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Abstract
We prove a direct product theorem for the one-way entanglement-assisted quantum communication
complexity of a general relation f ⊆ X × Y × Z. For any 0 < ε < δ < 1

2 and any k ≥ 1, we show that

Q1
1−(1−ε)Ω(k/ log |Z|) (fk) = Ω

(
k · Q1

δ(f)
)

,

where Q1
ε(f) represents the one-way entanglement-assisted quantum communication complexity of f

with worst-case error ε and fk denotes k parallel instances of f .
As far as we are aware, this is the first direct product theorem for the quantum communication

complexity of a general relation – direct sum theorems were previously known for one-way quantum
protocols for general relations, while direct product theorems were only known for special cases.
Our techniques are inspired by the parallel repetition theorems for the entangled value of two-player
non-local games, under product distributions due to Jain, Pereszlényi and Yao [24], and under
anchored distributions due to Bavarian, Vidick and Yuen [4], as well as message compression for
quantum protocols due to Jain, Radhakrishnan and Sen [29]. In particular, we show that a direct
product theorem holds for the distributional one-way quantum communication complexity of f

under any distribution q on X × Y that is anchored on one side, i.e., there exists a y∗ such that
q(y∗) is constant and q(x|y∗) = q(x) for all x. This allows us to show a direct product theorem for
general distributions, since for any relation f and any distribution p on its inputs, we can define a
modified relation f̃ which has an anchored distribution q close to p, such that a protocol that fails
with probability at most ε for f̃ under q can be used to give a protocol that fails with probability at
most ε + ζ for f under p.

Our techniques also work for entangled non-local games which have input distributions anchored
on any one side, i.e., either there exists a y∗ as previously specified, or there exists an x∗ such
that q(x∗) is constant and q(y|x∗) = q(y) for all y. In particular, we show that for any game
G = (q, X × Y, A × B, V) where q is a distribution on X × Y anchored on any one side with constant
anchoring probability, then

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
k

log(|A|·|B|)

)
where ω∗(G) represents the entangled value of the game G. This is a generalization of the result of
[4], who proved a parallel repetition theorem for games anchored on both sides, i.e., where both a
special x∗ and a special y∗ exist, and potentially a simplification of their proof.
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1 Introduction

A fundamental question in complexity theory is: given k independent instances of a function
or relation, does computing them require k times the amount of resources required to compute
a single instance of the function or relation? Suppose solving one instance of some problem
with success probability at least 1 − ε requires c units of some resource. A natural way to
solve k independent instances of this problem would be to solve them independently, which
requires ck units of the resource. A direct sum theorem for this problem would state that any
algorithm for solving k instances which uses o(ck) units of resource has success probability
at most 1 − ε. A direct product theorem for the problem would state that any algorithm
for solving k instances that uses o(ck) units of resource has success probability at most
(1 − ε)Ω(k). Hence a direct product theorem is the stronger result of the two.

In this paper, we deal with direct product theorems in the model of communication
complexity. In this model, there are two parties Alice and Bob, who receive inputs x and y

respectively, and wish to jointly compute a relation f . They can use local computation, public
coins, and communicate with each other using classical messages, in the classical model;
use local unitaries, shared entanglement, and communicate with each other using quantum
messages, in the quantum model. The resource of interest is the number of bits/qubits
communicated; so the parties are allowed to share an arbitrary amount of randomness or
entanglement, and perform local operations of arbitrary complexity.

Direct product theorems in communication are related to parallel repetition theorems for
non-local games. In a non-local game, two parties Alice and Bob are given inputs x and y

respectively from some specified distribution, and without communicating with each other,
they are required to give answers a and b respectively to a referee. They are considered to
win the game if V(a, b, x, y) holds for a specified predicate V. In the classical model, the
players are allowed to share randomness, and in the quantum model they are allowed to share
entanglement. A parallel repetition theorem shows that the maximum probability of winning
k independent instances of a non-local game is pΩ(k), if the maximum probability of winning
a single instance of it is p, regardless of the amount of shared randomness or entanglement
used. Direct product theorems in communication are often proved by combining techniques
used to prove direct sum theorems in communication, which require message compression,
and parallel repetition theorems for games.

In classical communication complexity, there is a long line of works on direct sum and
direct-product theorems including [40, 14, 1, 41, 27, 28, 30, 5, 38, 44, 22, 21, 18, 35, 32, 2, 12,
11, 10, 7, 13, 20, 25, 37, 9, 43]. A parallel repetition theorem for the classical value of general
two-player non-local games was first shown by Raz [39], and the proof was subsequently
simplified by Holenstein [19].

In quantum communication complexity, a direct sum theorem is known for the
entanglement-assisted one-way [30], simultaneous-message-passing (SMP), entanglement-
assisted [30] and unassisted models [21]. A strong parallel repetition theorem for the quantum
value of a general two-player non-local game is not known. Parallel repetition theorems
were shown for special classes of games such as XOR games [15], unique games [34] and
projection games [17]. When the type of game is not restricted but the input distribution is,
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parallel repetition theorems have been shown under product distributions [24] and anchored
distributions [4, 3]. For general games under general distributions, the best current result is
due to Yuen [46], which shows that the quantum value of k parallel instances of a general
game goes down polynomially in k, if the quantum value of the original game is strictly less
than 1. No direct product theorems for quantum communication for a general function had
previously been known. However, a direct product theorem has been shown for the gener-
alized discrepancy method [42], which is a lower bound technique that often characterizes
(multi-round) quantum communication complexity. [5] showed a direct product theorem for
functions whose one-way quantum communication is characterized by VC dimension, and
[36] showed a direct product theorem for symmetric functions.

Combining ideas from Jain, Pereszlényi and Yao [24] and the message compression scheme
from Jain, Radhakrishnan and Sen [30], it is possible to show a strong direct product
theorem for one-way quantum communication under product distributions. To deal with
non-product distributions, we borrow the idea of anchored distributions due to Bavarian,
Vidick and Yuen [4, 3], which allows us to prove a direct product theorem for the worst case
one-way quantum communication complexity of a general function. We make some crucial
changes in the definition of correlation-breaking random variable as used by [4] which help
us use one-sided anchored distribution and simplify their proof. This simplification is in fact
crucial for us to combine the anchored distribution technique with the message compression
argument of [30] in the communication complexity setting. We elaborate further on our proof
techniques in Section 1.2.

Parallel repetition and direct product theorems have a number of applications. For
example, Raz’s parallel repetition theorem [39] can be used to prove the PCP theorem [16];
the [4] parallel repetition theorem was used to prove the recent MIP∗ = RE result [33].
Sherstov’s direct product theorem for generalized discrepancy was used in [8] to prove a
near-optimal lower bound on the bounded-round quantum communication complexity of set
disjointness. [36] used their direct product theorem to prove time-space tradeoffs for solving
certain problems. We expect our result to have similar applications.

1.1 Our results

Let Q1
ε(f) denote that the one-way entanglement-assisted quantum communication complexity

of a relation f , with worst-case error ε. Let fk denote k parallel instances of f . Our strong
direct product theorem is as follows.

▶ Theorem 1. For any relation f ⊆ X × Y × Z, and any 0 < ε, ζ < 1
2 ,

Q1
1−(1−ε)Ω(ζ6k/ log |Z|)(fk) = Ω

(
k

(
ζ5 · Q1

ε+ζ(f) − log log(1/ζ)
))
.

Let ω∗(G) represent the entangled value of a two-player non-local game G, and let Gk

denote k parallel instances of G. We call a distribution q on X × Y anchored on one side
with anchoring probability ζ if one of the following conditions holds:

(i) There exists an x∗ ∈ X such that q(x∗) = ζ and q(y|x∗) = q(y) for all y ∈ Y,
(ii) There exists a y∗ ∈ Y such that q(y∗) = ζ and q(x|y∗) = q(x) for all x ∈ X .

The game will be called anchored on both sides with anchoring probability ζ if both conditions
hold simultaneously.

Then our parallel repetition theorem is stated as follows.

CCC 2021



27:4 A Direct Product Theorem for One-Way Quantum Communication

▶ Theorem 2. For a two-player non-local game G = (q,X × Y,A × B,V) such that q is a
distribution anchored on one side with anchoring probability ζ,

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

One can get a game anchored on one side (say the Y side) from a general game in the
following way: in the anchored game, the referee chooses (x, y) from the original probability
distribution, and with probability ζ replaces y with a new input y∗. If Bob’s input is y∗,
then the referee accepts any answer from the players. In a game anchored on both sides, the
referee must instead replace x with x∗ and y with y∗ independently with probability ζ, and
accept if either Alice’s input is x∗ or Bob’s input is y∗. It is clear that anchoring makes the
game easier. In this light, a parallel repetition theorem for anchoring games can be thought
of as follows: for a general game G, there exists a simple transformation taking it to another
game G̃ such that
1. If ω∗(G) = 1, then ω∗(G̃k) = 1.
2. If ω∗(G) < 1, then ω∗(G̃k) = exp(−Ω(k)).
The merit of our result here is that the transformation involved for anchoring on one side
changes the game less than the transformation involved in anchoring it on both sides.

We note that the definition of anchoring used in [4, 3] is more general: instead of single
inputs x∗, y∗, they consider anchoring sets X ∗ ⊆ X and Y∗ ⊆ Y , such that q(X ∗), q(Y∗) ≥ ζ,
and whenever x ∈ X ∗ or y ∈ Y∗, q(x, y) = q(x)q(y). However, it appears this generalized
definition is not more useful from the perspective of anchoring transformations. While our
technique could go through for the one-sided version of this definition of anchoring, we do
not state or prove it as such for the sake of simplicity.

Unlike in the case of communication, worst-case success probability is usually not con-
sidered for non-local games. But one could define a game Gwc = (X × Y,A × B,V) without
an associated distribution, and the worst-case winning probability ω∗

wc over all inputs of this
can be considered. As long as Alice and Bob are allowed to share randomness (which they
are, in the quantum case), Yao’s lemma [45] holds just like in the case of communication,
relating the worst-case winning probability to distributional winning probability. Hence, by
choosing ζ = (1−ω∗

wc(Gwc))/2 and using the same arguments as in the case of communication,
Theorem 2 leads to the following corollary about the worst-case winning probability of any
game.

▶ Corollary 3. For any two-player non-local game Gwc = (X × Y,A × B,V),

ω∗
wc(Gk

wc) =
(
1 − (1 − ω∗

wc(Gwc))7)Ω
(

k
log(|A|·|B|)

)
.

This is in fact also implied by the result of [4], although it is not explicitly observed by them.

1.2 Proof overview
We describe how to prove the parallel repetition and direct product theorems in the distri-
butional setting first, and we shall later describe how to go from there to the worst case
setting. We use the information theoretic framework for parallel repetition established by [39]
and [19].The broad idea is as follows: for a given relation f̃ ⊆ X × Y × Z, let the one-way
quantum communication required to compute a single copy with constant success be c. Now
consider a one-way quantum protocol P for f̃k which has communication o(ck), in which
we can condition on the success of some t coordinates. If the success probability in these
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t coordinates is already as small as we want, then we are done. Otherwise, we exhibit a
(t+ 1)-th coordinate i, such that conditioned on the success on the t coordinates, the success
of i in P is bounded away from 1. This is done by showing that if the success probability in
the t coordinates is not too small, then we can give a protocol P ′ for f̃ whose communication
is o(c) and whose success probability is constant – a contradiction.

P ′ works by embedding its input into the i-th coordinate of a shared quantum state
representing the final input, output, message and discarded registers of P, conditioned
on the success event in the t coordinates, which we denote by E . Suppose the quantum
state conditioned on E , when Alice and Bob’s inputs are xi and yi respectively at the i-th
coordinates, is |φ⟩xiyi . On input (xi, yi) in P ′, Alice and Bob will by means of local unitaries
and communication try to get the shared state close to |φ⟩xiyi

, on which Bob can perform a
measurement to get an outcome zi. The state |φ⟩xiyi

is such that the resulting probability
distribution PXiYiZi is the distribution of XiYiZi in P conditioned on success. Hence our
proof mainly consists of showing how Alice and Bob can get the shared state close to |φ⟩xiyi

.
The proof technique for a parallel repetition theorem is the same, except one cannot, and
need not, use communication to get the shared state |φ⟩xiyi

there.

1.2.1 Product distribution parallel repetition
In [24] the following three states are considered: |φ⟩xi

which is the superposition of |φ⟩xiyi

over the distribution of Yi, |φ⟩yi which is the superposition over the distribution of Xi, and
|φ⟩ which is the superposition over both. In this setting, X1 . . . Xk are initially in product
with all of Bob’s registers and Y1 . . . Yk are in product with all of Alice’s registers. If the
probability of E is large, then conditioning on it, the following can be shown:
1. By chain rule of mutual information, there is an Xi whose mutual information with Bob’s

registers in |φ⟩ is small. Hence by Uhlmann’s theorem, there exist unitaries Uxi
acting

on Alice’s registers that take |φ⟩ close to |φ⟩xi
.

2. Similarly, the mutual information between Yi and Alice’s registers in |φ⟩ is small, and
hence there exist unitaries Uyi acting on Bob’s registers that take |φ⟩ close to |φ⟩yi .

3. Since Uxi
and Uyi

act on disjoint registers, using a commuting argument and the mono-
tonicity of ℓ1 distance under quantum operations, Uxi

⊗ Uyi
takes |φ⟩ close to |φ⟩xiyi

.
Alice and Bob can thus share |φ⟩ as entanglement, and get close to |φ⟩xiyi

by local operations.

1.2.2 Product distribution direct product
It is possible to combine techniques from the product parallel repetition theorem above and
a message compression technique from [30] to give a direct product theorem for one-way
quantum communication complexity under product distributions, and we give a proof outline
here.

If the communication protocol involves a message from Alice to Bob, we cannot then get
the state |φ⟩xiyi by applying Uhlmann unitaries on both Alice and Bob’s registers: because
of Alice’s message, the dependence of |φ⟩xiyi

on xi can be quite large. Instead, we use the
result of [26, 30] to do the transformation from |φ⟩ to |φ⟩xi on Alice’s side via a projector
instead. By [30], as long as |φ⟩ is the superposition of |φ⟩xi

over the Xi distribution, such a
projector Πxi

always exists and its success probability depends on the mutual information
between Xi and Bob’s registers. This success probability is not close to 1, but as long as it
is not too small, Alice and Bob can share multiple copies of |φ⟩ and Alice can perform the
{Πxi ,1 − Πxi} measurement on all of them. With high probability, she succeeds on at least
one copy, and her message to Bob is then just the index of the copy she succeeds on.

CCC 2021
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Overall, the steps analogous to the parallel repetition proof are as follows:
1. If the message size in P is o(ck) bits, by the chain rule of mutual information, the

information between Xi and Bob’s registers is o(c). Hence by [30], there exist projectors
Πxi

acting on Alice’s registers, which succeed with probability 2−o(c) on |φ⟩, and on
success, take |φ⟩ close to |φ⟩xi

.
2. Since there is no communication from Bob to Alice, by the same argument as in the case

for games, there exist unitaries Uyi
acting on Bob’s registers, that take |φ⟩ close to |φ⟩yi

.
3. By the same commuting argument, conditioned on the success of Πxi

, Πxi
⊗ Uyi

takes
|φ⟩ close to |φ⟩xiyi .

Hence there is a communication protocol with prior shared entanglement between Alice and
Bob to obtain a state close to |φ⟩xiyi

on inputs (xi, yi): Alice and Bob share 2o(c) copies of
|φ⟩y∗ as entanglement; Alice performs the Πxi

measurement on all these copies, and succeeds
on at least one copy with high probability. She sends the index of the copy on which she
succeeds to Bob, who performs Uyi

on the same copy. This protocol has communication
o(c), since that is how many classical bits Alice needs in order to encode the index of the
successful copy out of 2o(c) copies.

1.2.3 Anchored distribution parallel repetition
[3] in their parallel repetition theorem use anchored distributions, which are non-product
distributions that “look like” product distributions. However, since overall X1 . . . Xk are not
initially in product with Y1 . . . Yk, one needs to use what are known as correlation-breaking
variables. For each i, correlation-breaking variables DiGi are such that conditioned on DiGi,
Xi and Yi are independent. In particular, Di is a uniformly distributed bit, and Gi takes
values in either X or Y depending on whether Di is 0 or 1, and is highly correlated with
either Xi or Yi in the respective cases. This means that conditioned on Di = 0, Gi = x∗

with probability Ω(ζ) and conditioned on Di = 1, Gi = y∗ with probability Ω(ζ).
1. The mutual information between Xi and Bob’s registers in |φ⟩ conditioned on Di = 1 and

Gi is small. Further conditioning on Gi = y∗ (which happens with constant probability),
the mutual information between Xi and Bob’s registers in |φ⟩y∗ is small. Hence by
Uhlmann’s theorem, there exist unitaries Uxi

on Alice’s registers, taking |φ⟩x∗y∗ close to
|φ⟩xiy∗ .

2. Similarly, the mutual information between Yi and Alice’s registers in |φ⟩ conditioning on
Di = 0 and Gi = x∗ is small, which means there exist unitaries Uyi

on Bob’s registers,
taking |φ⟩x∗y∗ close to |φ⟩x∗yi

.
3. Using an involved argument, it is possible to show that Uxi

⊗ Uyi
takes |φ⟩x∗y∗ close to

|φ⟩xiyi
.

Alice and Bob can thus share |φ⟩x∗y∗ in this case, and get close to |φ⟩xiyi by local operations.

1.2.4 Anchored distribution direct product
In our direct product proof, since the distribution is anchored on one side, we use correlation-
breaking variables that are identical to those in [3] in the Di = 1 case, but in the Di = 0
we consider a simpler distribution where Gi is perfectly correlated with Xi. Here we also
clarify what we mean by Gi and Yi being highly correlated when Di = 1: if Gi = y∗, then
Yi is always y∗; but if Gi = yi for yi ≠ y∗, then Yi still takes value y∗ with probability
Ω(ζ), and is yi otherwise. The distribution of Xi conditioned on Gi = y∗ is the marginal
distribution of Xi, while conditioned on yi, it is the same as the distribution of Xi conditioned
on Yi = yi (potentially different from the marginal distribution of Xi). Our use of these
correlation-breaking variables is quite different from that in [3], however.
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1. If the message size is o(ck), the mutual information between Xi and Bob’s registers in
|φ⟩ is o(c), conditioned on Di = 1, Gi = y∗. Since the distribution is anchored on Bob’s
side, this means that the mutual information between Xi and Bob’s registers in |φ⟩y∗ is
o(c). By [30], there exist projectors Πxi acting on Alice’s registers, which succeed with
probability 2−o(c) on |φ⟩y∗ , and on success take it close to |φ⟩xiy∗ .

2. The mutual information between Yi and Alice’s registers conditioned on Di = 1, Gi ̸= y∗

is small. For each value of Gi ̸= y∗, there exist only two possible values of Yi: yi and y∗,
and hence Alice’s registers in |φ⟩yi

and |φ⟩y∗ must be close on average. By Uhlmann’s
theorem, there exist unitaries Uyi

acting on Bob’s registers, taking |φ⟩y∗ close to |φ⟩yi
.

3. Since the marginal distribution of Xi conditioned on Gi = yi is approximately the same
as the marginal distribution of Xi conditioned on Yi = yi, we can show by the same
commuting argument that conditioned on success of Πxi

, Πxi
⊗ Uyi

takes |φ⟩y∗ close to
|φ⟩xiyi

.
Hence there is a communication protocol with prior shared entanglement which allows Alice
and Bob to obtain a state close to |φ⟩xiyi

as a shared state on input (xi, yi): this works just
like the communication protocol for the product case, except the initial shared entanglement
is 2o(c) copies of |φ⟩y∗ instead. We note that our step 3 above is the simpler argument used
in [24] and the product distribution direct product, instead of the more involved technique
from [4].

1.2.5 Simplified anchored distribution parallel repetition
Our anchored distribution parallel repetition proof is the same as the anchored direct product
proof, except no communication is necessary, since there was no communication in the original
protocol. Instead of a projector on Alice’s registers taking |φ⟩y∗ close to |φ⟩xiy∗ , in this case
we will have a unitary Uxi doing it. We can argue identically to the direct product proof
that there exist Uyi

taking |φ⟩y∗ close to |φ⟩yi
, and Uxi

⊗ Uyi
takes |φ⟩y∗ close to |φ⟩xiyi

.
Our simplification of the techniques [4] is crucial to our direct product proof: we need to

use the commuting argument from [30, 24] in order to make use of the message compression
scheme. It is not clear whether the involved argument in [4] for the existence of Uxi

⊗ Vyi

that takes |φ⟩x∗y∗ to |φ⟩xiyi
can work when there needs to be a projector rather than a

unitary on Alice’s side.

1.2.6 From anchored distribution to worst case direct product
The above argument proves a direct product theorem for the distributional one-way quantum
communication complexity of under anchored distributions. However, what we are actually
interested in is a direct product theorem for the worst case one-way quantum communication
complexity. To get this for a relation f , we consider the distribution under which the
distributional communication complexity is equal to the worst case communication complexity
of f – this is guaranteed to exist by Yao’s lemma. We do an anchoring transformation on f

with this distributon to get f̃ with an anchored distribution. Note that it is fine if we can lower
bound the distributional communication complexity of f̃k with success probability (1 − ε)Ω(k)

under an anchored distribution by k times the worst case communication complexity of f with
success probability δ. This is because fk is harder than f̃k, and the worst case communication
complexity of f̃k is lower bounded by its distributional communication complexity under
any distribution. By the argument described above, we can lower bound the distributional
communication complexity of f̃k under the k-tensored anchored distribution with success
probability (1 − ε)Ω(k) by k times the distributional communication complexity of f̃ under
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the anchored distribution. Now it is easy to go from a distributional protocol for f̃ under
the anchored distribution to a protocol for f under the original hard distribution decreasing
the success probability by only O(ζ), since the anchoring transformation only disturbs the
original distribution by this amount.

2 Preliminaries

2.1 Probability theory
We shall denote the probability distribution of a random variable X on some set X by PX .
For any event E on X , the distribution of X conditioned on E will be denoted by PX|E . For
joint random variables XY , PX|Y =y(x) is the conditional distribution of X given Y = y;
when it is clear from context which variable’s value is being conditioned on, we shall often
shorten this to PX|y. We shall use PXY PZ|X to refer to the distribution

(PXY PZ|X)(x, y, z) = PXY (x, y) · PZ|X=x(z).

For two distributions PX and PX′ on the same set X , the ℓ1 distance between them is defined
as

∥PX − PX′∥1 =
∑
x∈X

|PX(x) − PX′(x)|.

▶ Fact 4. For joint distributions PXY and PX′Y ′ on the same sets,

∥PX − PX′∥1 ≤ ∥PXY − PX′Y ′∥1.

▶ Fact 5. For two distributions PX and PX′ on the same set and an event E on the set,

|PX(E) − PX′(E)| ≤ 1
2∥PX − PX′∥1.

▶ Fact 6. For two distributions PX and PX′ on the same set, and any joint distribution
PXX′ whose marginals are PX and PX′ respectively, we have

∥PX − PX′∥1 ≤ 2PXX′(X ̸= X ′).

▶ Fact 7. Suppose probability distributions PX ,PX′ satisfy ∥PX − PX′∥1 ≤ ε, and an event
E satisfies PX(E) ≥ α, where α > ε. Then,

∥PX|E − PX′|E∥1 ≤ 2ε
α
.

Proof. From Fact 5, α − ε/2 ≤ PX′(E) ≤ α + ε/2. By definition, there exists an event E ′

such that 2(PX|E(E ′) − PX′|E(E ′)) = ∥PX|E − PX′|E∥1. Now, PX(E ∧ E ′) = PX(E)PX|E(E ′) ≥
αPX|E(E ′). Similarly, PX′(E ∧ E ′) ≤ (α+ ε/2)PX′|E(E ′) ≤ αPX′|E(E ′) + 1

2 ∥PX − PX′∥1.
Now,

∥PX − PX′∥1 ≥ 2(PX(E ∧ E ′) − PX′(E ∧ E ′))
≥ 2α(PX|E(E ′) − PX′|E(E ′)) − ∥PX − PX′∥1

≥ α∥PX|E − PX′|E∥1 − ∥PX − PX′∥1

which gives the required result. ◀
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▶ Fact 8 ([3], Lemma 16). Suppose XY Z are random variables satisfying PXY (x, y∗) =
α · PX(x) for all x. Then,∥∥PXY Z − PXY PZ|X,y∗

∥∥
1 ≤ 2

α

∥∥PXY Z − PXY PZ|X
∥∥

1 .

▶ Corollary 9. Supose PXY and PX′Y ′Z′ are distributions such that PX(x, y∗) = α · PX(x)
for all x. Then,

∥PX′Z′|y∗ − PX′Z′∥1 ≤ 11
α

∥PX′Y ′Z′ − PXY PZ′|X′∥1.

Proof. Let ∥PX′Y ′Z′ − PXY PZ′|X′∥1 = ε. Note that

∥PX|y∗ − PX′|y∗∥1 ≤ 2ε
α

by Fact 7. Let PXY Z′′ denote the distribution PXY PZ′|X′Y ′ .

∥PX′Z′ − PXZ′′∥1 =
∑
x,z

∣∣∣∣∣PX′(x)
∑

y

PY ′|x(y)PZ′|xy(z) − PX(x)
∑

y

PY |x(y)PZ′|xy(z)

∣∣∣∣∣
≤

∑
x,y,z

∣∣PX′(x)PY ′|x(y) − PX(x)PY |x(y)
∣∣ PZ′|xy(z)

= ∥PX′Y ′ − PXY ∥1 ≤ ε.

∥PXY Z′′ − PXY PZ′′|X∥1 ≤ ∥PXY Z′′ − PX′Y ′Z′∥1 + ∥PX′Y ′Z′ − PXY PZ′|X′∥1

+ ∥PXY PZ′|X′ − PXY PZ′′|X∥1

= ∥PXY − PX′Y ′∥1 + ∥PX′Y ′Z′ − PXY PZ′|X′∥1

+
∑
x,y

PXY (x, y)∥PZ′|x − PZ′′|x∥1

≤ 2ε+
∑

x

PX(x)
∑
y,z

|PY |x(y) − PY ′|x(y)|PZ′|xy(z)

≤ 2ε+
∑
x,y

|PX(x)PY |x(y) − PX′(x)PY ′|x(y)|

+
∑
x,y

|PX′(x) − PX(x)|PY ′|x(y)

≤ 2ε+ 2∥PXY − PX′Y ′∥1 ≤ 4ε.

Combining all this,

∥PX′Z′|y∗ − PX′Z′ ∥1 ≤ ∥PX′Z′|y∗ − PXZ′′|y∗ ∥1 + ∥PXZ′′|y∗ − PXZ′′ ∥1 + ∥PXZ′′ − PX′Z′ ∥1

≤ ∥PX|y∗ − PX′|y∗ ∥1 + ∥PXZ′′|y∗ − PXZ′′ ∥1 + ∥PXZ′′ − PX′Z′ ∥1

≤ 2ε

α
+ 2

α
∥PXY Z′′ − PXY PZ′′|X∥1 + ε

≤ 2ε

α
+ 8ε

α
+ ε ≤ 11ε

α
.

where we have used Lemma 8 in the third inequality. ◀

▶ Fact 10 ([19], Corollary 6). Let PT U1...UkV = PT PU1|T PU2|T . . .PUk|T PV |T U1...Uk
be a

probability distribution over T × Uk × V, and let E be any event. Then,
k∑

i=1
∥PT UiV |E − PT V |EPUi|T ∥1 ≤

√
k

(
log(|V|) + log

(
1

Pr[E ]

))
.
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▶ Definition 11 ([19]). For two distributions PXY and PX′Y ′ST , we say (X,Y ) is (1 − ε)-
embeddable in (X ′S, Y ′T ) if there exists a random variable R on a set R independent of XY
and functions fA : X × R → S and fB : Y × R → T , such that

∥PXY fA(X,R)fB(X,R) − PX′Y ′ST ∥1 ≤ ε.

▶ Fact 12 ([19, 25]). If two distributions PXY and PX′Y ′R′ satisfy

∥PX′Y ′R′ − PXY PR′|X′∥1 ≤ ε ∥PX′Y ′R′ − PXY PR′|Y ′∥1 ≤ ε,

then (X,Y ) is (1 − 5ε)-embeddable in (X ′R′, Y ′R′).1

2.2 Quantum information
The ℓ1 distance between two quantum states ρ and σ is given by

∥ρ− σ∥1 = Tr
√

(ρ− σ)†(ρ− σ) = Tr|ρ− σ|.

The fidelity between two quantum states is given by

F(ρ, σ) = ∥√
ρ
√
σ∥1.

ℓ1 distance and fidelity are related in the following way.

▶ Fact 13 (Fuchs-van de Graaf inequality). For any pair of quantum states ρ and σ,

2(1 − F(ρ, σ)) ≤ ∥ρ− σ∥1 ≤ 2
√

1 − F(ρ, σ)2.

For two pure states |ψ⟩ and |ϕ⟩, we have

∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥1 =
√

1 − F (|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|)2 =
√

1 − |⟨ψ|ϕ⟩|2.

▶ Fact 14 (Uhlmann’s theorem). Suppose ρ and σ are mixed states on register X which are
purified to |ρ⟩ and |σ⟩ on registers XY , then it holds that

F(ρ, σ) = max
U

|⟨ρ|1X ⊗ U |σ⟩|

where the maximization is over unitaries acting only on register Y .

▶ Fact 15 (Data-processing inequality). For a quantum channel E and states ρ and σ,

∥E(ρ) − E(σ)∥1 ≤ ∥ρ− σ∥1 and F(E(ρ), E(σ)) ≥ F(ρ, σ).

The entropy of a quantum state ρ on a register Z is given by

S(ρ) = −Tr(ρ log ρ).

The relative entropy between two states ρ and σ of the same dimensions is given by

S(ρ∥σ) = Tr(ρ log ρ) − Tr(ρ log σ).

1 This fact is equivalent to Lemma 2.11 in [25], although this lemma is stated in terms of relative entropies
instead of trace distances between the various distributions. In the proof of the lemma, the relative
entropies are converted to the same trace distances as we consider, using Pinsker’s inequality. This
justifies our statement of the fact, which is tailored towards our application.
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The relative min-entropy between ρ and σ is defined as

S∞(ρ∥σ) = min{λ : ρ ≤ 2λσ}.

It is easy to see that S(ρ∥σ) and S∞(ρ∥σ) only take finite values when the support of ρ is
contained in the support of σ. Moreover, clearly 0 ≤ S(ρ∥σ) ≤ S∞(ρ∥σ) for all ρ and σ.

The ε-smooth relative min-entropy between ρ and σ is defined as

Sε
∞(ρ∥σ) = inf

ρ′:∥ρ−ρ′∥1≤ε
S(ρ′∥σ).

Sε
∞(ρ∥σ) can take a finite value even if the support of ρ is not contained in the support of σ,

for example if ρ is ε-close to a state contained within the support of σ. S∞(ρ∥σ) cannot be
upper bounded by S(ρ∥σ), but Sε

∞(ρ∥σ) can be, due to the Quantum Substate Theorem.

▶ Fact 16 (Quantum Substate Theorem, [31, 23]). For any two states ρ and σ such that the
support of ρ is contained in the support of σ, and any ε > 0,

Sε
∞(ρ∥σ) ≤ 4S(ρ∥σ)

ε2 + log
(

1
1 − ε2/4

)
.

▶ Fact 17 (Pinsker’s Inequality). For any two states ρ and σ, ∥ρ− σ∥1 ≤
√

S(ρ∥σ).

▶ Fact 18. If σ = ερ+ (1 − ε)ρ′, then S∞(ρ∥σ) ≤ log(1/ε).

▶ Fact 19. For any three quantum states ρ, σ, φ such that supp(ρ) ⊆ supp(φ) ⊆ supp(σ),

S∞(ρ∥σ) ≤ S∞(ρ∥φ) + S∞(φ∥σ).

▶ Fact 20. For any unitary U , S∞(UρU†∥UσU†) = S∞(ρ∥σ).

A state of the form

ρXY =
∑

x

PX(x)|x⟩⟨x|X ⊗ ρY |x

is called a CQ (classical-quantum) state, with X being the classical register and Y being
quantum. We shall use X to refer to both the classical register and the classical random
variable with the associated distribution. As in the classical case, here we are using ρY |x
to denote the state of the register Y conditioned on X = x, or in other words the state of
the register Y when a measurement is done on the X register and the outcome is x. Hence
ρXY |x = |x⟩⟨x|X ⊗ ρY |x. When the registers are clear from context we shall often write
simply ρx.

The mutual information between Y and Z with respect to a state ρ on Y Z is defined as

I(Y : Z)ρ = S(ρY Z∥ρY ⊗ ρZ).

The conditional mutual information between Y and Z conditioned on a classical register X,
is defined as

I(Y : Z|X) = E
PX

[I(Y : Z)ρx
].

Mutual information can be seen to satisfy the chain rule

I(XY : Z)ρ = I(X : Z)ρ + I(Y : Z|X)ρ.

CCC 2021



27:12 A Direct Product Theorem for One-Way Quantum Communication

▶ Fact 21 ([6], Lemma B.7). For any quantum state ρY Z ,

inf
σZ

S∞(ρY Z∥ρY ⊗ σZ) ≤ 2 min{log |Y|, log |Z|}.

▶ Fact 22. For CQ states

ρXY =
∑

x

PX(x)|x⟩⟨x|X ⊗ ρY |x σXY =
∑

x

PX′(x)|x⟩⟨x|X ⊗ σY |x,

their relative entropy is given by

S(ρXY ∥σXY ) = S(PX∥PX′) + E
PX

[S(ρY |x∥σY |x)].

▶ Fact 23. Suppose σXY Z and ρXY Z are CQ states defined as follows

σXY Z =
∑
x,y

PXY (x, y)|x, y⟩⟨x, y| ⊗ σZ|xy ρXY Z =
∑
x,y

PX′Y ′(x, y)|x, y⟩⟨x, y| ⊗ σZ|xy,

where ∥PXY − PX′Y ′∥1 ≤ δ. Let I(Y : Z|X)σ ≤ c. Then, for any 0 < ε < 1
4 ,

PX′Y ′

(
Sε

∞(σZ|xy∥σZ|x) > 4c+ 1
ε3

)
≤ ε+ δ

2 .

Proof. We have EPXY
[S(σZ|xy∥σZ|x)] = I(Y : Z|X)σ ≤ c. By Markov’s inequality, this

means that

PXY

(
S(σZ|xy∥σZ|x) > c

ε

)
≤ ε.

Using the Quantum Substate Theorem, this implies

PXY

(
Sε

∞(σZ|xy∥σZ|x) > 4c+ 1
ε3

)
≤ PXY

(
Sε

∞(σZ|xy∥σZ|x) > 4c
ε3 + log

(
1

1 − ε2/4

))
≤ ε.

Since ∥PXY − PX′Y ′∥1 ≤ δ, this gives us the required bound of the probability under
PX′Y ′ . ◀

▶ Fact 24 (Quantum Raz’s Lemma, [3]). Let ρXY and σXY be two CQ states with X =
X1 . . . Xk being classical, and σ being product across all registers. Then,

k∑
i=1

I(Xi : Y )ρ ≤ S(ρXY ∥σXY ).

▶ Fact 25 ([29], Lemma 2). Suppose the state

|σ⟩XX̃AB =
∑

x

√
PX(x)|xx⟩XX̃ |σ⟩AB|x

satisfies PX(Sε
∞(σB|x∥σB) > c) ≤ δ for some δ > 0. Then there is a family of measurement

operators {Πx}x acting only on XX̃A such that:
(i) Each Πx succeeds with probability α = 2−c/δ on |σ⟩XX̃AB, i.e., ∥Πx ⊗1B |σ⟩∥2

2 = 2−c/δ,
(ii) (Πx ⊗ 1B)|σ⟩⟨σ|(Πx ⊗ 1B) is of the form |xx⟩⟨xx| ⊗ ρx, for some state ρx on AB, and

E
PX

∥∥∥∥ 1
α

(Πx ⊗ 1B)|σ⟩⟨σ|XX̃AB(Πx ⊗ 1B) − |xx⟩⟨xx|XX̃ ⊗ |σ⟩⟨σ|AB|x

∥∥∥∥
1

≤ ε+ 2δ.

The version of the above fact stated here is slightly different from the original statement in
[29], in order to suit our application. In the original statement, I(X : B)σ is used instead,
and the superposition state lacks the X̃ register. However, in the proof of the fact in [29],
I(X : B)σ is converted to PX(Sε

∞(σB|x∥σB) > c) anyway, so the first change makes no
difference. The second change also makes no difference as the same projector that takes the
superposition state without the X̃ register to |x⟩⟨x| ⊗ |σ⟩⟨σ|AB|x takes the superposition
state with the X̃ register to |xx⟩⟨xx| ⊗ |σ⟩⟨σ|AB|x.



R. Jain and S. Kundu 27:13

2.3 Quantum communication & entangled games
We briefly describe a quantum communication protocol P for computing a relation f ⊆
X × Y × Z, between two parties Alice and Bob sharing prior entanglement, with inputs x
and y respectively.

In each round, either Alice or Bob will apply a unitary on their classical input register,
along with the quantum register they received as a message from the other party in the last
round, and memory registers they may have kept from previous rounds; after the unitary
they will keep some registers as memory and send the rest to the other party as the message
for that round. We can always assume that players make “safe” copies of their inputs using
CNOT gates in such protocols, so that the input registers come out as is after each round.
We also note that though in general we need not consider shared classical randomness in
quantum communication protocols, protocols with shared randomness fall under the shared
entanglement framework we have described. This is because shared randomness can be
obtained by sharing entanglement and then both parties measuring in the same basis.

In a one-way, i.e., a single round protocol, the memory from previous rounds is replaced
by Alice’s (who we consider to be sending the single message) part of the shared entangled
state, and any register she does not send as a message is simply discarded. After Alice’s
message, Bob performs a projective measurement on his input register, his part of the shared
entanglement, and Alice’s message, and gives the outcome of this measurement as the output
of the protocol, which we shall denote by P(x, y). We can of course think of this measurement
as Bob performing a unitary on the three registers, and then doing a measurement in the
computational basis on some log |Z| qubits which are designated for the output.
▶ Definition 26. The one-way entanglement-assisted quantum communication complexity,
with error 0 < ε < 1, of a relation f ⊆ X ×Y ×Z, denoted by Q1

ε(f), is the minimum message
size, i.e., number of qubits sent, in a one-way entanglement-assisted quantum protocol P
such that for all (x, y) ∈ X × Y,

Pr[P(x, y) ∈ f(x, y)] ≥ 1 − ε,

where the probability is taken over the inherent randomness in the protocol.
▶ Definition 27. For a probability distribution p on X × Y, the distributional one-way
entanglement-assisted quantum communication complexity of a relation f ⊆ X × Y × Z, with
error 0 < ε < 1 with respect to p, is defined as the minimum message size of a one-way
entanglement-assisted quantum protocol P such that

Pr[P(x, y) ∈ f(x, y)] ≥ 1 − ε,

where the probability is taken over the distribution p on (x, y) as well as the inherent
randomness in the protocol.
▶ Fact 28 (Yao’s lemma, [45]). For any 0 < ε < 1, and any relation f , Q1

ε(f) = maxp Q1
p,ε(f).

A two-player non-local game G is described as (q,X ×Y,A×B,V) where q is a distribution
over the input set X ×Y , A×B is the output set, and V : X ×Y ×A×B → {0, 1} is a predicate.
It is played as follows: a referee selects inputs (x, y) according to q, sends x to Alice and y

to Bob. If Alice and Bob are allowed to share entanglement, they perform measurements on
their respective halves of the entangled state along with their respective input registers (which
we model as performing unitaries and then measuring in the computational basis on some
log |A| and log |B| qubits designated for outputs respectively), and send their outputs (a, b)
back to the referee. The referee accepts and Alice and Bob win the game iff V(x, y, a, b) = 1.
▶ Definition 29. The entangled value of a game G = (q,X × Y,A × B,V), denoted by ω∗(G),
is the maximum winning probability of Alice and Bob, averaged over the distribution q as
well as inherent randomness in the strategy, over all shared entanglement strategies for G.
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3 Proof of direct product theorem

In this section, we prove Theorem 1, whose statement we recall below.

▶ Theorem 1. For any relation f ⊆ X × Y × Z, and any 0 < ε, ζ < 1
2 ,

Q1
1−(1−ε)Ω(ζ6k/ log |Z|)(fk) = Ω

(
k

(
ζ5 · Q1

ε+ζ(f) − log log(1/ζ)
))
.

3.1 Setup
Let p be the hard distribution on X × Y for Q1

ε+12ζ(f) from Yao’s lemma, i.e., Q1
ε+12ζ(f) =

Q1
p,ε+12ζ(f). Consider the relation f̃ ⊆ X × (Y ∪ {y∗}) × Z which is the same as f on

X × Y × Z and additionally,

(x, y∗, z) ∈ f̃ ∀x ∈ X ,∀z ∈ Z.

We can think of p as a distribution on X × (Y ∪ {y∗}) as well, which has p(y∗) = 0. Clearly,

Q1
p,γ(f̃) = Q1

p,γ(f) (1)

for any error γ, since p has no support on the extra inputs on which f̃ is defined. We also
note that

Q1
γ(fk) ≥ Q1

γ(f̃k) (2)

for any γ. This is because any protocol for fk is also a protocol for f̃k: on the indices where
Bob’s input is y∗ instead of an element of Y, he pretends he has gotten an input from Y,
runs the protocol with this input and gives the answer accordingly. This gives a correct
output if the original protocol gives a correct output, since any output is correct when Bob’s
input in y∗.

For a distribution q related to p, we shall show that

Q1
qk,1−(1−ε)Ω(ζ6k/ log |Z|)(f̃k) ≥ ζ5k

60 · Q1
p,ε+12ζ(f̃) − k log log

(
24
5ζ

)
. (3)

Since Q1
γ(f̃k) ≥ Q1

qk,γ(f̃k), (1), (2) and (3) imply the theorem. The distribution q is defined
as follows

q(x, y) = (1 − ζ) · p(x, y) ∀x ∈ X , y ∈ Y
q(x, y∗) = ζ · p(x) ∀x ∈ X .

Clearly, q(x, y∗) = q(x)q(y∗) for all x, and

∥p(x, y) − q(x, y)∥1 ≤ 2ζ. (4)

Following [3], for each i ∈ [k], we shall define a joint distribution PXiYiDiGi , where the
marginal on XiYi is q(x, y), and DiGi are correlation-breaking variables such that conditioned
on DiGi = digi, Xi and Yi are independent. Each XiYiDiGi is distributed independently of
the rest. Each Di is distributed uniformly in {0, 1}. Depending on the value of Di, Gi is
distributed in the following way:

Gi =


x w.p. p(x) if Di = 0
y∗ w.p. 1 − (1 − ζ)2/3 if Di = 1
y w.p. (1 − ζ)2/3 · p(y) if Di = 1
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Now depending on the value of DiGi, XiYi is distributed in the following way:

XiYi =


(x, y∗) w.p. ζ if Di = 0, Gi = x

(x, y) w.p. (1 − ζ) · p(y|x) if Di = 0, Gi = x

(x, y∗) w.p. p(x) if Di = 1, Gi = y∗

(x, y∗) w.p.
(
1 − (1 − ζ)1/3)

· p(x|y) if Di = 1, Gi = y

(x, y) w.p. (1 − ζ)1/3 · p(x|y) if Di = 1, Gi = y.

The following lemma is similar to Claim 18 from [3]; we provide a proof for completeness.

▶ Lemma 30. For all (x, y) ∈ X × (Y ∪ {y∗}), PXiYi
(x, y) = q(x, y).

Proof. It is trivial to see that PGiYi|Di=0(x, y) = PXiYi|Di=0(x, y) = q(x, y), since Gi = Xi

conditioned on Di = 0. We now prove the Di = 1 case. First consider a y ∈ Y. Yi can only
take value y if Gi takes value y. Hence,

PXiYi|Di=1(x, y) = PGi|Di=1(y) · PXiYi|Di=1,Gi=y(x, y)

= (1 − ζ)2/3p(y) · (1 − ζ)1/3p(x|y)
= (1 − ζ) · p(x, y) = q(x, y).

On the other hand, Yi can take value y∗ when Gi = y∗ or when Gi = y for any y ∈ Y . Hence,

PXiYi|Di=1(x, y∗) = PGi|Di=1(y∗) · PXiYi|Di=1,Gi=y∗ (x, y∗)

+
∑
y∈Y

PGi|Di=1(y) · PXiYi|Di=1,Gi=y(x, y∗)

=
(
1 − (1 − ζ)2/3)

· p(x) + (1 − ζ)2/3 (
1 − (1 − ζ)1/3) ∑

y∈Y

p(y) · p(x|y)

=
(
1 − (1 − ζ)2/3)

· p(x) +
(
(1 − ζ)2/3 − (1 − ζ)

)
· p(x)

= ζ · p(x) = q(x, y∗). ◀

In particular the lemma means PXiYi(x, y∗) = PXi(x)PYi(y∗). We also note

PYiGi|Di=1(Yi ̸= Gi) = (1 − ζ)2/3(1 − (1 − ζ)1/3) ≤ 1 − 2ζ/3 − 1 + ζ = ζ/3. (5)

Let P be any quantum one-way protocol between Alice and Bob, for f̃k ⊆ X k × (Y ∪
{y∗})k × Zk, which has communication cost ck. P is depicted in Figure 1. Alice and Bob’s
inputs are in registers X = X1 . . . Xk and Y = Y1 . . . Yk, and they share an entangled pure
state uncorrelated with the inputs on registers EAEB, with Alice holding EA and Bob
holding EB. Alice applies a unitary V A on XEA, to get the message register M , and the
register A to be discarded. We shall use |θ⟩AMEB|x to refer to the pure state in AMEB in
the protocol after Alice’s unitary, for inputs xy (|θ⟩x only depends on y via x). When Alice
and Bob’s inputs are distributed according to PXY , the state of the protocol after Alice’s
message, will be given by the following CQ state:

θXY AMEB =
∑
xy

PXY (xy)|xy⟩⟨xy|XY ⊗ |θ⟩⟨θ|AMEB|x.

We shall also consider the following purification of it, with the purifying registers X̃ and Ỹ :

|θ⟩XX̃Y Ỹ AMEB =
∑
xy

√
PXY (xy)|xxyy⟩XX̃Y Ỹ |θ⟩AMEB|x.
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After receiving Alice’s message, Bob applies a unitary V B to YMEB, after which MEB gets
converted to BZ, where Z = Z1 . . . Zk are the answer registers. We shall use |ρ⟩XX̃Y Ỹ ABZ

to refer to |θ⟩XX̃Y Ỹ AMEB after V B. We shall use PXY DGZ to refer to the joint distribution
where XYDG are as previously defined; Z is independent of DG given XY , and the
conditional distribution of Z given XY is what is obtained by measuring the Z register in
the computational basis in |ρ⟩.

X

EA

EB

Y

V A

M

V B

X

A

B

Z

Y

θ ρ

Figure 1 One-way quantum protocol P.

3.2 Proof of Theorem 1
We shall show that if the communication cost ck of P is < ζ5k

300 ·Q1
p,ε+12ζ(f̃)−k log log(24/5ζ),

then the success probability of P is (1 − ε)Ω(ζ6k/ log |Z|). This is implied by the following
claim, which the rest of the proof will show.

▶ Lemma 31. Let δ = ζ6

1440000 and δ′ = ζ6

1440000 log |Z| . For i ∈ [k], let Ti be the random
variable which takes value 1 if P computes f(Xi, Yi) correctly, and value 0 otherwise. If
the communication cost of P is < ζ5k

60 · Q1
p,ε+12ζ(f̃) − k log log(24/5ζ), then there exist ⌊δ′k⌋

coordinates {i1, . . . , i⌊δ′k⌋} ⊆ [k], such that for all 1 ≤ r ≤ ⌊δ′k⌋ − 1, at least one of the
following two conditions holds

(i) Pr
[∏r

j=1 Tij
= 1

]
≤ (1 − ε)δk

(ii) Pr
[
Tir+1 = 1

∣∣∣∏r
j=1 Tij

= 1
]

≤ 1 − ε.
Lemma 31 can be proved inductively. Suppose we have already identified 1 ≤ t ≤ ⌊δ′k⌋
coordinates in C = {i1, . . . it}, such that for all 1 ≤ r ≤ t− 1, Pr

[
Tir+1 = 1|

∏r
j=1 Tij

= 1
]

≤
1 − ε. Let E refer to the event

∏
i∈C Ti = 1. If Pr[E ] ≤ (1 − ε)δk, then we are already

done. If not, then we shall show how to identify the (t + 1)-th coordinate i such that
Pr [Ti = 1|E ] ≤ 1 − ε. The process of identifying the first coordinate is also similar, except in
that case the conditioning event is empty. Since we only use the lower bound (1 − ε)δk on
the probability of the conditioning event in our proof, the proof goes through for that case
as well.

We shall use the state |φ⟩, which is |ρ⟩XX̃Y Ỹ ABZ conditioned on E , for the proof of
Lemma 31. For any value DG = dg, |φ⟩XX̃Y Ỹ ABZ|dg is defined as:
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|φ⟩XX̃Y Ỹ ABZ|dg = 1
√

γdg

∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗

∑
zC :(xC ,yC ,zC )∈f̃t

|zC⟩ZC |φ̃⟩ABZC̄ |xyzC
.

Here |φ̃⟩xyzC
is a subnormalized state with ∥|φ̃⟩ABZC̄ |xyzC

∥2
2 = PZC |xy(zC). The overall

normalization factor γdg is the probability of E conditioned on dg, and satisfies∑
dg

PDG(dg) · γdg = Pr[E ].

It is clear that the distribution of XY Z in |φ⟩XX̃Y Ỹ ABZ|dg is PXY Z|E,dg. Note that we are
using the notation |φ⟩dg without explicitly considering registers DG on which a measurement
is done to obtain |φ⟩dg. We shall also sometimes use |φ⟩d−ig−i in which the xy distributions
are conditioned on d−ig−i instead, which changes the normalization factor to some γd−ig−i

,
everything else remaining the same. φxiyid−ig−i refers as usual to the state obtained when
a measurement done on the XiYi registers (which are actually present in |φ⟩) in |φ⟩d−ig−i

.
For i /∈ C̄, we shall use the states |φ⟩XC̄X̃C̄YC̄ ỸC̄ ABZC̄ |xiyixC yCzCd−ig−i

in our proof, which
we note are pure states.

Lemma 31 will be proved with the help of the following lemma, whose proof we give later.

▶ Lemma 32. If Pr[E ] ≥ (1 − ε)δk, then there exist a coordinate i ∈ C̄, a random variable
Ri = XCYCZCD−iG−i and for each Ri = ri a state |φ′⟩XC̄X̃C̄YC̄ ỸC̄ ABZC̄ |y∗ri

such that the
following conditions hold:

(i) ∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ζ
120

(ii) ∥PXiYiRi|E − PXiYiPRi|E,Yi
∥1 ≤ 7ζ

120 .
(iii) There exist projectors {Πxiri

}xiri
acting only on registers XC̄X̃C̄A and unitaries

{Uyiri}yiri acting only on YC̄ ỸC̄BZC̄ , such that each Πxiri succeeds on |φ′⟩ri with
probability α = 2−c′ where c′ ≤ 60c

ζ5 , and

E
PXiYiRi|E

∥∥∥∥ 1
α

(Πxiri ⊗ Uyiri)|φ′⟩⟨φ′|y∗ri(Πxiri ⊗ U†
yiri

) − |φ⟩⟨φ|xiyiri

∥∥∥∥
1

≤ 21ζ.

Proof of Lemma 31. We give a one-way quantum protocol P ′ for f̃ , whose inputs are
distributed according to PXiYi

, i.e., q, by embedding Alice and Bob’s inputs into the i-th
coordinate of |φ⟩xiyiri

, as follows:
Alice and Bob have r according to the distribution required by Fact 12 as shared
randomness, and 260c/ζ5 log(24/5ζ) copies of |φ′⟩y∗ri as shared entanglement, with Alice
holding registers XC̄X̃C̄A and Bob holding registers YC̄ ỸC̄BZC̄ of each copy.
On input (xi, yi) from PXiYi , using items (i), (ii) of Lemma 32, their shared randomness,
and the protocol from Fact 12, Alice and Bob generate random variables RA

i R
B
i such that

∥PXiYiRA
i

RB
i

− PXiYiRiRi|E∥1 ≤ 7ζ
24 .

where RiRi denotes two perfectly correlated copies of Ri in PXiYiRiRi|E .
Alice applies the {ΠxirA

i
,1 − ΠxirA

i
} measurement according to her input and RA

i on her
registers for each copy of the shared entangled state. If the ΠxirA

i
measurement does not

succeed on any copy, then she aborts. Otherwise, she sends to Bob a ( 60c
ζ5 +log log(24/5ζ))-

bit message indicating an index where ΠxirA
i

measurement succeeded.
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Bob applies the unitary UyirB
i

according to his input and RB
i on the copy of the shared

entangled state whose index Alice has sent, and measures the Zi register of the resulting
state to give his output.

To analyze the success of this protocol, first note that

E
PXiYiRi|E

Pr[Result of Zi measurement on |φ⟩xiyiri ∈ f̃(xi, yi)] = Pr[Ti = 1|E ].

Let us first assume Alice and Bob have (xi, yi, r
A
i , r

B
i ) distributed exactly according to

PXiYiRiRi|E – we shall denote both rA
i and rB

i by ri in this case. Alice aborts the protocol if
none of her measurements succeed. This happens with probability

(1 − 2−c′
)260c/ζ5

·log(24/5ζ) ≤ 5ζ
24 .

If Alice does not abort, then Alice and Bob’s state after Bob’s unitary is 1√
α

Πxiri
⊗

Uyiri |φ′⟩y∗ri . From (iii), the expected probability of the Zi measurement on this state giving
an answer ∈ f̃(xi, yi) is at least Pr[Ti = 1|E ]− 21ζ

2 . Hence, if Alice and Bob had (xi, yi, r
A
i , r

B
i )

distributed according to PXiYiRiRi|E , then their expected success probability would have
been at least Pr[Ti = 1|E ] − 21ζ

2 − 5ζ
24 . Since Alice and Bob have (xi, yi, r

A
i , r

B
i ) according to

PXiYiRA
i

RB
i

instead, their expected success probability is at least

Pr[Ti = 1|E ] − 21ζ
2 − 5ζ

24 − 7ζ
24 ≥ Pr[Ti = 1|E ] − 11ζ.

Since ∥q(x, y) − p(x, y)∥1 ≤ 2ζ, when the same protocol is run on XiYi distributed according
to p instead, it must succeed with probability at least Pr[Ti = 1|E ] − 12ζ. Since the
communication in P ′ is at most ( 60c

ζ5 + log log(24/5ζ)) < Q1
p,ε+12ζ(f̃), Pr[Ti = 1|E ] ≥ 1 − ε

gives the error probability of P ′ to be ≤ ε+ 12ζ, which is a contradiction. Hence we must
have Pr[Ti = 1|E ] ≤ 1 − ε. The desired result thus follows by setting it+1 = i. ◀

3.3 Proof of Lemma 32
First we shall show that on expectation over i ∈ C̄, a number of probability distributions
conditioned on E are close to those unconditioned on E . Applying Fact 10 with T and V

being trivial and Ui = XiYiDiGi for i ∈ C̄, we get,

E
i∈C̄

∥PXiYiDiGi|E − PXiYiDiGi
∥1 ≤ 1

k − t

√
k · log((1 − ε)−δk) ≤

√
2δ. (6)

In particular, due to (5), this means

E
i∈C̄

PYiGi|E,Di=1(Yi = Gi) ≥ 1 − ζ/3 −
√

2δ. (7)

And since PGi|Di=1(y∗) = 1 − (1 − ζ)2/3, PYi|Di=1,Gi=yi
(yi) = (1 − ζ)1/3 for yi ∈ Y , we have

ζ+
√

2δ ≥ 1−(1−ζ)2/3 +
√

2δ ≥ E
i∈C̄

PGi|E,Di=1(y∗) ≥ 1−(1−ζ)2/3 −
√

2δ ≥ 2ζ/3−
√

2δ (8)

(
1− ζ

3 +
√

2δ
)

E
i∈C̄

PGi|E,Di=1(yi) ≥ E
i∈C̄

PYiGi|E,Di=1(yi, yi) ≥ (1−ζ −
√

2δ) E
i∈C̄

PGi|E,Di=1(yi). (9)

Fact 10 can again be applied with Ui = XiYi, T = XCYCDG and V = ZC . Let δ1 =
δ + δ′ log |Z| = ζ6

720000 . Then we have,√
2δ1 ≥ E

i∈C̄
∥PXiYiXC YCZCDG|E − PXCYC ZCDG|EPXiYi|XC YCDG∥1
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= E
i∈C̄

∥PXiYiXCYC ZCDG|E − PXCYCZC DG|EPXiYi|DiGi
∥1

= E
i∈C̄

∥PXiYiDiGiRi|E − PDiGiRi|EPXiYi|DiGi
∥1. (10)

We note that Di takes value uniformly in {0, 1} even conditioned on E . Hence from (10),√
2δ1 ≥ 1

2 E
i∈C̄

∥PXiYiGiRi|E,Di=0 − PGiRi|E,Di=0PXiYi|Gi,Di=0∥1

= 1
2 E

i∈C̄
∥PXiYiRi|E − PXiRi|EPYi|Xi

∥1

where we have used the fact that Xi = Gi conditioned on Di = 0. Combining this with the
fact that Ei∈C̄ ∥PXi|E − PXi

∥1 ≤
√

2δ, we have,

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 3
√

2δ1 <
7ζ3

600 . (11)

Due to Corollary 9 we also have from (11),

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E∥1 ≤ 33
√

2δ1

ζ
. (12)

Let Fi denote the event Yi = Gi. We know Ei∈C̄ PXiYiGi|Di=1(Fi) ≥ 1 − ζ/3 −
√

2δ, from
(7). Hence, using Fact 7,

E
i∈C̄

∥PXiYiRi|E − PYiRi|EPXi|Yi
∥1

= E
i∈C̄

∥PXiYiGiRi|E,Di=1,Fi
− PGiRi|E,Di=1,Fi

PXiYi|GiDi=1,Fi
∥1

≤ 6 E
i∈C̄

∥PXiYiDiRi|E,Di=1 − PGiRi|E,Di=1PXiYi|GiDi=1∥1 ≤ 6
√

2δ1.

Using Ei∈C̄ ∥PYi|E − PYi
∥1 ≤

√
2δ, we have as before,

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7
√

2δ1 = 7ζ3

600 . (13)

Next we shall show the existence of projectors Πxiri which take |φ′⟩y∗ri (which will be
defined soon) close to |φ⟩xiy∗ri

. Since M is ck qubits, by Fact 21, for any value DG = dg,
there exists some state σM |dg such that

S∞(θXY Ỹ EBM |dg∥θXY Ỹ EB|dg ⊗ σM |dg) ≤ 2ck.

By Fact 20 we have,

S∞

(
ρXY Ỹ BZ|dg∥V B(θXY Ỹ EB|dg ⊗ σM |dg)(V B)†

)
≤ 2ck.

Let ψXC̄YC̄ ỸC̄ BZC̄ |dg = TrZC
(V B(θXY EB|dg ⊗ σM |xCyCdg)(V B)†). Note that θXY Ỹ EB|dg ⊗

σM |dg is product across X and the other registers, and V B does not act on X. Hence
ψXC̄YC̄ ỸC̄BZC̄ |dg is also product across X and the other registers, and moreover, all the Xi-s
are in product with each other as well. We have,

S∞

(
ρXY Ỹ BZC̄ |dg∥ψXY Ỹ BZC̄ |dg

)
≤ 2ck.
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Using Facts 22 and 19, this gives us

E
PXC YC ZC DG|E

[
S

(
φXC̄ YC̄ ỸC̄BZC̄ |xCyCzCdg∥ψXC̄YC̄ ỸC̄ BZC̄ |xC yC dg

)]
≤ E

PZC DG|E

[
S

(
φXY Ỹ BZC̄ |zC dg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
S∞

(
φXY Ỹ BZC̄ |zCdg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
S∞

(
φXY Ỹ BZC̄ |zCdg∥φXY Ỹ BZC̄ |dg

)
+ S∞

(
φXY Ỹ BZC̄ |dg∥ρXY Ỹ BZC̄ |dg

)
+ S∞

(
ρXY Ỹ BZC̄ |dg∥ψXY Ỹ BZC̄ |dg

)]
≤ E

PZC DG|E

[
log(1/PZC |E(zC)) + log(1/Pr[E ]) + 2ck

]
≤ |C| log |Z| + δk + 2ck ≤ (δ1 + 2c)k.

By Quantum Raz’s Lemma,

4c+ 2δ1 ≥ E
i∈C̄

E
PXC YC ZC DG|E

I(Xi : YC̄ ỸC̄BZC̄)φxC yC zC dg

= E
i∈C̄

E
PDiGiRi|E

I(Xi : YC̄ ỸC̄BZC̄)φdigiri

≥ E
i∈C̄

1
2PGi|E,Di=1(y∗) E

PRi|E,Di=1,Gi=y∗
I(Xi : YC̄ ỸC̄BZC̄)φri|Di=1,Gi=y∗

≥ E
i∈C̄

1
2(2ζ/3 −

√
2δ) E

PRi|E,Di=1,Gi=y∗
I(Xi : YC̄ ỸC̄BZC̄)φri,Di=1,Gi=y∗ (14)

where we have used (8) in the last inequality.
Note that φXC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |xiri,Di=1,Gi=y∗ is the same state as φXC̄X̃C̄YC̄ ỸC̄ ABZC̄ |xiy∗ri

,
where the value of Yi is being conditioned on, instead of Gi. |φ⟩ri,Di=1,Gi=y∗ is the super-
position over Xi of |φ⟩xiri,Di=1,Gi=y∗ , with the Xi distribution being PXi|E,ri,Di=1,Gi=y∗ .
The only difference between |φ⟩y∗ri and |φ⟩ri,Di=1,Gi=y∗ is the Xi distribution, which in the
former is PXi|E,y∗ri

instead. We shall refer to |φ⟩ri,Di=1,Gi=y∗ as simply |φ⟩ri,1,y∗ as now on –
note that there is no ambiguity between this and |φ⟩y∗ri . The same goes for the distributions
PXiRi|E,1,y∗ and PXiRi|E,y∗ .

PXi|1,y∗ is the same distribution as PXi|y∗ and PRi|E,xi,1,y∗ is the same distribution as
PRi|E,xiy∗ for any xi. Hence,

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1 ≤ E
i∈C̄

[
∥PXiRi|E,y∗ − PXi|y∗PRi|E,Xi,y∗∥1

+∥(PXi|1,y∗ − PXi|E,1,y∗)PRi|E,Xi,y∗∥1
]

≤ E
i∈C̄

[∥PXiRi|E − PXiPRi|E,Xi
∥1

2ζ/3 −
√

2δ
+

∥PXi|E − PXi∥1

2ζ/3 −
√

2δ

]
≤ 7

√
2δ1

ζ

where we have used (8) in the second inequality. Using the above computation and (12),
we get,

E
i∈C̄

∥PXiRi|E − PXiRi|E,1,y∗∥1 ≤ 40
√

2δ1

ζ
.



R. Jain and S. Kundu 27:21

Let

|φ′⟩XC̄ X̃C̄ YC̄ ỸC̄ ABZC̄ |y∗ri
=

∑
xi

√
PXi|E,ri

|φ⟩XC̄X̃C̄YC̄ ỸC̄ ABZC̄ |xiy∗ri
,

i.e., |φ′⟩y∗ri
is the same state as |φ⟩y∗ri

except that the distribution of distribution of Xi is
unconditioned on Yi = y∗. From (14) and Fact 23, we then have that,

E
i∈C̄

PXiRi|E

(
Sζ

∞

(
φ′

YC̄ ỸC̄BZ
C̄

|xiy∗ri
∥φ′

YC̄ ỸC̄BZ
C̄

|y∗ri

)
>

28(2c+ δ1) + 1
ζ4

)
≤ ζ + 20

√
2δ1

ζ
.

Hence by Fact 25, there exist projectors Πxiri
acting on registers XC̄X̃C̄A, such that Πxiri

succeeds with probability α = 2−c′ on |φ′⟩XC̄X̃C̄YC̄ ỸC̄ ABZC̄ |y∗ri
, where c′ = 60c

ζ5 , and

E
∈C̄

E
PXiRi|E

∥∥∥∥ 1
α

(Πxiri
⊗ 1)|φ′⟩⟨φ′|y∗ri

(Πxiri
⊗ 1) − |φ⟩⟨φ|xiy∗ri

∥∥∥∥
1

≤ 3ζ + 40
√

2δ1

ζ2

≤ 7ζ
2 . (15)

Next we shall show the existence of unitaries Uyiri
taking |φ⟩y∗ri,Di=1,Gi=yi

close to
|φ⟩yiri,Di=1,Gi=yi . By similar arguments as the ones leading to (14) on Bob’s side (except
the first step where we consider the information due to Alice’s message, which does not apply
here), we can alo upper bound EPXC YC ZC DG|E

[
S

(
φYC̄ XC̄ X̃C̄ A|xCyCzCdg∥ρYC̄XC̄X̃C̄A|xCyCdg

)]
.

Hence by Raz’s lemma again,

2δ1 ≥ E
i∈C̄

E
PDiGiRi|E

I(Yi : XC̄X̃C̄A)φdigiri

≥ E
i∈C̄

1
2(1 − ζ −

√
2δ) E

PRiGi|E,Di=1,Gi ̸=y∗
I(Yi : XC̄X̃C̄A)φri,Di=1,gi

= E
i∈C̄

1
2(1 − ζ −

√
2δ) E

PRiGiYi|E,Di=1,Gi ̸=y∗

[
S

(
φXC̄ X̃C̄ A|yi,Di=1,gi

∥φXC̄X̃C̄A|Di=1,gi

)]
≥ E

i∈C̄

1
2(1 − ζ −

√
2δ)

∑
yi∈Y

E
PRi|E,Di=1,Gi=yi

PGi|E,Di=1(yi)·[
(1 − ζ −

√
2δ)∥φXC̄ X̃C̄ A|yi,ri,Di=1,Gi=yi

− φXC̄X̃C̄A|ri,Di=1,Gi=yi
∥2

1

+(ζ/3 −
√

2δ)∥φXC̄X̃C̄A|y∗,ri,Di=1,Gi=yi
− φXC̄X̃C̄A|ri,Di=1,Gi=yi

∥2
1

]
.

where we have used (9) and Pinsker’s inequality in the last line. Since the ℓ1 norm obeys
triangle inequality, we have,

E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi)∥φXC̄X̃C̄A|yiri,1,yi
− φXC̄X̃C̄ A|y∗ri,1,yi

∥2
1

≤ E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi) · 2
[
∥φXC̄ X̃C̄ A|yi,ri,1,yi

− φXC̄X̃C̄A|ri,1,yi
∥2

1

+ ∥φXC̄ X̃C̄ A|y∗,ri,1,yi
− φXC̄ X̃C̄ A|ri,1,yi

∥2
1

]
≤ 4δ1

1 − ζ −
√

2δ

(
1

1 − ζ −
√

2δ
+ 1
ζ/3 −

√
2δ

)
≤ 32δ1

ζ
.
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We note that φXC̄X̃C̄YC̄ ỸC̄ABZC̄ |yiri,1,yi
and φXC̄ X̃C̄ YC̄ ỸC̄ABZC̄ |y∗ri,1,yi

are pure states. Hence,
using the Fuchs-van de Graaf inequality and Uhlmann’s theorem, there exist unitaries Uyiri

acting only on YC̄ ỸC̄BZC̄ such that

= E
i∈C̄

∑
yi∈Y

E
PRi|E,1,yi

PGi|E,1(yi)∥|φ⟩⟨φ|yiri,1,yi
− (1 ⊗ Uyiri

)|φ⟩⟨φ|y∗ri,1,yi
(1 ⊗ U†

yiri
)∥1

≤
(

32δ1

ζ

)1/4
(16)

Finally, we need to show that Πxiri ⊗Uyiri takes |φ′⟩y∗ri
close to |φ⟩xiyiri

. To do this, we
shall first show that Uyiri

in fact takes |φ⟩xiy∗ri
close to |φ⟩xiyiri

. Consider the superoperator
OXi that measures the register Xi and writes it in a different register.

OXi
(|φ⟩⟨φ|yiri,1,yi

) =
∑
xi

PXi|E,yiri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri,1,yi

=
∑
xi

PXi|E,yiri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri

OXi
(|φ⟩⟨φ|y∗ri,1,yi

) =
∑
xi

PXi|E,y∗ri,Di=1,Gi=yi
(xi)|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiy∗ri

where we have made the observation that |φ⟩⟨φ|xiyiri,1,yi
and |φ⟩⟨φ|xiy∗ri,1,yi

are the same
states as |φ⟩⟨φ|xiyiri

and |φ⟩⟨φ|xiy∗ri
. By Fact 10 we can get,

E
i∈C̄

∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi
∥1 ≤ 2

√
2δ1.

Hence, for any value Yi = yi,

E
i∈C̄

∥PXiGiRi|E,1 − PGiRi|E,1PXi|E,yi,1,GiRi
∥1

≤ E
i∈C̄

[
∥PXiGiRi|E,1 − PGiRi|E,1PXi|yi,1,Gi

)∥1 + ∥PGiRi|E,1(PXi|yi,1,Gi
− PXi|E,yi,1,GiRi

)∥1
]

≤ E
i∈C̄

[
∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi

∥1 + 2
ζ
3 −

√
2δ

∥PXiGiRi|E,1 − PGiRi|E,1PXi|1,Gi
∥1

]
≤ 8

√
2δ1

ζ

where we have used the fact that for any value Gi = gi, we must have PYi|1,gi
(yi) ≥ ζ/3−

√
2δ.

Finally,

E
i∈C̄

∥PXiGiRi|E,1 − PXiYiRi|E,1∥1 ≤ 2PYiGi|E,1(Yi ̸= Gi) ≤ ζ/3 +
√

2δ.

Observing that PXiYiRi|E,1 is the same as PXiYiRi|E we get,

E
i∈C̄

∥PXiYiRi|E − PGiRi|E,1PXi|E,yi,1,GiRi
∥1 ≤ 8

√
2δ1

ζ
+ ζ

3 +
√

2δ.

Using this and (16) we get,

E
i∈C̄

E
PXiYiRi|E

∥|φ⟩⟨φ|xiyiri − (1 ⊗ Uyiri )|φ⟩⟨φ|xiy∗ri (1 ⊗ U†
yiri

)∥1

≤ E
i∈C̄

[
∥PXiYiRi|E − PGiRi|E,1PXi|E,yi,1,GiRi

∥1 + ∥PXiYiRi|E − PGiRi|E,1PXi|E,y∗,1,GiRi
∥1
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+ E
PGiRi|E,1

∥∥∥∥ E
PXi|E,yiri,1,yi

|xi⟩⟨xi| ⊗ |φ⟩⟨φ|xiyiri − E
PXi|E,y∗ri,1,yi

1 ⊗ Uyiri |φ⟩⟨φ|xiy∗ri1 ⊗ U†
yiri

∥∥∥∥
1

]

= 16
√

2δ1

ζ
+ 2ζ

3 + 2
√

2δ +
(

32δ1

ζ

)1/4

<
7ζ

10 (17)

where we have bounded the last term in the first inequality by applying Fact 15 on (16)
with OXi . Notice that we have also removed the conditioning Gi ̸= y∗, since for Gi = y∗,
the corresponding states are both |φ⟩xiy∗ri

.
From (15) and (17) we get,

E
i∈C̄

E
PXiYiRi|E

∥∥∥∥ 1
α

(Πxiri ⊗ Uyiri)|φ′⟩⟨φ′|y∗ri(Πxiri ⊗ U†
yiri

) − |φ⟩⟨φ|xiyiri

∥∥∥∥
1

≤ E
i∈C̄

E
PXiYiRi|E

[∥∥∥∥ 1
α

(Πxiri
⊗ Uyiri

)|φ′⟩⟨φ′|y∗ri
(Πxiri

⊗ U†
yiri

)

− (1 ⊗ Uyiri
)|φ⟩⟨φ|xiy∗ri

(1 ⊗ U†
yiri

)
∥∥∥∥

1

+
∥∥(1 ⊗ Uyiri)|φ⟩⟨φ|xiy∗ri(1 ⊗ U†

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1

]
= E

i∈C̄
E

PXiYiRi|E

[ ∥∥∥∥ 1
α

(Πxiri
⊗ 1)|φ′⟩⟨φ′|y∗ri

(Πxiri
⊗ 1) − |φ⟩⟨φ|xiy∗ri

∥∥∥∥
1

+
∥∥(1 ⊗ Uyiri

)|φ⟩⟨φ|xiy∗ri
(1 ⊗ U†

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1

]
≤ 7ζ

2 + 7ζ
10 = 21ζ

5 . (18)

Using Markov’s inequality on (11), (13) and (18), we get an index i ∈ C̄ such that the
conditions (i)-(iii) for Lemma 32 hold.

4 Proof of parallel repetition theorem

In this section we prove Theorem 2, whose statement is recalled below.

▶ Theorem 2. For a two-player non-local game G = (q,X × Y,A × B,V) such that q is a
distribution anchored on one side with anchoring probability ζ,

ω∗(Gk) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

4.1 Setup
The proof of this theorem is very similar to that of the direct product theorem, so we
shall only highlight points of difference. Whereas in the communication case, we started
with an arbitrary distribution p and defined distribution q anchored on one side close to
p, here we start with an already anchored distribution. To preserve similarity with the
direct product proof, we shall consider q to be anchored on the Y side here as well, but the
proof goes through analogously for a distribution anchored on the X side. We define the
correlation-breaking variables and the joint distribution PXY DG exactly as before.2

2 The definition of PXiYiDiGi
in the previous section makes references to p(x, y). Since there is no p in

the present case, p(x, y) can simply be replaced by q(x, y|y ̸= y∗).
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We consider an entangled strategy S for Gk, where Alice and Bob, with input registers
X = X1 . . . Xk and Y = Y1 . . . Yk, initially share an entangled state, and perform unitaries
V A and V A respectively on their parts of the entangled state and and their input registers.
As before, conditioned on any value DG = dg, we define the following pure state representing
S after these unitaries:

|θ⟩XX̃Y Ỹ ABE′AE′B|dg =
∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗ |θ⟩ABEAEB|xy

where AB are the answer registers which are measured in the computational basis by Alice
and Bob to obtain their answers (a, b), and E′AE′B are some additional registers which are
discarded. We shall use PXY AB|dg to denote the distribution of XY AB in |θ⟩dg; PXY DGAB

is obtained by averaging over dg.
Let the winning probability of of ω∗(G) be 1 − 5ε for an appropriate ε. We shall prove the

following lemma, which is analogous to the direct product case. It is clear that the lemma
implies

ω∗(Gk) ≤ (1 − ε)
ζ2ε4k

log(|A|·|B|) =
(
1 − (1 − ω∗(G))5)Ω

(
ζ2k

log(|A|·|B|)

)
.

▶ Lemma 33. Let δ = ζ2ε4

1440000 and δ′ = ζ2ε4

1440000 log(|A|·|B|) . For i ∈ [k], let Ti denote the
random variable V(Xi, Yi, Ai, Bi), where XiYiAiBi are according to PXY AB. Then there
exist ⌊δ′k⌋ coordinates {i1, . . . , i⌊δ′k⌋} ⊆ [k], such that for all 1 ≤ r ≤ ⌊δ′k⌋ − 1, at least one
of the conditions holds

(i) Pr
[∏r

j=1 Tij
= 1

]
≤ (1 − ε)δk

(ii) Pr
[
Tir+1 = 1

∣∣∣∏r
j=1 Tij

= 1
]

≤ 1 − ε.

As before, we shall consider that we have identified a set of coordinates C = {i1, . . . , it}
such that for all 1 ≤ r ≤ t − 1, Pr

[
Tir+1 = 1|

∏r
j=1 Tij = 1

]
≤ 1 − ε and Pr[E ] =

Pr
[∏t

j=1 Tij = 1
]

≥ (1 − ε)δk, and identify a (t + 1)-th coordinate i. Let EA and EB

to denote AC̄E
′A and BC̄E

′B respectively. We define the following state, which is |θ⟩dg

conditioned on success in C:

|φ⟩XX̃Y Ỹ AC BC BEAEB|dg

= 1
√

γdg

∑
xy

√
PXY |dg(xy)|xxyy⟩XX̃Y Ỹ ⊗

∑
aC bC :Vt(xC ,yC ,aC ,bC )=1

|aCbC⟩AC BC |φ̃⟩EAEB|xyaC bC
.

Here |φ̃⟩EAEB|xyaC bC
is a subnormalized state satisfying ∥|φ̃⟩EAEB|xyaC bC

∥2
2 =

PAC BC |xy(aCbC).
The following lemma is the analog of Lemma 32, which we shall use to prove Lemma 33.

▶ Lemma 34. If Pr[E ] ≥ (1 − ε)δk, then there exist a coordinate i ∈ C̄, a random variable
Ri = XCYCACBCD−iG−i, such that the following conditions hold:

(i) ∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ε
150

(ii) ∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7ε
150

(iii) There exist unitaries {Uxiri
}xiri

and {Uyiri
}yiri

respectively acting only on XC̄X̃C̄E
A

and YC̄ ỸC̄E
B, such that

E
PXiYiRi|E

∥∥(Uxiri
⊗ Uyiri

)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ U†

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1 ≤ 36ε

5 .



R. Jain and S. Kundu 27:25

It is easy to see how this lemma implies Lemma 33. As in the direct product case, Alice
and Bob share |φ⟩y∗ri

as entanglement – though in this case only one copy, as well as classical
randomness with which they can produce RA

i R
B
i satisfying

∥PXiYiRA
i

RB
i

− PXiYiRiRi|E∥1 ≤ 7ε
30 .

Alice and Bob apply UxirA
i

and UyirB
i

according to their inputs and RA
i and RB

i respectively,
on their registers EA and EB of |φ⟩y∗ri

. They then measure in the computational basis on
the AiBi registers of resulting state, to give their outcomes (ai, bi). Pr[Ti = 1|E ] ≥ 1 − ε

implies that the resulting strategy for G has success probability > (1 − 5ε), a contradiction
which lets us identify i as the (t+ 1)-th coordinate.

4.2 Proof of Lemma 34
We can prove

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Xi

∥1 ≤ 7ε
600 (19)

E
i∈C̄

∥PXiYiRi|E − PXiYi
PRi|E,Yi

∥1 ≤ 7ε
600 (20)

E
i∈C̄

E
PXiYiRi|E

∥|φ⟩⟨φ|xiyiri − (1 ⊗ Uyiri)|φ⟩⟨φ|xiy∗ri(1 ⊗ U†
yiri

)∥1 ≤ 4ε
5 (21)

exactly the same way as in the direct product case, except conditioning on zC is replaced by
conditioning on aCbC , which leads to the factor of log(|A| · |B|). The rest of the proof will
hence be spent getting Alice’s unitaries Uxiri

.
Letting δ1 = δ+ δ′ log(|A| · |B|), the following is derived analogously to the direct product

case, except for the extra factor in the mutual information bound due to communication:

E
i∈C̄

E
Ri|E,Di=1,Gi=y∗

I(Xi : YC̄ ỸC̄E
B)φri,Di=1,Gi=y∗ ≤ 10δ1

ζ
(22)

E
i∈C̄

∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1 ≤ 7
√

2δ1

ζ
(23)

E
i∈C̄

∥PXiRi|E − PXiRi|E,1,y∗∥1 ≤ 40
√

2δ1

ζ
. (24)

From (22), by applying Pinsker’s inequality, we get,

E
i∈C̄

E
PXiRi|E,1,y∗

∥φYC̄ ỸC̄ EB|xiri,1,y∗ − φYC̄ ỸC̄ EB|ri,1,y∗∥1 ≤
(

10δ1

ζ

)1/2

Note that φYC̄ ỸC̄ EB|xiri,1,y∗ is the same state as φYC̄ ỸC̄ EB|xiy∗ri
. But φYC̄ ỸC̄ EB|ri,1,y∗ is not

the same state as φYC̄ ỸC̄ EB|y∗ri
, due to the averaging over Xi being done with respect to

PXi|E,ri,1,y∗ in one, and with respect to PXi|E,y∗ri
in the other. However, due to (23) we can

say,

E
i∈C̄

E
PXiRi|E,1,y∗

∥φYC̄ ỸC̄EB|xiy∗ri
− φYC̄ ỸC̄ EB|y∗ri

∥1

≤
(

10δ1

ζ

)1/2
+ E

i∈C̄
∥PXiRi|E,1,y∗ − PRi|E,1,y∗PXi|E,Ri,y∗∥1

≤
(

10δ1

ζ

)1/2
+ E

i∈C̄
∥PXiRi|E,y∗ − PXiRi|E,1,y∗∥1
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≤ 2
√

108δ1

ζ
.

Since |φ⟩XC̄X̃C̄YC̄ ỸC̄EAEB|y∗ri
is a purification of φYC̄ ỸC̄ EB|y∗ri

and |φ⟩XC̄X̃C̄YC̄ ỸC̄EAEB|xiy∗ri

is a purification of φYC̄ ỸC̄ EB|xiy∗ri
, by the Fuchs-van de Graaf inequality and Uhlmann’s

theorem we can say that there exist unitaries Uxiri
on XC̄X̃C̄E

A such that

E
i∈C̄

E
PXiRi|E,1,y∗

∥|φ⟩⟨φ|xiy∗ri
− (Uxiri

⊗ 1)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ 1)∥1 ≤

(
2
√

108δ1

ζ

)1/2

and by (24) again,

E
i∈C̄

E
PXiRi|E

∥|φ⟩⟨φ|xiy∗ri − (Uxiri ⊗ 1)|φ⟩⟨φ|y∗ri (U†
xiri

⊗ 1)∥1 ≤
(

2
√

108δ1

ζ

)1/2

+ 40
√

2δ1

ζ

≤ 2
(

10800δ1

ζ2

)1/4

≤ ε. (25)

Combining (25) and (21) we get,

E
i∈C̄

E
PXiYiRi|E

∥∥(Uxiri
⊗ Uyiri

)|φ⟩⟨φ|y∗ri
(U†

xiri
⊗ U†

yiri
) − |φ⟩⟨φ|xiyiri

∥∥
1 ≤ 9ε

5 .

The result then follows by Markov’s inequality.
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