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Abstract
We prove two classes of lower bounds on the communication complexity of information-theoretically
secure multiparty computation. The first lower bound applies to perfect passive secure multiparty
computation in the standard model with n = 2t + 1 parties of which t are corrupted. We show a
lower bound that applies to secure evaluation of any function, assuming that each party can choose
to learn or not learn the output. Specifically, we show that there is a function H∗ such that for
any protocol that evaluates yi = bi · f(x1, ..., xn) with perfect passive security (where bi is a private
boolean input), the total communication must be at least 1

2
∑n

i=1 H∗
f (xi) bits of information.

The second lower bound applies to the perfect maliciously secure setting with n = 3t + 1 parties.
We show that for any n and all large enough S, there exists a reactive functionality FS taking
an S-bit string as input (and with short output) such that any protocol implementing FS with
perfect malicious security must communicate Ω(nS) bits. Since the functionalities we study can
be implemented with linear size circuits, the result can equivalently be stated as follows: for any
n and all large enough g ∈ N there exists a reactive functionality FC doing computation specified
by a Boolean circuit C with g gates, where any perfectly secure protocol implementing FC must
communicate Ω(ng) bits. The results easily extends to constructing similar functionalities defined
over any fixed finite field. Using known techniques, we also show an upper bound that matches the
lower bound up to a constant factor (existing upper bounds are a factor lg n off for Boolean circuits).

Both results also extend to the case where the threshold t is suboptimal. Namely if n = kt + s

the bound is weakened by a factor O(s), which corresponds to known optimizations via packed
secret-sharing.
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1 Introduction

In secure multiparty computation (MPC) a set of n parties compute an agreed function on
inputs held privately by the parties. The goal is that the intended result is the only new
information released and is correct, even if t of the parties are corrupted by an adversary.

In this paper we focus on unconditional security where even an unbounded adversary
learns nothing he should not, and we ask what is the minimal amount of communication one
needs to compute a function securely. To be clear, we will only consider functions where
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2:2 More Communication Lower Bounds for Information-Theoretic MPC

the size of the output is much shorter than the input, so we avoid trivial cases where the
communication is large, simply because the parties need to receive a large output. Note that
one can always compute the function without security by just sending the inputs to one
party and let them compute the function, so the question to consider is: compared to the
size of the inputs, what overhead in communication (if any) is required for a secure protocol?
Note that a different and probably much harder question is if, in general, the communication
must be larger than the circuit size of the function.

These questions only seem interesting for unconditional security: for computational
security we can use homomorphic encryption to compute any function securely with only a
small overhead over the input size.

There is a lot of prior work on lower bounding the communication required in interactive
protocols, and we survey some of this below. However, the most relevant existing work for
us is [6] which considers exactly the questions we ask here for the case of honest majority,
n = 2t+ 1, and passive (semi-honest) security. They show that a factor n overhead over the
input size is required for a variant of the inner product function, where parties may privately
choose to learn or not to learn the output. The result extends to the case of suboptimal
threshold where n = 2t+ s, and then the overhead becomes n/s.

Note that this result leaves open two important questions:
Firstly, a natural next step after the results from [6] is to ask which functions in general

require large communication. However, applying the result from [6] to functions other than
the inner product is nontrivial because they leverage a particular property of the inner
product, namely that it can be used to implement a PIR, which is of course not the case in
general. In this work, we therefore ask:

Can we show lower bounds for perfect passive secure evaluation of functions other
than the inner product?

Second, it is well known that perfect malicious security can be achieved if and only if t < n/3
and the result from [6] has nothing to say about this case: to apply it, one would need to set
s to be Θ(n) and then their lower bound becomes trivial. Hence, the final open question we
consider is:

Can we show lower bounds for perfect malicious security in the case where n = 3t+ 1?

We answer both questions in the affirmative.

1.1 Our results
1.1.1 Bounds for passive security
In this paper, we prove lower bounds for the model with n parties of which t are statically
corrupted. The network is synchronous, and we assume that the adversary can learn the
length of any message sent (in accordance with the standard ideal functionality modeling
secure channels which always leaks the message length). We consider information-theoretically
secure protocols with static corruption in the maximal threshold model.

On the technical side, what we show are actually lower bounds on the entropy of the
messages sent on the network when the inputs have certain distributions. This then implies
similar bounds in general on the average number of bits to send: an adversary who corrupts
no one still learns the lengths of messages, and must not be able to distinguish between
different distributions of inputs. Hence message lengths cannot change significantly when we
change the inputs, otherwise the protocol is insecure.
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For our passive lower bounds, we require that protocols securely implement the standard
functionality for secure function evaluation, where we add the option that each player Pi

can privately choose to learn or not to learn the output, by selecting an additional input bit
bi. What we show is that there exists a mapping H∗ which takes any function f , such that
in any n-party protocol securely evaluating the output yi = bi · f(x1, · · · , xn) for player Pi,
the total average communication must be at least 1

2
∑n

i=1 H
∗
f (xi) where xi is the input of

player Pi.
Very roughly speaking, the function H∗

f (xi) measures how much uncertainty remains
in the function output given that we know xi. Specifically, it is defined as the maximum
uncertainty that remains on any subset of inputs of size t among the remaining 2t inputs.
The lower bounds that we establish are tight in some cases: for the inner product we get a
bound of Ω(n) times the input length, so we recover the lower bound of [6]. Since the inner
product can be computed by a circuit of linear size, this bound is tight up to constant factors.
For the XOR function we get a trivial lower bound which only states that each party must
communicate their input. As the XOR function is linear, it is of course not surprising that
the bound is trivial in this case. Indeed, for two parties the bound is tight since a passively
secure protocol is for one of the two parties to simply reveal their input to the other party.
A final interesting example is a function is called “ranking”, that provides each party with
the index of their input in the sorted list of all inputs. For this example, we get again a
non-trivial bound of Ω(n) times the input size. This bound may not be tight, assuming there
is no linear-sized circuit for sorting integers.

On the technical side, our bound is established by considering a fixed party Pi and
choosing a bipartitioning of the remaining 2t parties into two groups of size t. We show
that the entropy such a group provides to the function output is a lower bound on the
communication of party Pi so we choose the maximum value among all such partitions. This
corresponds to the definition of the function H∗

f mentioned above. Since the adversary is not
allowed to distinguish between different distributions of messages we can essentially add all
the lower bounds for the communication of all parties to obtain our lower bound.

The lower bound extends to the case where the threshold is submaximal, i.e. n = 2t+ s.
The bound can be established by considering a partitioning of the parties into sets of size s (it
is allowed that a party belongs to no set). For each such set, we take the supremum over all
ways of bipartitioning the remaining 2t parties into two sets of size t to get a communication
bound. Since the adversary is not allowed to distinguish between different distributions of
messages, again we can add the communication for each such set of size s. This means we
get a communication lower bound for each such partition of the parties into sets of size s so
we take the maximum among all such partitions. For functions which are “symmetric”, any
partition of the parties into sets of size s gives the same lower bound which means the final
supremum can be omitted. In this case, the lower bound is weakened by a factor O(s) such
that the total communication can be shown to be Ω(

∑n
i=1 H

∗
f (Xi))/s. For functions which

are not symmetric it is not possible to make a general statement about what happens in the
submaximal threshold case, though highly asymmetric functions likely have weaker lower
bounds since only a few parties contribute a large amount of entropy to the function output.

1.1.2 Bounds for active security
For our lower bounds for active security, we make use of the Universal Composability (UC)
model for secure protocols. Recall that, in the UC model, we specify an “ideal functionality”
in order to state what a protocol is supposed to do. The functionality accepts input from
the parties and computes outputs in a specific way that an adversary by definition cannot
modify. A protocol securely implements the functionality if running the protocol is, in a
certain well-defined sense, “equivalent” to interacting with the functionality.

ITC 2021



2:4 More Communication Lower Bounds for Information-Theoretic MPC

In our case, we consider a functionality Ff computing a function f with a specific structure.
Namely, the functionality first receives input from all parties and sends an acknowledgement
to everyone. Then it receives a second batch of inputs, computes the desired function and
sends the result to all parties. This structure of Ff implies that in any protocol implementing
Ff , the first set of inputs must be chosen and committed before the second set of inputs
are chosen, and this is important for the proof of our lower bound. However, even if this
particular structure is a limitation, the model still covers some natural applications. For
instance, the concrete function we study models a case where a long string (a database) is
determined in the first phase, and the function to be evaluated then returns a bit in a certain
position chosen later (an entry in the database).

We assume UC security mainly for simplicity of exposition, we can actually make do with
significantly weaker assumptions, this is detailed in Section 3.5. What we show is that for all
n and any sufficiently large S, there exists a function fS with input size S such that any
protocol that evaluates FfS

securely must communicate Ω(nS) bits.
Even more is true: we are able to construct functions fS as we just claimed such that

they can be evaluated by circuits of size O(S). This means we also get the following result:
for any n and all large enough g ∈ N there exists a Boolean circuit C with g gates specifying
the computation to be done by functionality FC , such that any protocol that evaluates FC

securely must communicate Ω(ng) bits.
We emphasize that our result leaves open the question of overhead over the circuit size

when the circuit is much bigger than the inputs. However, there is still something we can
say about this general question. Note that the general MPC protocols we know are not,
strictly speaking, protocols. Rather, they are protocol compilers that take a circuit C as
input, and produce a protocol for computing C securely. Our results do imply that any
such compiler must produce a protocol with large communication overhead over the circuit
size when applied to circuits in the family we build. Now, if this overhead would no longer
be present when applying the compiler to other circuits, it would mean that it was able to
exploit in some non-trivial way the structure of the circuit it is given. Doing this would
require protocol compilers of a completely different nature than the ones we know, which do
“the same thing” to any circuit they are given.

This bound also extends to the case where the threshold t is suboptimal. Namely, if
n = 3t + s, then the lower bound is O(ng/s) and this shows that the improvement in
communication that we know we can get using so-called packed secret sharing, is the best
we can achieve. The bound does not, however, extend to statistical security. We show in
Section 3.6 that there exists a statistically secure protocol breaking the bound already in the
4-party case.

We also show an upper bound that matches the lower bound up to a constant factor for
all values of t < n/3. This is motivated by the fact that the existing upper bound from [14]
is a factor lgn off for Boolean circuits. We do this by exploiting recent results by Cascudo et
al. [4] on so-called reverse multiplication friendly embeddings. Other than establishing the
exact communication complexity for this particular class of functions, it also shows that our
result is the best possible general lower bound we can have.

To show our results, we start from a lower bound for the communication complexity of a
specific function for the case of four parties including one maliciously corrupt player. We
then “lift” this result to the multiparty case. This high-level strategy is similar the one used
in [6], however our proof for the four party case as well as the concrete lifting technique are
very different from what was done in [6]. In fact it is easy to see that new techniques are
necessary to achieve our result. Namely, in our case where t < n/3, [6] only gives a trivial
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result, as mentioned above. Nevertheless [6] is known to be optimal for passive security, even
in the case of suboptimal threshold. This means that there is no way to use their proof for
our question, one must somehow exploit the fact that the considered protocols are assumed
to be maliciously secure.

1.2 Related work
Prior work on lower bounding communication in interactive protocols includes [15, 12, 5, 11,
15, 16, 2, 13] (and see [10] for an overview of these results). The previous work most relevant
to us is [10]. They consider a special model with three parties where only two have input
and only the third party gets output, and consider perfect secure protocols. This paper was
the first to show an explicit example of a function where the communication for a (passive
and perfectly) secure protocol must be larger than the input.

Later, in [8], a lower bound was shown on the number of messages that must be sent to
compute a certain class of functions with statistical security. When the corruption threshold
t is Θ(n), their bound is Ω(n2). This of course implies that Ω(n2) bits must be sent. However,
we are interested in how the communication complexity relates to the input and circuit size
of the function, so once the input size becomes larger than n2 the bound from [8] is not
interesting in our context.

In [9], lower bounds on communication were shown that grow with the circuit size.
However, these bounds only hold for a particular class of protocols known as gate-by-gate
protocols, and we are interested in lower bounds with no restrictions on the protocol.

2 Lower bounds for arbitrary functions

In this section we prove a lower bound on the communication complexity for perfect passive
secure multiparty computation. The lower bound applies to any function in which the parties
can choose to learn or not to learn the output. For some functions, the lower bound can be
shown to be tight.

Let X be a random variable with pdf p : X → [0, 1]. We define the (Shannon) entropy of
X as:

H(X) = −
∑
x∈X

p(x) lg p(x)

where lg is base 2. The entropy measures the uncertainty of X: to communicate the outcome
of X, an average of H(X) bits have to be communicated. We define the conditional entropy
H(Y | X) as the amount of information in Y left, given that we know X. If H(Y ;X) is the
joint entropy we define:

H(Y | X) = H(Y ;X) −H(X)

A related measure is the mutual information I(Y ;X) that measures how much information
the two random variables X,Y have in common. It is defined as:

I(X;Y ) = H(X) −H(X | Y )

We will use this measure for our lower bound, we need the following identities:

▶ Lemma 1. I(X;Y ) = I(X;Z) + [H(X | Z) −H(X | Y )].

ITC 2021



2:6 More Communication Lower Bounds for Information-Theoretic MPC

Proof. Follows from the definition of mutual information:

I(X;Y ) = H(X) −H(X | Y ) = I(X;Z) +H(X | Z) −H(X | Y ) ◀

▶ Lemma 2. Let X,Y, Z be random variables such that I(Y ;Z) ≥ H(Y ). Then H(X | Z) ≤
H(X | Y ).

Proof. By using the chain rule for entropy twice we get:

H(X,Y, Z) = H(Y ) +H(X | Y ) +H(Z | Y,X)
= H(Z) +H(X | Z) +H(Y | Z,X)

Since I(Y ;Z) ≥ H(Y ) we have H(Y | Z,X) = 0 and so we find that:

H(X | Y ) = H(X | Z) + [H(Z) −H(Z | Y,X)] −H(Y )

Noting that H(Z | Y,X) ≤ H(Z | Y ) we get:

H(Z) −H(Z | X,Y ) ≥ H(Z) −H(Z | Y ) = I(Y ;Z) ≥ H(Y )

In particular, we have [H(Z) −H(Z | Y,X)] −H(Y ) ≥ 0 which concludes the proof. ◀

▶ Lemma 3. Let X,Y, Z be random variables such that I(X; (Y, Z)) ≥ ℓ, and I(X;Y ) = 0.
Then H(Z) ≥ ℓ.

Proof. We use the chain rule for mutual information to obtain:

ℓ ≤ I(Y, Z;X) = I(X;Y ) + I(Z;X | Y )

By assumption we have I(X;Y ) = 0. The bound I(Z;X | Y ) ≤ H(Z) is not hard to see and
concludes the proof. ◀

We now define the functional entropy of a random variable which is used to establish
our communication lower bound. Informally, the functional entropy measures how much
uncertainty an input to a function provides to its output.

2.1 Functional entropy
We start by considering the binary case: let f : X × X → Y × Y be a binary function, and
let X1, X2 be random variables over X . We define the f -expansion of X1 to be the following
exponential-sized string (the case for X2 is similar):

Ef (X1) =
n

x2∈X
f(X1, x2)

where ∥ denotes string concatenation. The order of the concatenation matters in the sense
that it must be a fixed order, but the specific order is not important. We now define the
functional entropy of Xi as:

Hf (Xi) = H(Ef (Xi))

Loosely speaking, this quantity measures how much uncertainty remains in the function
output, given that we remove all randomness from variables other than Xi. Since the value
of Ef (Xi) can be computed from Xi, the functional entropy must be upper bounded by the
regular Shannon entropy, i.e. Hf (Xi) ≤ H(Xi).
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We now extend the notion to an n-ary function f : X n → Yn for n = 2t+ 1 and some t.
Let T ⊂ {1, 2, . . . n} be a set of indices, and define −T as its complement. Note that we can
write any f as f ′ where

f(X1, X2, . . . Xn) = f ′(XT , X−T )

We define the functional entropy of a set of random variables T as:

HT = Hf ′(XT )

Finally, we define the maximum functional entropy of a variable Xi as:

H∗
f (Xi) = max

T, |T |=t, i ̸∈T
HT

Loosely speaking, H∗
f (Xi) measures how much uncertainty we can have in the function

output, if we fix all but t inputs, where these t inputs do not include Xi. We will use this
quantity to establish our lower bound.

2.2 Lower bound, arbitrary functions, maximal threshold
In this section we establish the communication lower bound for perfect security and maximal
threshold. Let n = 2t+ 1 be an integer, and consider a set of parties P1, P2, . . . Pn computing
a function where the ith party learns yi = bi · fi(X), where bi ∈ {0, 1} is a private boolean
input, and f : X n → Yn is a vector function. Consider a partition of the n parties into
groups of size t, t, 1 where X1 is the concatenated inputs of parties in the first group, X2 the
second group, and X3 is the input of the single party (not including the bi inputs). Let Ci,j

be the (ordered) concatenation of all messages sent between groups i and j.
In the following two lemmas we consider a situation where only the single players in

group 3 learns the output, while all other players have their output selection bit set to 0.
Now, since no group has more than t players, the adversary can corrupt all players in each
single group, and hence neither the first, nor the second group must learn anything new from
the protocol.

▶ Lemma 4. I(X1; (C1,2;C1,3)) ≥ Hf (X1).

Proof. By privacy against group 1, the variables C1,2, C1,3 are independent of X2 and X3.
This means group 2 and P3 can resample randomness and use (C1,2, C1,3) as an oracle to
compute f(x1, x2, x3)2,3 for any values of x2, x3. This implies that the mutual information
between the communication and the expansion is at least the entropy of the expansion:

I(Ef (X1); (C1,2;C1,3)) ≥ H(Ef (X1)) = Hf (X1) (1)

On the other hand, as Ef (X1) is determined by X1 we have that,

I(X1; Ef (X1)) = Hf (X1) (2)

We now compute:

I(X1; (C1,2, C1,3))
= I(X1; Ef (X1)) + (H(X1 | Ef (X1)) −H(X1 | (C1,2;C1,3)) by Lemma 1
= Hf (X1) + [H(X1 | Ef (X1)) −H(X1 | (C1,2;C1,3))] by Equation (2)

By Equation (1) we can apply Lemma 2 to conclude the value in the brackets is nonnegative
which concludes the proof. ◀

ITC 2021



2:8 More Communication Lower Bounds for Information-Theoretic MPC

▶ Lemma 5. H(C1,3) ≥ Hf (X1).

Proof. Immediate consequence of Lemmas 3 and 4 because of privacy against group 2 which
implies I(X1;C1,2) = 0. ◀

▶ Theorem 6. In any MPC protocol of maximal threshold n = 2t + 1 that evaluates
yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communication is at least

1
2

n∑
i=1

H∗
f (Xi)

bits of information.

Proof. Consider any party Pi. Then for any partition of the remaining 2t parties into two
groups of size t, Lemma 5 gives a lower bound on H(C1,3) for a certain setting of the inputs.
We then choose the maximum such lower bound which is precisely H∗

f (Xi). By perfect
passive security, the adversary is not allowed to distinguish between different distributions
of messages so we can add the lower bound obtained for each choice of Pi. Finally, we
divide by two because each bit is counted exactly twice: once at the sender and once at the
receiver. ◀

2.3 Lower bound, arbitrary functions, submaximal threshold
In this section we consider the case when the number of corruptions is submaximal, i.e.
n = 2t+ s for some s > 1. We extend our definition of H∗

f to apply to groups of variables.
Let S be some group of parties of size s we then define:

H∗
f (XS) = max

T, |T |=t, S∩T =∅
HT

We consider a fixed partition of the parties into groups of size t, t, s: we call the concatenated
inputs of the parties in each group for X1, X2, X3, and let Ci,j denote the correspondence
between groups i, j.

Let S be a partition of the parties into sets of size s, and let S be the set of all such
partitions. Note that a party is allowed to belong to no set in S, say if 2t is not divisible by
s.

▶ Theorem 7. In any MPC protocol of submaximal threshold 2t + s that evaluates yi =
bi · fi(x1, x2, . . . , xn) with perfect passive security, the total communication is at least

max
S∈S

[
1
2

∑
S∈S

H∗
f (XS)

]

bits of information.

Proof. Consider some fixed partition S of the parties into sets of size s. We can let any
element S ∈ S define a partition of the parties into sets of size t, t, s. The third group can
be regarded as a single party with the concatenated inputs as their input. In doing so, we
obtain the result of Lemma 5 for any such partition. This means the communication for
the third group must be at least H∗

f (XS). Since the adversary is not allowed to distinguish
between different distributions of messages, we can add the communication for all S ∈ S to
get a lower bound on the communication. Finally, any such S yields a lower bound, so we
choose the partition S ∈ S that maximizes the lower bound. ◀
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The statement of the theorem allows for the function to be “asymmetric” in the sense that
some ways of partitioning the parties gives stronger bounds. If any choice of S gives the
same lower bound, we say the function f is symmetric. For symmetric functions, the above
lower bound can be simplified. We assume that s divides n for simplicity.

▶ Corollary 8. Let f be a symmetric function. Then in any MPC protocol of submaximal
threshold 2t + s that evaluates yi = bi · fi(x1, x2, . . . , xn) with perfect passive security, the
total communication is at least

n

2sH
∗
f (X1)

bits of information.

2.4 Examples
We briefly provide some examples of different choices of f . In the following, we let I denote
an upper bound on the bit length of each participants input, i.e. Xi ∈ {0, 1}I for every i.

2.4.1 Inner product
We consider a variant of the inner product function where 2t parties provide inputs, while
the last party only provides a value for b. Now consider any single party. We can then divide
the remaining 2t parties along the “aisle” of the inner product function. Closer study reveals
that almost all information in Xi matters, meaning we get:

H∗
f (Xi) = tI

Summing this up reestablishes the lower bound of [6]. We note that this lower bound is tight
up to constant factors.

2.4.2 XOR
Consider the bitwise XOR function, that takes n inputs x1, . . . xn ∈ {0, 1}I and outputs
y =

⊕n
i=1 xi. We note that two inputs XT , X

′
T provide the same expansion iff

⊕
i∈T Xi =⊕

i∈T X
′
i. This means we get:

H∗
f (Xi) = I

Summing this up gives a lower bound of Ω(nI) which only states that each party must
communicate their input. However, for two parties this is tight since a passively secure
two-party protocol for XOR is for one of the parties to simply reveal their input.

2.4.3 Ranking
Consider a function where each party Pi inputs an integer xi and learns the index of their
input in the sorted list of all inputs. Note that two inputs XT , X

′
T have the same expansion

if and only if they are permutations of each other. Strictly speaking, the “if” part is not
necessary to be proven since we are calculating a lower bound (not the upper bound), but to
illustrate, from perspective of outside T , the output mostly does not change when values
within T are permuted among themselves. (This could change some tie-breaking if the
mechanics depend on index, but it is true if we allow ties). For the “only if” part, for any
two XT and X ′

T that are different in the multi-set of values they contain, there must be an

ITC 2021



2:10 More Communication Lower Bounds for Information-Theoretic MPC

integer that is larger than a values in the multi-set of {XT } and b for {X ′
T } and a ̸= b: thus

there exists an entry in the expansion where someone outsides T holds the integer, and it
would rank differently the two cases, thus the expansion is different. For a list of n items,
the information content of a permutation on n elements is bounded by lgn! ≤ lgnn ≤ n lgn.
This means we get a communication lower bound of Ω(ntI − nt lg t) bits, which for large
inputs is Ω(ntI).

Regarding the corresponding upper bound, we can use a construction by Parberry ([17])
of a sorting network with O(n (lgn)2) gates. We can now use any passively secure MPC
protocol with linear complexity per gate to compute ranking in time O(ntI (lgn)2). This has
a discrepancy of a factor O(lgn)2 and gives a communication lower bound of Ω(n/(lgn)2)
per gate. This bound is not tight unless there is a passively secure MPC protocol for sorting
with sublinear communication complexity per gate; or if there is a circuit for sorting with
linear size. The latter is not true unless sorting can be done in linear time. As a result, it is
unlikely that our bound is tight for the ranking function.

3 Lower bounds for malicious security

In this section we prove that there is an n-party functionality that can be described by a
circuit with g gates such that each party needs to communicate at least Ω(g) bits. We show
this using a series of lemmas that bound the entropy on the communication. We first show
the special case for four parties, and then “lift” this to the general case with n parties.

Let P1, . . .Pn be parties connected by pairwise secure channels. We denote by I the
input size (in bits) of each party, and O the output size. For simplicity we assume all parties
receive the same output, and denote by f : {0, 1}nI → {0, 1}O the function to compute.

We assume an active adversary that is allowed to statically corrupt up to t parties where
3t < n. To define security we use the universal composability (UC) model by Canetti. A
quick reminder (for details, see [3]): The model includes the environment Z, a machine that
models everything that is external to the protocol, include adversarial attacks. π stands for
the protocol, i.e., a set of machines modelling the parties that executes it. The symbol ⋄
stands for “compose”, so Z ⋄ π denotes the “real process” where Z interacts with (attacks)
the protocol. The model also includes an ideal functionality F that specifies what the protocol
is supposed to do. To compare F to π, we need a simulator S that in a nutshell converts the
interface offered by F to the interface Z sees when attacking the protocol. Thus Z ⋄ S ⋄ F
denotes the “ideal process” where Z interacts with S and F and hence only attacks allowed
by F are possible. We then say that π securely implement F , if there exists a simulator S
so that no environment Z can tell if it is doing the real or the ideal process. A bit more
formally:

▶ Definition 9 (UC Security). A protocol π is said to securely realize a functionality F with
perfect malicious security if there exists a simulator S such that for any environment Z, we
have that Z ⋄ π is perfectly indistinguishable from Z ⋄ S ⋄ F.

We will consider protocols that implement a reactive ideal functionality Ff for computing f
securely. The functionality first receives input from each party, and sends an acknowledgement
to all parties once the inputs have been received. Finally, it accepts an additional input from
all parties, it then computes the function and sends the output to all parties. As we shall see,
it is important towards proving our lower bound that we consider this reactive case, rather
than the simpler version where the functionality gets all the inputs in one go.
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Note that any protocol implementing Ff will naturally consist of two phases: one that
implements the part where the first inputs are sent, which we call the input phase, and the
rest, which we call the computation phase. This implies that the first batch of inputs are
committed in the first phase, before any information on the second batch of inputs or the
output is revealed.

Note that the structure imposed by our choice of Ff still allows us to model quite natural
tasks. The concrete function we consider below is one where a long bit string (a “database”)
is committed in the first phase, and then the function computed will securely extract a
particular entry in the database.

3.1 Lower bound, malicious security, four parties
We start by considering a special case of active MPC with four parties P1, . . .P4. In the
input phase, the functionality receives an input bit string Xi from each Pi. We assume that
X1 ∈ {0, 1}I (we do not need to assume anything about the lengths of the other inputs).
Let L be the length of the concatenation X = X1||X2||X3||X4. In the second phase, the
functionality receives an integer ui from Pi, where ui ∈ ZL. It outputs (u,X[u]), where
u =

∑
i ui mod L.

We call this function fI,4. It has the important property that if the input X1 of P1
is changed, there is always a setting of the other inputs for which the change of X1 will
cause the output to change, namely if u points to a position in X1 that was changed. One
consequence of this is the following lemma:

▶ Lemma 10. Assume protocol π computes n-party function f with perfect security, and
it is the case that for any x′

1 ̸= x1, there are values x2, ..., xn of the other inputs such that
f(x1, ..., xn) ̸= f(x′

1, x2, ..., xn). Assume further that P1 has input x1, is corrupt but plays
honestly. Then the simulator for π must always send x1 as input to the functionality for f
on behalf of P1.

Proof. If all players are honest and have inputs x1, ..., xn, then by perfect security the output
must be f(x1, ..., xn). If instead P1 is corrupt but plays honestly, the protocol does exactly
the same as if all players are honest so the output is still f(x1, ..., xn). Hence, when simulating
this case, the simulator must send x1 to the functionality, for any other value x′

1 it may send,
the output in the simulation will be incorrect for some choice of x2, ..., xn, by assumption in
the lemma. ◀

Before continuing, we define some terminology: suppose we are given a player P that takes
part in a protocol π, and let t be a transcript, that is, the ordered set of all messages sent
and received during an execution of the protocol. Now, sampling random coins consistent
with t means to sample uniformly a random tape r that could have been used to create t if
P had done the protocol honestly. In other words, r has the property that if P starts π with
random tape r and receives in each round the messages specified in t, he would send the
messages specified in t in each round. Of course, such a sampling is not always efficient, but
remember that we consider perfectly secure protocols that must be robust against unbounded
adversaries.

▶ Theorem 11. In any reactive protocol that implements FfI,4 with perfect malicious security,
P4 must use average communication Ω(I).

Proof. Consider a protocol π that computes the function with perfect security. We will
consider the messages sent in π as random variables as follows: fix the inputs of P2,P3 and
P4 to arbitrary values x2, x3, x4, and let the input of P1 be chosen uniformly. Assume π is
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executed such that all parties follow the protocol. Now, we let Ti for i = 1, 2, 3, 4 be the
random variable that represents concatenation of all messages sent to and from Pi in the
execution of the input phase.

Since the communication pattern must not depend on the inputs, it suffices to show that
H(T4) ≥ H(X1). We first show this follows from the following two equations:

H(X1 | T2) = H(X1) (3)
H(X1 | T2, T4) = 0 (4)

To see this, we apply the chain rule for Shannon entropy:

H(T4) ≥ H(T4 | T2) + H(X1 | T2, T4) = H(X1, T4 | T2) ≥ H(X1 | T2) = H(X1)

We now show each claim separately:
1. Perfect malicious security implies there is a simulator for a corrupt P2 that plays honestly.

The messages created by the simulation are distributed exactly as in a real execution.
However, while simulating the input phase, the simulator does not have access to the
output, and hence has no information on X1. It follows that H(X1 | T2) = H(X1).

2. Suppose for the sake of contradiction that X1 is not determined by T2, T4. This means
there must exist (at least) two different executions of the input phase where P1 has
different inputs, but the messages seen by P2,P4 are the same. More formally, there exist
sets of values of (T1, T2, T3, T4), say (t1, t2, t3, t4) and (t′1, t2, t′3, t4) both with non-zero
probability where the first case can occur with X1 = x1 and the second with X1 = x′

1,
where x1 ̸= x′

1. We define a value e such that x1[e] ̸= x′
1[e]. Now consider the following

two attacks on the input phase, represented by environments Z,Z ′:
a. Z chooses inputs x1, x2, x3, x4 for the respective parties, corrupts P3, but lets her plays

honestly in the input phase. If at the end of the input phase P3 obtains transcript
T3 = t3, she will pretend that she saw T3 = t′3 instead. She samples random coins r′

3
consistent with t′3 and completes the protocol honestly, assuming that her view of the
input phase was (x3, r

′
3, t

′
3). In the last phase, Z sets the inputs ui in some fixed way

such that e =
∑

i ui mod L.
b. Z ′ chooses inputs x′

1, x2, x3, x4 for the respective parties, corrupts P1, but lets her
plays honestly in the input phase. If at the end of the input phase P1 obtains transcript
T1 = t′1, she will pretend that she had x1 as input and saw T1 = t1 instead. She samples
random coins r1 consistent with t1 and completes the protocol honestly assuming her
view of the input phase was (x1, r1, t1). In the last phase, Z sets the inputs ui in some
fixed way such that e =

∑
i ui mod L.

We can now observe that when the real protocol executes in the first attack, with non-zero
probability, it is the case that P1 has input x1 and transcripts t1, t2, t3 and t4 were
produced in the input phase. Likewise in the second attack it may happen that P1
received input x′

1 and transcripts t′1, t2, t′3 and t4 were produced in the input phase.
Assuming these events, we see that the protocol execution after the input phase will
be the same in the two scenarios: in both cases the players will do the last part of the
protocol honestly starting from views (x1, r1, t1), (x2, r2, t2), (x3, r

′
3, t

′
3), (x4, r4, t4), where

all random coins are uniform, given the corresponding transcripts. Since these views are
identically distributed in the two cases and the inputs chosen in the last phase are the
same, the same output distribution D is generated in both cases.
Now consider the simulation of the two attacks. Note that the ideal functionality always
computes the output from x1, x2, x3, x4 in the first case, and from x′

1, x2, x3, x4 in the
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second, by Lemma 10. This means that the output is x1[e] in the first case and x′
1[e] in

the second. Assume without loss of generality that x1[e] = 0 and x′
1[e] = 1.

On the other hand, we have just seen that the real protocol may sometimes generate
output distribution D under both the first and the second attack. Clearly, the probability
that D outputs 0 is non-zero, or the probability of output 1 is non-zero. Assume the
second case, without loss of generality.
Now, Z can break perfect security: if it sees output 0, it guesses that it has been talking
to the simulation, and otherwise it guesses that it is in the real case. Clearly Z will
always guess simulation in the ideal (simulated) case but will guess real with non-zero
probability in the real case, contradicting perfect indistinguishability. ◀

▶ Remark 12. We can now explain why it is not clear that our proof technique would work if
we had used the standard functionality for secure function evaluation where all inputs are
given in one go: In order to show that the input phase can produce the same state for the
protocol from both input x1 and x′

1 for P1, we need to restrict to a particular subset of the
transcripts that might occur. But if that same phase also includes provision of the inputs ui

and perhaps the computation of u, the possible values of u might be similarly restricted, so
it is not clear that the environment can still choose the index e so that it will “catch” the
difference between x1 and x′

1.

3.2 Lower bound, malicious security, n parties, maximal threshold
We now show that the bound generalizes to multiple parties. Let n = 3t+ 1 and denote the
parties by P1,1, . . .P1,t,P2,1, . . .P2,t,P3,1, . . .P3,t,P4. Define by IPI,n the following function-
ality: each party first provides an I-bit input. When all inputs have been received they are
concatenated to form X, then each party provides number ui ∈ ZL where L is the length of
X. We set u =

∑
i ui mod L and (u,Xu) is returned.

▶ Lemma 13. IPI,n can be computed by a circuit C with O(nI) gates.

Proof. Let S = nI be input size and assume for simplicity that S = 2k is an exact power
of two. We assume the circuit takes O(lgS) additional bits which we will denote by r, it
corresponds to the index u above. Strictly speaking, we should take the ui as input and
compute their sum modulo L, but the size of the circuit for doing this is insignificant, it is
clearly o(nI) for all large enough I. We now proceed using induction in k:

Base-case k = 0: the circuit simply outputs its input bit. This is clearly uniform in the
input.
Induction k > 0: we may split the input into two 2k−1 sized halves X0, and X1. By
induction there are circuits C0, C1 each with O(2k−1) gates computing X0,X1, let y0, y1
be the output gates. It suffices to combine C0, C1 using a constant number of gates. We
now construct the circuit y = (y0 ∧ rk) ∨ (y1 ∧ rk): this takes at most four gates which is
clearly constant. In addition both C0, C1 choose their elements uniformly at random: if
rk is indeed a random bit then y is also uniform.

The result now follows since t = Θ(n). ◀

▶ Lemma 14. Any reactive protocol that realizes IPI,n with perfect malicious security must
have total average communication Ω(ntI).

Proof. Consider any party P. We may group the remaining 3t parties arbitrarily into 3
groups, each consisting of t parties to produce a functionality equivalent to FftI,4 where P
plays the role of P4. Corrupting any party in the 4-party case corrupts at most t parties in
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IPI,n, and the inputs of a t party group are formed by combining the inputs of the individual
players in the group (using concatenation or addition modulo L). By this translation, the
player P1 is the 4-player setting has an input of length tI in the first phase, and hence, by
Theorem 11, P must communicate at least Ω(tI) bits. We can apply this argument to each
of the 3t+ 1 parties and add their resulting communications. It should be noted that this
counts every bit twice: once at the sender, and once at the receiver, however this has no
effect on the asymptotic complexity. We conclude the total average communication is Ω(ntI)
bits. ◀

▶ Theorem 15. There is a (familiy of) Boolean circuit(s) C with g gates such that any reactive
n-party protocol computes C with perfect malicious security must use total communication
Ω(ng).

Proof. Follows immediately from Lemmas 13 and 14 since t = Θ(n). ◀

3.3 Lower bound, malicious security, n parties, submaximal threshold
In this section we consider the case where t is submaximal, i.e. n = 3t+ s for some integer
s > 0.

▶ Theorem 16. There is a Boolean circuit C with g gates such that any reactive n-party
protocol that computes C with perfect malicious security where n = 3t+ s for some s > 0,
and t is the number of corruptions, must use total communication Ω(ng/s).

Proof. By Lemma 13 it suffices to show a total communication lower bound of Ω(ntI/s).
Consider any partition of the 2t+ s honest parties into sets of size s. For simplicity assume s
divides 2t+ s so that any such partition consists of exactly 2t/s+ 1 sets. We may group each
set of s honest parties into a single party which we will call P4. The remaining 3t parties
may be arbitrarily grouped together into 3 groups of t parties each. This immediately gives
a protocol for IPtI,4 where Theorem 11 applies, meaning P4 must communicate Ω(tI). Since
each set of k honest parties are disjoint we may add their communications together to get
the total communication up to a constant factor. There are 2t/s+ 1 such sets giving a total
communication of (2t/s+ 1)Ω(tI) = Ω(ntI/s) = Ω(ng/s). ◀

3.4 Lower bound, malicious security, arithmetic circuits
The argument presented in previous sections only considered Boolean circuits, however
the same argument applies to arithmetic circuits. Let F be a finite field whose elements
require κ bits to describe. The exact same line of reasoning applies with the difference that
H(X1) = κI instead of H(X1) = I. This increases the bounds by a factor of κ showing the
following:

▶ Theorem 17. There is an arithmetic circuit C with elements of size κ with g gates such
that any reactive n-party protocol that securely computes C where n = 3t+ s for some s > 0,
and t is the number of corruptions, must use total communication Ω(ngκ/s).

3.5 Weakening the assumptions
Instead of assuming UC security we can instead make do with much weaker assumptions in
order to show our lower bounds: What we can assume is a two-phase protocol as defined
before, but with much weaker demands on the simulator than what we need for UC security,
as we now sketch:
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The protocol in question can be split in two phases: we call the first one the input phase
and the second the computation phase.
The simulator first simulates the input phase and then the computation phase. It
may rewind the adversary during both phases, but once it has started simulating the
computation phase, it is not allowed to rewind back to the input phase.
Once the simulator starts simulating the computation phase, and the functionality has
received all the inputs, the simulator may now ask for the outputs (so this means it
cannot ask for the output during the input phase).

It is not hard to see that our lower bound proofs go through, also in this model.

3.6 Lower bound, malicious security, statistical security
The lower bound presented above crucially relied on perfect security of the underlying
protocol. In this section we briefly sketch where the lower bound for four parties breaks down
in the case of statistical security. We show how the four parties may compute the function
IPI,4 in a way where P4 has a communication complexity of O(poly(n)). In particular, the
communication complexity of P4 is independent of I, the input size.

It is well-known that we can compute any circuit with statistical security in an honest
majority setting given access to a broadcast channel. We will then let P1,P2,P3 run such a
protocol, letting P4 assist only in the broadcasts (since t < n/3 is required for broadcast).
Specifically, P4 produces a VSS of her input and broadcasts to the other parties, who then
compute a VSS of P4s output and sends back. We use the protocol by [1]. We denote by
X + Y · BC a communication complexity of X bits, and Y bits for broadcast.

▶ Theorem 18 (Ben-Sasson, Fehr, Ostrovsky). Let C be a Boolean circuit with g gates. Then
there is a statistically secure MPC protocol (with security parameter κ) for computing C with
communication complexity O((n lgn) g) +O(n3 κ) · BC.

The communication required for P4 is dominated by the cost of doing broadcasts, which in
particular is independent of I, the input size. This means the lower bound of Theorem 1
does not apply in the statistical setting, even without a broadcast channel. Interestingly,
this suggests a “gap” between the two worlds.

We now show various upper bounds and compare them to the corresponding lower bounds.
In most cases we are able to match the lower bounds up to a constant factor, however there
is a gap of O(lgn) in the case of “unshaped” Boolean circuits, resulting from the fact that
we need > n evaluation points to do secret sharing.

3.7 Upper bound, malicious security, arithmetic circuits
For arithmetic circuits over large fields the parties can secret share their inputs and compute
the circuit using Beaver triples. A recent protocol by [14] gives a protocol that is not
dependent on the depth of the circuit being computed:

▶ Theorem 19 (Goyal, Liu, Song). If C is an arithmetic circuit with g gates over a field
F with |F| > n, and κ is the size of field element, then there is a perfect maliciously secure
protocol for computing C using O(ngκ+ n3κ) bits of communication.

This shows that our lower bound of Ω(ngκ) is tight wrt. the circuit size for arithmetic
circuits over fields of sufficient size. It also shows that our lower bound is the best generic
lower bound one can hope to prove.
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3.8 Upper bound, malicious security, IPI,n

The protocol from [14] is based on secret sharings and as a result requires fields with a size
greater than the number of players, i.e. it must be the case that |F| > n. This is because n
distinct evaluation points are needed for the secret sharing. For smaller fields this is usually
remedied by mapping elements into an extension field K and performing the secret sharings
there. This unfortunately incurs an overhead of O(lg n) compared to our lower bound.

To remedy this for our specific function IPI,n we can use reverse multiplication friendly
embeddings (RMFE) following the work of [4]. An RMFE allows us to evaluate multiple
small circuits in an extension field in parallel with good amortization in the communication.

▶ Definition 20. Let F be a finite field. A k-RMFE scheme (ϕ, ψ) consists of two F-linear
mappings, ϕ : Fk → K, and ψ : K → Fk where for any vectors a,b ∈ Fk it holds that:

ψ(ϕ(a) · ϕ(b)) = a ∗ b

where ∗ is the coordinate-wise (Schur) product. This allows us to perform k parallel
multiplications in F using a single multiplication in K. Using an RMFE scheme, [4] construct
a protocol for Boolean circuits with an amortized communication complexity of O(n) per
multiplication gate:

▶ Theorem 21 (Cascudo et al.). There is a secure n-party protocol for computing Ω(lgn)
parallel evaluations of a Boolean circuit with an amortized communication complexity of
O(n) per multiplication gate.

We now establish an upper bound for our functionality IPI,n:

▶ Theorem 22. There is a perfect maliciously secure protocol based on secret sharing for
computing IPI,n using O(n2I) bits of communication.

Proof. Let C be the circuit described in Lemma 13. Assume for simplicity that nI = 2k and
let u = Θ(k) be the the number of bits required to describe an element in K. At a high level
our strategy is to compose C into smaller circuits for which we get good amortization. The
resulting computation is then computed without embeddings, in the hope that so much work
was saved by parallelization that the remaining computation is asymptotically small.

The protocol is parameterized by an integer i that denotes the depth at which C is
composed into smaller circuits: the parties first invoke the protocol from [4] until all but
the last i layers remain, and then ignore the output reconstruction phase. At this point the
parties have secret sharings of an element w ∈ K that encodes all 2i wire values. The next
step is extracting secret shares of each wire value. To do so, the parties generate sharings of
random bits [r1], . . . [ru], encoding an element [r] for some random r ∈ K. To do this, each
party contributes a random bit [b] which are XORed together. To verify that the parties
actually input bits, a public opening of b2 − b is produced and verified to equal 0 (as the
only roots are 0 and 1). Next the parties compute w − r and open the result in public. The
result is added to [r] to get a sharing [w]. Linearity of the secret sharing implies the parties
may apply ψ locally to get a secret sharing of each wire value. Finally the parties invoke the
protocol [7] on the shares obtained on the rest of the circuit.

Let i = Θ(lgn) and let us analyze the communication complexity. It is clear that the
cost is dominated by the first phase since the remaining two steps do not depend on I. It is
also clear that the size of the circuit is Θ(nI) since there are nI inputs. By Theorem 21 the
complexity of the first phase is O(n) · nI = O(n2I) as we wanted to show. ◀
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3.9 Upper bound, malicious security, submaximal threshold
Both of the previous upper bounds assumed a maximal threshold of n = 3t + 1. In this
section we briefly consider the case of submaximal threshold, i.e. where n = 3t+ s for some
s > 1. In this setting we can use packed secret sharing to “pack together” s shares into a
single element, allowing us to evaluate multiple gates in parallel and saving a factor O(s)
in communication. This matches the submaximal lower bound shown in this paper up to a
constant factor. This shows that packed secret sharing is the best kind of optimization in
terms of communication one could hope to achieve.

4 Conclusion and future work

In this paper we showed two classes of lower bounds for information-theoretic multiparty
computation. For the case of active security, we have show the bound for a reactive
functionality. It remains open whether a similar bound can be shown for (non-reactive)
secure function evaluation.
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