

The following result is a consequence of Claim 32 and Claim 33.

» Corollary 34. Let G = (L, R, E) be a bipartite graph and H = (LU R, E) be a loopless
undirected graph. Then, the following identity holds.

pdim (H) S {P4-fC (G) , Py-fc (G) + 1} s
or, equivalently,
Py-fc (G) € {pdim (H) — 1, pdim (H)}.

Note that the additive slack of 1 in Corollary 34 is necessary. Figure 7 gives an example.
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(
(
Graph H = (LUR,EC L xR) (
(
(

Graph G = (L,R,L x R\ E)

Figure 7 Example for the tightness of Corollary 34. Note that the loopless undirected graph
H=(LUR,E)= Ps+ Cs, where E C L x R, is an induced subgraph of K» x Kn. The (partition)
vertex mapping of each vertex is explicitly mentioned next to it. However, the bipartite graph G =
(L,R,L x R\ E) is not Py-free and, hence, P4-fc (G) > 2; in fact, we have P4-fc (G) = Ps-fp (G) = 2.
The edges of G partition into K2 3 + K32 and 4K ;.

7.2 P,-free Partition Number

Suppose a graph H is an induced subgraph of K¢ via a vertex mapping ¢: V(H) — N¢. The
vertex mapping ¢ is a partition if the following conditions are satisfied.

1. If (u,v) € E(H), then p(u); # ¢(v);, for all i € {1,2,...,d}.

2. If (u,v) & E(H), then there exists a unique ¢ € {1,2,...,d} such that p(u); = ¢(v);.
We emphasize that in an unrestricted vertex mapping, instead of (2) above, we insist that
there exists an ¢ € {1,2,...,d} (not necessarily a unique 7). Let pdim* (H) represent the
minimum d € N such that H is an induced subgraph of Kf\iI via a partition vertex mapping.

> Claim 35. If a bipartite graph G = (L, R, E) has a size-d P,-free partitioning, then the
complement bipartite graph G = (L, R, L x R\ E) is an induced subgraph of Ky x K¢ via a
partition vertex mapping.

> Claim 36. If a loopless undirected graph H = (LU R, E) is an induced subgraph of Kg via
a partition vertex mapping and E C L x R, then the bipartite graph H' = (L, R,L X R\ E)
has a size-d P,-free partitioning.

The proofs of Claim 35 and Claim 36 are identical to the proofs of Claim 32 and Claim 33,
respectively, utilizing the fact that the vertex mapping is a partition. As a consequence of
Claim 35 and Claim 36, we have the following result.

» Corollary 37. Let G = (L, R, E) be a bipartite graph and H = (LU R, E) be a loopless
undirected graph. Then, the following identity holds.

pdim* (H) € {Ps-fp (G) , Ps-fp (G) + 1},
or equivalently

Ps-fp (G) € {pdim* (H) — 1, pdim™ (H)} .
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