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Abstract
Following the pioneering work of Boneh and Franklin (CRYPTO ’01), the challenge of constructing
an identity-based encryption scheme based on the Diffie-Hellman assumption remained unresolved
for more than 15 years. Evidence supporting this lack of success was provided by Papakonstantinou,
Rackoff and Vahlis (ePrint ’12), who ruled out the existence of generic-group identity-based encryp-
tion schemes supporting an identity space of sufficiently large polynomial size. Nevertheless, the
breakthrough result of Döttling and Garg (CRYPTO ’17) settled this long-standing challenge via a
non-generic construction.

We prove a tight impossibility result for generic-group identity-based encryption, ruling out
the existence of any non-trivial construction: We show that any scheme whose public parameters
include npp group elements may support at most npp identities. This threshold is trivially met by
any generic-group public-key encryption scheme whose public keys consist of a single group element
(e.g., ElGamal encryption).

In the context of algebraic constructions, generic realizations are often both conceptually simpler
and more efficient than non-generic ones. Thus, identifying exact thresholds for the limitations of
generic groups is not only of theoretical significance but may in fact have practical implications
when considering concrete security parameters.
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1 Introduction

Identity-based encryption [16, 5, 9] is one of the key pillars underlying modern cryptography,
enabling a variety of access-control applications and paving a path towards more expressive
forms of encryption schemes. Starting with the first realizations of identity-based encryption
schemes by Boneh and Franklin [5] (based on the bilinear Diffie-Hellman assumption) and
Cocks [9] (based on the quadratic residuosity assumption) in the random-oracle model [2],
extensive research has been devoted to constructing such schemes in the standard model
(e.g., [7, 3, 4, 18]) and based on other cryptographic assumptions (e.g., [12, 8, 1]).

Despite the significant progress, a substantial gap remained for nearly two decades
between the cryptographic assumptions that are known to imply public-key encryption
and those that are known to imply identity-based encryption. This gap was first studied
by Boneh, Papakonstantinou, Rackoff, Vahlis, and Waters [6] who showed that identity-
based encryption cannot be realized in a black-box manner based on trapdoor permutations
or CCA-secure public-key encryption. Then, Papakonstantinou, Rackoff and Vahlis [15]
studied the possibility of constructing generic-group identity-based encryption schemes
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(i.e., identity-based encryption schemes that do not exploit any particular property of the
representation of the underlying group [17, 14]). They showed that there are no generic-group
constructions of identity-based encryption schemes supporting an identity space of sufficiently
large polynomial size. The result of Papakonstantinou, Rackoff and Vahlis explained, in
particular, the lack of success in resolving the long-standing open problem of constructing an
identity-based encryption scheme based on the Diffie-Hellman assumption. Nevertheless, the
recent breakthrough of Döttling and Garg [11, 10] settled this open problem via a non-generic
construction.

Our contribution: A tight impossibility result for generic-group IBE. In the context of
algebraic constructions, generic realizations are often both conceptually simpler and more
efficient than non-generic ones. Thus, identifying exact thresholds for the limitations of
generic groups is not only of theoretical significance but may in fact have practical implications
when considering concrete security parameters.

For identity-based encryption schemes, such a potential threshold naturally arises by
comparing the size of the scheme’s identity space to the number of group elements that
are included in the scheme’s public parameters. Specifically, for any npp ≥ 1, already
ElGamal encryption yields a generic-group identity-based encryption scheme that supports
npp identities and whose public parameters consist of npp group elements (not including the
group’s generator). However, the work of Papakonstantinou, Rackoff and Vahlis [15] only
ruled out the existence of generic-group identity-based encryption schemes over an identity
space of sufficiently large polynomial size1.

We prove a tight impossibility result for constructing generic-group identity-based en-
cryption schemes, showing that any such scheme whose public parameters consist of npp
group elements may support up to npp identities. This matches the above-mentioned naive
threshold that is obtained via ElGamal encryption, and more generally via any generic-group
public-key encryption scheme whose public keys consist of a single group element. We prove
the following theorem:

▶ Theorem 1 (Simplified). Let IBE be a secure generic-group identity-based encryption
scheme over an identity space ID = {IDλ}λ∈N whose public parameters consist of npp(λ)
group elements, where λ ∈ N is the security parameter. Then, |IDλ| ≤ npp(λ) for all
sufficiently large λ ∈ N.

We prove our result by presenting a generic-group adversary that breaks the security of
any identity-based encryption scheme whose public parameters consist of npp group elements
and supports more than npp identities. Our result applies to schemes satisfying a rather
weak (non-adaptive) notion of security (thus ruling out, in particular, schemes that satisfy
more standard notions of security), and to schemes with imperfect correctness.

Compared to the work of Papakonstantinou, Rackoff and Vahlis [15], on the one hand our
proof follows a similar two-step structure: We first show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group
elements, and then we present an attack on any such scheme that supports more identities
than the number of group elements included in its public parameters. On the other hand,
however, our result does not only provide a tight impossibility result, but in fact provides
a somewhat more direct technical description of our attack and of its analysis. Such a
description is enabled partially due to the fact that we prove our result within Maurer’s

1 Papakonstantinou et al. proved their result for an identity space of exponential size, but their proof
seems to hold for an identity space of sufficiently large polynomial size.
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generic-group model [14], whereas Papakonstantinou et al. proved their result within Shoup’s
incomparable generic-group model [17], as discussed in Section 1.1 (e.g., in Maurer’s model
we do not have to take into account the additional randomness that is somewhat artificially
“injected” into cryptographic computations in Shoup’s model due to its random injective
encoding of group elements).

Specifically, for our first step, our transformation for eliminating group elements from
secret keys is essentially identical to the corresponding transformation of Papakonstantinou
et al. and is provided together with a significantly more direct analysis. For our second step,
our attack is based on that of Papakonstantinou et al. which relies on the common technique
of attacking the security of an idealized-model scheme relative to a partly-simulated view of
the model. Unlike our first step, in this step our attack and its analysis simultaneously refine
and simplify those of Papakonstantinou et al. for obtaining a tight bound.

1.1 Overview of Our Approach
The framework. We prove our result within the generic-group model introduced by Maurer
[14], which together with the incomparable model introduced by Shoup [17], seem to be the
most commonly used approaches for capturing generic-group computations. At a high level,
in both models algorithms have access to an oracle O for performing the group operation
and for testing whether two group elements are equal. The difference between the two
models is in the way that algorithms specify their queries to the oracle. In Maurer’s model
algorithms specify their queries by pointing to two group elements that have appeared in the
computation so far (e.g., the 4th and the 7th group elements), whereas in Shoup’s model
group elements have an explicit representation (sampled uniformly at random from the set of
all injective mappings from the group to sufficiently long strings) and algorithms specify their
queries by providing two strings that have appeared in the computation so far as encodings
of group elements.

Jager and Schwenk [13] proved that the complexity of any computational problem that is
defined in a manner that is independent of the representation of the underlying group (e.g.,
computing discrete logarithms) in one model is essentially equivalent to its complexity in the
other model. More generally, however, these two models are rather incomparable. On one
hand, the class of cryptographic schemes that are captured by Maurer’s model is a subclass
of that of Shoup’s model – although as demonstrated by Maurer his model still captures all
schemes that only use the abstract group operation and test whether two group elements
are equal. On the other hand, the same holds also for the class of adversaries, and thus in
Maurer’s model we have to break the security of a given scheme using an adversary that
is more restricted when compared to adversaries in Shoup’s model. We refer the reader to
Section 2.1 for a formal description of Maurer’s generic-group model.

Generic-group identity-based encryption. A generic-group identity-based encryption
scheme IBE over an identity space ID consists of four algorithms, denoted Setup, KG,
Enc and Dec. Informally (and quite briefly), the algorithm Setup produces a master secret
key msk ∈ {0, 1}∗ and public parameters pp, and the algorithm KG on input the master
secret msk and an identity id ∈ ID produces a secret key skid. Next, the algorithm Enc
on input public parameters pp, an identity id ∈ ID and a message b ∈ {0, 1}, produces
a ciphertext c, which should be correctly decrypted (allowing decryption error) by the
decryption algorithm Dec using the secret key skid. The outputs of these four algorithms
may consist of a combination of group elements and an explicit string, with the exception
of assuming without loss of generality that the master secret key msk is always an explicit
string (e.g., the internal randomness on which Setup is invoked).

ITC 2021
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The structure of our proof. We prove our result by presenting a generic-group adversary
that breaks the security of any identity-based encryption scheme whose public parameters
pp consist of npp group elements (and, possibly, an additional explicit string) and supports
more than npp identities. As mentioned above, at a high level, we follow a two-step structure
similar to that introduced in the work of Papakonstantinou et al. [15]: We first show that any
generic-group identity-based encryption scheme can be transformed into one in which secret
keys do not contain group elements (while modifying only its key-generation and decryption
algorithms), and then we present an attack on any such scheme that supports more identities
than the number of group elements included in its public parameters. The remainder of
this section consists of a high-level informal description of these two steps (we note that the
following description omits crucial technical details, and we refer the reader to the relevant
sections for formal descriptions and proofs).

In what follows, given a generic-group identity-based encryption scheme we let pp1, . . . ,

ppnpp , skid,1, . . . , skid,nsk and c1, . . . , cnct denote the group elements included in its public
parameters pp and in each of its secret keys skid and ciphertexts c, respectively (for simplicity,
we assume throughout this informal overview that public parameters, secret keys and
ciphertexts do not additionally contain explicit strings).

Step I: Eliminating group elements from secret keys. Given a generic-group identity-based
encryption scheme IBE = (Setup, KG, Enc, Dec), we modify its key-generation algorithm KG
and decryption algorithm Dec as follows:

The modified key-generation algorithm K̃G on input the public parameters pp, the master
secret key msk ∈ {0, 1}∗ and an identity id ∈ ID, first produces a secret key skid by
invoking the underlying key-generation algorithm KG. Then, for each message b ∈ {0, 1},
it repeatedly computes DecO(pp, skid, EncO(pp, id, b)) using fresh randomness for Enc
and Dec, and collects into a set Lid all linear equations that result from the positively-
answered equality queries in these computations. Note that since the group elements
that are given as input to these computations are those included in pp and skid (as well
as the generator 1 ∈ ZN that is given as input to all computations), then each such
equation is of the form α0 · 1 +

∑npp
ℓ=1 αℓ · ppℓ +

∑nsk
ℓ=1 βℓ · skid,ℓ = 0 for some coefficients

α0, . . . , αnpp , β1, . . . , βnsk ∈ ZN . The algorithm then outputs the modified secret key
s̃kid = Lid which consists of (npp + nsk + 1)-dimensional vectors of coefficients over ZN

(and does not contain group elements).
The modified decryption algorithm D̃ec on input the public parameters pp, a modified
secret key s̃kid = Lid and a ciphertext c, emulates the computation DecO(pp, skid, c) using
symbolic variables instead of the group elements skid,1, . . . , skid,nsk included in the secret
key skid. As long as it is able to obtain and to respond with the correct answer to all
emulated equality queries, then the emulation will be identical to the actual computation
DecO(pp, skid, c).
Note that since the group elements that are given as input to the actual computation are
those included in pp, skid and c (as well as the generator 1 ∈ ZN ), then each emulated
equality query corresponds to a linear equation of the form α0 ·1+

∑npp
ℓ=1 αℓ ·ppℓ +

∑nsk
ℓ=1 βℓ ·

skid,ℓ +
∑nct

ℓ=1 γi · ci = 0, for coefficients α0, . . . , αnpp , β1, . . . , βnsk , γ1, . . . , γnct ∈ ZN . Now,
the algorithm D̃ec uses the set Lid and the actual oracle O for responding to this query as
follows. If there exist α′

0, . . . , α′
npp
∈ ZN such that (α′

0, . . . , α′
npp

, β1, . . . , βnsk ) ∈ span(Lid),
then D̃ec issues to the actual oracle O an equality queries corresponding to the linear
equation (α0 − α′

0) · 1 +
∑npp

ℓ=1(αℓ − α′
ℓ) · ppℓ +

∑nct
ℓ=1 γℓ · cℓ = 0, and return its output as

the response. If there do not exist such α′
0, . . . , α′

npp
∈ ZN , then D̃ec responds negatively.

In other words, the algorithm D̃ec uses the knowledge provided by the set Lid in order to
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translate each equality query involving the group elements of pp, skid and c into an equality
queries that involves the group elements of only pp and c. A simple probabilistic argument
(see Claim 6) shows that this translation introduces only an arbitrary polynomially-small
decryption error 1/p(λ) when setting the number of iterations performed by the modified
key-generation algorithm to p(λ) · (npp(λ) + nsk(λ)).

Step II: Our attack. Let IBE = (Setup, KG, Enc, Dec) be a generic-group identity-based
encryption scheme over an identity space ID whose public parameters consist of npp group
elements, whose secret keys do not contain group elements, and that supports at least npp + 1
identities. For simplicity and without loss of generality we assume that {1, . . . , npp +1} ⊆ ID.

The key observation underlying our attack is based on considering the set of linear
equations that result from the positively-answered equality queries in the computations
DecO(pp, skid, EncO(pp, id, b)) for each message b ∈ {0, 1} and identity id ∈ {1, . . . , npp + 1}.
Given that the secret keys skid do not contain any group elements, then the group elements
that are given as input to these computations are only those that are included in the public
parameters pp (as well as the generator 1 ∈ ZN that is given as input to all computations).
Thus, each such equation is of the form α0 · 1 +

∑npp
ℓ=1 αℓ · ppℓ = 0 for some coefficients

α0, . . . , αnpp ∈ ZN . Given that (1, pp1, . . . , ppnpp) is a non-zero vector, then the vectors of
coefficients of these sets of equations span a linear subspace of dimension at most npp.

Therefore, for at least one identity id ∈ {1, . . . , npp +1}, it must be the case that the set of
linear equations that result from the positively-answered equality queries in the computation
DecO(pp, skid, EncO(pp, id, b)) is contained in the linear subspace spanned by the sets of
linear equations that result from the positively-answered equality queries in the computations

DecO(pp, sk1, EncO(pp, 1, b)), . . . , DecO(pp, skid−1, EncO(pp, id− 1, b)).

Moreover, once our adversary discovers this subspace by using the secret keys sk1, . . . , skid−1,
then it can intuitively generate alternative public parameters pp∗ that are consistent with
this subspace, together with a matching alternative master secret key msk∗. Then, it
uses the alternative public parameters pp∗ and master secret key msk∗ for generating an
alternative secret key sk∗

id for decrypting the challenge ciphertext. The correctness of the
scheme guarantees that, with high probability, sk∗

id will decrypt correctly a ciphertext that is
encrypted and decrypted relative to pp∗, and we show that sk∗

id is in fact useful also when
encrypting and decrypting relative to pp.

1.2 Paper Organization
The remainder of this paper is organized as follows. First, in Section 2 we present the basic
notation used throughout the paper, and formally describe the framework of generic-group
identity-based encryption. Then, in Section 3 we show that any generic-group identity-based
encryption scheme can be transformed into one in which secret keys do not contain group
elements. Finally, in Section 4 we present an attack on any generic-group identity-based
encryption scheme whose secret keys do not contain group elements, and that supports more
identities than the number of group elements included in its public parameters.

2 Preliminaries

In this section we present the basic notions and standard cryptographic tools that are used
in this work. For a distribution X we denote by x← X the process of sampling a value x

from the distribution X. Similarly, for a set X we denote by x← X the process of sampling
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a value x from the uniform distribution over X . For an integer n ∈ N we denote by [n] the
set {1, . . . , n}. A function ν : N→ R+ is negligible if for any polynomial p(·) there exists an
integer N such that for all n > N it holds that ν(n) ≤ 1/p(n).

2.1 Generic Groups and Algorithms
We prove our results within the generic-group model introduced by Maurer [14]. We consider
computations in cyclic groups of order N (all of which are isomorphic to ZN with respect to
addition modulo N), for a λ-bit prime N that is generated by an order-generation algorithm
PrimeGen(1λ), where λ ∈ N is the security parameter.

When considering such groups, each computation in Maurer’s model is associated with
a table B. Each entry of this table stores an element of ZN , and we denote by Vi the
group element that is stored in the ith entry. Generic algorithms access this table via an
oracle O, providing black-box access to B as follows. A generic algorithm A that takes
d group elements as input (along with an optional bit-string) does not receive an explicit
representation of these group elements, but instead, has oracle access to the table B, whose
first d entries store the ZN elements corresponding to the d group elements in A’s input.
That is, if the input of an algorithm A is a tuple (g1, . . . , gd, x), where g1, . . . , gd are group
elements and x is an arbitrary string, then from A’s point of view the input is the tuple
(ĝ1, . . . , ĝd, x), where ĝ1, . . . , ĝd are pointers to the group elements g1, . . . , gd (these group
elements are stored in the table B), and x is given explicitly.

All generic algorithms in this paper receive as input the order N and a generator of the
group (we capture this fact by always assuming that the first entry of B is occupied by
1 ∈ ZN ). The oracle O allows for two types of queries:

Group-operation queries: On input (i, j, ◦) for i, j ∈ N and ◦ ∈ {+,−}, the oracle
checks that the ith and jth entries of the table B are not empty, computes Vi ◦Vj mod N

and stores the result in the next available entry. If either the ith or the jth entries are
empty, the oracle ignores the query.
Equality queries: On input (i, j, =) for i, j ∈ N, the oracle checks that the ith and jth
entries of the table B are not empty, and then returns 1 if Vi = Vj and 0 otherwise. If
either the ith or the jth entries are empty, the oracle ignores the query.

In this paper we consider interactive computations in which multiple algorithms pass
group elements (as well as non-group elements) as inputs to one another. This is naturally
supported by the model as follows: When a generic algorithm A outputs k group elements
(along with a potential bit-string σ), it outputs the indices of k (non-empty) entries in
the table B (together with σ). When these outputs (or some of them) are passed on as
inputs to a generic algorithm C, the table B is re-initialized, and these values (and possibly
additional group elements that C receives as input) are placed in the first entries of the table.
Additionally, we rely on the following conventions:
1. Throughout the paper we refer to values as either “explicit” ones or “implicit” ones.

Explicit values are all values whose representation (e.g., binary strings of a certain length)
is explicitly provided to the generic algorithms under consideration. Implicit values are
all values that correspond to group elements and that are stored in the table B – thus
generic algorithms can access them only via oracle queries. We will sometimes interchange
between providing group elements as input to generic algorithms implicitly, and providing
them explicitly. Note that moving from the former to the latter is well defined, since a
generic algorithm A that receives some of its input group elements explicitly can always
simulate the computation as if they were received as part of the table B.
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2. For a group element g, we will differentiate between the case where g is provided explicitly
and the case where it is provided implicitly via the table B, using the notation g in the
former case, and the notation ĝ in the latter. Additionally, we extend this notation to
a vector v of group elements, which may be provided either explicitly (denoted v) or
implicitly via the table B (denoted v̂).

2.2 Generic-Group Identity-Based Encryption

The following definition adapts the standard notion of an identity-based encryption scheme
to the generic-group model.

▶ Definition 2. A generic-group identity-based encryption scheme over an identity space
ID = {IDλ}λ∈N is a quadruple IBE = (Setup, KG, Enc, Dec) of generic algorithms defined
as follows:

The algorithm Setup is a probabilistic algorithm that receives as input the security para-
meter λ ∈ N and the group order N , and outputs a master secret key msk ∈ {0, 1}∗ and
public parameters pp = (ppG, ppstr), where ppG is a tuple of npp group elements and ppstr
is a binary string.
The algorithm KG is a (potentially) probabilistic algorithm that receives as input public
parameters pp, a master secret key msk and an identity id. It outputs an identity secret
key skid = (skid,G, skid,str), where skid,G is a tuple of group elements and skid,str is a binary
string.
The algorithm Enc is a probabilistic algorithm that receives as input public parameters pp,
an identity id, and a bit b ∈ {0, 1}. It outputs a ciphertext c = (cG, cstr), where cG is a
tuple of group elements and cstr is a binary string.
The algorithm Dec is a (potentially) probabilistic algorithm that receives as input public
parameters pp, an identity secret key skid, and a ciphertext c. It outputs either a bit
b ∈ {0, 1} or the special rejection symbol ⊥.

We consider the standard correctness and security requirements of identity-based encryp-
tion schemes. In fact, we consider a rather weak notion of non-adaptive security asking the
attacker to choose both the challenge identity and the identities for which secret keys are
provided ahead of time (since we prove an impossibility result then this can only strengthen
our result).

▶ Definition 3. A generic-group identity-based encryption scheme IBE =
(Setup, KG, Enc, Dec) over an identity space ID = {IDλ}λ∈N has decryption error
ϵ = ϵ(λ) if for any security parameter λ ∈ N, for any N produced by PrimeGen(1λ), for any
(msk, pp) produced by SetupO(1λ), for any id ∈ IDλ, and for any b ∈ {0, 1} it holds that

Pr
[
DecO(pp, skid, EncO(pp, id, b)) = b

]
≥ 1− ϵ

where skid ← KGO(pp, msk, id), and the probability is taken over the internal randomness of
the algorithms KG, Enc and Dec.

We note that our results can be easily adapted to a more relaxed notion of correctness,
asking that the above holds for almost all (msk, pp) produced by SetupO(1λ) instead of for
all such (msk, pp).

ITC 2021
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▶ Definition 4. A generic-group identity-based encryption scheme IBE =
(Setup, KG, Enc, Dec) over an identity space ID = {IDλ}λ∈N is non-adaptively se-
cure if for any generic-group algorithm A = (A1,A2) that issues a polynomial number of
queries there exists a negligible function ν(λ) such that∣∣∣∣Pr

[
ExptIBE,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ ν(λ)

for all sufficiently large λ ∈ N, where the experiment ExptIBE,A(λ) is defined as follows:
1. N ← PrimeGen(1λ).
2. (id∗, id1, . . . idk, state)← AO

1 (1λ, N), for a polynomial k = k(λ), where id∗, id1, . . . idk ∈
IDλ and id∗ /∈ {id1, . . . idk}.

3. (msk, pp)← SetupO(1λ, N).
4. skidi

← KGO(pp, msk, idi) for i ∈ [k].
5. c∗ ← EncO(pp, id∗, b) for b← {0, 1}.
6. b′ ← AO

2 (state, pp, c∗, skid1 , . . . , skidk
).

7. If b′ = b then output 1, and otherwise output 0.

3 Eliminating Group Elements From Secret Keys

In this section we show that any generic-group identity-based encryption scheme can be
transformed into one in which secret keys do not contain group elements. The transformation
supports the same identity space, and does not modify the scheme’s setup and encryption
procedures (in particular, it does not increase the number of group elements that are
contained in the scheme’s public parameters). The transformation does modify the scheme’s
key-generation and decryption algorithms, leading to an arbitrary polynomially-small increase
in the scheme’s decryption error. We prove the following theorem:

▶ Theorem 5. Let IBE be a generic-group identity-based encryption scheme over an identity
space ID = {IDλ}λ∈N with decryption error ϵ(λ) and whose public parameters consist of
npp(λ) group elements. Then, for any polynomial p(λ), there exists a generic-group identity-
based encryption scheme ĨBE over the identity space ID with decryption error ϵ(λ) + 1/p(λ),
whose public parameters consist of npp(λ) group elements, and whose secret keys do not
contain group elements.

Preliminaries. Let A be a generic-group algorithm that receives as input group elements
g1, . . . , gk (in addition to the group element 1 ∈ ZN that is always provided as the first
input to all algorithms) and an explicit string str. We let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the

random variable corresponding to the set of all (k + 1)-dimensional vectors over ZN resulting
from the positively-answered equality queries in the (possibly randomized) computation
AO(ĝ1, . . . , ĝk, str).

Formally, for each equality query (i, j) that is positively answered during this computation,
let Vi and Vj denote the group elements that are located in the ith and jth entries of the table
B associated with oracle O in this computation (i.e., Vi and Vj are the two group elements
for which A issues this equality query). Then, Vi and Vj are linear combinations of the group
elements 1, g1, . . . , gk that are provided as input to the computation, and the coefficients
of these linear combinations can be determined by keeping track of the computation’s
group-operation queries. Let Vi − Vj = α0 · 1 +

∑k
ℓ=1 αℓ · gℓ for α0, . . . , αk ∈ ZN . The set

EQ
(
AO(ĝ1, . . . , ĝk, str)

)
consists of all such vectors (α0, . . . , αk) ∈ Zk+1

N .
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In addition, for a generic-group identity-based encryption IBE = (Setup, KG, Enc, Dec),
and for any public parameters pp produced by Setup we let pp = (pp1, . . . , ppnpp , ppstr), where
pp1, . . . , ppnpp are group elements and ppstr is an explicit string (recall that any msk produced
by Setup is an explicit string). Similarly, for any secret key skid produced by KG we let
skid = (skid,1, . . . , skid,nsk , skid,str) where skid,1, . . . , skid,nsk are group elements and skid,str is
an explicit string, and for any ciphertext c produced by Enc we let c = (c1, . . . , cnct , cstr),
where c1, . . . , cnct are group elements and cstr is an explicit string.

Finally, our proof relies on the following lemma (which is proved in Appendix A):

▶ Lemma 6. Let k ≥ 1, and let X1, . . . , Xk be independent and identically distributed random
variables over subsets of a linear vector space V of dimension dim(V ). Then,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)] ≤ dim(V )
k

.

The remainder of this section consists of the proof of Theorem 5.

Proof of Theorem 5. Let IBE = (Setup, KG, Enc, Dec), and let p = p(λ) be a polynomial.
We construct a generic-group identity-based encryption scheme ĨBE = (S̃etup, K̃G, Ẽnc, D̃ec)
by letting S̃etup = Setup and Ẽnc = Enc, and by defining the algorithms K̃G and D̃ec as
follows.

The key-generation algorithm K̃G
O

(pp, msk, id):

1. Generate skid = (ŝkid,1, . . . , ŝkid,nsk , skid,str)← KGO(pp, msk, id).
2. For every b ∈ {0, 1} and i ∈ [M − 1], where M = p · (npp + nsk), compute

DecO(pp, skid, EncO(pp, id, b)) using fresh randomness for Enc and Dec, and let

Lid,b,i = EQ
(
DecO(pp, skid, EncO(pp, id, b))

)
⊆ Znpp+nsk+1

N .

3. Output s̃kid = (Lid, skid,str), where Lid =
⋃

b∈{0,1},i∈[M−1] Lid,b,i.

The decryption algorithm D̃ec
O

(pp, s̃kid, c):

1. Let pp = (p̂p1, . . . , p̂pnpp , ppstr), s̃kid = (Lid, skid,str), and c = (ĉ1, . . . , ĉnct , cstr).
2. Emulate the computation DecO(pp, skid, c) using symbolic variables instead of

skid,1, . . . , skid,nsk (recall that skid = (ŝkid,1, . . . , ŝkid,nsk , skid,str)) by responding to each
equality query (i, j) as follows:

a. Let Vi and Vj denote the corresponding group elements, and let

Vi − Vj = α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ +
nsk∑
ℓ=1

βℓ · skid,ℓ +
nct∑
ℓ=1

γi · ci,

where α0, . . . , αnpp , β1, . . . , βnsk , γ1, . . . , γnct ∈ ZN (as explained above, these coeffi-
cients can be found by keeping track of the emulated computation’s group-operation
queries ).

b. If there exist α′
0, . . . , α′

npp ∈ ZN such that (α′
0, . . . , α′

npp , β1, . . . , βnsk ) ∈ span(Lid),
then issue group-operation queries for positioning the group element Wi,j = (α0 −
α′

0) · 1 +
∑npp

ℓ=1(αℓ − α′
ℓ) · ppℓ +

∑nct
ℓ=1 γℓ · cℓ in the table B. If Wi,j = 0 (this can be

determined by issuing a single equality query), then answer the equality query (i, j)
positively, and otherwise answer it negatively.
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c. If there do not exist such α′
0, . . . , α′

npp ∈ ZN , then answer the equality query (i, j)
negatively.

3. Output the result of the emulated computation.

First, in terms of efficiency, note that if the algorithms (Setup, KG, Enc, Dec) issue at most
a polynomial number of queries, then so do the algorithms (S̃etup, K̃G, Ẽnc, D̃ec). Second, in
terms of security, note that the scheme ĨBE is at least as secure as the scheme IBE : The
schemes have the same setup and encryption algorithms, and the modified key-generation
algorithm K̃G is defined by applying a poly-query procedure to the output of the underlying
key-generation algorithm KG. Therefore, any adversary attacking the scheme ĨBE while
issuing a polynomial number of queries (recall Definition 4) can be efficiently transformed
into an adversary attacking the scheme IBE while issuing a polynomial number of queries
and with (at least) the same advantage.

We are thus left with bounding the decryption error of the scheme ĨBE (recall Definition
3). Fix a security parameter λ ∈ N, an integer N that is produced by PrimeGen(1λ), a pair
(msk, pp) that is produced by SetupO(1λ), an identity id ∈ IDλ, and a message b ∈ {0, 1}.
The scheme IBE has decryption error at most ϵ(λ), and therefore

Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= b

]
(1)

≤ ϵ(λ) + Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= DecO(pp, skid, EncO(pp, id, b))

]
In order to bound the probability in which the computations D̃ec

O
(pp, s̃kid, EncO(pp, id, b))

and DecO(pp, skid, EncO(pp, id, b)) do not produce the same output, it suffices to bound
the probability in which an equality query is answered positively in one computation but
negatively in the other computation (as long as the responses to all equality queries are
consistent then the emulated computation carried out by D̃ec perfectly simulates Dec’s
computation).

Assuming that the responses to equality queries are consistent among the two computations
up to a certain point, then both computations issue the exact same next equality query (i, j).
Following the description of D̃ec, let Vi and Vj denote the group elements in the ith and
jth entries of the emulated table B̃, and let Vi − Vj = α

(t)
0 · 1 +

∑npp
ℓ=1 α

(t)
ℓ · ppℓ +

∑nsk
ℓ=1 β

(t)
ℓ ·

skid,ℓ +
∑nct

ℓ=1 γ
(t)
ℓ · cℓ. There are three cases to consider:

Case I: If there exist α′
0, . . . , α′

npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid),

then α′
0 ·1+

∑npp
ℓ=1 α′

ℓ ·ppℓ+
∑nsk

ℓ=1 β
(t)
ℓ ·skid,ℓ = 0. Therefore, α

(t)
0 ·1+

∑npp
ℓ=1 α

(t)
ℓ ·ppℓ+

∑nsk
ℓ=1 β

(t)
ℓ ·

skid,ℓ +
∑nct

ℓ=1 γ
(t)
i ·ci = 0 if and only if (α(t)

0 −α′
0) ·1+

∑npp
ℓ=1(α(t)

ℓ −α′
ℓ) ·ppℓ +

∑nct
ℓ=1 γ

(t)
ℓ ·cℓ = 0,

and thus the emulation obtains the correct answer to the equality query (i, j).

Case II: If the equality query (i, j) is negatively answered in Dec’s computation, and there
do not exist α′

0, . . . , α′
npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then it is

also answered negatively in D̃ec’s computation.

Case III: If the equality query (i, j) is positively answered in Dec’s computation, and there
do not exist α′

0, . . . , α′
npp
∈ ZN such that

(
α′

0, . . . , α′
npp

, β
(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), then the
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equality query (i, j) is negatively answered in D̃ec’s computation. However, we show that
this case occurs with probability at most 1/p(λ).

Recall that a ciphertext c ← EncO(pp, id, b) is of the form c = (c1, . . . , cnct , cstr), where
c1, . . . , cnct are group elements and cstr is an explicit string. Since the only group elements
that are given as input to the computation EncO(pp, id, b) are 1, pp1, . . . , ppnpp , then each
cv is of the form cv = δv,0 · 1 +

∑npp
ℓ=1 δv,ℓ · ppℓ, for coefficients δv,0, . . . , δv,npp ∈ ZN that are

determined by the group-operation queries issued during the computation EncO(pp, id, b).
Therefore,

Vi − Vj = α
(t)
0 · 1 +

npp∑
ℓ=1

α
(t)
ℓ · ppℓ +

nsk∑
ℓ=1

β
(t)
ℓ · skid,ℓ +

nct∑
ℓ=1

γ
(t)
ℓ · cℓ

=
(

α
(t)
0 +

nct∑
v=1
·δv,0

)
· 1 +

npp∑
ℓ=1

(
α

(t)
ℓ +

nct∑
v=1
·δv,ℓ

)
· ppℓ +

nsk∑
ℓ=1

β
(t)
ℓ · skid,ℓ.

Now, in this case there do not exist α′
0, . . . , α′

npp
∈ ZN such that(

α′
0, . . . , α′

npp
, β

(t)
1 , . . . , β

(t)
nsk

)
∈ span(Lid), and therefore in particular(

α′
0, . . . , α′

npp
, β

(t)
1 , . . . , β

(t)
nsk

)
/∈ span(

⋃
i∈[M−1] Lid,b,i) for the specific choice of

α′
ℓ =

(
α

(t)
ℓ +

∑nct
v=1 ·δv,ℓ

)
for every ℓ ∈ {0, . . . , npp}. That is, this implies that for

the computation DecO(pp, skid, EncO(pp, id, b)) it holds that

EQ
(

DecO(pp, skid, EncO(pp, id, b))
)
⊈ span

 ⋃
i∈[M−1]

Lid,b,i

 .

Applying Lemma 6 with the linear subspace V ⊆ Znpp+nsk+1
N defined as

V =
{(

α0, . . . , αnpp , β1, . . . , βnsk

)
∈ Znpp+nsk+1

N

∣∣∣ α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ +
nsk∑
ℓ=1

βℓ · skid,ℓ = 0
}

,

which is of dimension at most npp + nsk since (1, pp1, . . . , ppnpp , skid,1, . . . , skid,nsk) is a non-
zero vector, and with random variables X1, . . . , XM that are independently sampled from
the distribution EQ

(
DecO(pp, skid, EncO(pp, id, b))

)
, we obtain from Eq. (1) that

Pr
[
D̃ec

O
(pp, s̃kid, EncO(pp, id, b)) ̸= b

]
≤ ϵ(λ) + Pr

EQ(DecO(pp, skid, EncO(pp, id, b))
)
⊈ span

 ⋃
i∈[M−1]

Lid,b,i


= ϵ(λ) + Pr [XM ⊈ span (X1 ∪ · · · ∪XM−1)]

≤ ϵ(λ) + dimV

M(λ)

≤ ϵ(λ) + npp(λ) + nsk(λ)
M(λ)

= ϵ(λ) + 1
p(λ) . ◀
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4 Attacking Generic-Group IBE Schemes

In this section we present a generic-group adversary that breaks the security of any generic-
group identity-based encryption scheme whose secret keys do not contain group elements,
and that supports more identities than the number of group elements included in its public
parameters. We prove the following theorem:

▶ Theorem 7. Let npp(λ) be a function of the security parameter λ ∈ N. Let IBE be a secure
generic-group identity-based encryption scheme over an identity space ID = {IDλ}λ∈N with
decryption error ϵ(λ) ≤ 1/160(npp(λ) + 1), whose public parameters consist of npp(λ) group
elements, and whose secret keys do not contain group elements. Then, |IDλ| ≤ npp(λ) for
all sufficiently large λ ∈ N.

Regarding the decryption error ϵ(λ) ≤ 1/160(npp(λ) + 1) considered in the above theorem,
recall that our transformation from Section 3 leads to an arbitrary polynomially-small increase
in the scheme’s decryption error.

Preliminaries. Recall that for any generic-group algorithm A that receives as input group
elements g1, . . . , gk and an explicit string str we let EQ

(
AO(ĝ1, . . . , ĝk, str)

)
denote the

random variable corresponding to the set of all (k + 1)-dimensional vectors over ZN resulting
from the positively-answered equality queries in the computation AO(ĝ1, . . . , ĝk, str) (see
Section 3 for the more formal definition). Our proof relies on the following lemma (which is
proved in Appendix B):

▶ Lemma 8. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear
vector space V of dimension dimV . Let Y be distributed uniformly over {1, . . . , k} and
independent of X1, . . . , Xk. Denote by GoodSpan the set of all (i, U1, . . . , Uk) ⊆ [k]×

(
2V
)k

for which

Pr
X1,...,Xk,Y

[XY ⊆ span (X1 ∪ · · · ∪XY −1) | Y = i, X1 = U1, . . . , Xi−1 = Ui−1] ≥ k − dimV

2k
.

Then,

Pr
X1,...,Xk,Y

[(Y, X1, . . . , Xk) ∈ GoodSpan] ≥ k − dimV

2k
.

The remainder of this section consists of the proof of Theorem 7.

Proof of Theorem 7. Let IBE be a generic-group identity-based encryption scheme over an
identity space ID = {IDλ}λ∈N with decryption error ϵ(λ) ≤ 1/160(npp + 1), whose public
parameters consist of npp = npp(λ) group elements, and whose secret keys do not contain
group elements. Assume toward a contradiction that |IDλ| ≥ npp + 1 for infinitely many
values of λ ∈ N, and assume without loss of generality that {1, . . . , npp + 1} ⊆ IDλ for
any such λ ∈ N. We present a generic-group adversary A that issues a number of queries
which is polynomial in λ, npp, and in the number of queries issued by Enc and Dec, and for
which

∣∣Pr
[
ExptIBE,A(λ) = 1

]
− 1/2

∣∣ is non-negligible for any such λ ∈ N (recall Definition 4
describing the experiment ExptIBE,A). The adversary A = (A1,A2) is defined as follows:
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Our adversary A = (A1,A2)

The algorithm AO
1 (1λ, N):

1. Sample i ← {1, . . . , npp + 1}, and output the challenge identity id∗ = i, the identities
(1, . . . , i− 1) for which secret keys will be provided to A2, and the state state = (1λ, N, i).

The algorithm AO
2 (state, pp, c∗, sk1, . . . , ski−1):

1. Let pp = (pp1, . . . , ppnpp , ppstr) for group elements pp1, . . . , ppnpp and an explicit string
ppstr (and recall that sk1, . . . , ski−1 are explicit strings).

[Part I: Using sk1, . . . , ski−1 for learning information on pp]

2. For each j ∈ {1, . . . , i− 1} perform the following steps:

a. Initialize a set Ej = ∅ of (npp + 1)-dimensional vectors over ZN .
b. For each message b ∈ {0, 1} repeat the following step for 8(npp + 1) iterations:

Compute DecO(pp, skj , EncO(pp, j, b)) using fresh randomness for Enc and Dec, and
update Ej ← Ej ∪ EQ

(
DecO(pp, skj , EncO(pp, j, b))

)
.

c. Emulate a fresh oracle Ô in order to find (pp∗, msk∗, sk∗
j ), where pp∗ =

(pp∗
1, . . . , pp∗

npp , pp∗
str) for group elements pp∗

1, . . . , pp∗
npp and explicit strings pp∗

str, msk∗

and sk∗
j , subject to the following requirements:

i. (pp∗, msk∗) and sk∗
j are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗, msk∗, j),

respectively.
ii. pp∗

str = ppstr.
iii. For every (α0, . . . , αnpp ) ∈ E1 ∪ · · · ∪ Ej−1 it holds that α0 · 1 +

∑npp
ℓ=1 αℓ · pp∗

ℓ = 0
(i.e., pp∗ satisfies the constraints induced by E1 ∪ · · · ∪ Ej−1).

iv. For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗

j , EncÔ(pp∗, j, b)) = b
]
≥ 19/20,

where the probability is taken over the internal randomness of Enc and Dec (i.e.,
the decryption error of sk∗

j is at most 1/20).
v. For each b ∈ {0, 1} it holds that

Pr
[
EQ
(

DecÔ(pp∗, sk∗
j , EncÔ(pp∗, j, b))

)
⊈ span (E1 ∪ · · · ∪ Ej−1)

]
≤ 1

5 ,

where the probability is taken over the internal randomness of Enc and Dec.
d. If such (msk∗, pp∗, sk∗

j ) are found then for each message b ∈ {0, 1} repeat the following
step for 8(npp + 1) iterations:
Compute DecO(pp, sk∗

j , EncO(pp, j, b)) using fresh randomness for Enc and Dec, and
update Ej ← Ej ∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, b))
)
.

[Part II: Constructing an alternative sk∗
i for decrypting the challenge

ciphertext]

3. Emulate a fresh oracle Ô in order to find (pp∗, msk∗, sk∗
i ), where pp∗ =

(pp∗
1, . . . , pp∗

npp , pp∗
str) for group elements pp∗

1, . . . , pp∗
npp and explicit strings pp∗

str, msk∗

and sk∗
i , subject to the following requirements:

a. (pp∗, msk∗) and sk∗
i are in the supports of SetupÔ(1λ, N) and KGÔ(pp∗, msk∗, i),

respectively.
b. pp∗

str = ppstr.
c. For every (α0, . . . , αnpp ) ∈ E1 ∪ · · · ∪ Ei−1 it holds that α0 · 1 +

∑npp
ℓ=1 αℓ · pp∗

ℓ = 0 (i.e.,
pp∗ satisfies the constraints induced by E1 ∪ · · · ∪ Ei−1).

d. For each b ∈ {0, 1} it holds that Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) = b
]
≥ 19/20 ,

where the probability is taken over the internal randomness of Enc and Dec (i.e., the
decryption error of sk∗

i is at most 1/20).
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e. For each b ∈ {0, 1} it holds that

Pr
[
EQ
(

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b))

)
⊈ span (E1 ∪ · · · ∪ Ei−1)

]
≤ 1

5 ,

where the probability is taken over the internal randomness of Enc and Dec.

4. If such (msk∗, pp∗, sk∗
i ) are not found then sample and output b′ ← {0, 1}.

5. If such (msk∗, pp∗, sk∗
i ) are found then compute DecO(pp, sk∗

i , EncO(pp, i, b)) for λ times,
where each computation uses fresh randomness for Enc, Dec and b, and count the
number of times in which decryption was correct. If decryption was correct less than
λ · 11

20 ·
(
1− 1

20

)
times, then sample and output b′ ← {0, 1}.

6. Compute and output b′ ← DecO(pp, sk∗
i , c∗).

In what follows we first analyze the number of queries issued by A, and then analyze its
success probability. It terms of oracle queries (i.e., group-operations queries and equality
queries), note that A1 does not issue any queries, and that A2 issues queries only in Steps
2(b), 2(d), 5 and 6. These queries result from invoking the algorithms Enc and Dec, where
Steps 2(b) and 2(d) consist of at most O((npp)2) such invocations, Step 5 consists of λ such
invocations, and Step 6 consists of one such invocation.

For analyzing A’s success probability, fix a security parameter λ ∈ N, a prime integer
N that is produced by PrimeGen(1λ), and a pair (msk, pp) that is produced by SetupO(1λ).
Our proof relies on the following notation:

The experiment ExptIBE,A and the description of our adversary define the random
variables sk1, . . . , ski−1 corresponding to the secret keys that A2 is given as input. For
our analysis, we additionally consider the random variables ski, . . . , sknpp+1 that are
independently sampled by computing skj ← KGO(pp, msk, j) for each j ∈ {i, . . . , npp + 1}.
We denote by Y the random variable corresponding to the choice of the challenge identity
i← {1, . . . , npp + 1} by A1.
For each j ∈ {1, . . . , npp + 1} we let Ej = ∪8(npp+1)

v=1 Ej,v, where each Ej,v denotes the
random variable corresponding to the set of vectors of coefficients of the equations found
in one iteration of Step 2(b) and of Step 2(d). More specifically, each Ej,v is sampled
from the distribution

EQ
(

DecO(pp, skj , EncO(pp, j, 0))
)
∪ EQ

(
DecO(pp, skj , EncO(pp, j, 1))

)
∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, 0))
)
∪ EQ

(
DecO(pp, sk∗

j , EncO(pp, j, 0))
)

,

where if A2 does not find a suitable sk∗
j in Step 2(c), then we define

EQ
(

DecO(pp, sk∗
j , EncO(pp, i, 0))

)
= EQ

(
DecO(pp, sk∗

j , EncO(pp, i, 0))
)

= ∅.

We denote by GoodSpan the set of all (i, U1, . . . , Unpp+1) ∈ {1, . . . , npp+1}×
(

2Z
npp+1
N

)npp+1

for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | Y = i, E1 = U1, . . . Ei−1 = Ui−1] ≥ 1
2(npp + 1) .

For avoiding additional notation, we abuse notation and denote by GoodSpan the event
in which (Y, E1, . . . , Enpp+1) ∈ GoodSpan.
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▷ Claim 9. Pr[GoodSpan] ≥ 1
2(npp+1) .

Proof. This is direct application of Lemma 8 with k = npp + 1, (X1, . . . , Xk) = (E1, . . . , Ek),
Y as defined above, and

V =
{

(α0, . . . , αnpp) ∈ Znpp+1
N

∣∣∣∣∣ α0 · 1 +
npp∑
ℓ=1

αℓ · ppℓ = 0
}

.

Note that since (1, pp1, . . . , ppnpp) is a non-zero vector then dimV ≤ npp. ◁

For the next claim, we denote by FindKey the event that A2 finds (msk∗, pp∗, sk∗
i ) in Step

3 that satisfies the required properties.

▷ Claim 10. GoodSpan ⊆ FindKey.

Proof. We show that whenever the event GoodSpan occurs, then msk, pp, and at least one
skY in the support of KGO(pp, msk, Y ) already satisfy the the required properties. Therefore,
in particular, A2 finds some (msk∗, pp∗, sk∗

i ) in Step 3 that satisfies the required properties.
Properties (a), (b) and (c) are trivially satisfied by (msk, pp, skY ) for any skY in the support
of KGO(pp, msk, Y ). In what follows we show that properties (d) and (e) are satisfied by at
least one skY in the support of KGO(pp, msk, Y ).

The decryption error of the scheme is at most 1
160(npp+1) . Therefore, for any value of Y it

holds that

Pr
KG,Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

]
≥ 1− 1

160(npp + 1)

where skY ← KGO(pp, msk, Y ), and the probability is taken over the internal randomness of
the algorithms KG, Enc and Dec. The above holds for any value of Y and independently of
E1 ∪ · · · ∪ EY −1, and therefore

Pr
KG,Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]
≥ 1− 1

160(npp + 1) ,

where skY ← KGO(pp, msk, Y ), and the probability is taken over the internal randomness
of the algorithms KG, Enc and Dec. Denote by SkSmallErrorY the set of all outputs skY of
KGO(pp, msk, Y ) for which

Pr
Enc,Dec

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]
≥ 19

20 ,

where now the probability is taken only over the internal randomness of the algorithms Enc
and Dec. Then,

1− 1
160(npp + 1) ≤ Pr

[
DecO(pp, skY , EncO(pp, Y, b)) = b

∣∣∣ GoodSpan
]

≤ Pr [skY ∈ SkSmallErrorY | GoodSpan] · 1

+ (1− Pr [skY ∈ SkSmallErrorY | GoodSpan]) · 19
20 .

Therefore,

Pr[skY ∈ SkSmallErrorY | GoodSpan] ≥ 1− 1
8(npp + 1) . (2)
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Similarly, denote by SkGoodY the set of all outputs skY of KGO(pp, msk, Y ) for which

Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan, skY ] ≥ 1
4(npp + 1) .

Then, from the definition of GoodSpan we obtain

1
2(npp + 1) ≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≤ Pr[SkGoodY | GoodSpan] · 1 + (1− Pr[SkGoodY | GoodSpan]) · 1
4(npp + 1)

and therefore

Pr[skY ∈ SkGoodY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan] ≥ 1
4(npp + 1) . (3)

Therefore, combining Eq. (2) and (3) we obtain

Pr[skY ∈ SkGoodY ∩ SkSmallErrorY | (Y, E1, . . . , Enpp+1) ∈ GoodSpan]

≥ 1
4(npp + 1) −

1
8(npp + 1)

= 1
8(npp + 1) . (4)

Note that property (d) is satisfied by any skY ∈ SkSmallErrorY . We will now show that
property (e) is satisfied by any skY ∈ SkGoodY conditioned on GoodSpan, which together
with Eq. (4) (and the fact that Pr[GoodSpan] > 0 as shown in Claim 9) settles the proof.

Recall that EY = ∪8(npp+1)
v=1 EY,v where {EY,v}

8(npp+1)
v=1 are identically distributed and

independent given E1, . . . , EY −1 and skY . Therefore, the definition of SkGoodY implies that
1

4(npp + 1)

≤ Pr
[
EY ⊆ span (E1 ∪ · · · ∪ EY −1)

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

]
= Pr

[
∧8(npp+1)

v=1 (EY,v ⊆ span (E1 ∪ · · · ∪ EY −1))
∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan

skY ∈ SkGoodY

]

=
8(npp+1)∏

v=1
Pr
[
(EY,v ⊆ span (E1 ∪ · · · ∪ EY −1))

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

]

=
(

Pr
[
(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1))

∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

])8(npp+1)
.

Therefore,

Pr [(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ∈ SkGoodY ]

≥
(

1
4(npp + 1)

) 1
8(npp+1)

≥ 4
5 .

In addition, recall that,

EY,v = EQ
(

DecO(pp, skY , EncO(pp, Y, 0))
)
∪ EQ

(
DecO(pp, skY , EncO(pp, Y, 1))

)
∪ EQ

(
DecO(pp, sk∗

Y , EncO(pp, Y, 0))
)
∪ EQ

(
DecO(pp, sk∗

Y , EncO(pp, Y, 0))
)

,
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Now, since for each b ∈ {0, 1}, EQ
(

DecO(pp, skY , EncO(pp, Y, b))
)
⊆ EY,1, then for each

b ∈ {0, 1} it holds that

Pr

EQ(DecO(pp, skY , EncO(pp, Y, b))
)

⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣∣∣∣ (Y, E1, . . . , Enpp+1) ∈ GoodSpan
skY ∈ SkGoodY

 ≥ 4
5 ,

as required. ◁

For the next claim, note that if the event GoodSpan occurs, then by Claim 10 the event
FindKey occurs as well, and therefore pp∗, msk∗ and sk∗

i are well defined.

▷ Claim 11. For each b ∈ {0, 1} it holds that

Pr
[

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′) = DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′)
∣∣∣GoodSpan

]
≥ 3

5 ,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of
Enc and Dec, respectively.

Proof. Fix b ∈ {0, 1}. The definition of the set GoodSpan, together with the fact that
EY = ∪8(npp+1)

v=1 EY,v where {EY,v}
8(npp+1)
v=1 are identically distributed and independent given

E1, . . . , EY −1 and skY , imply that

1
2(npp + 1)

≤ Pr[EY ⊆ span (E1 ∪ · · · ∪ EY −1) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

= Pr[∧8(npp+1)
v=1 (EY,j ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

=
8(npp+1)∏

v=1
Pr[(EY,j ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

=
(

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]
)8(npp+1)

.

Therefore,

Pr[(EY,1 ⊆ span (E1 ∪ · · · ∪ EY −1)) | (Y, E1, . . . , Ek) ∈ GoodSpan, skY ]

≥
(

1
2(npp + 1)

) 1
8(npp+1)

≥ 4
5 .

Since

Ei,1 = EQ
(

DecO(pp, ski, EncO(pp, i, 0))
)
∪ EQ

(
DecO(pp, ski, EncO(pp, i, 1))

)
∪ EQ

(
DecO(pp, sk∗

i , EncO(pp, i, 0))
)
∪ EQ

(
DecO(pp, sk∗

i , EncO(pp, i, 0))
)

,

then, in particular, it holds that

Pr[EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b))

)
⊆ span (E1 ∪ · · · ∪ Ei−1) | GoodSpan, ski] ≥

4
5 .

Since sk∗
i and the randomness of Enc and Dec are independent of ski, then also

Pr
[
EQ

(
DecO(pp, sk∗

i , EncO(pp, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣ GoodSpan
]
≥ 4

5 .

ITC 2021



26:18 Generic-Group Identity-Based Encryption: A Tight Impossibility Result

One of the requirements of (msk∗, pp∗, sk∗
i ) is that

Pr
[
EQ

(
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b))
)
⊆ span (E1 ∪ · · · ∪ Ei−1)

]
≥ 4

5 ,

where the probability is taken over the internal randomness of Enc and Dec, and therefore

Pr

 EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
∪

EQ
(

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′)

)
⊆ span (E1 ∪ · · · ∪ Ei−1)

∣∣∣∣∣∣ GoodSpan


≥ 4

5 + 4
5 − 1 = 3

5 ,

where the probability is taken over the internal randomness r ∈ {0, 1}∗ and r′ ∈ {0, 1}∗ of
Enc and Dec, respectively. Now, for each such r and r′ that satisfy

EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
∪ EQ

(
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′)
)

⊆ span (E1 ∪ · · · ∪ Ei−1)

we claim that

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′) = DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′).

The two computations have the same explicit inputs since ppstr = pp∗
str and sk∗

i does not
contain group elements. Assuming that the responses to the equality queries are consistent
among the two computations up to a certain point, then both computations issue the exact
same next equality query (i1, i2). Let Vi1 and Vi2 denote the group elements that are located
in the corresponding entries of the table B associated with oracle O. Let V ∗

i1
and V ∗

i2
denote

the group elements that are located in the corresponding entries of the table B̂ associated
with oracle Ô. Let Vi1 − Vi2 = α0 · 1 +

∑npp
r=1 αr · ppr for α0, . . . , αr ∈ ZN . Since the two

computations are the same up to this point, V ∗
i1
− V ∗

i2
= α0 · 1 +

∑npp
r=1 αr · pp∗

r .
On the one hand, if the equality query (i1, i2) is answered positively in the computation

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′), then

(α0, . . . , αnpp) ∈ EQ
(

DecO(pp, sk∗
i , EncO(pp, i, b; r); r′)

)
and therefore (α0, . . . , αnpp) ∈ span (E1 ∪ · · · ∪ Ei−1). But pp∗ is chosen to satisfy E1 ∪
· · ·∪Ei−1, and so α0 ·1+

∑npp
r=1 αr ·pp∗

r = 0, and this equality query is also answered positively
by the computation DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b; r); r′).
On the other hand, if the equality query (i1, i2) is answered positively by the computation

DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′), then an symmetric argument shows that this equality

query is also answered positively by the computation DecO(pp, sk∗
i , EncO(pp, i, b; r); r′). ◁

▷ Claim 12. For each b ∈ {0, 1} it holds that

Pr
[

DecO(pp, sk∗
i , EncO(pp, i, b)) = b

∣∣∣GoodSpan
]
≥ 11

20 .

Proof. The event GoodSpan implies the event FindKey, and therefore the secret key sk∗
i

chosen in Step 3 satisfies

Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) = b
]
≥ 19

20 ,



G. Schul-Ganz and G. Segev 26:19

where the probability is taken over the internal randomness of the algorithms Enc and Dec.
Combining this with Claim 11 we obtain

Pr
[
DecO(pp, sk∗

i , EncO(pp, i, b)) ̸= b
∣∣∣ GoodSpan

]
≤ Pr

[
DecO(pp, sk∗

i , EncO(pp, i, b; r); r′)

̸= DecÔ(pp∗, sk∗
i , EncÔ(pp∗, i, b; r); r′)

∣∣∣∣∣ GoodSpan
]

+ Pr
[
DecÔ(pp∗, sk∗

i , EncÔ(pp∗, i, b)) ̸= b
]

≤ 2
5 + 1

20
= 9

20 . ◁

For the following claims, we denote by Pass the event that sk∗
i passes the test in Step 5,

and denote by Win the event in which ExptIBE,A(λ) = 1.

▷ Claim 13. Pr[Win | GoodSpan] ≥ 11
20 ·

(
1− e−Ω(λ)).

Proof. Claim 12 and Chernoff’s bound imply that

Pr[Win | GoodSpan] ≥ Pr[Win | Pass ∩ GoodSpan] · Pr[Pass | GoodSpan]

≥ 11
20 ·

(
1− e− (0.05)2

2 · 11
20 ·λ
)

. ◁

▷ Claim 14. Pr[Win | GoodSpan] ≥ 1
2 ·
(
1− e−Ω(λ)).

Proof. Recall that FindKey denotes the event in which A finds (msk∗, pp∗, sk∗
i ) in Step 3 that

satisfies the required properties. Therefore,

Pr[Win | GoodSpan] = Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]
+ Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

= Pr[Win | FindKey ∩ GoodSpan] · Pr[FindKey | GoodSpan]

+ 1
2 · Pr[FindKey | GoodSpan] (5)

Denote by FoundUseful the event in which A finds sk∗
i in Step 3 and the success probability

of sk∗
i at decrypting correctly is at least 1/2. That is, FoundUseful is the event in which

for each b ∈ {0, 1} it holds that Pr[DecO(pp, sk∗
i , EncO(pp, i, b)) = b] ≥ 1/2, where the

probability is taken over the internal randomness of the algorithms Enc and Dec. Then,
FoundUseful ⊆ FindKey, and therefore,

Pr[Win | FindKey ∩ GoodSpan]

= Pr[Win | FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan] (6)

+ Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] · Pr[FoundUseful | FindKey ∩ GoodSpan]

Now, it holds that

Pr[Win | FoundUseful ∩ GoodSpan] ≥ 1
2 (7)

and that

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan]
≥ Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan]
· Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] (8)
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Recall that in Step 5 sk∗
i passes the test when decryption is correct for more than λ · 11

20 ·(
1− 1

20
)

= 0.5225 · λ times out of λ times. Therefore, by Chernoff’s bound,

Pr[Pass | FindKey ∩ FoundUseful ∩ GoodSpan] ≤ e− (0.0225)2
3 · 1

2 ·λ = e−Ω(λ). (9)

In addition,

Pr[Win | Pass ∩ FindKey ∩ FoundUseful ∩ GoodSpan] = 1
2 (10)

Thus, combining Eq. (8), (9) and (10) we obtain

Pr[Win | FindKey ∩ FoundUseful ∩ GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

(11)

and combining Eq. (6), (7) and (11) we obtain

Pr[Win | FindKey ∩ GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

. (12)

Finally, combining Eq. (5) and (12) we obtain

Pr[Win | GoodSpan] ≥ 1
2 ·
(

1− e−Ω(λ)
)

. ◁

▷ Claim 15. Pr
[
ExptIBE,A(λ) = 1

]
≥ 1

2 + 1
40(npp+1) − e−Ω(λ)

Proof. From Claim 13 and Claim 14 we obtain

Pr[Win] = Pr[Win | GoodSpan] · Pr[GoodSpan] + Pr[Win | GoodSpan] · Pr[GoodSpan]

≥ 11
20 ·

(
1− e−Ω(λ)

)
· Pr[GoodSpan] + 1

2 ·
(

1− e−Ω(λ)
)
· (1− Pr[GoodSpan])

= 1
2 +

(
11
20 −

1
2

)
· Pr[GoodSpan]− e−Ω(λ)

= 1
2 + 1

20 · Pr[GoodSpan]− e−Ω(λ).

Lemma 9 now implies that

Pr[Win] ≥ 1
2 + 1

20 ·
1

2(npp + 1) − e−Ω(λ)

= 1
2 + 1

40(npp + 1) − e−Ω(λ) ◁

This settles the proof of Theorem 7. ◀
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A Proof of Lemma 6

The random variables X1, . . . , Xk are independent and identically distributed, and therefore
for every i ∈ [k] it holds that

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)] = Pr [Xi ⊈ span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)] .

Thus,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)]

= 1
k
·

k∑
i=1

Pr [Xi ⊈ span (X1 ∪ · · · ∪Xi−1 ∪Xi+1 ∪ · · · ∪Xk)]

= 1
k
·

k∑
i=1

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)}

= 1
k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] ·
k∑

i=1

1{Ui⊈span(U1∪···∪Ui−1∪Ui+1∪···∪Uk)},

ITC 2021



26:22 Generic-Group Identity-Based Encryption: A Tight Impossibility Result

where for any event E we denote by 1E its indicator. Since the vector space V is of dimension
dim(V ), then for any U1, . . . , Uk ⊆ V there are at most dim(V ) indices i ∈ [k] for which
Ui ⊈ span (U1 ∪ · · · ∪ Ui−1 ∪ Ui+1 ∪ · · · ∪ Uk). Therefore,

Pr [Xk ⊈ span (X1 ∪ · · · ∪Xk−1)]

≤ 1
k
·

∑
U1,...,Uk⊆V

Pr [(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V ) = dim(V )
k

. ◀

B Proof of Lemma 8

Our proof of Lemma 8 relies on the following lemma (note that, unlike in the statement
of Lemma 6, here the random variables X1, . . . , Xk are not assumed to be independent or
identically distributed):

▶ Lemma 16. Let k ≥ 1, and let X1, . . . , Xk be random variables over subsets of a linear
vector space V of dimension dim(V ). Let Y be distributed uniformly over {1, . . . , k} and
independent of X1, . . . , Xk. Then,

Pr
X1,...,Xk,Y

[XY ⊈ span (X1 ∪ · · · ∪XY −1)] ≤ dim(V )
k

.

Proof of Lemma 16. Observe that

Pr
X1,...,Xk,Y

[XY ⊈ span (X1 ∪ · · · ∪XY −1)]

=
k∑

i=1

∑
U1,...,Uk⊆V

Pr
X1,...,Xk,Y

[Y = i ∧ (X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1)}

=
k∑

i=1

∑
U1,...,Uk⊆V

Pr
Y

[Y = i] · Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · 1{Ui⊈span(U1∪···∪Ui−1)} (13)

= 1
k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] ·

(
k∑

i=1

1{Ui⊈span(U1∪···∪Ui−1)}

)
(14)

≤ 1
k
·

∑
U1,...,Uk⊆V

Pr
X1,...,Xk

[(X1, . . . , Xk) = (U1, . . . , Uk)] · dim(V ) (15)

= dim(V )
k

where Eq. (13) follows from the fact that Y is independent of X1, . . . , Xk, Eq. (14) follows
from the fact that Y is uniformly distributed, and Eq. (15) follows from the fact that V is of
dimension dimV . ◀

Equipped with Lemma 16, we now prove Lemma 8.

Proof of Lemma 8. On the one hand, Lemma 16 implies that

k − dimV

k
≤ Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1)] .
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On the other hand,

Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1)]
= Pr [XY ⊆ span (X1 ∪ · · · ∪XY −1) | (Y, X1, . . . , Xk) ∈ GoodSpan] · Pr[GoodSpan]

+ Pr
[
XY ⊆ span (X1 ∪ · · · ∪XY −1) | (Y, X1, . . . , Xk) ∈ GoodSpan

]
· Pr[GoodSpan]

≤ Pr[GoodSpan] + k − dimV

2k
.

Therefore,

Pr[GoodSpan] ≥ k − dimV

2k
. ◀
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