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Abstract
Polynomial Identity Testing (PIT) is a fundamental computational problem. The famous depth-4
reduction (Agrawal & Vinay, FOCS’08) has made PIT for depth-4 circuits, an enticing pursuit.
The largely open special-cases of sum-product-of-sum-of-univariates (Σ[k]ΠΣ∧) and sum-product-
of-constant-degree-polynomials (Σ[k]ΠΣΠ[δ]), for constants k, δ, have been a source of many great
ideas in the last two decades. For eg. depth-3 ideas (Dvir & Shpilka, STOC’05; Kayal & Saxena,
CCC’06; Saxena & Seshadhri, FOCS’10, STOC’11); depth-4 ideas (Beecken,Mittmann & Saxena,
ICALP’11; Saha,Saxena & Saptharishi, Comput.Compl.’13; Forbes, FOCS’15; Kumar & Saraf,
CCC’16); geometric Sylvester-Gallai ideas (Kayal & Saraf, FOCS’09; Shpilka, STOC’19; Peleg &
Shpilka, CCC’20, STOC’21). We solve two of the basic underlying open problems in this work.

We give the first polynomial-time PIT for Σ[k]ΠΣ∧. Further, we give the first quasipolynomial
time blackbox PIT for both Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]. No subexponential time algorithm was known
prior to this work (even if k = δ = 3). A key technical ingredient in all the three algorithms is how
the logarithmic derivative, and its power-series, modify the top Π-gate to ∧.
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1 Introduction: PIT & beyond

Algebraic circuits are natural algebraic analog of boolean circuits, with the logical oper-
ations being replaced by + and × operations over the underlying field. The study of
algebraic circuits comprise the large study of algebraic complexity, mainly pioneered (and
formalized) by Valiant [87]. A central problem in algebraic complexity is an algorithmic
design problem, known as Polynomial Identity Testing (PIT): given an algebraic circuit C
over a field F and input variables x1, . . . , xn, determine whether C computes the identic-
ally zero polynomial. PIT has found numerous applications and connections to other
algorithmic problems. Among the examples are algorithms for finding perfect matchings
in graphs [59, 62, 24], primality testing [4], polynomial factoring [52, 19], polynomial equi-
valence [21], reconstruction algorithms [48, 83, 44] and the existence of algebraic natural
proofs [16, 53]. Moreover, efficient design of PIT algorithms is intrinsically connected to
proving strong lower bounds [39, 1, 42, 23, 29, 17, 20]. Interestingly, PIT also emerges in
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11:2 Bounded Depth-4 Identity Testing Paradigms

many fundamental results in complexity theory such as IP = PSPACE [82, 60], the PCP
theorem [10, 11], and the overarching Geometric Complexity Theory (GCT) program towards
P ̸= NP [64, 63, 32, 41].

There are broadly two settings in which the PIT question can be framed. In the whitebox
setup, we are allowed to look inside the wirings of the circuit, while in the blackbox setting we
can only evaluate the circuit at some points from the given domain. There is a very simple
randomized algorithm for this problem - evaluate the polynomial at a random point from a
large enough domain. With very high probability, a nonzero polynomial will have a nonzero
evaluation; this is famously known as the Polynomial Identity Lemma [66, 18, 89, 81]. It has
been a long standing open question to derandomize this algorithm.

For many years, blackbox identity tests were only known for depth-2 circuits (equivalently
sparse polynomials) [13, 49]. In a surprising result, Agrawal and Vinay [7] showed that a
complete derandomization of blackbox identity testing for just depth-4 algebraic circuits
(ΣΠΣΠ) already implies a near complete derandomization for the general PIT problem.
More recent depth reduction results [50, 36], and the bootstrapping phenomenon [2, 55, 34, 9]
show that even PIT for very restricted classes of depth-4 circuits (even depth-3) would have
very interesting consequences for PIT of general circuits. These results make the identity
testing regime for depth-4 circuits, a very meaningful pursuit.

Three PITs in one-shot. Following the same spirit, here we solve three important (and
open) PIT questions. We give the first deterministic polynomial-time whitebox PIT algorithm
for the bounded sum-of-product-of-sum-of-univariates circuits (Σ[k]ΠΣ∧) [71, Open Prob. 2];
polynomials computed by these circuits are of the form Σi∈[k]Πj (gij1(x1) + · · · + gijn(xn))
(Theorem 1). In fact, we also design the first quasipolynomial-time blackbox PIT algorithm
for the same model (Theorem 2a). To the best of our knowledge, no subexponential time
algorithm was known prior to this work. A similar technique also gives a quasipolynomial-
time blackbox PIT algorithm for the bounded top and bottom fanin circuits Σ[k]ΠΣΠ[δ]

(where k and δ are constants), see Theorem 2b. These circuits compute polynomials of the
form Σi∈[k]Πjgij(x), where deg(gij) ≤ δ. Even δ = 2 was a challenging open problem [56,
Open Prob. 2].

Prior works on the related models. In the last two decades, there has been a surge of results
on identity testing for restricted classes of bounded depth algebraic circuits (eg. “locally”
bounded independence, bounded read/occur, bounded variables). There have been numerous
results on PIT for depth-3 circuits with bounded top fanin (known as Σ[k]ΠΣ-circuits). Divir
and Shpilka [22] gave the first quasipolynomial-time deterministic whitebox algorithm for
k = O(1), using rank based methods, which finally lead Karnin and Shpilka [45] to design
algorithm of same complexity in the blackbox setting. Kayal and Saxena [47] gave the first
polynomial-time algorithm of the same. Later, a series of works in [78, 79, 80, 5] generalized
the model and gave nO(k)-time algorithm when the algebraic rank of the product polynomials
are bounded.

There has also been some progress on PIT for restricted classes of depth-4 circuits. A
quasipolynomial-time blackbox PIT algorithm for multilinear Σ[k]ΠΣΠ-circuits was designed
in [43], which was further improved to a nO(k2)-time deterministic algorithm in [74]. A
quasipolynomial blackbox PIT was given in [12, 56] when algebraic rank of the irreducible
factors in each multiplication gate as well as the bottom fanin are bounded. Further interesting
restrictions like sum of product of fewer variables, and more structural restrictions have been
exploited, see [28, 6, 25, 61, 57]. Some progress has also been made for bounded top-fanin and
bottom-fanin depth-4 circuits via incidence geometry [35, 84, 68]. In fact, very recently, [69]
gave a polynomial-time blackbox PIT for Σ[3]ΠΣΠ[2]-circuits.
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Why were the problems open? As mentioned above, people have studied depth-4 PIT only
with extra restrictions, mostly due to the limited applicability of the existing techniques: they
were tailor-made for the specific models and do not generalize. Eg. the previous methods
handle δ = 1 (i.e. linear polynomials at the bottom) or k = 2 (via factoring, [71]). While
k = 2 to 3, or δ = 1 to 2 (i.e. “linear” to “quadratic”) already demands a qualitatively
different approach.

Whitebox Σ[k]ΠΣ∧ model generalizes the famous bounded-top-fanin-depth-3 Σ[k]ΠΣ
of [47]; but their Chinese Remaindering (CR) method, loses applicability and thus fails to
solve even a slightly more general model. The blackbox setting involved similar “certifying
path” ideas [79] which could be thought of as general CR. It comes up with an ideal I such that
f ̸= 0 mod I and finally preserves it under a constant-variate linear map. The preservation
gets harder (for both Σ[k]ΠΣ∧ and Σ[k]ΠΣΠ[δ]) due to the increased non-linearity of the
ideal I generators. Intuitively, larger δ, via ideal-based routes, brings us to the Gröbner
basis method (which is doubly-exponential-time in n) [88]. We know that ideals even with
3-generators (analogously k = 4) already capture the whole ideal-membership problem [73].

The algebraic-geometric approach to Σ[k]ΠΣΠ[δ] has been explored in [12, 35, 61, 33].
The families which satisfy a certain Sylvester–Gallai configuration (called SG-circuits) is
the harder case which is conjectured to have constant transcendence degree [35, Conj. 1].
Non-SG circuits is the case where the nonzeroness-certifying-path question reduces to radical-
ideal non-membership questions [30]. This is really a variety question where one could use
algebraic-geometry tools to design a poly-time blackbox PIT. In fact, very recently, Guo [33]
gave a sδk -time PIT by constructing explicit variety evasive subspace families. Unfortunately,
this is not the case in the ideal non-membership; this scenario makes it much harder to solve
Σ[k]ΠΣΠ[δ]. From this viewpoint, radical-ideal-membership explains well why the intuitive
Σ[k]ΠΣ methods do not extend to Σ[k]ΠΣΠ[δ].

Interestingly, Forbes [25] found a quasipolynomial-time PIT for Σ∧ΣΠ[δ] using shifted-
partial derivative techniques; but it naively fails when one replaces the ∧-gate by Π (the
“measure” becomes too large). The “duality trick” [75] completely solves whitebox PIT for
Σ∧Σ∧, by transforming it to a read-once oblivious ABP (ROABP); but it is inapplicable to
our models with the top Π-gate (due to large waring rank and ROABP-width). A priori,
our models are incomparable to ROABP, and thus, the famous PIT algorithms for ROABP
[28, 27, 37] are not expected to help either.

Similarly, a naive application of the “Jacobian” + “certifying path” technique [5] fails
for our models because it is difficult to come up with a faithful map (for constant-variate
reduction). Kumar and Saraf [56] crucially used that the computed polynomial has low
individual degree (such that [23] can be invoked), while in [57] they exploits the low algebraic
rank of the polynomials computed below the top Π-gate. Neither of them hold, in general,
for our models. Very recently, Peleg and Shpilka [69] gave a poly-time blackbox PIT
for Σ[3]ΠΣΠ[2], via incidence geometry (eg. Edelstein-Kelly theorem involving “quadratic”
polynomials), by solving [35, Conj. 1] for k = 3, δ = 2. The method seems very strenuous to
generalize even to “cubic” polynomials (δ = 3 = k).

PIT for other models. Blackbox PIT algorithms for many restricted models are known.
Egs. ROABP related models [70, 40, 3, 37, 38, 27, 8], log-variate circuits [26, 14], certain
non-commutative models [31, 58]. We refer to [85, 76, 64, 77, 54, 72] for detailed surveys on
PIT and related topics.
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1.1 Our results: An analytic detour to three PITs
Though some attempts have been made to solve PIT for Σ[k]ΠΣ∧, no subexponential time
PIT for k ≥ 3 even in the whitebox settings is known, see [71, Open Prob. 2]. Our first result
exactly addresses this problem and designs a polynomial-time algorithm (Algorithm 1). The
technique (we call it DiDI-paradigm, Sec. 1.2) used is very analytic (& “non-ideal” based).
Throughout the paper, we will work with F = Q, though all the results hold for field of large
characteristic.

▶ Theorem 1 (Whitebox ΣΠΣ∧ PIT). There is a deterministic, whitebox sO(k 7k)-time PIT
algorithm for Σ[k]ΠΣ∧ circuits of size s, over F[x]. (See Algorithm 1.)

▶ Remark.
1. Case k ≤ 2 can be solved by invoking [71, Thm.5.2]; but k ≥ 3 was open.
2. Our technique necessarily blows up the exponent exponentially in k. In particular, it

would be interesting to design a subexponential time algorithm when k = Θ(log s).
3. It is not clear if the current technique gives PIT for Σ[k]ΠΣ∧[2] circuits, i.e. sum of

bivariate polynomials computed and fed into the top product gate.

Next, we go to the blackbox setting and address two models of interest, namely – Σ[k]ΠΣ∧
and Σ[k]ΠΣΠ[δ], where k, δ are constants. The prior best algorithms were exponential-time
in s. Our work builds on previous ideas for unbounded top fanin – (1) Jacobian [5], (2) the
known blackbox PIT for Σ ∧Σ∧ and Σ ∧ ΣΠ[δ] [37, 25] – maneuvering with an analytic
approach, via power-series, which unexpectedly reduces the top Π-gate to a ∧-gate.

▶ Theorem 2 (Blackbox PIT for depth-4).
(a) There is a deterministic sO(k log log s)-time blackbox PIT algorithm for Σ[k]ΠΣ∧ circuits

of size s, over F[x].
(b) There is a sO(δ2 k log s)-time blackbox PIT algorithm for Σ[k]ΠΣΠ[δ] circuits of size s,

over F[x].

▶ Remark.
1. Thm. 2 has a better dependence on k, but worse on s, than Thm. 1. Our results are

quasipoly-time even up to k, δ = poly(log s).
2. Thm. 2a is better than Thm. 2b, because Σ∧Σ∧ has a faster algorithm than Σ∧ΣΠ[δ].
3. Even for Σ[3]ΠΣ∧ and Σ[3]ΠΣΠ[3] models, we leave the poly-time blackbox question open.

1.2 Proof ideas: A technical synopsis
In this section, we overview the proof of Theorems 1-2. Both the proofs are analytic, i.e. they
use logarithmic derivative, and its power-series expansion; greatly transforming the respective
models. The first proof is inductive, while the second is a one-shot proof. We remark
that in both the cases, we essentially reduce to the well-known “wedge” models, that have
unbounded top fanin, yet for which PITs are known. This reduction is unforeseeable and
quite “power”ful.

The analytic tool that we use, appears in algebra (and complexity theory) through the
formal power series ring R[[x1, . . . , xn]] (in short R[[x]]), see [65, 86, 19]. The advantages of
the ring R[[x]] are many. They usually emerge because of the inverse: (1 − x1)−1 =

∑
i≥0 xi

1,
which does not make sense in R[x], but valid in R[[x]]. Other analytic tools used are inspired
from Wronskian (aka linear dependence) [51, Thm.7] [46], jacobian (aka algebraic dependence)
[12, 5, 67], and logarithmic derivative operator dlog z1(f) = (∂z1 f)/f .
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Moreover, we will be working with the division operator (eg. R(z1), over a certain ring R).
The divisions do not come for “free” – they require invertibility with respect to z1 throughout
(again landing us in R[[z1]], see Lem. 18). We define class C/D := {f/g | f ∈ C, D ∋ g ≠ 0},
for circuit classes C, D, (similarly C · D denotes the class taking respective products).

The DiDI-technique [Idea of Theorem 1]. The proof of Thm. 1 is recursive and uses a novel
technique that we introduce in this work, called DiDI (Di= Divide, D=Derive, I=Induct).
We illustrate it in k = 3, which generalizes to any k.

Before going into the technicalities, we want to convey that k = 3 is perhaps the first
non-trivial case-study. While k = 1 is the simplest case (follows directly using sparse-PIT
hitting set [49]), k = 2 invokes a strong irreducibility property [71, Thm. 5.2]; and neither of
them work for k ≥ 3.

The case k = 3 asks to check whether T1 + T2 + T3
?= 0, where Ti ∈ ΠΣ∧ of deg < d. We

apply a homomorphism Φ : F[x] −→ F[x, z1, z2] such that xi 7→ z1 · xi + Ψ(xi) where Ψ is
another homomorphism. The map Ψ : F[x] −→ F[z2] is a sparse-PIT map s.t. Ψ(Ti) ̸= 0
for non-zero Ti, using [49], which ensures that the degree of z2 is polynomially bounded
(Theorem 11). Think of the variable z1 as a degree-counter which also helps later to derive
(the second “D” of DiDI). Observe that Φ is a nonzeroness preserving 1-1 map:

T1 + T2 + T3 ̸= 0 ⇐⇒ Φ(T1) + Φ(T2) + Φ(T3) ̸= 0.

Denote R := F(z2)[z1]/⟨zd
1⟩. We divide (first “D” of DiDI), by Φ(T3), and derive, wrt z1, to

conclude that T1 + T2 + T3 = f over F[x] implies

∂z1

(
Φ(T1)
Φ(T3)

)
+ ∂z1

(
Φ(T2)
Φ(T3)

)
= ∂z1

(
Φ(f)
Φ(T3)

)
over R(x) .

Denote T̃1 := ∂z1(Φ(T1)/Φ(T3)) and T̃2 := ∂z1(Φ(T2)/Φ(T3)). Moreover, ∂z1(Φ(f)/Φ(T3)) =
0, over R(x), if and only if either (1) Φ(f)/Φ(T3) is z1-free, in which case it is an ele-
ment of F(z2), this can be easily argued by substituting z1 = 0 in the map Φ; or (2)
valz1(∂z1(Φ(f)/Φ(T3))) ≥ d, which is a contradiction since it implies valz1(Φ(f)) ≥ d + 1.
Here, valz1(·) denotes the valuation i.e. the maximum power of z1 dividing it (which easily
extends to fractions via valz1(p/q) := valz1(p) − valz1(q)). Whenever we talk about val, think
of working over F(z2, x)(z1); which is a ring notion that helps us computationally, and we
track the degree of z. This discussion summarizes a crucial fact:

T1 + T2 + T3 ̸= 0 ⇐⇒ T̃1 + T̃2 ̸= 0 over R(x), or Φ(f)
Φ(T3)

∣∣∣∣
z1=0

∈ F(z2)\{0} .

We remark that the z1 = 0 substitution is a natural condition as the derivation forgets the
(mod z1)-part. At the core, the idea is really “primal”: if a polynomial g(x) ̸= 0, then either
its derivative g′(x) ̸= 0, or its constant-term g(0) ̸= 0 (note: g(0) = g mod x).

Note that, the z1 = 0 substitution part is easy by poly-degree restriction on z2. If it is
already ̸= 0, we are done, otherwise we need to check T̃1 + T̃2 ≠ 0. Rewrite T̃i as Φ(Ti)/Φ(T3) ·
dlogz1(Φ(Ti)/Φ(T3)), where dlog denotes the logarithmic-derivative, i.e. dlogz1(·) = ∂z1(·)/(·).

Convert top Π to ∧: version 1. The map Ψ ensures that Φ(T3) is a unit over R. A
calculation shows that the action dlog(Σ∧) is in Σ ∧ /Σ∧ ∈ Σ∧Σ∧, over R[x] (Claim 4). This
crucially uses the inverse identity:

1
1 − a · z1

= 1 + a · z1 + . . . + ad−1 · zd−1
1 over R[x], (1)

CCC 2021



11:6 Bounded Depth-4 Identity Testing Paradigms

for a ∈ R[x]. Since, dlog is additive over a product (Sec. 2), the action puts dlog(ΠΣ∧ /ΠΣ∧)
in
∑

dlog(Σ∧), so in Σ∧Σ∧. Thus, both T̃1 and T̃2 are of the bloated form (ΠΣ∧/ΠΣ∧)·(Σ∧Σ∧),
over R(x).

Invertibility. The crucial point is that the ΠΣ∧-circuits are still invertible over R[x] as:
dlog newly introduces only Σ∧Σ∧ , while the ΠΣ∧-parts get multiplied by the ΠΣ∧ within
Ti’s, which are invertible by Ψ. Thus, such (ΠΣ∧)|z1=0 ∈ F(z2)\{0}; which will be useful
later.

Bloated k = 2 model. Is the newly “reduced” model similar to k = 2 base-case? It is a
more general expression (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧) + (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧). Let T̃1 + T̃2 =: f1,
over R(x). We know that f1 ̸= 0 (by hypothesis). We again apply “Divide and Derive” of
DiDI; here we divide with the T̃i where valz1 is minimal. Wlog, valz1(T̃2) =: v, is the minimal
valuation. Of course, 0 ≤ v < d (strict because of Ψ). Let us define R′ := F(z2)[z1]/⟨zd−v−1

1 ⟩.
Then, (T̃1/T̃2) + 1 = f1/T̃2 over R′(x). This is well-defined as the division is being done
by the minimum valuation (Lemma 18); thus after derivation, the modulus goes from zd

1
to zd−v−1

1 which is well-defined over R′(x). However, if we derive: ∂z1(f1/T̃2) =: f2 may
become = 0 over R′(x). That could happen if and only if:
1. Either, f1/T̃2 is z1-free; in that case

f1

T̃2

∣∣∣∣
z1=0

=
(

T̃1

T̃2
+ 1
)∣∣∣∣

z1=0
∈ F(z2) · Σ∧Σ∧

Σ∧Σ∧
+ 1.

This is easy to test using Σ ∧Σ∧ whitebox PIT (Lemma 19) (we keep track of the
circuit-size respectively the degree of z2 and ensure them polynomially bounded),

2. Or, valz1(f2) ≥ d−v−1 =⇒ ∂z1(f1/T̃2) = zd−v−1
1 ·p, for some p ∈ R′(x) s.t. valz1(p) ≥ 0;

this further implies p ∈ F(z2, x)[[z1]] (Lemma 18). Thus valz1(f1/T̃2) ≥ d−v =⇒ f1 = 0,
over R(x), a contradiction.

Thus, we check the easy condition (1). If the z1 = 0 substitution outputs 0, we need
to check whether other monomials of z1 in f2 survive. This suffices to conclude f ̸= 0.
Thankfully f2 = ∂z1(T̃1/T̃2) is now a (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) circuit over R′(x).
This is the same analysis as above that converts top Π to ∧. Except, we may not be able to
remove Σ∧Σ∧ from the denominator; so we work with this fractional bloated model. (Note:
the reciprocal may not be in the polynomial ring R′[x], but only in the ring R′(x).)

Finally, identity testing of (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over R′(x) is easy: (1) Σ∧Σ∧
is closed under coefficient extraction with respect to z1 (Lemma 14), (2) whitebox identity
testing is in P for both ΠΣ∧ (Theorem 11) and Σ∧Σ∧ (convert it to an ROABP using [75]
and invoke [70], see Lemma 19), (3) the degree of z1, z2 respectively circuit-size remain
polynomially bounded.

For general induction, our bloated model is Σ[k](ΠΣ ∧ /ΠΣ∧) · (Σ ∧Σ∧ /Σ ∧Σ∧) 1.
More work shows that it is closed under DiDI-technique. This is primarily what makes our
polynomial-time algorithm possible. For details, refer to Section 3.1 and Algorithm 1

Jacobian hits again [Idea of Theorem 2]. Suppose we want to test T1 + . . . + Tk
?= 0,

where Ti ∈ ΠΣΠ[δ] (respec. ΠΣ∧). We associate a famous polynomial – the Jacobian
J(T1, . . . , Tr) (see Sec. 2). It captures the algebraic independence of T1, . . . , Tr assuming
this to be a transcendence basis of the Ti’s (see Fact 23). If we could find an r-variate

1 This is a special case of Σ[k]ΠΣ ∧ Σ∧ circuits; which is really depth-6.
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linear map Φ, that keeps T1, . . . , Tr algebraically independent, then Φ(T1), . . . , Φ(Tr) are
again algebraically independent and it can be shown that for any C: C(T1, . . . , Tk) = 0 ⇐⇒
C(Φ(T1), . . . , Φ(Tk)) = 0 (Fact 22). Such a map is called “faithful” [5].

The overall idea is to find an explicit homomorphism Ψ : F[x] −→ F[x, z1, z2], and then fix
x by a hitting-set H ′ to get a composed map Ψ′ s.t. rkF(x)Jx(T ) = rkF(z)Ψ′(Jx(T )) [here J
is the jacobian matrix and T = (T1, . . . , Tr)]. Next, extend this map to Φ : F[x] −→ F[z, y, t]
s.t. xi 7→ (

∑k
j=1 yjtij) + Ψ′(xi), which is faithful. The construction of the map Ψ′ is crucial.

We efficiently construct it by reducing Ψ(Jxr
(T )) to Σ∧ΣΠ[δ] (respec. Σ∧Σ∧ ) circuits,

which have quasipoly size hitting sets [25] (respec. Lemma 19).
Jacobian works. A priori, Jacobian is a difficult determinant to work with, and so is

finding a faithful Φ. However, for the special models (in this paper) we are able to design
Φ, mainly because of two reasons – (1) Jacobian being defined via partial derivatives, has a
nice “linearizing effect” on the top Π-gates (that are only r ≤ k many), (2) Jacobian under a
homomorphism Ψ has a nice expression (think of this as a generalized dlog-expression):

Ψ(Jxr
(T )) = Ψ(T1 · · · Tr) ·

∑
g1∈L(T1),...,gr∈L(Tr)

Ψ(Jxk
(g1, . . . , gr))

Ψ(g1 . . . gr) . (see Eqn. 6)

Here, L(Ti) denotes the multiset of sparse polynomials that constitutes Ti. We show: each
1/Ψ(·) has a “small” Σ∧ΣΠ[δ]-circuit (respec. Σ∧Σ∧ ). The last point requires invertibility.
Define, Ψ : xi 7→ z1xi + Ψ1(xi), where Ψ1(·) is a sparse-PIT map s.t. Ψ1 : F[x] −→ F[z2]
s.t. Ψ1(Ti) ̸= 0. Under the Ψ, Ti is a unit over ring R := F(z2)[z1]/⟨zD

1 ⟩, where D is
polynomially bounded. The idea behind the map is similar to that of Thm. 1. Next, we
sketch why Ψ(Jxr

(T )) has a Σ∧ΣΠ[δ] circuit (respec. Σ∧Σ∧ ) of size sO(k) over R[x].

Convert top Π to ∧: version 2. The critical point is to show that 1/Ψ(g1 · · · gk), over
R[x], where gi ∈ ΣΠ[δ] (respec. Σ∧) has sO(k) size Σ∧ΣΠ[δ] (respec. Σ∧Σ∧ ) circuit (see
Lem. 10): this again follows from the inverse identity Equation 1. We keep track of the
degree of z throughout, which eventually is bounded by sO(k). Thus, the H ′ can be efficiently
constructed from the hitting set of the respective models (of quasipolynomial size), see
Thm. 27 and 19. The map Φ ultimately provides a hitting set for T1 + . . . + Tk , as we
reduce to a PIT of a polynomial over “few” (roughly equal to k) variables, yielding a QP-time
algorithm.

It is important to note that there was no power series in [5]; this really empowers the
jacobian technique as it now manifests new reduced models, for which a hitting-set is known.
This technique is also inherently map-based. So, it requires a hitting-set and fails to give a
poly-time whitebox PIT for the respective models. For the detailed proof, see Section 3.2.

2 Preliminaries

Before proving the results, we describe some of the assumptions and notations used throughout
the paper. x denotes (x1, . . . , xn). [n] denotes {1, . . . , n}.

Logarithmic derivative. Over a ring R and a variable y, the logarithmic derivative dlogy :
R[y] → R(y) is defined as dlogy(f) := ∂y f/f ; here ∂y denotes the partial derivative with
respect to variable y. One important property of dlog is that it is additive over a product as

dlogy(f · g) = ∂y(f · g)
f · g

= (f · ∂yg + g · ∂yf)
f · g

= dlogy(f) + dlogy(g).

We refer this effect as linearization of product.
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Circuit size. Sparsity sp(·) refers to the number of nonzero monomials. In this paper, it
is a parameter of the circuit size. In particular, size(g1 · · · gs) =

∑
i∈[s] (sp(gi) + deg(gi)),

for gi ∈ Σ∧ (respec. ΣΠ[δ]). In whitebox settings, we also include the bit-complexity of the
circuit (i.e. bit complexity of the constants used in the wires) in the size parameter. Some of
the complexity parameters of a circuit are depth (number of layers), syntactic degree (the
maximum degree polynomial computed by any node), fanin (maximum number of inputs to
a node).

Hitting set. A set of points H ⊆ Fn is called a hitting-set for a class C of n-variate
polynomials if for any nonzero polynomial f ∈ C, there exists a point in H where f evaluates
to a nonzero value. A T (n)-time hitting-set would mean that the hitting-set can be generated
in time T (n), for input size n.

Valuation. Valuation is a map valy : R[y] → Z≥0, over a ring R, such that valy(·) is defined
to be the maximum power of y dividing the element. It can be easily extended to fraction
field R(y), by defining valy(p/q) := valy(p) − valy(q); where it can be negative.

Field. We denote the underlying field as F and assume that it is of characteristic 0. All our
results hold for other fields (eg. Qp,Fp) of large characteristic (see Remarks in Section 3.1–3.2).

Jacobian. The Jacobian of a set of polynomials f = {f1, . . . , fm} in F[x] is defined to be the
matrix Jx(f) :=

(
∂xj

(fi)
)

m×n
. Let S ⊆ x = {x1, . . . , xn} and |S| = m. Then, polynomial

JS(f) denotes the minor (i.e. determinant of the submatrix) of Jx(f), formed by the columns
corresponding to the variables in S. For its useful properties, see Appendix C.

3 Proof of the main theorems

This section proves Theorems 1-2. The proofs are self contained and we assume for the sake
of simplicity that the underlying field F has characteristic 0. When this is not the case, we
discuss the corresponding required characteristic as remarks after the respective proofs.

3.1 Proof of Theorem 1
As seen in Section 1.2, we will induct over the bloated model which naturally generalizes
ΣΠΣ∧ circuits and works ideally under the DiDI-techniques. Formally, we define it below.

▶ Definition 3. We call a circuit C ∈ Gen(k, s), over R(x), for any ring R, with parameter k

and size-s, if C ∈ Σ[k](ΠΣ∧ /ΠΣ∧) ·(Σ∧Σ∧ /Σ∧Σ∧). It computes f ∈ R(x), if f =
∑k

i=1 Ti,
where
1. Ti =: (Ui/Vi) · (Pi/Qi), for Ui, Vi ∈ ΠΣ∧, and Pi, Qi ∈ Σ∧Σ∧,
2. size(Ti) = size(Ui) + size(Vi) + size(Pi) + size(Qi), and size(f) =

∑
i∈[k] size(Ti).

Eg. Size-s Σ[k]ΠΣ∧-circuit ∈ Gen(k, s). We will design a recursive algorithm.

Proof of Theorem 1. Begin with Ti,0 := Ti and f0 := f where Ti,0 ∈ ΠΣ∧;
∑

i Ti,0 = f0,
and f0 has size ≤ s. Assume deg(f) < d ≤ s; we keep the parameter d separately, to
help optimize the complexity later. In every recursive call we work with Gen(·, ·) circuits.
As the input case, define Ui,0 := Ti,0 and Vi,0 := Pi,0 := Qi,0 := 1. Further define a 1-1
homomorphism Φ : F[x] −→ F[x, z1, z2] such that xi 7→ z1·xi+Ψ(xi). Here, Ψ : F[x] −→ F[z2]
is a sparse-PIT map [49] s.t. Ψ(Ui,0) ̸= 0, ∀i ∈ [k] (Theorem 11). Invertibility implies that
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f0 = 0 ⇐⇒ Φ(f0) = 0. Further, the degree bound of z2 on Φ(Ti,0) is poly(s). The algorithm
is recursive, and first reduces the identity testing from top-fanin k to k − 1. Note: k = 1 is
trivial.

0-th step. Efficient reduction from k to k − 1. By assumption,
∑k

i=1 Ti,0 = f0 and
Tk,0 ̸= 0. Apply Φ both sides. Then divide and derive:∑

i∈[k]

Ti,0 = f0 ⇐⇒
∑
i∈[k]

Φ(Ti,0) = Φ(f0)

⇐⇒
∑

i∈[k−1]

Φ(Ti,0)
Φ(Tk,0) + 1 = Φ(f0)

Φ(Tk,0)

=⇒
∑

i∈[k−1]

∂z1

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)

⇐⇒
k−1∑
i=1

Φ(Ti,0)
Φ(Tk,0) · dlog

(
Φ(Ti,0)
Φ(Tk,0)

)
= ∂z1

(
Φ(f0)

Φ(Tk,0)

)
. (2)

Define the following:
R1 := F(z2)[z1]/⟨zd

1⟩. Note that, Eqn.(2) holds over R1(x).

T̃i,1 := Φ(Ti,0)/Φ(Tk,0) · dlog(Φ(Ti,0)/Φ(Tk,0)), ∀ i ∈ [k − 1].

f1 := ∂z1(Φ(f0)/Φ(Tk,0)), over R1(x).

Definability of Ti,1 and f1. It is easy to see that these are well-defined terms. Here, we
emphasize that we do not exactly compute/store T̃i,1 as a fraction where the degree in z1
is < d; instead it is computed/stored as an element in F(z2)(z1, x), where z1 is a formal
variable. Formally, we compute Ti,1 ∈ F(z2)(z1, x), such that T̃i,1 = Ti,1, over R1(x). We
keep track of the degree of z1 and z2 in Ti,1. Thus,

∑
i∈[k−1] Ti,1 = f1, over R1(x).

The “iff” condition. Equality in Eqn. (2) over R1(x) is one-sided; however we want
a ⇐⇒ condition to efficiently reduce the identity testing. Note that f1 ̸= 0 implies
valz1(f1) < d =: d1. By assumption, Φ(Tk,0) is invertible over R1(x). Further, f1 = 0, over
R1(x), implies –

1. Either, Φ(f0)/Φ(Tk,0) is z1-free. This implies Φ(f0)/Φ(Tk,0) ∈ F(z2)(x), which further
implies it is in F(z2), because of the map Φ (z1-free implies x-free, by substituting z1 = 0).
Also, note that f0, Tk,0 ̸= 0 implies Φ(f0)/Φ(Tk,0) is a nonzero element in F(z2). Thus, it
suffices to check whether Φ(f0)|z1=0 = Ψ(f0) is non-zero or not. Further, the degree of z2
in Ψ(f0) is polynomially bounded.

2. Or, ∂z1(Φ(f0)/Φ(Tk,0)) = zd1
1 · p where p ∈ F(z2)(z1, x) s.t. valz1(p) ≥ 0. By simple

power series expansion, one can conclude that p ∈ F(z2, x)[[z1]] (Lemma 18). Hence,
Φ(f0)/Φ(Tk,0) = zd1+1

1 · q where q ∈ F (z2, x)[[z1]], i.e.

Φ(f0)/Φ(Tk,0) ∈ ⟨zd1+1
1 ⟩F(z2,x)[[z1]] =⇒ valz1(Φ(f0)) ≥ d + 1,

a contradiction.
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Conversely, it is obvious that f0 = 0 implies f1 = 0. Thus, we have proved the following∑
i∈[k]

Ti,0 ̸= 0 over F[x] ⇐⇒
∑

i∈[k−1]

Ti,1 ̸= 0 over R1(x), or , 0 ̸= Φ(f0)|z1=0 ∈ F(z2) .

Eventually, we show that Ti,1 ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over R1(x), with polynomial
blowup in size (Claim 4). So, the above circuit is in Gen(k − 1, ·), over R1(x), which we
recurse on to finally give the identity testing. The 1-th step is a bit more tricky:

Induction step. Assume that we are in the j-th step (j ≥ 1). Our induction hypothesis
assumes –

1.
∑

i∈[k−j] Ti,j = fj , over Rj(x), where Rj := F(z2)[z1]/⟨zdj

1 ⟩, and Ti,j ̸= 0.
2. Here, Ti,j =: (Ui,j/Vi,j) · (Pi,j/Qi,j), where Ui,j , Vi,j ∈ ΠΣ∧, and Pi,j , Qi,j ∈ Σ∧Σ∧, each

in Rj [x]. Think of them being computed as F(z2)(z1, x), with the degrees being tracked.
Wlog, assume that valz1(Tk−j,j) is the minimal among all Ti,j ’s.

3. valz1(Ti,j) ≥ 0, ∀i ∈ [k − j]. Moreover, Ui,j |z1=0 ∈ F(z2)\{0} (similarly Vi,j).
4. f ̸= 0, over F[x] ⇐⇒ fj ̸= 0, over Rj(x), or,

∨j−1
i=0 ((fi/Tk−i,i)|z1=0 ̸= 0, overF(z2)(x)).

We follow the 0-th step, without applying any further homomorphism. Note that the
“or condition” in the last hypothesis is similar to the j = 0 case except that there is no Φ:
this is because Φ(f0)|z1=0 ̸= 0 ⇐⇒ Φ(f0/Tk,0)|z1=0 ̸= 0. This condition just separates the
derivative from the constant-term (as pointed in Section 1.2).

Let valz1(Pi,j/Qi,j) =: vi,j , for i ∈ [k − j]. Note that

min
i

valz1(Ti,j) = min
i

valz1(Pi,j/Qi,j) = vk−j,j

since valz1(Ui,j) = valz1(Vi,j) = 0 (else we reorder). We remark that 0 ≤ vi,j < dj for all i’s
in j-th step; upper-bound is strict, since otherwise Ti,j = 0 over Rj(x).

Min val computation is easy. Finding this min val is easy, as we can compute valz1(Pi,j)
and valz1(Qi,j), ∀i ∈ [k − j]. To compute val, note that coefze

1
(Pi,j) and coefze

1
(Qi,j) are

in Σ ∧Σ∧ as well, over F (z2)[x] (Lemma 14). We can keep track of z1 degree and thus
interpolate to find the minimum e < dj such that it is ̸= 0 (implying it to be the respective
val).

Efficient reduction from k − j to k − j − 1. Similar to the 0-th step, we divide and derive:∑
i∈[k−j]

Ti,j = fj ⇐⇒
∑

i∈[k−j−1]

Ti,j/Tk−j,j + 1 = fj/Tk−j,j

=⇒
∑

i∈[k−j−1]

∂z1(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j)

⇐⇒
k−j−1∑

i=1
Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j) = ∂z1(fj/Tk−j,j) (3)

Define the following:
Rj+1 := F(z2)[z1]/⟨zdj+1

1 ⟩, where dj+1 := dj − vk−j,j − 1.

T̃i,j+1 := Ti,j/Tk−j,j · dlog(Ti,j/Tk−j,j), ∀ i ∈ [k − j − 1].

fj+1 := ∂z1(fj/Tk−j,j), over Rj+1(x).
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Definability of Ti,j+1 and fj+1. By the minimal valuation assumption, it follows that
val(fj) ≥ vk−j,j , and thus T̃i,j+1 and fj+1 are all well-defined over Rj+1(x). Note that,
Eqn. (3) holds over Rj+1(x) as dj+1 < dj (because, whatever identity holds true modz

dj

1
must hold modz

dj+1
1 as well). Hence, we must have

∑k−j−1
i=1 T̃i,j+1 = fj+1, over Rj+1(x)

[proving induction hypothesis (1) ].
Similarly, we emphasize on the fact that we do not exactly compute T̃i,j+1 mod z

dj+1
1 ; in-

stead it is computed as a fraction in F(z2)(z1, x), with formal z1. Formally, we compute/store
Ti,j+1 ∈ F(z2)(z1, x), such that T̃i,j+1 = Ti,j+1, over Rj+1(x). We keep track of the degree
of z1 and z2 in Ti,j+1. Also, by definition, valz1(Ti,j+1) ≥ 0 (as we divide by the min val)
[proving induction hypothesis (3), first part]. Of course, we have

∑
i∈[k−j−1] Ti,j+1 = fj+1,

over Rj+1(x).

The “iff” condition. The above Eqn. (3) pioneers to reduce from k − j-summands to
k − j −1. But we want a ⇐⇒ condition to efficiently reduce the identity testing. If fj+1 ̸= 0,
then valz1(fj+1) < dj+1. Further, fj+1 = 0, over Rj+1(x) implies–
1. Either, fj/Tk−j,j is z1-free. This implies it is in F(z2)(x). Now, if indeed f0 ̸= 0, then the

computed Ti,j as well as fj must be non-zero over F(z2)(z1, x), by induction hypothesis
(as they are non-zero over Rj(x)). However,(

Ti,j

Tk−j,j

) ∣∣∣∣
z1=0

=
(

Ui,j · Vk−j,j

Uk−j,j · Vi,j

) ∣∣∣∣
z1=0

·
(

Pi,j · Qk−j,j

Pk−j,j · Qi,j

) ∣∣∣∣
z1=0

∈ F(z2) ·
(

Σ∧Σ∧
Σ∧Σ∧

)
.

Thus,

fj

Tk−j,j
∈
∑

F(z2) ·
(

Σ∧Σ∧
Σ∧Σ∧

)
∈
(

Σ∧Σ∧
Σ∧Σ∧

)
.

Here we crucially use that Σ∧Σ∧ is closed under multiplication (Lemma 16). We show that
the degree of z2 (in denominator and numerator) in each Ti,j/Tk,j is poly-bounded. Thus,
this identity testing can be done in poly-time (Lemma 19). For, detailed time-complexity
and calculations, see Claim 4 and its subsequent paragraph.

2. Or, ∂z1(fj/Tk−j,j) = z
dj+1
1 · p, where p ∈ F(z2)(z1, x) s.t. valz1(p) ≥ 0. By a simple power

series expansion, one concludes that p ∈ F(z2, x)[[z1]] (Lemma 18). Hence, one concludes
that

fj

Tk−j,j
∈
〈

z
dj+1+1
1

〉
F(z2,x)[[z1]]

=⇒ valz1(fj) ≥ dj ,

i.e. fj = 0, over Rj(x).
Conversely, fj = 0, over Rj(x), implies

valz1(fj) ≥ dj =⇒ valz1

(
∂z1

(
fj

Tk−j,j

))
≥ dj − vk−j,j − 1 =⇒ fj+1 = 0, over Rj+1(x).

Thus, we have proved that
∑

i∈[k−j] Ti,j ̸= 0 over Rj(x) iff

∑
i∈[k−j−1]

Ti,j+1 ̸= 0 over Rj+1(x) , or , 0 ̸=
(

fj

Tk−j,j

) ∣∣∣∣
z1=0

∈ F(z2)(x) .

Therefore induction hypothesis (4) holds. All we need to show is hypothesis (2) and second
part of (3). This part is involved in the size-analysis and dlog-computation, discussed below.
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Invertibility of ΠΣ∧-circuits. Before going into the size analysis, we want to remark that
the dlog compuation plays a crucial role here. The action dlog(Σ∧Σ∧) ∈ Σ∧Σ∧ /Σ∧Σ∧ , is of
poly-size (Lemma 17). What is the action on ΠΣ∧? dlog distributes the product additively,
so it suffices to work with dlog(Σ∧); and we show that dlog(Σ∧) ∈ Σ ∧Σ∧ of poly-size.
Assuming these, we simplify

Ti,j

Tk−j,j
= Ui,j · Vk−j,j

Vi,j · Uk−j,j
· Pi,j · Qk−j,j

Qi,j · Pk−j,j
,

and its dlog. Thus, using Eq. (3), Ui,(j+1) grows to Ui,j · Vk−j,j (and similarly Vi,(j+1)). This
also means: Ui,(j+1)|z1=0 ∈ F(z2) \ {0} (proving hypothesis (3), second part).

Size analysis. We will show that Ti,j+1 ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧), over Rj+1(x),
with only polynomial blowup in size. Let size(Ti,j) ≤ sj , for i ∈ [k − j], and j ∈ [k]. Note
that, by assumption, s0 ≤ s.

▷ Claim 4 (Final size). T1,k−1 ∈ (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) of size sO(k7k), over Rk−1(x).

Proof. Steps j = 0 and j > 0 are slightly different because of the Φ. However the main idea
of using power-series is the same which eventually shows that dlog(Σ∧) ∈ Σ∧Σ∧ .

We first deal with j = 0. Let A − z1 · B = Φ(g) ∈ Σ∧, for some A ∈ F(z2) and B ∈ R1[x].
Note that A ̸= 0 because of the map Ψ. Further, size(B) ≤ O(d · size(g)), as a single
monomial of the form xe can produce d + 1-many monomials. Over R1(x),

dlog(Φ(g)) = − ∂z1(B · z1)
A(1 − B

A · z1)
= −∂z1(B · z1)

A
·

d1−1∑
i=0

(
B

A

)i

· zi
1 . (4)

Bi has a trivial ∧Σ∧-circuit of size O(d · size(g)). Also, ∂z1(B · z1) has a Σ∧-circuit of size at
most O(d ·size(g)). Using waring identity (Lemma 15), we get that each ∂z1(B ·z1) ·(B/A)i ·zi

1
has size O(i · d · size(g)), over R1(x). Summing over i ∈ [d1 − 1], the overall size is at most
O(d2

1 · d · size(g)) = O(d3 · size(g)), as d0 = d1 = d.
For the j-th step, we emphasize that the degree could be larger than d. Assume that

syntactic degree of denominator and numerator of Ti,j (each in F[x, z]) are bounded by Dj

(it is not dj as seen above; this is to save on the trouble of mod-computation at each step).
Of course, D0 < d ≤ s.

For j > 0, the above summation in Equation 4 is over Rj(x). However the degree could
be Dj (possibly more than dj) of the corresponding A and B. Thus, the overall size after
the power-series expansion would be O(D2

j · d · size(g)).
Using Lemma 17, we can show that dlog(Pi,j) ∈ Σ∧Σ∧ /Σ∧Σ∧ (similarly for Qi,j), of

size O(D2
j · sj). Also dlog(Ui,j · Vk−j,j) ∈

∑
dlog(Σ∧), i.e. sum of action of dlog on Σ∧

(since dlog linearizes product); and it can be computed by the above formulation. Thus,
dlog(Ti,j/Tk−j,j) is a sum of 4-many Σ∧Σ∧ /Σ∧Σ∧ of size at most O(D2

j sj) and 1-many
Σ∧Σ∧ of size O(D2

j djsj) (from the above power-series computation) [Note: we summed up
the Σ∧Σ∧-expressions from dlog(Σ∧) together]. Additionally the syntactic degree of each
denominator and numerator (of the Σ∧Σ∧ /Σ∧Σ∧ ) is O(Dj). We rewrite the 4 expressions
(each of Σ∧Σ∧ /Σ∧Σ∧ ) and express it as a single Σ∧Σ∧ /Σ∧Σ∧ using waring identity
(Lemma 16), with the size blowup of O(D12

j s4
j ); here the syntatic degree blowsup to O(Dj).

Finally we add the remaining Σ∧Σ∧ circuit (of size O(D3
j sj) and degree O(dDj)) to get

O(s5
jD16

j d). To bound this, we need to understand the degree bound Dj .
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Finally we need to multiply Ti,j/Tk−j,j ∈ (ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧) where each
Σ∧Σ∧ is a product of two Σ∧Σ∧ expression of size sj and syntactic degree Dj ; clubbed
together owing a blowup of O(Dj · s2

j ). Hence multiplying it with Σ∧Σ∧ /Σ∧Σ∧ expression
obtained from dlog computation above gives size blowup of sj+1 = s7 · D

O(1)
j · d.

Computing Ti,j/Tk−j,j increases the syntactic degree “slowly”; which is much less than
the size blowup. As mentioned before, the deg-blowup in dlog-computation is O(dDj) and
in the clearing of four expressions, it is just O(Dj). Thus, Dj+1 = O(dDj) =⇒ Dj = dO(j).

The recursion on the size is sj+1 = s7
j · dO(j). Using d ≤ s we deduce, sj = (sd)O(j·7j). In

particular, sk−1, size after k −1 steps is sO(k·7k). This computation quantitatively establishes
induction hypothesis (2). ◁

Final time complexity. The above proof actually shows that T1,k−1 has a “bloated” circuit
of size sO(k·7k) over Rk−1(x); and that the degree bound on z2 and z1 (over F(z2)[z1, x],
keeping denominator and numerator “in place”) is Dk−1 = dO(k). We note that whitebox
PIT for both ΠΣ∧ and Σ∧Σ∧ is in poly-time (using Thm. 11 & Lem. 19 respectively), and
the proof above is constructive: we calculate Ui,j+1 (and other terms) from Ui,j explicitly.
Thus, this part can be done in sO(k7k) time.

What remains is to test the z1 = 0-part of induction hypothesis (4); it could short-circuit
the recursion much before j = k − 1. As we mentioned before, in this case, we need to do a
PIT on Σ∧Σ∧ only. At the j-th step, when we substitute z1 = 0, the size of each Ti,j can be at
most sj (by definition). We need to do PIT on a simpler model:

∑[k−j] F(z2)·(Σ∧Σ∧/Σ∧Σ∧ ).
We can clear out and express this as a single Σ∧Σ∧ /Σ∧Σ∧ expression; with a size blowup
of s

O(k−j)
j ≤ (sd)O(j(k−j)7j). Further, use the fact that maxj∈[k−1] j(k − j)7j = (k − 1)7k−1

(see Lemma 20). The degree bound on z2 remains as before. Finally, use Lemma 19 for the
base-case whitebox PIT. Thus, the final time complexity is sO(k·7k).

Here we also remark that in z1 = 0 substitution Σ∧Σ∧ /Σ∧Σ∧ may be undefined. However,
we keep track of z1 degree of numerator and denominator, which will be polynomially bounded
as seen in the discussion above. We can easily interpolate and cancel the z1 power to make
it work.

Bit complexity. It is routine to show that the bit-complexity is really what we claim.
Initially, the given circuit has bit-complexity s. The main blowup happens due to the
dlog-computation which is a poly-size blowup. We also remark that while using Lemma 16
(using Lemma 15), we may need to go to a field extension of at most sO(k) (because of the ε(i)
and correspondingly the constants γε(2),...,ε(k), but they still are sO(k)-bits). Also, Theorem
11 and Lemma 19 computations blowup bit-complexity polynomially. This concludes the
proof. ◀

▶ Remark.
1. The above method does not give whitebox PIT (in poly-time) for Σ[k]ΠΣΠ[δ], as we donot

know poly-time whitebox PIT for Σ∧ΣΠ[δ]. However, the above methods do show that
whitebox-PIT for Σ[k]ΠΣΠ[δ] polynomially reduces to whitebox-PIT for Σ∧ΣΠ[δ].

2. DiDI-technique can be used to give whitebox PIT for the general bloated model Gen(k, s).
3. The above proof works when the characteristic is ≥ d. This is because the nonzeroness

remains preserved after derivation wrt z1.
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3.2 Proof of Theorem 2
Here we prove Theorem 2b only. The proof technique of part (a) has analogous calculations
(using bottom Σ∧ instead of ΣΠ[δ]); see Appendix D. The main idea is to use the Jacobian [5].
In fact, it solves a more general model than Σ[k]ΠΣΠ[δ].

Transcendence basis. Polynomials T1, . . . , Tm are called algebraically dependent if there
exists a nonzero annihilator A s.t. A(T1, . . . , Tm) = 0. Transcendence degree is the size of
the largest subset S ⊆ {T1, . . . , Tm} that is algebraically independent. Then S is called a
transcendence basis.

▶ Problem 5. Let {Ti | i ∈ [m]} be ΠΣΠ[δ] circuits of (syntactic) degree at most d and size
s. Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) = k ≪ s. Further, C(x1, . . . , xm)
be a circuit of (size + deg) < s′. Design a blackbox-PIT algorithm for C(T1, . . . , Tm).

Trivially, Σ[k]ΠΣΠ[δ] is a very special case of the above setting. Let T := {T1, . . . , Tm}.
Let T k := {T1, . . . , Tk} be a transcendence basis. For Ti =

∏
j gij , we denote the set

L(Ti) := {gij | j}.
We want to find an explicit homomorphism Ψ : F[x] → F[x, z1, z2] s.t. Ψ(Jx(T )) is of a

“nice” form. In the image we fix x suitably, to get a composed map Ψ′ : F[x] −→ F[z1, z2]
s.t. rkF(x)Jx(T ) = rkF(z)Ψ′(Jx(T )). Then, we can extend this map to Φ : F[x] −→ F[z, y, t]
s.t. xi 7→ (

∑k
j=1 yjtij) + Ψ′(xi), which is faithful [5, Lemma 2.7]; see Lemma 24. We show

that the map Φ can be efficiently constructed using a scaling and shifting map (Ψ) which is
eventually fixed by the hitting set (H ′ defining Ψ′) of a Σ∧ΣΠ[δ] circuit. Overall, Φ(f) is a
k + 3-variate polynomial for which a trivial hitting set exists.

Wlog, Jx(T ) is full rank with respect to the variable set xk = (x1, . . . , xk). Thus,
by assumption, Jxk

(T k) ̸= 0 (for notation, see Section 2). We want to construct a Ψ
s.t. Ψ(Jxk

(T k)) has an “easier” PIT. We have the following identity [5, Eqn. 3.1], from the
linearity of the determinant, and the simple observation that ∂x(Ti) = Ti ·

(∑
j ∂x(gij)/gij

)
,

where Ti =
∏

j gij :

Jxk
(T k) =

∑
g1∈L(T1),...,gk∈L(Tk)

(
T1 . . . Tk

g1 . . . gk

)
· Jxk

(g1, . . . , gk) . (5)

The homomorphism Ψ. Define Ψ : F[x] → F[x, z1, z2] as xi 7→ z1 · xi + Ψ1(xi), where
Ψ1 : F[x] −→ F[z2], is a sparse-PIT map. The importance of Ψ1 is to ensure that Ψ1(g) ̸= 0,
∀g ∈

⋃
i L(Ti). As deg(g) ≤ δ, sp(g) ≤

(
n+δ

δ

)
, . Thus, [49] (Theorem 11) gives the upper

bound:

degz2(Ψ(g)) ≤ δ ·
((

n + δ

δ

)
· n · log δ

)2
=: D1.

Denote the ring R[x] where R := F(z2)[z1]/⟨zD
1 ⟩, and D := k · (d − 1) + 1. Being 1-1, Ψ is

clearly a non-zero preserving map. Moreover,

▷ Claim 6. Jxk
(T k) = 0 ⇐⇒ Ψ(Jxk

(T k)) = 0, over R[x].

Proof. As deg(Ti) ≤ d, each entry of the matrix can be of degree at most d − 1; therefore
deg(Jxk

(T k)) ≤ k(d − 1) = D − 1. Thus, degz1(Ψ(Jxk
(T k))) < D. Hence, the conclusion.

◁
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Eqn. (5) implies that

Ψ(Jxk
(T k)) = Ψ(T1 · · · Tk) ·

∑
g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk))

Ψ(g1 . . . gk) . (6)

As Ti has product fanin s, the top-fanin in the sum in Eqn. (6) can be at most sk. Then
define,

F̃ :=
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk))

Ψ(g1 . . . gk) , over R[x]. (7)

Well-definability of F̃ . Note that,

Ψ(gi) ≡ Ψ1(gi) mod z1 ̸= 0 =⇒ 1/Ψ(g1 · · · gk) ∈ F(z2)[[x, z1]].

Thus, RHS is an element in F(z2)[[x, z1]] and taking mod zD
1 it is in R[x]. We remark that

instead of minimally reducing mod zD
1 , we will work with an F ∈ F(z2)[z1, x] such that

F = F̃ over R[x]. Further, we ensure that the degree of z is polynomially bounded.

▷ Claim 7. Over R[x], Ψ(Jxk
(T k)) = 0 ⇐⇒ F = 0.

Proof sketch. This follows from the invertibility of Ψ(T1 · · · Tk) in R[x]. ◁

The hitting set H ′. By Jxk
(T k) ̸= 0, and Claims 6-7, we have F ̸= 0 over R[x]. We

want to find H ′ ⊆ Fn, s.t. Ψ(Jxk
(T k))|x=α ̸= 0, for some α ∈ H ′ (which will ensure the

rank-preservation). Towards this, we will show (below) that F has sO(δk)-size Σ∧ΣΠ[δ]-circuit
over R[x]. Next, Theorem 27 provides the hitting set H ′ in time sO(δ2k log s).

▷ Claim 8 (Main size bound). F ∈ R[x] has Σ∧ΣΠ[δ]-circuit of size (s3δ)O(k).

The proof studies the two parts of Eqn. (7) –
1. The numerator Ψ(Jxk

(g1, . . . , gk)) has O(3δ2kk!ks)-size Σ∧ΣΠ[δ−1]-circuit (see Lemma
9), and

2. 1/Ψ(g1 · · · gk), for gi ∈ L(Ti) has (s3δ)O(k)-size Σ ∧ ΣΠ[δ]-circuit; both over R[x] (see
Lemma 10).

▶ Lemma 9 (Numerator size). Ψ(Jxk
(g1, . . . , gk)) ∈ Σ∧ΣΠ[δ−1] of size O(3δ 2kk k!s) =: s2.

Proof sketch. One can show that Jxk
(g1, . . . , gk) ∈ Σ[k!]Π[k]ΣΠ[δ−1] of size O(k!ks), where

gi ∈ L(Ti) (Claim 25): this basically follows from the determinant expansion which has fanin k!
and the degree at the bottom is ≤ δ−1 because of the derivative. Moreover, for a g ∈ ΣΠ[δ−1],
we have Ψ(g) ∈ ΣΠ[δ−1] of size at most 3δ · size(g), over R[x] (Claim 26): this follows from the
fact that xe (where |e|0 ≤ δ), after shift, can produce at most

∏
(ei+1) ≤ eδ many monomials

(for large n). Combining these, one concludes Ψ(Jxk
(g1, . . . , gk)) ∈ Σ[k!]Π[k]ΣΠ[δ−1], of size

O(3δ k!ks). We convert the Π-gate to ∧ gate using waring identity (Lemma 15) which
blowsup the size by a multiple of 2k−1. Thus, Ψ(Jxk

(g1, . . . , gk)) ∈ Σ ∧ ΣΠ[δ−1] of size
O(3δ 2kk k!s). ◀

By power series expansion of expressions like 1/(1 − a · z1), one can conclude that 1/Ψ(g)
has a small Σ∧ΣΠ[δ]-circuit, which would further imply the same for 1/Ψ(g1 · · · gk) (see
below).
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▶ Lemma 10 (Denominator size). Let gi ∈ L(Ti). Then, 1/Ψ(g1 · · · gk) can be computed by a
Σ∧ΣΠ[δ]-circuit of size s1 := (s3δ)O(k), over R[x].

Proof. Let g ∈ L(Ti) for some i. Assume, Ψ(g) = A − z1 · B, for some A ∈ F[z2] and
B ∈ R[x] of degree δ, with size(B) ≤ 3δ · s, from Claim 26. Note that, over R[x],

1
Ψ(g) = 1

A(1 − B
A · z1)

= 1
A

·
D−1∑
i=0

(
B

A

)i

· zi
1 . (8)

As, size(Bi) has a trivial ∧ΣΠ[δ]-circuit (over R[x]) of size ≤ 3δ · s + i; summing over
i ∈ [D − 1], the overall size is at most D · 3δ · s + O(D2). As D < k · d, we conclude that
1/Ψ(g) has Σ∧ΣΠ[δ] of size poly(s · k · d3δ), over R[x]. Multiplying k-many such products
directly gives an upper bound of (s · 3δ)O(k), using Lemma 16 (basically, waring identity). ◀

Proof of Claim 8. Combining Lemmas 9-10, observe that Ψ(Jxk
(g1, . . . , gk))/Ψ(g1 · · · gk)

has Σ ∧ ΣΠ[δ]-circuit of size at most (s1 · s2)2 = (s · 3δ)O(k), over R[x], using Lemma 16.
Summing up at most sk many terms (by defn. of F ), the size still remains (s · 3δ)O(k). ◀

Degree bound. As, syntactic degree of Ti are bounded by d, and Ψ maintain degx = degz1 ,
we must have degz1(Ψ(Jxk

(g1, . . . , gk)) = degx(Jxk
(g1, . . . , gk)) ≤ D − 1. Similarly, by

assumption degz2(Ψ(g)) ≤ D1 := poly(nδ), and thus degz2(Ψ(Jxk
(g1, . . . , gk)) ≤ D1 · k. Note

that, Lemma 9 actually works over F[x, z] and thus there is no additional degree-blow up
(in z). However, there is some degree blowup in Lemma 10, due to Eqn. (8).

Note that Eqn. (8) shows that over R[x],

1
Ψ(g) =

(
1

AD

)
·

(
D−1∑
i=0

AD−1−izi
1 · Bi

)
=: p(x, z)

q(z2) ,

where q(z2) = AD. We think of p ∈ F[x, z] and q ∈ F[z2]. It follows that degz2(q) ≤
D1 · D. Also, degz1(Ψ(g)) ≤ δ implies degz1(p) ≤ degz1((B z1)D−1) ≤ δ · (D − 1). Since,
degz2(Ψ(g)) ≤ D1, by assumption, degz2(p) ≤ maxi degz2(AD−1−i · Bi) ≤ D1 · (D − 1).

Finally, denote 1/Ψ(g1 · · · gk) =: Pg1,...,gk
/Qg1,...,gk

, over R[x]. This is just multiplying
k-many (p/q)’s; implying a degree blowup by a multiple of k. In particular,

degz1(P(·)) ≤ δ · k · (D − 1),

degz2(P(·)) ≤ D1 · (D − 1) · k, and

degz2(Q(·)) ≤ D1 · D · k.
Thus, in Eqn. (7), summing up sk-many terms gives an expression (over R[x]):

F =
∑

g1∈L(T1),...,gk∈L(Tk)

Ψ(Jxk
(g1, . . . , gk)) ·

(
Pg1,...,gk

Qg1,...,gk

)
=: P (x, z)

Q(z2) .

Verify that Q ∈ F[z2] is of degree at most sk · D1 · D · k = sO(k) · poly(nδ) (since k, d < s).
A similar bound also holds for degz2(P ). The degree of z1 also remains bounded by

max
gi∈L(Ti),i∈[k]

degz1(Pg1,...,gk
) + δk ≤ poly(s).

Using the degree bounds, we finally have P ∈ F[x, z] as a Σ∧ΣΠ[δ]-circuit (over F(z)) of
size nO(δ) (s3δ)O(k) = 3O(δk)sO(k+δ) =: s3.
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We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z) ̸= 0. Using [25]
(Theorem 27), we conclude that it has sO(δ log s3) = sO(δ2k log s) size hitting set which is
constructible in a similar time. Hence, the construction of Φ follows, making Φ(f) a k + 3
variate polynomial. Finally, by the obvious degree bounds of y, z, t from the definition of Φ,
we get the blackbox PIT algorithm with time-complexity sO(δ2k log s); finishing Theorem 2b.

We could also give the final hitting set for the general problem.

Solution to Problem 5. We know that C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) = 0.
Since, H ′ can be constructed in sO(δ2 k log s)-time, it is trivial to find hitting set for E|H′

(which is just a k + 3-variate polynomial with the aformentioned degree bounds). The final
hitting set for E can be constructed in s′O(k) · sO(δ2 k log s)-time. ◀

▶ Remark.
1. As Jacobian Criterion (Fact 23) holds when the characteristic is > d trdeg, it is easy to

conclude that our theorem holds for all fields of char > dk.

2. The above proof gives an efficient reduction from blackbox PIT for Σ[k]ΠΣΠ[δ] circuits to
Σ∧ΣΠ[δ] circuits. In particular, a poly-time hitting set for Σ∧ΣΠ[δ] circuits would put
PIT for Σ[k]ΠΣΠ[δ] in P.

3. Also, DiDI-technique (of Theorem 1) directly gives a blackbox algorithm, but the com-
plexity is exponentially worse (in terms of k in the exponent) for its recursive blowups.

4 Conclusion

This work introduces the powerful DiDI-technique and solves three open problems in PIT for
depth-4 circuits, namely Σ[k]ΠΣΠ[δ] (blackbox) and Σ[k]ΠΣ∧ (both whitebox and blackbox).
Here are some immediate questions of interest which require rigorous investigation.
1. Can the exponent in Theorem 1 be improved to O(k)? Currently, it is exponential in k.
2. Can we improve Theorem 2b to sO(log log s) (like in Theorem 2a)?
3. Can we design a polynomial-time PIT for Σ[k]ΠΣΠ[δ]?
4. Design a poly-time PIT for Σ∧ΣΠ[δ] circuits (i.e. unbounded top-fanin)?
5. Can we solve PIT for Σ[k]ΠΣ∧[2] in subexponential-time?
6. Can we design a subexponential-time PIT for rational functions of the form Σ (1/Σ ∧ Σ)

or Σ (1/ΣΠ) (for unbounded top-fanin)?
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A Basic tools from algebraic complexity

There have been a lot of work on sparse-PIT, for details see [13, 49] and references therein.
Eventually, there is a poly-time hitting set, for a proof see [76, Thm. 2.1]

▶ Theorem 11 ([49]). Let p(x) ∈ F[x] with individual degree at most d and sparsity at most
m. Then, there exists 1 ≤ r ≤ (mn log d)2, such that p(y, yd, . . . , ydn−1) ̸= 0, mod yr − 1.

An ABP is a layered directed acyclic graph with q+1 many layers of vertices {V0, . . . , Vq}
and a source a and a sink b such that all the edges in the graph only go from a to V0, Vi−1
to Vi for any i ∈ [q], and Vq to b. The edges have univariate polynomials as their weights.
The ABP is said to compute the polynomial

f(x) =
∑

p∈paths(a,b)

∏
e∈p

W (e) ,

where W (e) is the weight of the edge e. The ABP has width-w if |Vi| ≤ w, ∀i ∈ {0, . . . , q}.
Formally, it computes polynomials of the form AT (

∏
i∈[q] Di)B, where A, B ∈ Fw×1[x], and

Di ∈ Fw×w[x], where entries are univariate polynomials.

▶ Definition 12 (Read-once oblivious ABP (ROABP)). An ABP is called a read-once oblivious
ABP (ROABP) if the edge weights are univariate polynomials in distinct variables across
layers. Formally, there is a permutation π on the set [q] such that the entries in the i-th matrix
Di are univariate polynomials over the variable xπ(i), i.e., they come from the polynomial
ring F[xπ(i)].

A polynomial f(x) is said to be computed by width-w ROABPs in any order, if for every
permutation σ of the variables, there exists a width-w ROABP in the variable order s that
computes the polynomial f(x). There have been quite a few results on blackbox PIT for
ROABPs [28, 27, 37] and the current best known algorithm works in quasipolynomial time.

▶ Theorem 13 ([37]). For n-variate, individual-degree-d polynomials computed by width-w
ROABPs in any order, a hitting set of size (ndw)O(log log w) can be constructed.
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B Details for Section 3.1

Here is an important lemma which shows that coefficient of ye of a polynomial f(x, y) ∈ F[x, y],
computed by a Σ∧Σ∧ circuit, can be computed by a small Σ∧Σ∧ circuit.

▶ Lemma 14 (Coefficient extraction). Let f(x, y) ∈ F[y][x] be computed by a Σ∧Σ∧ circuit
of size s and degree d. Then, coefye(f) ∈ F[x] can be computed by a small Σ∧Σ∧ circuit of
size O(sd), over F[x].

Proof sketch. Let, f =
∑

i αi · gei
i . Of course, ei ≤ s and degy(f) ≤ d. Thus, write

f =
∑d

i=0 fi · yi, where fi ∈ F[x]. We can interpolate on d + 1-many distinct points y ∈ F
and conclude that fi has a Σ∧Σ∧ circuit of size at most O(sd). ◀

The next identity gives us a way to write a product of a few powers as a sum of powers,
using simple interpolation. For a more algebraic proof, see [15, Proposition 4.3].

▶ Lemma 15 (Waring Identity for a monomial). Let M = xb1
1 · · · xbk

k , where 1 ≤ b1 ≤ . . . ≤ bk,
and roots of unity Z(i) := {z ∈ C : zbi+1 = 1}. Then,

M =
∑

ε(i)∈Z(i):i=2,··· ,k

γε(2),...,ε(k) · (x1 + ε(2)x2 + . . . + ε(k)xk)d
,

where d := deg(M) = b1 + . . . + bk, and γε(2),...,ε(k) are scalars (rk(M) :=
∏k

i=2 (bi + 1)
many).

▶ Remark. We actually need not work with F = C. We can go to a small extension (at most
dk), for a monomial of degree d, to make sure that ε(i) exists.

The next lemma shows that Σ∧Σ∧ is closed under multiplication.

▶ Lemma 16. Let fi(x, y) ∈ F[y][x], of syntactic degree ≤ di, be computed by a Σ∧Σ∧ circuit
of size si, for i ∈ [k] (wrt x). Then, f1 · · · fk has Σ∧Σ∧ circuit of size O((d2 + 1) · · · (dk +
1) · s1 · · · sk).

Proof. Let fi =
∑

j f
eij

ij ; by assumption eij ≤ di (by assumption). Using Lemma 15,
f

e1j1
1j1

· · · f
ekjk

kjk
has size at most (d2 + 1) · · · (dk + 1) ·

(∑
i∈[k] size(fiji

)
)

, for indices j1, . . . , jk.
Summing up for all s1 · · · sk many products (atmost) gives the upper bound. ◀

The next lemma shows that Σ∧Σ∧ is closed under differentiation.

▶ Lemma 17 (Differentiation). Let f(x, y) ∈ F[y][x] be computed by a Σ∧Σ∧ circuit of size
s and degree d. Then, ∂y(f) can be computed by a small Σ∧Σ∧ circuit of size O(sd2), over
F[y][x].

Proof sketch. Lemma 14 shows that each fe has O(sd) size circuit where f =
∑

e fe ye.
Doing this for each e ∈ [0, d] gives a blowup of O(sd2). ◀

The next lemma shows that non-negative valuation corresponds to a power-series.

▶ Lemma 18 (Valuation). Consider a polynomial f ∈ F(x, y) such that valy(f) ≥ 0. Then,
f ∈ F(x)[[y]]

⋂
F(x, y).
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Proof sketch. Let f = g/h, where g, h ∈ F[x, y]. Now, valy(f) ≥ 0, implies valy(g) ≥ valy(h).
Let valy(g) = d1 and valy(h) = d2, where d1 ≥ d2 ≥ 0. Write g = yd1 · g̃ and h = yd2 · h̃.
Write, h̃ = h0 + h1 y + h2 y2 + . . . + hd yd, for some d. Note that h0 ̸= 0. Thus,

f = yd1−d2 · g̃/(h0 + h1 y + . . . + hd yd)
= yd1−d2 · (g̃/h0) · (1 + (h1/h0) y + . . . + (hd/h0) yd)−1 ∈ F(x)[[y]] .

The last conclusion follows by the inverse identity in the power-series ring. ◀

Using duality trick [75] and PIT results from [70, 37], one can design efficient PIT algorithm
for Σ∧Σ∧ circuits:

▶ Lemma 19 (PIT for Σ∧Σ∧-circuits). Let P ∈ Σ∧Σ∧ of size s. Then, there exists a poly(s)
(respec. sO(log log s)) time whitebox (respec. blackbox) PIT for the same.

Proof sketch. We show that any g(x)e = (g1(x1) + . . . + gn(xn))e, where deg(gi) ≤ s can
be written as

∑
j hj1(x1) · · · hjn(xn), for some hjℓ ∈ F[xℓ] of degree at most es. Define,

G := (y + g1) · · · (y + gn) − yn. In its e-th power, notice that the leading-coefficient is
coefye(n−1)(Ge) = ge. So, interpolate on e(n − 1) + 1 many points (y = βi ∈ F) to get

coefye(n−1)(Ge) =
e(n−1)+1∑

i=1
αi Ge(βi) .

Now, expand Ge(βi) = ((βi+g1) · · · (βi+gn)−βn
i )e, by binomial expansion (without expanding

the inner n-fold product). The top-fanin can be atmost s · (e + 1) · (e(n − 1) + 1) = O(se2n).
The individual degrees of the intermediate univariates can be at most es. Thus, it can be
computed by an ROABP (of any order) of size at most O(s2e3n).

Now, if f =
∑

j∈[s] f
ej

j is computed by a Σ∧Σ∧ circuit of size s, then clearly, f can also
be computed by an ROABP (of any order) of size at most O(s6). So, the whitebox PIT
follows from [70], while the blackbox PIT follows from Theorem 13. ◀

For the time-complexity bound, we need optimization of the following function:

▶ Lemma 20. Let k ∈ N, and h(x) := x(k − x)7x. Then, maxi∈[k−1] h(i) = h(k − 1).

Proof sketch. Differentiate to get h′(x) = (k − x)7x − x7x + x(k − x)(log 7)7x = 7x ·

[x2(− log 7) + x(k log 7 − 2) + k]. It vanishes at x =
(

k
2 − 1

log 7

)
+
√(

k
2 − 1

log 7

)2
− k

log 7 .
Thus, h is maximized at the integer x = k − 1. ◀

C Details for Section 3.2

▶ Definition 21 (Faithful hom). Φ : F[x] −→ F[y] is faithful for T if trdegF(T ) =
trdegF(Φ(T )).

The following fact about faithful maps is from [5, Thm. 2.4].

▶ Fact 22 (Faithful is useful). For any C ∈ F[y1, . . . , ym], C(T ) = 0 ⇐⇒ C(Φ(T )) = 0.

Here is an important criterion about the jacobian matrix which basically shows that it
preserves algabraic independence.

▶ Fact 23 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most
d, and trdegF(f) ≤ r. If char(F) = 0, or char(F) > dr, then trdegF(f) = rkF(x)Jx(f).
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The following lemma (& the proof) is similar to [5, Lem. 2.7]. It is a recipe to “drastically”
reduce variables, if trdeg is small.

▶ Lemma 24 (Recipe for faithful maps). Let T ∈ F[x] be be a finite set of polynomials of
degree at most d and trdegF(T ) ≤ r, and char(F)=0 or > dr. Let Ψ′ : F[x] −→ F[z1, z2] such
that rkF(x)Jx(T ) = rkF(z)Ψ′(Jx(T )).

Then, the map Φ : F[x] −→ F[z, t, y], such that xi 7→ (
∑

j yjtij) + Ψ′(xi), is a faithful
homomorphism for T .

C.1 Technical Details for Theorem 2b
▷ Claim 25. Let gi ∈ L(Ti), where Ti ∈ ΠΣΠ[δ] of size atmost s, then Jxk

(g1, . . . , gk) ∈
Σ[k!]Π[k]ΣΠ[δ−1] of size O(k! ks).

Proof sketch. Each entry of the matrix has degree at most δ − 1. Trivial expansion gives k!
top-fanin where each product (of fanin k) has size

∑
i size(gi). As, size(Ti) ≤ s, trivially

each size(gi) ≤ s. Therefore, the total size is k! ·
∑

i size(gi) = O(k! ks). ◁

▷ Claim 26. Let g ∈ ΣΠδ, then Ψ(g) ∈ ΣΠδ of size 3δ · size(g) (for n ≫ δ).

Proof sketch. Each monomial xe of degree δ, can produce
∏

i(ei + 1) ≤ ((
∑

i ei + n)/n)n ≤
(δ/n + 1)n-many monomials, by AM-GM inequality as

∑
i ei ≤ δ. As δ/n → 0, we have

(1 + δ/n)n → eδ. As e < 3, the upper bound follows. ◁

[25, Prop. 4.18] gave the first nontrivial PIT for Σ∧ΣΠ[δ] circuits:

▶ Theorem 27 ([25]). There is a poly(n, d, δ log s)-explicit hitting set of size (nd)O(δ log s) for
the class of n-variate, degree-(≤ d) polynomials f(x), computed by Σ∧ΣΠ[δ]-circuit of size s.

D Proof sketch of Theorem 2a: Similar to Section 3.2

Similar to Theorem 2b, we generalize this theorem and prove for a much bigger class of
polynomials.

▶ Problem 28. Let {Ti | i ∈ [m]} be ΠΣ∧ circuits of (syntactic) degree at most d and size s.
Let the transcendence degree of Ti’s, trdegF(T1, . . . , Tm) =: k ≪ s. Further, C(x1, . . . , xm)
be a circuit of size + degree < s′. Design a blackbox-PIT algorithm for C(T1, . . . , Tm).

It is trivial to see that Σ[k]ΠΣ∧ is a very special case of the above settings. We will
use the same idea (& notation) as in Theorem 2b, using the Jacobian technique. The main
idea is to come up with Φ map, and correspondingly the hitting set H ′. If g ∈ L(Ti), then
size(g) ≤ O(dn). We also note that D1, which is an upper bound on degz2Ψ(g) is poly(n, d)
(Lemma 11). The D (and hence R[x]) remains as before. Claims 6-7 hold similarly. We will
construct the hitting set H ′ by showing that F has a small Σ∧Σ∧ circuit over R[x].

Note that, Claim 25 remains the same for Σ ∧Σ∧ (implying the same size blowup).
However, Claim 26, the size blowup is O(d size(g)), because each monomial xe can only
produce d + 1 many monomials. Therefore, similar to Lemma 10, one can show that
Ψ(Jxk

(g1, . . . , gk)) ∈ Σ ∧Σ∧ , of size O(2kk!kds). Similarly, the size in Lemma 9 can be
replaced by sO(k). Therefore, we get (similar to Claim 8):

▷ Claim 29. F ∈ R[x] has Σ∧Σ∧ -circuit of size sO(k).
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Next, the degree bound also remains the same (except the parameter D1 which is now
poly(nd)). Following the same footsteps, it is not hard to see that the degree bound of z2
on P and Q, where F = P (x, z)/Q(z2), is sO(k)poly(nd), while degree bound on z1 remains
poly(ksd). Therefore, P ∈ F[x, z] has Σ∧Σ∧ -circuit of size sO(k).

We want to construct a set H ′ ⊆ Fn such that the action P (H ′, z) ̸= 0. By Theorem 19,
we conclude that it has sO(k log log s) size hitting set which is constructible in a similar time.
Hence, the construction of map Φ and the theorem follows (from z-degree bound).

Solution to Problem 28. We know that C(T1, . . . , Tm) = 0 ⇐⇒ E := Φ(C(T1, . . . , Tm)) =
0. Since, H ′ can be constructed in sO(k log log s) time, it is trivial to find hitting set for E|H′

(which is just a k + 3-variate polynomial with the aforementioned degree bounds). The final
hitting set for E can be constructed in s′O(k) · sO(k log log s) time. ◀

E Algorithm for Theorem 1

The whitebox PIT for Theorem 1, that is discussed in Section 3.1, appears (below) as
Algorithm 1.

Algorithm 1 Whitebox PIT Algorithm for Σ[k]ΠΣ∧-circuits.

Input : f = T1 + . . . + Tk ∈ Σ[k]ΠΣ∧, a whitebox circuit of size s over F[x].
Output : 0, if f ≡ 0, and 1, if it is non-zero.

1 Let Ψ : F[x] −→ F[z2], be a sparse-PIT map, using [49] (Theorem 11). Apply it on f and check
whether Ψ(f) ?= 0. If non-zero, output 1 otherwise, apply Φ : xi 7→ z1 · xi + Ψ(xi) on f . Check∑

i∈[k−1] ∂z1 (Φ(Ti)/Φ(Tk)) ?= 0 mod zd1
1 (d1 := s) as follows:

2 Consider each Ti,1 := ∂z1 (Φ(Ti)/Φ(Tk)) over R1(x), where R1 := F(z2)[z1]/⟨zd1
1 ⟩. Use dlog

computation (Claim 4), to write each Ti,1 in a “bloated” form as
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ ).

3 for j ← 1 to k − 1 do
4 Reduce the top-fanin at each step using “Divide & Derive” technique. Assume that at j-th

step, we have to check the identity:∑
i∈[k−j] Ti,j

?= 0 over Rj(x), where Rj := F(z2)[z1]/⟨zdj

1 ⟩ , each Ti,j has a
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ ) representation and therein each ΠΣ∧|z1=0 ∈ F(z2) \ {0}.
1. Compute vk−j,j := mini valz1 (Ti,j); by reordering it is for i = k − j. To compute vk−j,j ,

use coefficient extraction (Lemma 14) and Σ∧Σ∧ -circuit PIT (Lemma 19).

2. “Divide” by Tk−j,j and check whether
(∑

i∈[k−j−1] (Ti,j/Tk−j,j) + 1
) ∣∣∣∣

z1=0

?= 0. Note:

this expression is in (Σ∧Σ∧ /Σ∧Σ∧ ). Use – (1) ΠΣ∧|z1=0 ∈ F(z2), and (2) closure of
Σ∧Σ∧ under multiplication. Finally, do PIT on this by Lemma 19.

3. If it is non-zero, output 1, otherwise “Derive” wrt z1 and “Induct” on(∑
i∈[k−j−1] ∂z1 (Ti,j/Tk−j,j)

)
?= 0, over Rj+1(x) where Rj+1 := F(z2)[z1]/⟨zdj −vk−j,j −1

1 ⟩.

4. Again using dlog (Claim 4), show that Ti,j+1 := ∂z1 (Ti,j/Tk−j,j) has small
(ΠΣ ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ )-circuit over Rj+1(x). So call the algorithm on∑

i∈[k−j−1] Ti,j+1
?= 0.

j ← j + 1.
5 end
6 At the end, j = k− 1. Do PIT (Lemma 19) on the single (ΠΣ∧ /ΠΣ∧) · (Σ∧Σ∧ /Σ∧Σ∧ ) circuit,

over Rk−1(x). If it is zero, output 0 otherwise output 1.

Words of caution: Throughout the algorithm there are intermediate expressions to be
stored compactly. Think of them as “special” circuits in x, but over the function-field F(z).
Keep track of their degrees wrt z1, z2; and that of the sizes of their fractions represented in
“bloated” circuit form.
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