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Abstract
A central question in the study of interactive proofs is the relationship between private-coin proofs,
where the verifier is allowed to hide its randomness from the prover, and public-coin proofs, where
the verifier’s random coins are sent to the prover. The seminal work of Goldwasser and Sipser
[STOC 1986] showed how to transform private-coin proofs into public-coin ones. However, their
transformation incurs a super-polynomial blowup in the running time of the honest prover.

In this work, we study transformations from private-coin proofs to public-coin proofs that
preserve (up to polynomial factors) the running time of the prover. We re-consider this question
in light of the emergence of doubly-efficient interactive proofs, where the honest prover is required
to run in polynomial time and the verifier should run in near-linear time. Can every private-coin
doubly-efficient interactive proof be transformed into a public-coin doubly-efficient proof? Adapting
a result of Vadhan [STOC 2000], we show that, assuming one-way functions exist, there is no
general-purpose black-box private-coin to public-coin transformation for doubly-efficient interactive
proofs.

Our main result is a loose converse: if (auxiliary-input infinitely-often) one-way functions do not
exist, then there exists a general-purpose efficiency-preserving transformation. To prove this result,
we show a general condition that suffices for transforming a doubly-efficient private coin protocol:
every such protocol induces an efficiently computable function, such that if this function is efficiently
invertible (in the sense of one-way functions), then the proof can be efficiently transformed into a
public-coin proof system with a polynomial-time honest prover.

This result motivates a study of other general conditions that allow for efficiency-preserving
private to public coin transformations. We identify an additional (incomparable) condition to that
used in our main result. This condition allows for transforming any private coin interactive proof
where (roughly) it is possible to efficiently approximate the number of verifier coins consistent with
a partial transcript. This allows for transforming any constant-round interactive proof that has this
property (even if it is not doubly-efficient). We demonstrate the applicability of this final result by
using it to transform a private-coin protocol of Rothblum, Vadhan and Wigderson [STOC 2013],
obtaining a doubly-efficient public-coin protocol for verifying that a given graph is close to bipartite
in a setting for which such a protocol was not previously known.
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3:2 On Prover-Efficient Public-Coin Emulation of Interactive Proofs

1 Introduction

Interactive proofs (IPs), introduced by Goldwasser, Micali and Rackoff [11] in 1985 are an
important object in the study of complexity and cryptography. An interactive proof is an
interactive protocol between two parties, a “prover” and a “verifier”, where the prover is
trying to convince the verifier of the membership of a string in a language. If this claim is
true, then the verifier should be convinced with high probability. Otherwise, if the claim is
false, then no matter what the prover does, the verifier should reject the claim with high
probability. Since their inception, a central question in the study of interactive proofs has
been the connection between private-coin proofs, where the verifier is allowed to hide its
randomness from the prover, and public-coin proofs, where hiding information is not allowed.
Public-coin protocols are especially appealing since they are easier to analyze and manipulate
[4, 1, 2, 3]. Goldwasser and Sipser [12] showed that any private-coin interactive proof can
be transformed into a public-coin proof while preserving the number of rounds (up to an
additive constant).

One issue with this transformation is that of the honest prover’s running time. Vadhan
[22] showed that (assuming the existence of one-way functions) there exist protocols that
cannot be transformed to be public-coin in a black-box manner while preserving the running
time of the prover (up to polynomial factors). While in the classical setting the running
time of the prover is considered unbounded, the recent line of works on doubly-efficient
interactive proofs (deIPs) [10] restricts the honest prover to run in polynomial time. We
emphasize that soundness is required to hold against computationally unbounded adversaries.
Doubly-efficient interactive proofs apply only to tractable computations, and are therefore of
interest when the verifier time can be smaller than the time required to decide the language
without the help of a prover. Indeed, the main focus in the literature is on verifiers that
run in near-linear time. Goldreich [5] gives a survey on recent work on doubly-efficient
interactive proofs.

1.1 This Work
In this work we ask whether transformations of proofs from using private coins to using
public coins are applicable to the doubly-efficient setting:

Which private-coin doubly-efficient interactive proofs can be transformed into public-coin
doubly-efficient proofs and how can this be done?

We tackle the above question from a number of angles. Some of our results also apply to
proofs that are not doubly-efficient.

We extend Vadhan’s impossibility result to show that the existence of one-way functions
implies that there are no transformations from private-coin deIPs to public-coin deIPs that
work in a natural “black-box” way. Note that since deIPs exist only for problems in BPP,
one can always transform such proofs to using “public-coins” by having the verifier solve the
problem on its own. This transformation is not black-box, but it is also not interesting, as
the motivation for deIPs is to reduce the verifier’s running time to under what is required for
it to solve the problem on its own.

Our main result shows that this reliance on one-way functions is essentially tight. Namely,
if one-way functions (of a certain type) do not exist, then (essentially) every doubly-efficient
proof can be efficiently transformed:

▶ Theorem 1 (Efficient emulation of deIPs in Pessiland (Informal)). Suppose that infinitely-often
auxiliary-input one-way functions do not exist. Then every language that has a doubly-efficient
private-coin interactive proof with “good enough” soundness has a doubly-efficient public-coin
interactive proof with the same number of rounds (up to a constant).
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▶ Remark 2. Theorem 1 mentions “good enough” soundness. This is due to the fact that
there is a strong degradation in soundness when applying our technique.1 One could be
tempted to amplify the soundness using parallel or sequential repetition, but in the setting of
deIPs, the overhead of repeating the protocol in terms of the verifier might be problematic
(e.g. it might degrade the verifier’s running-time from linear to quadratic).
Viewing this result through the prism of Impagliazzo’s worlds [15], it (very) roughly says
that in Pessiland (a world where one-way functions do not exist), efficiency-preserving
transformation is always possible. We prove Theorem 1 by showing that for every deIP
there exists a specific efficiently computable function such that if it is efficiently invertible in
the sense of one-way functions2, then efficiency-preserving transformation is possible (see
Section 2.1 for a discussion on the notion of invertibility). We remark that a straightforward
implementation of the Goldwasser-Sipser transformation requires exponential running time
from the prover, and even an oracle that inverts any given function (on random inputs) does
not seem sufficient for making their public-coin prover efficient. Indeed, our results require
changing the transformation so that the ability to invert becomes sufficient for constructing
a public-coin prover.

Using the technique for proving Theorem 1 (and some additional technical work) we
show that in Pessiland’s “one-way function”-less landscape, standard constant-round proofs
(i.e. ones where the honest prover is allowed to run in super-polynomial time) can also
be transformed to be public-coin with only a polynomial overhead on the honest prover’s
running time:

▶ Theorem 3 (Efficient emulation of constant-round IPs in Pessiland (Informal)). Suppose
that infinitely-often auxiliary-input one-way functions do not exist. Then every language
that has a constant-round private-coin interactive proof has a constant-round public-coin
interactive proof where the honest prover’s running time is polynomially related to that of the
private-coin prover.

1.1.1 Sufficient conditions for efficient transformation
Both the impossibility result of [22] and our extension to doubly-efficient proofs are proved
by demonstrating a specific (arguably contrived) protocol that is hard to transform. It
is very natural, then, to ask: considering interactive proofs on a case-by-case basis, for
which protocols (or families of protocols) is efficiency-preserving transformation possible?
In other words we wish to identify sufficient conditions that allow for efficiency-preserving
transformation of private-coin proofs to public-coin ones.

In particular, Theorem 1 implies one such condition: Every deIP has an efficiently
computable function such that if this function is efficiently invertible in the sense of one-way
functions, then efficient transformation for this proof system is possible.

We identify an additional, rather natural, sufficient condition for efficient transformation.
We show that if it is possible to efficiently count the number of coins that are consistent
with transcripts of the protocol, then it is also possible to efficiently emulate the protocol
using public-coins. Unlike in Theorems 1 and 3, this result does not preserve the number of
rounds, but it applies to general interactive proofs (even when the protocol has an inefficient
honest prover and a polynomial number of rounds).

1 Specifically, in order for the public-coin protocol that we end up with to have constant soundness error,
the soundness error of the original (private-coin) protocol should be O(poly(n, r, ℓ)−r) where n is the
input length, and r and ℓ are the number of rounds and number of random bits used by the verifier in
the original private-coin protocol respectively.

2 The requirement that a specific function is distributionally invertible [16] also suffices.
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▶ Theorem 4 (Efficient emulation using approximation (Informal)). Let L be a language and
suppose that L has an r-round private-coin interactive proof with communication complexity
m, and suppose that for every incomplete transcript it is possible to efficiently approximate
the number of verifier random coins that are consistent with the transcript. Then L has a
2rm-round public-coin interactive proof with an efficient prover.

A string of random coins ρ is consistent with an incomplete transcript of an execution of
a protocol if for every verifier message α in the transcript, the verifier outputs α when
given the transcript prefix leading up to α and using ρ as its random coins. We prove this
theorem using a “piecemeal” emulation protocol in which the prover and the verifier together
generate a string that is distributed according to the distribution of a random transcript
in the private-coin protocol. The soundness error of the resulting protocol is a function of
how good the approximation algorithm is. In particular, if one can exactly count the number
of verifier random coins that are consistent with a transcript efficiently, then soundness is
perfectly preserved.

Theorem 4 gives us a condition for efficiently transforming proofs from private-coin
to public-coin that is incomparable to the condition implied by Theorems 1 and 3. The
condition implied by from Theorems 1 and 3 is efficient distributional inversion for some
(efficiently computable) function that depends on the protocol, whereas Theorem 4 uses
efficient approximation of the number of verifier coins consistent with a transcript. We
demonstrate a natural protocol for which the efficient counting condition of Theorem 4 is
satisfied, whereas we don’t know how to efficiently invert the function implied by Theorems 1
and 3.

1.1.2 An application
Rothblum, Vandhan and Wigderson [18] show a private-coin proof of proximity for distin-
guishing between a graph that is bipartite and graphs that are both far from bipartite and
well-mixing. Roughly speaking, an interactive proof of proximity (IPP) is an interactive
proof where the verifier has sub-linear query access to the input. The problem of distinguish-
ing between a bipartite graph and a well-mixing graph that is far from bipartite has also
been studied extensively in the past in the context of property testing [8, 9]. By applying
Theorem 4 to the private-coin protocol of [18] we show a new doubly-efficient public-coin
proof system for this problem. We describe this below in more detail.

▶ Theorem 5 (Public-coin IPP for bipartiteness (Informal)). For every ε > 0, there exists
a public-coin interactive proof of ε-proximity with an efficient prover for the problem of
distinguishing between bipartite graphs and graphs that are ε-far from bipartite and are
well-mixing.

We remark that no such proof was previously known (except for ε close to 1).
The main property of the RVW bipartiteness protocol that we use, is the fact that it

that the (private coin) verifier uses only a logarithmic number of coins (it has logarithmic
randomness complexity), and this suffices for soundness error 1−Ω(ε). Thus, polynomial time
suffices for enumerating all possible choices of verifier randomness and for exactly counting
how many choices are consistent with the transcript. The transformation of Theorem 4
is soundness preserving when efficient exact counting is possible, and so gives an efficient
public-coin protocol with soundness error 1−Ω(ε), which can be amplified to obtain constant
soundness. See the full paper for further discussion and details.
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We note that a similar argument applies to every proof system where the verifier’s
randomness complexity is O(log n). We show that every such private-coin IP (resp. IPP)
can be transformed to a public-coin IP (resp. IPP) while the honest prover’s running time
remains polynomial.

We further note that the Goldwasser-Sipser (GS) approach to transforming private-coin
proofs into public-coin ones, and the result behind Theorem 1, can also preserve the prover’s
efficiency when the verifier’s randomness complexity is O(log n). However, the GS approach
degrades soundness significantly, and hence usually requires parallel repetition before applying
the transformation. Here, since the starting (private coin) protocol has large soundness error,
repeating it to reduce the soundness error to the point where the GS approach can be applied
requires super-logarithmic randomness complexity, which means that the GS transformation
will not preserve the prover’s efficiency. In comparison, in this setting Theorem 4 preserves
soundness (see above), and so it can be used even when the soundness error of the private-coin
protocol is large.

1.2 Related Work
A number of works have tackled the question of private versus public coins, including Haitner,
Mahmoody and Xiao [13] who showed that if the prover is given an NP oracle it is possible to
transform private-coin protocols into public-coin ones where both the prover and the verifier
run in polynomial time. Holenstein and Künzler [14] show a public-coin protocol in which the
prover helps the verifier sample from a distribution, where in addition to the sampled element
the verifier ends up with an approximation of the probability that the element is sampled
from the distribution. They then show this can be used for public-coin emulation. Goldreich
and Leshkowitz [6] improved upon the soundness requirement of Goldwasser and Sipser. In
all of the results described the prover is inefficient and the running time of the verifier incurs
a polynomial overhead. We additionally note that the celebrated IP = PSPACE Theorem
[17, 19], implies a non-black-box transformation of private-coin protocols to public-coin ones.
The protocol used to show that PSPACE ⊆ IP is public-coin, and so one can use this result
to transform private-coin protocols into public-coin ones as follows: Given an interactive
proof, use the transformation for IP ⊆ PSPACE to convert it into a PSPACE problem.
Then use the reduction and protocol showing that PSPACE ⊆ IP to construct a public-coin
proof. While this transformation is not black-box, it blows up the complexity of the honest
prover and the number of rounds of the protocol.

2 Technical Overview

2.1 Overview of the Round-Efficient Emulation
Goldwasser and Sipser [12] showed not only that it is possible to transform private-coin proofs
into public-coin ones, but also that this can be done without significantly increasing the
number of rounds in the protocol. We show that, given a distributional inverter for certain
functions, the prover can be made efficient. A distributional inverter for a function f is an
efficient randomized algorithm that upon receiving an input y drawn from the distribution
f(Un) returns a random element from the set f−1(y).
▶ Remark 6. Proving Theorems 1 and 3 would be significantly simpler if we were to consider
a stronger form of inversion, where the input y to the inverter can be any element in the
support of f . That is, y need not be given as a sample from the distribution f(Un). We
consider the weaker and more complicated variant, since it allows us to establish Theorem 1,
and through it the tight relationship between one-way functions and the (non-)existence of
private-coin to public-coin transformations that preserve the prover’s running time.

ITC 2021
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We give three toy cases for protocols of increasing complexity, and then discuss the general
case. For each case we show how Goldwasser and Sipser’s original protocol can be applied in
order to transform it to public-coin, and then discuss how we use distributional inversion in
order to make the prover efficient. Eventually, this requires changes to the Goldwasser-Sipser
transformation. In all three toy cases consider a language L and a one round private-coin
protocol denoted ⟨P, V ⟩ with perfect completeness and soundness error s. Since it has one
round, the protocol is of the following form: On input x the verifier begins with choosing a
random ρ← {0, 1}ℓ, then sends α = V (x, ρ) where α ∈ {0, 1}m. After receiving β from the
prover, the verifier accepts if V (x, α, β; ρ) = 1. Henceforth throughout this overview we omit
the shared input x from notation of the verifier and prover functions.

2.1.1 Case 1: Equally Likely Messages With Known Number of
Messages

2.1.1.1 The Protocol

In addition to the protocol being one-round and having perfect completeness, we assume the
following properties:

Equally Likely Messages: If x is in the language L, then every pair of messages α1, α2 ∈
{0, 1}m that have non-zero probability of being sent by the original verifier V are equally
likely: Prρ←Uℓ

[V (ρ) = α1] = Prρ←Uℓ
[V (ρ) = α2].

Known Number of Messages For Completeness: If x ∈ L then there is a known efficiently
computable function N : {0, 1}∗ → N such that the total number of messages sent by the
verifier with non-zero probability is N(x). That is,

N(x) =
∣∣{α|∃ρ ∈ {0, 1}ℓ s.t. V (x; ρ) = α

}∣∣
Few Messages For Soundness: If x /∈ L then there are significantly fewer than N(x)
verifier messages.

As a running example for this case one is encouraged to think of the classical private-coin
protocol for the graph non-isomorphism problem [7]. In this language the input is comprised
of two n-vertex graphs G0 and G1 which are claimed to be non-isomorphic. The protocol
is as follows: the verifier chooses a random bit b, and random permutation π. It sends
G̃ = π(Gb) to the prover who must return some b′. The verifier accepts if b′ = b. One
can easily verify that this protocol has completeness 1 and soundness error 1

2 . Moreover,
assuming for simplicity that the graphs have no automorphisms, every verifier message is
equally likely and if the graphs are non-isomorphic the number of possible verifier messages
is N = 2n!. If the graphs are isomorphic then there are only n! different messages.

2.1.1.2 The Goldwasser-Sipser Transformation

The transformation of ⟨P, V ⟩ into a public-coin protocol hinges on the observation that,
in this toy case, in order distinguish whether x is in the language, the prover need only
show that the number of possible verifier messages is at least N (since by assumption if
x /∈ L there are significantly fewer such messages). Thus a (public-coin) “set lower-bound”
protocol is used, showing that the set of all valid verifier messages (ones that are sent by V

with non-zero probability over the choice of its random coins) is large . Letting Hm,k be a
family of pairwise independent hash functions from {0, 1}m to {0, 1}k, Uk be the uniform
distribution over k bits and k = k(N) be a value to be discussed later, the final protocol is
as follows:
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1. The parties execute a “set lower-bound” protocol proving that the number of verifier
messages is at least N :
a. The verifier chooses a random h← Hm,k and y ← Uk

3

b. The prover returns α ∈ {0, 1}m.
c. The verifier tests that h(α) = y and otherwise rejects.

2. The prover sends ρ ∈ {0, 1}ℓ.4

3. The verifier accepts if V (ρ) = α.

In the case of completeness, where there are N verifier messages, if k is “small enough”
(i.e. the hash function is very compressing) it is likely that there exists some valid message α

that hashes to y. Conversely, in the case of soundness, where there are significantly fewer
than N legal verifier messages, if k is “large enough” then it is unlikely that there will exist
a valid message that hashes to y. Thus, completeness and soundness of the protocol are
governed by setting k to a reasonable value, which depends on the gap between N and and
the magnitude of the prover’s lie in the case of a false claim. Note that in this protocol
the prover did not even need to send its message β - it was sufficient to use the fact that
there is a large gap in the number of verifier messages between the cases of completeness and
soundness. The sub-protocol executed in Step 1 is known as the “set lower-bound” protocol,
and can be generalized to show a lower-bound on the size of any set S for which the verifier
can efficiently test membership. Specifically, the protocol begins with a claim that N ≤ |S|
and ends with both parties holding an element x for which the verifier needs to verify that it
belongs to S. If N ≤ |S|, then x ∈ S with high probability, and if |S| ≪ N , x /∈ S with high
probability regardless of the prover strategy. A protocol inspired by the set lower-bound
protocol is presented and analysed in the full paper under the name “prover-efficient sampling
protocol”. Going back to the example of graph non-isomorphism, upon receiving h, y from
the verifier, the prover would send some graph G̃, a bit b and a permutation π. The verifier
would then accept if h(G̃) = y and G̃ = π(Gb).

2.1.1.3 Prover Efficiency

The prover strategy in the above protocol is inefficient. It receives some h, y and is required
to find a legal message α that hashes to y and some choice of randomness ρ that leads to α.
However, the prover can be made efficient by giving it oracle access to an inverter for the
function f(h, ρ) = h, h(V (ρ)). An inverter for a function f : {0, 1}a → {0, 1}b is a randomized
algorithm that on input y drawn from the distribution f(Ua) returns some element x in the set
of preimages of y under f (that is, x ∈ f−1(y)). We stress that the input to the inverter must
come from the correct distribution, which in our case is f(Hm,k, Uℓ) ≡ (Hm,k,Hm,k(V (Uℓ)).
The hash function h is clearly chosen by the verifier from the correct distribution. The
image y is drawn by the verifier from the uniform distribution which, if the hash function
is compressing enough, will be statistically close to h(V (Uℓ)) by the Leftover Hash Lemma.
Preimages of (h, y) with respect to f are of the form (h, ρ) where h(V (ρ)) = y. The prover
can send ρ and use ρ to calculate α. In all of this the prover only needs to make a single
oracle call, and to calculate α = V (ρ), and is therefore efficient.

3 In the classic transformation it suffices to set y = 0k and is described here thus as it will be required
later by our transformation.

4 The final prover message can be merged with the previous one to save a round and is described here as
a separate round for clarity.

ITC 2021
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2.1.2 Case 2: Equally Likely Messages With Unknown Number of
Messages

2.1.2.1 The Protocol

We make the same assumptions on the protocol as in Case 1, except that the verifier in the
transformation does not know N , the number of verifier messages.

2.1.2.2 The Goldwasser-Sipser Transformation

The protocol is based on two observations made in the case of a cheating prover:
Since the soundness error is s and the verifier uses ℓ random coins, the number of verifier
messages α for which there exist β and ρ such that V (α, β; ρ) accepts is at most s · 2ℓ.
For every fixed α and β, the number of coins ρ such that V (ρ) = α and V (α, β; ρ) accepts
is also bounded from above by s · 2ℓ.

If either of the above were not true, it would mean the soundness error is greater than s.
Now notice that since all messages are equally likely, if there are N valid verifier messages,
then each message has 2ℓ

N different coins that are consistent with it. Importantly, if N is
small, 2ℓ

N is large. This gives rise to the following protocol:
1. Prover sends N , a claim on the number of verifier messages.
2. Prover and verifier execute the set lower-bound protocol to show that the number of legal

verifier messages is at least N . The parties end up with some α claimed to be a verifier
message.

3. Prover sends some β.
4. The parties execute the set lower-bound protocol to show that the number of coins that

are consistent with α and lead the verifier to accept (α, β) is at least 2ℓ

N . The parties end
up with a ρ which is supposed to in the set of random coins that lead the verifier to α.

5. Verifier accepts if V (ρ) = α and V (α, β; ρ) = 1.
The protocol is complete, since if the prover is honest it is likely to succeed in both the set
lower-bound protocols, meaning it samples both a valid message α and valid coins ρ such that
V (ρ) = α and V (α, β; ρ) = 1. We now turn towards soundness. Let S be the set of verifier
messages for which the prover has an accepting strategy (messages α for which there exist β

and ρ such that V (α, β; ρ) accepts). For verifier message α and prover message β, let Tα,β

be the number of random coins ρ such that V (α, β; ρ) accepts. Recall from the argument
above, that |S| ≤ s · 2ℓ and for any α, β, |Tα,β | ≤ s · 2ℓ. Now note that if the verifier ends
up with a verifier message α /∈ S it has a message for which no fixing of β and ρ will make
the verifier accept. Thus the prover must try to sample in S. Similarly, after fixing α and
β if the verifier has ρ /∈ Tα,β it will reject, and so the cheating prover must try to cause
the verifier to end up with an element in Tα,β . To see why the protocol is sound consider
the prover’s choice of N . If |S| ≤ s · 2ℓ ≪ N , then due to the set lower-bound protocol the
prover is unlikely to make the verifier sample from S and so the verifier will reject with high
probability. If N is small, then 2ℓ

N is large. Fixing α and β, if |Tα,β | ≤ s · 2ℓ ≪ 2ℓ

N , then the
verifier is unlikely to end up with such coins, meaning it rejects. Note in the above analysis
we have that s≪ min{N, 2ℓ

N }. Thus if s is small enough to begin with, the prover will be
forced to lie and be caught with high probability.

2.1.2.3 Prover Efficiency

Inspecting the above protocol there are three things that the honest prover needs to do:
Count N , the number of verifier messages, execute the prover’s side of the set lower-bound
protocol to show that there are at least N verifier messages, and execute the prover’s side of
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the set lower-bound protocol to prover that the number of coins that are consistent with α is
at least 2ℓ

N . We explain how to compute each of these efficiently in reverse order:

1. Set Lower-Bound Protocol for Number of Consistent Coins: In this set lower-bound
protocol the parties have already computed a verifier message α. The prover receives
some hash function h and an image y from the verifier, and must return some ρ such
that V (ρ) = α and h(ρ) = y. Naively it seems that this can be solved simply if the
prover has access to an inverter for the function f(h, ρ) = h, V (ρ), h(ρ) since preimages
of (h, α, y) are exactly of the form h′, ρ such that h′, V (ρ), h′(ρ) = h, α, y. The problem
with this idea is that to use this inverter it must be that the message α be drawn from the
distribution V (Uℓ). Thus to use this idea it is imperative that α come from the correct
distribution.

2. Set Lower-Bound Protocol for Number of Messages: In order to complete this stage,
the prover must find some valid verifier message α that hashes to y, and this (as we
did in Case(1) )can be done using an inverter for the function f(h, ρ) = h, h(V (ρ)).
Unfortunately as mentioned in point (1), we need it α to be chosen from the real message
distribution V (Uℓ). Unfortunately using an inverter as described, the message α might
be drawn from a distribution which is far from the real one.5 This issue is fixed if we
move from using a regular inversion oracle to a distributional inversion oracle. Roughly,
a distributional inverter for a function f : {0, 1}m → {0, 1}t is a randomized algorithm A

such if y is drawn from f(Um), the distribution A(y) is statistically close to a random
pre-image of y under f .

3. Computing N : We show that given an inversion oracle for the function f(h, ρ) = h, h(V (ρ))
it is possible to efficiently approximate N , the number of verifier messages. The way
this is done is inspired by the techniques of [20] for approximate counting using an NP
oracle. The prover chooses h← Hm,k and y ← {0, 1}k for increasingly larger values of k,
and calls the inversion oracle on input (h, y). When k is small relative to the number
of verifier messages, there will likely exist a message α that hashes to y, and thus the
inverter will return a set of coins ρ such that V (ρ) = α. Once k is set to a relatively
large value this is unlikely and the inverter will fail. Thus, given the smallest size of k for
which the inverter fails the prover can estimate the size of the set.

2.1.3 Case 3: A Two-Cluster Protocol

2.1.3.1 The Protocol

As in Case 2, we do not assume that the parties know initially the number of verifier
messages. Moreover we replace the assumption that all messages are of equal likelihood with
the following one:

Two Clusters: The verifier messages that have non-zero probability can be partitioned into
two “clusters” C0 and C1, where every message in Cb has equal likelihood pb. Furthermore,
each message in C1 is significantly more likely than messages in C0: p0 ≪ p1. Both
parties know the values p0 and p1 but not |C0| and |C1|.

5 Indeed, suppose that the inverter always returns the lexicographically smallest ρ such that h(V (ρ)) = y.
This will cause a sampling bias towards those messages that have coins that are lexicographically smaller.
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2.1.3.2 The Goldwasser-Sipser Transformation

Rather than giving a claim about the number of possible messages, the prover will claim
only that the heaviest of the flat clusters is large (the weight of cluster Cb is pb · |Cb|).

1. Prover calculates |C0| and |C1| and chooses a bit b such that pb · |Cb| ≥ p1−b · |C1−b|. It
sends b and N = |Cb|.

2. Verifier tests that pb ·N ≥ 1
2 and otherwise rejects.

3. Prover and verifier execute the set lower-bound protocol to show that the size of cluster
Cb is at least N . The parties end up with some α claimed to be in cluster b.

4. Prover sends some β.
5. The parties execute the set lower-bound protocol to show that the number of coins that

are consistent with α and lead the verifier to accept (α, β) is at least pb · 2ℓ. The parties
end up with a ρ which is supposed to be a set of random accepting coins that lead the
verifier to α.

6. Verifier accepts V (ρ) = α and V (α, β; ρ) = 1.
Completeness can be verified by noting that since there are only two clusters, the heaviest
cluster must hold at least half of the weight of the distribution and so the verifier’s test that
pb ·N ≥ 1

2 will pass. Due to the fact that every message α in Cb has likelihood pb, there are
exactly pb · 2ℓ different coins that would lead the verifier to output α and to accept. For
soundness first fix b. Once b is fixed, the smallest the prover can set N to be is 1

2pb
because

otherwise the verifier will reject in Step 2. If pb is very small, this value is large. As in the
analysis of Case 2, since the total number of verifier messages for which the prover as an
accepting strategy is small, if the claim N is large, it will likely not manage to make the
verifier accept. If pb is large, then the value of N can be set to be small, but in this case the
value pb · 2ℓ in Step 5 is large. Noting that for any α and β the number of coins ρ for which
V (α, β; ρ) accepts is at most s · 2ℓ, which we think of as very small, the prover is unlikely to
be able to cause the verifier to end up with coins that will make it accept.

2.1.3.3 Prover Efficiency

In the classic transformation as described above the prover must do three things: Calculate
the size of each cluster, and take part in both executions of the set lower-bound protocol.
1. Counting |C0| and |C1|: The approximate counting technique as used in Case 2 to

approximate N can be used to approximate the number of coins which would lead to
a message. Notice that for α ∈ Cb there are exactly pb · 2ℓ coins that lead to α. Thus,
by randomly choosing many messages and counting how many are in each cluster, the
prover can build a “histogram” of the weights of each cluster - a list of each cluster and
its respective weight. This is formally addressed in the full paper where it is shown that
using both a sampling and a membership oracle one can build such a histogram. An
issue with this approach is that the approximation procedure returns an approximate
value for the number of coins that lead to a message. That is, for a message in Cb it
may claim that the number of coins that lead to the message is anywhere in the range
(1± ε) · pb · 2ℓ for some (relatively small) ε. Since p0 and p1 are far from each other, the
ranges (1± ε) · p0 · 2ℓ and (1± ε) · p1 · 2ℓ do not intersect. Thus it is still easy to recognize
to which cluster a message belong.

2. Set Lower-Bound Protocol for Number of Messages in Cb: In this part of the protocol
the prover receives a hash function h and image y and needs to return a message α such
that α ∈ Cb and h(α) = y. The prover cannot simply use an inverter for a function that
samples inside of Cb since there may not be an efficient function for sampling in Cb. We
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instead show that given a distributional inverter for f(h, ρ) = h, h(V (ρ)) it is possible to
find preimages that are in Cb. This is true because the cluster has significant weight with
respect to the distribution of messages, and so for a randomly chosen hash function and
random image y the weight of elements that belong to the cluster and are preimages to y

is unlikely to be very small relative to all other preimages of y.
3. Set Lower-Bound Protocol for Number of Consistent Coins: The prover’s strategy can be

made efficient in this protocol in exactly the same way as in the same set lower-bound
in the previous case: by inverting f(h, ρ) = h, V (ρ), h(ρ). Doing this has the same issue
dealt with in Case 2 - the distribution from which the message α is drawn must be
close to uniform. In the classical transformation the value of α will be far from random
because the protocol always works with the heaviest cluster. Suppose, for example, that
p0 · |C0| = p1 · |C1|+ ε for a very small ε. Then C0 will always be chosen, even though in
the the real message distribution the likelihood of being in each cluster is almost identical.
In order to fix this skew in distribution we make the choice of b “smoother”. Rather
than setting b as the index of the heaviest cluster, we let b be random and sampled
from the Bernoulli distribution where 0 is drawn with probability p0·|C0|

p0·|C0|+p1·|C1| . This
presents a minor issue: now it could be that pb ·N < 1

2 . To fix this, we limit the choice
of clusters only to ones that have some noticeable probability of appearing, and so the
verifier can make sure that the claimed probability is not smaller than this threshold.
Similar smoothing techniques were used in [14] and [6] in different contexts.

2.1.4 Towards the General Case
In the general case, the verifier message distribution cannot be split into a small number of
flat clusters and the protocol may have multiple rounds. To keep this overview simple we
only consider doubly-efficient proofs. Making the transformation work for constant-round
proofs with an inefficient prover requires some slight additional technical work.

2.1.4.1 General Message Distribution

General Message Distribution: The issue for working with a general distribution for the
verifier messages is solved in the classical transformation by defining clusters of messages as
follows: cluster i is the set of all the messages with weight in the range 2−i and 2−i+1. In our
case, we have to work harder. Firstly, due to the way we use distributional inverters, we will
need that for every cluster, the distribution of messages when restricted only to messages in
the cluster be statistically close to uniform. This can be solved by splitting the distribution
into more clusters - cluster i will now be all messages in the range (1 + 1/ poly(n))−i and
(1 + 1/ poly(n))−i+1. Note that the probabilities of messages in neighbouring clusters are
similar. Therefore, the observation made in analysis of Case 3 that we can distinguish to
which cluster a message belongs even though the approximation procedure does not return
exact values for the number of coins that lead to a message, is false. To solve this issue,
we work with “approximate clusters” - cluster i consists of all the verifier messages for
which the approximation procedure claims the weight is between (1 + 1/ poly(n))−i and
(1 + 1/ poly(n))−i+1.

2.1.4.2 Imperfect Completeness

In order to accommodate protocols with completeness c, recall that the clusters are defined
as sets of accepting coins with some weight. In the classical transformation in Case 3 the
final prover’s claim is that there are pb ·2ℓ coins which would lead the verifier to accept. Since
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now pb is the probability that these coins are sampled conditioned on sampling accepting
coins, the end claim is changed to pc · c · 2ℓ. In our case, we will not be able to use inverters
to find accepting coins, since we only know how to invert efficient functions, and we do not
have an efficient function that returns a random accepting coin. We therefore redefine the
clusters to refer to gerenal coins, not just accepting ones. This means that in our protocol,
the verifier accepts with almost the same probability as in the original private-coin protocol.

2.1.4.3 Multiple Rounds

The issue of multiple rounds is solved in the original transformation by iteratively emulating
each round of the protocol. In the following we ignore the issue of distributions over
messages which are not uniform. This is treated as explained under “General Message
Distribution”. In the Goldwasser-Sipser protocol round i starts with the prefix of a transcript
γi−1 = (α1, β1, . . . , αi−1, βi−1) and Ni−1, a claimed lower bound on the number of coins that
are consistent with γi−1. The prover gives a claim Ni that there are Ni coins consistent with
each message possible verifier message conditioned on the transcript prefix γi−1. The parties
next run the set lower-bound protocol. That is, the verifier sends a randomly sampled hash
function h and random y. The honest prover sends back αi such that h(αi) = y and that αi

is consistent with γi−1 (i.e. there exist ρ such that α1 = V (α1, β1, . . . , αi−1, βi−1; ρ)). The
prover then sends βi. This process is run iteratively until the parties have a full transcript γ

along with a claimed lower-bound on the number of coins consistent with this full transcript,
at which point the parties execute a final set lower-bound protocol to sample a set of coins ρ.

To follow Goldwasser and Sipser’s formula with an efficient prover, we would like an
efficient method such that given a random hash function h, and y find this method
outputs a consistent αi. In the one-round case as explained previously, we noted that
f(h, ρ) = h, h(V (ρ)) was an efficiently computable function in order to sample α1 = V (ρ).
How can we use the same idea but correlate the output to a transcript? To more easily
illustrate, in the following we consider a 2-round protocol so that our goal is to sample α2
after the transcript (α1, β1) has already been set.

We show that if the proof in question is doubly-efficient, it suffices to invert the function
f that on inputs h and ρ: Computes α1 = V (ρ), β1 = P (α1), α2 = V (α1, β1; ρ) and outputs
(α1, β1, h(α2)). Firstly note that since the prover is efficient the function f can be computed
in polynomial time. Next, notice that the distribution f(H, Uℓ) is identical to that of taking
α1, β1 from a random execution of the protocol and additionally outputting a random hash
of the next verifier message. Consider an inverter for f . Given a random pair α1, β1 and a
random h, y it returns randomness ρ such that α1 = V (ρ). Given ρ it is easy to compute
α2 = V (α1, β1; ρ). Since ρ is consistent with α1, β1, we have that α2 is also consistent with
α1, β1. Moreover, α2 will hash to y. This is exactly what we needed.

2.2 Overview of the Piecemeal Emulation Protocol
In this section we overview the techniques used to prove Theorem 4. We prove the theorem by
constructing a protocol which we call the “piecemeal” emulation protocol, which is inspired
by ideas described in [21] that are accredited to Joe Kilian.

The protocol hinges on a sampling protocol where the goal of the honest prover is to help
the verifier generate a transcript that is distributed similarly to a random transcript of the
protocol the parties are trying to emulate. Let L be a language and ⟨P, V ⟩ be an r-round
interactive proof for L with ℓ bits of randomness and message length m. Since there are r

rounds, there are 2r messages sent in the protocol. Each message is of length m, and so



G. Arnon and G. N. Rothblum 3:13

the length of a complete transcript of the protocol is 2rm bits. We assume without loss
of generality that the protocol ends with the verifier sending its entire randomness to the
prover. To reiterate, our goal is to generate a random transcript of an execution of the
proof. We do this bit-by-bit in an iterative manner as follows: Round i begins with a partial
transcript prefix γi−1 and a claimed lower bound Ni−1 on the number of random coins which
are consistent with this partial transcript, where γ0 = ∅ is the empty transcript with the
claim that all N0 = 2ℓ coins are consistent with the empty transcript. By consistent with
a partial transcript we mean that had the private-coin verifier received these coins at the
beginning of the protocol execution, then this partial transcript would have been generated,
with respect to the prover messages. The prover sends two values N0

i and N1
i where N0

i

is the number of coins that are consistent with extending the transcript with the bit 0,
meaning coins consistent with the transcript (γi−1, 0), and similarly N1

i is the number of
coins consistent with (γi−1, 1). If the prover can exactly count each of these values, then it
should be that Ni−1 = N0

i + N1
i . The verifier tests that indeed Ni−1 = N0

i + N1
i and chooses

a bit b with probability Nb
i

Ni−1
. Both parties set the new transcript to be γi = (γi−1, b) and

the new claim on the number of consistent coins to be Ni = N b
i . This continues on until

i = 2rm when a full transcript has been generated, where since we assumed that the verifier
ends by outputting its randomness, there can only be one random coin that is consistent with
the transcript. Therefore, after the last iteration the verifier tests that the final N2rm = 1,
and that all verifier messages in the transcript are what V would have sent in an actual
execution using randomness from the end of the transcript. Finally, if all these tests pass the
verifier and accepts if V accepts given the transcript γ2rm.

For completeness, it can be shown that the protocol described above generates a transcript
with the exact same distribution as the original one, since in every stage the next bit of the
transcript is chosen with probability equal to the probability that it would appear in a real
random transcript conditioned on the part of the transcript that has already been fixed. We
now would like to to show that the protocol is sound, i.e. that for x /∈ L a malicious prover
cannot cause the verifier to accept in the new protocol with probability greater than in the
original protocol. To show this we look the ratio between the number of claimed consistent
coins, N and the number of consistent coins that would make the verifier accept in a given
round. For a given partial transcript γ we denote by Acc(γ) the set of coins ρ such that
there exists a legal full transcript of the real execution γ′ which begins with γ and in which
the verifier accepts.

We begin our inspection of soundness with the final round and work backwards from there.
Let i = 2mr, and let Ni−1 and γi−1 be the claim and the partial transcript at the beginning
of the iteration. Since the transcript ends with the verifier sending its entire randomness,
the number of accepting coins consistent with a transcript with only one bit missing can
be 0, 1 or 2. It can be shown that in every case, the probability that the verifier ends up
accepting is at most |Acc(γi−1)|

Ni−1
. For conciseness we focus in this overview on what happens

if |Acc(γi−1)| = 1. In this case only one of the two options for the final bit will make the
verifier accept. Suppose this bit is 0, then the probability that the verifier accepts reduces to
the probability that it chooses b = 0, which is N0

i

Ni−1
. Now, since in the end of the protocol

the verifier tests that Ni = N2rm = 1 in order for the prover to cause the verifier to accept
bit 0 it must set N0

i = 1. Therefore, the probability that the verifier ends up accepting the
transcript is at most 1

Ni−1
= |Acc(γi−1)|

Ni−1
.

We now look at other rounds of the protocol. Let γi−1 and Ni−1 be the inputs to iteration
i. Suppose, as our induction hypothesis, that upon entering round i + 1 with γi and Ni the
probability that the verifier ends up accepting is |Acc(γi)|

Ni
. Let N0

i and N1
i be the values sent
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by the prover. By the induction hypothesis, if the verifier chooses bit b, which happens with
probability Nb

i

Ni−1
, then it will end up accepting with probability |Acc(γi−1,b)|

Nb
i

. Therefore the
probability that the verifier ends up accepting is:

N0
i

Ni−1
· |Acc(γi−1, 0)|

N0
i

+ N1
i

Ni−1
· |Acc(γi−1, 1)|

N1
i

= |Acc(γi−1, 0)|+ |Acc(γi−1, 1)|
Ni−1

Noting that |Acc(γi−1, 0)|+ |Acc(γi−1, 1)| = |Acc(γi−1)| we have that the verifier eventually
accepts with probability |Acc(γi−1)|

Ni−1
. This inductive argument extends all the way up to γ0

and N0 in which case |Acc(γ0)|
N0

is equal to the soundness error of the original protocol.
The actual protocol differs slightly from the one described above. In the real setting, the

honest prover cannot exactly calculate N0
i and N1

i , but rather only ε-approximate them. This
will mean that the transcript that is sampled is only close to uniform. A further implication
of this change is that since the honest prover can err, the verifier now must relax its test that
N0

i + N1
i = Ni−1. This relaxation turns out to be to test that Ni−1

N0
i

+N1
i
≤ 1 + 3ε. This in turn

gives the cheating prover some additional leeway, specifically in round i the probability that
the verifier ends up accepting changes from |Acc(γi−1)|

Ni−1
to (1 + 3ε)2rm−i · |Acc(γi−1)|

Ni−1
(recall

that 2rm is the number of bits sent in the protocol). If ε is small enough this leeway is
insignificant.
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