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Abstract
We study a class of optimization problems including matrix scaling, matrix balancing, multidi-
mensional array scaling, operator scaling, and tensor scaling that arise frequently in theory and in
practice. Some of these problems, such as matrix and array scaling, are convex in the Euclidean
sense, but others such as operator scaling and tensor scaling are geodesically convex on a different
Riemannian manifold. Trust region methods, which include box-constrained Newton’s method, are
known to produce high precision solutions very quickly for matrix scaling and matrix balancing
(Cohen et. al., FOCS 2017, Allen-Zhu et. al. FOCS 2017), and result in polynomial time algorithms
for some geodesically convex problems like operator scaling (Garg et. al. STOC 2018, Bürgisser et.
al. FOCS 2019). One is led to ask whether these guarantees also hold for multidimensional array
scaling and tensor scaling.

We show that this is not the case by exhibiting instances with exponential diameter bound:
we construct polynomial-size instances of 3-dimensional array scaling and 3-tensor scaling whose
approximate solutions all have doubly exponential condition number. Moreover, we study convex-
geometric notions of complexity known as margin and gap, which are used to bound the running
times of all existing optimization algorithms for such problems. We show that margin and gap
are exponentially small for several problems including array scaling, tensor scaling and polynomial
scaling. Our results suggest that it is impossible to prove polynomial running time bounds for tensor
scaling based on diameter bounds alone. Therefore, our work motivates the search for analogues of
more sophisticated algorithms, such as interior point methods, for geodesically convex optimization
that do not rely on polynomial diameter bounds.
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1 Introduction

We study a class of optimization problems ubiquitous in theoretical computer science,
machine learning, quantum information theory and statistics. The programs we consider are
continuous optimization problems over matrix groups. More precisely, they can be posed
as Euclidean norm minimization over the closure of a group orbit. The programs span two
historically distinct contexts: In one context, the optimization problems are convex, and in
the other they are not convex but rather geodesically convex on a suitable manifold.
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13:2 Barriers in Geodesic Optimization

The commutative setting, in which the underlying group is Abelian, captures matrix scaling,
matrix balancing and array scaling, which arise in scientific computing and optimal transport
[17, 46]. Such problems fall into the framework of unconstrained geometric programming.
Though these problems are convex, there are at least two reasons to study them further.
Firstly, they are of such practical importance that speed matters. Naïvely applying powerful
algorithms like ellipsoid and interior point methods can be impractically slow. Hence, it is
important to understand when faster methods can succeed. Matrix scaling and balancing,
in particular, have enjoyed some success stories - there are fast algorithms to obtain high
precision solutions [16, 3], and there are more general upper bounds [14]. Secondly, the
algorithms developed for the commutative setting are candidates for generalization to our
second setting, which takes place in the less well-understood arena of geodesically convex
optimization.

The second context, which we call the noncommutative setting, arises when the underlying
group is non-Abelian. The noncommutative setting captures problems like operator and
tensor scaling [25, 13], the quantum marginal problem [11] and statistical estimators such as
Tyler’s M estimator [23] and maximum likelihood estimates for matrix and tensor normal
models [6]. Deciding whether the value of the optimization problem is zero or not is equivalent
to deciding a central polynomial identity testing (P.I.T.) problem in invariant theory known
as the null cone problem. It is hoped that efficient optimization algorithms will result in
efficient algorithms for the null-cone problem. One approach to complexity lower bounds,
geometric complexity theory, suggests that these P.I.T. problems should be in P [43, 26],
and the optimization approach has resulted in polynomial time algorithms in some cases
[25, 2]. The optimization problems that arise in the noncommutative setting are not convex
in the Euclidean sense, but rather geodesically convex, a notion of convexity on a Riemannian
manifold. Currently, the only implementable algorithms for geodesically convex optimization
are analogues of gradient descent and trust region methods [1, 53, 2]. There are, as of yet,
no efficiently implementable geodesically convex counterparts to the interior point or cutting
plane methods.

In both the commutative and noncommutative settings, algorithms are typically analysed
using two quantities. One is diameter, or how far approximate minimizers can be from the
origin. The other is a geometric measure of well-conditionedness known as margin (or gap in
the noncommutative case), which has several variants in the literature and appears in two
primary ways. Firstly, the smaller the margin, the higher the degree of precision required to
decide if the value of the optimization problem is zero or not [12, 30]. Secondly, the larger
the margin, the smaller the diameter [48, 50, 12, 14]. In this paper we show the following:

i) In the commutative setting, and in particular for array scaling, approximate minimizers
for the functions we study can have doubly exponential condition number. That is, the
problems have exponential diameter. As a consequence, popular classes of algorithms
such as gradient descent and trust region methods cannot produce high-precision solutions
in polynomial time in general. This result applies in the noncommutative setting as
well, which provides evidence that even cutting plane methods are unlikely to produce
high-precision solutions in polynomial time. This shows it is necessary to develop
powerful methods like the interior point method in the geodesically convex setting.

ii) In the commutative and noncommutative settings, we study the margin and gap,
respectively, which appear in running time bounds for all existing algorithms. We
prove that these measures can be exponentially small in the input size for several
problems including array scaling and tensor scaling. In the commutative case, this gives
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evidence that existing algorithms for array scaling do not run in near-linear time. In
the noncommutative case, our results show that margin-based analyses like [12] cannot
prove polynomial time guarantees for deciding the null cone problem for tensor scaling
using trust region methods.

We use the remainder of the introduction to describe both settings in more detail, state
our main results precisely, and discuss previous work. For both the commutative and
noncommutative settings, we proceed in the following order. We start with an introduction
and motivation of the setting, continue with diameter bounds and afterwards treat bounds
on the margin and gap, respectively. We end each setting with a short discussion of the main
proof techniques.

1.1 The commutative setting: matrix scaling and its relatives
Matrix scaling and array scaling

Consider the matrix scaling problem: given a nonnegative matrix A, find nonnegative diagonal
matrices X, Y such that XAY is doubly stochastic (i.e. has row and column sums equal to
one). The matrices, if they exist, can be found by the exceedingly simple and fast alternating
minimization method known as Sinkhorn’s algorithm. It is frequently used in practice, e.g.
for quickly approximating the solution to optimal transport problems [17].

Like all other algorithms for matrix scaling, Sinkhorn’s algorithm is typically analyzed
through optimization. One finds that X and Y are ediagpxq, ediagpyq, where x, y P Rn are
solutions to the following optimization problem:

inf
x,yPRn

ÿ

Aijexi`yj ´x̄´ȳ (1)

for z̄ :“ 1
n

ř

zi (c.f. [35]). Moreover, the infimum is greater than zero if and only if A is
approximately scalable, i.e. the row and column sums of XAY can be made arbitrarily close
to one for X, Y nonnegative, diagonal.

More generally, given a finite set Ω Ď Rm and a nonnegative function p : Ω Ñ Rě0, define
the capacity [30] as the value of the unconstrained geometric program

capppq :“ inf
xPRm

fppxq :“ inf
xPRm

ÿ

ωPΩ
pωeω¨x. (2)

The capacity is positive if and only if zero is in the Newton polytope convpsupp pq. Matrix
scaling arises when m “ 2n and Ω “ tpεi, εjq : i, j P rnsu for εk :“ ek ´ 1

n1n, where ek P Rn

is the kth canonical unit vector and 1n P Rn denotes the all-ones vector. In this case
Equation (2) reduces to precisely Equation (1), and }∇ log fppxq} measures the deviation of
p from doubly stochastic.

Matrix balancing, in which we instead wish to find a scaling for which the ith row and
column sum match, arises when m “ n and Ω “ tei ´ ej : i ‰ j P rnsu. When m “ 3n and
Ω “ tpεi, εj , εkq : i, j, k P rnsu we obtain the 3-dimensional array scaling problem. In analogy
to matrix scaling, in array scaling one has an array p of numbers in pRn

ě0qb3 and seeks positive
vectors X, Y, Z P Rn

ě0 so that the array q with entries qijk “ pijkXiYjZk is tristochastic. That
is, the sum over every slice is equal to one, i.e.

ř

j,k qi0,j,k “
ř

i,k qi,j0,k “
ř

i,j qi,j,k0 “ 1 for
all i0, j0, k0 P rns. If it is possible to satisfy these equations to arbitrary precision we say p

is approximately scalable. As for matrix scaling, p is approximately scalable if and only if
capppq ą 0. In the same manner, we obtain d-dimensional array scaling for m “ dn and

Ω “ Ωn,d :“
␣

εi : i P rns
(d

Ď
`

Rn
˘d

. (3)
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13:4 Barriers in Geodesic Optimization

We can think of subsets of Ωn,d as d-uniform, d-partite hypergraphs. Up to an additive shift
by ´ 1

n1nd, the elements of Ωn,d are indicator vectors of the edges in such hypergraphs. For
d “ 2, the matrix p is scalable if and only if the bipartite graph corresponding to supp p

contains a perfect matching, but this is not the case for d ě 3 (indeed, d-partite hypergraph
matching is NP-hard).

Algorithms for array scaling

Array scaling serves the same role for speeding up multimarginal transport as matrix scaling
for optimal transport, and yet again there is a simple and fast alternating minimization
algorithm that produces ε-tristochastic scalings in time Op1{ε2q [5, 39]. Moreover, algorithms
to approximate the capacity arise in varied settings including radial isotropic position [33],
entropy maximization [50], and approximate counting [7].

It is natural to ask if there are high-precision algorithms for array scaling with logp1{εq

dependence on the error and linear or mild dependence on the number of nonzero entries. For
matrix scaling and matrix balancing, several works have shown that trust regions and interior
point methods can obtain such guarantees [16, 3]. Our work is concerned with whether the
performance of such algorithms carries over to array scaling and the computation of the
capacity in general.

1.1.1 Diameter lower bounds
Guarantees for many iterative algorithms in convex optimization require diameter bounds, or
bounds on the distance R from the starting point to an ε-approximate solution. Trust region
methods, also called box-constrained Newton’s method, are iterative algorithms that, at each
step, move to the best solution within a typically small distance D of the previous solution.
By their nature, trust region methods take at least R{D steps to produce an ε-approximate
solution. Gradient descent for Lipschitz functions also depends quadratically on a diameter
bound, and cutting plane methods typically use diameter bounds to control the volume of a
starting region.

Known diameter upper and lower bounds

For matrix scaling and matrix balancing, it has been shown in [16] that one may take
R “ Opn logpwA{εqq, where wA is the ratio between the sum of the entries of the matrix and
the least nonzero entry. For 3-dimensional array scaling, the best upper bound of which we
are aware is R “ Opn3{226n logp1{εqq, which follows from the general upper bound of [50] on
diameter bounds for unconstrained geometric programming. There is also a diameter bound
for array scaling in the multimarginal transport context that is polynomial in the input size
assuming the tensor has no nonzero entries [39].

Regarding diameter lower bounds, in the context of computing maximum entropy distri-
butions it was shown that there is some bounded set Ω Ă Zm in a polypmq size ball such that
there are no ε-approximate minimizers of norm polypm, log 1{εq for fp as in Equation (2) [50].

Main theorem

Where do the polynomial diameter bounds for matrix scaling (i.e. 2-dimensional array
scaling) transition to the superpolynomial diameter bounds for general Ω? We show that this
transition takes place in the next simplest problem, the 3-dimensional array scaling problem.
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▶ Theorem 1.1. There is an absolute constant C ą 0 and an array pijk P pRn
ě0qb3 with

Opnq nonzero entries, each of bit-complexity Opnq, that satisfies the following property. For
all 0 ă ε ď expp´Cn2 log nq and px, y, zq P R3n, if

fppx, y, zq ď capppq ` ε

then ∥px, y, zq∥2 “ Ω
`

2n{3 logp1{εq
˘

.

To emphasize that the difficulties do not lie in an additive vs multiplicative approximation,
we remark that our array p has unit sum and capppq “ 1{2. By a simple duplication trick,
the same bound holds for d-dimensional array scaling with d ě 3; see Corollary 3.7.

Implications of Theorem 1.1 and relation to the literature

Theorem 1.1 shows that trust region methods for array scaling with polynomial step size
cannot provide high-precision solutions in polypn, logp1{εqq time for d ě 3. Moreover, gradient
descent on the Lipschitz convex function log fp has a bounded step size, and so also cannot
provide high precision solutions in polynomial time.

In [50, Section 2.1] the authors ask whether there is Ω whose elements are Boolean (up
to an additive shift) with a superpolynomial diameter lower bound. As subsets of Ωn,d are
automatically of this form, we answer their open problem in the affirmative. Our lower
bound on log R is tight up to constant factors by the diameter upper bound from [50]
mentioned above; moreover the logarithmic dependence on ε is best possible. Determining
the correct constant in the exponent is an interesting open direction. We believe that that
the requirement that ε is very small is an artifact of our specific construction and proof
strategy, and thus can probably be relaxed significantly.

Lastly, we remark that [14] bounds the diameter for fp by a polynomial in the facet gap,
i.e. the minimum distance between an element of supp p and an affine hull of a facet of the
Newton polytope. The construction in Theorem 1.1 has exponentially small facet gap; see
Corollary 3.6.

1.1.2 Margins: the geometry of scaling problems
Many computational aspects of the capacity rely on the convex geometry of the finite set
Ω Ď Rm. Consider the following quantity, which we call the margin of Ω. The margin is the
minimum positive distance from a convex hull of a subset of Ω to the origin. Formally,

▶ Definition 1.2 (Margin). For a finite set Ω Ď Rm, define the margin γpΩq by

γpΩq :“ min
␣

dist
`

0, convpSq
˘

| S Ď Ω, 0 R convpSq
(

.

We point out that for all considered capacity problems in this paper, the margin is actually
the weight margin (c.f. [12] and our Definition 4.3) of a certain group representation. For
example, the margin for array scaling is the weight margin for tensor scaling. We now discuss
how the margin enters in decision problems and diameter bounds.

Margin as a precision parameter for the decision problem

To illustrate how the margin enters the decision problem of whether capppq ą 0, consider
matrix scaling. To certify that the capacity of a matrix is nonzero, we compute ε-doubly
stochastic scalings for some ε smaller than the distance to doubly stochastic attained by any
matrix that is not approximately scalable. This turns out to be precisely γpΩn,2q. More

CCC 2021



13:6 Barriers in Geodesic Optimization

generally, it is a classical fact that for p with support contained in Ω, the gradient ∇ log fppxq

can take any value in the Newton polytope of p. Thus, capppq ą 0 if and only if there is
some x with }∇ log fppxq} ď γpΩq.

For matrix scaling and matrix balancing, it is known that γpΩq is on the order of n´3{2,
despite the exponential number of subsets S Ď Ω! This luck can be attributed to the
extraordinary geometry of Ω in these cases, whose elements form the rows of a totally
unimodular matrix (up to a shift). On the other hand, for d-dimensional array scaling for
n “ 2, the margin γpΩ2,dq is on the order of the margin of the d-dimensional hypercube
t˘1ud, which satisfies γ

`

t˘1ud
˘

“ d´ d
2 p1`op1qq by [4]. However, between the extreme cases

Ωn,2 (matrix scaling) and Ω2,d (the hypercube), very little is known.

Margin and related quantities for diameter bounds

In addition to their role in the decision problem, margins and related quantities can be
used to prove diameter bounds for Equation (2). The work [12] proves the diameter bound
polypγpΩq´1, logp1{εqq. In [50] it is shown that the diameter is polynomial in the logarithm
of the minimum nonzero pω and a quantity called the unary facet complexity. The latter is
defined as the maximal length of an integer normal vector of a face of the Newton polytope
convpsupp pq. In the case of d-dimensional arrays, one can use Cramer’s rule to crudely
bound the unary facet complexity by pd ` 1qdn. In the case when 0 is in the relative interior
of the Newton polytope, [48] has shown that there is a minimizer with Euclidean norm
Oplog | supp p|{ηq, where η is the distance from 0 to the boundary of the Newton polytope.
The diameter bounds in [48, 50] were used to design ellipsoid methods that are tractable
even for | supp p| very large, and in [14] they were used to bound the running time of interior
point methods.

Main theorem

One is led to ask if the margin remains large for array scaling when d ě 3. We show that
this is not the case. In fact, the margin becomes exponentially small in nd for d ě 3. What
follows is stated in more detail later in Theorem 2.1.

▶ Theorem 1.3. Let d ě 3 and n ě 2. Let Ωn,d “ tεi : i P rnsud Ď pRnqd, where εj :“
ej ´ 1

n1n. There exists a constant C ą 0, independent of n and d, such that γpΩn,dq ď 2´Cnd.

That is, there are d-dimensional arrays p P pRn
ě0qbd such that the d-tuple of marginals of

p is at distance at most 2´Cnd from 1
n p1n, . . . ,1nq, yet the support of p does not admit an

array with uniform marginals, i.e. capppq “ 0. We note that the support of the array p we
construct has Opndq elements.

Implications of Theorem 1.3 and relation to the literature

We remark that the construction yields a tensor whose Newton polytope has a facet exponen-
tially close to the origin. Therefore, the bound proved in [14] on the number of iterations for
interior point methods on 3-tensors is Ωpk3{2 ` k1{2 logp1{εqq for tensors with Opkq nonzero
entries.

Theorem 1.3 aligns with existing results showing that the d ą 2 array case is more complex
than the matrix case. Indeed, it is known that the polytope of arrays with uniform marginals,
known as the d-index axial assignment polytope, has many more vertices when d ě 3 and that
the vertices can have exponential entries [40]. In contrast, for d “ 2 this polytope (known
as the Birkhoff-von Neumann polytope) has integral vertices by the Birkhoff-von Neumann
theorem.
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The exponential rate of decay in Theorem 1.3 is tight up to log factors: [12, Theorem 6.10
Item 3] shows that the margin for d-dimensional array scaling is at least pn

?
dq´dn´1. It is in-

teresting to ask whether the true bound is 2´Θpndq as in our upper bound or 2´Θpndplog n`log dqq

as in the lower bound. [4] shows that the latter is correct in the case n “ 2.

1.1.3 Proof techniques for the commutative setting

We first discuss the techniques for proving our margin bounds. Theorem 1.3 is proven by
explicit construction of witness sets Γn,d Ď Ωn,d :“ tεi : i P rnsud, i.e. 0 R convpΓn,dq but
zero is exponentially close to convpΓn,dq. This is done by using that

ř

i n´1εi is the unique
way to express zero as a convex combination of the εi, compare Lemma 2.2, and by heavily
exploiting the combinatorics of Ωn,d. For example, in the case d “ 3 and n ě 3 the key
combinatorial idea builds on a construction by Kravtsov in [38]. Kravtsov’s motivation is to
characterize the non-integer vertices of the 3-index axial assignment polytope. He explicitly
constructs a certain non-integer vertex with maximal support [38, Theorem 1 with k “ 0]
which has an exponentially small entry.

By definition of the 3-index axial assignment polytope, the support of this vertex corre-
sponds to a subset S Ď Ωn,3 with 0 P convpSq. Removing the element of S corresponding to
the small entry in Kravtsov’s vertex yields our witness set Γn,3 with a convex hull very close
to zero. In fact, the whole idea generalizes (in a technical way) whenever d “ 6r ´ 3, r ě 1
and n ě 3, see section 2.3. For n “ 2 and d ě 3, the bound follows from the existing work
[4], as mentioned before. While the construction in that work via t´1, 1u matrices yields
a stronger bound, we provide a different construction of t´1, 1u matrices1, which has the
additional property of freeness. The latter will prove useful when we adapt Theorem 1.3 to
the noncommutative case.

We now discuss the proof of the diameter lower bound, Theorem 1.1. The high level
idea is as follows. We first construct a subset Ω0 Ď Ωn,3 with 0 P convpΩ0q such that there
is another element ω P Ωn,3 exponentially close to convpΩ0q, much like our construction of
the witness set for small margin discussed above. We then choose an appropriate array p

supported on Ω0 Y ω. This suggests that the only approximate minimizers of fp have a
very large component in the direction x from ω to convpΩ0q, because as y P Rm tends to a
minimizer of fp the term ey¨ω should vanish compared to the others. This reasoning requires
that y is approximately a multiple of x; to enforce this we also ensure that zero is far into
the relative interior of convpΩ0q.

The structure of this argument bears some similarity to that in [50], which uses the
construction of [4]. The main difference is that the set Ωn,3 in the 3-dimensional array scaling
problem consists of vectors of very specific structure: up to an additive shift of ´ 1

n13n, they
are Boolean vectors in R3n with exactly one nonzero entry among indices in the intervals
r1, ns, rn ` 1, 2ns, r2n ` 1, 3ns. Thus, our construction of Ω0 must consist of vectors of this
special form and not simply bounded integral vectors as in [50]. This is the main additional
technical contribution of our construction.

1 The p´1, 1q matrices from our construction are obtained by replacing all two’s in the entries of A2r (6)
with ´1.
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1.2 The noncommutative setting
In the noncommutative setting, we consider a group G acting on Cm.2 The optimization
problem we investigate is given by the capacity of a vector v P Cm (c.f. [12]):

cappvq :“ inf
gPG

fvpgq :“ inf
gPG

}g ¨ v}2. (4)

For the majority of this paper we work with the tensor scaling action, in which G “ SLpn,Cqd,
the group of d-tuples of complex matrices with determinant one, acts on v P pCnqbd by
pg1, . . . , gdq ¨ v “ pg1 b ¨ ¨ ¨ b gdqv. The corresponding representation is always denoted by
πn,d. Sometimes we also consider the operator scaling action, in which SLpnq2 acts on
v P pCnqb2 b Ck by pg1, g2q ¨ v “ pg1 b g2 b Ikqv.

Though Equation (4) looks quite different from Equation (2), one can show that restricting
Equation (4) to a certain Abelian subgroup of G (a torus) and making a change of variables
yields an instance of Equation (2) (c.f. [12]). For example, restricting the tensor scaling
action to the diagonal matrices in G amounts precisely to the array scaling problem from
the previous subsection. Likewise, restricting to diagonal matrices in the operator scaling
action yields an instance of matrix scaling.

Relation to null cone problem and Geometric Complexity Theory

We study Equation (4) because it is deeply connected to invariant theory through a well-
known connection between group orbits and invariant polynomials: zero is in the closure of
an orbit of a vector v if and only if every non-constant homogeneous G-invariant polynomial
vanishes on v, i.e. if v is in the null-cone. Null-cone membership is a well-studied polynomial
identity testing (P.I.T.) problem. One approach to complexity lower bounds, geometric
complexity theory, suggests that null-cone membership should be in P [43, 26].

Solving Equation (4) directly allows one to study the null-cone problem through opti-
mization: one notes that cappvq “ 0 if and only if v is in the null cone. In fact, Equation (4)
is a geodesically convex optimization problem over a certain Riemannian manifold. Algebraic
and optimization-based algorithms have, independently and nearly concurrently, resulted in
polynomial time algorithms for nearly the same set of P.I.T. problems arising in invariant
theory [22, 43, 25, 34, 20, 2], including the null-cone problem for the operator scaling and
simultaneous conjugation action. However, neither approach has succeeded in solving the
null-cone problem for the 3-tensor action. Recent degree lower bounds for invariant polyno-
mials for the 3-tensor action pose significant challenges for the algebraic approach [21]. It is
natural to ask whether the optimization approach can overcome these challenges.

Algorithms for computing the capacity

A nonzero tensor w “ g ¨ v attains the capacity when w has all quantum marginals equal
to In{n. The quantum marginals of a tensor w, analogous to the sums along slices of an
array, are the three n ˆ n matrices M1M :

1 , M :
2 , M3M :

3 for the n ˆ n2 matrices M1, M2, M3
known as flattenings of w{}w}. For operator scaling, the capacity is attained when the first
two quantum marginals are In{n. To compute the capacity, existing algorithms attempt to
find g such that the quantum marginals of g ¨ v are all close to In{n. There are alternating
minimization algorithms that can attain distance ε in time polypn, 1{εq [25, 13], and for the

2 Technically we require that G is a reductive group over C which acts rationally on Cm. All the group
actions in this paper satisfy this assumption.
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operator scaling this is possible in polypn, logp1{εqq time [2]. However, for 3-tensor scaling,
running time polyp1{εq is not sufficient to efficiently decide null-cone membership, and the
only algorithms with logp1{εq dependence on ε have an exponential dependence on n [12].

To explain the increased complexity, we discuss a noncommutative analogue of the Newton
polytope known as the moment polytope, denoted ∆Gpvq. In particular, 0 R ∆Gpvq if and
only if v is in the null-cone (i.e. cappvq “ 0).3 For tensor scaling, the moment polytope
is the set of tuples of spectra of the quantum marginals as w ranges over G ¨ v, shifted by
´ 1

n p1n,1n,1nq. The gap of the action of G, i.e. the minimum positive distance from 0 to a
moment polytope ∆Gpvq, is a noncommutative generalization of the margin. Whereas the
operator scaling and simultaneous conjugation actions have polynomially large gaps, we show
that the gap for the tensor scaling action is exponentially small. Scaling algorithms amount
to outer ε-approximation algorithms for ∆Gpvq, which is why polyp1{εq-time algorithms do
not suffice to decide null-cone membership. Like for the margin, the smaller gap corresponds
to a larger diameter, which is why so far no algorithm has had running time polypn, logp1{εqq.

1.2.1 Diameter lower bound for noncommutative scaling
Here we describe how diameter bounds cause the state-of-the-art algorithms to be slow for the
tensor scaling action. We begin by discussing geodesically convex optimization. In general
Equation (4) is not convex, but rather geodesically convex. That is, G can be viewed as a
manifold in such a way that the function g ÞÑ }g ¨ v}2 is convex along “geodesics” of the form
γptq “ etHg for H Hermitian. The manifold we consider is not exactly G but rather a quotient
P of it; we will make this more precise later in Section 4.5. For G “ SLpnqd, the manifold P

is the set of tuples of positive-definite matrices with determinant one. P is equipped with
the geometry on positive-definite matrices known in statistics as the Fisher-Rao metric, and
studied in depth in e.g. [9]. Though we do not need many details of this geometry here,
one can think of the distance between g, h P G as a bound on the logarithms of the singular
values of g´1h. In particular, the geodesic “ball” of radius R about the identity in G is the
intersection of G with the set tU exppAq : A Hermitian, }A}F ď R, U unitaryu. Note that
the ball of radius

?
nR includes all elements of G whose singular values are in re´R, eRs. 4

The existing algorithms to compute Equation (4) adapt simple first order methods, such
as gradient descent, and second order methods, such as trust regions, to the geodesically
convex setting [53, 2, 12]. As in the commutative case, to run in polynomial time such
algorithms require that an ε-approximate solution is contained in a geodesic ball of radius
polypnd, logp1{εqq. However, for 3-tensors we have the following diameter lower bound.

▶ Theorem 1.4 (Noncommutative diameter lower bound). There is a constant C ą 0 such
that the following holds. For all ε ď expp´Cn2 log nq, there is a tensor v “ vpεq P pCnqb3

with Opnq nonzero entries of bit complexity Oplog n ` logp1{εqq, and a geodesic ball B “ Bpεq

of radius Ω
`

2n{3 logp1{εq
˘

about the identity in SLpnq3, such that

inf
gPB

}g ¨ v}2 ě cappvq ` ε.

To emphasize that the difficulties are not caused by requiring additive approximation, we
remark that the vector v satisfies 1{4 ď cappvq ď 1 and 1{2 ď }v} ď 1. A duplication trick
analogous to Corollary 3.7 yields the same diameter bound for d ě 3, but for the action of G

simultaneously on a tuple of tensors rather than on a single one. See Corollary 4.24.

3 Moment polytope membership is an interesting problem in and of itself; for d “ 3, for generic v P pCn
q

b3,
∆Gpvq is the Kronecker polytope arising in representation theory and quantum information theory.
Deciding membership in this polytope is known to be in NP X coNP but not known to be in P [10].

4 We define exponentials, Hermitian-ness, and Frobenius norm on tuples by treating them as block
diagonal matrices.
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Implications of Theorem 1.4 and relation to the literature

Theorem 1.4 shows that trust region methods with constant step size cannot ε-approximate
the capacity in polypn, 1{εq time for 3-tensors. It also shows that cutting plane methods are
unlikely to do so. Cutting plane methods, such as ellipsoid, require an exponential bound
on the volume of a known region containing an approximate optimizer. This is the case
for Rusciano’s non-constructive query upper bound for cutting plane methods on manifolds
of non-positive curvature [47], which is essentially tight [32]5. The volume of a ball in the
manifold we consider grows exponentially in the radius (see Section 4.5), so this query bound
will be exponential. Regarding tightness, the best upper bound known to the authors for
the diameter bound in the noncommutative case is Opnp

?
3nq1`3n logp1{εqq, which can be

deduced from the diameter and margin bounds [12, Proposition 5.6, Theorem 6.10]. This
matches our lower bound up to logarithmic factors in the exponent. As with Theorem 1.1,
Theorem 1.4 holds only values of ε that are very small (though still of polynomial bit-
complexity). It would be very interesting to prove a version of Theorem 1.1 for ε larger than
the gap, which is expp´Opnqq. This would imply that trust region methods cannot solve the
null-cone problem for the 3-tensor action in polynomial time.

1.2.2 Gaps: the geometry of noncommutative scaling problems
In analogy to the commutative case, one typically attempts to certify cappvq ą 0, i.e.
0 P ∆Gpvq, by finding a tensor g ¨ v such that all the quantum marginals are close to 1

n In.
In order to certify cappvq ą 0 their distance to 1

n pIn, In, . . . , Inq must be at most a certain
quantity, which we call the gap.

▶ Definition 1.5 (Gap). The gap6 for the d-tensor scaling problem is

γGpπn,dq :“ min
␣

dist
`

0, ∆Gpvq
˘

| v P pCnqbd, v ‰ 0, 0 R ∆Gpvq
(

.

If the gap is exponentially small, high-precision algorithms will be necessary to decide if
cappvq ą 0. In operator scaling, the gap is known to be Ωpn´3{2q [29], which explains why
we do not need high-precision algorithms for the decision problem in that case. In addition
to its role in the decision problem, the inverse of the gap7 is used to control the diameter
bound [12]! In that sense, the presence of a small gap can explain both the need for high
precision algorithms and the slowness of existing high-precision algorithms. We show that,
indeed, the tensor scaling action has an exponentially small gap for d ě 3.

▶ Theorem 1.6. There is a constant C ą 0 such that for all d ě 3 and n ě 2, there are
non-zero tensors v P pCnqbd such that 0 R ∆Gpvq but distp0, ∆Gpvqq ď 2´Cdn. That is, the
gap for d-tensor scaling satisfies

γGpπn,dq ď 2´Cdn.

A detailed statement on bounds for the gap can be found in Theorem 4.11, and we show
in Appendix C how to fill in the missing values of n, d to obtain Theorem 1.6. Since the
gap is larger than the margin (c.f. Proposition 4.6), Theorem 1.6 is at least as tight as
Theorem 1.3, i.e. the exponent Cnd is tight up to an Oplog n ` log dq factor.

5 [32] applies to the hyperbolic plane, which is a totally geodesic submanifold of the manifold P we
consider.

6 This notion can be defined similarly for any rational representation π of a reductive group G, see
Definition 4.3. This definition of the gap is already described in [12].

7 actually, a smaller quantity known as weight margin
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Interestingly, for local dimension n “ 2 [42, Main result] shows that distp0, ∆Gpvqq2 for
some moment polytope ∆Gpvq S 0 tends for d Ñ 8 to the Gamma distribution Γp1{2, 2dq,
where 2d is the rate parameter. Therefore, the witnesses of the exponential behaviour in
Theorem 4.11(a) are quite rare. Moreover, the authors numerically found several tensors
of format pC2qbd with distp0, ∆Gpvqq at most expp´dq; Theorem 1.6 confirms that this
exponential behavior is the case for all n and d.

Margin and gap results for other group actions
In addition to the tensor scaling action, we also consider some other actions of groups G

of interest in computational invariant theory. The first is the action of the special linear
group on the space of homogeneous d-forms Crx1, . . . , xnsd, in which G “ SLpnq acts by
g ¨ ppxq “ ppg´1xq for p P Crx1, . . . , xnsd. Homogeneous d-forms were among the objects
studied earliest in computational invariant theory, and much of the theory was developed to
catalogue invariants of the SLpnq action on forms [52]. Still, deciding null-cone membership
for d “ 3 seems challenging. After extending the definition of the gap to other group actions
in Section 4, we explain the difficulty by showing that the gap for this action is also inverse
exponential in n as soon as d ě 3, see Theorem 4.17. This shows that the diameter bound in
[12] becomes exponentially large in n.

The other group action we consider is the action of SLpnqd on quivers with d vertices.
A quiver is a directed multigraph, and a quiver representation is a labelling of the vertex
set Q0 of the quiver with finite-dimensional vector spaces and the edge set Q1 with a linear
map from the vector space at the tail of the edge to the vector space at the head of the edge.
Given a quiver representation A with vertices labeled by Cnx for x P Q0 and edges e : x Ñ y

labeled with matrices Ae, the group G “
ś

xPQ0
SLpnxq acts on A by pg ¨ Aqe “ gyAg´1

x .
Quiver representations include the operator scaling action, and an action used to bound the
Brascamp-Lieb constant in analysis. In Section 4.6 we show that the (weight) margin can
become exponentially small as the number of vertices grows. For this, we exhibit a quiver
with d ´ 1 arrows, d vertices of dimension n and weight margin Opn´dq, see Theorem 4.25.
This bound shows that the diameter bound computed in [12] can become exponentially
large in d. Furthermore, when allowing n copies of each arrow in the constructed quiver, i.e.
npd ´ 1q arrows in total, we can ensure the same bound for the gap, Theorem 4.25.

1.2.3 Proof technique in the noncommutative case: Freeness
Regarding the idea of the proof, we may transfer both the diameter lower bound and the
gap upper bound to the commutative case by virtue of the tensors we construct having free
support.

A tensor has free support if any two distinct pd ´ 1q-dimensional slices of the tensor have
disjoint support. This condition ensures that, even after being acted on by any diagonal group
elements, the tensor’s quantum marginals are all diagonal. This allows us to restrict to the
action of the diagonal matrices and thereby reduce to the commutative (array scaling) case.
Thus, we may obtain the same bounds on the tensor gap as for the array margin. However,
this requires additional care to ensure freeness of our constructions. This is why we cannot
naïvely use the construction of [4] for d-tensors with n “ 2. Regarding the noncommutative
diameter bound, we show that for tensors with free support the diameter bound matches
that of the commutative problem obtained by restricting to the diagonal. To do this, we
project the group elements to the set of diagonal elements, and use the properties of spaces
of non-positive curvature to show that this projection moves the point nearer to the origin
and decreases the function value.
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The idea and the concept of freeness generalize to rational representations of reductive
groups [24].8 The key statement is given in full generality in Proposition 4.8. This proposition
is needed to prove bounds on the gap for the action on homogeneous polynomials and for
the action on quivers. Interestingly, in [21] the concept of freeness is used in a similar way9

to prove exponential lower bounds on the degree of invariants for actions on cubic forms
and 3-tensors. There, free is called uncramped and it is used crucially to prove closedness of
certain orbits.

Freeness also played a role in the numerical results by Sawicki and Maciążek, which were
obtained by applying the algorithm of [41] to several free tensors of local dimension two.

1.3 Organization of the paper
We begin with the commutative case, which is split into the study of the margin in Section 2
and diameter bounds in Section 3. Then we move to the noncommutative case in Section 4.
The appendix contains some representation-theoretic background and proofs of technical
lemmas, as well as a glossary of notation.

2 The geometry of commutative scaling problems

The purpose of this section is to show the following theorem on the margin of d-dimensional
array scaling. Recall that the latter arises for Ωn,d :“ tεi : i P rnsud Ď pRnqd.

▶ Theorem 2.1 (Margin for array scaling). The margin of Ωn,d Ď pRnqd is bounded as follows.
(a) If n “ 2 and d ě 3, then γ pΩ2,dq ď 2´ d

2 `1.

(b) If n ě 3 and d “ 3, then γpΩn,3q ď 2´n`1.
(c) If n ě 3 and d “ 6r ´ 3 for some integer r ě 2, then

γpΩn,dq ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1 “ 2´

pd`3qpn´1q

6 `1.

By “padding” the tensors appropriately, one sees that a bound for γpΩn,dq also applies to
γpΩn,d`1q (see Proposition C.1). Combining this result with Theorem 2.1 above implies
Theorem 1.3 from the introduction. The next three subsections each prove one of the parts of
Theorem 2.1; the construction for part (a) with n “ 2 is slightly different and the construction
for part (c), d ą 3 builds on the one for part (b), d “ 3.

To prove the results, we will frequently use the following simple lemma. Recall that an
affine linear combination of v1, . . . , vk P Rm is λ1v1 ` ¨ ¨ ¨ ` λkvk for λi ě 0,

řk
i“1 λi “ 1.

The affine hull AffpSq of a set S Ă Rm is the set of all affine linear combinations of finite
subsets of S, or equivalently the affine space (i.e. translate of a subspace) of lowest dimension
containing S.

▶ Lemma 2.2. In Rn we have
n
ÿ

i“1

1
n

εi “ 0n (5)

and this is the only affine linear combination of ε1, . . . , εn giving zero.

8 This concept is also implicitly contained in [49, Lemma 7.1] and can at least be traced back to [18] as
strong orthogonality.

9 Indeed, [21, Theorem 6.5] is used to show the vanishing of the moment map at a vector. First, freeness
is used as in Proposition 4.8 to ensure that one can restrict to the moment map for the maximal torus.
Second, condition (2) of [21, Theorem 6.5] just states that the moment map for the torus action vanishes
at the vector.



W. C. Franks and P. Reichenbach 13:13

A4 “

¨

˚

˚

˝

˚ ˚

˚

˚ ˚

˚ ˚

˚ ˚

˛

‹

‹

‚

, A6 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

˚ ˚

˚

˚ ˚ ˚ ˚

˚ ˚

˚ ˚

˚ ˚

˚ ˚ ˚

˚ ˚

˛

‹

‹

‹

‹

‹

‹

‹

‚

Figure 1 The positions of the ones in A4 and A6 are marked by ˚ in the following figure and the
cells are colored according to whether they belong to A2, B1, B2 or B3.

Proof. One calculates directly that
ř

i
1
n εi “ 0n. To show uniqueness of this affine com-

bination, we note that the vectors e2, . . . , en,1n are linearly independent. Thus, ε2, . . . , εn

are linearly independent. On the other hand, ε1, . . . , εn are linearly dependent. Therefore
tpλ1, . . . , λnq P Rn |

ř

i λi εi “ 0nu is a one-dimensional subspace of Rn, which yields the
uniqueness of the affine linear combination. ◀

2.1 Local dimension two: the hypercube
In this subsection we prove part (a) of Theorem 2.1 by showing that the margin of Ω2,d is
exponentially small in d. This follows from [4], but we present a new construction which has
the additional property of freeness, which we discuss later in Section 4. Recall that

Ω2,d “
␣

pεi1 , . . . , εid
q | i1, . . . , id P r2s

(

Ď
`

R2˘d
.

In the following we construct a subset of Ω2,d, which witnesses the exponentially small
margin. For this, we construct a matrix with entries in r2s, and each row of the matrix
will correspond to an element of Ω2,d. For example, the row p1, 2, 2q would correspond to
pε1, ε2, ε2q P Ω2,3. To do so, we begin with the matrices

A2 :“
ˆ

1 1
2 1

˙

, B1 :“
ˆ

1 1
2 2

˙

, B2 :“
ˆ

1 2
2 2

˙

, B3 :“
ˆ

2 1
1 1

˙

,

and define recursively

A2r`2 :“

¨

˚

˚

˚

˝

B1

A2r

...

B1
B2 ¨ ¨ ¨ B2 B3

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˝

A2 B1 ¨ ¨ ¨ B1

B2 B3
. . .

...
...

. . .
. . . B1

B2 ¨ ¨ ¨ B2 B3

˛

‹

‹

‹

‹

‚

(6)

for r ě 1. Figure 1 is supplied as a visualization aid.
We remark that the entry of A2r at position pi, jq is independent of r and denote it by

api, jq. We set for r ě 1

Γ2,2r :“
␣`

εapi,1q, εapi,2q, . . . , εapi,2rq

˘

| i P r2rs
(

Ď Ωpπ2,2rq Ď
`

R2˘2r
,

Γ2,2r`1 :“
␣`

εapi,1q, εapi,2q, . . . , εapi,2rq, εχpiq

˘

| i P r2rs
(

Ď Ωpπ2,2r`1q Ď
`

R2˘2r`1
,

where χ : N Ñ t1, 2u, i ÞÑ i mod 2. That is, Γ2,2r is the subset of Ω2,2r induced by the rows
of A2r and Γ2,2r`1 is obtained by alternatingly appending ε1 or ε2 to the 2r-many elements
of Γ2,2r.
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13:14 Barriers in Geodesic Optimization

▶ Lemma 2.3. For r ě 1 it holds that 0 R AffpΓ2,2rq and 0 R AffpΓ2,2r`1q.

Proof. By construction, 0 P AffpΓ2,2r`1q implies 0 P AffpΓ2,2rq, so it suffices to prove
0 R AffpΓ2,2rq. We proceed by induction on r ě 1. For r “ 1, it is clear that 0 R AffpΓ2,2q Ď

R2 ˆ tε1u. Now assume that 0 R AffpΓ2,2rq. For the sake of contradiction, let

2r`2
ÿ

i“1
λi

`

εapi,1q, εapi,2q, . . . , εapi,2r`2q

˘

“ 0 P
`

R2˘2r`2 (7)

be an affine linear combination of Γ2,2r`2. Then equation (7) gives in each of the p2r`2q-many
R2-components the affine linear combination 2´1pε1 ` ε2q “ 0, by Lemma 2.2. Considering
the scalar factor of ε1 in the first, the penultimate and the last R2-component respectively,
we conclude

r`1
ÿ

j“1
λ2j´1

loooomoooon

first

“
1
2 “ λ2r`2 `

r
ÿ

j“1
λ2j´1

loooooooooomoooooooooon

penultimate

“
1
2 “ λ2r`2 `

r`1
ÿ

j“1
λ2j´1

loooooooooomoooooooooon

last

by construction of A2r`2. Hence, λ2r`2 “ 0 using the first and last component. Furthermore,
the first and penultimate column give λ2r`1 “ λ2r`2 “ 0. Therefore, the first 2r-many
components in Equation (7) show 0 P AffpΓ2,2rq, which contradicts our induction hypothesis.

◀

▶ Lemma 2.4. For r ě 1 it holds that distp0, convpΓ2,2rqq ď 2´r` 1
2 and

distp0, convpΓ2,2r`1qq ď 2´r` 1
2 .

Proof. We first prove the inequality for convpΓ2,2rq. For i P r2rs let ωi :“
`

εapi,1q, . . . , εapi,2rq

˘

P
`

R2˘2r be the weight in Γ2,2r that corresponds to the ith row of
A2r. Consider the convex combination

px1, . . . , x2rq :“ 2´rpω2r´1 ` ω2rq `

r´1
ÿ

l“1
2´l´1pω2l´1 ` ω2lq P

`

R2˘2r
. (8)

Note that xi P R2. We will argue that px1, . . . , x2rq “ 2´r`1p02, . . . , 02, ε1q. Since x is a
convex combination of the elements in Γ2,2r, the statement then follows from }ε1} “

?
2´1.

We consider A2r like in its construction (6) as a r ˆ r block matrix with block entries
being 2 ˆ 2 matrices. For m P rrs the two weights ω2m´1 and ω2m correspond to the mth

block row of A2r and have the same scalar factor in (8). Hence, whenever for i P r2rs the ith

column of the mth block row of A2k contains exactly one entry equal to one (and so the other
entry equals two), then the contribution of ω2m´1 and ω2m to xi cancels due to ε1 ` ε2 “ 02.
In particular, in (8) all contributions of block entries equal to B1 cancel. Therefore the last
column of A2r gives

x2r “ 2´rpε1 ` ε1q “ 2´r`1ε1.

Furthermore, x1 “ x3 “ . . . “ x2r´1 “ 02 using that also the first columns of A2, of B2 and
of B3 contain exactly one entry equal to one. For r “ 1 we are done. If r ě 2, then reading
off the second column of A2r, we find

x2 “ 2´2pε1 ` ε1q
loooooomoooooon

first block row

` 2´rpε2 ` ε2q
loooooomoooooon

last block row

`

r´1
ÿ

l“2
2´l´1pε2 ` ε2q
looooooomooooooon

middle rows

“ 2´1pε1 ` ε2q “ 02.
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Analogously, as B1 does not contribute we compute for j “ 2, 3, . . . , r ´ 1 that

x2j “ 2´j´1pε1 ` ε1q
loooooooomoooooooon

jth block row

` 2´rpε2 ` ε2q
loooooomoooooon

last block row

`

r´1
ÿ

l“j`1
2´l´1pε2 ` ε2q
looooooomooooooon

in between rows

“ 2´jpε1 ` ε2q “ 02,

because the second columns of B2 and B3 are, respectively, p2, 2qT and p1, 1qT . This proves
the inequality in the case Γ2,2r.

By construction, for Γ2,2r`1 the same convex combination works, because the last R2-
component does not contribute as the entries of the weights alternate between ε1 and ε2. ◀

Finally, Lemma 2.3 and Lemma 2.4 together yield Theorem 2.1(a), noting that for odd
d “ 2r ` 1 one has ´r ` 1{2 “ ´pd{2q ` 1.

2.2 3-tensors
The main goal of this section is to show that the margin of Ωn,3 is exponentially small in n,
i.e. to show Theorem 2.1(b). To do so, we set

Wn :“
n
ď

s“2
tps, 1, sq, ps, s, 1q, ps ´ 1, s, squ Ď rns ˆ rns ˆ rns (9)

and consider the corresponding subset

Γn,3 :“
␣

pεi, εj , εkq | pi, j, kq P Wn

(

Ď Ωn,3. (10)

The key combinatorial idea, which is presented in the following lemma, is due to [38,
Theorem 1 with k “ 0].10 According to [38] the special case k “ 0 is already contained in
[37, Theorem 9].

▶ Lemma 2.5. Let n ě 3. For pi, j, kq P rns3z
`

Wn Y tp1, 1, 1qu
˘

set λi,j,k :“ 0. Moreover,
define

λ1,1,1 :“ 2´n`1, λ1,2,2 :“ 1 ´ 2´n`1, λn,1,n “ λn,n,1 :“ 2´1

and for s “ 2, 3, . . . , n ´ 1

λs,1,s “ λs,s,1 :“ 2´n`s´1, λs,s`1,s`1 :“ 1 ´ 2´n`s .

Then the following equations hold:
˜

@i P rns :
n
ÿ

j,k“1

λi,j,k “ 1
¸

,

˜

@j P rns :
n
ÿ

i,k“1

λi,j,k “ 1
¸

,

˜

@k P rns :
n
ÿ

i,j“1

λi,j,k “ 1
¸

. (11)

In particular,
ř

i,j,k λi,j,k “ n.

Proof. This is [38, Theorem 1 with k “ 0]. Alternatively, the statement can be checked by
straightforward computation. ◀

10 In [38] Kravtsov extensively studies so-called complete r-noninteger vertices (r-CNVs) of the three-index
axial assignment polytope. For k P t0, 1, . . . , n ´ 2u, [38, Theorem 1] states explicitly a p3n ´ 2 ´ kq-CNV,
among these we use the p3n ´ 2q-CNV (i.e. k “ 0). Moreover, [38, Theorem 2] states that such r-CNVs
of the three-index axial assignment polytope actually only occur for r P t2n, 2n ` 1, . . . , 3n ´ 2u, and
the later theorems in [38] fully characterize the r-CNVs and study their combinatorial properties.
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▶ Example 2.6. To visualize Lemma 2.5 it is helpful to consider the slices Λi given by
pΛiqj,k “ λi,j,k. For n “ 4 one has

Λ1 “
1
8

¨

˚

˚

˝

1 0 0 0
0 7 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

, Λ2 “
1
8

¨

˚

˚

˝

0 1 0 0
1 0 0 0
0 0 6 0
0 0 0 0

˛

‹

‹

‚

,

Λ3 “
1
8

¨

˚

˚

˝

0 0 2 0
0 0 0 0
2 0 0 0
0 0 0 4

˛

‹

‹

‚

, Λ4 “
1
8

¨

˚

˚

˝

0 0 0 4
0 0 0 0
0 0 0 0
4 0 0 0

˛

‹

‹

‚

.

For n “ 5 one has

Λ1 “
1
16

¨

˚

˚

˚

˚

˝

1 0 0 0 0
0 15 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

, Λ2 “
1
16

¨

˚

˚

˚

˚

˝

0 1 0 0 0
1 0 0 0 0
0 0 14 0 0
0 0 0 0 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

,

Λ3 “
1
16

¨

˚

˚

˚

˚

˝

0 0 2 0 0
0 0 0 0 0
2 0 0 0 0
0 0 0 12 0
0 0 0 0 0

˛

‹

‹

‹

‹

‚

, Λ4 “
1
16

¨

˚

˚

˚

˚

˝

0 0 0 4 0
0 0 0 0 0
0 0 0 0 0
4 0 0 0 0
0 0 0 0 8

˛

‹

‹

‹

‹

‚

, Λ5 “
1
16

¨

˚

˚

˚

˚

˝

0 0 0 0 8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0

˛

‹

‹

‹

‹

‚

.

▶ Lemma 2.7. For n ě 3, it holds that dist
`

0, convpΓn,3q
˘

ď 2´n`1.

Proof. Define λi,j,k ě 0 for all i, j, k P rns as in Lemma 2.5. Note that
řn

i“1 εi “ 0; thus
Lemma 2.5 implies

ÿ

i,j,k

λi,j,kpεi, εj , εkq “ 03n , equivalently ´ 2´n`1
pε1, ε1, ε1q “

ÿ

pi,j,kqPWn

λi,j,kpεi, εj , εkq.

Normalizing the latter equation we obtain

x :“ ´
1

c 2n´1 pε1, ε1, ε1q P convpΓn,3q, where c :“
ÿ

pi,j,kqPWn

λi,j,k “ n ´ 2´n`1 ě
?

3.

Finally, ∥ε1∥2 ď 1 implies ∥x∥ ď c´12´n`1?
3 ď 2´n`1. ◀

To finish the proof of Theorem 2.1(b) we are left to show 0 R convpΓn,3q. We actually
prove the stronger statement 0 R AffpΓn,3q.

▶ Lemma 2.8. The zero vector is not contained in the affine hull of Γn,3.

Proof. For a proof by contradiction we assume 0 P AffpΓn,3q. Then there exist as, bs, cs P R
for s “ 2, 3, . . . , n such that

ř

s as ` bs ` cs “ 1 and
n
ÿ

s“2

`

aspεs, ε1, εsq ` bspεs, εs, ε1q ` cspεs´1, εs, εsq
˘

“ p0n, 0n, 0nq P pRnq3.

In each of the three Rn-components we obtain 0n as an affine linear combination of ε1, . . . , εn.
Applying Lemma 2.2 to the coefficient of εs´1 in the first component, respectively to the
coefficient of εs in the second and third component yields

as´1 ` bs´1 ` cs “
1
n

for s “ 2, 3, . . . , n (12)

respectively bs ` cs “ as ` cs “
1
n

for s “ 2, 3, . . . , n (13)
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where we necessarily set a1 “ b1 :“ 0. Equation (12) for s “ 2 is c2 “ n´1 and hence
a2 “ b2 “ 0 by (13) for s “ 2. But now (12) for s “ 3 gives c3 “ n´1 and we can proceed
inductively to conclude cs “ n´1 and as “ bs “ 0 for all s “ 2, 3, . . . , n. This gives the
contradiction 1 “

řn
s“2pas ` bs ` csq “ n´1

n , so we must have 0 R AffpΓn,3q. Another
contradiction arises when one applies Lemma 2.2 to the coefficient εn in the first component,
which yields an ` bn “ n´1. ◀

2.3 d-tensors
In this subsection we show that the margin of Ωn,d is inverse exponential in nd for n, d ě 3,
proving part pcq of Theorem 2.1.

Let us give some intuition for our construction. The main idea is to recycle the construction
from the previous subsection for some multiple of n, i.e. considering Wrn for r ě 2. Thereby,
the main challenge is to ensure that the constructed subset of Ωn,d does not contain zero in
its convex hull. We can try to extend the elements of Ωn,3 to elements of Ωn,d. One natural
idea is duplicate each component d{3 times, i.e. when d “ 6 the vector pεi, εj , εkq P Ωn,3
becomes pεi, εi, εj , εj , εk, εkq P Ωn,6. However, we need a subset of Ωn,d with rn many
elements to imitate the construction from the previous subsection. We still extend the
elements of Ωn,3 in this way, but will additionally “shift” and “twist” by some functions
σ1, . . . , σ2r´1 : rrns Ñ rns, so that the elements of our set will look like

´

εσ1piq, . . . , εσd{3piq, εσ1pjq, . . . , εσd{3pjq, εσ1pkq, . . . , εσd{3pkq

¯

for d{3 “ 2r ´ 1 and pi, j, kq in Wrn. We now set about choosing the functions σk. For this,
let n ě 3 and fix a natural number r ě 2. It is convenient to use an adjusted modulo n

function mod1 n that takes values in rns, i.e. instead of zero it outputs n. For i P rrs we
consider

σi : rrns Ñ rns, j ÞÑ

R

j ` pi ´ 1q

r

V

mod1 n

σr`i :“ σ1 ˝ pr ´ i ` 1 r ` 1q : rrns Ñ rns

where pr ´ i ` 1 r ` 1q denotes the corresponding transposition in the symmetric group of
rrns.11 We only need the first 2r ´ 1 of these functions and combine them to obtain

σ : rrns Ñ rns2r´1, j ÞÑ
`

σ1pjq, σ2pjq, . . . , σ2r´1pjq
˘

.

▶ Example 2.9. For r “ 3 the functions σ1, σ2, . . . , σ6 are sketched by the following table.

j 1 2 3 4 5 6 ¨ ¨ ¨ 3n ´ 5 3n ´ 4 3n ´ 3 3n ´ 2 3n ´ 1 3n

σ1 1 1 1 2 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ2 1 1 2 2 2 3 ¨ ¨ ¨ n ´ 1 n ´ 1 n n n 1
σ3 1 2 2 2 3 3 ¨ ¨ ¨ n ´ 1 n n n 1 1
σ4 1 1 2 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ5 1 2 1 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

σ6 2 1 1 1 2 2 ¨ ¨ ¨ n ´ 1 n ´ 1 n ´ 1 n n n

For r “ 3 and n “ 5 the functions σ1, σ2, . . . , σ6 are given by the following table.

11 We stress that we always take σ1 (and not σi) to define σr`i.
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j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
σ2 1 1 2 2 2 3 3 3 4 4 4 5 5 5 1
σ3 1 2 2 2 3 3 3 4 4 4 5 5 5 1 1
σ4 1 1 2 1 2 2 3 3 3 4 4 4 5 5 5
σ5 1 2 1 1 2 2 3 3 3 4 4 4 5 5 5
σ6 2 1 1 1 2 2 3 3 3 4 4 4 5 5 5

▶ Remark 2.10. By construction, each element of rns is attained exactly r-times by σk,
k P r2r ´ 1s. Moreover, the definition of σ1, . . . , σr yields that σ is injective.

For i, j, k P rrns we introduce the short-hand

εσpiq :“
`

εσ1piq, εσ2piq, . . . , εσ2r´1piq

˘

P pRnq
2r´1

εσpiq,σpjq,σpkq :“
`

εσ1piq, . . . , εσ2r´1piq, εσ1pjq, . . . , εσ2r´1pjq, εσ1pkq, . . . , εσ2r´1pkq

˘

P pRnq
6r´3

and we set12

Jr :“
␣

ps, 1, sq, ps, s, 1q | s “ 2, 3, . . . , r
(

Ď Z3.

In the following we show that the convex hull of the set

Γn,6r´3 “
␣

εσpiq,σpjq,σpkq | pi, j, kq P WrnzJr

(

Ď Ωn,6r´3 Ď

´

`

Rn
˘2r´1

¯3

does not contain the zero vector, but is very close to it.

▶ Lemma 2.11. For n ě 3 and r ě 2 it holds that 0 R Aff pΓn,6r´3q.

Below we give the proof in the special case r “ 3, in which all main ideas of the
general proof become apparent and visible. The proof for the general statement is given in
Appendix D and certainly looks technical at a first encounter. Therefore, we strongly suggest
that the reader first reads the proof for r “ 3 below.

Proof of Lemma 2.11 for r “ 3. For the sake of contradiction assume that 0 P AffpΓn,15q.
Then there are coefficients as, bs, cs P R, where 2 ď s ď 3n, such that a2 “ a3 “ b2 “ b3 “ 0,
ř

spas ` bs ` csq “ 1 and

3n
ÿ

s“2

`

as εσpsq,σp1q,σpsq ` bs εσpsq,σpsq,σp1q ` cs εσps´1q,σpsq,σpsq

˘

“ 0 P pRnq15. (14)

The bulk of our work will consist of proving the equations

b2 ` c2 “ b3 ` c3 “ . . . “ b3n ` c3n (15)
a2 ` c2 “ a3 ` c3 “ . . . “ a3n ` c3n. (16)

12 One could suggest to consider the set tεσpiq,σpjq,σpkq | pi, j, kq P Wrnu, but this still won’t ensure that
zero is not in the convex hull. The intuition behind is, that Γn,3 from the last section is “nearly at
the limit”, i.e. 0 R convpΓn,3q but 0 P convpΓn,3 Y tpε1, ε1, ε1quq. Now the function σ “introduces
2r ´ 2 additional linear relations” as εσpiq P p1

K
n q

2r´1, since the orthogonal complement 1K
n Ď Rn has

codimension one while p1
K
n q

2r´1
Ď pRn

q
2r´1 has codimension 2r ´ 1. Thus, it is reasonable to remove

2r ´ 2 many elements from Wrn.
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From here we will derive a contradiction. We now set about proving Equations (15) and (16).
Rewrite the left-hand-side of Equation (14) as the collection for k P r5s of the following affine
linear combinations of ε1, . . . , εn in Rn:

3n
ÿ

s“2

`

as εσkpsq ` bs εσkpsq ` cs εσkps´1q

˘

“ 0 (17)

3n
ÿ

s“2

`

as εσkp1q ` bs εσkpsq ` cs εσkpsq

˘

“ 0 (18)

3n
ÿ

s“2

`

as εσkpsq ` bs εσkp1q ` cs εσkpsq

˘

“ 0. (19)

If we expand each expression as an affine linear combination of the εl, then by Lemma 2.2
the coefficient of εl must be n´1 for all l P rns. Translating this for equation (17) with k “ 2,
l “ 2, . . . , n and using Example 2.9 we obtain

pam´3 ` am´2 ` am´1q ` pbm´3 ` bm´2 ` bm´1q ` pcm´2 ` cm´1 ` cmq “
1
n

(20)

for m “ 6, 9, 12, . . . , 3n. A similar calculation for k “ 1, 3 and l “ 2, . . . , n shows Equation (20)
holds for all 5 ď m ď 3n ` 1, where we set c3n`1 :“ 0.

Similarly for Equation (18) with l “ 2, . . . , n and k “ 1, 2, 3 we obtain for 4 ď m ď 3n

that

pbm´2 ` cm´2q ` pbm´1 ` cm´1q ` pbm ` cmq “
1
n

(21)

and the same equations with “b” replaced by “a” when considering Equation (19).
In the following we prove Equation (15). Subtracting (21) from (21) with values of m

differing by one, we deduce that

b2 ` c2 “ b5 ` c5 “ . . . “ b3n´1 ` c3n´1

b3 ` c3 “ b6 ` c6 “ . . . “ b3n ` c3n,

and b4 ` c4 “ b7 ` c7 “ . . . “ b3n´2 ` c3n´2.

Next we deduce Equation (15) by showing b2 ` c2 “ b3 ` c3 “ b4 ` c4.
To do so, we apply Lemma 2.2 to (18) for the coefficient of ε2 using Example 2.9, which

yields for k “ 4, 5 the equations

pb3 ` c3q ` pb5 ` c5q ` pb6 ` c6q “
1
n

(22)

pb2 ` c2q ` pb5 ` c5q ` pb6 ` c6q “
1
n

(23)

respectively. Subtracting the two shows b2 ` c2 “ b3 ` c3, and we have b3 ` c3 “ b4 ` c4
via subtracting (22) from (21) for m “ 6. This completes the proof of Equation (15); using
Equation (19) we similarly deduce Equation (16).

To get a contradiction we show that as “ bs “ cs “ 0 for all s “ 2, 3, . . . , 3n. For this,
we set a :“

ř

s as and b :“
ř

s bs, and recall that we have defined a2 “ a3 “ b2 “ b3 “ 0.
This time we use Lemma 2.2 applied to the coefficient of ε1 in (17), in (18) and in (19)
respectively for k “ 1 to get

c2 ` c3 ` c4 “
1
n

, a ` c2 ` c3 “
1
n

and b ` c2 ` c3 “
1
n

(24)
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respectively. We deduce from these three equations that a “ b “ c4. Furthermore, b2 “ b3 “ 0
shows that (21) for m “ 4 is b4 ` pc2 ` c3 ` c4q “ n´1. Subtracting from the latter the
left-hand equation in (24) yields b4 “ 0. Similarly, a4 “ 0 follows from a2 “ a3 “ 0 and the
analogous equation of (21) with a’s replaced by b’s.

Now, (20) for m “ 5 simplifies to c3 ` c4 ` c5 “ n´1. Thus, c2 “ c5 with (24) and
therefore a5 “ b5 “ 0 by (15), (16) and a2 “ b2 “ 0. This simplifies (20) for m “ 6 to
c4 ` c5 ` c6 “ n´1. Hence, c3 “ c6 as we also have c3 ` c4 ` c5 “ n´1 and we get via
(15) and (16) that a6 “ b6 “ 0. The latter in turn shows that (20) for m “ 7 becomes
c5 ` c6 ` c7 “ n´1, so c4 “ c7 and a7 “ b7 “ 0 by, again, (15) and (16).

It should have become apparent that we can proceed inductively in the same manner
with (20) for m “ 5, . . . , 3n ` 1; thereby using (15) and (16) to deduce as “ bs “ 0 for all
s “ 2, 3, . . . , 3n. In particular, a “ b “ c4 “ 0. Finally, Equation (15) implies c4 “ cs for all
s “ 2, 3, . . . , 3n, which gives the desired contradiction. ◀

We finish the proof of part pcq of Theorem 2.1 by showing the following Lemma.
▶ Lemma 2.12. Let n ě 3 and r ě 2. Then

dist
`

0, convpΓn,6r´3q
˘

ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1.

Proof. We set N :“ rn and for i, j, k P rN s we set λi,j,k as in Lemma 2.5 applied for the
dimension N . Then Equation (11) of Lemma 2.5 yields

N
ÿ

i,j,k“1
λi,j,k

`

εσpiq, εσpjq, εσpkq

˘

“

N
ÿ

i,j,k“1
λi,j,k

`

εσpiq, 0, 0
˘

`

N
ÿ

i,j,k“1
λi,j,k

`

0, εσpjq, 0
˘

`

N
ÿ

i,j,k“1
λi,j,k

`

0, 0, εσpkq

˘

“

N
ÿ

i“1

`

εσpiq, 0, 0
˘

`

N
ÿ

j“1

`

0, εσpjq, 0
˘

`

N
ÿ

k“1

`

0, 0, εσpkq

˘

“

N
ÿ

i“1
εσpiq,σpiq,σpiq “ 0 P pRnq

6r´3
,

where we used in the last step equation (5) and Remark 2.10, i.e. that each element of rns is
attained exactly r-many times by all σk : rrns Ñ rns, k P r2r ´ 1s. Because WN contains the
support of λ apart from the element p1, 1, 1q, we have

ÿ

pi,j,kqPWN zJr

λi,j,k εσpiq,σpjq,σpkq (25)

“ ´λ1,1,1 εσp1q,σp1q,σp1q ´
ÿ

pi,j,kqPJr

λi,j,k εσpiq,σpjq,σpkq “: x P pRnq
6r´3

, (26)

which is an element in the positive cone of Γn,6r´3 “ tεσpiq,σpjq,σpkq | pi, j, kq P WN zJru.
Normalizing the latter equation with

c :“
ÿ

pi,j,kqPWN zJr

λi,j,k “

N
ÿ

i,j,k“1
λi,j,k ´

¨

˝λ1,1,1 `
ÿ

pi,j,kqPJr

λi,j,k

˛

‚ě N ´ 1

shows c´1x P convpΓn,6r´3q. To bound the norm of c´1x we compute

λ1,1,1 `
ÿ

pi,j,kqPJr

λi,j,k “ 2´N`1 `

r
ÿ

s“2
pλs,1,s ` λs,s,1q

“ 2´N`1 `

r
ÿ

s“2

`

2´N`s´1 ` 2´N`s´1˘ “

r
ÿ

s“1
2´N`s ă 2´N`r`1.
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Finally, using }εi1,i2,...,i6r´3 } ď
?

6r ´ 3 for any i1, i2, . . . , i6r´3 P rns together with the
triangle inequality on Equation (26) implies

}c´1x} ď

?
6r ´ 3

N ´ 1 2´N`r`1 ď

?
6

pn ´ 1q
?

r
2´N`r`1 ď 2´N`r`1 “ 2´rpn´1q`1,

where we used n ě 3 and r ě 2 for
?

6 ď pn ´ 1q
?

r. ◀

2.4 Polynomial scaling
A simple example of Equation (2) is the minimization of an n-variate homogeneous polynomial
of degree d with nonnegative coefficients over the set x1, . . . , xn ą 0,

ś

xi “ 1, as studied
in [30]. In this case the sets convpSq for S Ď Ω are Newton polytopes of homogeneous
polynomials, and the minimum of a polynomial is bounded below if and only if the Newton
polytope contains d

n1n. If the polynomials are hyperbolic of degree n, as in [30], their Newton
polytope either contains 1n or is at least 1{

?
n away from it. However, we show that for

general homogeneous polynomials the margin can get exponentially small in n even for d “ 3.
Minimizing a degree d homogeneous polynomial

ř

αPZn
ě0

pαxα with nonnegative coefficients
over the set x1, . . . , xn ą 0,

ś

xi “ 1 is the same as computing Equation (2) for

Ω1 :“
"

´α `
d

n
1n

ˇ

ˇ

ˇ

ˇ

α P pZě0qn with |α| “ d

*

. (27)

If n “ dm for some integer m ě 1, then we have ´Ωm,d Ď Ω1. Therefore, Theorem 2.1(b)
and (c) and the padding from Appendix C directly yield the following.

▶ Corollary 2.13 (Margin for Polynomial scaling). Fix some d ě 3 and assume n “ dm for
some m ě 3. Let Ω1 be as in Equation (27). Then

γpΩ1q ď γpΩm,dq ď 2´m`1 “ 2´ n
d `1.

and for d ě 9 we even have

γpΩ1q ď γpΩm,dq ď 2´

Y

pm´1qpd`3q

6

]

`1
« 2´ n

6 .

Thus, for fixed d ě 3 and n Ñ 8 the margin of Ω1 can be exponentially small in n. In
terms of polynomials, this states that the Newton polytope of a degree d ě 3 homogeneous
polynomial can be exponentially close to the origin without containing it.

3 Diameter bounds in the commutative case

In this section we describe an array such that all approximate scalings are very ill conditioned,
proving Theorem 1.1. Let us define the diameter bound.

▶ Definition 3.1. Let ε Ñ 0 and f : Rm Ñ R. The diameter bound Df pεq is defined as the
infimum over R ą 0 such that

inf
}x}ďR

fpxq ď ε ` inf
xPRm

fpxq.

Thus, Theorem 1.1 is equivalent to the statement that Df pεq “ Ωp2n{3 logp1{εq for ε ď

e´Cn2 log n. We now give a proof outline for Theorem 1.1.
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3.1 Proof outline

The high-level intuition applies not only to array scaling but to the capacity in general.
Recall that the array scaling capacity is

inf
xPR3n

ÿ

ωPΩ
pωeω¨x

for Ω “ Ωn,3 “ tei ´ 1
n1n : i P rnsu Ď R3n. We build both the support Ω1 Ď Ωn,3 and the

entries p in the following way. We construct a set Ω0 Ď Ωn,3, another element ω P Ωn,3, and
an array q with the following properties.

1. The set Ω0 Ď Ωn,3 should be the support of a tristochastic array q.

2. The affine hull of Ω0, should have codimension one13 in R3n.

3. The origin is in the relative interior of convpΩ0q. Note that the origin is already in
convpΩ0q by the tristochasticity of q.

4. The vector ω P Ωn,3 should be at a very small, but positive, distance η from AffpΩ0q.
Note that this already implies that the facet gap of Ω0 Y ω is small.

Finally, we define the entries of p by p|Ω0 “ 1
2 q, pω “ 1

2 , and pω “ 0 elsewhere. Assuming we
have found p according to this process, we now give intuition for the diameter bound.

Let v be the projection of ω to the orthogonal complement of AffpΩ0q. Intuitively, the
capacity is only approximately attained by vectors very far in the ´v direction. Indeed, first
note that capppq “ 1{2, because cappqq “ 1 by tristochasticity, capppq ě 1

2 cappqq “ 1
2 , and

fpp´tv{}v}q “ 1
2 ` e´ηt so fpp´tv{}v}q tends to 1

2 . However, fpp´tv{}v}q tends to 1
2 slowly

if η is small. Indeed, fpp´tv{}v}q ď 1
2 p1 ` εq only if t ě 1

η logp1{εq.
To conclude rigorously that the capacity is only approached by vectors very far in the

´v direction, we must rule out directions with nonzero components in AffpΩ0q. For this, we
must use the assumption that 0 is rather deep in the relative interior of convpΩ0q. If this is
the case, then any ε-approximate minimizer must have a bounded component in AffpΩ0q, for
otherwise the contribution to fp from the elements of Ω0 alone will be larger than 1

2 ` ε.
The remainder of the section will be concerned with the construction of a subset Ω0, an

array q, and an element ω with these properties.

3.2 The construction

We construct the subset Ω0 from a directed graph D on rns, which we will determine later.
If i, j is an edge in D, then Ω0 includes the elements pεi, εi, εjq as well as the three cyclic
permutations of it. That is,

Ω0 “ tpεj , εi, εiq, pεi, εj , εiq, pεi, εi, εjq : ij P EpDqu.

We now describe the graph, as seen in Figure 2.

13 This will not quite apply in our setting, because AffpΩn,3q is not full-dimensional. Instead, AffpΩ0q will
be codimension one in AffpΩn,3q.



W. C. Franks and P. Reichenbach 13:23

wl´1

wl

r

u1

ul´1

ul´2

ul

v1

vl´1

vl´2

vl

w1

wl´1

wl´2

wl´3

wl

2
`

1

2
´

12

2 `
p´

1
2
q
l´

1

2 `
p´ 1

2 q l´1

2
`

p´
1 2
ql´

2

2 ´
1
2

2 ` 1

2 ´ 1
2

2 ` 1

2 ´
1

2

2 `
1

2
´

1 2

Figure 2 The graph Dl from Definition 3.2 with the edge labels proportional to the edge labeling
q in Item 1 of Lemma 3.3 (the constant factor 1{6n is omitted for readability). We have also omitted
the directions, which are all towards the root r.

▶ Definition 3.2. The graph Dl “ pW, Eq is a directed tree with l ` 1 levels, where the root
is on the 0th level and the leaves are on the lth level. The tree is constructed as follows.

All the edges are directed towards the root and are between adjacent levels.
The root has three children, and on the l ´ 1 levels below the root every node has one
child.
Additionally, one of the vertices on level l ´ 2 has an additional child which has its own
child.

Explicitly, the vertices W and edges E are given by

W “ tui, vi, wi : i P rlsu Y tw0 :“ u0 :“ v0 :“ r, w̄l´1, w̄lu.

E “ tuiui´1, vivi´1, wiwi´1 : i P rlsu Y tw̄l´1wl´2, w̄lw̄l´1u.

Note that Dl has 3pl ` 1q vertices so we set n “ 3pl ` 1q. Thus Dl has 3l ` 2 edges and
so |Ω0| “ 3p3l ` 2q “ 3n ´ 3. It is helpful to construct the matrix M whose set of rows is
Ω0. To make the matrix sparser, first replace εi by ei by restricting the minimization to the
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0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 3 The matrix M written in the reordered basis described before Lemma 3.3. From the left,
the five groups of columns correspond to the w1s, the u1s, the v1s, the w1s, and r among the vertices
of Dl. As such the dimensions of the five column groups, from left, are 3 ¨2, 3pl´1q, 3pl´1q, 3pl´1q, 3,
and the dimensions of the four groups of rows from top are 3pl ´ 1q, 3pl ´ 1q, 3pl ´ 1q, 3 ¨ 2. A is as in
Equation (28) and I is the 3 ˆ 3 identity matrix.

v
q1 q2

Figure 4 If v is a vertex of Dl with edges weighted q1 and q2 incident to it, then the column v, i

of M for i P r3s sums to q1 ` 2q2. That is, the incoming edge contributes its weight and the outgoing
edge contributes twice its weight.

subspace
ř

xi “
ř

yi “
ř

zi “ 0, which is without loss of generality. We define Ω1
0 Ď R3n

to be Ω0 but with each pεi, εj , εkq replaced by pei, ej , ekq; define Ω1
n,3 similarly and define

ppei,ej ,ekq :“ ppεi,εj ,εkq. Then

inf
xPR3n

ÿ

ωPΩn,3

pωepεi,εj ,εkq¨x “ inf
x,y,zPRn

ř

xi“
ř

yi“
ř

zi“0

ÿ

ωPΩ1
n,3

pωepei,ej ,ekq¨px,y,zq.

Moreover, when we write the matrix M , it is easier to write the vector px, y, zq in the order
px1, y1, z1, x2, y2, z2, . . . q instead of the order px1, . . . , xn, y1, . . . , yn, z1, . . . , znq. With this
ordering, the matrix M with rows in Ω1

0 is a block matrix M with blocks of size 3, with
n ´ 1 block rows, and with n block columns. Each block row corresponds to an edge in the
directed graph Dl “ pW, Eq on n “ 3pl ` 1q vertices. If e P E is an edge from i Ñ j, then
the eth row of M has the matrix
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A “

»

–

0 1 1
1 0 1
1 1 0

fi

fl (28)

in the ith block entry and

I “

»

–

1 0 0
0 1 0
0 0 1

fi

fl

in the jth block entry and zeroes elsewhere. See Figure 3 for a portrayal of the whole
matrix M .

The first three properties for Ω0 in the proof plan translate to the following three claims
about M . The first relates to the tristochasticity of q, the second to the codimension of
AffpΩ1

0q in the subspace p1K
n q3, and the third to the depth of the point 1

n13n in convpΩ1
0q.

▶ Lemma 3.3. Let n “ 3pl ` 1q.
1. The probability distribution q on E ˆ r3s defined pfor i P r3sq by

for j P rls, qujuj´1,i “ qvjvj´1,i “
1

6n

´

2 ` p´2q´pl´jq
¯

for j P rl ´ 2s, qwjwj´1,i “
1

6n

´

2 ` p´2q´pl´j´1q
¯

qwl´1wl´2,i “ qw̄l´1w̄l´2,i “
1
2qwlwl´1,i “

1
2qw̄lw̄l´1,i “

1
6n

ˆ

3
2

˙

on the rows of M has expectation 1
n13n. That is, if the rows of M are scaled by the values

of q, each column sums to 1{n. Note that the entries of q are Θp 1
n q. Ignoring the index i

in quv,i allows us to view q as a labeling of the edges of the graph Dl; see Figures 2 and 4.
2. ker M “ spanpΩ1

0qK is spanned by the 2 dimensional space S Ď RW ˆr3s given by

S “ ts : spv, 1q “ α, spv, 2q “ β, spv, 3q “ γ for all v P W, α ` β ` γ “ 0u

and the function f P RW ˆr3s which for all i P r3s assigns

fpuj , iq “ fpvj , iq “ fpwj , iq “ p´2q´j for j P rls Y t0u

and fpw̄l´k, iq “ fpwl´k, iq for k P t0, 1u. (29)

Note that f P p1K
n q3 Ď SK. Thus we have the orthogonal decomposition spanpΩ1

0qK “

S ‘ span f.

3. Apart from the three zero singular values, all singular values of M are Ωp1{nq.

Given the lemma, let us prove that the diameter bound holds according to the proof
outline at the beginning of the section.

Proof of Theorem 1.1. We first show the claim for n of the form n “ 3pl ` 1q; the bound
follows for 3pl ` 1q ă n ă 3pl ` 2q by applying Proposition 3.5 with t “ 3pl ` 1q, using that
the array we construct has capacity 1{2 and t{n ě 2{3.

We now show the diameter lower bound for n “ 3pl ` 1q. It is enough to exhibit a
constant C ą 0, and a probability distribution p on Ω1

n,3 “ tei : i P rnsu3 such that for for
all N ě Cn2 log n and all x, y, z P 1K

n ,
ÿ

ωPΩ1
n,d

pωeω¨px,y,zq ď e´N ` inf
x1,y1,z1P1K

n

ÿ

ωPΩ1
n,d

pωeω¨px,y,zq
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only if }px, y, zq}2 “ Ωp2n{3Nq. Note that the space p1K
n q3 over which we are infimizing is a

subspace of SK where S is as in Lemma 3.3, and that Ω1
n,d Ď SK. The proof will follow the

outline in Section 3.1; namely, we will consider a subset Ω1
0 Ď Ω1

n,d and an element ω1 P Ω1
n,d

very close to, but outside of, AffpΩ1
0q.

Consider the set Ω1
0 Ď Ω1

n,d of rows of M in Lemma 3.3 and the probability distribution
q on Ω1

0 from Lemma 3.3. Let ω1 “ peul
, evl

, ewl
q for the vertices ul, vl, wl P Dl. Let

Ω “ Ω1
0 Y tω1u, and define the probability distribution p on Ω by pω1 “ 1

2 and pω “ 1
2 qω for

ω P Ω1
0. Recall from Lemma 3.3 the orthogonal decomposition spanpΩ1

0qK “ S ‘ span f . As
R3n “ spanpΩ1

0q‘spanpΩ1
0qK, we have the orthogonal decomposition SK “ spanpΩ1

0q‘span f .
Observe that ω1 R spanpΩ1

0q, because by Lemma 3.3 we have spanpΩ1
0qK “ ker M “ S `span f

and clearly f ¨ ω1 ‰ 0.
By Item 1 of Lemma 3.3 we have

ř

ωPΩ1
0

qωω “ 1
n p1n,1n,1nq and thus cappqq “ 1.

Therefore, ω1 R spanpΩ1
0q implies that the infimum is 1{2 for this choice of Ω and p. We

claim that the infimum can only be approximately attained by h P p1K
n q3 with a very

large component in the one-dimensional space span f “ spanpΩ1
0qK X p1K

n q3. As in the
proof outline, we must bound the components in spanpΩ1

0q of the approximate minimizer
h. For h P p1K

n q3 write h “ h0 ` af and ω1 “ ω0 ` bf where h0, ω0 P span Ω1
0. Note that

|b| “
|f ¨ω1

|

}f}2 “ Op2´lq “ Op2´n{3q and that h0 P p1K
n q3, because h and f are. Suppose

ÿ

ωPΩ
pωeω¨h ď

1
2e´N `

1
2 .

Equivalently,
ÿ

ωPΩ1
0

qωeω¨h0 ` eh0¨ω0`ab∥f∥2
ď e´N ` 1. (30)

Suppose }h0} is bounded by L. If eh0¨ω0`ab∥f∥2
ď e´N , then |ab| “ ΩpN ´ Lq. In particular,

}h} ě }af} “ |ab|}f}{|b| “ ΩppN ´ Lq2n{3q because of the previous bounds on |ab|, |b|, and
the fact that }f} “ Θp1q. It remains to prove a bound L for }h0}. We will do this by showing
that if }h0} were too large, then the first term of the left-hand side of Equation (30) would
be too large. This amounts to 1

n13n being in the relative interior of convpΩ1
0q, but will be

proved using lower bounds on the singular values of M .
Let α denote the least nonzero singular value of M ; by Item 3 of Lemma 3.3 α “ Ωp1{nq.

As h0 P spanpΩ1
0q “ rowspanpMq, we have }Mh0} ě α}h0} by the singular value bound. We

claim that there is some ω P Ω1
0 satisfying ω ¨ h0 “ Ωpα}h0}{nq. To prove this, first note that

the
ř

ωPΩ1
0

qωω ¨ h0 “ 1
n p1n,1n,1nq ¨ h0 “ 0 because h0 P p1K

n q3. Moreover, by Lemma 3.3
we have qω “ Θp1{nq. The claim follows from Lemma 3.4 below applied to the sequence
pω ¨ h0 : ω P Ω1

0q.

Because qω “ Θp 1
n q, we must have that ω ¨ h0 “ Oplog nq for all w P Ω1

0. Else, the
contribution from the term qωeω¨h0 alone is larger than 1, in which case x cannot be an
e´N -approximate minimizer. Finally, }h0} “ Opnplog nq{αq “ Opn2 log nq, and so we may
take L “ Opn2 log nq and N ě 2L. ◀

In the above proof, we used the following simple lemma.

▶ Lemma 3.4. Let 0 ă β ă γ. Suppose z P Rm is such that
řm

i“1 qizi “ 0 for qi P pβ{m, γ{mq.
Then there exists i P rms such that zi ě

β
2γm }z}2.

Proof. Because
ř

qizi “ 0,
ÿ

i:ziă0
qi|zi| “

ÿ

i:ziě0
qizi,
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and
ÿ

i:ziă0
qi|zi| `

ÿ

i:ziě0
qizi ě pβ{mq}z}1 ě pβ{mq}z}2.

Thus
ř

i:ziě0 qi|zi| ě
β

2m }z}2, so there is some i such that qizi ą 1
m

β
2m }z}2. Thus zi ą

β
2γm }z}2. ◀

To show that our diameter lower bound holds for all values of n, we need the following
proposition, which is proved in Appendix E. The idea is to prove diameter bounds for larger
arrays from diameter bounds for smaller ones by embedding the smaller array in a “corner”
of the larger array.

▶ Proposition 3.5. Suppose 1 ď t ď n. Let p be a d-dimensional array in pRt
ě0qbd with

unit sum; in particular capppq ď 1. Let q be the d-dimensional array in pRn
ě0qbd array such

that qi1,...,id
“ t

n pi1,...,id
for i1, . . . , id P rts, qiii “ 1{n for t ` 1 ď i ď n, and qi1,...,id

“ 0
otherwise. For ε ď 1 ´ capppq,

Dfq
pεq ě Dfp

ˆ

p1 ´ capppqqε

1 ´ capppqt{n

˙

.

In particular, the norm of any ε-approximate minimizer of fq is at least the norm of some
` 1´capppq

1´capppqt{n

˘

ε-approximate minimizer of fp.

As a corollary of the proof of Theorem 1.1, we have a bound on the facet gap of [14].
The facet gap of a finite set Ω is defined to be the least distance of an element of Ω to the
affine hull of a facet of convpΩq. We have shown that the distance between AffpΩ1

0q and ω1 is
Op2´lq, or Op2´n{3q.

▶ Corollary 3.6 (Facet gap of array scaling). There is a subset Ω1 Ď Ωn,3 with facet gap
Op2´n{3q.

Analogously to what is done for the margin in Proposition C.1, we may also embed
this array inside a larger array to obtain a diameter bound for d ě 3. For d ě 3, take
qpi, j, k, l, l, . . . , lq “ 1

n pijk for all i, j, k, l P rns. Then for px1, . . . , xdq P p1K
n qd we have

fqpx1, . . . , xdq “
1
n

fppx1, x2, x3q

n
ÿ

l“1
e
řd

j“4pxj ql .

For fixed x1, x2, x3, by Jensen’s inequality fq is minimized when xj “ 0n for j ě 4 and takes
value fppx1, x2, x3q, and thus fq has the same diameter bound as fp.

▶ Corollary 3.7 (Diameter bound for d ě 3). There is an absolute constant C ą 0 such
that the following holds. For all d ě 3, there is a family of arrays q P pRn

ě0qbd with Opn2q

nonzero entries, each of bit-complexity Opnq, that satisfies the following property. For all
0 ă ε ď expp´Cn2 log nq and x P Rdn, if

fqpxq ď capppq ` ε

then ∥x∥2 “ Ω
`

2n{3 logp1{εq
˘

.
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3.3 Proof of the properties of the construction
We now prove Lemma 3.3.

Proof of Lemma 3.3. It is first helpful to change basis on each copy of R3 so that the A

blocks are diagonalized. Let U P Matp3q be an orthogonal matrix such that

U :AU “

»

–

2 0 0
0 ´1 0
0 0 ´1

fi

fl .

This is possible because 2, ´1, ´1 are the eigenvalues of the symmetric matrix A. In particular,
the first column of U is p1, 1, 1q{

?
3, and the second two columns span the space of vectors

with sum zero. Then M 1 “ pU‘nq:MU‘n is of the form P ‘ L ‘ L where Pe,v “ M 1
pe,1q,pv,1q

for e, v P E ˆ V and Le,v “ M 1
pe,2q,pv,2q

. Note that L is the edge-vertex incidence matrix of
the directed graph Dl, the row corresponding to the edge pu, vq of Dl has a ´1 in the column
indexed by the vertex u and a `1 in the column indexed by v. Moreover, P is the matrix
obtained from L by replacing every ´1 entry by a 2.

To prove Item 2, observe that ker M is pU‘nq ker M 1 “ pU‘nq ker P ‘ ker L ‘ ker L.
Because Dl is connected, ker L “ span1n. As the second two columns of U span the
subspace of R3 of vectors with sum 0, the two-dimensional space S is given by pU‘nq0 ‘

span1n ‘ span1n “ pU‘nq0 ‘ ker L ‘ ker L. We next reason for ker P , the other summand
of the orthogonal decomposition of ker M 1. The graph Dl is a connected tree, so ker P is
one dimensional. This is because every choice of gpw0q P R determines a unique function
g : V Ñ R in ker P . We claim that the function gpvq “ fpv, 1q for f as in Equation (29) is in
ker P , and hence spans it. To check this, one must check that for every edge pv, wq P E we
have 2gpvq ` gpwq “ 0. It is instructive to look at Figure 2. Observe that this property holds
for the edges uk,k´1 if the sequence gpukq obeys the recurrence relation gpuk´1q “ ´2gpukq

for k P rls, which is indeed true by the definition of f . Checking the condition for v and w is
similar. As the first column of U is proportional to 13, pU‘nq ker P ‘ 0 ‘ 0 is spanned by
the function f . This proves Item 2.

To show Item 3, it is enough to argue that the singular values of P, L, L obey the desired
bound. For L this follows straightforwardly from the fact that L is an incidence matrix of a
connected, directed tree and so is totally unimodular with linearly independent rows. The
singular value bound follows by Lemma 3.8. Rather than arguing spectrally for P , we make
an ad-hoc argument using the structure of Dl. We first show that }xtP }8 “ Ωp}x}8q for all
x P Rn´1, which suffices because }xtP }2 ě }xtP }8 and }x}8 ě 1?

n
}x}2.

Let x P Rn´1zt0u and e be an edge in Dl such that |xpeq| “ }x}8. If e “ uiui´1 for
i P rls, then |xtP puiq| ě }x}8 because either i ă l in which case

|xtP puiq| “ |2xpuiui´1q ` xpui`1uiq| ě 2}x}8 ´ |xpui`1uiq| ě }x}8

or i “ l and so |xtP puiq| “ |2xpeq| “ 2}x}8. The same argument applies to all other edges
except e “ wl´2wl´3. In the latter case we are done if xtP pwl´2q ě 1{3}x}8. Otherwise
we necessarily have |xpwl´1wl´2q| ` |xpw̄l´1wl´2q| ě 5{3}x}8, since xtP pwl´2q “ 2xpeq `

xpwl´1wl´2q ` xpw̄l´1wl´2q. It follows that |xpwl´1wl´2q| ě 5{3}x}8 ´ |xpw̄l´1wl´2q| ě

5{3}x}8 ´ }x}8 ě 2{3}x}8. As |xtP pwl´1q| “ 2xpwl´1wl´2q ` xpwlwl´1q, we have

|xtP pwl´1q| ě 2|xpwl´1wl´2q| ´ |xpwlwl´1q| ě
4
3}x}8 ´ }x}8 ě

1
3}x}8.

In any case, there is some value of xtP with absolute value greater or equal 1{3}x}8.
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Finally, for Item 1 we note that the probability distribution q on the rows of M has
expectation equal to the all 1{n function if and only if the probability distribution q1

defined by q1
e “ 3qe,1 on the rows of P has expectation equal to the all 3{n function on

the vertices of Dl. Recall that P is obtained from the edge-vertex incidence matrix of Dl

by replacing every ´1 with a 2. Thus the expectation of the rows under q1 at a vertex v

is
ř

w:pw,vqPDl
q1

pw,vq
`
ř

w:pv,wqPDl
2q1

pv,wq
; see Figure 4. We now check that this is equal to

3{n for each vertex of Dl; it is helpful to look at Figure 2. The leaves ul, vl, wl, and wl

all have outdegree one and indegree zero, and q1 takes the value 3 ¨ 3{6n “ 3{2n on the
outgoing edges. The expectation under q1 thus takes value 3{n on these vertices. On vertices
of indegree one and outdegree one, q1 takes the value 1

2n

`

2 ` p´2q´k
˘

on the incoming
edge and 1

2n

`

2 ` p´2q´pk`1q
˘

on the outgoing edge. Thus the expectation takes the value
1

2n

`

2 ` p´2q´k
˘

` 1
2n

`

4 ´ p´2q´k
˘

“ 3{n. The remaining vertices to check, those of total
degree three, are r and wl´2. For r, which has only incoming edges, the expectation under q1

is 2 ¨ 1
2n

`

2 ` p´2q´pl´1q
˘

` 1
2n

`

2 ` p´2q´pl´2q
˘

, which is again 3{n. For w the expectation
is 2 ¨ 1

2n

`

2 ´ 1
2
˘

` 2 ¨ 1
2n

`

2 ´ 1
2
˘

“ 3{n. This completes the proof. ◀

▶ Lemma 3.8. If A is an n ˆ k totally unimodular matrix with linearly independent columns,
then the eigenvalues of AT A are all at least 1{n2.

Proof. First note that k ď n by the linear independence of the columns of A. The least
eigenvalue of AT A is minxPRkzt0upxT AT Axq{}x}2 “ minxPRkzt0u }Ax}2{}x}2, so it suffices to
show that for all x P Rk, Ax has norm at least }x}{n. Indeed, if Ax “ y, then there is some
invertible k ˆ k submatrix A1 of A and k ˆ 1 submatrix y1 of y such that A1x “ y1. By
Cramer’s rule and unimodularity of A1 we have that, for i P rks,

xi “
detpBiq

detpA1q
“ ˘ detpBiq

where Bi is simply the matrix that one obtains by replacing the ith column of A1 with the
vector y1. By performing the Laplace expansion with respect to the ith column, and by
unimodularity of the minors, we have that xi ď }y}1, and so }x}2 ď

?
k}y}1 ď n}Ax}2 (using

k ď n). ◀

4 The noncommutative case

In this section we extend the results from the commutative to the noncommutative case. For
this, we recall in the first subsection necessary concepts such as moment maps and moment
polytopes, and we define the weight margin and the gap of a representation. The second
subsection introduces the key concept of a free subset of weights, see [24]. This concept dates
at least back to [18, Proposition 1.2], where it is called strong orthogonality. Freeness will be
used to transfer results from the commutative to the noncommutative case.14 The latter is
done in the following three subsections, where we prove bounds on the tensor gap, on the gap
for homogeneous polynomials and on the diameter for the natural SLpnq3 action on 3-tensors.
Finally, we show a bound for the weight margin of certain quiver representations. This
provides an example, where the constructed set of weights is not free, compare Remark 4.28.
Still, after adding enough arrows to the considered quiver, we are able to ensure the same
bound for the gap.

14 Actually all presented concepts in the first two subsections work in the very general setting of reductive
groups and their rational representations. For the sake of clarity and concreteness we stick to the special
case needed in this paper, i.e. the reductive group SLpnq

d :“ SLpnq ˆ ¨ ¨ ¨ ˆ SLpnq with d ě 1 many
copies of SLpnq.
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4.1 Moment maps and moment polytopes
In the following we introduce the null-cone problem and its dual characterization via moment
maps and moment polytopes. This allows us to rigorously introduce the weight margin and
the gap of a rational representation. Thereby we establish precise meaning and interpretation
of our results regarding these two notions (in view of the null-cone problem). We stick to the
notation of [12], where the gap (implicitly) and the weight margin have been introduced. A
reader unfamiliar with representation theory is referred to Appendix B.

Let G “ SLpnqd, K “ SUpnqd, T “ STpnqd and TK “ K X T be matrix Lie subgroups of
GLpdnq via block-diagonal embedding. Then we can think of their Lie algebras LiepGq etc. as
being block diagonally embedded into Cdnˆdn. For a rational representation π : G Ñ GLpV q

we write g ¨ v :“ πpgqv for the induced action, where g P G and v P V . Moreover, we denote
the set of weights of π by Ωpπq Ď i LiepTKq and the induced representation on Lie algebras
by Π: LiepGq Ñ EndpV q. We remark that we usually identify i LiepTKq – p1K

n qd Ď pRnqd,
where 1K

n denotes the orthogonal complement of the all-ones vector 1n in Rn.
The orbit of v P V is G ¨ v :“ tg ¨ v | g P Gu and we denote its closure15 by G ¨ v. A vector

v is called G-unstable, if 0 P G ¨ v, and otherwise v is G-semistable. Equivalently, a vector
v P V is G-unstable if and only if its capacity

capGpvq :“ inf
gPG

}g ¨ v}2

equals zero. The G-unstable vectors form an affine subvariety of V - the null-cone (with
respect to G). Orbit, stability, and capacity can also be defined for T by replacing G by T
in the definitions.

As discussed in Section 1.2, the null-cone problem has many applications in different
fields of computer science, mathematics and physics.

Next, we introduce the moment map. Given a rational representation π : G Ñ GLpV q

there exists an Hermitian inner product x¨, ¨y on V , by convention linear in the second
argument, such that xk ¨ v, k ¨ wy “ xv, wy holds for all k P K and all v, w P V .16

▶ Definition 4.1. For v P V zt0u we define µGpvq P i LiepKq as the unique element of the
real vector space i LiepKq, which satisfies for all A P i LiepKq

tr
`

µGpvqA
˘

“
xv, ΠpAqvy

xv, vy
.

This defines the moment map µG : V zt0u Ñ i LiepTq of G. Replacing G by T and K by TK

we derive the moment map µT : V zt0u Ñ i LiepTKq of T.

The maps µG and µT are indeed moment maps in the sense of symplectic geometry;
namely for the induced action of K and, respectively, TK on the projective space PpV q.
Recall i LiepKq Ď Cdnˆdn so we can consider }µGpvq}F and }µTpvq}F .

An important application of these moment maps is due to the Kempf-Ness theorem [36],
which provides a duality for the null-cone membership problem:

capGpvq “ 0 ô 0 ă inf
gPG

}µGpg ¨ vq}F “ min
0‰wPG¨v

}µGpwq}F (31)

and similarly for T, replacing G by T in the above equation. The two moment maps are
related as follows.

15 The Euclidean- and the Zariski-closure of G ¨ v coincide.
16 In our concrete representations later on this will be the standard inner product.
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▶ Proposition 4.2. Let p : i LiepKq Ñ i LiepTKq be the orthogonal projection. Then µT “

p ˝ µG and ∥µTpvq∥F ď ∥µGpvq∥F for all v P V zt0u.

Proof. Since i LiepTKq Ď i LiepKq the definition of the moment maps gives trrµTpvqHs “

trrµGpvqHs for all H P i LiepTKq. But µTpvq P i LiepTKq is the unique element with this
property, hence ppµGpvqq “ µTpvq. The inequality ∥µTpvq∥F ď ∥µGpvq∥F follows directly
from the first part. ◀

Now, we explain how the moment maps induce certain polytopes, which can also be
used to express the duality in (31). Moreover, the combinatorics of these polytopes captures
the important complexity measures (weight) margin and gap. Indeed, one of our main
contributions is to analyze parts of this combinatorics, thereby deducing complexity barriers
for certain computational problems.

Since the action of T via π is completely determined by the weight space decomposition
V “

À

ωPΩpπq Vω of V , one can compute µTpvq in terms of this decomposition. For this,
write v “

ř

ω vω with vω P Vω and define the support of v with respect to π as

supppvq :“ tω P Ωpπq | vω ‰ 0u.

Using that distinct weight spaces are orthogonal, one computes

µTpvq “
ÿ

ω

xvω, vωy

xv, vy
ω,

which is a convex combination of the weights in supppvq. Noting that supppvq “ supppt ¨ vq

for t P T also µTpt ¨ vq P ∆Tpvq :“ convtω | ω P supppvqu. In fact,

∆Tpvq “ tµTpt ¨ vq | t P Tu “
␣

µTpwq | w P T ¨v, w ‰ 0
(

Ď i LiepTKq

and ∆Tpvq is called the weight polytope of v.
It is an astonishing result that for fixed v P V zt0u, the set tµGpg ¨ vq : g P Gu gives rise to

a polytope as follows. Let spec : Hermpnq Ñ Rn be the function sending a Hermitian matrix
to its eigenvalues in decreasing order. Recalling that i LiepKq Ď Hermpnqd is block-diagonally
embedded in Cdnˆdn, we set

s : i LiepKq Ñ pRnq
d

, diagpA1, . . . , Adq ÞÑ
`

specpA1q, . . . , specpAdq
˘

.

Then for v P V zt0u the set

∆Gpvq :“
␣

s
`

µGpwq
˘

| w P G ¨ v, w ‰ 0
(

is a rational convex polytope, see e.g. [28] or [45, Appendix] by Mumford. We call ∆Gpvq

the moment polytope of v. Noting that }A}F “ } specpAq}2 for any A P Hermpnq we have
}µGpvq}F “ }spµGpvqq}2 for all v P V zt0u. Thus, we can formulate the duality from (31) also
as follows:

capGpvq “ 0 ô dist
`

0, ∆Gpvq
˘

ą 0 ô 0 R ∆Gpvq,

and similarly for T. This motivates the following two definitions.
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▶ Definition 4.3. Let π : G Ñ GLpV q be a rational representation. We define the gap of π

as17

γGpπq :“ min
␣

∥µGpvq∥F | v ‰ 0 is G-unstable
(

“ min
␣

dist
`

0, ∆Gpvq
˘

| v ‰ 0 is G-unstable
(

,

and the weight margin of π as

γTpπq :“ min
␣

∥µTpvq∥F | v ‰ 0 is T -unstable
(

“ min
␣

dist
`

0, ∆Tpvq
˘

| v ‰ 0 is T -unstable
(

.

Equivalently, γTpπq is the margin of the set of weights Ωpπq, i.e. γTpπq “ γpΩpπqq.

Thus, the gap γGpπq is the largest constant C ą 0 with the following property: If
}µGpvq}F ă C for some vector v P V , then v is G-semistable. The same statement holds
for the weight margin γTpπq replacing G by T. Therefore, these notions capture how small
µGpg ¨ vq (respectively µTpt ¨ vq) must be to certify null-cone non-membership. The next
remark connects the gap to the classical notion of instability due to Mumford [44].

▶ Remark 4.4. The gap is twice the minimum value of all positive instabilities. In-
deed, let Mpvq denote the instability of a non-zero vector v, see e.g. [45, eq. (9)]. Then
distp0, ∆Gpvqq ě 2Mpvq and [45, Theorem 6.1] implies

γGpπq “ inft2Mpvq : v ‰ 0, v is G-unstableu.

▶ Example 4.5. Recall the tensor scaling action, in which the group G “ SLpnqd acts on
pCnqbd via the representation

πn,d : SLpnqd Ñ GL
`

pCnqbd
˘

, pg1, . . . , gdq ÞÑ g1 b ¨ ¨ ¨ b gd .

Similar computations to those in Example B.2 show that the set of weights of πn,d is

Ωpπn,dq “ Ωn,d “
␣

εi | i P rns
(d

Ď pRnqd.

Therefore, the weight margin γTpπn,dq is the margin γpΩn,dq for the array scaling problem
from Theorem 1.3 and Theorem 2.1. Moreover, the moment map µG for πn,d can be computed
in terms of the quantum marginals as described in the introduction, i.e. γGpπn,dq is indeed
the tensor gap.

The weight margin and the gap satisfy the following inequality.

▶ Proposition 4.6. It holds that γTpπq ď γGpπq.

Proof. Let v ‰ 0 be G-unstable. Then there exists k P K such that k ¨ v is T-unstable; see
[51, Theorem 3.25]. By Proposition 4.2 we obtain

∥µGpvq∥F “ ∥µGpk ¨ vq∥F ě ∥µTpk ¨ vq∥F ě γTpπq

where we used in the first equality that µGpk ¨ vq “ kµGpvqk:. Therefore γGpπq ě γTpπq. ◀

This inequality motivates the next subsection.

17 Gap and weight margin are well-defined, i.e. the minimum is attained. Indeed, the moment maps give
rise to continuous maps on PpV q and the non-zero G-unstable (respectively non-zero T-unstable) vectors
form a projective subvariety of PpV q; in particular they form a compact set.
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4.2 Free sets of weights
Proposition 4.6 from the preceding subsection shows us that an upper bound for the weight
margin γTpπq need not necessarily apply to the gap γGpπq. Still, many of our bounds in the
commutative case (weight margin and diameter) transfer to the noncommutative case (gap
and diameter). We use crucially the notion of a free subset of weights (or [24]). Freeness is
also known as strong orthogonality [18].

▶ Definition 4.7. Let π : G Ñ GLpV q be a rational representation with set of weights Ωpπq.
A subset Γ Ď Ωpπq is called free if no two distinct elements of Γ differ by a root of G. In

other words, Γ X pΓ ` αq “ H holds for all roots α of G.
Furthermore, a vector v P V zt0u is called free if its support supppvq Ď Ωpπq is free.

We transfer the results from the commutative to the noncommutative case with the
upcoming Proposition 4.8. It is known that for vectors v with free support one has µGpvq “

µTpvq. This appears implicitly in [49, Lemma 7.1] and [24, Proposition 2.2], but we prove it
below for completeness. We thank Visu Makam for pointing out to us that this equality still
holds under a weaker condition on v, when the representation decomposes into orthogonal
subrepresentations. This can be used to turn our weight margin upper bound for quivers into
a gap upper bound (Theorem 4.25). This weaker condition also appears in [21, Theorem 6.5].

▶ Proposition 4.8. Let π : G Ñ GLpV q be a rational representation and suppose V “
Àk

i“1 Vi

is an orthogonal decomposition into G-subrepresentations with respect to the K-invariant
inner product, that is used to define µT and µG. Let v “ pv1, . . . , vkq P V zt0u, vi P Vi be
such that all supports Γi :“ supppviq Ď Ωpπq are free. Then for all t P T it holds that
µGpt ¨ vq P i LiepTKq and µGpt ¨ vq “ µTpt ¨ vq.

If additionally 0 R ∆Tpvq “ convpΓq, where Γ “
Ť

i Γi, then the upper bound
distp0, convpΓqq for the weight margin γTpπq also applies to the gap, i.e. γGpπq ď

distp0, convpΓqq.

Proof. The action of T preserves the supports Γi, and in particular preserves their freeness.
Hence, it suffices to show µGpvq P i LiepTKq, which immediately yields µGpvq “ µTpvq by
Proposition 4.2. Moreover, the orthogonality with respect to the K-invariant inner product
shows µGpvq “ H1 ‘ ¨ ¨ ¨ ‘ Hk, where Hi “ µ

piq

G pviq is given by the moment map µ
piq

G of the
G-module Vi if vi ‰ 0 and otherwise Hi “ 0. The latter holds similarly for µT.

Therefore, we may assume k “ 1, i.e. v ‰ 0 has free support Γ. We write v “
ř

ωPΓ vω for
vω P Vω. Then, for any root α of G and all A P i LiepKq X LiepGqα we have ΠpAqvω “ 0 by
Γ X pΓ ` αq “ H (i.e., freeness) and Proposition B.4. Thus, ΠpAqv “ 0 and tr

`

µGpvqA
˘

“ 0
for all roots α and all A P i LiepKq X LiepGqα. With the root space decomposition LiepGq “

LiepTq ‘
À

α LiepGqα (see also Example B.3) we conclude µGpvq P i LiepTKq. The first
statement is proven.

For the second claim we note that indeed
Ť

i Γi “ supppvq. If additionally 0 R convpΓq “

∆Tpvq, then v is T-unstable. In particular, v is G-unstable and thus

γGpπq ď dist
`

0, ∆Gpvq
˘

.

On the other hand, we have

dist
`

0, ∆Gpvq
˘

“ inf
gPG

}µGpg ¨ vq}F ď inf
tPT

}µGpt ¨ vq}F
p˚q
“ dist

`

0, convpΓq
˘

,

where we used µGpt ¨vq “ µTpt ¨vq in p˚q. We conclude by combining the two inequalities. ◀
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▶ Remark 4.9. It is well-known that any rational representation π : G Ñ GLpV q can be
decomposed into G-irreducible subrepresentations that are pairwise orthogonal with respect
to the fixed K-invariant inner product. Proposition 4.8 shows that ensuring freeness on the
irreducible subrepresentations suffices.

We end the section with an interesting connection between the weight margin and the
gap.

▶ Proposition 4.10. Let π : G Ñ GLpV q be a rational representation and denote its m-fold
direct sum by πm.
1. The weight margin satisfies γTpπq “ γTpπmq for all m ě 1.
2. The gap satisfies γGpπmq ě γGpπm`1q for all m ě 1.
3. There exists some m ď dimpV q such that γGpπmq “ γTpπmq “ γTpπq.

Proof. We note that πm is given by the action g ¨ pv1, . . . , vmq “ pg ¨ v1, . . . , g ¨ vmq on
V m. Furthermore, the K-invariant inner product x¨, ¨y of V induces naturally a K-invariant
product on V m by

xpv1, . . . , vmq, pw1, . . . , wmqyV m :“
m
ÿ

i“1
xvi, wiy.

For the first claim just note that the weight space decomposition for πm is V m “
À

ωPΩpπq V m
ω and hence Ωpπmq “ Ωpπq.

For the second claim, let pv1, . . . , vmq P V mzt0u be G-unstable such that
}µGpv1, . . . , vmq}F “ γGpπmq. Then pv1, . . . , vm, 0q P V m`1zt0u is G-unstable as well, so
}µGpv1, . . . , vm, 0q}F ě γGpπm`1q. Moreover, under the inner product x¨, ¨yV m`1 the first m

copies of V are orthogonal to the last copy. Thus, µGpv1, . . . , vm, 0q is the 2ˆ2 block-diagonal
matrix diagpµGpv1, . . . , vmq, 0q and hence }µGpv1, . . . , vm, 0q}F “ }µGpv1, . . . , vmq}F “

γGpπmq.
Finally, let Γ “ tω1, . . . , ωmu Ď Ωpπq be such that 0 R convpΓq and distp0, convpΓqq “

γTpπq. We have m ď |Ωpπq| ď dimpV q by the weight space decomposition V “
À

ωPΩpπq Vω.
Now, for each ωi P Γ fix some weight vector vi P Vωi

zt0u. Then v :“ pv1, . . . , vmq P V m

satisfies the assumptions of Proposition 4.8, because Γi “ tωiu is free and the distinct copies
of V are orthogonal under x¨, ¨yV m . Thus, we obtain

γGpπmq ď dist
`

0, convpΓq
˘

“ γTpπq “ γTpπmq,

but on the other hand γGpπmq ě γTpπmq by Proposition 4.6. ◀

4.3 Freeness for tensors
We recall from Example 4.5 that πn,d denotes the natural representation of G “ SLpnqd

on pCnqbd and that the weight margin γTpπn,dq is the margin γpΩn,dq for the array scaling
problem from Theorem 1.3 and Theorem 2.1. The purpose of this subsection is to prove the
bounds for γTpπn,dq from Theorem 2.1 also for the gap γGpπn,dq.

▶ Theorem 4.11. Let πn,d be the representation induced by the natural action of G :“ SLpnqd

on pCnqbd. Then the weight margin γTpπn,dq and the gap γGpπn,dq can be bounded as follows:
(a) If n “ 2 and d ě 3, then γTpπ2,dq ď γGpπ2,dq ď 2´ d

2 `1.

(b) If n ě 3 and d “ 3, then γTpπn,3q ď γGpπn,3q ď 2´n`1.
(c) If n ě 3 and d “ 6r ´ 3 for some integer r ě 2, then

γTpπn,dq ď γGpπn,dq ď

?
6

pn ´ 1q
?

r
2´rpn´1q`1 ď 2´rpn´1q`1 “ 2´

pd`3qpn´1q

6 `1.
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Though the above theorem only applies to certain d, we can “pad” the tensors to obtain
similar results for all d ě 3. This is because bounds for γGpπn,dq via free subsets of weights
also hold for γGpπn,d`2q and γGpπn,d`3q, see Proposition C.1. The missing case n ě 3 and
d “ 4 is treated in Proposition C.2. Therefore, we can conclude Theorem 1.6 from the above
Theorem 4.11.

Our main method for transfering the bounds from the commutative case (Theorem 2.1) to
the noncommutative case is to use the concept of freeness in conjunction with Proposition 4.8.
The following definition will be convenient for proving freeness of tensors.

▶ Definition 4.12 (Free sets). A set M Ď rnsd is called free, if i “ pi1, . . . , idq, j “

pj1, . . . , jdq P M with i ‰ j always implies |til ‰ jl | l “ 1, . . . , du| ě 2.

▶ Proposition 4.13. Let M Ď rnsd and denote the induced subset of weights by

ΓM :“ tpεi1 , . . . , εid
q | pi1, . . . , idq P Mu Ď pRnqd.

Then M is a free set if and only if the set of weights ΓM Ď Ωpπn,dq is free as in Definition 4.7.

Proof. We recall that ΓM is free if and only if no two distinct elements of ΓM differ by a
root of G “ SLpnqd, see Definition 4.7. Furthermore, remember that the roots of G are

pei ´ ej , 0n, . . . , 0nq, p0n, ei ´ ej , 0n, . . . , 0nq, . . . . . . , p0n, . . . , 0n, ei ´ ejq P pRnq
d

for i, j P rns with i ‰ j; see also Example B.3. Now, if M Ď rnsd is not free, then there exist
i “ pi1, . . . , idq, j “ pj1, . . . , jdq P M with i ‰ j such that they exactly differ one component.
Without loss of generality we assume i1 ‰ j1 and il “ jl for l “ 2, . . . , n. But then

pεi1 , . . . , εid
q “ pεj1 , . . . , εjd

q ` pei1 ´ ej1 , 0n, . . . , 0nq,

and hence ΓM is not free. Clearly, the argument can be inverted to show that if ΓM is not
free, then M is not free. ◀

The above proposition shows how the equality µGpt ¨ vq “ µTpt ¨ vq of Proposition 4.8 can
be verified directly for tensors. For tensors, the moment map components are the quantum
marginals, and the equality µGpt ¨ vq “ µTpt ¨ vq simply says that the quantum marginals
are diagonal. Each off-diagonal entry of a quantum marginal is the inner product between
distinct d ´ 1-dimensional slices of a tensor, and if the support of the tensor is free then the
supports of such slices are entirely disjoint - thus the quantum marginals are diagonal.

In the following two Propositions we show, that the subsets of weights, which witness
the upper bounds for the (weight) margin in Theorem 2.1, are all free. Thereby, we will
implicitly use Proposition 4.13.

▶ Proposition 4.14. For r ě 2 the rows of A2r form a free subset of r2s2r, i.e. Γ2,2r is free.
Moreover, for r ě 1 the set of weights Γ2,2r`1 is free.

Proof. Clearly, Γ2,3 “ tε1,1,1, ε2,1,2u is free. Recall the constructions of Γ2,2r and Γ2,2r`1
from Section 2.1. If Γ2,2r is free, then Γ2,2r`1 is clearly also free. Thus, we are left to prove
the former.

Consider A2r as defined in Equation (6). We must show that distinct rows of A2r differ
in at least two entries for all r ě 2. The claim is proven by induction on r ě 3. For r “ 3,
we verify the claim by inspection of A6. Let ai be the ith row of A6; its definition is recalled
in the left-hand table below. The right-hand table lists for each pair ai, aj with i ă j two
distinct entries in which ai and aj differ, which shows the claim for r “ 3.
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entry 1 2 3 4 5 6
a1 1 1 1 1 1 1
a2 2 1 2 2 2 2
a3 1 2 2 1 1 1
a4 2 2 1 1 2 2
a5 1 2 1 2 2 1
a6 2 2 2 2 1 1

a2 a3 a4 a5 a6

a1 1,3 2,3 1, 2 2,4 1,2
a2 1,2 2,3 1,2 5,6
a3 1,3 3,4 1, 4
a4 1,4 3,4
a5 1,3

In fact, the table also proves the claim for r “ 2, since a1, . . . , a4 already pairwise differ in at
least two of the first four entries.

Now assume that the claim holds for some fixed r ě 3. Let ai, aj be distinct rows of
A2r`2; we will show they differ in at least two entries. If 1 ď i ă j ď 2r, then by our
inductive hypothesis there is nothing to prove because the first 2r rows of A2r`2 contain A2r

as a submatrix.
To complete the proof, it is enough to show that the 4 ˆ p2r ` 2q submatrix formed

by restricting to the mth block row, m P rrs, and the last block row of A2r`2 satisfies the
hypothesis, i.e. any two distinct rows of this submatrix differ in at least two entries. This is
the case as restricting to its 1st, mth and last block columns yields a 4 ˆ 6 submatrix of A6
if m ‰ 1, namely

ˆ

B2 B3 B1
B2 B2 B3

˙

,

and a 4 ˆ 4 submatrix equal to A4 if m “ 1. ◀

▶ Proposition 4.15. For n ě 3 the set Wn Ď rns3 is free, i.e. Γn,3 Ď Ωpπn,3q is free.
Furthermore, for n ě 3 and r ě 2 the set of weights Γn,6r´3 Ď Ωpπn,6r´3q is free.

Proof. We remind the reader that

Wn “
␣

ps, 1, sq, ps, s, 1q, ps ´ 1, s, sq | s “ 2, 3, . . . , n
(

.

Let x “ px1, x2, x3q, y “ py1, y2, y3q P Wn be such that x ‰ y. We prove by a distinction of
cases that x and y differ in at least two entries. First, we assume x1 “ y1. Then a :“ x1 “ y1 ě

2, otherwise x “ p1, 2, 2q “ y contradicts x ‰ y. Thus x, y P tpa, 1, aq, pa, a, 1q, pa, a`1, a`1qu

and we conclude that x and y differ in at least two entries as x ‰ y. Second, we assume
x1 ‰ y1. There is nothing to show if x2 ‰ y2, so we additionally assume b :“ x2 “ y2. If
b “ 1, then we are done by x “ px1, 1, x1q and y “ py1, 1, y1q. On the other hand, b ě 2
yields x, y P tpb, b, 1q, pb ´ 1, b, bqu and as x ‰ y they differ in the first and third entry. This
proves the first statement.

For the second claim, recall that

Γn,6r´3 “ tεσpiq,σpjq,σpkq | pi, j, kq P WrnzJru,

where σ : rrns Ñ rns2r´1 is injective, compare Remark 2.10. By the first part Wrn is free
and so is its subset WrnzJr. Hence Γn,6r´3 is free as σ is injective. ◀

We are now ready to deduce Theorem 4.11.

Proof of Theorem 4.11. Recall that all the bounds in Theorem 4.11 hold for the weight
margin γTpπq by Theorem 2.1. This was proven by exhibiting witness sets Γn,d Ď Ωpπn,dq

such that 0 R convpΓn,dq, which gives the bound γTpπn,dq ď distp0, convpΓn,dqq. But if Γn,d

is free, then we even have

γGpπn,dq ď dist
`

0, convpΓn,dq
˘
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by Proposition 4.8. By Proposition 4.14 the witness sets Γ2,3 and Γ2,2r, Γ2,2r`1, r ě 2 for
Theorem 2.1(a) are free, which proves Theorem 4.11(a). Similarly, we conclude parts (b) and
(c) with Proposition 4.15, which shows that for n ě 3 and r ě 2 the witness sets Γn,3 and
Γn,6r´3 are free. ◀

4.4 Freeness for homogeneous polynomials
In the following we transfer the result from d-tensors to the natural SLpnq action on homoge-
neous d-forms in n variables. This representation is given by

ϱn,d : SLpnq Ñ GL
`

Crx1, . . . , xnsd

˘

, g ÞÑ
`

ppxq ÞÑ ppg´1xq
˘

.

Each monomial xα “ xα1
1 ¨ ¨ ¨ xαn

n , given by a multi-index α “ pα1, . . . , αnq P pZě0qn with
|α| :“

ř

i αi “ d, is a weight vector for ϱn,d with weight ´α ` d
n1n. Therefore

Ωpϱn,dq “

"

´α `
d

n
1n

ˇ

ˇ

ˇ

ˇ

α P pZě0qn with |α| “ d

*

,

i.e. Ωpϱn,dq “ Ω1 from Equation (27) and the bounds from Corollary 2.13 apply to
γSTpnqpϱn,dq “ γpΩ1q. If n “ dm for some integer m ě 1, then we have ´Ωpπm,dq Ď Ωpϱn,dq.

▶ Proposition 4.16. Let n “ dm for some integer m ě 1. If Γ Ď Ωpπm,dq is free, then
´Γ Ď Ωpϱn,dq is free.

Proof. We prove the statement by contraposition. Assume that ´Γ Ď Ωpϱn,dq is not free.
Then there exists a root α “ ei ´ ej P Rn of SLpnq, where i, j P rns with i ‰ j, and two
distinct weights ω, ω1 P ´Γ such that ω “ ω1 ` ei ´ ej , equivalently ´ω “ ´ω1 ´ ei ` ej . The
latter equation enforces ´α to be of the form

p0m, . . . , 0m, ek ´ el, 0m, . . . , 0mq P pRmq
d

– Rn for some k, l P rms with k ‰ l,

because ´ω, ´ω1 P Ωpπm,dq. Thus, ´α is a root of SLpmqd and hence Γ Ď Ωpπm,dq is not
free. ◀

As a consequence of the preceding Proposition we obtain bounds for the gap γSLpnqpϱn,dq.

▶ Theorem 4.17 (Gap for Polynomial scaling). Let d ě 3 and let n “ dm for some integer
m ě 2. Then there exists a constant C ą 0, independent of n and d such that

γSLpnqpϱn,dq ď 2´Cdm “ 2´Cn.

More concretely, for d “ 3 and m ě 3 it holds that

γSLpnqpϱn,dq ď dist
`

0, Γm,3
˘

ď 2´m`1 “ 2´ n
3 `1,

and if m ě 3 and d “ 6r ´ 3 for some r ě 2, we have

γSLpnqpϱn,dq ď dist
`

0, Γm,6r´3
˘

ď 2´rpm´1q`1 “ 2´
pd`3qpm´1q

6 `1 « 2´ n
6 .

Proof. We recall that Theorem 1.6 was proven by padding the results from Theorem 4.11.
Thus, for each m ě 2 and d ě 3 the bound γSLpmqd pπm,dq ď 2´Cmd from Theorem 1.6 is
witnessed by a free set of weights Γm,d Ď Ωpπm,dq, i.e. 0 ă distp0, convpΓm,dqq ď 2´Cdm.
But then 0 R convp´Γm,dq and ´Γm,d Ď Ωpϱn,dq is free by Proposition 4.16. Therefore,
Proposition 4.8 yields

γSLpnqpϱn,dq ď dist
`

0, convp´Γm,dq
˘

“ dist
`

0, convpΓm,dq
˘

ď 2´Cdm.

Similarly, we get the other bounds by using freeness of Γm,3 and, respectively, Γm,6r´3
(see Proposition 4.15) combined with the distance bounds Lemma 2.7 and Lemma 2.12,
respectively. ◀
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4.5 Freeness and diameter bound
In this section we show that the diameter lower bound of Theorem 1.1 generalizes to diameter
bounds for the capacity Equation (4) over the noncommutative group G “ SLpnqd. Many
algorithms for computing the capacity have resorted to geodesically convex optimization -
G can be viewed as a manifold on which g ÞÑ }g ¨ v}2 is geodesically convex. The distance
between an element of g and the identity in this geometry is closely related to the condition
number of the matrix g. The diameter bound question is the following: given an input v and
ε ą 0, how large a ball in G about the identity must we optimize over to find an approximate
minimizer g P G such that }g ¨ v}2 ´ cappvq ď ε? In other words, how well-conditioned can
we expect approximate minimizers to Equation (4) to be? This matters because all the
algorithms we know start at the origin and take small steps in the manifold, and if all the
high-precision solutions are far from the origin then such algorithms cannot reach any of
them quickly.

Before tackling this question we must make our notions of distance more precise. The
manifold we use is actually not G but rather the manifold P of Hermitian, positive-definite
matrices in G. Indeed, we can write

inf
gPG

}g ¨ v}2 “ inf
gPG

xv, g:g ¨ vy “ inf
xPP

xv, x ¨ vy.

Thus we may instead optimize the function fv : g ÞÑ xv, g ¨ vy over P . The manifold P is a
prototypical example of a Hadamard manifold, a complete, simply connected Riemannian
manifold of non-positive sectional curvature [8]. For us, G “ SLpnqd for some d, and so P

is just the set of d-tuples of positive-definite matrices of determinant 1. Even for d “ 1,
P contains a totally geodesic submanifold isometric to the hyperbolic plane; as such the
volumes of balls grow exponentially in their radius.18 The function fv : g ÞÑ }g ¨ v}2 is convex
along geodesics in this manifold [12]19. The geodesics through a point X P P are given by
γptq “

?
XeHt

?
X for Hermitian H. The Riemannian gradient ∇ log fvpgq of log fv at g P P

is given by the moment map µGpg ¨ vq. The geodesic ball of radius R in P about the identity
is given by

BR :“ teA : A traceless, Hermitian, }A}F ď Ru Ď P.

In a slight abuse of notation, we define the geodesic ball in G (rather than P ) to be KBR,
as in the introduction. The values taken by fv over B2R are the same as the values taken by
g ÞÑ }g ¨ v}2 on KBR. We now define diameter bounds.

▶ Definition 4.18. The diameter bound Df pεq for a function f on P and a real number
ε ą 0 is defined as the infimum over R ą 0 such that

inf
gPBR

fpgq ď ε ` inf
gPP

fpgq.

We will show that the diameter bound for the norm-squared function can grow faster than
polypn, logp1{εqq for d “ 3. Firstly, we need to review how diameter bounds for tensors in
pRn

ě0qd like that in Theorem 1.1 relate to diameter bounds for tensors in pCbnqd over SLpnqd

18 The volume of a ball can be computed exactly [27], but the very crude bound of volume ΩpeΘprq´Opn log nq
q

for the geodesic ball of radius r can be proved elementarily. The manifold PDpnq X SLpnq contains the
hyperbolic plane as a totally geodesic submanifold, in which the ball of radius r has area eΘprq [15].
This shows the ball of radius r in PDpnq X SLpnq contains ΩpeΘprq

q balls of radius 1, which themselves
have volume at least e´Opn log nq by comparison with the Euclidean ball.

19 This was implicitly shown much earlier in [36].
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and STpnqd. Infimizing fvpgq over the subset P X STpnqd Ď P , or the tuples of positive-
definite diagonal matrices within SLpnqd, results in a program of the form Equation (2). For
d “ 3, for example,

inf
gPP XSTpnq3

xv, g ¨ vy “ capppq “ inf
xPpRnq3

ÿ

ωPΩn,3

pωeω¨x “ inf
xPp1K

n q3

ÿ

ωPΩn,3

pωeω¨x (32)

where Ωn,3 “ tpεi, εj , εkq : i, j, k P rnsu and ppεi,εj ,εkq “ |vijk|2. The correspondence is
exactly g “ ediagpxq for x P p1K

n q3, which implies the following.

▶ Lemma 4.19. For all ε ą 0, the diameter bound Df pεq for the function fv : g ÞÑ xv, g ¨ vy

on STpnq3 is equal to the diameter bound Dhpεq of the function fp where pijk “ |vijk|2, or

fp : pRnq3 Ñ R, x ÞÑ
ÿ

i,j,kPrns

|vijk|2epεi,εj ,εkq¨x.

Of course, there’s nothing special about d “ 3 here, and the lemma generalizes straight-
forwardly to other d. For instance, applying Lemma 4.19 for d “ 2 shows that restricting
operator scaling to diagonal matrices yields an instance of matrix scaling. We have shown
how diameter bounds over STpnqd relate to those over pRnqd. Now we complete the chain
by showing how to relate diameter bounds over SLpnqd to those over STpnqd. We will show
that tensors with free support (defined in Definition 4.12) have the same diameter bound
over SLpnqd as they do over STpnqd, which by Theorem 1.1 and Lemma 4.19 we have shown
can be superpolynomial. We then show that the construction from Section 3.2 is free.

▶ Theorem 4.20. Let G denote SLpnqd, and let T denote STpnqd. Suppose µTpt¨vq “ µGpt¨vq

for all t P T (which holds if v has free support). Then for any R ą 0 we have

inf
gPBR

fvpgq “ inf
gPT XBR

fvpgq,

where BR denotes the geodesic ball of radius R about the identity in G.

Proof. Define B :“ BR and recall that P denotes the positive-definite matrices in G. Let
f : P Ñ R be given by f : g Ñ xv, g ¨vy. Clearly infgPB fpgq ď infgPT XB fpgq. We must show
the converse inequality. Let g˚ :“ arg mingPB fpgq. Recall that P is a Hadamard manifold.
Define T` to be T XP . Let πg˚ denote the projection of g˚ to T`, that is, the closest point
in T` to g˚. As T` is a geodesically convex set, projections to T` are unique and distances
decrease under the projection [8, Theorem 2.1.12]. Thus, πg˚ P B. If we can show that
fpπg˚q ď fpg˚q then the proof is complete.

Let g˚ “ expπg˚ pxq for some x in the tangent space Tπg˚P to P at πg˚. That is,
γ : r0, 1s Ñ P, t ÞÑ expπg˚ ptxq is the geodesic between πg˚ and g˚. Then, in the local inner
product x¨, ¨yπg˚ at πg˚, x is orthogonal to the tangent space Tπg˚ T` Ď Tπg˚P of T` at
πg˚, because πg˚ is a local minimum of the geodesically convex function dpg˚, ¨q2 on T` and
x is proportional to the gradient of dpg˚, ¨q2 at πg˚.

The function f is geodesically convex, and its gradient ∇fpπg˚q is proportional to the
moment map µGpπg˚ ¨vq. By the assumption that µTpt¨vq “ µGpt¨vq for all t P T, µGpπg˚ ¨vq

is in i LiepTKq, which is precisely the tangent space of T` at πg˚. Thus

fpg˚q “ fpexpπg˚ pxqq ě fpπg˚q ` xx, ∇fpπg˚qyπg˚ “ fpπg˚q,

which completes the proof. ◀

▶ Lemma 4.21. The support of the tensor p from Theorem 1.1 is free.
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Proof. Recall that a tensor in pCnqb3 is free if and only if the supports of distinct rows of its
weight matrix intersect in at most one element. The construction in Proposition 3.5 preserves
freeness, so we can consider the case n “ 3pl ` 1q treated in the proof of Theorem 1.1. Recall
that, in this case, the support of p is Ω1

0 Y ω1 where Ω1
0 is the rows of a matrix M defined

from the directed graph Dl. Each row in the matrix M corresponds to some edge Dl. Let us
first verify that Ω1

0 is free. Assuming the rows correspond to the same edge, they can be
verified to have intersection in at most one element, because the nonzero entries of the three
rows corresponding to an edge are contained in a 3 ˆ 6 submatrix with the following form:

“

A I
‰

“

»

–

0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1

fi

fl

Here the cells containing 1 are colored for readability. Now consider the case that the
rows belong to two different edges. If the two edges share no vertices, then clearly the
corresponding edges do not intersect. Because the graph is a directed tree, edges may only
share a vertex which is the sink of at least one of the edges. If the vertex is a sink for both
edges, then the nonzero entries in the 6 rows belonging to either edge (after permutation)
take the form

„

0 A I

A 0 I

ȷ

“

»

—

—

—

—

—

—

—

–

0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 1
0 1 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

If the shared vertex is a sink for only one edge, then the rows are

„

0 A I

A I 0

ȷ

“

»

—

—

—

—

—

—

—

–

0 0 0 0 1 1 1 0 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 1
0 1 1 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

In all these cases it can be verified that supports of distinct rows intersect in at most one
element. Lastly, we need to make sure that the intersection of the support of ω1 with the
support of any element of Ω1

0 is at most one. Recall that ω1 is defined to have entry one in
each block corresponding to the leaves ul, vl, wl in Dl. However, there are no edges between
the leaves, so the support of no row can intersect that of ω1 in more than one element. ◀

We are now nearly ready to prove Theorem 1.4. We would simply use the array p from
the proof of Theorem 1.1, but setting |vijk|2 “ pijk would not be solvable over the rationals.
Therefore we must round ?

pijk, which requires some additional technical lemmas proven in
Appendix E.

▶ Lemma 4.22 (Rounding and diameter bounds). Let p, q : Ω Ñ Rě0 be positive functions on
a finite set Ω Ď Rm. Suppose there is a set B such that

inf
xPB

fppxq ě p1 ` εq cap p,

and let M “ maxt1{qω, 1{pω : ω P Ωu. Then

inf
xPB

fqpxq ě pp1 ` εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cap q.
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▶ Lemma 4.23 (Rounding and capacity). Let Ω Ď Rm be finite and let p, q : Ω Ñ Rě0 be
positive functions on Ω. Let M0 “ maxωPΩ 1{qω. Then

log cap q ě log cap p ´ M0}p ´ q}8.

Proof of Theorem 1.4. First recall that the values taken by g ÞÑ }g ¨ v}2 on the geodesic
ball KBR in G are the same as the values taken by fv : g ÞÑ xv, g ¨ vy on B2R in P . Thus it is
enough to show that f :“ fv has diameter bound Df pεq “ Ωp2n{3 logp1{εqq for ε ď e´Cn2 log n.

We will apply Lemma 4.22 with p as in the proof of Theorem 1.1 and qijk “ |vijk|2, with
vijk chosen so that v has the same support as p and pijk ´ δ ă |vijk|2 ď pijk for δ small.
Because v is free, by Theorem 4.20 the diameter bound for fv is the same as the diameter
bound for fv over STpnq3. By Lemma 4.19, this is the same as the diameter bound for fq.
It remains to show that Dfq pεq “ Ωp2n{3 logp1{εqq . We will do this by relating Dfq pεq to
Dfp

pεq; in particular we will show Dfq
pΩpεqq ě Dfp

pεq.

Let R “ Dfp
pεq. We have infxPpRnq3,}x}ďR fppxq ě capppq ` ε “ p1 ` 2εq capppq, recalling

that capppq “ 1{2. By Lemma 4.22,

inf
xPpRnq3,}x}ďR

fqpxq ě pp1 ` 2εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cappqq.

As cap q ď 1{2, if M}p ´ q}8 ď M}p ´ q}1 ď cε for c a small enough constant, then we
have pp1 ` 2εqp1 ´ M}p ´ q}8q ´ M}p ´ q}1q cap q “ cap q ` Ωpεq, so

inf
xPpRnq3,}x}ďR

fqpxq ě cap q ` Ωpεq.

Thus Dfq pΩpεqq ě Dfp pεq assuming M}p ´ q}1 ď cε. To ensure that this constraint is
satisfied, choose v of bit complexity Oplog n ` logp1{εqq such that }p ´ q}1 “ c

n ε. Because
pijk “ Ωp1{nq for i, j, k in the support of p by construction, we have qijk “ Ωp1{nq for i, j, k

in the support of q and hence M “ Opnq. Thus M}p ´ q}1 ď cε. Applying Lemma 4.23
together with our assumptions about the size of p ´ q and the fact that cappqq “ cappvq

implies the final claim that cappvq ě 1{4 and that 1 ě }v} ě 1{2. ◀

Finally, we remark that the same diameter bound holds for d ě 3 for tuples of tensors. We
note that if v P pCnqb3 has free support, then so does the tensor v b el b . . . b el Ă pCnqbd

for d ě 3. By Proposition 4.8, the tuple w P ppCnqbdqn given by

wl “
1
n

v b el b . . . b el for l P rns

has µT pt ¨ vq “ µGpt ¨ vq for all t P STpnqd. The commutative problem obtained by restricting
to SLpnqd as in Lemma 4.19 is precisely fq as in Corollary 3.7. As in the proof of Theorem 1.4,
by Theorem 4.20, Lemma 4.19 and Corollary 3.7, we have the following.

▶ Corollary 4.24. There is a constant C ą 0 such that the following holds for all d ě 3.
For all ε ď expp´Cn2 log nq, there is a tuple of tensors w “ wpεq P ppCnqbdqn with Opn2q

nonzero entries of bit complexity Oplog n ` logp1{εqq, and a geodesic ball B “ Bpεq of radius
Ω
`

2n{3 logp1{εq
˘

about the identity in SLpnqd, such that

inf
gPB

}g ¨ w}2 ě cappvq ` ε.

Moreover, it holds that 1{4 ď cappwq ď 1 and 1{2 ď }w} ď 1.
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4.6 A bound on weight margin and gap for quivers
For d ě 2 let Qd be the quiver

1 2 3 d ´ 2 d ´ 1 d if d even

1 2 3 d ´ 2 d ´ 1 d if d odd.

and let Q
pkq

d be the quiver one obtains from Qd by adding k ´ 1 additional copies of each
arrow in Qd. As before, let G “ SLpnqd and T “ STpnqd. Then G acts on the quiver Qd with
dimension vector pn, . . . , nq as described in the introduction. We denote the corresponding
representation by πd. Note that the action of G on Q

pkq

d with dimension vector pn, . . . , nq is
given by πk

d . In this subsection we prove a bound on the weight margin of πd and on the
gap of πn

d . The bound on γGpπn
d q is thanks to the refinement of freeness in Proposition 4.8

pointed out by Visu Makam.

▶ Theorem 4.25. Let n, d ě 2 and denote the natural action of G “ SLpnqd on the quiver
Qd with dimension vector pn, . . . , nq by πd : SLpnqd Ñ GLpVdq, where Vd “ pCnˆnq

d´1. The
representation πn

d corresponds to the G-action on the quiver Q
pnq

d with dimension vector
pn, . . . , nq. It holds that

γTpπdq ď pn ´ 1q´d`1 and γGpπn
d q ď pn ´ 1q´d`1.

▶ Remark 4.26. Before proving the theorem, we point out a few consequences.
1. Theorem 4.25 shows that γTpπdq´1 and γGpπn

d q´1 are not polynomially bounded with
respect to dim Vd “ pd ´ 1qn2 and dim SLpnqd “ dpn2 ´ 1q. Instead we see for fixed
n and d Ñ 8 an exponential behaviour in the number of vertices d. Thus, our bound
shows that the exponential behaviour in d cannot be avoided in general lower bounds
for quiver actions like [12, Theorem 6.21 Item 4]. The latter applied to πd shows
γTpπdq ě n´d2

´p3{2qdpdn ` 1q´d.
2. The proof of Theorem 4.25 below shows that for the bound on the gap it is enough to

consider the quiver Q
pn´1q

d with an additional nth arrow from d to d ´ 1.
3. The ideas presented below can be adjusted to prove similar bounds for other dimension

vectors. For example, one can show that the gap for the SL-action on Q
p2q

d with dimension
vector p1, 3, 3, . . . , 3, 2q is inverse exponential in d. This aligns with an algebraic barrier
for this action; the invariants that cut out the null cone for this action have exponential
degree [19, Proposition 1.5].

4. The quiver Qd is of finite representation type and has no oriented cycles. Therefore,
the null-cone membership problem for πd can be solved in polynomial-time by algebraic
algorithms.20 This means Qd is an example where the weight margin is very small but
there still exist efficient algorithms. Can the existence of efficient algorithms still be
explained by a large gap in this case? This leads to the following interesting open question.

▶ Problem 4.27. Is the gap γGpπdq inverse polynomial in n and d?

A positive answer would provide an interesting example, since in this case the weight
margin of πd would be significantly smaller than the gap of πd.

We now introduce several lemmas needed to prove Theorem 4.25. Note that the set of
weights of πd viewed as a subset of pRnqd is

!

`

p´1q
dεi, p´1q

d´1εj , 0, . . . , 0
˘

,
`

0, p´1q
d´1εi, p´1q

d´2εj , 0, . . . , 0
˘

, . . . ,
`

0, . . . , 0, εi, ´εj

˘

| i, j P rns

)

.

20 Personal communication with Visu Makam. There does not seem to be an explicit reference in the
literature.
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We define recursively the subsets of weights
Γ2 :“ tpεi, ´εjq | i P rn ´ 1s, j P rnsu Ď Ωpπ2q Ď R2n

for d ě 3, Γd :“
!

`

p´1q
dεi, p´1q

d´1εn, 0n, . . . , 0n

˘

| i P rn ´ 1s

)

Y
`

t0nu ˆ Γd´1
˘

Ď Ωpπdq Ď Rdn .

▶ Remark 4.28. We note that for d ě 2, Γd is not not free. For instance, we can always
write

p0n, . . . , 0n, ε1, ´ε1q “ p0n, . . . , 0n, ε1, ´ε2q ` p0n, . . . , 0n, 0n, e2 ´ e1q,

i.e. the weights p0n, . . . , 0n, ε1, ´ε1q, p0n, . . . , 0n, ε1, ´ε2q P Γd differ by the root
p0n, . . . , 0n, 0n, e2 ´ e1q of SLpnqd. Therefore, we cannot deduce a bound on the gap γGpπdq

via Proposition 4.8. However, the latter allows us to deduce at least a bound on the gap of
πn

d .

In the next two lemmas we show that Γd witnesses the bound on γTpπdq and afterwards
we use Proposition 4.8 to transfer this bound to γGpπn

d q.

▶ Lemma 4.29. For all d ě 2 it holds that 0 R convpΓdq.

Proof. We prove the statement by induction on d ě 2. For d “ 2, just note that any element
in convpΓ2q Ď R2n has value ´1{n in the n-th entry. In particular, 0 R convpΓ2q. For d ě 3
let

x “
ÿ

ωPΓd

λω ω , λω ě 0

be a convex combination of the elements in Γd. Assume there is an i P rn ´ 1s such that for

ωi :“
`

p´1qdεi, p´1qd´1εn, 0n, . . . , 0n

˘

one has λωi
ą 0. Then the n-th entry of x is non-zero, since ωi has n-th entry p´1qd`1{n and

all (other) ω P Γd have p´1qd`1{n or zero as n-th entry. On the other hand, if λωi
“ 0 for

all i P rn ´ 1s, then x P t0nu ˆ convpΓd´1q. By induction hypothesis on d ´ 1 we necessarily
have x ‰ 0. ◀

▶ Lemma 4.30. For d ě 2 it holds that xd :“ λd

`

p´1qd´1εn, 0n, . . . , 0n

˘

P convpΓdq, where

λd :“
˜

d´1
ÿ

i“1
pn ´ 1qi

¸´1

.

In particular, }xd}2 ă |λd| ď pn ´ 1q´d`1.

Proof. We proceed by induction on d ě 2. In the case d “ 2, consider the convex combination
n´1
ÿ

i“1

n
ÿ

j“1

1
pn ´ 1qn

pεi, ´εjq “
1

n ´ 1 p´εn, 0nq “ x2 ,

where we used (5). Now assume the claim is proven for some d ě 2, hence

λd

`

0n, p´1qd´1εn, 0n, . . . , 0n

˘

P t0nu ˆ convpΓdq Ď convpΓd`1q. (33)

Setting µ :“ pn ´ 1qλd`1λ´1
d we have µλd “ pn ´ 1qλd`1 and µ ` pn ´ 1qλd`1 “ 1. Together

with (5) and (33) we deduce xd`1 P convpΓd`1q via

µ λd

`

0n, p´1qd´1εn, 0n, . . . , 0n

˘

` λd`1

n´1
ÿ

i“1

`

p´1qd`1εi, p´1qdεn, 0n, . . . , 0n

˘

“ xd`1.

This ends the induction. Finally, }xd}2 ă |λd| follows from }εn}2 ă 1. ◀
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Proof of Theorem 4.25. By Lemma 4.29 and Lemma 4.30 we have

γTpπdq ď pn ´ 1q´d`1.

With the fact Ωpπdq “ Ωpπn
d q and with Proposition 4.8 we transfer this bound to the gap

of πn
d . To do so, we note that the natural inner product on V n

d “ pCnˆnqnpd´1q, given by
the trace inner product on each Cnˆn copy, is invariant under the action of K “ SUpnqd.
Clearly, distinct Cnˆn copies are orthogonal under this inner product. Thus, to be able to
apply Proposition 4.8 it is enough to assign to each Cnˆn copy, i.e. to each arrow of Q

pnq

d , a
matrix Mi such that supppMiq is free and Γd “

Ť

i supppMiq.
For this, we consider the n ˆ n matrices

M :“
ˆ

In´1 0
0 0

˙

and P :“
ˆ

0 In´1
1 0

˙

,

and Ei,j is the matrix with pi, jq-entry one and all other entries zero. Then Ei,iP “ Ei,σpiq,
where σ : rns Ñ rns is the cycle p1 2 . . . nq. Therefore, for k P rns we have

supp
´

MP k´1
¯

“

!

`

0npd´2q, εi, ´εσk´1piq

˘

| i P rn ´ 1s

)

and t0npd´2qu ˆ Γ2 “
ď

kPrns

supp
´

MP k´1
¯

.

For fixed k, i1 ‰ i2 implies σk´1pi1q ‰ σk´1pi2q, so any distinct elements of supppMP k´1q

differ in the last two Rn-components. Hence, each supppMP k´1q is free and we assign
M, MP, . . . , MP n´1 to the n arrows that go from vertex d to vertex d´1. For l P rd´2s, we as-
sign to the n arrows between the vertices l and l`1 each of the matrices E1,n, E2,n, . . . , En´1,n

at least once. (Exactly one of the latter matrices is assigned to two of these arrows.) Clearly,
the support of Ei,n, i P rn ´ 1s is free as it contains just one weight. By construction, this
assignment does the job. Moreover, the argument shows that n ´ 1 arrows between the
vertices l and l ` 1, l P rd ´ 2s, suffice. ◀
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A Notation

fp the function Rm
Ñ Rě0, x ÞÑ

ř

ωPΩ pωeω¨x, see Equation (2)
capppq the capacity of a non-negative function p on a finite set Ω Ď Rm, see Equation (2)
cappvq the capacity of a vector v under a group action, see Equation (4)

rns the set t1, 2, . . . , nu

0n the zero vector in Rn

ei the ith canonical unit vector in Rn

1n the all-ones vector in Rn

1
K
n the orthogonal complement of 1n in Rn, i.e.

␣

pv1, . . . , vnq P Rn :
ř

i vi “ 0
(

εi the vector ei ´
1
n1n

In the n ˆ n identity matrix
distp0, Sq the distance from the origin to the set S

convpSq the convex hull of S in Rn

AffpSq the affine hull of S in Rn

πn,d the representation for d-dimensional tensor scaling
Ωpπq the set of weights of a representation π

Ωn,d “ Ωpπn,dq the set tεi : i P rnsu
d corresponding to d-dimensional array scaling; equal to the set

of weights of the tensor scaling representation πn,d, see Example 4.5
γpΩq the margin of the finite set Ω Ď Rm, see Definition 1.2

γTpπq the weight margin of a representation π, i.e. γpΩpπqq, see Definition 4.3
γGpπq the gap of a representation π, see Definition 4.3
trpAq the trace of a square matrix A

Df pεq the diameter bound of a function f for ε ą 0, see Definition 3.1 respectively
Definition 4.18

}A}F the Frobenius norm of a square matrix A
eA the exponential of a square matrix A

LiepGq the Lie algebra of a matrix Lie group G
GLpnq the group of invertible complex n ˆ n matrices
SLpnq the group of invertible complex n ˆ n matrices with determinant one
STpnq the group of diagonal invertible complex n ˆ n matrices with determinant one
SUpnq the group of unitary matrices of size n ˆ n and determinant one

Hermpnq the set of complex Hermitian n ˆ n matrices
GLpV q the group of C-linear, bijective maps V Ñ V , where V is a C-vector space

B Representation theory background

In this section we briefly recall some representation theory. All the concepts we present here
actually work in the very general setting of reductive groups and their rational representations,
see e.g. [12, section 2]. For the sake of clarity and concreteness we stick to the special case
needed in this paper, i.e. the reductive group SLpnqd :“ SLpnq ˆ ¨ ¨ ¨ ˆ SLpnq with d ě 1
many copies of SLpnq.

We call a Euclidean-closed subgroup H Ď GLpnq a matrix Lie group. Indeed, such an H

is naturally a Lie group (c.f. [31, Theorem 1.19]) with real Lie algebra

LiepHq :“
␣

A P Cnˆn | @ t P R : etA P H
(

.
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The Lie bracket for LiepHq is the commutator rA, Bs :“ AB ´ BA. Moreover, for d ě 1 the
product Hd :“ H ˆ ¨ ¨ ¨ ˆ H becomes a matrix Lie group via block-diagonal embedding into
GLpdnq, i.e.

Hd ãÑ GLpdnq, ph1, . . . , hdq ÞÑ

¨

˚

˝

h1
. . .

hd

˛

‹

‚

Then the Lie algebra of Hd is LiepHqd “ LiepHq ˆ ¨ ¨ ¨ ˆ LiepHq block-diagonally embedded
into Cdnˆdn. If G Ď GLpnq is another matrix Lie group, then G X H is again a matrix Lie
group with Lie algebra LiepG X Hq “ LiepGq X LiepHq.

▶ Example B.1. The groups GLpnq, SLpnq, Upnq and GTpnq are matrix Lie groups with Lie
algebras

LiepGLpnqq “ Cnˆn LiepUpnqq “ tA P Cnˆn
| A:

“ ´Au “ i Hermpnq

LiepSLpnqq “ tA P Cnˆn
| trpAq “ 0u LiepGTpnqq “ tA P Cnˆn

| A diagonal matrixu.

Therefore, also SUpnq, STpnq and UpnqXSTpnq are matrix Lie groups and their Lie algebras
are obtained by corresponding intersections of the above Lie algebras. In particular, we have

LiepUpnq X STpnqq “
␣

i diagpx1, . . . , xnq | xj P R, x1 ` . . . ` xn “ 0
(

.

Thus, we can identify i LiepUpnq X STpnqq with the orthogonal complement p1nqK Ď Rn of
the all-ones vector 1n.

In the following, let G :“ SLpnqd for some d ě 1. Then K :“ SUpnqd is a maximal
compact subgroup of G, and T :“ STpnqd and TK :“ K X T are maximal tori of G and K,
respectively. As explained above, we think of all these groups as matrix Lie subgroups of
GLpdnq, and hence of their Lie algebras as subsets of Cdnˆdn.

A rational representation of G “ SLpnqd is a group morphism π : G Ñ GLpV q, such that
in some basis of V the matrix entries of πpgq P GLpV q are polynomials in the matrix entries
of g.21 Such a rational representation of G induces a representation of the Lie algebras by

Π: LiepGq Ñ EndpV q, A ÞÑ
d

dt

ˇ

ˇ

ˇ

ˇ

t“0
π
`

etA
˘

with the property πpeAq “ eΠpAq for all A P LiepGq. Restricting π to the commutative
subgroup T induces a so-called weight space decomposition of V . That is, there is some finite
set Ωpπq Ď i LiepTKq and a decomposition V “

À

ωPΩpπq Vω into non-zero subspaces such
that each ω P Ωpπq and any vω P Vω satisfy

@A P LiepTq : π
`

eA
˘

vω “ etrpAωqvω

or, equivalently,

@A P LiepTq : Π pAq vω “ trpAωqvω.

The elements ω P Ωpπq are called weights of π and the vω P Vω are called weight vectors.
Considering Example B.1 we frequently use the identification i LiepTKq – p1K

n qd, where 1K
n

is the orthogonal complement of 1n in Rn. We note that for ω P i LiepTKq Ď Cdnˆdn the
Frobenius norm }ω}F becomes under this identification the 2-norm }ω}2 in pRnqd.

21 In other words, π is a morphism of affine algebraic groups.
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▶ Example B.2. Let d “ 1. The group G “ SLpnq acts on Cn by left-multiplication, which
induces the rational representation π : SLpnq Ñ GLpnq, g ÞÑ g with corresponding Lie algebra
representation Π: LiepSLpnqq Ñ Cnˆn, A ÞÑ A. For i P rns we set

εi :“ ei ´
1
n
1n P 1K

n Ď Rn.

For all A “ diagpa1, . . . , anq P LiepTq and all i P rns

π
`

eA
˘

ei “ diagpea1 , . . . , ean qei “ eaiei
p˚q
“ etrpA diagpεiqqei

where we used a1 ` . . . ` an “ 0 in p˚q. Thus, εi P 1
K
n – i LiepTKq is a weight of π with

weight vector ei. Since Cn “
À

i Cei, we deduce Ωpπq “ tεi | i P rnsu.

▶ Example B.3. Of particular importance in representation theory is the adjoint rep-
resentation. That is, G “ SLpnqd acts on its Lie algebra by conjugation Ad: G Ñ

GLpLiepGqq, g ÞÑ pA ÞÑ gAg´1q, which induces the representation of Lie algebras
ad: LiepGq ÞÑ EndpLiepGqq, A ÞÑ pB ÞÑ rA, Bsq. The non-zero weights α P ΩpAdq are
called roots of G and the weight spaces LiepGqα are called root spaces.

Let d “ 1 and for i, j P rns denote by Ei,j the matrix with entry one at position i, j and all
other entries being zero. Then for i, j P rns with i ‰ j and for all A “ diagpa1, . . . , anq, B P

LiepTq we compute

adpAqEi,j “ rA, Ei,js “ pai ´ ajqEi,j “ tr
`

A diagpei ´ ejq
˘

Ei,j ,

adpAqpBq “ rA, Bs “ 0.

Since 0n, ei ´ ej P 1
K
n – i LiepTKq, we deduce ei ´ ej P ΩpAdq with weight vector Ei,j

and 0n P ΩpAdq with weight vector B P LiepTq. Therefore, the set of roots of SLpnq is
tei ´ ej | i, j P rns, i ‰ ju, because LiepGq “ LiepTq ‘

À

i‰j CEi,j.
More generally, one can deduce that the roots of G “ SLpnqd are the

pei ´ ej , 0n, . . . , 0nq, p0n, ei ´ ej , 0n, . . . , 0nq, . . . . . . , p0n, . . . , 0n, ei ´ ejq P pRnq
d

for i, j P rns with i ‰ j and that LiepGq “ LiepTq ‘
À

α LiepGqα.

We need the following property of roots, see e.g. [31, Lemma 7.11].

▶ Proposition B.4. Let α be a root of G “ SLpnqd and let π : G Ñ GLpV q be a rational
representation of G. If Vω is the weight space of some weight ω P Ωpπq, then

Π
`

LiepGqα

˘

pVωq Ď Vω`α,

where Vω`α :“ t0u, if ω ` α R Ωpπq.

C Padding for tensor margin and tensor gap

The Theorems 2.1 and 4.11 only give for all n ě 2 bounds for certain sub-families of
tpn, dq | d ě 3u. Still, we can deduce Theorems 1.3 and 1.6 via some padding on the
number of tensor factors d; that padding is provided in Proposition C.1 below. Recall the
representation for tensor scaling

πn,d : SLpnqd Ñ GL
`

pCnqbd
˘

, pg1, . . . , gdq ÞÑ g1 b ¨ ¨ ¨ b gd,

which set of weights is Ωpπn,dq “ Ωn,d “ tεi | i P rnsud Ď pRnqd.
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▶ Proposition C.1. Let G :“ SLpnqd and n, d ě 1. Consider a set of weights Γn,d Ď

Ωn,d such that 0 R convpΓn,dq, i.e. Γn,d witnesses the inequality γpΩn,dq “ γTpπn,dq ď

distp0, convpΓn,dqq.
1. Then γpΩn,d`1q ď dist

`

0, convpΓn,dq
˘

. Consequently, γpΩn,d`1q ď γpΩn,dq.
2. If additionally Γn,d is free, then γGpπn,d`rq ď dist

`

0, convpΓn,dq
˘

for all r ě 2.

Proof. To prove the statement we set for r ě 1

∆r :“ tpεi, . . . , εiq | i P rnsu Ď pRnqr and Γn,d`r :“ Γn,d ˆ ∆r Ď Ωpπn,d`rq.

By Equation (5) we have 0 P convp∆rq and therefore

convpΓn,d`rq “ convpΓn,dq ˆ convp∆rq Ě convpΓn,dq ˆ t0u.

The latter implies

dist
`

0, convpΓn,d`rq
˘

ď dist
`

0, convpΓn,dq
˘

. (34)

Clearly, 0 P convpΓn,d`rq implies 0 P convpΓn,dq or, by contraposition, the assumption
0 R convpΓn,dq yields 0 R convpΓn,d`rq. The latter for r “ 1 shows γTpπn,d`1q ď

dist
`

0, convpΓn,d`1q
˘

and we conclude the first assertion with Equation (34).
Assume in addition that Γn,d is free and let r ě 2. Considering Definition 4.12 and

Proposition 4.13 we prove that also Γn,d`r is free. For this, let M Ď rnsd be such that
ΓM “ Γn,d and consider px, i, . . . , iq, py, j, . . . , jq P M ˆ rnsr with px, i, . . . , iq ‰ py, j, . . . , jq.
If x ‰ y, then x and y differ in at least two components by freeness of M . If x “ y, then
we have i ‰ j and so px, i, . . . , iq and py, j, . . . , jq differ in at least two components, using
r ě 2. This shows that Γn,d`r is free for r ě 2. Since also 0 R convpΓn,d`rq we obtain with
Proposition 4.8 that γGpπn,d`rq ď dist

`

0, convpΓn,d`rq
˘

holds for all r ě 2. Finally, we
deduce the second statement using Equation (34). ◀

▶ Proposition C.2. For n ě 3 it holds that γTpπn,4q ď γGpπn,4q ď 2´n`1.

Proof. This result can be obtained by imitating the proof of Theorem 2.1(b) in subsection 2.2
by using

Γn,4 :“ tpεi, εj , εk, εiq | pi, j, kq P Wnu Ď Ωpπn,4q.

Clearly, 0 R convpΓn,4q as 0 R convpΓn,3q by Lemma 2.8. Moreover, one can show with
Lemma 2.5 (similar to the proof of Lemma 2.7) that

x :“ ´
1

c 2n´1 pε1, ε1, ε1, ε1q P convpΓn,4q, where c “ n ´ 2´n`1 ě 2.

Thus, ∥pε1, ε1, ε1, ε1q∥ ď
?

4 implies ∥x∥ ď c´12´n`1?
4 ď 2´n`1. This proves γTpπn,4q ď

2´n`1.
Since Wn is free by Proposition 4.15, the set tpi, j, k, iq | pi, j, kq P Wnu is free. Hence,

we conclude γGpπn,4q ď 2´n`1 with Proposition 4.13 and Proposition 4.8. ◀

D Proof of Lemma 2.11

Proof. For the sake of contradiction assume that 0 P AffpΓn,6r´3q. Then there are coefficients
as, bs, cs P R, where 2 ď s ď rn, such that a2 “ . . . “ ar “ b2 “ . . . “ br “ 0,

ř

spas ` bs `

csq “ 1 and
rn
ÿ

s“2

`

as εσpsq,σp1q,σpsq ` bs εσpsq,σpsq,σp1q ` cs εσps´1q,σpsq,σpsq

˘

“ 0 P pRnq6r´3. (35)
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The bulk of our work will consist of proving the equations

b2 ` c2 “ b3 ` c3 “ . . . “ brn ` crn (36)
a2 ` c2 “ a3 ` c3 “ . . . “ arn ` crn. (37)

From here we will derive a contradiction. We now set about proving Equations (36) and (37).
Rewrite the left-hand-side of Equation (35) as the collection for k P r2r ´ 1s of the following
affine linear combinations of ε1, . . . , εn in Rn:

rn
ÿ

s“2

`

as εσkpsq ` bs εσkpsq ` cs εσkps´1q

˘

“ 0 (38)

rn
ÿ

s“2

`

as εσkp1q ` bs εσkpsq ` cs εσkpsq

˘

“ 0 (39)

rn
ÿ

s“2

`

as εσkpsq ` bs εσkp1q ` cs εσkpsq

˘

“ 0. (40)

If we expand this expressions as affine linear combinations of the εl, then by Lemma 2.2 the
coefficient of εl must be n´1 for all l P rns. Translating this for equations (38), (39) and (40)
respectively with 2 ď l ď n and k P rrs, and using for j P rrs that

σk

`

rpl ´ 1q ` j ´ k ` 1
˘

“

R

prpl ´ 1q ` j ´ k ` 1q ` pk ´ 1q

r

V

“ l (41)

we get

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

arpl´1q`j´k`1 ` brpl´1q`j´k`1 ` crpl´1q`j´k`2
˘

“
1
n

(42)

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

brpl´1q`j´k`1 ` crpl´1q`j´k`1
˘

“
1
n

(43)

@ k P rrs, l P t2, 3, . . . , nu :
r
ÿ

j“1

`

arpl´1q`j´k`1 ` crpl´1q`j´k`1
˘

“
1
n

(44)

respectively, where we set crn`1 :“ 0. Fixing some l ě 2 and subtracting Equation (43)
with k “ 1 from Equation (43) for k “ 2, we find a telescoping sum that reduces to
brpl´1q ` crpl´1q “ brl ` crl. Indeed, subtracting the two yields

0 “

r
ÿ

j“1

`

brpl´1q`j´1 ` crpl´1q`j´1
˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“

r´1
ÿ

j“0

`

brpl´1q`j ` crpl´1q`j

˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“ pbrpl´1q ` crpl´1qq ´ pbrl ` crlq.

More generally, for k P rr´1s combining (43) for k and k Ð k`1, implies brl´k`1 `crl´k`1 “

brpl´1q´k`1 ` crpl´1q´k`1 for all l “ 2, . . . , n, i.e. for every k P rr ´ 1s we have

cr´k`1 “ br´k`1 ` cr´k`1 “ b2r´k`1 ` c2r´k`1 “ . . . “ brn´k`1 ` crn´k`1. (45)
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We are still missing the value k “ 0, or the equations

br`1 ` cr`1 “ b2r`1 ` c2r`1 “ . . . “ brpn´1q`1 ` crpn´1q`1. (46)

We obtain this by subtracting, for l “ 2, . . . , n, (43) for k “ 1 and l from (43) with k “ r

and l Ð l ` 1 . Indeed,

0 “

r
ÿ

j“1

`

brl`j´r`1 ` crl`j´r`1
˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“

r`1
ÿ

j“2

`

brpl´1q`j ` crpl´1q`j

˘

´

r
ÿ

j“1

`

brpl´1q`j ` crpl´1q`j

˘

“
`

brl`1 ` crl`1
˘

´
`

brpl´1q`1 ` crpl´1q`1
˘

.

Lastly, we are missing the equations b2 `c2 “ b3 `c3 “ . . . “ br`1 `cr`1 for Equation (36).
We have not yet used in Equation (39) the values k “ r ` m with m P rr ´ 1s. For this we
note that

σr`m

`

j
˘

“ 2 for j P tr ´ m ` 1u Y tr ` 2, r ` 3, . . . , 2ru.

We use this equation to apply Lemma 2.2 to (39) for ε2 and k “ r ` m with m P rr ´ 1s to
obtain

br´m`1 ` cr´m`1 `

r
ÿ

j“2

`

br`j ` cr`j

˘

“
1
n

.

We need one more equation to eliminate the right-hand term, so we use the following.
Lemma 2.2 applied to equation (43) for k “ 1 and l “ 2 yields

r
ÿ

j“1

`

br`j ` cr`j

˘

“
1
n

.

Subtracting this equation from the previous one yields, br´m`1 ` cr´m`1 “ br`1 ` cr`1 for
all m “ 1, . . . , r ´ 1. Together with the equations (45) and (46) we conclude Equation (36).
Analogously, (40) and (44) can be used to obtain Equation (37).

To get a contradiction we show that as “ bs “ cs “ 0 for all s “ 2, 3, . . . , rn. For this,
we set a :“

ř

s as and b :“
ř

s bs. Equation (41) still applies for l “ 1, k “ 1, so Lemma 2.2
applied to the coefficient of ε1 in (38), in (39) and in (40) respectively for k “ 1 gives

r
ÿ

j“1
cj`1 “

1
n

, a `

r´1
ÿ

j“1
cj`1 “

1
n

and b `

r´1
ÿ

j“1
cj`1 “

1
n

respectively. Subtracting the second equation from the first gives a “ cr`1, and reasoning
analogously for the third yields a “ b “ cr`1. Moreover, (43) with k “ r and l “ 2
is

řr
j“1pbj`1 ` cj`1q “ n´1. Using the latter together with b2 “ . . . “ br “ 0 and

řr
j“1 cj`1 “ n´1 yields br`1 “ 0 and similarly ar`1 “ 0 via (44) with k “ r and l “ 2.

Since now also ar`1 “ br`1 “ 0, the equation (42) with k “ r and l “ 2 simplifies to
řr

j“1 cj`2 “ n´1. In conjunction with
řr

j“1 cj`1 “ n´1 we deduce c2 “ cr`2 and hence
br`2 “ 0 “ ar`2 by (36) and (37). But now (42) with k “ r ´1 and l “ 2 is

řr
j“1 cj`3 “ n´1

and together with
řr

j“1 cj`2 “ n´1 we get c3 “ cr`3. Continuing inductively we obtain

@ j P rrs : cj`1 “ cr`j`1 and ar`j`1 “ br`j`1 “ 0
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via (42) with l “ 2, k P rrs and via (36), (37). Then (42) with k “ r and l “ 3 simplifies to
řr

j“1 cr`j`2 “ n´1 and together with n´1 “
řr

j“1 cj`1 “
řr

j“1 cr`j`1 we have cr`2 “ c2r`2.
Hence, b2r`2 “ 0 “ a2r`2 via (36) respectively (37). Continuing inductively in the outlined
manner with equation (42) for k P rrs, l “ 3, . . . , n and with the equations (36) and (37) we
conclude as “ bs “ 0 for all s “ 2, 3 . . . , rn, so a “ b “ 0. Finally, (36) implies cr`1 “ cs for
all s “ 2, . . . , rn, but cr`1 “ b “ 0 giving the desired contradiction. ◀

E Padding and rounding for diameter bounds

We begin with the proof of Proposition 3.5. We prove it only for d “ 3, but the proof goes
through mutatis mutandis for all d ě 1.

Proof of Proposition 3.5. Recall that q is the n ˆ n ˆ n array such that qijk “ t
n pijk for

i, j, k P rts, qiii “ 1{n for t ` 1 ď i ď n, and qijk “ 0 otherwise. We may split the inputs
x, y, z P 1K

n into

x “

ˆ

x1 ` α11t, x2 ´
t

n ´ t
α11n´t

˙

,

y “

ˆ

y1 ` α21t, y2 ´
t

n ´ t
α21n´t

˙

,

z “

ˆ

z1 ` α31t, z2 ´
t

n ´ t
α31n´t

˙

where x1, y1, z1 P Rt, x2, y2, z2 P Rn´t each sum to zero; write w “ px1, y1, z1q. As }px, y, zq}2 ě

}w}2, it is enough to prove that }w}2 is large for any approximate minimizer. By optimizing
over αi and x2, y2, z2 for fixed w, one computes that the optimum value for fq for any fixed
w is fppwqt{n. To see this, write

fqpx, y, zq “
teα1`α2`α3

n
fppwq `

e´ t
n´t pα1`α2`α3q

n

n
ÿ

i“t`1
ex2

i `y2
i `z2

i .

First note that for fixed αi’s, the second term is minimized at x2 “ y2 “ z2 “ 0 by Jensen’s
inequality. Furthermore, the value only depends on α :“ α1 ` α2 ` α3. With x2, y2, z2 “ 0,
we have

fqpx, y, zq “ gpw, αq :“ teα

n
fppwq `

pn ´ tq

n
e´ t

n´t α.

Taking the derivative in α, we see that this is minimized when fppwqeα “ e´ t
n´t α, or

eα “ fppwq
´1{p1` t

n´t q
“ fppwq´

n´t
n . Plugging this value in proves that the optimum is

fppwqt{n. By concavity of xt{n, provided fppwq ď 1 we have

fppwqt{n ´ capppqt{n ě
1 ´ capppqt{n

1 ´ capppq
pfppwq ´ capppqq.

The first factor in the second term is the slope of the line from pcapppq, capppqt{nq to p1, 1q.
Thus for any ε ď 1 ´ capppq, any ε-approximate minimizer for fq has norm at least that of
some

` 1´capppq

1´capppqt{n

˘

ε-approximate minimizer for fp. ◀

Proof of Lemma 4.23. We use the dual expression: log cap q “ ´ infErω“0 DKLpr||qq where
r ranges over probability distributions on Ω. In particular,

log cap q ě ´DKLpr||qq
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for any distribution r on Ω with Erω “ 0. Let r be a probability distribution; calculate

log cap q ě ´DKLpr||qq “ ´DKLpr||pq ` DKLpr||pq ´ DKLpr||qq

“ ´DKLpr||pq `
ÿ

ωPΩ
rω logprω{pωq ´

ÿ

ωPΩ
rω logprω{qωq

“ ´DKLpr||pq `
ÿ

ωPΩ
rωplog qω ´ log pωq.

We lower bound log qω ´ log pω ě 1
qω

pqω ´ pωq by applying the inequality log x ď x ´ 1 to
x “ pω{qω. Hence

log cap q ě ´DKLpr||pq `
ÿ

ωPΩ
rω

1
qω

pqω ´ pωq

ě ´DKLpr||pq ´ M0}p ´ q}8.

Allowing ´DKLpr||pq to tend to log cap p completes the proof. ◀

Proof of Lemma 4.22. Applying Lemma 4.23 with the roles of p and q switched yields

log cap p ě log cap q ´ M}p ´ q}8.

Exponentiating both sides and applying the inequality ex ě 1 ` x yields cap p ě p1 ´ M}p ´

q}8q cap q. Thus

inf
xPB

fqpxq “ inf
xPS

fqpxq ě ´ sup
xPS

|fqpxq ´ fppxq| ` inf
xPS

fppxq.

Note that the minimizer for fq over B lies in the set S :“ B X tx : @ ω, qωex¨ω ď fqp0q “

}q}1u. For all x P S, we have ex¨ω ď cap q{pω for all ω P Ω, so

fqpxq ´ fppxq ď
ÿ

ωPΩ
|pω ´ qω|ex¨ω

ď
ÿ

ωPΩ
|pω ´ qω|}q}1{qωq

ď }p ´ q}1M}q}1.

Combining the above inequality with the lower bound for capppq,

inf
xPB

fqpxq ě ´M}q}1}p ´ q}1 ` p1 ` εq cap p

ě p1 ` εqp1 ´ M}p ´ q}8q cap q ´ M}p ´ q}1}q}1. ◀
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