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Abstract
In this paper we study polynomials in VPe (polynomial-sized formulas) and in ΣΠΣ (polynomial-
size depth-3 circuits) whose orbits, under the action of the affine group GLaff

n (F) (the action of
(A, b) ∈ GLaff

n (F) on a polynomial f ∈ F[x] is defined as (A, b) ◦ f = f(AT x + b)), are dense in
their ambient class. We construct hitting sets and interpolating sets for these orbits as well as give
reconstruction algorithms. Specifically, we obtain the following results:

1. For Cn (ℓ1(x), . . . , ℓn(x)) ≜ Trace
((

ℓ1(x) 1
1 0

)
· . . . ·

(
ℓn(x) 1

1 0

))
, where the ℓis are linearly

independent linear functions, we construct a polynomial-sized interpolating set, and give a
polynomial-time reconstruction algorithm. By a result of Bringmann, Ikenmeyer and Zuiddam,
the set of all such polynomials is dense in VPe [14], thus our construction gives the first
polynomial-size interpolating set for a dense subclass of VPe.

2. For polynomials of the form ANF∆ (ℓ1(x), . . . , ℓ4∆ (x)), where ANF∆(x) is the canonical read-
once formula in alternating normal form, of depth 2∆, and the ℓis are linearly independent
linear functions, we provide a quasipolynomial-size interpolating set. We also observe that the
reconstruction algorithm of [35] works for all polynomials in this class. This class is also dense
in VPe.

3. Similarly, we give a quasipolynomial-sized hitting set for read-once formulas (not necessarily in
alternating normal form) composed with a set of linearly independent linear functions. This
gives another dense class in VPe.

4. We give a quasipolynomial-sized hitting set for polynomials of the form f (ℓ1(x), . . . , ℓm(x)),
where f is an m-variate s-sparse polynomial. and the ℓis are linearly independent linear functions
in n ≥ m variables. This class is dense in ΣΠΣ.

5. For polynomials of the form
∑s

i=1

∏d

j=1 ℓi,j(x), where the ℓi,js are linearly independent lin-
ear functions, we construct a polynomial-sized interpolating set. We also observe that the
reconstruction algorithm of [45] works for every polynomial in the class. This class is dense in
ΣΠΣ.

As VP = VNC2, our results for VPe translate immediately to VP with a quasipolynomial blow up
in parameters. If any of our hitting or interpolating sets could be made robust then this would
immediately yield a hitting set for the superclass in which the relevant class is dense, and as a
consequence also a lower bound for the superclass. Unfortunately, we also prove that the kind of
constructions that we have found (which are defined in terms of k-independent polynomial maps)
do not necessarily yield robust hitting sets.
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19:2 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

1 Introduction

Proving lower bounds on the size of algebraic circuits (also called arithmetic circuits), is an
outstanding open problem in algebraic complexity. In spite of much effort, only a handful of
lower bounds are known (a detailed account of most known lower bounds can be found in
the excellent survey of Saptharishi [61]). One common theme of most known lower bounds
is that they are proved using algebraic arguments. That is, a proof of a lower bound for a
class of circuits C, usually has the following structure: one comes up with a set of (nonzero)
polynomials F1, . . . , Fm, in N =

(
n+d

d

)
many variables, such that the coefficient vector of

every n-variate, degree-d polynomial that can be computed in C, is a common zero of all
the Fis (such Fis are called separating polynomials). Then, one exhibits a polynomial f

whose coefficient vector is not a common zero, thus proving f ̸∈ C. As an example one can
immediately see that the well known partial derivative technique, and its successor, shifted
partial derivative technique, are algebraic. Grochow [29] demonstrated this for most of the
known lower bound proofs. As the set of common zeros of a set of polynomials is closed,1
this immediately implies that if we prove that f ̸∈ C using an algebraic argument, then
the same argument also implies that f ̸∈ C, the closure of C. Recall that, in characteristic
zero, the closure of a class C is the set of all polynomials that are limit points of sequences
of polynomials from C, where convergence is coefficient-wise (see Definition 9 for a general
definition over arbitrary characteristic). As most known techniques are algebraic, we see
that for proving a lower bound for a class C one actually has to consider the larger, and less
structured class, C.

Geometric Complexity Theory (GCT for short), which was initiated by Mulmuley and
Sohoni [55, 56], approaches the lower bound question from a different angle. GCT also looks
for an algebraic lower bound proof, but rather than exhibiting an algebraic argument, it
aims to prove the existence of a separating polynomial. Specifically, GCT attempts to prove
Valiant’s hypothesis, that VP̸=VNP, over C, via representation theory. Valiant’s hypothesis
is, more or less, equivalent to showing that the permanent of a symbolic n × n matrix is not
a projection of the symbolic m × m determinant for any m = m(n) polynomial in n.2 Recall
that a projection of a polynomial is a restriction of the polynomial to an affine subspace
of its inputs. Observe that a restriction of an n-variate polynomial f(x) to a subspace
of its inputs, is equivalent to considering the polynomial f(Ax + b), where A is an n × n

matrix and b ∈ Cn. As any matrix is a limit point of a sequence of invertible matrices,
an algebraic proof that the permanent is not a projection of the m × m determinant, over
C, is equivalent to an algebraic proof showing that the permanent is not in the closure
of the set of polynomials {Det(AX + b) | A ∈ GLm(C), B ∈ Cm2}, where GLm(C) is
the group of invertible m × m matrices (this is true for every field of characteristic ̸= 2).
The set {Det(AX + b) | A ∈ GLm(C), B ∈ Cm2} is called the orbit of the determinant
under the action of the affine group (we denote the affine group over Cm with GLaff

m (C)).
GCT considers the linear space of polynomials that vanish on every coefficient vector in
the orbit of the determinant, and similarly the linear space of polynomials that vanish
on every coefficient vector in the orbit of the permanent. There is a natural action of
GLaff

m (C) on those linear spaces, thus defining two representations of GLaff
m (C). GCT wishes

1 It is closed in the Zariski topology. Over R or C this is the same as being closed in the Euclidean
topology.

2 A super-quasipolynomial lower bound would imply that VP̸=VNP whereas a super-polynomial lower
bound would imply that permanent does not have polynomial-size algebraic formulas or algebraic
branching programs.
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to find a separating polynomial by showing that some irreducible representation of GLaff
m (C)

has strictly larger multiplicity when considering the representation corresponding to the
determinant. This approach bypasses the barrier given in [28, 30] as it does not exhibit any
efficiently computable separating polynomial but rather just proves the existence of one.
However, the representation theory questions arising in this program are quite difficult, even
when considering the analog questions for restricted classes. For an introduction to GCT see
the lecture notes of Bläser and Ikenmeyer [13].

Another possible approach for proving lower bounds against a class of polynomials C, is
via the construction of a hitting set for C. Recall that a hitting set H for a class C is a set of
points such that for any nonzero polynomial f , that can be computed by a circuit from C,
there is v ∈ H such that f(v) ̸= 0. In [37] Heintz and Schnorr observed that if we have such
a hitting set H then any nonzero polynomial g that vanishes on H cannot be computed in C.
It is also not hard to see that this way of obtaining lower bounds also bypasses the natural
proof barrier of [28, 30]. The problem is that in most cases we obtained a hitting set for a
class only after proving a lower bound for it.

In [26] Forbes and Shpilka defined the notion of a robust hitting set for a circuit class C.
Over fields of characteristic zero, a hitting set H for a class C is c-robust if it also satisfies
that for every f ∈ C there is v ∈ H such that |f(v)| ≥ c · ∥f∥, where ∥·∥ is some fixed norm
on C[x] (see Definition 13 for a definition over arbitrary fields). It is not hard to see that if
H is a robust hitting set for a class C then it also hits the closure of C.

In this work we focus on depth-3 algebraic circuits, known as ΣΠΣ, and on VPe, the class
of algebraic formulas, two classes for which we lack strong lower bounds, and in particular
we do not have hitting sets for them. For ΣΠΣ circuits the best lower bound is the near
cubic lower bound of Kayal, Saha and Tavenas [46], and for VPe the best lower bound is the
quadratic lower bound of Kalarkoti [39]. Recall that by the result of Valiant et al. [71], a
super-quasipolynomial lower bound against VPe implies a super-polynomial lower bound
against VP. Similarly, a hitting set for VPe implies a hitting set for VP. We also note
that by a result of Gupta et al. [33], a strong enough lower bound or a hitting set for
ΣΠΣ imply both a lower bound for general circuits and a hitting set for them. This result
also implies that a polynomial-time reconstruction algorithm for ΣΠΣ circuits would give
rise to a sub-exponential time reconstruction algorithm for general circuits. Recall that a
reconstruction algorithm for a class C is an algorithm that, given black-box access to a circuit
from C, outputs a circuit in C that computes the same polynomial.

Instead of viewing robust hitting sets as a way to obtain hitting sets for the closure of
circuit classes, we suggest to find subclasses of interesting classes, C̃ ⊂ C, such that C is
contained in the closure of C̃, and aim to construct a robust hitting set for the subclass C̃.
This offers a new approach for constructing hitting sets for known classes and for obtaining
lower bounds. Specifically, we consider subclasses of ΣΠΣ and VPe that are dense in their
superclasses. Each of these subclasses is the orbit of some simple polynomial under the group
of invertible affine transformations.

For VPe, we first consider a subclass that was defined by Bringmann, Ikenmeyer and
Zuiddam [14]–the orbit of the so called continuant polynomial (see Definition 27). We
give a polynomial-sized interpolating set3 for this subclass as well as a polynomial-time

3 Recall that an interpolating set for a class C of polynomials in n variables, over a field F, is a set of points
H ⊂ Fn such that for every f ∈ C, the list of values f(H) uniquely determines f . See Definition 15.
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deterministic reconstruction algorithm that uses as oracle a root-finding algorithm.4 In
particular, this implies a polynomial-time randomized reconstruction algorithm, and, in some
cases, a polynomial-time deterministic algorithm.

In addition, we exhibit two other subclasses that are dense in VPe. The first class
is defined as the orbit of read-once formulas (ROF for short, see Definition 5) and the
second as the orbit of read-once formulas in alternating normal form (ROANF for short,
see Definition 7). We obtain hitting sets for both classes and an interpolating set for the
second. We also observe that the reconstruction algorithm of [35] works for the polynomials
in the orbit of ROANFs. Although the results that we obtain for the subclass defined by the
continuant polynomial are stronger, we think that every such dense subclass can shed more
light on VPe and may eventually be used in order to obtain new lower bounds.

For ΣΠΣ we consider two subclasses. One is based on orbits of sparse polynomials
(polynomials having polynomially many monomials) and the other on orbits of diagonal
tensors (see Definition 40). We give a hitting set for the first, an interpolation set for the
second, and we also observe that a slight modification of the randomized reconstruction
algorithm of [43] applies for the second class.

In particular, our results give the first dense subclasses inside VPe and ΣΠΣ for which
a polynomial-size interpolating set is known as well as a polynomial-time reconstruction
algorithm. By [71] our result immediately translate to VP, giving a dense subclass of for
which a quasipolynomial-sized interpolating set is known as well as a quasipolynomial-time
reconstruction algorithm.

If we could transform the interpolating sets that we have found to robust hitting sets for
the orbits, then this will immediately give hitting sets for the closure of the orbits, i.e. for
ΣΠΣ and VPe, which, by [37] gives a lower bound for the class. Thus, our work raises an
intriguing problem:

▶ Problem 1. Given an interpolating set for a class C construct a robust hitting set for C.

We stress that by our results, solving this problem would lead to hitting sets, and lower
bounds, for VPe and VP.

Another advantage for having small interpolating sets for dense subclasses is the following:
One approach for searching for separating polynomials for a class, is by considering the map
from circuits in the class to the coefficient vectors of the polynomials that they compute.
That is, once we fix a computation graph, an assignment to the constants appearing in the
circuit determines the output polynomial. Each coefficient is a polynomial in those constants,
and as there are “few” constants (polynomially many for polynomially sized circuits), and
there are exponentially many coefficients, there should be many polynomials vanishing on
the closure of the image of this map. If we could get a good understanding of this map
then perhaps we could use it to construct a polynomial that vanishes on all such coefficient
vectors. This polynomial will vanish on all coefficient vectors of the superclass in which the
subclass is dense. A different approach is to find a coefficient vector that is not in the closure
of the image of this map (this is the approach of Raz in [57]). Now, assume that H is an
interpolating set for a dense subclass C̃ ⊂ C. We know that the map f → f

∣∣
H is one-to-one

on C̃. Thus, the list of values f
∣∣
H can be viewed as an efficient encoding that is given in

terms of values of the computed polynomial. This provides a different encoding of a circuit –
instead of the constants in it, use the evaluations on H. Thus, by studying the closure of

4 A root-finding algorithm, over a field F, when given black-box access to a univariate polynomial, outputs
a root of that polynomial in F, if such a root exists.
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this map (i.e. the closure of the set of points on F|H| that can be obtained as evaluation
vectors of polynomials in the subclass) we may be able to find a separating polynomial, or,
as in Raz’s approach, find an evaluation vector that is not obtained by any polynomial in the
superclass. It is clear that one can also try this approach even if H is not an interpolating
set, however, as interpolating sets “preserve information” of a dense set, we believe that such
sets are better suited for this approach.

To conclude, focusing on dense subclasses and studying their properties could lead to
better understanding of their superclasses and perhaps to breakthrough results in algebraic
complexity.

To formally state our results we need some definitions that we give next.

1.1 Basic definitions

1.1.1 Notation
For k ∈ N, we denote [k] ≜ {1, 2, 3, . . . , k} and [k]0 ≜ {0, 1, 2, . . . , k − 1}. We use boldface
lowercase letters to denote tuples of variables or vectors, as in x = (x1, . . . , xn), a =
(a1, . . . , am), when the dimension is clear from the context. For any two elements i, j coming
from some set S (usually i and j will be numbers), δi,j equals 1 when i = j and 0 otherwise.

The individual degree of a variable xi in f(x) is the degree of f as a polynomial in xi. A
polynomial f ∈ F[x] of deg(f) ≤ 1 is called a linear function, and if f is homogeneous then
it is called a linear form. For a polynomial f ∈ F[x] and an integer k ∈ N we denote by f [k]

the degree-k homogeneous part of f(x),i.e. the sum of all monomials of f of degree exactly
k. In particular,

f(x) = f [0](x) + f [1](x) + . . . + f [deg(f)](x) .

Note that for a linear function f , f [1] is a linear form. We say that a polynomial f is
homogeneous of degree k or that f is k-homogeneous if f = f [k]. We say a set of linear
functions {ℓ1(x), . . . , ℓn(x)} ⊂ F[x] is linearly independent if the set

{
ℓ

[1]
i

}
is linearly

independent.5 Given a polynomial f(x), a subset of variables y ⊆ {x1, . . . , xn} and an
assignment to those variables a ∈ F|y|, we denote by f

∣∣
y=a

∈ F[x \ y] the polynomial
resulting from assigning the values of a to the variables of y in f(x). We sometimes abuse
notation and write y ⊆ [n] to indicate the indices of the assigned variables instead of the
variables themselves.

1.1.2 Circuit classes
▶ Definition 2. An algebraic formula (also called arithmetic formula) over a field F, is a
rooted tree whose leaves are labeled with either variable or scalars from F, and whose root and
internal nodes (called gates) are labeled with either “+” (addition) or “×” (multiplication).
An algebraic formula computes a polynomial in the natural way. Each leaf computes the
polynomial that labels it, and each gate computes either the sum or product of its children,
depending on its label. The output of the formula is the polynomial computed at its root.
The size of a formula is the number of wires in it. The depth of a formula is the length of
the longest simple leaf-root path in it. The formula size of a polynomial f is defined as the
smallest size of a formula that outputs f .

5 Note that by our definition, x and x + 1 are linearly dependent.

CCC 2021
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A sequence m(n) of natural numbers is called polynomially bounded if there exists a
univariate polynomial q such that m(n) ≤ q(n) for all n.

The complexity class VPe is defined as the set of all families of polynomials (fn)n, with
fn ∈ F[x1, . . . , xn], whose formula size is polynomially bounded.

▶ Definition 3. An arithmetic circuit Φ is a Σ[s]Π[d] circuit if it is a layered graph of depth-2,
has a top gate labeled + with fan-in ≤ s and its second layer is comprised entirely of × gates
with fan-in ≤ d. In other words, Σ[s]Π[d] compute polynomials of degree d with at most s

monomials.

▶ Definition 4. An arithmetic circuit Φ in n variables is a Σ[s]Π[d]Σ circuit if it is a layered
graph of depth-3, has a top gate labeled + with fan-in ≤ s, its second layer is comprised
entirely of × gates with fan-in ≤ d, and its bottom layer is comprised of linear functions in
x1, . . . , xn. In other words, Σ[s]Π[d]Σ circuit compute polynomials of the form

f(x) =
s∑

i=1

d∏
j=1

(αi,j,0 +
n∑

k=1
αi,j,kxk) .

Given a family of circuits C, we will sometime denote it as C(F) to stress that we allow
coefficients to come from the field F. Observe that the definitions of the classes above do not
depend on the field and so we can define them over any field of our choice.

▶ Definition 5. An arithmetic read-once formula (ROF for short) Φ over a field F in the
variables x = (x1, . . . , xn) is a binary tree T whose leaves are labeled with input variables and
a pairs of field elements (α, β) ∈ F2, and whose internal nodes are labeled with the arithmetic
operations {+, ×} and a field element α ∈ F. Each input variable can label at most one
leaf. The computation is performed in the following way: A leaf labeled with the variable xi

and with (α, β), computes the polynomial αxi + β. If a node v is labeled with the operation
∗ ∈ {+, ×} and with α ∈ F, and its children compute the polynomials Φv1 and Φv2 , then the
polynomial computed at v is Φv = Φv1 ∗ Φv2 + α. A polynomial f(x) is called a read-once
polynomial (ROP for short) if f(x) can be computed by a ROF.

▶ Observation 6. Read-once polynomials are always multilinear polynomials.

We next define formulas in alternating normal form, as was first defined in [35].

▶ Definition 7 (Section 3.2 in [35]). We say that an arithmetic formula Φ, over F, is in
alternating normal form (Φ is called an ANF for short) if:
1. The underlying tree of Φ is a complete rooted binary tree (the root node is called the

output node). In particular, size(Φ) = 2depth(Φ)+1 − 1, where size(Φ) is the number of
nodes in the tree of Φ and depth(Φ) is the maximum distance of a leaf node from the
output node of Φ.

2. The internal nodes consist of alternating layers of + and × gates. In particular, the
label of an internal node at distance d from the closest leaf node is + if d is even and ×
otherwise. So if the root node is a + node, its children are all × nodes, its grandchildren
are all + etc.

3. The leaves of the tree are labeled with linear functions. That is, each leaf is labeled with
ℓ(x) = a0 +

∑n
i=1 aixi, where each ai ∈ F is a scalar.

The product depth ∆ of Φ is the number of layers of product gates. The number of leaves of
Φ is therefore always 4∆ if the top gate is +, and 1

2 · 4∆ if the top gate is ×.
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The class ANFGLaff(F) mentioned in Section 1.2.2 is defined in terms of the following
canonical read-once ANF formula (ROANF for short):

▶ Definition 8 (Notation from Fact 3.4 of [35]). We denote the canonical ROANF polynomial,
of product depth ∆ on 4∆ variables, as ANF∆(x). It is defined recursively as follows:

ANF0(x) = x1

ANF∆+1(x) = ANF∆

(
x(1)

)
ANF∆

(
x(2)

)
+ ANF∆

(
x(3)

)
ANF∆

(
x(4)

)
,

where x(i) is the 4∆-tuple of variables {x(i−1)·4∆+1, . . . , xi·4∆}.

For example, ANF1 (x) = x1x2 + x3x4.
Observe that any polynomial in ANFGLaff

n (F)
∆ is an ANF according to Definition 7, but

not vice versa.

1.1.3 Approximate complexity
The following definition gives sense to the notion of approximation over arbitrary fields. In
what follows we let ε be a new formal variable.6 For a field F we denote with F[ε] the ring of
polynomial expressions in ε over F, and with F(ε) the fraction field of F[ε], i.e. the field of
rational expressions in ε.

▶ Definition 9. Let C(F) be a circuit class over a field F. The closure of C, denoted C(F), is
defined as follows: A family of functions (fn)n, where fn ∈ F[x1, . . . , xn], is in C(F) if there
is a polynomially bounded function m : N → N, and a family of functions (gm(n))n ∈ C(F(ε)),
with gm(n) ∈ F[ε][x1, . . . , xm(n)], such that for all n ∈ N,

gm(n)(x1, . . . , xm(n)) = fn(x1, . . . , xn) + ε · gn,0(x1, . . . , xm(n)) , (1)

for some polynomial gn,0 ∈ F[ε][x1, . . . , xm(n)]. Whenever an equality as in (1) holds we say
that

gm(n) = fn + O(ε) or fn = gm(n) + O(ε) .

In that case we think of gm(n) as an “approximation” of fn, and we say that the family
(gm(n))n approximates the family (fn)n.

Alder [3] have shown that over C it holds that (fn) ∈ C(C), in the sense of Definition 9, if
and only if it is in the closure of C(C) in the usual sense. That is, if for every n there exists
a sequence of polynomials gn,k ∈ C(C) such that limk→∞ gn,k = fn, where convergence is
taken coefficient wise. This result holds over R as well, see [52, 17].

Finally, we note that every matrix is approximable (in the sense of Definition 9) by
a non-singular matrix (which is equivalent to being a limit of a sequence of non-singular
matrices, in characteristic zero).

▶ Observation 10. For every A ∈ Fn×n there exists a non-singular matrix B ∈ F(ε)n×n

such that A = B + O(ε).

6 Intuitively, one should think of ε as an infinitesimal quantity.
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1.1.4 Hitting and interpolating sets
▶ Definition 11. A set of points H ⊆ Fn is called a hitting set for a circuit class C (we also
say that H hits C) if for every circuit Φ ∈ C, computing a non-zero polynomial, there exists
some a ∈ H such that Φ(a) ̸= 0.

We next give the definition of a robust hitting set, a notion first defined in [26]. Here we
extend the definition for arbitrary characteristic. We start by giving the definition of [26],
over characteristic zero (and focus on C) and then the more general definition.

▶ Definition 12 (Following Definition 5.1 of [26]). Let ∥·∥ be some norm on C[x]. A hitting
set H for a circuit class C ⊆ C[x] is called robust if there exists some constant c > 0 such
that, for every 0 ̸= f ∈ C,7 there exists some a ∈ H such that |f(a)| ≥ c · ∥f∥.

For arbitrary characteristic we use the same approach as in Definition 9.

▶ Definition 13. Let F be a field of arbitrary characteristic. A hitting set H ⊂ Fn for a
circuit class C(F) is called robust if for every circuit Φ ∈ C(F(ε)) computing a polynomial
f(x) = h(x) + ε · g(x), where h(x) ∈ F[x] and g(x) ∈ F[ε][x], there exists some a ∈ H such
that f(a) ̸∈ ε · F[ε].

It is not hard to prove using the result of [3] that for F = C, Definitions 12 and 13 are
equivalent.

▶ Observation 14. If H is a finite robust hitting set for C(F), then H hits C(F) as well.

Proof. Consider 0 ̸= f ∈ C(F). By Definition 9 there is g ∈ C(F(ε)), such that f = g + O(ε).
Clearly g ̸= 0. Let a ∈ H be such that g(a) ̸∈ ε · F[ε]. It follows that f(a) ̸∈ ε · F[ε]. In
particular, f(a) ̸= 0. ◀

We next define the notion of an interpolating set.

▶ Definition 15. Let C be a class of n-variate polynomials. A set H ⊆ Fn is called an
interpolating set for C if, for every f ∈ C, the evaluations of f on H uniquely determine f .

▶ Observation 16. If H is a hitting set for C(F) + C(F) ≜ {αf + βg : f, g ∈ C, α, β ∈ F},
then H is an interpolating set for C.

A common method for designing hitting and interpolating sets is via hitting set generators.

▶ Definition 17. A polynomial mapping G : Fk → Fn is called a hitting set generator (or
simply a generator) for a circuit class C(F) if for any non-zero n-variate polynomial f ∈ C,
the k-variate polynomial f ◦ G is non-zero.

Similarly, we call G : Fk → Fn an interpolating set generator for a circuit class C(F) if
for any two different n-variate polynomials f1, f2 ∈ C, the k-variate polynomial (f1 − f2) ◦ G
is non-zero.

Generators immediately give rise to hitting sets.

▶ Observation 18. Let G : Fk → Fn be a generator for C(F) such that the individual degree
of each coordinate of G is at most r. Let W ⊂ F be any set of size |W | = d · r + 1. Let
H = G

(
W k
)
. Then H hits every n-variate polynomial f ∈ C of degree at most d.

Proof. As G is a generator, the k-variate polynomial f ◦ G is nonzero. As its individual
degrees are bounded by d · r it follows that at least one of the values in (f ◦ G)

(
W k
)

= f (H)
is not zero. ◀

7 We abuse notation and write f ∈ C when f is the output of some circuit from C.
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1.1.5 k-independent maps
Our constructions rely on polynomial mappings Gk, parameterized by some integer k ≤ n,
with the property that the image of f ◦ Gk contains all projections of f to k variables. We
call such a map a k-independent map.

▶ Definition 19. We call a polynomial mapping G(y1, . . . , yt, z1) : Ft+1 → Fn a
1-independent polynomial map if for every index i ∈ [n] there exists an assignment ai ∈ Ft

to y1, . . . , yt such that the ith coordinate of G(ai, z1) is z1, and the rest of the coordinates
are 0. For k > 1, a polynomial mapping G(y1, . . . , ytk, z1, . . . , zk) : Fk(t+1) → Fn is called a
k-independent polynomial map (or a k-independent map) if G is a sum of k variable-disjoint
1-independent polynomial maps. We denote k-independent polynomial maps as G(y, z) when
k, t are implicit. The y variables are called control variables.

A k-independent polynomial map G is called uniform if all n coordinates of G are
homogeneous polynomials of the same degree.

We discuss k-independent maps in more detail in Section 2.

1.1.6 Subgroups of the linear and affine groups and their actions
Given a matrix A ∈ Fn×n and a tuple of variables x = (x1, . . . , xn), we denote

Ax =
(

n∑
i=1

A1,ixi,

n∑
i=1

A2,ixi, . . . ,

n∑
i=1

An,ixi

)
.

Let n ≥ m ∈ N. For an m-variate polynomial f(x1, . . . , xm) ∈ F[x1, . . . , xm], a matrix
A = (Ai,j)n

i,j=1 ∈ Fn×n and a vector b = (b1, . . . , bn) ∈ Fn, we define the n-variate polynomial
f (Ax + b) to be

f (Ax + b) ≜ f

(
n∑

i=1
A1,ixi + b1,

n∑
i=1

A2,ixi + b2, . . . ,

n∑
i=1

Am,ixi + bm

)
. (2)

Note that we ignored the last n − m coordinates of Ax + b.
We denote with GLn(F) the group of invertible n × n matrices over F, and with GLaff

n (F)
the group of invertible affine transformation, i.e. all the maps x → Ax+b, where A ∈ GLn(F)
and b ∈ Fn.

For an m-variate polynomial f over F, and n ≥ m we denote with fGLaff
n (F) the orbit of f

under the natural action of GLaff
n (F):8

fGLaff
n (F) ≜ {f(Ax + b) | A ∈ GLn(F), b ∈ Fn} .

We similarly define fGLn(F). More generally, for a class of m-variate polynomials C(F), we
denote the orbit of C under GLaff

n (F) by

CGLaff
n (F) ≜ {f(Ax + b) | f ∈ C, A ∈ GLn(F), b ∈ Fn} .

We similarly define CGLn(F). When we want to speak about orbits of families of polynomials
from C(F), with arbitrary number of variables, we use the notation CGL(F) or CGLaff(F).

8 To be precise, the action is ((A, b) ◦ f) (x) = f(AT x + b). This is required in order to make the action
a homomorphism, however, for the groups that we consider it does not change the orbit.
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▶ Observation 20. For any m variate polynomial f(x1, . . . , xm) and n ≥ m:
For any A ∈ GLn(F) and d ∈ N, f [d](Ax) is the d-homogeneous part of f(Ax).
For any A ∈ GLaff

n (F), f(x) is irreducible if and only if f (Ax) is irreducible.
The set of matrices A for which f(x) = f(Ax) forms a multiplicative subgroup of GLn(F)
and a similar claim holds for GLaff

n (F).

We next define some special groups that serve as group of symmetries of some of the
models that we consider. We first define the group of symmetries of ANF∆(x). We denote
with Ik the k × k identity matrix.

▶ Definition 21. For m, ∆ ∈ N such that m = 2∆, the tree-symmetry group TRm(F) denotes
the automorphisms of a rooted complete binary tree of depth ∆. It is defined recursively as
follows.

For m = 1, TR1(F) consists only of the identity matrix.
For m > 0, TRm(F) is generated by matrices of the form(

A 0
0 B

)
and

(
0 I m

2

I m
2

0

)
where A, B ∈ TR m

2
(F).

▶ Definition 22. For any m = 4∆, the tree-scale group TSm(F) is the group generated by
elements of TRm(F) and matrices of the form

αI m
4

0 0 0
0 α−1I m

4
0 0

0 0 βI m
4

0
0 0 0 β−1I m

4


where 0 ̸= α, β ∈ F.

The importance of the group TSm(F) stems from the fact that it is the symmetry group
of ANF∆. To intuitively see why this is the case, notice that in any representation of an
ANF one may swap children of any node without changing the output polynomial. We call
such symmetries “tree-symmetries” and they are captured by the group TRn(F). A second
source of ambiguity comes from the fact that we can rescale the formula. Recall that the
output polynomial is of the form f1 · f2 + f3 · f4 (Definition 7). Clearly, the output does not
change if we replace f1 by, say, 2f1 and f2 by f2/2. Such rescaling symmetries are captured
by the group TSn(F). Finally, another source for ambiguity comes from the fact that the
quadratic polynomials computed at the bottom two layers of the ANF may have different
representations. For example,

4xy + 4wz = (x + y + w − z) · (x + y − w + z) + (w + z + x − y) · (w + z − x + y) .

As there is an infinite number of representations for each quadratic polynomial (over infinite
fields), we can expect to characterize the symmetries in term of the quadratics computed at
the bottom two layers of the ANF.

▶ Fact 23 (Special case of Theorem 5.43(iii) of [35]). Let m, ∆, n ∈ N such that m = 4∆−1 ≤
n/4. Let f = ANF∆(ℓ1, . . . , ℓ4m) ∈ ANFGLaff

n (F)
∆ . Let Q = (q1, . . . , qm) be the list of quadratic

polynomials that are computed at the bottom two layers of the formula ANF∆(ℓ1, . . . , ℓ4m). In
particular, f = ANF∆−1(q1, . . . , qm). If Q′ = (q′

1, . . . , q′
m) is any other m-tuple of quadratic

polynomials for which f = ANF∆−1(q′
1, . . . , q′

m) then Q is TSm(F)-equivalent to Q′.
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Next, we define the group of symmetries of Ts,d(x).

▶ Definition 24. For any n ∈ N the permutation-scale group, denoted PSn(F), is the set of
all matrices A ∈ GLn(F) which are row-permutations of non-singular diagonal matrices with
determinant one.

For example,

 0 −2 0
0 0 −1

1/2 0 0

 ∈ PS3(C).

▶ Definition 25. Let s, d, n ∈ N such that n = s · d. A matrix A ∈ GLn(F) is a member of
the tensor permutation-scale group, denoted TPSs,d(F), if A = (P ⊗ Id) · B, where P is an

s × s permutation matrix and B =


B1 0 . . . 0
0 B2 . . . 0
...

. . .
...

0 . . . 0 Bd

 is a block diagonal matrix such

that each block Bi of B satisfies Bi ∈ PSd(F).

For example, for s = d = 2 the matrix A =


0 0 0 2
0 0 1/2 0

−1 0 0 0
0 −1 0 0

 is in TPS2,2(C), as for

P =
(

0 1
1 0

)
and B =


−1 0 0 0
0 −1 0 0
0 0 0 2
0 0 1/2 0

, we have A = (P ⊗ I2) · B, and clearly each

block of B is in PS2(C).

Another way of defining the group is as follows: index rows and columns of A with pairs
(i, j) ∈ [s] × [d]. Then, A ∈ TPSs,d(F) if and only if there exists a permutation π : [s] → [s],
and for all i ∈ [s] permutations θi : [d] → [d] and constants αi,j satisfying

∏d
j=1 αi,j = 1,

such that A(i,j),(i′,j′) = δπ(i),i′ · δθi(j),j′ · αi,j for all i, j.
We next prove that TPSs,d(F) is the group of symmetries of Ts,d(x). In other words,

we show that Ts,d(x) = Ts,d(Ax) if and only if A ∈ TPSs,d(F). Intuitively, Ts,d admits no
symmetries other than the trivial ones: permutations on the product gates, and internal
permutation-scale of each product gate such that the product of the scale coefficients is 1.
This is exactly captured by the group TPSs,d(F), which is therefore contained in the group
of symmetries of Ts,d(x).

▶ Lemma 26. Let s, d, n ∈ N, such that d > 2 and n = s · d. If A ∈ GLn(F) satisfies
Ts,d(x) = Ts,d(Ax), then A ∈ TPSs,d(F).

1.2 Our results
We first give our results for the class VPe and then for the class of depth-3 circuits, for which
it may be easier to obtain a robust hitting set, or prove super-polynomial lower bounds.

1.2.1 The continuant polynomial
Bringmann, Ikenmeyer and Zuiddam [14] defined the following polynomial (in Remark 3.14
of their paper), which they called the continuant polynomial:

CCC 2021



19:12 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

▶ Definition 27. The continuant polynomial on n variables, Cn(x1, . . . , xn), is defined as
the trace of the following matrix product:

Cn(x1, . . . , xn) ≜ Trace
((

x1 1
1 0

)
·
(

x2 1
1 0

)
· . . . ·

(
xn 1
1 0

))
. (3)

We denote with CGLaff(F) the class of families of polynomials (fn)n such that fn ∈ F[x1, . . . , xn]
and for some m ≤ n, fn ∈ CGLaff

n (F)
m .

A result of Allender and Wang implies that the polynomial x1 · y1 + · · · + x8 · y8 is not in
CGLaff(F) [4]. Thus, as a computational class it is very weak. However, Theorem 3.12 of [14]
states that for every field F of characteristic different than 2, it holds that

CGLaff(F) = VPe . (4)

We give a polynomial-size interpolating set for the class CGLaff(F) as well as a polynomial-
time reconstruction algorithm for it. We first state a simple result that gives a hitting set for
the class.

▶ Theorem 28. Let f(x1, . . . , xn) ∈ CGLaff
n (F)

m , for m ≤ n, and arbitrary F. Then, for any
uniform 1-independent polynomial map G over F, f ◦ G ̸= 0.

As immediate corollary we get a hitting set for the class.

▶ Corollary 29. For every field F, there is an explicit hitting set H ⊂ Fn, of size |H| = O
(
n6),

that hits every 0 ̸= f ∈ CGLaff
n (F)

m . If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K such that |K| ≥ n2.

▶ Theorem 30. For every field F, there is an explicit interpolating set H ⊂ Fn, of size
|H| = O

(
n10), for

⋃n
m=1 CGLaff

n (F)
m . If |F| < n2 then H is defined over a polynomial-sized

extension field of F, K such that |K| ≥ n2.

▶ Theorem 31. There is a deterministic algorithm that given F, an integer n, or-
acle access to a root-finding algorithm over F, and black-box access to a polynomial
f(x1, . . . , xn) ∈ CGLaff

n (F)
m (for any m ≤ n), runs in polynomial-time and outputs linear

functions (ℓ1(x1, . . . , xn), . . . , ℓm(x1, . . . , xn)) such that

f(x1, . . . , xn) = Cm (ℓ1(x), . . . , ℓm(x)) .

If |F| < n3 then the algorithm will make queries from a polynomial-sized extension field of F,
K, such that |K| ≥ n3, and it also requires oracle access to a root-finding algorithm over K.

1.2.2 Orbits of read-once formulas
We denote with ROFGL(F) the class of families of polynomials (fn)n, such that for every n

there exists a ROF Φ, on m ≤ n variables, such that fn(x1, . . . , xn) ∈ ΦGLn(F). Similarly,
we denote with ANFGLaff[F] the class of families of polynomials (fn)n, such that for every n

there exists ∆ such that 4∆ ≤ n and fn(x1, . . . , xn) ∈ ANFGLaff
n (F)

∆ .
We first make the following simple observation.

▶ Theorem 32. For every field F, it holds that

ANFGLaff(F) ⊊ ROFGL(F) ⊊ VPe(F) . (5)

However, when taking closures we get

ANFGLaff(F) = ROFGL(F) = VPe(F) . (6)
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Our main results for ROFs and ROANFs are a construction of a hitting set for the orbit
of ROFs, and an interpolating set for the orbit of ROANFs. Both constructions are obtained
using independent polynomial maps (Definition 19).

▶ Theorem 33. Let 0 ̸= f ∈ ROFGLaff
n (F) where the underlying ROF depends on 2t variables,

for 2t ≤ n. Then, for any (t + 1)-independent polynomial map G, over F, f ◦ G ̸= 0.

▶ Corollary 34. For every field F, there is a hitting set H ⊂ Fn, of size |H| = nO(log n),
that hits every 0 ̸= f ∈ ROFGLaff

n (F). If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K such that |K| ≥ n2.

Since a hitting set for all polynomials of the form g − h where g, h ∈ C is the same as
an interpolating set for C, the following theorem gives an interpolating set for the orbit of
ROANFs.

▶ Theorem 35. Let f1 = ANF∆1(A1x + b1), f2 = ANF∆2(A2x + b2) ∈ ANFGLaff
n (F) and

f = f1 − f2. Set k ≜ 2 max{∆1, ∆2} + 7 and let G be any uniform k-independent polynomial
map, over F. If f ̸= 0 then f ◦ G ̸= 0.

▶ Corollary 36. For any field F, the class ANFGLaff
n (F)

∆ , for 4∆ ≤ n, admits an interpolating
set H ⊂ Fn, of size |H| = nO(∆). If |F| < n2 then H is defined over a polynomial-sized
extension field of F, K, such that |K| ≥ n2.

Finally, we observe that the randomized algorithm of Gupta, Kayal And Qiao [35], for
reconstructing random algebraic formula (for a natural definition of a random formula),
yields a randomized reconstruction algorithm for ANFGLaff(C). Naturally, the reconstruction
is up to the symmetry group of ROANFs.

▶ Theorem 37 (A special case of Theorem 1.1 of [35]). Let T be a finite subset of C. Let
n, ∆ ≥ 1 be integers such that s ≜ 4∆ ≤ n. Given black-box access to the output f of
a circuit Φ ∈ ANFGLaff

n (C), with probability at least 1 − n2sO(1)

|T | (on internal randomness),
Algorithm 6.9 of [35] successfully computes a tuple of s linearly independent linear functions
L = (ℓ1, . . . , ℓs) ∈ (C[x])s such that f = ANF∆(ℓ1, . . . , ℓs), and the ℓis are identical to the
labels of the leaves of Φ up to TSn(C)-equivalence (see Definition 22). Moreover, the running
time of the algorithm is poly(n, s, log(|T |)).

▶ Remark 38. Theorem 1.1 of [35] is stated only for characteristic zero fields. However, in
Remark 6.10 they explain how to make the algorithm work over any characteristic, for a large
enough field. Thus, Theorem 37 also holds over large enough fields in arbitrary characteristic.

▶ Remark 39. As a direct implication of Theorem 35, the reconstruction algorithm of
Theorem 37 can be converted into a zero-error algorithm, with expected quasipolynomial
running time: Given black-box access to some f1 ∈ ANFGLaff(F), we define f2 to be the output
of the algorithm of Theorem 37 on input f1, and then verify f1 = f2 using Corollary 36.

1.2.3 Dense subclasses of ΣΠΣ
We start by defining the canonical diagonal tensor of degree d and rank s, Ts,d ∈
F[x1,1, . . . , xs,d], and the resulting class of polynomials T GLaff(F).

▶ Definition 40. Let Ts,d ≜
∑s

i=1
∏d

j=1 xi,j . I.e., it is a sum of s variable-disjoint monomials.

For n ≥ s · d, we denote with TGLaff
n (F)

s,d the orbit of Ts,d over F, under the action of the affine
group. Finally, we denote with T GLaff(F) the class of families of polynomials (fn)n, such that
for every n there exist s and d such that n ≥ s · d and fn(x1, . . . , xn) ∈ TGLaff

n (F)
s,d .
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Clearly, TGLaff
n (F)

s,d ⊂ Σ[s]Π[d]Σ. We next define the class consisting of orbits of sparse
polynomials.

▶ Definition 41. Let ΣΠGLaff(F) denote the class of families of polynomials that are computed
by orbits of depth-2 circuits, of polynomially bounded size, over F. I.e., it is all families
(fn)n, of polynomially bounded degree, such that for some polynomially bounded m(n), there
exist Σm(n)Πdeg(fn) circuits Φm, in k ≤ n, many variables, such that fn ∈ ΦGLaff

n (F)
m .

As before we first give the basic observation connecting all three classes.

▶ Theorem 42. For every field F it holds that

T GLaff(F) ⊊ ΣΠGLaff(F) ⊆ ΣΠΣ(F) ,

and for fields of size |F| ≥ n + 1

ΣΠGLaff(F) ⊊ ΣΠΣ(F) .

In addition,

T GLaff(F) = ΣΠGLaff(F) = ΣΠΣ(F) . (7)

Our main results for this section are a quasipolynomial-size hitting set for the class
ΣΠGLaff(F), and a polynomial-size interpolating set for T GLaff(F).

▶ Theorem 43. Let 0 ̸= g ∈ F[x] have sparsity ≤ 2t. Let (A, b) ∈ GLaff
n (F), and f(x) =

g(Ax + b). Then, for any (t + 1)-independent polynomial map G, f ◦ G ̸= 0.

▶ Corollary 44. For any integers s, d, n, there exists an explicit hitting set H ⊂ Fn, of
size |H| = (nd)O(log s), such that H hits every nonzero polynomial f ∈

(
Σ[s]Π[d])GLaff

n (F). If
|F| ≤ n · d then we let H be defined over an extension field K of F of size |K| > n · d.

We next state our result concerning an interpolating set for T GLaff(F).

▶ Theorem 45. Let n, s1, s2, d1, d2 ∈ N be such that n ≥ s1 · d1, s2 · d2. For i ∈ {1, 2} let
fi ∈ TGLn(F)

si,di
, and let f = f1 − f2. If f ≠ 0, then any uniform 6-independent polynomial map

G satisfies f ◦ G ̸= 0.

Finally we note that the randomized reconstruction algorithm of Kayal and Saha [45],
which works for (as it is termed in their paper) “non-degenerate” homogeneous depth-3
circuits, works for T GLaff(F). This follows from the observation that T GLaff(F) circuits are
always non-degenerate.

▶ Theorem 46 (special case of Theorem 1 of [45]). Let n, d, s ∈ N, n ≥ (3d)2 and s ≤
( n

3d ) d
3 . Let F be a field of characteristic zero or greater than ds2. There is a randomized

poly(n, d, s) = poly(n, s) time algorithm which takes as input black-box access to a polynomial
f that is computable by a TGLaff

n (F)
s,d circuit, and outputs a TGLaff

n (F)
s,d circuit Φ computing f with

high probability. Furthermore, Φ is unique up to TPSs,d(F)-equivalence (see Definition 25).

▶ Remark 47. As in Remark 39, Theorem 45 enables us to convert the reconstruction
algorithm of Theorem 46 to a zero-error algorithm, with expected polynomial running time.
Given black-box access to some f1 ∈ T GLaff(F), we define f2 to be the output of the algorithm
of Theorem 46 on input f1, and then verify f1 ≡ f2 by applying Theorem 45 to f = f1 − f2.
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1.2.4 Robust hitting sets?
As we showed in Observation 14, if a hitting set H for a circuit class C is robust, then H hits
C as well. It is thus natural to ask whether our interpolating sets are already robust. Our
next result shows that the property of being a t-independent map, which was sufficient for
the constructions in Theorems 28, 30, 33, 35, 43, and 45 (for the appropriate values of t),
by itself is not sufficient for obtaining robust hitting sets. We prove this by constructing
an independent polynomial map which gives rise to a provably non-robust hitting set. Our
construction is the same as the one given by Forbes et al. [27] (Construction 6.3 in the full
version).

▶ Theorem 48. Let F be of characteristic zero. For every t, there exists a uniform t-
independent polynomial map G and a nonzero polynomial f such that f ◦ G ≡ 0, and f can be
computed by a ΣΠΣ formula of size tO(

√
t). If F has a positive characteristic then f can be

computed by a ΣΠΣ formula of size tt, or by a general formula of size tO(log t). Furthermore,
for a certain arrangement of the variables in a

√
n ×

√
n matrix, f can be taken to be the

determinant of any (t + 1) × (t + 1) minor.

1.3 Polynomial Identity Testing
So far we discussed our work from the perspective of dense subclasses of classes for which
no strong lower bounds are known. Here we put our work in the context of the polynomial
identity testing problem.

Polynomial Identity Testing (PIT for short) is the problem of designing efficient determ-
inistic algorithms for deciding whether a given arithmetic circuit computes the identically
zero polynomial. PIT has many applications, e.g. deciding primality [1], finding a perfect
matching in parallel [23, 69] etc., and strong connection to circuit lower bounds [38, 22, 19, 32].
See [67, 62, 63] for surveys on PIT and [50] for a survey of algebraic hardness-randomness
tradeoffs.

PIT is considered both in the white-box model, in which we get access to the graph of
computation of the circuit, and in the black-box model in which we only get query access
to the polynomial computed by the circuit. Clearly, a deterministic PIT algorithm in the
black-box model is equivalent to a hitting set for the circuit class. In this work we only focus
on the black-box model.

The continuant polynomial and algebraic branching programs

The continuant polynomial is trivially computed by width-2 Algebraic Branching Programs
(ABPs). Recall that an ABP of depth-d and width-w computes polynomials of the form
Trace (M1(x) · . . . · Md(x)), where each Mi is a w × w matrix whose entries contain variables
or field elements. Ben-Or and Cleve proved that every polynomial in VPe can be computed
by a width-3 ABP of polynomial-size [8].

Raz and Shpilka gave the first polynomial-time white-box PIT algorithm for read-once
ABPs (ABPs in which every variable can appear in at most one matrix) [58]. Forbes,
Saptharishi and Shpilka gave the first quasipolynomial-sized hitting set for read-once ABPs
(ROABPs) [25]. This result was slightly improved in [31] for the case where the width of the
ROABP is small. Anderson et al. gave a subexponential hitting set for read-k ABPs [5]. We
note that none of these models is strong enough to contain the orbit CGLaff(F). For ABPs
that are not constant-read we do not have sub-exponential time PIT algorithms. Thus, the
following is an interesting open problem (recall that by the result of Ben-Or and Cleve a
PIT algorithm for width-3 ABPs works for VPe as well).
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▶ Problem 49. Give a sub-exponential time PIT algorithm for ABPs of width-2.

It is interesting to note that by a result of Saha, Saptharishi and Saxena [59], PIT for
ABPs of width-2 would yield PIT for ΣΠΣ circuits.

Although we do not have a PIT algorithm for general branching programs, in [44] Kayal et
al. gave an average-case reconstruction algorithm for low width ABPs. Kayal, Nair and Saha
obtained a significantly better algorithm in [43]. Their algorithm succeeds w.h.p, provided
the ABP satisfies four non-degeneracy conditions (these conditions are defined in Section
4.3 of [43]). However, the ABP computing the continuant polynomial does not satisfy the
non-degeneracy conditions that are required for their algorithm to work. Thus, Theorem 31
does not follow from [43].

To the best of our knowledge, CGLaff(F) is the first natural9 computational class that is
dense in VPe for which a polynomial (or even sub-exponential)-sized interpolating set (or a
hitting set) is known.

Read-Once formulas

Hitting sets for read-once formulas were first constructed by Volkovich and Shpilka [66], who
gave quasipolynomial-sized hitting set for the model, as well as a deterministic reconstruction
algorithm of the same running time (earlier randomized reconstruction algorithms were
known [16, 15]). Minahan and Volkovich obtained a polynomial-sized hitting set for the class,
which led to a similar improvement in the running time of the reconstruction algorithm [54].
Anderson, van Melkebeek and Volkovich constructed a hitting set of size nkO(k)+O(k log n) for
read-k formulas [6]. All these results work in a slightly stronger model in which we allow
to label leaves with univariate polynomials, of polynomial degree, such that every variable
appears in at most one polynomial, or with sparse polynomials on disjoint sets of variables.

The read-once models that we consider here, ANFGLaff(F) and ROFGL(F), can be viewed
as read-once formulas composed with a layer of addition gates with the restriction that the
bottom layer of additions computes linearly independent linear functions. We note that these
models do not fall into any of the previously studied models, as a variable can appear in all
the linear functions.

As is the case with CGLaff(F), our hitting sets for ANFGLaff(F) and ROFGL(F) are the first
sub-exponential-sized hitting sets for natural dense subclasses of VPe.

Small depth circuits

The class of ΣΠ circuits was considered in many works, see e.g. [9, 48] and polynomial-sized
hitting sets were constructed. The class of ΣΠΣ circuits also received a lot of attention
but with lesser success. Dvir and Shpilka [21] and Karnin and Shpilka [40] gave the
first quasipolynomial-time white-box and black-box PIT algorithms for Σ[k]Π[d]Σ circuits,
respectively. Currently, the best result is by Saxena and Seshadhri who gave a hitting set of
size (nd)O(k) for such circuits [64]. In [20] a subexponential-size hitting set for multilinear
ΣΠΣ circuits was given. In [2], Agrawal et al. gave a hitting set of size nO(1) · (kd)O(r) for
Σ[k]Π[d]Σ circuits, where r is an upper bound on the algebraic rank of the multiplication gates
in the circuit. Thus, known quasipolynomial-size hitting sets for subclasses of ΣΠΣ circuits
are known when the fan-in of the top gate is poly-logarithmic, or when the algebraic rank of

9 It is hard to define what a natural class means, but, for example the set of all polynomials in VPe with
a nonzero free term has a trivial hitting set, but is not a “computational” subclass.
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the set of multiplication gates is poly-logarithmic. In contrast, polynomials in T GLaff
n (F) and

ΣΠGLaff(F), when viewed as ΣΠΣ circuits, can have polynomially many multiplication gates
and their algebraic rank can be n. On the other hand, the corresponding ΣΠΣ circuits are
such that the different linear functions that are computed at their bottom layer are linearly
independent (when we view linear functions that are a constant multiple of each other as the
same function). Thus, our Corollary 44 provides a hitting set for a new subclass of ΣΠΣ
circuits.

To the best of our knowledge, our results for T GLaff(F) and ΣΠGLaff(F) give the first
sub-exponential size hitting sets for natural subclasses that are dense in ΣΠΣ.

1.4 More related work
Approximations in algebraic complexity were first studied by Bini et al. in the context of
algorithms for matrix multiplication [12]. For more on the history of border rank in the
context of matrix multiplication see notes of chapter 15 in [18]. More recently, influenced by
the GCT program, a lot of research was invested in trying to find polynomials characterizing
tensors of small rank. See [51] for a discussion on this approach. More recently, Kumar
proved that every polynomial over C can be approximated by a Σ[2]ΠΣ circuit (of exponential
degree) [49].

Very little is known about the closure of circuit classes. Forbes observed that the class
of ROABPs is closed [24]. I.e. ROABP = ROABP. We are not aware of other collapses or
separation between general “natural” classes and their closures.

Beside the reconstruction algorithms mentioned earlier, reconstruction algorithms are
known for ΣΠ circuits [9, 48]; for random depth three powering circuits [42]; for set-multilinear
ΣΠΣ and ROABPs [7, 47]; for ΣΠΣ circuits with bounded top fan-in [65, 41, 68]; and for
multilinear depth-4 circuits with a constant top fan-in [34, 11].

In general, we do not expect the reconstruction problem to be solvable efficiently, as the
problem of finding the minimal circuit computing a given polynomial is a notoriously hard
problem. A detailed discussion on the hardness of reconstruction can be found in [43].

Independently and concurrently with our work Saha and Thankkey gave PIT algorithms
for orbits of different models of read-once oblivious algebraic branching programs (ROABPs)
and for constant-depth, constant-occur formulas [60]. Their results concerning ROABPs
were recently improved by Bhargava and Ghosh [10]. Interestingly, both [60, 10] use k-wise
independent maps in their construction. We note that the only model that is studied in
this paper and in [60, 10] is that of (orbits of) sparse polynomials. For orbits of sparse
polynomials are hitting set is potentially much smaller than those constructed in [60, 10] as
it does not depend on the individual degrees appearing in the sparse polynomial.

Simultaneously and independently, Saha and Thankey [60] studied PIT for orbits of
related computational models. Specifically, they obtained quasi-polynomial sized hitting sets
for: Low-individual-degree polynomials computable by commutative ROABP; Multilinear
polynomials computable by constant-width ROABP; Polynomials computable by constant-
depth, constant-occur formulas with low-individual-degree sparse polynomials at the leaves;
and Polynomials computable by occur-once formulas with low-individual-degree sparse
polynomials at the leaves. We refer the reader for their paper for definitions of these models.
The results of [60] are mostly disjoint from ours, except for the model of sparse polynomials
that is captured by commutative ABPs. In this case our result is superior to theirs as
their hitting set has an exponential dependence in the individual degrees, while ours work
for any polynomial degree sparse polynomial. It is interesting to note that the hitting set
constructions of [60] are also based on k-independent maps.

CCC 2021



19:18 Hitting Sets and Reconstruction for Dense Orbits in VPe and ΣΠΣ Circuits

1.5 Proof technique
Our proofs are based on the following simple yet important, and as far as we know novel,
observations concerning k-independent polynomial maps. Specifically, our proofs are based
on the following two claims:

1. If we have a hitting-set generator H for nonzero polynomials of the form ∂f
∂x1

, for f ∈ C,
and if G is a 1-independent map then H + G hits every nonzero f ∈ C. This is proved in
Lemma 61.

2. Similarly, we prove that if we have a hitting-set generator H for nonzero polynomials of the
form f

∣∣
ℓ=0(Ax + b), for f ∈ C, a linear function ℓ, and an invertible affine transformation

(A, b), and if G is a 1-independent map then H + G hits every nonzero f ∈ C. This follows
from Lemma 62.

By applying these claims k + r times we get that composition with a (k + r)-independent
map allows to reduce the problem of hitting a class C to hitting polynomials of the form

∂kf
∂xi1 ∂xi2 ···∂xik

∣∣∣
ℓ1=...=ℓr=0

. Thus, if we could prove that for a class C, there is such a sequence
of derivatives and restrictions that simplifies the polynomials in it to a degree that they can
be easily hit by some map H, then we conclude that H + Gk+r, for a (k + r)-independent
map Gk+r, is a hitting set generator for C.

It seems that all that is left to do is prove that for each of the orbits that we consider
in Section 1.2 that is such small k and r. However, a potential problem is that a partial
derivative of the polynomial g(x) = f(Ax + b) gives ∂g

∂x1
=
∑n

i=1
∂f
∂yi

· ∂ℓi

∂x1
, where ℓi is

the ith coordinate of Ax + b. Thus, it is no longer a derivative composed with an affine
transformation but rather a sum of such derivatives, which could lead to polynomials outside
of our class. For example, it is not hard ot prove that if we compose the ROF y1 · y2 · y3 with
(x1, x1 +x2, x1 +x3) and then take a derivative according to x1, then the resulting polynomial,
∂(x1·(x1+x2)·(x1+x3))

∂x1
= 3x2

1 + 2x1 · (x2 + x3) + x2 · x3, is not in the orbit of any ROF. The
solution to this problem is to take a directional derivative in a direction coming from a dual
basis. For example if ℓi(vj) = δi,j then ∂g

∂v1
= ∂f

∂x1
(Ax + b) (see Lemma 60). Now, comes

another important observation: If H is a hitting-set generator for nonzero polynomials of
the form ∂f

∂v , for f ∈ C and a direction v, and if G is a 1-independent map then H + G hits
every nonzero f ∈ C. The point is that if ∂f

∂v ◦ H ̸= 0 then for some i, ∂f
∂xi

◦ H ̸= 0 and the
claim follows from the first claim above. Thus, composition with (k + r)-independent maps
allows us to reduce the problem of hitting a class C to finding a generator for polynomials
that are obtained as a restriction to a subspace of co-dimension r of a directional partial
derivative of order k of polynomials in C.

Let us demonstrate this idea for the case of orbits of sparse polynomials. I.e. to
polynomials of the form g(x) = f(Ax + b), where the number of monomials in f is at most
2t. It is not hard to see that there is a variable xi such that if we consider f

∣∣
xi=0 and ∂f

∂xi

then one of these polynomials has at most 2t−1 monomials.10 Thus, after a a sequence of at
most t partial derivatives and restrictions, we get to a polynomial with only one monomial
that we can easily hit. Hence after at most t directional derivatives and restrictions to a
subspace, we get that g is a product of linear forms, which we can easily hit. This proves
that any (t + 1)-independent map hits such nonzero polynomials g.

10 This is not exactly accurate – it only holds if f is not divisible by some variable xi. However, the case
where there is a monomial dividing f is also quite easy to handle as it is enough to hit the polynomial
obtained after dividing by that monomial (since a composition with a 1-independent map keeps any
nonzero linear function nonzero).
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To obtain interpolating sets for our classes (and also a reconstruction algorithm for the
orbit of the continuant polynomial), we prove that if two polynomials in the orbit, of any
of the classes that we consider, are different, then there is a sequence of a few (directional)
partial derivatives and restrictions that makes one of them zero while keeping the other
nonzero. Using this and the ideas from above we construct our interpolating sets.

▶ Remark 50. In this version of the paper we only give proofs of the main properties of
k-wise independent maps (outlined above), as these are the main tool that we used in all our
proofs. The full version can be found at [53].

1.6 Discussion
As Theorem 48 shows, our hitting sets are not necessarily robust. It is thus an outstanding
open problem to find a way to convert a hitting set to a robust one (recall Problem 1).

The following toy example demonstrates that converting a hitting set for a class C to a
robust hitting set for C, cannot be done in a black-box manner and one has to use information
about C for that: let C(F) be the class of all polynomials with non-zero free term. A trivial
hitting set for C would simply be the singleton set H = {0}. On the other hand, it is clear
that C = F[x], so making H robust would yield a hitting set for all polynomials. Note,
however, that this is not a “computational class.”

Another potential approach for obtaining robust hitting sets follows from the observation
that the set of queries made by a non-adaptive deterministic black-box reconstruction
algorithm, A, for C, which is continuous at 0 (i.e. at the identically zero polynomial) is
a robust hitting set for C. The reason is, that if 0 ̸= f ∈ C and {fk}∞

k=1 ⊆ C converges
to f , then for large enough k: ∥fk∥2 ≥ 1

2 ∥f∥2 > 0. As the fk sequence converges and
polynomial evaluation is continuous (and their evaluation vectors are bounded), the sequence
vk = fk

∣∣
H ⊆ C|H| must also converge to some vector v = f

∣∣
H ∈ C|H|. If v = 0 then the

continuity of A at 0 implies the coefficients of the polynomials fk(x) must also converge to
zero, as A(0) = 0. This would contradict ∥fk∥2 ≥ 1

2 ∥f∥2 > 0 for large enough k, so v ≠ 0
and thus H hits C.

Thus, an interesting challenge is to derandomize the reconstruction algorithms given in
Theorems 31, 37, and 46, hoping that the resulting algorithms are continuous at 0. We note
however, that currently we do not even have efficient deterministic root-finding algorithms
over C. It is also known that in general, finding the minimal circuit for a polynomial can
be very difficult. E.g., in [36, 70] it was shown that the question of computing, or even
approximating, tensor rank, for degree 3 tensors, is NP hard, over any field.
▶ Remark 51. In Theorem 45, we have seen that any uniform O(log(sn))-independent
polynomial map G is an interpolating set generator for T GLaff(C); i.e, G induces an interpolating
set H for T GLaff(C). On the other hand, in Theorem 48, we constructed such a map G, with
the additional property that G is not a hitting set generator for ΣΠΣ circuits. In particular,
this implies that the induced (non-efficient) reconstruction map A (that takes f(H) and
returns a circuit computing f) is not continuous at 0.

We conclude this section with a somewhat vague question.

▶ Problem 52. Find a “computational” class of polynomials C with a known hitting set H,
such that C ̸= C, and convert H to a robust hitting set.

We note that the closure of Σ
∧

Σ circuits (i.e. circuits computing polynomials of the
form

∑
i ℓi(x)d, for linear functions ℓi) is contained in the class of commutative read-once

algebraic branching programs (see [25]). Thus, the hitting set for the latter class gives a
robust hitting set for the former [25]. However, we seek an example in which there is an
“interesting” conversion of a hitting set to a robust one.
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2 k-independent polynomial maps and their properties

▶ Observation 53. It holds that
1. If G(y, z) is a (k + 1)-independent polynomial map, then there exists a subset of variables

S and an assignment α ∈ F|S| such that G
∣∣
S=α

is a k-independent polynomial map.
2. For any k ≥ 1, the n coordinates of any k-independent polynomial map are F-linearly

independent.
3. Let ℓ1(x) and ℓ2(x) be linearly independent linear functions in F[x]. Let G(y, z1, z2) be

any 2-independent polynomial map. Consider ℓ1 ◦ G and ℓ2 ◦ G as polynomials in z1, z2
over F(y). Then, (ℓ1 ◦ G)[1] and (ℓ2 ◦ G)[1] are linearly independent, as linear forms in
z1, z2 over F(y).

We next give the construction of [66] of a k-independent polynomial map (denoted Gk

in [66]).

▶ Definition 54. Fix n and a set of n distinct field elements A = {α1, . . . , αn} ⊆ F.11 For
every i ∈ [n] let Li(w) : F → F be the ith Lagrange Interpolation polynomial for the set A.
That is, each Li(w) is polynomial of degree n − 1 that satisfies Li(αj) = δi,j. We define
GSV

1 (y1, z1) : F2 → Fn as:

GSV
1 (y1, z1) ≜ (L1(y1) · z1, L2(y1) · z1, . . . , Ln(y1) · z1) ,

and for any k ≥ 1, we define GSV
k : F2k → Fn as:

GSV
k (y, z) ≜ GSV

1 (y1, z1) + GSV
1 (y2, z2) + . . . + GSV

1 (yk, zk)

=

 k∑
j=1

L1(yj) · zj ,

k∑
j=1

L2(yj) · zj , . . . ,

k∑
j=1

Ln(yj) · zj

 .

▶ Observation 55. GSV
k is a k-independent polynomial map, in which each variable has

degree at most n − 1.

The generator GSV
k can be converted to a uniform k-independent polynomial map by

adding another k control variables yk+1, . . . , y2k, and swapping out the Li(yj)s for their
homogenizations yn−1

j+k Li

(
yj

yj+k

)
:

▶ Definition 56. With the notation used in Definition 54, define the uniform SV-generator
with k independence GSV-hom

k : F3k → Fn as:

GSV-hom
k (y1, . . . , y2k, z1, . . . , zk)

≜ yn−1
1+k · GSV

1

(
y1

y1+k
, z1

)
+ yn−1

2+k · GSV
1

(
y2

y2+k
, z2

)
+ . . . + yn−1

2k · GSV
1

(
yk

y2k
, zk

)

=

 k∑
j=1

yn−1
j+k L1

(
yj

yj+k

)
· zj ,

k∑
j=1

yn−1
j+k L2

(
yj

yj+k

)
· zj , . . . ,

k∑
j=1

yn−1
j+k Ln

(
yj

yj+k

)
· zj

 .

▶ Observation 57. GSV-hom
k is a uniform k-independent polynomial map, with individual

degrees at most n − 1.

11 If |F| < n then we take these elements from an appropriate extension field of F.
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We next show how we can use k-independent polynomial maps in order to, roughly,
simulate a kth order directional derivative or, project a polynomial to a subspace of co-
dimension k. We first need to define the notion of a directional derivative.

▶ Definition 58. For an n-variate polynomial f ∈ F[x] and v = (v1, . . . , vn) ∈ Fn, the
derivative of f(x) in the direction v is defined as:

∂f

∂v
=

n∑
i=1

vi · ∂f

∂xi
.

If F has positive characteristic then by ∂F
∂xi

we refer to the formal derivative (which in
the case of fields of characteristic zero is equal to the analytical definition). Observe that we
still have that

∂2f

∂y∂x
= ∂2f

∂x∂y
, ∂(fg)

∂x
= ∂f

∂x
· g + ∂g

∂x
· f

and

∂f (g1(x), . . . , gm(x))
∂xk

=
m∑

i=1

∂f

∂yi
(g1(x), . . . , gm(x)) · ∂gi

∂xk
,

where in the last expression f is an m variate polynomial, and g1, . . . , gm are n variate
polynomials.

We shall often take derivatives according to a dual set to a set of linearly independent
linear functions:

▶ Definition 59. A dual set for m linearly independent linear functions (recall that we
say that linear functions are linearly independent if and only if their degree-1 homogeneous
parts are linearly independent) in n ≥ m variables, ℓ1(x), . . . , ℓm(x) is a set of m vectors
{vi} ⊂ Fn such that ℓ

[1]
i (vj) = δi,j.

▶ Lemma 60. Let ℓ1, . . . , ℓm ∈ F[x1, . . . , xn], for n ≥ m, be linearly independent linear
functions. Let {vi} ⊂ Fn be a dual set. Let g ∈ F[y1, . . . , ym] be a polynomial. Then, for
f(x) = g (ℓ1(x), . . . , ℓm(x)) it holds that

∂f

∂vi
(x) = ∂g

∂yi
(ℓ1(x), . . . , ℓm(x)) .

Proof.

∂f

∂vi
(x) =

∑
j

vi,j · ∂f

∂xj
(x) =

∑
j,k

vi,j · ∂ℓk

∂xj
· ∂g

∂yk
(ℓ1(x), . . . , ℓm(x))

=
∑

k

ℓ
[1]
k (vi) · ∂g

∂yk
(ℓ1(x), . . . , ℓm(x)) = ∂g

∂yi
(ℓ1(x), . . . , ℓm(x)) . ◀

▶ Lemma 61. Let f ∈ F[x] where x = (x1, . . . , xn). Let H(w) : Ft → Fn be a polynomial map
in variables w, and let G(y, z) be a k-independent polynomial map such that var(H)∩var(G) =
∅. Then, for any v1, . . . , vk ∈ Fn:

∂kf

∂v1∂v2 · · · ∂vk
◦ H ̸= 0 ⇒ f ◦ (G + H) ̸= 0 .
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Proof. By definition of k-independent polynomial maps, G = G1(y1, z1) + . . . + Gk(yk, zk)
for some variable-disjoint 1-independent polynomial maps G1, . . . , Gk. It is therefore enough
to prove the lemma for k = 1, as we can replace f with ∂k−1f

∂v2···∂vk
, H with H + G2 + . . . + Gk

and G with G1; by iterative application of the result for k = 1, we will get the general result
for an arbitrary k ∈ N.

Denote H = (H1, H2, . . . , Hn). By Definition 58, the condition ∂f
∂v ◦ H ̸= 0 implies that

there exists some i ∈ [n] such that ∂f
∂xi

◦ H ̸= 0. Assume, WLOG, ∂f
∂x1

◦ H ̸= 0. As G is a
1-independent polynomial map, there exists some α ∈ F|y1| such that f ◦ (G + H)

∣∣
y1=α

=
f(z1 + H1, H2, . . . , Hn); denote g ≜ f ◦ (G + H)

∣∣
y1=α

. As no coordinate of H depends on
z1:

∂g

∂z1
= ∂ (z1 + H1)

∂z1
· ∂f

∂x1
(z1 + H1, H2, . . . , Hn) = 1 ·

(
∂f

∂x1

)
(z1 + H1, H2, . . . , Hn)

and therefore:
∂g

∂z1

∣∣∣∣
z1=0

= 1 ·
(

∂f

∂x1

)
(0 + H1, H2, . . . , Hn) =

(
∂f

∂x1

)
◦ H ̸= 0 .

As g is a projection of f ◦ (G + H), it follows that f ◦ (G + H) ̸= 0. ◀

The next lemma shows how to use k-independent maps in order to project a polynomial
to a subset of its coordinates.

▶ Lemma 62. Let m ≤ n ∈ N and g(w) ∈ F[w1, . . . , wm]. Let f(x) = g(ℓ1(x), . . . , ℓm(x))
for linearly independent linear functions ℓ1(x), . . . , ℓm(x). Let G(y, z) be a k-independent
polynomial map. For a set S ⊆ [n] of size k denote by g̃(xi : i ∈ [m] \ S) = g

∣∣
S=0 the

projection of g to the variables outside of S. Then, there exist linearly independent linear
functions {ℓ̃i(x) : i ∈ [m] \ S}, additional linear functions L(x) = (L1(x), . . . , Lk(x)) and
an assignment α ∈ F|y| such that:

f(x + G(α, L(x))) = g̃(ℓ̃i(x) : i ∈ [m] \ S) .

Proof. It is enough to prove the lemma for the case k = 1, as we may then define f̃(x) ≜
f(x + G(α, L1(x))) = g̃(ℓ̃1(x), . . . , ℓ̃m−1(x)) and apply the result iteratively. Thus, assume
k = 1, and WLOG assume S = {x1} (thus, g̃(w2, . . . , wm) = g(0, w2, . . . , wm)).

Let xi be some variable with a non-zero coefficient in ℓ1(x). Such a variable exists as the
ℓjs are linearly independent. For j ∈ [m], denote βj = ∂ℓj

∂xi
, i.e. βj is the coefficient of xi in

ℓj . By our choice of i, β1 ̸= 0. Choose some α ∈ F|y| such that G(α, z1) has z1 in the ith
coordinate, and 0 in all other coordinates. Define L(x) ≜ − ℓ1(x)

β1
, so we get:

f(x + G(α, L(x)) = f

(
x1, x2, . . . , xi−1, xi − ℓ1(x)

β1
, xi+1, . . . , xn

)
.

Observe that for every i,

ℓi (x + G(α, L(x)) = ℓi

(
x1, x2, . . . , xi−1, xi − ℓ1(x)

β1
, xi+1, . . . , xn

)
= ℓi(x) − βi

β1
· ℓ1(x) .

In particular, ℓ1 (x + G(α, L(x)) = 0. For i = 2, . . . , m, define:

ℓ̃i(x) ≜ ℓi(x) − βi

β1
· ℓ1(x) .

As ℓ1, . . . , ℓm are linearly independent, it follows that ℓ̃2, . . . , ℓ̃m are also linearly independent.
We get that

f(x + G(α, L(x))) = g(0, ℓ̃2(x), . . . , ℓ̃m(x)) = g̃(ℓ̃2(x), . . . , ℓ̃m(x)) . ◀
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2.1 Proof of Theorem 48
We next prove that there are k-independent maps that are provably not robust. The proof
is by giving a different construction of such maps that, for an appropriate arrangement of
the n variables in a matrix, is guaranteed to output matrices of rank at most k. Thus, a
determinant of any (k + 1) × (k + 1) minor, a polynomial that has small formulas for small
values of k, vanishes on the output of any such map.

The fact that such a construction exists was already noticed in [27] (Construction 6.3 of
the full version of the paper). For completeness we repeat the construction here.

Proof. (of Theorem 48) Fix the number of variables n and assume WLOG n is a perfect
square, i.e., n = m2. We index the variables as xi,j for i, j ∈ [m]. We let f = Dett+1. By
[33], over fields of characteristic zero, f has a tO(

√
t) = O(n) sized ΣΠΣ formula, which

is polynomial in n for t = O
(

(log n/ log log n)2
)

. Over fields of positive characteristic
the formula size is quasipolynomial in t, and the ΣΠΣ complexity is at most t!, which is
polynomial in n for t = O (log n/ log log n).

Denote by M the (t + 1) × (t + 1) symbolic matrix of variables Mi,j = xi,j . We first
construct a uniform 1-independent polynomial map G1 such that M ◦ G1 is of rank 1, and
define G to be a sum of t variable-disjoint copies of G1. As rank(M ◦ G1) = 1, we have
rank(M ◦ G) ≤ t so Dett+1(M ◦ G) = 0, as required. We now focus on G1.

Fix n distinct field elements {αi,j}m
i,j=1 ⊆ F and let w, y, z be new variables. Define two

vectors of polynomials of degree n − 1, R = (R1, . . . , Rm), C = (C1, . . . , Cm) ∈ F[y]m, such
that for every k ∈ [m] Rk and Ck satisfy

Rk(αi,j) = δi,k and Ck(αi,j) = δj,k.

Define G1(w, y, z) as the m × m matrix z · (w2n−2R( y
w ) · C( y

w )T ) (the (i, j) entry of G1 is
z · w2n−2 · Ri( y

w ) · Cj( y
w )). As every coordinate of G1 is a homogeneous polynomial of degree

2n − 1, G1 is a uniform polynomial map. For any i, j ∈ [m] we have that

G1(1, αi,j , z) = z · (Ri′(αi,j) · Cj′(αi,j))i′,j′∈[m] = z · (δi,i′δj,j′)i′,j′∈[m] .

The above matrix has z in entry (i, j) and 0 everywhere else, so G1 is a uniform 1-independent
polynomial map. The resulting matrix M ◦G1 is of rank 1 since it is a product of vectors R·CT ,
so the variable-disjoint sum G =

∑t
1 G1(wi, yi, zi) is a uniform t-independent polynomial map

satisfying f ◦ G = 0. ◀
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