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Abstract
We prove that for every parity decision tree of depth d on n variables, the sum of absolute values of
Fourier coefficients at level ℓ is at most dℓ/2 · O(ℓ · log(n))ℓ. Our result is nearly tight for small values
of ℓ and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and
Wu (STOC, 2021).

As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021),
we show that the k-fold Forrelation problem has (randomized) parity decision tree complexity
Ω̃
(
n1−1/k

)
, while having quantum query complexity ⌈k/2⌉.

Our proof follows a random-walk approach, analyzing the contribution of a random path in
the decision tree to the level-ℓ Fourier expression. To carry the argument, we apply a careful
cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded
with high probability. We observe that step sizes for the level-ℓ walks can be computed by the
intermediate values of level ≤ ℓ − 1 walks, which calls for an inductive argument. Our approach
differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021)
that relied on decompositions of the tree. In particular, for the special case of standard decision
trees we view our proof as slightly simpler and more intuitive.

In addition, we prove a similar bound for noisy decision trees of cost at most d – a model that
was recently introduced by Ben-David and Blais (FOCS, 2020).
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1 Introduction

A common theme in the analysis of Boolean functions is proving structural results on classes
of Boolean devices (e.g., decision trees, bounded-depth circuits) and then exploiting the
structure to: (i) devise pseudorandom generators fooling these devices, (ii) prove lower
bounds, showing that some explicit function cannot be computed by such Boolean devices of
certain size, or (iii) design learning algorithms for the class of Boolean devices in either the
membership-query model or the random-samples model. Such structural results can involve
properties of the Fourier spectrum of Boolean functions associated with Boolean devices,
like concentration on low-degree terms or concentration on a few terms (i.e., “approximate
sparsity”).
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In this work, we investigate the Fourier spectrum of parity decision trees. A parity
decision tree (PDT) is an extension of the standard decision tree model. A PDT is a binary
tree where each internal node is marked by a linear function (modulo 2) on the input variables
(x1, . . . , xn), with two outgoing edges marked with 0 and 1, and each leaf is marked with
either 0 or 1. A PDT naturally describes a computational model: on input x = (x1, . . . , xn),
start at the root and at each step query the linear function specified by the current node on
the input x and continue on the edge marked with the value of the linear function evaluated
on x. Finally, when reaching a leaf, output the value specified in the leaf. PDTs naturally
generalize standard decision trees that can only query the value of a single input bit in each
internal node.

PDTs were introduced in the seminal paper of Kushilevitz and Mansour [21]. Aligned
with the aforementioned theme, Kushilevitz and Mansour proved a structural result for PDTs
and used it to design learning algorithms for PDTs. They showed that every PDT of size s

computing a Boolean function f : {0, 1}n → {0, 1} has

L1(f) ≜
∑

S⊆[n]

∣∣∣f̂(S)
∣∣∣ ≤ s,

where f̂(S) are the Fourier coefficients of f (see Subsection 2.1 for a precise definition). Then,
they gave a learning algorithm in the membership-query model, running in time poly(t, n)
that can learn any function f with L1(f) ≤ t. Combining the two results together, they
obtained a poly(s, n)-time algorithm for learning PDTs of size s.

Parity decision trees were also studied in relation to communication complexity and the
log-rank conjecture [26, 39, 40, 38, 35, 31, 13, 20, 18, 33, 23]. Suppose Alice gets input
x ∈ {0, 1}n, Bob gets input y ∈ {0, 1}n and they want to compute some function f(x, y).
When f is an XOR-function, namely f(x, y) = g(x⊕ y) for some g : {0, 1}n → {0, 1}, then
any PDT for g of depth d can be translated into a communication protocol for f at cost 2d:
Alice and Bob simply traverse the PDT together, both exchanging the parity of their part
of the input to simulate each query in the PDT. With this view, parity decision trees can
be thought of as special cases of communication protocols for XOR functions. A surprising
result by Hatami, Hosseini, and Lovett [18], shows that this is not far from the optimal
strategy for XOR functions. Namely, if the communication cost for computing f is c, then
the parity decision tree complexity of g is at most poly(c). Due to this connection, the
log-rank conjecture for XOR-functions reduces to the question of whether Boolean functions
with at most s non-zero Fourier coefficients can be computed by PDTs of depth polylog(s)
[26, 39]. The best known upper bound is that such functions can be computed by PDTs of
depth O(

√
s) [38] (or even non-adaptive PDTs of depth ‹O(

√
s) [33]).

While having small L1(f) norm implies learning algorithms and also simple pseudorandom
generators fooling f [27], this property can be quite restrictive. In particular, very simple
functions (e.g., the Tribes function) have L1(f) exponential in n. Such examples motivated
Reingold, Steinke, and Vadhan [32] to study a more refined notion measuring for a given
level ℓ, the sum of absolute values of Fourier coefficients of sets S of size exactly ℓ, i.e, to
study

L1,ℓ(f) ≜
∑

S⊆[n]:|S|=ℓ

∣∣∣f̂(S)
∣∣∣ .

In particular, for ℓ = 1, the measure L1,1(f) is tightly related to the total influence of f

(and equals to it if f is monotone). The idea behind this more refined notion is that Fourier
coefficients of different levels behave differently under standard manipulations to the function
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like random restrictions or noise operators. For example, when applying a noise operator
with parameter γ, level-ℓ coefficients are multiplied by γℓ. This motivates to establish a
bound of the form L1,ℓ(f) ≤ tℓ for some parameter t and all ℓ = 1, . . . , n. If f satisfies such
a bound, we say that f ∈ L1(t).1

Reingold, Steinke, and Vadhan [32] showed that for read-once permutation branching
programs of width w, while L1(f) could be exponential in n (even for w = 3), it nevertheless
holds that L1,ℓ(f) ≤ (2w2)ℓ for all ℓ = 1, . . . , n. Then, they constructed a pseudorandom
generator that fools any class of read-once branching programs for which f ∈ L1(t) using
only t · polylog(n) random bits. This result was significantly generalized to a pseudorandom
generator that fools any class of functions f ∈ L1(t) using only t2 · polylog(n) random bits [9].
Further results established pseudorandom generators assuming L1,ℓ bounds only on the first
few levels [11, 8].

It turns out that read-once permutation branching programs are just one example of
many well-studied Boolean devices with non-trivial L1,ℓ bounds. The following classes of
Boolean functions are other examples:
1. Width-w CNF and width-w DNF formulae are in L1(O(w)) [24].
2. AC0 circuits of size s and depth d are in L1

(
O(log(s))d−1) [36].

3. Boolean functions with max-sensitivity at most s are in L1(O(s)) [17]
4. Read-once branching programs of width w are in L1 (O(log(n))w)[11]
5. Deterministic and randomized decision trees of depth d are in L1

(
O
(√

d log(n)
))

[37, 34].
6. If f(x, y) is a function computed by communication protocol exchanging at most c bits,

then h(z) = Ex[f(x, x⊕ z)] satisfies h ∈ L1(O(c)) [15, 16].
7. Polynomials f over GF(2) of degree d have L1,ℓ(f) ≤

(
23d · ℓ

)ℓ [9].
8. Product tests, i.e., the XOR of multiple Boolean functions operating on disjoint sets of at

most m bits each, are in L1(O(m)) [22].
We remark that Items 1, 2, 4, 5 and 8 are essentially tight, Item 3 can be potentially improved
polynomially [28, 30], Item 6 can be potentially improved quadratically [15] and Item 7 can
be potentially improved exponentially [10]. Indeed, improving Item 7 exponentially would
imply that AC0[⊕] in L1(polylog(n)) and would give the first poly-logarithmic pseudorandom
generators for this well-studied class of Boolean circuits [10].

The most relevant result to our work is the recent tight bounds on the L1,ℓ of decision
trees of depth d. Sherstov, Storozhenko and Wu [34] recently proved that for any randomized
decision tree of depth d computing a function f , it holds that L1,ℓ(f) ≤

√(
d
ℓ

)
·O(log(n))ℓ−1.

Their bound is nearly tight (see [37, Section 7] and [29, Chapter 5.3] for tightness examples).
One motivation for showing such a bound for decision trees is that it demonstrates a stark
difference between quantum algorithms making few queries and randomized algorithms making
a few queries. Indeed, the Fourier spectrum associated with quantum query algorithms
making a few queries can be far from being approximately sparse (in the sense that its L1,ℓ

is quite large). Based on that difference, both [34] and [2] showed that there are partial
functions, either k-fold Forrelation or k-fold Rorrelation, that can be correctly computed with
probability at least 1/2 + Ω(1) by quantum algorithms making ⌈k/2⌉ queries, but require
Ω̃
(
n1−1/k

)
queries for any randomized algorithm. Moreover, due to the result of Aaronson

and Ambainis [1] this is the largest possible separation between the two models.

1 Note that if f ∈ L1(t) then after applying noise operator with γ = 1/(2t), the noisy-version of f has
total L1-norm at most O(1) which makes it is quite easy to fool using small-biased distributions [27].

CCC 2021
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Indeed, as suggested in [37], one can show that any function with sufficiently good bounds
on its L1,ℓ, for all ℓ = 1, . . . , n, cannot solve the k-fold Rorrelation, and such bounds were
obtained by [34] for randomized decision trees of depth n1−1/k/polylog(n). Independently,
Bansal and Sinha obtained the same separation but only relying on the L1,ℓ bounds for
ℓ ∈ {k, k+1, . . . , k2}. With this additional flexibility, they were able to obtain their separation
for the simpler and explicit function called k-fold Forrelation.

For parity decision trees, the work of Blais, Tan, and Wan [4] established a tight bound
of O

(√
d
)

on the first level ℓ = 1. To the best of our knowledge, bounds on higher levels
were not considered previously in the literature (in fact, even for standard decision trees,
such bounds were not considered prior to [37]).

1.1 Our Results
We prove level-ℓ bounds for any parity decision tree of depth d.

▶ Theorem 1 (Informal). Let T be a depth-d parity decision tree on n variables. Then the
sum of absolute Fourier coefficients at level ℓ is bounded by dℓ/2 ·O(ℓ · log(n))ℓ.

See Theorem 32 and Theorem 39 for a precise statement taking into account the probability
that T accepts a uniformly random input. Theorem 1 extends the result of [34] from
standard decision trees to parity decision trees at the cost of an (ℓ · log(n))O(ℓ) multiplicative
factor. We remark that even for standard decision tree there is a lower bound of L1,ℓ(f) ≥√(

d
ℓ

)
· (log(n))ℓ−1 [37, Section 7] for constant ℓ and L1,ℓ(f) ≥ 1

poly(ℓ) ·
√(

d
ℓ

)
for all ℓ [29,

Chapter 5.3]. Thus, our bounds are tight up to polylog(n) factors for constant ℓ, and they
deteriorate as ℓ grows. Nevertheless, our main application relies on the bounds for small
values of ℓ (constant or at most log2 n).

Noisy Decision Trees

We also investigate the Fourier spectrum of noisy decision trees. Noisy decision trees are
a different generalization of the standard model; here in each internal node v we query a
noisy version of an input bit, that equals the true bit with probability (1 + γv)/2. Any such
query costs γ2

v . We say that a noisy decision tree has cost at most d if the total cost in any
root-to-leaf path is at most d. Recent work studied this model and established connections
to the question of how randomized decision tree complexity behaves under composition [3].

We prove level-ℓ bounds for any noisy decision tree of cost at most d. See Theorem 42
for a precise statement.

▶ Theorem 2 (Informal). Let T be a noisy decision tree of cost at most d on n variables. Then
the sum of absolute Fourier coefficients at level ℓ is bounded by O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2.

Extension to Randomized Query Models

It is simple to verify that if f is a convex combination of Boolean functions f1, . . . , fm each
with L1,ℓ(fi) ≤ tℓ then also f satisfy L1,ℓ(f) ≤ tℓ. Thus, if we take a distribution over PDTs
of depth d (resp., noisy decision trees of cost d) we get the same bounds on their L1,ℓ as
those in Theorem 1 (resp., Theorem 2). This is captured in the following corollary.
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▶ Corollary 3. Let T be a randomized parity decision tree of depth at most d on n variables.
Then,

∀ℓ ∈ [n] : L1,ℓ(T ) ≤ dℓ/2 ·O(ℓ · log(n))ℓ.

Let T ′ be a randomized noisy decision tree of cost at most d on n variables. Then,

∀ℓ ∈ [n] : L1,ℓ(T ′) ≤ O(d)ℓ/2 · (ℓ · log(n))(ℓ−1)/2.

1.2 Applications
Quantum versus Randomized Query Complexity

Let k ≤ log(n). Bansal and Sinha [2] gave a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum and randomized query complexity of k-fold Forrelation (defined by [1]). For
our purposes just think of k-fold Forrelation as a partial Boolean function on n input bits.
Our main application is an extension of Bansal and Sinha’s lower bound for the model of
randomized parity decision trees. This follows from their main technical result and Theorem 1.

▶ Theorem 4 (Restatement of [2, Theorem 3.2]). Let f : {0, 1}n → [0, 1] such that f and all
its restrictions satisfy L1,ℓ(f) ≤ tℓ for ℓ = {k, . . . , k(k − 1)}. Let δ = 2−5k. Suppose f is
δ-close to the value of k-fold Forrelation of x for all x on which k-fold Forrelation is defined.
Then, t ≥ Ω

(
n(1−1/k)/2

k15

)
.

▶ Corollary 5. If T is a randomized parity decision tree of depth d computing k-fold Forrelation
with success probability 1

2 + γ, then d ≥ γ2 · n1−1/k

poly(k) log2 n
.

Proof. We can amplify the success probability of the randomized parity decision tree from
1/2+γ to 1−2−5k by repeating the query algorithm O(k/γ2) times independently and taking
majority. This results in a randomized parity decision tree T ′ of depth d′ = O(d ·k/γ2). Now,
Corollary 3 gives L1,ℓ(T ′) ≤ (d′)ℓ/2 ·O(ℓ · log(n))ℓ for all ℓ. In particular, L1,ℓ(T ′) ≤ tℓ for
all ℓ ≤ k(k − 1) where t = O

(√
d′ · k(k − 1) · log(n)

)
. This is also true for any restriction of

T ′, since fixing variables to constants yields another randomized parity decision tree of depth
at most d′. Combining the bounds on L1,ℓ(T ′) for ℓ ∈ {k, . . . , k(k − 1)} with Theorem 4
gives d′ ≥ n1−1/k

O(k34)·log2(n) and thus d ≥ γ2 · n1−1/k

O(k35)·log2(n) . ◀

For constant k and γ = 2−O(k), we get a ⌈k/2⌉ versus Ω̃
(
n1−1/k

)
separation between

the quantum query complexity and the randomized parity query complexity of k-fold
Forrelation. We remark that separations in the reverse direction are also known: for the
n-bit parity function, the (randomized) parity query complexity is 1 whereas the quantum
query complexity is Ω(n) [25].

Similarly, we can obtain the following corollary for noisy decision trees.

▶ Corollary 6. If T is a randomized noisy decision tree of cost at most d computing k-fold
Forrelation with success probability 1

2 + γ, then d ≥ γ2 · n1−1/k

poly(k) log(n) .

Towards Communication Complexity Lower Bounds

We recall an open question from [15], which, if true, would demonstrate that the randomized
communication complexity of the Forrelation problem composed with the XOR gadget is
Ω̃(n1/2). The simultaneous quantum communication complexity of this problem is polylog(n)
and the best known randomized lower bound is Ω̃(n1/4) due to [15].

CCC 2021
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▶ Conjecture 7. Let f : {0, 1}n×{0, 1}n → {0, 1} computed by a deterministic communication
protocol of cost at most c. Let h : {0, 1}n → [0, 1] defined by h(z) = Ex[f(x, x⊕ z)]. Then,
L1,2(h) ≤ c · polylog(n).

We view Theorem 1 as a first step towards this conjecture. Indeed, for communication
protocols that follow a parity decision tree strategy according to some tree T , it is simple to
verify that h = T (as functions), and thus L1,2(h) = L1,2(T ) ≤ c · polylog(n).

We remark that there is a separation of polylog(n) versus Ω̃(n1/2) between simultaneous
quantum communication complexity and two-way randomized communication complexity
due to [14]. We also know a separation of O(k log n) versus Ω̃(n1−1/k) between two-way
quantum communication complexity and two-way randomized communication complexity.
This can be obtained by combining the optimal quantum versus classical query complexity
separations of [2] and [34] and the query-to-communication lifting theorems [7] using the
inner product gadget.

Application to Expander Random Walk

Recently, [12] showed that expander random walks fool symmetric functions and also general
functions in L1(t). To be more precise, assume f ∈ L1(t). Let G be an expander, with
second eigenvalue λ≪ 1

t4 , where half of G’s vertices are labeled by 0 and the rest are labeled
by 1. Then the expected value of f on bits sampled by an (m− 1)-step random walk on G is
approximately the value it would get on a uniformly random string in {0, 1}m. Combined
with our results, this shows that if f can be computed by low-depth parity decision trees
then f can be fooled by the expander random walk.

Fourier Bounds for Small-size Parity Decision Trees

By a simple size-to-depth reduction we obtain Fourier bounds for parity decision trees of
bounded size. We defer the simple proof to Appendix A.

▶ Corollary 8. Let T be a parity decision tree of size at most s > 1 on n variables. Then,

∀ℓ ∈ [n] : L1,ℓ(f) ≤ (log(s))ℓ/2 ·O(ℓ · log(n))1.5ℓ.

1.3 Technical Overview
For the rest of the paper we consider Boolean functions as functions from {±1}n to {0, 1}.
This is for convenience, since most of our calculations become easier under this representation.
Observe that under this view, a parity decision tree queries at each internal node the product∏

i∈S xi for some S ⊆ [n] and goes left/right depending on whether
∏

i∈S xi = 1 or −1.
Let ℓ ∈ N+. For simplicity of notation, we use ‹Oε (dm) to denote

(
d · polylog

(
nℓ/ε

))m for
m, n, d ∈ N+ and ε ∈ (0, 1/2]. When we omit the subscript ε, it is understood that ε = 1. As
per this notation, we show a bound of ‹O (dℓ/2) on the level-ℓ Fourier mass of parity decision
trees of depth d. We first describe the proof for standard decision trees and then show how
to generalize to parity decision trees.

Standard Decision Trees

Let T be a decision tree and for simplicity, assume that every leaf is of depth d. Let v0, . . . , vd

be a random root-to-leaf path in T and v(0), . . . , v(d) ∈ {−1, 0, 1}n denote the sequence of
partial assignments, i.e., for j ∈ [n] and i ∈ {0, . . . , d}, let
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v
(i)
j =


1 if xj is fixed to 1 before reaching vi,
−1 if xj is fixed to −1 before reaching vi,
0 otherwise.

(1)

For u ∈ Rn, we use uS to denote
∏

j∈S uj . Let aS = sgn
(“T (S)

)
for |S| = ℓ and 0 otherwise.

Note that

∑
S:|S|=ℓ

∣∣∣“T (S)
∣∣∣ =

∑
S:|S|=ℓ

aS
“T (S) =

∑
S:|S|=ℓ

aS E
vd

[
T (vd)v(d)

S

]
= E

vd

T (vd)
∑

S:|S|=ℓ

aSv
(d)
S

 . (2)

Thus, to bound
∑

S:|S|=ℓ |“T (S)| it suffices to show that
∣∣∣∑S:|S|=ℓ aS · v(d)

S

∣∣∣ is bounded

by ‹O(dℓ/2) in expectation. Denote by X(i) :=
∑

S:|S|=ℓ aS · v(i)
S for i = 0, 1, . . . , d. We write

X(d) as a telescoping sum X(d) =
∑d

i=1
(
X(i) −X(i−1)). To analyze the difference sequence,

observe that in the expression

X(i) −X(i−1) =
∑

S:|S|=ℓ

aS ·
(

v
(i)
S − v

(i−1)
S

)
,

if set S contributes to the sum, then S must include the bit queried at the (i− 1)-th step of
the path. Conditioning on v0, . . . , vi−1, let xj be the variable queried in vi−1, then we have

X(i) −X(i−1) =
∑

S:|S|=ℓ,j∈S

aS · v(i)
S = xj ·

 ∑
S:|S|=ℓ,j∈S

aS · v(i−1)
S\{j}

 .

Furthermore, we observe that the sum
∑

S:|S|=ℓ,j∈S aS · v(i−1)
S\{j} is determined by vi−1; thus

conditioning on v0, . . . , vi−1 the value of X(i) −X(i−1) is a random coin in {±1} multiplied
by some fixed integer. In other words, we get that X(0), . . . , X(d) is a martingale with varying
step sizes.

Recall that Azuma’s inequality provides concentration bounds for martingales with
bounded step sizes, thus now we need to bound

∣∣∣∑S:|S|=ℓ,j∈S aS · v(i−1)
S\{j}

∣∣∣, which is similar
to our initial goal. Put differently, we wish to analyze the sum∑

S′⊆[n]\{j}:|S′|=ℓ−1

aS′∪{j} · v
(i−1)
S′ ,

which calls for an inductive argument on ℓ. In addition, since we eventually apply a union
bound on all steps, we need to show that

∣∣∣∑S′ aS′∪{j}v
(i−1)
S′

∣∣∣ is bounded with high probability
(and not just in expectation).

More generally, to carry an inductive argument we define for any set T ⊆ [n], |T | ≤ ℓ and
any i ∈ {0, . . . , d}, the random variable

X
(i)
T :=

∑
S⊇T :|S|=ℓ

aS · v(i)
S\T =

∑
S′⊆T :|S′|=ℓ−|T |

aS′∪T · v(i)
S′ .

Note that our initial goal was to bound
∣∣∣X(d)

∅

∣∣∣ =
∣∣X(d)

∣∣, which is analyzed by (reverse)
induction on |T | going from larger sets to smaller sets as Lemma 9.

CCC 2021
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▶ Lemma 9. For all t ∈ {0, . . . , ℓ} and ε > 0, the probability that there exist i ∈ {0, . . . , d}
and T ⊆ [n] of size at least t such that

∣∣∣X(i)
T

∣∣∣ ≥ ‹Oε

(
d(ℓ−t)/2) is at most ε · (ℓ− t).

The main observation for the proof is that X
(0)
T , X

(1)
T , . . . , X

(d)
T is a martingale whose difference

sequence consists of terms of the form X
(i−1)
T ′ where T ⊊ T ′. To see this, if we are querying

xj at vi−1, then

X
(i)
T −X

(i−1)
T =


0 j ∈ T,

xj ·

( ∑
j /∈S⊆T

aS∪T ∪{j} · v
(i−1)
S

)
= xj ·X(i−1)

T ∪j j /∈ T.

Note that X
(i−1)
T ∪j depends only on the history until vi−1, and xj is a uniformly random bit

independent of this history, thus X
(i)
T is a martingale. The inductive hypothesis implies that

with at least 1− ε · (ℓ− t− 1) probability,
∣∣∣X(i−1)

T ∪j

∣∣∣ ≤ ‹Oε

(
d(ℓ−t−1)/2) for all T of size t and

j ∈ [n] \ T . Whenever this happens, Azuma’s inequality implies that2 with probability at
least 1− ε/ (d · nt), we have

∣∣∣X(i)
T

∣∣∣ ≤ 2
√

log(d · nt/ε) ·

√√√√ d∑
i=1

‹Oε (dℓ−t−1) = ‹Oε

(
d(ℓ−t)/2

)
.

This, along with a union bound over T of size t and i ∈ {0, . . . , d} completes the inductive
step. The Fourier bound for noisy decision trees can be proved using a similar approach.

Parity Decision Trees

The basic approach is as before. Let T be a parity decision tree. As in (1), we use vi and
v(i) to denote the random walk and the partial assignments to the variables respectively. We
say vi is k-clean if

∀S ⊆ [n], |S| ≤ k, v
(i)
S =


1 if xS is fixed to 1 before reaching vi,
−1 if xS is fixed to −1 before reaching vi,
0 otherwise.

(3)

For (2) to be true, we need that at least vd is ℓ-clean. Note that this is not always true,3 but
it is useful as it simplifies the study of high-level Fourier coefficients. To address this issue,
we define a cleanup process for parity decision trees in which we make additional queries
to ensure that certain key nodes are k-clean. We do this by recursively cleaning nodes in a
top-down fashion so that for every node v in the original tree T , any node v′ in the new tree
T ′ obtained at the end of the cleanup step for v is k-clean.

The cleanup process is simple to describe: Let v1, . . . , vd be any root-to-leaf path in T .
Assume we have completed the cleanup process for v1, . . . , vi−1. We then query the parity
at vi. While there exists a (minimal) set S violating (3), we pick and query an arbitrary

2 Technically this is not true, since a martingale after conditioning may not still be a martingale. We
handle this by truncating the martingale when a bad event happens instead of conditioning on the good
event.

3 For example, let S = {1, 2} and consider the parity decision tree whose only query is x1x2. At any leaf,
the value of x1x2 is fixed, however, the values of x1 and x2 are free, hence S violates (3).
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coordinate in S. Once (3) is satisfied, we proceed to the cleanup process for vi+1. This
process increases the depth by a factor of at most k. We set k = Θ(ℓ · log(n)) and work with
the new tree T ′ of depth D ≤ k · d.

Let v0, . . . , vD be a random root-to-leaf path in T ′ and Ii, i ∈ [D] be the set of coordinates
fixed due to the query at vi−1. Note that this set might be of size larger than 1.4 It follows
from simple linear algebra that

∑D
i=1 |Ii| ≤ D. Since vD is k-clean, (2) holds. Defining X

(i)
T

exactly as before, our goal is to prove Lemma 9 with D instead of d. The proof is still by
induction on ℓ− t. It turns out that X

(0)
T , X

(1)
T , . . . , X

(D)
T is no longer a martingale; instead,

X
(i)
T −X

(i−1)
T = Yi + Zi where

Yi :=
∑

∅̸=J⊆Ii∩T
|J| is even

xJ ·X(i−1)
J∪T and Zi :=

∑
∅̸=J⊆Ii∩T
|J| is odd

xJ ·X(i−1)
J∪T . (4)

and Zi (resp., Yi) is an odd (resp., even) polynomial of degree at most ℓ over the newly
fixed variables {xj | j ∈ Ii}. Conditioning on vi−1, every pair of random bits (xj , xj′) from
{xj | j ∈ Ii} is either identical (xj ≡ xj′) or opposite (xj ≡ −xj′), which means Yi is a
constant and Zi can be written as zi · |Zi| where |Zi| is a constant and zi ∼ {±1}.

For now, let us ignore Yi and assume that we have a martingale X
(i)
T such that X

(i)
T −

X
(i−1)
T = zi · |Zi|, where zi ∼ {±1} is a uniformly random bit independent of z0, . . . , zi−1

and |Zi| depends only on vi−1. Combined with an adaptive version of Azuma’s inequality,
we only need to show the sum of squares of step sizes

∑D
i=1 |Zi|2 is ‹Oε

(
Dℓ−t

)
to prove∣∣∣X(i)

T

∣∣∣ = ‹Oε

(
D(ℓ−t)/2). By the induction hypothesis, with probability at least 1−ε ·(ℓ− t−1)

the coefficients of Zi are bounded appropriately. Since
∑D

i=1 |Ii| ≤ D and in particular
|Ii| ≤ D, we have

|Zi| ≤
∑

odd j≥1

(
|Ii|
j

)
· max
|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣ ≤ ℓ−t∑
j≥1

(
|Ii|
j

)
·‹Oε

(
D(ℓ−j−t)/2

)
= ‹Oε

(
|Ii| ·D(ℓ−t−1)/2

)
and thus

∑D
i=1 |Zi|2 ≤ D2 · ‹Oε

(
Dℓ−t−1). This is too loose for our purpose.

We instead try to bound the sum of squares of step sizes with high probability. Imagine
for now that vi−1 is 2-clean.5 Then, the variables {xj | j ∈ Ii} are 2-wise independent
conditioning on vi−1. This gives

E
[
|Zi|2

∣∣∣ vi−1

]
≤

∑
odd j≥1

(
|Ii|
j

)
· max

|T ′|=j+t

∣∣∣X(i−1)
T ′

∣∣∣2
≤

ℓ−t∑
j≥1

(
|Ii|
j

)
· ‹Oε

(
Dℓ−j−t

)
= ‹Oε

(
|Ii| ·Dℓ−t−1)

and thus E
[∑D

i=1 |Zi|2
]
≤ ‹Oε

(
Dℓ−t

)
. To show this bound holds with high probability, we

use concentration properties of degree-ℓ polynomials under k-wise independent distributions
for k ≫ ℓ.

4 For example, suppose we query x1x2, x1x3, x1x4 and finally x1. Then, the last query reveals 4
coordinates.

5 This assumption immediately implies that |Ii| ≤ 1 and trivially proves our inequality, however, this
type of reasoning doesn’t generalize to the case when vi−1 is not 2-clean.
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In the actual proof, we proceed by conditioning on C(vi−1), the nearest ancestor of vi−1
that is k-clean, instead of conditioning on vi−1, which allows to remove the assumption that
vi−1 is 2-clean. This is because the queries within a cleanup step are non-adaptive, thus Zi

depends only on C(vi−1) and not on vi−1.
Meanwhile, although X

(i)
T is not quite a martingale sequence (due to Yi) and the step sizes

(i.e., |Zi|) are adaptive and not always bounded, we are nonetheless able to prove an adaptive
version of Azuma’s inequality of the form Pr

[
maxi∈[D]

∣∣∣X(i)
T

∣∣∣ ≥ µ + t · σ
]
≤ e−Ω(t2) + ε

provided Pr
[(∑D

i=1 |Yi| ≤ µ
)
∧
(∑D

i=1 |Zi|2 ≤ σ2
)]
≥ 1 − ε. Then it suffices to bound∑D

i=1 |Yi| similarly to
∑D

i=1 |Zi|2 above.

1.4 Related Work
We remark that our proof for level-ℓ Fourier growth (even when specialized to the case of
standard decision trees) differs from the proofs appearing in [37] and [34]. There, the results
were based on decompositions of decision trees. We view our martingale approach as natural
and intuitive. We wonder if one can obtain the tight results from [34] using this approach. It
seems that the main bottleneck is a union bound on events related to all sets T ⊆ [n] of size
at most ℓ.

Our bounds for level-1 improve those obtained by [4]. They prove that L1,1(T ) ≤ O(
√

p · d)
when p = Prx[T (x) = 1], whereas we obtain a bound of

L1,1(T ) ≤ O
(

p
√

d · log(1/p)
)

.

In particular, our bound is almost quadratically better for small values of p. It remains open
whether the bound can be further improved to O

(
p
√

d · log(1/p)
)

, which is the optimal
bound for standard decision trees.

We remark that our cleanup technique is inspired by [4], which used cleanup to prove
their level-1 bound. However, our proof strategies and the way we use the cleanup procedure
is quite different than that of [4].

Organization

We make formal definitions in Section 2. We state and prove the necessary concentration
inequalities in Section 3. We present the cleanup process in Section 4. We present the Fourier
bounds for parity decision trees in Section 5 and for noisy decision trees in Section 6.

2 Preliminaries

We use log(·) to denote the logarithm with base 2. We use [n] to denote {1, 2, . . . , n}; and([n]
k

)
(resp.,

([n]
≤k

)
) to denote the set of all size-k (resp., size-at-most-k) sets from [n]. If S is a

set from universe U , then we write S for U \S. We use Un to denote the uniform distribution
over {±1}n. We use sgn(value) ∈ {−1, 0, 1} to denote the sign of value, i.e., sgn(value) equals
−1 if value < 0, 1 if value > 0, and 0 if value = 0.

We use F2 = {0, 1} to denote the binary field, Span ⟨vectors⟩ to denote the subspace
spanned by vectors over F2. For a distribution D we use x ∼ D to represent that x is
a random variable sampled from D. For a finite set X we use x ∼ X to denote that x

is a random variable sampled uniformly from X . We use the standard notion of k-wise
independent distribution over {±1}n.
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▶ Definition 10 (k-wise independence). A distribution D over {±1}n is k-wise independent if
for x ∼ D and any k-indices 1 ≤ i1 < i2 < . . . < ik ≤ n, the random variables (xi1 , . . . , xik

)
are uniformly distributed over {±1}k.

2.1 Boolean Functions
Here we recall definitions in the analysis of Boolean functions (see [29] for a detailed
introduction). Let f : {±1}n → R be any Boolean function. For any p > 0, the p-norm of
f is defined as ∥f∥p = (Ex∼Un [|f(x)|p])1/p. For any subset S ⊆ [n], xS denotes

∏
i∈S xi (in

particular, x∅ = 1). It is a well-known fact that we can uniquely represent f as a linear
combination of {xS}S⊆[n]:

f(x) =
∑

S⊆[n]

f̂(S)xS ,

where the coefficients
{

f̂(S)
}

S⊆[n]
are referred to as the Fourier coefficients of f and are

given by f̂(S) = Ex∼Un
[f(x)xS ]. The above representation expresses f as a multilinear

polynomial and is called the Fourier representation of f . We say that f is of degree at most
d if its Fourier representation is a polynomial of degree at most d, i.e., if f̂(S) = 0 for all
S ⊆ [n], |S| > d.

2.2 Parity Decision Trees
Here we formally define parity decision trees (with Boolean outputs).

▶ Definition 11 (Parity decision tree). A parity decision tree T is a representation of a
Boolean function f : {±1}n → {0, 1}. It consists of a rooted binary tree in which each internal
node v is labeled by a non-empty set Qv ⊆ [n], the outgoing edges of each internal node are
labeled by +1 and −1, and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to a leaf.
Specifically, when P reaches an internal node v we say that T queries Qv; then P follows
the outgoing edge labeled by

∏
i∈Qv

xi. We require that Qv is not implied by its ancestors’
queries. The output of T (and hence f) on input x is the label of the leaf reached by the
computation path. Conversely, we say x is consistent with the path P if P is the computation
path (possibly ending before reaching a leaf) for x.

We make a few more remarks on a parity decision tree T : {±1}n → {0, 1}.
A node v in T can be either an internal node or a leaf, and we use T (v) ∈ {0, 1} to
denote the label on v when v is a leaf. Meanwhile, we use Tv to denote the sub parity
decision tree starting with node v.
The depth of a node is the number of its ancestors (e.g., the root has depth 0) and the
depth of T is the maximum depth over all its leaves.
We say that two parity decision trees T and T ′ are equivalent (denoted by T ≡ T ′) if
they compute the same function.

2.3 Noisy Decision Trees
▶ Definition 12 (Noisy oracle). A noisy query to a bit b ∈ {±1} with correlation γ ∈ [−1, 1]
returns a bit b′ ∈ {±1} where

b′ =
{

b with probability (1 + γ)/2,

−b with probability (1− γ)/2.

The cost of a noisy query with correlation γ is defined to be γ2.
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▶ Definition 13 (Noisy decision tree). A noisy decision tree T is a rooted binary tree in
which each internal node v is labeled by an index qv ∈ [n] and a correlation γv ∈ [−1, 1]. The
outgoing edges are labeled by +1 and −1 and the leaves are labeled by 0 and 1.

On input x ∈ {±1}n, the tree T constructs a computation path P from the root to
leaf as follows. When P reaches an internal node v, it makes a noisy query to xqv

with
correlation γv and follows the edge labeled by the outcome of this noisy query. The output of
the tree is defined by sampling a root-to-leaf path and returning the label of the leaf. Since the
computation path P is probabilistic, this is an inherently randomized model of computation.
We use T (x) ∈ {0, 1} to denote the (probabilistic) output of T on input x. We also use
T (v) ∈ {0, 1} to denote the label on v when v is a leaf. We do not require that the indices qv

queried along a path P are distinct. The cost of any path is the sum of costs of the noisy
queries along that path; and the cost of T is the maximum cost of any root-to-leaf path.

We remark that for any noisy decision tree T , its Fourier coefficient “T (S) is given by
E [T (x)xS ] where the expectation is over the randomness of both x ∼ Un and T .

3 Useful Concentration Inequalities

We describe useful concentration inequalities in this section.

3.1 Low Degree Polynomials
We use the fact that low degree polynomials satisfy strong concentration properties under
k-wise independent distributions. We will find the following hypercontractive inequality
useful.

▶ Theorem 14 ([5], see also [29, (2, q)-hypercontractivity]). Let f : {±1}n → R be a degree-d
polynomial. Then for any q ≥ 2, we have ∥f∥q ≤ (q − 1)d/2 ∥f∥2.

▶ Lemma 15. Let f : {±1}n → R be a degree-d polynomial. Let D be a 2k-wise independent
distribution over {±1}n, where k ≥ d. Let µ = Ex∼D [f(x)] and σ2 = Ex∼D

[
(f(x)− µ)2].

Then for any α > 0 and any integer 1 ≤ ℓ ≤ k/d, we have

E
x∼D

[
(f(x)− µ)2ℓ

]
≤ σ2ℓ · (2ℓ− 1)d·ℓ

.

In particular we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤ α2 ·
(

2k

d · α2/d

)k

.

Proof. Observe that (f(x) − µ)2ℓ is a polynomial of degree at most 2ℓ · d ≤ 2k. Thus its
expectation under D is the same as its expectation under the uniform distribution over
{±1}n. By Theorem 14, we have

∥f − µ∥2ℓ ≤ (2ℓ− 1)d/2 ∥f − µ∥2 = σ · (2ℓ− 1)d/2.

Hence by Markov’s inequality, we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤
Ex∼D

[
(f(x)− µ)2ℓ

]
(α · σ)2ℓ

=
∥f − µ∥2ℓ

2ℓ

(α · σ)2ℓ
≤ (2ℓ− 1)ℓ·d

α2ℓ
.

Now we derive the second bound. We only need to focus on the case α ≥ 1 since otherwise
the RHS is at least 1. Then by setting ℓ = ⌊k/d⌋, we have

Pr
x∼D

[|f(x)− µ| ≥ α · σ] ≤ (2⌊k/d⌋ − 1)⌊k/d⌋·d

α2⌊k/d⌋ ≤ (2k/d)k

α2(k/d−1) = α2 ·
(

2k

d · α2/d

)k

. ◀
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3.2 Martingales
We show an adaptive version of Azuma’s inequality for martingales. The proof is similar to
the inductive proof of the standard Azuma’s inequality and thus deferred to Appendix B.

▶ Lemma 16 (Adaptive Azuma’s inequality). Let X(0), . . . , X(D) be a martingale and
∆(1), . . . , ∆(D) be a sequence of magnitudes such that X(0) = 0 and X(i) = X(i−1) + ∆(i) · z(i)

for i ∈ [D], where if conditioning on z(1), . . . , z(i−1),
(1) z(i) is a mean-zero random variable and

∣∣z(i)
∣∣ ≤ 1 always holds;

(2) ∆(i) is a fixed value.
If there exists some constant U ≥ 0 such that

∑D
i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for any
β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

Next, we generalize Lemma 16 as follows.

▶ Lemma 17. Let m ≥ 1 be an integer. For each t ∈ [m], let X
(0)
t , . . . , X

(D)
t be a sequence

of random variables and ∆(1)
t , . . . , ∆(D)

t be a sequence of magnitudes such that X
(0)
t = 0 and

X
(i)
t = X

(i−1)
t + ∆(i)

t · z
(i)
t + µ

(i)
t for i ∈ [D], where if conditioning on z

(1)
t , . . . , z

(i−1)
t ,

(1) z
(i)
t is a mean-zero random variable and

∣∣∣z(i)
t

∣∣∣ ≤ 1 always holds;

(2) ∆(i)
t is a fixed value and µ

(i)
t is a random variable.

If there exist some constants U, V ≥ 0 and η ∈ [0, 1] such that

Pr
[
∃t ∈ [m],

(
D∑

i=1

∣∣∣∆(i)
t

∣∣∣2 > U

)
∨

(
D∑

i=1

∣∣∣µ(i)
t

∣∣∣ > V

)]
≤ η,

then for any β ≥ 0 we have

Pr
[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2.

Proof. We divide the proof into the following two cases.

Case η = 0. Let “X(i)
t = X

(i)
t −

∑i
j=1 µ

(j)
t for each t and i. Then

∣∣∣X(i)
t

∣∣∣ =∣∣∣“X(i)
t +

∑i
j=1 µ

(j)
t

∣∣∣ ≤ V +
∣∣∣“X(i)

t

∣∣∣. By a union bound, it suffices to show for any fixed t,
we have

Pr
[

max
i=0,1,...,D

∣∣∣“X(i)
t

∣∣∣ ≥ β ·
√

2U

]
≤ 2 · e−β2/2,

which follows from Lemma 16.

Case η ≥ 0. Consider ‹X(0)
t , . . . , ‹X(D)

t defined by setting ‹X(0)
t = 0 and ‹X(i)

t = ‹X(i−1)
t +‹∆(i)

t · z
(i)
t + µ̃

(i)
t , where‹∆(i)

t =

∆(i)
t

∑i
j=1

∣∣∣∆(j)
t

∣∣∣2 ≤ U,

0 otherwise,
and µ̃

(i)
t =

µ
(i)
t

∑i
j=1

∣∣∣µ(j)
t

∣∣∣ ≤ V,

0 otherwise.

Then Item (1) and (2) hold for
(‹X(i)

t

)
t,i

and
(‹∆(i)

t

)
t,i

,
(

µ̃
(i)
t

)
t,i

.
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Note that Pr
[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , ‹X(i)

t ̸= X
(i)
t

]
≤ η and

∑D
i=1

∣∣∣‹∆(i)
t

∣∣∣2 ≤ U,∑D
i=1

∣∣∣µ̃(i)
t

∣∣∣ ≤ V always. Hence from the previous case, we have

Pr
[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ Pr

[
∃t ∈ [m], i ∈ {0, 1 . . . , D} , ‹X(i)

t ̸= X
(i)
t

]
+ Pr

[
∃t ∈ [m], max

i=0,1,...,D

∣∣∣‹X(i)
t

∣∣∣ ≥ V + β ·
√

2U

]
≤ η + 2m · e−β2/2. ◀

4 How to Clean Up Parity Decision Trees

In this section we show how to clean up the given parity decision tree to make it easier to
analyze.

4.1 k-cleanness
It will be useful to identify Fn

2 with {±1}n by Enc : (x1, . . . , xn) 7→ ((−1)x1 , . . . , (−1)xn).
For a subset X ⊆ Fn

2 we will denote Enc(X) = {Enc(x) : x ∈ X}. Thus, we may think of
Boolean functions also as f : Fn

2 → {0, 1}. We observe that under this representation of the
input, a parity decision tree T : Fn

2 → {0, 1} indeed queries parity functions (i.e., linear
functions over F2) of the input bits x ∈ Fn

2 and decides whether to go left or right based on
their outcome. Thus, the set of all possible inputs in Fn

2 that reach a given node in a parity
decision tree is an affine subspace of Fn

2 .
We introduce some notation.

▶ Notation 18. Let T : {±1}n → {0, 1} be a parity decision tree and let v be a node in it.
We use Pv ⊆ {±1}n to denote the set of all points reaching node v. Note that Pv =
Enc(Hv + a) where Hv is a linear subspace of Fn

2 of dimension n− depth(v) and a ∈ Fn
2 .

For any S ⊆ [n], we define P̂v(S) = Ex∼Pv
[xS ].

We use Sv to denote all fully correlated sets with Pv, i.e., Sv =
{

S ⊆ [n]
∣∣∣ P̂v(S) ∈ {±1}

}
.

We observe that if Pv = Enc(Hv + a), then Sv = H⊥
v . Additionally, if the queries on the

path from root to v are Qv0 , . . . , Qvi−1 , then Sv = Span⟨{Qv0 , . . . , Qvi−1}⟩.
If v is an internal node, then define J(v) as the set of newly fixed coordinates after
querying Qv, i.e., i ∈ J(v) iff {i} /∈ Sv but {i} ∈ Span ⟨Sv ∪ {Qv}⟩.

The following simple fact shows that there is no “somewhat” correlated set.

▶ Fact 19. For any parity decision tree T and any node v in T , P̂v(S) ∈ {+1, 0,−1} holds
for any set S.

Proof. Since Pv = Enc(Hv + a) where Hv + a is an affine subspace, Pv falls into one of the
following 3 cases: (a) all points in Pv satisfy χS(x) = 1, (b) all points satisfy χS(x) = −1,
(c) exactly half of the points satisfy χS(x) = 1. ◀

Let S ⊆ Fn
2 be a subspace and S ⊆ [n]. For simplicity, we write S ∈ S iff the indicator

vector of S is contained in S. Now we describe the desired property: k-clean.
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▶ Definition 20 (k-clean subspace and mess-witness). Let k be a positive integer. A subspace
S is k-clean if for any set S ∈ S such that |S| ≤ k, we have that {i} ∈ S holds for any i ∈ S.

Moreover, when S is not k-clean, we say i is a mess-witness if there exists some S ∋
i, |S| ≤ k such that S ∈ S but {i} /∈ S.

▶ Definition 21 (k-clean parity decision tree). A parity decision tree T is k-clean if the
following holds:

For any internal node v, either (a) Sv is k-clean, or (b) Qv = {i} where i is a mess-
witness for Sv. Moreover, we say v is k-clean if (a) holds; and we say v is cleaning if (b)
holds.
For any leaf v, Sv is k-clean (in such a case, we say that v is k-clean).
For any k-clean internal node v, Tv starts with ℓ(v) non-adaptive queries6 where ℓ(v) ≥ 1.
In addition, for any i ∈ {1, . . . , ℓ(v)− 1}, any node of depth i in Tv is cleaning; and all
node of depth ℓ(v) are k-clean.7

▶ Example 22. If T is a decision tree (i.e., |Qv| ≡ 1 for any internal node v) then it is
k-clean for any k, where each internal node is k-clean.

If T is the depth-1 parity decision tree for T (x) = x1x2x3 (i.e., T only has a root v0
querying Qv0 = {1, 2, 3}), then it is 2-clean but not 3-clean, since for either leaf v we have
{1, 2, 3} ∈ Sv but {1} /∈ Sv.

The benefit of having a k-clean parity decision tree is that it makes the expression of
Fourier coefficients simpler.

▶ Lemma 23. Let T : {±1}n → {0, 1} be a k-clean parity decision tree and let S be a set of
size ℓ ≤ k. Let v0, . . . , vd be a random root-to-leaf path. Define v(0), . . . , v(d) ∈ {−1, 0, +1}n

by setting v
(i)
j = P̂vi(j) for each i, j. Recall that v

(d)
S =

∏
j∈S v

(d)
j . Then we have“T (S) = E

v0,...,vd

[
T (vd) · v(d)

S

]
.

Proof. Observe that for any j ∈ J(vi) ⊆ J , the j-th coordinate is fixed after querying Qvi
.

Therefore we have“T (S) = E
y∼Un

[T (y) · yS ] = E
v0,...,vd

[
T (vd) · E

y∼Pvd

[yS ]
]

= E
v0,...,vd

[
T (vd) · “Pvd

(S)
]

By Fact 19, “Pvd
(S) ̸= 0 iff S ∈ Svd

, which, due to ℓ ≤ k and vd being a k-clean leaf, is
equivalent to all coordinates in S being fixed along this path. Hence “Pvd

(S) =
∏

j∈S v
(d)
j . ◀

4.2 Cleanup Process
We first analyze the cleanup process for a subspace.8

6 This means for any i ∈ {0, 1 . . . , ℓ(v) − 1}, all nodes of depth i in Tv make the same query.
7 This “leveled adaptive” condition is required just for convenience of proofs. In fact, one can show that

the first few queries in Tv can be rearranged to make sure they are non-adaptive until we reach a k-clean
node. See Lemma 24.

8 The k = 2 case of Lemma 24 is essentially [4, Proposition 3.5]. However there is a gap in their proof.
For example, if the parity decision tree non-adaptively queries x1x2x3x4, x1x5, x2x6 in order, then their
analysis fails.
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▶ Lemma 24 (Clean subspace). Let k ≥ 2 be an integer and S be a subspace of rank at most
d. We construct a new subspace S ′ (initialized as S) as follows: while S ′ is not k-clean, we
continue to update S ′ ← Span ⟨S ′ ∪ {{i}}⟩ with some mess-witness i. Then rank(S ′) ≤ d · k
and any update choice of mess-witnesses will result in the same final subspace S ′.

Proof. Assume S is a subspace of Fn
2 . Then first note that the number of updates is finite,

since we can update for at most n times.
Next we show that the number of updates and the final S ′ does not depend on the choice

of mess-witnesses. We do so by an exchange argument. Let i1, . . . , ir and i′
1, . . . , i′

r′ be two
rounds of execution using different mess-witnesses. Then there exists some t < min {r, r′} such
that ij = i′

j for all j ≤ t, but it+1 ̸= i′
t+1. Let St = Span ⟨S ∪ {{i1} , . . . , {it}}⟩. Then there

exist S ∋ it+1 and S′ ∋ i′
t+1 (possibly S = S′) such that S, S′ ∈ St but {it+1} ,

{
i′
t+1
}

/∈ St.
Since the final subspace is k-clean, we know there exists some T ≥ t such that

{it+1} /∈ Span ⟨S ∪ {{i′
1} , . . . , {i′

T }}⟩ but {it+1} ∈ Span
〈
S ∪

{
{i′

1} , . . . ,
{

i′
T +1

}}〉
,

which means
{

i′
T +1, it+1

}
∈ Span ⟨S ∪ {{i′

1} , . . . , {i′
T }}⟩. Hence we can safely replace i′

T +1
with it+1, and then swap it+1 with i′

t+1. We can perform this process as long as (i1, . . . , ir) ̸=
(i′

1, . . . , i′
r′), which means r = r′ and the final S ′ is always the same.

For any subspaceH, we define rank1(H) = |{i | {i} ∈ H}| and thus rank(H)−rank1(H) ≥ 0.
Now we analyze the following particular way to construct S ′: We initialize S ′ as S. While S ′

is not k-clean, we find a minimal S = {i1, . . . , is} ∈ S ′ such that i1 is a mess-witness; then
we update S ′ ← Span ⟨S ′ ∪ {{i1} , . . . , {is−1}}⟩. Note that before the update, 1 < s ≤ k

and {ij} /∈ S ′ holds for each j ∈ [s], since S is minimal and S ′ is not k-clean. Thus
after the update, rank(S ′) grows by s− 1 ≤ k − 1 and rank1(S ′) grows by s, which means
rank(S ′)− rank1(S ′) shrinks by 1. Hence we have at most rank(S)− rank1(S) ≤ d updates
before S ′ is k-clean; and the final S ′ has rank at most rank(S) + (k − 1) · d ≤ d · k. ◀

We now show how to convert an arbitrary parity decision tree into a k-clean parity
decision tree which still has a small depth and fixes a small number of variables along each
path. The latter quantity is in fact bounded by the depth as shown in Fact 25.

▶ Fact 25. Let T be a depth-d parity decision tree. Let v0, . . . , vd′ be any root-to-leaf path.
Then we have

∑d′−1
i=0 |J(vi)| ≤ d′.

Proof. Observe that
∑d′−1

i=0 |J(vi)| =
∣∣∣{i
∣∣∣ {i} ∈ Span

〈
Qv0 , . . . , Qvd′−1

〉}∣∣∣ ≤ d′. ◀

▶ Corollary 26. Let T be a depth-D k-clean parity decision tree. Let v0, . . . , vD′ be any root-to-
leaf path where at most d of the nodes v0, . . . , vD′−1 are k-clean. Then

∑
i:|J(vi−1)|>1 |J(vi)| ≤

2d.

Proof. By Fact 25 we have
∑D′−1

i=0 |J(vi)| − 1 ≤ 0. Since any vi with J(vi) = ∅ is not
cleaning and therefore must be k-clean. Thus∑

i:|J(vi)|>1

|J(vi)| − 1 ≤ |{i : J(vi) = ∅}| ≤ d.

For |J(vi)| > 1, we have |J(vi)| − 1 ≥ |J(vi)|/2 and thus
∑

i:|J(vi)|>1 |J(vi)| ≤ 2d. ◀

▶ Lemma 27 (Clean parity decision tree). Let k ≥ 2 be an integer. Let T be an arbitrary
depth-d parity decision tree. Then there exists a k-clean parity decision tree T ′ of depth at
most d · k equivalent to T . Moreover, any root-to-leaf path in T ′ has at most d nodes that
are k-clean.
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Algorithm 1 Clean parity decision tree: build T ′ from T .

Input: an arbitrary depth-d parity decision tree T
Output: a parity decision tree T ′ with desired properties

1 r ← root of T
2 Initialize the root of T ′ as r′

3 Build(r, r′, 1)
4 Procedure Build(v, v′, ℓ)

/* (v, v′) are the current nodes on (T , T ′); ℓ is the recursion depth.
*/

5 if v is a leaf then Label v′ with the label of v

6 else
7 (v−, v+)← the left and right child of v

8 if ”Pv′(Qv) = −1 then Build(v−, v′, ℓ + 1)

9 else if ”Pv′(Qv) = +1 then Build(v+, v′, ℓ + 1)

10 else /* ”Pv′(Qv) = 0 due to Fact 19 */
11 Qv′ ← Qv

12 (v′
−, v′

+)← the left and right child of v′

13 Initialize O ← ∅
14 while Span ⟨Sv′ ∪ {Qv′} ∪O⟩ is not k-clean do
15 Update O ← O ∪ {{i}}, where i is a mess-witness
16 end
17 T ′ non-adaptively queries every set (which is a singleton) in O under v′ in

arbitrary order
18 foreach leaf v̂ under v′

− do Build(v−, v̂, ℓ + 1)
19 foreach leaf v̂ under v′

+ do Build(v+, v̂, ℓ + 1)
20

21 end
22 end

Proof. We build T ′ by the following recursive algorithm. An example of the algorithm is
provided in Figure 1

We now prove the correctness of Algorithm 1, which is guaranteed by the following claims.
For any internal node v′ ∈ T ′, Qv′ is not implied by its ancestors’ queries. By Fact 19,
this is equivalent to Qv′ /∈ Sv′ , which follows from the conditions in Line 8/9/13.
The depth of T ′ is at most d · k. Let v0, . . . , vd′ be any root-to-leaf path of T and let
P ′ be its corresponding path in T ′. Then the construction process of P ′ corresponds
to the cleanup process for Span

〈
Qv0 , . . . , Qvd′−1

〉
in Lemma 24; hence the depth of T ′

equals rank(S ′) ≤ d′ · k ≤ d · k where S ′ is the k-clean subspace produced by applying
Lemma 24.
T ≡ T ′ and any root-to-leaf path in T ′ has at most d k-clean nodes. This is because
T ′ only refines T by inserting cleaning nodes.
Whenever we call Build(·, v′, ·), v′ is k-clean. We prove by induction on ℓ. The
base case Line 3 is obvious. For Line 8/9, we recurse on the same v′, which is k-clean
by induction. For Line 17/18, note that Sv̂ = Span ⟨Sv′ ∪ {Qv′} ∪O⟩; hence from the
condition in Line 13, it is k-clean.
Nodes created in Line 16 are cleaning. Let o = |O| and let i1, i2, . . . , io be the query
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x1x2

x2 x4

x3

1 1 0

0 1

x1x2

x1 x1

x3 x4 x4

1

0 1 1 0 1 0

Figure 1 An example of the cleanup process with k = 2 where the LHS is T and the RHS is
T ′. All the left (resp., right) outgoing edges are labeled with −1 (resp., +1). Red nodes and leaves
are k-clean, and blue nodes are cleaning (i.e., non-adaptive queries). Nodes connected with dashed
curves are invoked by Build.

order. For any j ∈ [o], let v′
j be any one of the nodes created for ij , then

Sv′
j

= Span ⟨Sv′ ∪ {Qv′} ∪ {{i1} , . . . , {ij−1}}⟩ ,

which is not k-clean by Line 13; hence v′
j is cleaning by the condition in Line 13. ◀

5 Fourier Bounds for Parity Decision Trees

Our goal in this section is to prove Theorem 1 with detailed bounds provided.

5.1 Level-1 Bound
We first prove the concentration result for level-1. We start with the following simple bound
for general parity decision trees.

▶ Lemma 28. Let T : {±1}n → {0, 1} be a depth-D parity decision tree. Let v0, . . . , vD′ be
any root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by setting v

(i)
j = P̂vi

(j) for each
0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}, we have

∣∣∣∑n
j=1 aj · v(D′)

j

∣∣∣ ≤
D′ ≤ D.

Proof. Note that the set of non-zero coordinates in v(D′) is exactly
⋃D′−1

i=0 J(vi). Hence by
Fact 25, we have∣∣∣∣∣∣

n∑
j=1

aj · v(D′)
j

∣∣∣∣∣∣ ≤
n∑

j=1

∣∣∣v(D′)
j

∣∣∣ =
D′−1∑
i=0
|J(vi)| ≤ D′ ≤ D. ◀

Now we give an improved bound for k-clean parity decision trees. To do so, we need one
more notation which will be crucial in our analysis.

▶ Notation 29. Let T be a k-clean parity decision tree. For any node v, we define C(v) as
the nearest ancestor of v (including itself) that is k-clean.
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▶ Lemma 30. There exists a universal constant κ ≥ 1 such that the following holds. Let
T : {±1}n→ {0, 1} be a depth-D 2k-clean parity decision tree where k ≥ 1 and any root-to-leaf
path has at most d nodes that are 2k-clean.

Let v0, . . . , vD′ be a random root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by
setting v

(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then for any a1, . . . , an ∈ {−1, 0, 1}
and any ε ≤ 1/2, we have Pr

[∣∣∣∑n
j=1 aj · v(D′)

j

∣∣∣ ≥ R(D, d, k, ε)
]
≤ ε, where

R(D, d, k, ε) = κ ·

√√√√(D + dk

(
1
ε

) 1
k

)
log
(

1
ε

)
.

In the proof of Lemma 30 we will use the following simple claim.

▶ Fact 31. Let p1, . . . , pn be a sub-probability distribution, i.e., pi ≥ 0 and
∑n

i=1 pi ≤ 1. Let
a1, . . . , an ∈ R. Then for any k ∈ N, we have

∑n
i=1 pia

2k
i ≥

(∑n
i=1 pia

2
i

)k.

Proof. We add pn+1 = 1 − (
∑n

i=1 pi) and an+1 = 0 so p is a probability distribution.
Then the claim follows from E[Xk] ≥ E[X]k, where random variable X gets value a2

i with
probability pi. ◀

Proof of Lemma 30. Extend v(D′+1) = · · · = v(D) to equal v(D′). For each 0 ≤ i ≤ D, let
X(i) =

∑n
j=1 aj · v(i)

j . We define δ(i) = 0 for D′ < i ≤ D. For 1 ≤ i ≤ D′, we let

δ(i) = X(i) −X(i−1) =
n∑

j=1
aj ·

(
v

(i)
j − v

(i−1)
j

)
=

∑
j∈J(vi−1)

aj · v(i)
j ,

where J(vi−1) depends only on C(vi−1) since TC(vi−1) performs non-adaptive queries before
(and possibly even after) reaching vi. Note that for the two possible outcomes of querying
Qvi

, v
(i)
j is fixed to ±1 respectively for each j ∈ J(vi−1). Thus δ(i) = ∆(i) · z(i) where ∆(i)

is a fixed value given z(1), . . . , z(i−1) and z(1), . . . , z(D′) are independent unbiased coins in
{±1}.

Since C(vi−1) is 2k-clean, the collection of random variables
{

v
(i)
j

∣∣∣ j ∈ J(vi−1)
}

is 2k-wise
independent conditioning on C(vi−1). Note that δi is a linear function and

E
[
δ(i)

∣∣∣C(vi−1)
]

= 0 and E
[(

δ(i)
)2
∣∣∣∣C(vi−1)

]
=

∑
j∈J(vi−1)

a2
j ≤ |J(vi−1)| .

By the first bound in Lemma 15, we have

E
[(

δ(i)
)2k

∣∣∣∣C(vi−1)
]
≤ (2k − 1)k · |J(vi−1)|k , (5)

and
∣∣δ(i)

∣∣ ≤ |J(vi−1)| always. Our first goal is to bound Pr
[∑D

i=1
(
δ(i))2

> D + 2α2d
]
.

Observe that whenever the event
∑D

i=1
(
δ(i))2

> D + 2α2d happens, it must be the case that∑
i:|J(vi−1)|>1

(
δ(i))2

> 2α2d. Thus,
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Pr
[

D∑
i=1

(
δ(i)
)2

> D + 2α2d

]
≤ Pr

 ∑
i:|J(vi−1)|>1

(
δ(i)
)2

> 2α2d


= Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i))2

|J(vi−1)| > α2


≤ Pr

 ∑
i:|J(vi−1)|>1

|J(vi−1)|
2d

·
(
δ(i))2k

|J(vi−1)|k > α2k


(by Fact 31 and Corollary 26)

= Pr

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1 > 2d · α2k


≤ E

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1

 · 1
2d · α2k

.

(by Markov’s inequality)

On the other hand,

E

 ∑
i:|J(vi−1)|>1

(
δ(i))2k

|J(vi−1)|k−1

 =
D∑

i=1
E

C(vi−1)

[ 1|J(vi−1)|>1

|J(vi−1)|k−1 · E
[(

δ(i)
)2k

∣∣∣∣C(vi−1)
]]

≤
D∑

i=1
E

C(vi−1)

[
1|J(vi−1)|>1 · (2k − 1)k · |J(vi−1)|

]
(by (5))

= (2k − 1)k · E

 ∑
i:|J(vi−1|>1

|J(vi−1)|


≤ (2k − 1)k · 2d. (by Corollary 26)

Overall, we have

Pr
[

D∑
i=1

(
δ(i)
)2

> D + 2α2d

]
≤ (2k − 1)k

α2k
.

Then by Lemma 17 with m = 1, we have

Pr

∣∣∣X(D)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1
aj · v(D)

j

∣∣∣∣∣∣ ≥ β
√

2 · (D + 2α2d)

 ≤ 2 · e−β2/2 + (2k − 1)k

α2k
.

The desired bound follows from setting

α =
(

2
ε

) 1
2k √

2k − 1, and β = Θ
(√

log
(

1
ε

))
. ◀

Now we prove the complete level-1 bound for parity decision trees.
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▶ Theorem 32. Let T : {±1}n → {0, 1} be a depth-d parity decision tree. Let p =
Pr [T (x) = 1] ∈

[
2−d, 1/2

]
.9 Then we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ ≤ p ·min

{
d, O

(√
d · log

(
1
p

))}
= O

(√
d
)

.

Proof. For any i ∈ [n], let ai = sgn
(“T (i)

)
. Now we prove the two bounds separately.

First Bound. Let v0, . . . , vd′ be a random root-to-leaf path in T . Define v(0), . . . , v(d′) ∈
{−1, 0, +1}n by setting v

(i)
j = P̂vi(j) for each 0 ≤ i ≤ d′ and j ∈ [n]. Since T is 1-clean in

itself, by Lemma 23 we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ =

n∑
j=1

ai · “T (j) = E
v0,...,vd′

T (vd′) ·
n∑

j=1
aj · v(d′)

j

 ≤ E
v0,...,vd′

[T (vd′) · |V |] , (6)

where V =
∑n

j=1 aj · v(d′)
j . Hence by Lemma 28, we have (6) ≤ d · E [T (vd′)] = p · d.

Second Bound. By Lemma 27, we construct a 2k-clean parity decision tree T ′ of depth
D ≤ 2d · k equivalent to T , where k = Θ(log(1/p)). Let U =

∑n
j=1 aj ·u(D′)

j . Then we have

n∑
j=1

∣∣∣“T (j)
∣∣∣ =

n∑
j=1

∣∣∣T̂ ′(j)
∣∣∣ = E

u0,...,uD′

T ′(uD′) ·
n∑

j=1
aj · u(D′)

j

 ≤ E
u0,...,uD′

[T ′(uD′) · |U |] . (7)

Lemma 30 implies that for all ε > 0, Pr [|U | ≥ R(ε)] ≤ ε where

R(ε) = R(D, d, k, ε) = O

√dk ·
(

1
ε

) 1
k

· log
(

1
ε

) .

For integer i ≥ 1, let Ii =
[
R
(
p/2i

)
, R
(
p/2i+1)] and I0 = [0, R(p/2)] be intervals. Then for

each i ≥ 1, Pr [|U | ∈ Ii] ≤ p/2i. We also know that Eu0,...,uD′ [T ′(uD′)] ≤ p. Thus,

(7) = E
u0,...,uD′

[
T ′(uD′) · |U | ·

+∞∑
i=0

1|U |∈Ii

]

≤ R
(p

2

)
· E

u0,...,uD′
[T ′(uD′)] +

+∞∑
i=1

R
( p

2i+1

)
· E

u0,...,uD′

[
1|U |∈Ii

]
≤

+∞∑
i=0

R
( p

2i+1

)
· p

2i

=
+∞∑
i=0

O

p ·

√
dk ·

(
2i+1

p

) 1
k

·
(

log
(

1
p

)
+ i + 1

) · 1
2i

= O

(
p ·

√
dk · log

(
1
p

))
= O

(
p ·
√

d · log
(

1
p

))
. ◀

9 If p < 2−d, then p = 0 and T ≡ 0. If p > 1/2, we can consider ‹T = 1 − T by symmetry.
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5.2 Level-ℓ Bound
Now we turn to the general levels.

▶ Lemma 33. There exists a universal constant τ ≥ 1 such that the following holds. Let
ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-D 2k-clean parity decision tree
where k ≥ 4 · ℓ and n ≥ max {τ, k, D} and any root-to-leaf path has at most d nodes that are
2k-clean.

Let v0, . . . , vD′ be a random root-to-leaf path. Define v(0), . . . , v(D′) ∈ {−1, 0, +1}n by
setting v

(i)
j = P̂vi(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Extend v(D′+1) = · · · = v(D) to equal

v(D′). Then for any sequence aS ∈ {−1, 0, 1} , S ∈
([n]

ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we

have

Pr

∃t′ ∈ {0, . . . , t},∃T ∈
(

[n]
ℓ− t′

)
,∃i ∈ [D],

∣∣∣∣∣∣
∑

S⊆T ,|S|=t′

aS∪T · v(i)
S

∣∣∣∣∣∣≥M(D, d, k, ℓ, t′, ε)

≤ ε·t,

where we recall that v
(i)
S =

∏
j∈S v

(i)
j and where

M(D, d, k, ℓ, t′, ε) =
(

τ · (D + dk) ·
(

nℓ

ε

) 6
k

log
(

nℓ

ε

))t′/2

.

Proof. We prove the bound by induction on t = 0, 1, . . . , ℓ and show τ = 104 suffices. The
base case t = 0 is trivial, since for any fixed T and i, we always have

∣∣∣aT · v(i)
∅

∣∣∣ ≤ 1 =
M(D, d, k, ℓ, 0, ε).

Now we focus on the case where 1 ≤ t ≤ ℓ. For each 0 ≤ i ≤ D and T ∈
( [n]

ℓ−t

)
, let

X
(i)
T =

∑
S⊆T ,|S|=t

aS∪T · v(i)
S .

For 1 ≤ i ≤ D′, we have

X
(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∩J(vi−1 )̸=∅

aS∪T · v(i)
S

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪J(vi−1),

|U |+|V |=t

aT ∪U∪V · v(i)
V

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪J(vi−1),

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

(since v
(i)
j = v

(i−1)
j for all j /∈ J(vi−1))

=
t∑

r=1

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

︸ ︷︷ ︸
A(T,r,i)

.

(since v
(i−1)
j = 0 for all j ∈ J(vi−1))

Observe that conditioning on vi−1,
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if r is an even number, then A(T, r, i) is a fixed value independent of v(i);

if r is an odd number, then A(T, r, i) is an unbiased coin with magnitude independent of
v(i).

Therefore, trying to apply Lemma 17, we write X
(i)
T − X

(i−1)
T = µ

(i)
T + ∆(i)

T · z
(i)
T , where

z
(1)
T , . . . , z

(D)
T are independent unbiased coins in {±1} and µ

(i)
T = ∆(i)

T = 0 for D′ < i ≤ D

and

µ
(i)
T =

t∑
r=2,
even

A(T, r, i) and ∆(i)
T =

∣∣∣∣∣∣∣
t∑

r=1,
odd

A(T, r, i)

∣∣∣∣∣∣∣ for 1 ≤ i ≤ D′. (8)

First Bound on A(T, r, i). Let E1 be the following event:

E1 = “ ∃t̂ ∈ {0, . . . , t− 1} ,∃T ′ ∈
(

[n]
ℓ− t̂

)
,∃i′ ∈ [D],

∣∣∣X(i′)
T ′

∣∣∣ ≥M
(
D, k, ℓ, t̂, ε

)
”.

By the induction hypothesis, we have

Pr [E1] ≤ (t− 1) · ε. (9)

We first derive a simple bound, that will be effective for small values of |J(vi−1)|.

▷ Claim 34. When E1 does not happen, |A(T, r, i)| ≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε) holds
for all r ∈ [t], i ∈ [D], T ∈

( [n]
ℓ−t

)
.

Proof. Since E1 does not happen, by union bound we have

|A(T, r, i)| =

∣∣∣∣∣∣∣∣∣
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

∣∣∣∣∣∣∣∣∣ ≤ |J(vi−1)|r max
U⊆T ,|U |=r

∣∣∣X(i−1)
T ∪U

∣∣∣
≤ |J(vi−1)|r ·M(D, d, k, ℓ, t− r, ε). ◁

Second Bound on A(T, r, i). The second bound requires a more refined decomposition on
A(T, r, i).

Assume that c(i− 1) is the index of C(vi−1) in v0, . . . , vD′ , i.e., vc(i−1) = C(vi−1). This
means that vc(i−1) is the closest ancestor to vi−1 that is 2k-clean. Then define

L(vi−1) =
⋃

c(i−1)≤i′<i−1

J(vi′).

The elements of L(vi−1) are precisely the coordinates fixed by the queries from Qvc(i−1) to
Qvi−1 , excluding the latter. Since TC(vi−1) makes non-adaptive queries before (and possibly
even after) reaching vi, L(vi−1) and J(vi−1) depend only on C(vi−1) and i. We now expand
A(T, r, i) by also grouping terms based on the number of coordinates in L(vi−1) as follows:
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A(T, r, i) =
∑

U⊆J(vi−1)∩T ,
|U |=r

v
(i)
U

∑
V ⊆T ∪U,

|U |+|V |=t

aT ∪U∪V · v(i−1)
V

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪L(vi−1)

|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · v(i−1)
W ′

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪L(vi−1)

|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · vc(i−1)
W ′

(since v
(i−1)
j = v

c(i−1)
j for all j /∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W

∑
W ′⊆T ∪U∪W
|W ′|=t−r−r′

aT ∪U∪W ∪W ′ · vc(i−1)
W ′

(since v
c(i−1)
j = 0 for all j ∈ L(vi−1))

=
t−r∑
r′=0

∑
U⊆J(vi−1)∩T ,

|U |=r

v
(i)
U

∑
W ⊆L(vi−1)∩T ,

|W |=r′

v
(i−1)
W ·Xc(i−1)

T ∪U∪W

︸ ︷︷ ︸
Γ(i)

T
(r,r′)

.

Since C(vi−1) is 2k-clean, by Fact 19, the collection of random variables{
v

(i)
j

∣∣∣ j ∈ J(vi−1)
}
∪
{

v
(i−1)
j

∣∣∣ j ∈ L(vi−1)
}

is 2k-wise independent conditioning on C(vi−1). Note that Γ(i)
T (r, r′) is a polynomial of

degree at most r + r′ ≤ ℓ < k, that E
[
Γ(i)

T (r, r′)
∣∣∣C(vi−1)

]
= 0, and

σ2
T (r, r′, C(vi−1), i) := E

[(
Γ(i)

T (r, r′)
)2
∣∣∣∣C(vi−1)

]
=

∑
U⊆J(vi−1)∩T ,

|U |=r

∑
W ⊆L(vi−1)∩T ,

|W |=r′

(
X

c(i−1)
T ∪U∪W

)2

≤ (|J(vi−1)|)r (|L(vi−1)|)r′
(

max
|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2

≤ (|J(vi−1)|)r
Dr′

(
max

|T ′|=r+r′+ℓ−t,i′∈[D]

∣∣∣X(i′)
T ′

∣∣∣)2
.

(since |L(vi−1)| ≤ D by Fact 25)

We also have the following claim, the proof of which follows from Lemma 15 applied to the
low degree polynomial Γ(i)

T . The proof is deferred to Appendix C.

▷ Claim 35. Pr [E2] ≤ ε/3, where E2 is the following event: ∃T ∈
( [n]

ℓ−t

)
, i, r, r′, such that

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{

k, log
(

nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i).
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On the other hand, when E1 ∨ E2 does not happen, the following calculation holds for all
T ∈

( [n]
ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r:∣∣∣Γ(i)

T (r, r′)
∣∣∣

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 min

{
k, log

(
nℓ

ε

)}
·
(

nℓ

ε

) 6
k

)r+r′

(|J(vi−1)|)r ·Dr′

≤M (D, k, ℓ, t− r − r′, ε) ·

√(
100 ·

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r ·
(

D · log
(

nℓ

ε

))r′

=

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t−r−r′(
100

(
nℓ

ε

) 6
k

)r+r′

(|J(vi−1)| · k)r
(

D · log
(

nℓ

ε

))r′

≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t ( 100
τ

)r+r′ ( |J(vi−1)|
d·log(nℓ/ε)

)r

≤

√(
τ(D + dk)

(
nℓ

ε

) 6
k log

(
nℓ

ε

))t ( 200
τ

)r+r′ ( |J(vi−1)|
2d

)r
1

log(nℓ/ε)

= M(D, d, k, ℓ, t, ε) ·
√( 200

τ

)r+r′ ( |J(vi−1)|
2d

)r
1

log(nℓ/ε) .

Hence we have a second bound on A(T, r, i).

▷ Claim 36. When E1 ∨ E2 does not happen, the following holds for all r ∈ [t], i ∈ [D], T ∈( [n]
ℓ−t

)
:

|A(T, r, i)| ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800
τ

)r ( |J(vi−1)|
2d

)r

.

Proof. Since E1 ∨ E2 does not happen, by union bound and noticing τ ≥ 800 we have

|A(T, r, i)|

≤
t−r∑
r′=0

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
200
τ

)r ( |J(vi−1)|
2d

)r

·
+∞∑
r′=0

(
200
τ

)r′/2

≤ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·

√(
800
τ

)r ( |J(vi−1)|
2d

)r

. ◁

Final Bound on µ
(i)
T and δ

(i)
T . Combining Claim 34 and Claim 36, if E1 ∨ E2 does not

happen we have

|A(T, r, i)| ≤M(D, d, k, ℓ, t−r, ε)+ M(D, d, k, ℓ, t, ε)√
log (nℓ/ε)

·
√( 800

τ

)r
(

|J(vi−1)|
2d

)r

·1|J(vi−1)|>1 (10)

To see this, if |J(vi−1)| ≤ 1, we use the bound from Claim 34 as the first term in (10).
Otherwise |J(vi−1)| > 1, in which case we use the bound from Claim 36 as the second term
in (10).

By Corollary 26, we can now bound
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 as Claim 37. Its proof
is deferred in Appendix D.
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▷ Claim 37. When E1 ∨ E2 does not happen,
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and
∑D

i=1

∣∣∣∆(i)
T

∣∣∣2 ≤ R2 hold
for all T ∈

( [n]
ℓ−t

)
, where

R = M(D, d, k, ℓ, t, ε)
5 ·
√

log (nℓ/ε)
. (11)

Complete Induction. Let β =
√

2 · log (nℓ/ε) ≥ 1 and observe that

R + β ·
√

2 ·R ≤ β · 2
√

2 ·R (due to β ≥ 1)

= 2
√

2 ·
√

2 · log (nℓ/ε)
5 ·
√

log (nℓ/ε)
·M(D, d, k, ℓ, t, ε) (due to (11))

≤M(D, d, k, ℓ, t, ε).

Then we have

Pr
[
∃t′ ∈ {0, . . . , t} ,∃T ′ ∈

(
[n]

ℓ− t′

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t′, ε)
]

= Pr
[
E1
∨(

∃T ∈
(

[n]
ℓ− t

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥M (D, d, k, ℓ, t, ε)
)]

≤ Pr
[
(E1 ∨ E2)

∨(
∃T ∈

(
[n]

ℓ− t

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ R + β ·
√

2 ·R
)]

≤ (t− 1) · ε + ε

3 + 2nℓ−t · e−β2/2 (due to (9), Claim 35, Lemma 17, and Claim 37)

≤ (t− 1) · ε + ε

3 + 1
3 · n

ℓ · e−β2/2

≤ t · ε. ◀

Before we prove the complete level-ℓ bound for parity decision trees, we first prove a
simple bound for the number of vectors with a given weight in a subspace.

▶ Lemma 38. Let ℓ ≥ 1 be an integer and S be a subspace of rank at most d. Let
U = {S | |S| = ℓ, S ∈ S}, then |U | ≤ min

{(
d·ℓ
ℓ

)
, 2d − 1

}
.

Proof. Let {S1, . . . , Sd′} be a maximal set of independent vectors in U . Then d′ ≤ d and
|Si| = ℓ holds for all i ∈ [d′]. Since U ⊆ Span ⟨S1, . . . , Sd′⟩ and ∅ /∈ U , we have

|U | ≤ |Span ⟨S1, . . . , Sd′⟩| − 1 = 2d′
− 1 ≤ 2d − 1.

On the other hand, observe that U ⊆
(

S1∪···∪Sd′
ℓ

)
, hence we also have

|U | ≤
∣∣∣∣(S1 ∪ · · · ∪ Sd′

ℓ

)∣∣∣∣ ≤ (d′ · ℓ
ℓ

)
≤
(

d · ℓ
ℓ

)
. ◀

We remark that in Lemma 38, it is conjectured the bound should be
(

d+1
ℓ

)
when d ≥ 2 · ℓ

[19, 6].

▶ Theorem 39. Let ℓ ≥ 1 be an integer. Let T : {±1}n → {0, 1} be a depth-d parity decision
tree where n ≥ max {d, ℓ}. Let p = Pr [T (x) = 1] ≥ 2−d.10 Then we have∑

S⊆[n]:|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ p ·min

{(
d · ℓ

ℓ

)
, 2d − 1, O

(√
d · log

(
nℓ

p

))ℓ
}

= O
(√

d · ℓ · log(n)
)ℓ

.

10 If p < 2−d, then p = 0 and T ≡ 0.
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Proof. For any S ∈
([n]

ℓ

)
, let aS = sgn

(“T (S)
)

. Now we prove the bounds separately.

First Two Bounds. Let v0, . . . , vd′ be a random root-to-leaf path. Then by the definition of
P̂v and Sv and Fact 19, we have

∑
S

∣∣∣“T (S)
∣∣∣ =

∑
S

aS · “T (S) = E
v0,...,vd′

[
T (vd′) ·

∑
S

aS ·‘Pvd′ (S)
]

≤ E
v0,...,vd′

[
T (vd′) ·

∑
S

∣∣∣‘Pvd′ (S)
∣∣∣] = E

v0,...,vd′
[T (vd′) · |V |] , (12)

where aS = sgn
(“T (S)

)
and V =

{
S ∈

([n]
ℓ

) ∣∣∣S ∈ Svd′

}
. Note that

rank
(
Svd′

)
= rank

(
Span

〈
Qv0 , . . . , Qvd′−1

〉)
≤ d′ ≤ d.

Hence by Lemma 38, we have (12) ≤ min
{(

d·ℓ
ℓ

)
, 2d − 1

}
·E [T (vd′)] = p ·min

{(
d·ℓ
ℓ

)
, 2d − 1

}
.

Third Bound. By Lemma 27, we construct a 2k-clean parity decision tree T ′ of depth
D ≤ 2d · k equivalent to T , where k = Θ

(
log
(
nℓ/p

))
≥ 4 · ℓ. We also add dummy variables

to make sure n′ = max {τ, k, 6D, n}, where T ′ has n′ inputs and τ is the universal constant
in Lemma 33.

Let u0, . . . , uD′ be a random root-to-leaf path in T ′. Define u(0), . . . , u(D′) ∈ {−1, 0, +1}n

by setting u
(i)
j = P̂ui(j) for each 0 ≤ i ≤ D′ and j ∈ [n]. Then extend u(D′+1) = u(D′+2) =

· · · = u(D) to equal u(D′). By Lemma 23, we have

∑
S

∣∣∣“T (S)
∣∣∣ =

∑
S

∣∣∣T̂ ′(S)
∣∣∣ = E

u0,...,uD′

[
T (uD′) ·

∑
S

aS · u(D)
S

]
≤ E

u0,...,uD′
[T (uD′) · |U |] , (13)

where U =
∑

S aS · u(D)
S .

Now we apply Lemma 33 with t = ℓ, ε = Θ
(
p/dℓ/2) ≤ 1/2 to obtain the following bound11

M = M(D, d, k, ℓ, ℓ, ε) =
(

O
(√

d · log
(

nℓ

p

)))ℓ

such that Pr [|U | ≥M ] ≤ ℓ · ε. Then, combining the first bound, we have

(13) = E
[
T (uD′) · |U | ·

(
1|U |<M + 1|U |≥M

)]
≤M · E [T (uD′)] + ℓ · ε ·

(
d · ℓ

ℓ

)
= p ·

(
O
(√

d · log
(

nℓ

p

)))ℓ

,

which is maximized at p = 1, hence (13) = O
(√

d · ℓ · log(n)
)ℓ

as desired. ◀

11 Since n ≥ max {ℓ, d}, we know k = Θ
(
log
(
nℓ/p

))
= O(n2) and D ≤ 2d · k = O(n3). Hence

n′ = max {τ, k, 6D, n} = O(n3). Also nℓ/ε ≤ nO(ℓ)/p and by our choice of k = Θ
(
log(nℓ/p)

)
we have(

nℓ/ε
)6/k = O(1).
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6 Fourier Bounds for Noisy Decision Trees

Let T be a noisy decision tree. By adding queries with zero correlation, we assume without
loss of generality each root-to-leaf path in the noisy decision tree is of the same length. Let
v be any node of T . We use Pv to denote the uniform distribution over {±1}n conditioning
on reaching v. Note that Pv is always a product distribution. As before, for any S ⊆ [n] we
define P̂v(S) = Ex∼Pv [xS ].

▷ Claim 40. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree. Let v0, . . . , vD be any
root-to-leaf path in T . Define v(0), . . . , v(D) ∈ [−1, 1]n by setting v

(i)
j = P̂vi

(j) for each
0 ≤ i ≤ D and j ∈ [n]. Then for any i ∈ {0, . . . , D− 1}, v

(i+1)
qvi

− v
(i)
qvi

is a mean-zero random
variable with magnitude bounded by 2 · |γvi

|.

Proof. Fix i ∈ {0, . . . , D − 1}. For convenience, let j = qvi , γ = γvi , and α = v
(i)
j . Suppose

|γ| = 1 then
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 = 2 · |γvi
| as desired. Now we turn to the case |γ| < 1.

Note that for the distribution Pvi
, the measure of xj = 1 (resp., xj = −1) inputs is

(1 + α)/2 (resp., (1 − α)/2). The measure of xj = 1 (resp., xj = −1) inputs that follow
the edge labeled 1 is a := (1 + α)(1 + γ)/4 (resp., b := (1 − α)(1 − γ)/4). The total
measure of inputs that take the edge labeled 1 is a + b and the resulting node vi+1 satisfies
v

(i+1)
j = (a− b)/(a + b). This implies that

v
(i+1)
j =

{
α+γ

1+γ·α with probability 1+γ·α
2 ,

α−γ
1−γ·α with probability 1−γ·α

2 .

The above calculation implies

v
(i+1)
j − v

(i)
j =

{
γ · 1−α2

1+γ·α with probability 1+γ·α
2 ,

−γ · 1−α2

1−γ·α with probability 1−γ·α
2 ,

and thus v
(i+1)
j − v

(i)
j is a mean-zero random variable. Since α ∈ [−1, 1] and γ ∈ (−1, 1), we

have

max
{

1− α2

1− γ · α
,

1− α2

1 + γ · α

}
≤ 1− α2

1− |α| = 1 + |α| ≤ 2,

which implies
∣∣∣v(i+1)

j − v
(i)
j

∣∣∣ ≤ 2 · |γ|. ◁

We now prove the general Fourier bounds. As before, for any S ⊆ [n], let v
(i)
S be∏

j∈S v
(i)
j .

▶ Lemma 41. There exists a universal constant τ such that the following holds. Let ℓ ≥ 1
be an integer. Let T : {±1}n → {0, 1} be a cost-d noisy decision tree.

Let v0, . . . , vD be a random root-to-leaf path in T . Define v(0), . . . , v(D) ∈ [−1, 1]n by
setting v

(i)
j = P̂vi

(j) for each 0 ≤ i ≤ D and j ∈ [n]. Then for any sequence aS ∈
{−1, 0, 1} , S ∈

([n]
ℓ

)
, any ε ≤ 1/2 and t ∈ {0, . . . , ℓ}, we have

Pr

∃T ∈ ( [n]
ℓ− t

)
,∃i ∈ [D],

∣∣∣∣∣∣
∑

S⊆T ,|S|=t

aS∪T · v(i)
S

∣∣∣∣∣∣ ≥ S(d, ℓ, t, ε)

 ≤ ε · t,

where S(d, ℓ, 0, ε) = 1 and

S(d, ℓ, t, ε) =
√

(τ · d)t · log
(

nℓ−t

ε

)
· · · log

(
nℓ−1

ε

)
for t ∈ [ℓ].
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Proof. We prove the bound by induction on t and show τ = 32 suffices. The base case t = 0
is trivial, since for any T of size ℓ and any i, we have

∣∣∣aT · v(i)
∅

∣∣∣ ≤ 1 = S(d, ℓ, 0, ε).

Now we focus on the case 1 ≤ t ≤ ℓ. For any T ∈
([n]

≤ℓ

)
, define X

(0)
T , . . . , X

(D)
T by

X
(i)
T =

∑
S⊆T ,|S|+|T |=ℓ aS∪T · v(i)

S . Define δ
(i)
T for i ∈ [D] as follows:

δ
(i)
T = X

(i)
T −X

(i−1)
T =

∑
S⊆T ,|S|=t,S∋qvi−1

aS∪T ·
(

v
(i)
S − v

(i−1)
S

)
=
(

v(i)
qvi−1

− v(i−1)
qvi−1

)
·

∑
S′⊆T ∪{qvi−1 },|S′|=t−1

aS′∪{qvi−1}∪T · v
(i−1)
S

=
(

v(i)
qvi−1

− v(i−1)
qvi−1

)
·X(i−1)

T ∪{qvi−1 }.

Note that by Claim 40 and conditioning on vi−1, δ
(i)
T is a mean-zero random variable.

The induction hypothesis implies that with all but ε · (t− 1) probability, for all i ∈ [D]
and T ′ ∈

( [n]
ℓ−t+1

)
, we have

∣∣∣X(i)
T ′

∣∣∣ ≤ S(d, ℓ, t− 1, ε). By Claim 40, we have∣∣∣δ(i)
T

∣∣∣ =
∣∣∣v(i)

qvi−1
− v(i−1)

qvi−1

∣∣∣ · ∣∣∣∣X(i−1)
T ∪{qvi−1}

∣∣∣∣ ≤ 2 ·
∣∣γvi−1

∣∣ · S(d, ℓ, t− 1, ε).

Denote by ∆(i)
T = 2·

∣∣γvi−1

∣∣·S(d, ℓ, t−1, ε). We can thus express X
(i)
T = X

(i−1)
T +∆(i)

T ·z
(i)
T where∣∣∣z(i)

T

∣∣∣ ≤ 1. Then we apply Lemma 17 to the family of martingales X
(0)
T , . . . , X

(D)
T , |T | ∈

( [n]
ℓ−t

)
with difference sequence δ

(i)
T = ∆(i)

T · z
(i)
T satisfying

D∑
i=1

(
∆(i)

T

)2
= 4 · (S(d, ℓ, t− 1, ε))2 ·

D∑
i=1

∣∣γvi−1

∣∣2 ≤ 4d · (S(d, ℓ, t− 1, ε))2
.

Hence for any β ≥ 0, we have

Pr
[
∃T ∈

(
[n]

ℓ− t

)
,∃i ∈ [D],

∣∣∣X(i)
T

∣∣∣ ≥ 2β ·
√

2d · S(d, ℓ, t− 1, ε)
]
≤ ε·(t−1)+2·nℓ−t ·e−β2/2.

Since ε ≤ 1/2, we can set β = 2 ·
√

log(nℓ−t/ε) so that 2 · nℓ−t · e−β2/2 ≤ ε, which completes
the induction by noticing

2β ·
√

2d · S(d, ℓ, t− 1, ε) =
√

32 · d · log
(

nℓ−t

ε

)
· S(d, ℓ, t− 1, ε) ≤ S(d, ℓ, t, ε). ◀

▶ Theorem 42. Let ℓ ≥ 1 and n ≥ max {ℓ, 2} be integers. Let T : {±1}n → {0, 1} be a
cost-d noisy decision tree. Let p = Pr[T (x) = 1] ∈ (0, 1/2].12 Then we have∑

S⊆[n],|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ p ·O(d)ℓ/2 ·

√
log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
= O(d)ℓ/2 ·

√
1 + (ℓ log(n))ℓ−1

.

Proof. For any S ∈
([n]

ℓ

)
, let aS = sgn

(“T (S)
)

. Let v0, . . . , vD be a random root-to-leaf path
in T . Note that∑

S

∣∣∣“T (S)
∣∣∣ =

∑
S

aS · “T (S) = E

[
T (vD) ·

∑
S

aS · v(D)
S

]
≤ E [T (vD) · |V |] , (14)

12 If p > 1/2, then we can consider ‹T = 1 − T by symmetry.
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where V =
∑

S aS ·S v
(D)
S . By Lemma 41, we know Pr [|V | ≥ S(ε)] ≤ ε · ℓ, where

S(ε) = S(d, ℓ, ℓ, ε) =
√

O(d)ℓ · log
(

nℓ−1

ε

)
· · · log

(
n0

ε

)
≤
√

O(d)ℓ ·
(

log
(

nℓ−1

ε

))ℓ−1
log
( 1

ε

)
.

For integer i ≥ 1, let Ii =
[
S
(
p/
(
ℓ2i
))

, S
(
p/
(
ℓ2i+1))] and I0 = [0, S(p/ℓ)] be intervals.

Then for each i ≥ 1, Pr [|V | ∈ Ii] ≤ p/2i. We also know that Ev0,...,vD
[T (vD)] ≤ p. Thus,

(14) ≤ E
v0,...,vD

[
T (vD) · |V | ·

+∞∑
i=0

1|V |∈Ii

]

≤ S
(p

ℓ

)
· E [T (vD)] +

+∞∑
i=1

S
( p

ℓ · 2i+1

)
· E
[
1|V |∈Ii

]
≤

+∞∑
i=0

S
( p

ℓ · 2i+1

)
· p

2i

=
+∞∑
i=0

p ·
√

O(d)ℓ ·
(

log
(

nℓ−1·ℓ
p

)
+ i + 1

)ℓ−1
·
(

log
(

1
p

)
+ log(ℓ) + i + 1

)
· 1

2i

≤
+∞∑
i=0

p ·

√
O(d)ℓ ·

((
log
(

nℓ

p

))ℓ−1
+ (i + 1)ℓ−1

)
·
(

log
(

1
p

)
+ i + 1

)
· 1

2i

(since n ≥ ℓ, and (x + y)b ≤ 2b ·
(
xb + yb

)
and
√

x + y ≤
√

x +√y for x, y, b ≥ 0)

≤ p ·
√

O(d)ℓ · log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
,

where the last inequality follows from p ≤ 1/2, n ≥ 2 and

+∞∑
i=0

(i + 1)ℓ/2 · 2−i = O(ℓ)ℓ/2 ≤ O(1)ℓ · ℓ(ℓ−1)/2 ≤ O(1)ℓ ·
(
log
(
nℓ/p

))(ℓ−1)/2
.

Note that p · (log(1/p))k ≤ O(k)k for p ∈ (0, 1) and k ≥ 0, thus

p ·
√

log
(

1
p

)(
log
(

nℓ

p

))ℓ−1
= p ·

√
log
(

1
p

)(
ℓ log(n) + log

(
1
p

))ℓ−1

≤ O(1)ℓ ·
(√

(ℓ log(n))ℓ−1 + ℓℓ/2
)

= O(1)ℓ ·
√

1 + (ℓ log(n))ℓ−1. ◀
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A Proof of Corollary 8

▶ Corollary (Corollary 8 restated). Let T be a parity decision tree of size at most s > 1 on n

variables. Then,

∀ℓ ∈ [n] : L1,ℓ(f) ≤ (log(s))ℓ/2 ·O(ℓ · log(n))1.5ℓ.

Proof. We approximate T with error ε = 1/nℓ by another parity decision tree T ′ of depth
d = ⌈log

(
s · nℓ

)
⌉, where we simply replace all nodes of depth d in T with leaves that return

0. Since there are at most s nodes in T , the probability that a random input would reach
one of the nodes of depth d is at most 2−d · s ≤ 1/nℓ. Hence Prx [T (x) ̸= T ′(x)] ≤ ε. This
implies that

∣∣∣“T (S)− T̂ ′(S)
∣∣∣ ≤ ε for any subset S ⊆ [n]. Thus,

L1,ℓ(T ) =
∑

S:|S|=ℓ

∣∣∣“T (S)
∣∣∣ ≤ ∑

S:|S|=ℓ

(∣∣∣T̂ ′(S)
∣∣∣+ ε

)
≤ L1,ℓ(T ′) + 1.

Since T ′ is of depth at most d = ⌈log(s) + ℓ · log(n)⌉ = O (log(s) · ℓ · log(n)), we obtain our
bound. ◀
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B Proof of Lemma 16

We will use the definition of sub-Gaussian random variables.

▶ Definition 43 (Sub-Gaussian random variables). We say a random variable x is ∆-sub-
Gaussian if E [et·x] ≤ et2∆2 holds for all t ∈ R.

Now we prove the following sub-Gaussian adaptive Azuma’s inequality.

▶ Lemma 44 (Sub-Gaussian adaptive Azuma’s inequality). Let X(0), . . . , X(D) be a martingale
with respect to a filtration

(
F (i))D

i=0
13 and ∆(1), . . . , ∆(D) be a sequence of magnitudes such

that X(0) = 0 and X(i) = X(i−1) + δ(i) for i ∈ [D], where if conditioning on F (i−1), δ(i) is a
∆(i)-sub-Gaussian random variable and ∆(i) is a fixed value.

If there exists some constant U ≥ 0 such that
∑D

i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for
any β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

Proof. The bound holds trivially when β = 0, hence we assume β > 0 from now on. We
construct another martingale “X(0), . . . , “X(D) as follows:“X(i) =

{
X(i) 0 ≤ i ≤ d,

X(d) i > d,
where d = min {D}∪

{
i ∈ {0, 1 . . . , D}

∣∣∣ ∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U
}

.

We write δ̂(i) = “X(i) − “X(i−1), then δ̂(i) = δ(i) for all i ≤ d; and δ̂(i) ≡ 0 for all i > d. Let“∆(i) = ∆(i) for all i ≤ d; and “∆(i) ≡ 0 for all i > d. Thus δ̂(i) is “∆(i)-sub-Gaussian given
F (i−1); and

D∑
i=1

∣∣∣“∆(i)
∣∣∣2 =

d∑
i=1

∣∣∣∆(i)
∣∣∣2 ≤ U.

Moreover, we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
= Pr

[∣∣∣“X(D)
∣∣∣ ≥ β ·

√
2U
]

.

Let t > 0 be a parameter and we bound E
[
et·X̂(D)

]
as follows

E
[
et·X̂(D)

]
= E

F(D−1)

[
et·X̂(D−1)

· E
F(D)

[
et·(X̂(D)−X̂(D−1))

∣∣∣F (D−1)
]]

(15)

= E
F(D−1)

[
et·X̂(D−1)

· E
F(D)

[
et·δ̂(D)

∣∣∣F (D−1)
]]

(16)

13 F(0) ⊆ F(1) ⊆ · · · ⊆ F(D) is an increasing sequence of σ-algebra where each F(i) makes X(0), . . . , X(i+1)

measurable and E
[
X(i)

∣∣F(i−1)
]

= X(i−1). Intuitively, the filtration is the history of the martingale.
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≤ E
F(D−1)

[
et·X̂(D−1)

· et2(“∆(D))2]
(since δ̂(D) is “∆(D)-sub-Gaussian)

≤ E
F(D−1)

[
et·X̂(D−1)

· et2
(

U−(“∆(1))2−···−(“∆(D−1))2)]
≤ E

F(D−2)

[
et·X̂(D−2)

· et2
(

U−(“∆(1))2−···−(“∆(D−1))2)
et2(“∆(D−1))2

]
(similar to (15) and (16))

= E
F(D−2)

[
et·X̂(D−2)

· et2
(

U−(“∆(1))2−···−(“∆(D−2))2)]
≤ · · · ≤ E

F(D−k)

[
et·X̂(D−k)

· et2
(

U−(“∆(1))2−···−(“∆(D−k))2)]
≤ · · ·

≤ et2U . (17)

Setting t = β/
√

2U implies that

Pr
[“X(D) ≥ β ·

√
2U
]
≤

E
[
et·X̂(D)

]
et·β·

√
2U

≤ et2U

eβ2 = e−β2/2.

Similarly we can show Pr
[“X(D) ≤ −β ·

√
2U
]
≤ e−β2/2, which completes the proof by a

union bound. ◀

For our applications, we need the following fact.

▶ Fact 45. Let x be a mean-zero random variable and assume |x| ≤ ∆ always holds. Then
x is ∆-sub-Gaussian.

Proof. Note that et·x is convex for all t ∈ R. By Jensen’s inequality, we have

E
[
et·x] ≤ 1

2
(
e−t∆ + et∆) =

+∞∑
i=0

(t∆)2i

(2i)! ≤
+∞∑
i=0

(t∆)2i

i! = et2∆2
. ◀

As a corollary of Lemma 44 and Fact 45, we obtain Lemma 16.

▶ Corollary (Lemma 16 restated). Let X(0), . . . , X(D) be a martingale and ∆(1), . . . , ∆(D)

be a sequence of magnitudes such that X(0) = 0 and X(i) = X(i−1) + ∆(i) · z(i) for i ∈ [D],
where if conditioning on z(1), . . . , z(i−1),
(1) z(i) is a mean-zero random variable and

∣∣z(i)
∣∣ ≤ 1 always holds;

(2) ∆(i) is a fixed value.
If there exists some constant U ≥ 0 such that

∑D
i=1
∣∣∆(i)

∣∣2 ≤ U always holds, then for any
β ≥ 0 we have

Pr
[

max
i=0,1,...,D

∣∣∣X(i)
∣∣∣ ≥ β ·

√
2U

]
≤ 2 · e−β2/2.

C Proof of Claim 35

▷ Claim (Claim 35 restated). Pr [E2] ≤ ε/3, where E2 is the following event: ∃T ∈
( [n]

ℓ−t

)
, i, r, r′,

such that

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ (100 min
{

k, log
(

nℓ

ε

)}
·
(

nℓ

ε

) 6
k

) r+r′
2

· σT (r, r′, C(vi−1), i).
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Proof. Let k′ = min
{

k,
⌈
6 log

(
nℓ/ε

)⌉}
≤ 12 min

{
k, log

(
nℓ/ε

)}
. Then T is also a depth-D

2k′-clean parity decision tree. Observe that

Pr
[∣∣∣Γ(i)

T (r, r′)
∣∣∣ ≥ ( 4k′

η2/k′

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

]

≤ max
C(vi−1)

Pr
[∣∣∣Γ(i)

T (r, r′)
∣∣∣ ≥ ( 4k′

η2/k′

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

∣∣∣∣∣C(vi−1)
]

≤ (4 · k′)r+r′

(2 · (r + r′))k′︸ ︷︷ ︸
≤1

· η2− 2(r+r′)
k′︸ ︷︷ ︸

≤η

(due to the second bound in Lemma 15 and k ≥ 4 · ℓ ≥ 4 · (r + r′))
≤ η.

Thus by union bound over all T ∈
( [n]

ℓ−t

)
, i ∈ [D′], r ∈ [t], 0 ≤ r′ ≤ t− r, we have

Pr
[
∃T, i, r, r′,

∣∣∣Γ(i)
T (r, r′)

∣∣∣ ≥ ( 4k
η2/k

)(r+r′)/2
· σT (r, r′, C(vi−1), i)

]
≤ Dt2nℓ−t · η ≤ n3·ℓ·η

3 ,

where we use the fact n ≥ max {D, 3 · t} and t ≥ 1. By setting η = ε/n3·ℓ, we have

4k′

η2/k′ = 4k′
(

n3·ℓ

ε

) 2
k′

≤ 4k′
(

nℓ

ε

) 6
k′

≤ 4 · 12 min
{

k, log
(

nℓ

ε

)}
· 2
(

nℓ

ε

) 6
k

,

as desired. ◁

D Proof of Claim 37

We first need the following simple bound on M .

▶ Lemma 46. For any integer s ≥ 1, we have

t∑
r=s

M(D, d, k, ℓ, t− r, ε) ≤ 2 ·M(D, d, k, ℓ, t, ε)
(τD · log (nℓ/ε))s/2 .

Proof. We simply expand the formula of M as follows:∑t
r=s M(D, d, k, ℓ, t− r, ε)

M(D, d, k, ℓ, t, ε) =
t∑

r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k

log
(

nℓ

ε

))−r/2

≤
+∞∑
r=s

(
τ · (D + dk) ·

(
nℓ

ε

)6/k

log
(

nℓ

ε

))−r/2

≤ 2 ·
(

τ · (D + dk) ·
(

nℓ

ε

)6/k

log
(

nℓ

ε

))−s/2

(due to τ ≥ 4 and s ≥ 1)

≤ 2 ·
(
τD · log

(
nℓ/ε

))−s/2
. ◀

Now we prove Claim 37.
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39:36 Fourier Growth of Parity Decision Trees

▷ Claim (Claim 37 restated). When E1 ∨ E2 does not happen,
∑D

i=1

∣∣∣µ(i)
T

∣∣∣ ≤ R and∑D
i=1

∣∣∣δ(i)
T

∣∣∣2 ≤ R2 hold for all T ∈
( [n]

ℓ−t

)
, where

R = M(D, d, k, ℓ, t, ε)
5 ·
√

log (nℓ/ε)
.

Proof. We verify for each T ∈
( [n]

ℓ−t

)
as follows:

D∑
i=1

∣∣∣µ(i)
T

∣∣∣
=

D′∑
i=1

∣∣∣µ(i)
T

∣∣∣ ≤ D′∑
i=1

t∑
r=2,
even

|A(T, r, i)| (due to (8))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√( 800

τ

)r
(

|J(vi−1)|
2d

)r

· 1|J(vi−1)|>1

)
(due to (10))

≤
D′∑
i=1

t∑
r=2,
even

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
(

|J(vi−1)|
2d

) ( 800
τ

)r/2 · 1|J(vi−1)|>1

)
(Since |J(vi−1)| ≤ 2d from Corollary 26)

≤ 2·M(D,d,k,ℓ,t,ε)
τ ·log(nℓ/ε) + 1.1·800·M(D,d,k,ℓ,t,ε)

τ ·
√

log(nℓ/ε)

(due to Lemma 46 and Corollary 26 and τ = 104)

≤ M(D,d,k,ℓ,t,ε)
5·
√

log(nℓ/ε)
= R

and with similar calculation, we have

D∑
i=1

∣∣∣δ(i)
T

∣∣∣2

≤
D′∑
i=1

 t∑
r=1,
odd

(
M(D, d, k, ℓ, t− r, ε) + M(D,d,k,ℓ,t,ε)√

log(nℓ/ε)
·
√

|J(vi−1)|
2d

( 800
τ

)r/2 · 1|J(vi−1)|>1

)
2

≤
D′∑
i=1

(
2·M(D,d,k,ℓ,t,ε)√

τD·log(nℓ/ε)
+ 1.1·

√
800·M(D,d,k,ℓ,t,ε)

√
τ
√

log(nℓ/ε)
·
√

|J(vi−1)|
2d · 1|J(vi−1)|>1

)2

(due to τ = 104)

≤
(

M(D,d,k,ℓ,t,ε)√
log(nℓ/ε)

)2 D′∑
i=1

2 ·
(

4
τD

+ 968
τ ·

|J(vi−1)|
2d · 1|J(vi−1)|>1

)
(due to (a + b)2 ≤ 2(a2 + b2))

≤
(

2000·M(D,d,k,ℓ,t,ε)
τ ·
√

log(nℓ/ε)

)2
= R2. ◁
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