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Abstract
What is the least surface area of a permutation-symmetric body B whose Zn translations tile Rn?
Since any such body must have volume 1, the isoperimetric inequality implies that its surface area
must be at least Ω(

√
n). Remarkably, Kindler et al. showed that for general bodies B this is tight,

i.e. that there is a tiling body of Rn whose surface area is O(
√

n).
In theoretical computer science, the tiling problem is intimately related to the study of parallel

repetition theorems (which are an important component in PCPs), and more specifically in the
question of whether a “strong version” of the parallel repetition theorem holds. Raz showed, using
the odd cycle game, that strong parallel repetition fails in general, and subsequently these ideas
were used in order to construct non-trivial tilings of Rn.

In this paper, motivated by the study of a symmetric parallel repetition, we consider the
permutation-symmetric variant of the tiling problem in Rn. We show that any permutation-
symmetric body that tiles Rn must have surface area at least Ω(n/

√
log n), and that this bound is

tight, i.e. that there is a permutation-symmetric tiling body of Rn with surface area O(n/
√

log n).
We also give matching bounds for the value of the symmetric parallel repetition of Raz’s odd cycle
game.

Our result suggests that while strong parallel repetition fails in general, there may be important
special cases where it still applies.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases PCP, Parallel Repetition, Tilings

Digital Object Identifier 10.4230/LIPIcs.CCC.2021.5

Related Version Full Version: https://arxiv.org/abs/2011.04071

Funding Mark Braverman: Research supported in part by the NSF Alan T. Waterman Award,
Grant No. 1933331, a Packard Fellowship in Science and Engineering, and the Simons Collaboration
on Algorithms and Geometry.

1 Introduction

A body D ⊆ Rn is said to be tiling the Euclidean space Rn, if its translations by Zn cover
the entire space and have disjoint interiors. The foam problem asks for the least surface area
a tiling body D can have. The problem had been considered by mathematicians already in
the 19th century [33], and it also appears in chemistry, physics and engineering [30]. More
recently, the problem had received significant attention in the theoretical computer science
community due to its strong relation with the parallel repetition problem [15, 24, 2].

The simplest example for a body that tiles the Euclidean space is the solid cube, D = [0, 1]n,
which has surface area 2n. At first glance, one may expect the solid cube to be the best
example there is, or more modestly that any tiling body would need to have surface area
Ω(n). The main results of [24, 2] show that this initial intuition is completely false, and that
there are far more efficient tiling bodies whose surface area is O(

√
n). This is surprising,

since spheres – which are the minimizers of surface area among all bodies with a given,
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5:2 On Symmetric Tilings of Euclidean Space

fixed volume (in this case volume 1), have Θ(
√

n) surface area and seem to be very far from
forming a tiling of Rn. As we will shortly discuss, the existence of such surprising tiling
body is intimately related to the existence of another surprising object – namely non-trivial
strategies for 2-prover-1-round games, repeated in parallel. The main goal of this paper is to
understand the permutation-symmetric variant of the foam problem, which is closely related
to the symmetric variant of parallel repetition.

1.1 2-Prover-1-Round Games and Parallel Repetition
▶ Definition 1. A 2-Prover-1-Round Game G = (L ∪ R, E, Φ, ΣL, ΣR) consists of a bipartite
graph (L ∪ R, E), alphabets ΣL, ΣR, and a constraint Φ(u, v) for every edge (u, v) ∈ E. The
goal is to find assignments AL : L → ΣL, AR : R → ΣR that satify the maximum fraction of
the constraints. A constraint Φ(u, v) is satisfied if (AL(u), AR(v)) ∈ Φ(u, v), where by abuse
of notation, Φ(u, v) ⊆ ΣL × ΣR denotes the subset of label pairs that are deemed satisfactory.

The value of a game, denoted by val(G), is the maximum fraction of constraints that can
be satisfied in G by any pair of assignments AL, AR.

Equivalently, a 2-Prover-1-Round Game can be viewed as a “game” between two provers and
a verifier. The verifier picks a constraint (u, v) at random, asks the “question” u to the left
prover, the “question” v to the right prover, receives “answers” AL(u), AR(v) respectively
from the provers; the verifier accepts if and only if (AL(u), AR(v)) ∈ Φ(u, v). It is easy to
see that in this language, val(G) represents the maximum probability a verifier will accept,
where the maximum is taken over all of the strategies of the provers.

2-Prover-1-Round games play an important role in the study of PCPs and Hardness of
approximation, and in fact an equivalent statement of the seminal PCP Theorem [14, 5, 4]
can be stated in that language. It will be convenient for us to use the notation of gap
problems: for 0 < s < c ⩽ 1, denote by Gap2Prover1Round(c, s) the promise problem in
which the input is a 2-Prover-1-Round game G promised to either satisfy val(G) ⩾ c or
val(G) ⩽ s, and the goal is to distinguish between these two cases. The parameters c and s

are referred to as the completeness and soundness parameters of the problem, respectively.

▶ Theorem 2 (PCP Theorem, [14, 5, 4]). There are k ∈ N, s < 1 for which the problem
Gap2Prover1Round(1, s) is NP-hard on instances with alphabet size at most k.

The PCP Theorem, as stated above, can be used to establish some hardness of approxim-
ation results. However it turns out that to get strong hardness results, one must prove a
variant of the theorem with small soundness, i.e. with s close to 0. One way to do that is by
amplifying hardness using parallel repetition.

The t-fold repetition of a game G, denoted by G⊗t, is the game in which the verifier picks t

independently chosen challenges, (u1, v1), . . . , (ut, vt) and sends them to the provers in a single
bunch, i.e. u⃗ = (u1, . . . , ut) to one prover and v⃗ = (v1, . . . , vt) to the second one. The provers
are supposed to give an answer to each one of their questions, say AL(u⃗) = (a1, . . . , at)
and AR(v⃗) = (b1, . . . , bt), and the verifier accepts with only if (ai, bi) ∈ Φ(ui, vi) for all
i = 1, . . . , t. What is the value of the t-fold repeated game, as a function of val(G) and t?

The idea of parallel repetition was first introduced in [16], wherein it was originally
suggested that val(G⊗t) ≈ val(G)t. Alas, in a later version of that paper it was shown to be
false, leaving the question wide open. Raz [27] was the first to prove that the value of the
repeated game decreases exponentially with t, and with many subsequent works improving
the result [18, 26, 13, 10]. The most relevant version for our purposes is the result of Rao [26],
which makes the following statement. First, we say a game G is a projection game, if all
of the constraints Φ(u, v) can be described by a projection map, i.e. there is a mapping
πu,v : ΣL → ΣR such that Φ(u, v) = { (a, b) | b = ϕu,v(a)}.
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▶ Theorem 3. If G is a projection game, and val(G) = 1 − ε, then val(G⊕t) ⩽ (1 − ε2)Ω(t).

Rao’s result seems nearly optimal, in the sense that a-priori, the best bound one can hope
for is that val(G⊕t) ⩽ (1 − ε)Ω(t). Quantitatively speaking, one may think that for all intents
and purposes, Rao’s bound is just as good as the best one can hope for. However, as it turns
out, there is at least one prominent problem where this quadratic gap is what makes the
difference, which we describe next.

The Unique Games Conjecture and the Max-Cut Conjecture

The Unique Games problem is a specific type of projection 2-Prover-1-Round Game, in which
the projection maps ϕu,v are also bijections. The Unique Games Conjecture of Khot [19]
(abbreviated UGC henceforth) asserts that a strong PCP theorem holds for Unique-Games,
and more specifically that for any ε, δ > 0, the problem GapUG(1−ε, δ) is NP-hard, when the
alphabet sizes depend only on ε, δ. This conjecture is now of central importance in complexity
theory, and it is known to imply many, often tight inapproximability results (see [20, 34]
for more details). A prominent example is the result of [21], stating that assuming UGC,
the Goemans-Williamson algorithm [17] for Max-Cut is optimal. In particular, for small
enough ε > 0, if UGC is true, then GapMaxCut(1 − ε, 1 − 2

π

√
ε + O(ε1.5)) is NP-hard. Does

the converse hold? I.e., does the assumption that GapMaxCut(1 − ε, 1 − 2
π

√
ε + O(ε1.5)) is

NP-hard imply UGC? If so, that would be a promising avenue of attack on the Unique-Games
Conjecture.

Noting that Max-Cut is a Unique-Game and that Parallel repetition preserves uniqueness,
one may hope a reduction from GapMaxCut(1−ε, 1− 2

π

√
ε+O(ε1.5)) to GapUniqueGames(1−

ε′, δ) would simply follow by appealing to a parallel repetition theorem, such as Rao’s
result [26]. Alas, the quadratic loss there exactly matches the quadratic gap we have in Max-
Cut, thereby nullifying it completely. This possibility was discussed in [31], who among other
things proposed that perhaps a stronger version of Theorem 3 should hold for Unique-Games,
in which the ε2 is replaced with ε. This conjecture was referred to as the Strong Parallel
Repetition Conjecture, and unfortunately it turns out to be false.

A Strong parallel repetition theorem?

The problem of understanding parallel repetition over a very simple game, called the odd cycle
game and denoted below by Cn, was shown to be closely related to the foam problem [15].
In this game, we have a graph G which is an odd cycle of length n, and the provers try to
convince the verifier that G is a bipartite graph (while it is clearly not). To test the provers,
the verifier picks a vertex u from the cycle uniformly at random, and then picks v as v = u

with probability 1/2, and otherwise v is one of the neighbours of u with equal probability.
The verifier sends u as a question to one prover, and v as a question to the other prover, and
expects to receive a bit from each one b1, b2. The verifier checks that b1 = b2 in case u = v,
or that b1 ̸= b2 in case u ̸= v.

Note that clearly, val(Cn) = 1 − Θ(1/n), and so the Strong Parallel Repetition Conjecture
would predict that the value of the t-fold repeated game is 1 − Θ(t/n) so long as t ⩽ n.
Alas, this turns out to be false. First, in [15], it was shown that non-trivial solutions to the
foam problem imply non-trivial strategies for the t-fold repeated game, and in particular the
existence of a tiling body with surface area o(n) would refute the Strong Parallel Repetition
Conjecture. Subsequently, Raz [28] showed that the value of the t-fold repeated odd-cycle
game is in fact at least 1 − O(

√
t/n) so long as t ⩽ n2, and that Theorem 3 is optimal (i.e.,

the quadratic gap is necessary, even for Unique-Games, and more specifically for Max-Cut).

CCC 2021



5:4 On Symmetric Tilings of Euclidean Space

Subsequent works were able to use these insights to solve the foam problem for the integer
lattice [24, 2] and lead to better understanding of parallel repetition and its variants [6, 8].
From the point of view of UGC, these results were very discouraging since they eliminate
one of the main available venues (perhaps the main one) for the proof of UGC.

Partly due to this issue, the best partial results towards UGC had to take an entirely
different approach [22, 12, 11, 23, 7], and currently can only prove that GapUG(1/2, δ) is
NP-hard for every δ > 0.

1.2 A symmetric variant of Parallel Repetition
One may try to revive the plan for showing the equivalence of UGC and the hardness of
Max-Cut by considering variants of parallel repetition. Ideally, for that approach to work,
one should come up with a variant of parallel repetition, in which (a) the value decreases
exponentially with the number of repetitions, and (b) the operation preserves uniqueness. One
operation that had been considered in the literature, for example, is called fortification [25, 9].
Using this operation, the value of the game indeed decreases exponentially, however this
operation does not preserve uniqueness and therefore is not useful for showing the equivalence
of UGC and the Max-Cut Conjecture.

More relevant to us is the symmetric variant of parallel repetition that had been previously
suggested as a replacement for parallel repetition. In this variant, given a basic game G, the
verifier chooses the challenges (u1, v1), . . . , (ut, vt), and sends the questions to the provers as
unordered tuples, i.e. U = {u1, . . . , ut} and V = {v1, . . . , vt}. The verifier expects to receive
a label for each element in U and each element in V , and checks that they satisfy each one
of the constraints (ui, vi). We denote this game by G⊗symt, and note that it clearly preserves
uniqueness; also, we note that the arguments used to refute the strong Parallel Repetition
Conjecture do not immediately apply to it. While a naive application of this variant can
still be shown to fail in general,1 there is still a hope that it can be used in a more clever
way and establish the equivalence of UGC and the Max-Cut Conjecture. Our work is partly
motivated by seeking such possibilities.

We are thus led to investigate the effect on symmetric repetition on the odd cycle game,
and more specifically the symmetric variant of the foam problem which again is very much
related.

1.3 Our results
In this paper, our main object of study mainly are tilings of Rn using a permutation-symmetric
body.

▶ Definition 4. A set D ⊆ Rn is called permutation-symmetric if for any π ∈ Sn and x ∈ Rn,
it holds that x ∈ D if and only if π(x) ∈ D.

The main question we consider, is what is the least surface area a permutation-symmetric
tiling body can have. Again, one has the trivial example of the solid cube D = [0, 1]n, but
inspired by the non-permutation-symmetric variant of the problem, one may expect there to
be better examples. We first show that while this is possible, the savings are much milder,
and can be at most a multiplicative factor of

√
log n.

1 This can be seen by considering a graph which is the disjoint union of many odd cycles (instead of a
single odd cycle), say M , so that one would get a canonical ordering on most subsets of t vertices from
this graph, so long as t = o(

√
M).
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▶ Theorem 5. Any permutation-symmetric tiling body D of volume 1 with piecewise smooth

surface has surface area at least Ω
(

n√
log n

)
.

Besides the quantitative result itself, we believe the argument used in the proof of
Theorem 5 carries with it a lot of intuition regarding the additional challenge that the
permutation-symmetric variant of the foam problem and the parallel repetition posses, and
we hope that this intuition will help us to develop better understanding of symmetric parallel
repetition in general. We remark that our proof actually shows a lower bound on the “noise
sensitivity” parameter of the body, which is known to be smaller than the surface area of the
body.

We complement Theorem 5 with a randomized construction showing that O(
√

log n)
savings are indeed possible.

▶ Theorem 6. There exists a permutation-symmetric tiling body D of volume 1 with piecewise

smooth surface that has surface area O

(
n√
log n

)
.

Our results also imply tight bounds for the value of the t-fold symmetric repetition of the
odd cycle game, which we discuss next.

1.4 Significance of our results for symmetric parallel repetition
Using our techniques, one may give sharp estimates to the value of the t-fold symmetric
repetition of the odd cycle game, as follows.

▶ Theorem 7. There is c > 0, such that for an odd n, if t ⩽ cn
√

log n then val(C⊗symt
n ) ⩽

1 − c t

n
√

log t
.

▶ Theorem 8. For all n, t ∈ N it holds that val(C⊗symt
n ) ⩾ 1 − O

(
t

n
√

log t

)
.

We remark that a similar connection between the standard foam problem and the value of
the t-fold repeated game is well known. More precisely, in [15] the authors show that (1)
tilings of the Euclidean space with small surface area can be used to derive good strategies
for C⊗t

n , and (2) the Euclidean isoperimetric inequality (which gives a lower bound of Θ(
√

n)
on the surface area of a tiling body) can be used to prove upper bounds on the value of C⊗t

n .
We remark that while (1) above is derived in a black-box way, the converse direction, i.e. (2),
is done in a white-box way. That is, the authors in [15] do not actually use the Euclidean
isoperimetric inequality, but rather convert one of its proofs into an upper bound of the value
of the t-fold repeated odd cycle game.

In contrast to [15], our proof of Theorems 7, 8 follow more direct adaptations of the
proofs of Theorems 5, 6. This is partly because our arguments work from scratch and are
therefore more flexible. We outline these adaptations in Section 5.

We believe that Theorem 7 gives some new life to the possible equivalence between the
Max-Cut Conjecture and UGC. For example, this would follow if such rate of amplification
would hold for all graphs if we allow for a “mild” preprocessing phase first (i.e., preprocessing
that doesn’t change the value of the instance by much). For this reason, we believe it would
be interesting to investigate other graph topologies on which symmetric parallel repetition
performs well, and hope that the techniques developed herein will be useful.

On the flip side, Theorem 8 asserts that even symmetric parallel repetition on the odd
cycle game admits non-trivial strategies. Thus, we cannot hope to use it in order to establish
the equivalence of weaker forms of the Max-Cut Conjecture and UGC. Here, by weaker
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5:6 On Symmetric Tilings of Euclidean Space

forms of the Max-Cut Conjecture, we mean the conjecture that GapMaxCut[1 − ε, 1 − δ(ε)]
is NP-hard for small enough ε, and δ(ε) is a nearly linear function of ε, e.g. δ(ε) = 100ε or
δ(ε) = ε

√
log(1/ε). Given that the best known NP-hardness results for Max-Cut in this

regime are only known for δ = (1 + Ω(1))ε, this means that there is still a significant road
ahead to establish even the weakest version of the Max-Cut Conjecture that may be useful
for UGC.

1.5 Techniques

In this section, we explain some of the intuition and idea that go into the proof of Theorems 5
and 6, focusing mostly on the former.

Let D be a permutation-symmetric tiling body. To prove that the surface area of D is
at least A, it is enough to prove that D is sensitive to noise rate 1/A. I.e., that if we take
a point x from D uniformly at random, and walk along a random Gaussian direction u of
expected length 1/A, then with constant probability we escape D at some point on the line
ℓx,u(t) = x + tu.

We begin by describing an argument showing a worse bound than the one proved in
Theorem 5, which is nevertheless helpful in conveying some of the intuition. To prove that
a random line ℓx,u(t) escapes D with noticeable probability, we argue that for a Gaussian
vector u of appropriate expected length, with constant probability the line ℓx,u will contain
a point in which there are two coordinates differing by a non-zero integer, say y with the
coordinates being i, j. Note that this is enough, since then if we assumed that y ∈ D, then
the point y′ in which the value of coordinates i, j is switched also lies in D (by symmetry),
and then the difference of y and y′ is a non-zero lattice vector, so they must be in different
cells of the tiling. Therefore we conclude that y ̸∈ D.

With this plan in mind, let x = (x1, . . . , xn) be uniformly sampled from D, and consider
the coordinates of x modulo 1, i.e. B = {x1 (mod 1), . . . , xn (mod 1)}, as points in the
one-dimensional torus T. First, it can be shown without much difficulty that they are jointly
distributed as uniform random points on T, hence standard probabilistic tools tell us that
any interval of length 100 log n/n on the torus contains at least two points from B. Now,
regardless of how the body D looks, there would be two coordinates, say i and j, that almost
differ by a non-zero integer, yet appear very close when projected on the torus, i.e. in distance
at most 100 log n/n. In this case, with constant probability the coordinates i, j get even
closer along a random line ℓx,u(t) = x + tu, and provided the length of u is long enough to
cover the distance between xi, xj on the torus (i.e. each coordinate of magnitude Θ(log n/n)),
the line ℓx,u(t) would contain a point as desired.

The above argument can indeed be formalized to yield a lower bound of Ω
(

n
log n

)
on

the surface area of D, but it carries more intuition than just the bound itself. In a sense,
this argument says that if we project x onto the torus, we should be wary of coordinates
whose projections are too close, and make sure that it would only occur if the coordinates
themselves are close (as opposed to almost differing by a non-zero integer). Analyzing the
event that two coordinates meet on the circle while being different is easily seen however
to not yield a better bound than Ω(n/ log n), hence to prove Theorem 5 we must look at a
different event. That being said, the argument does tell us that we should look at pairwise
distances between coordinates of x when projected on the circle, and in particular on pairs
that are “relatively close” and the way they move along a line in a random direction.

It turns out that it is enough to come up with some parameter that behaves differently
on the endpoints of the line, assuming the line does not escape D. This is because that if
the escape probability from D is small, then the distributions of x and x + u are close in
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statistical distance, and in particular any parameter should behave roughly the same on x and
on x + u. Indeed, our proof utilizes an energy function (inspired by the previous argument)
that considers the pairwise distances between coordinates of x; the contribution from a pair
of coordinates that are in distance d in the circle is proportional to e−Z·d, where Z ∼ n√

log n
.

We show that with high probability, the energy increases along a random line ℓx,u(t) provided
it does not escape D, while on the other hand, if the escape probability is small, then x and
x + u are close in statistical distance and hence Prx,u [Energy(x + u) > Energy(x)] ≈ 1

2 . This
implies that the escape probability must be constant.

We remark that the above high-level intuition also plays a role in the proof of Theorem 5.
I.e., when constructing a permutation-symmetric tiling body D, all we really need to care
about are the pairwise distances between coordinates, and that we must make sure that
somewhat far coordinates will project to far points on the torus. Indeed, given a point
x ∈ Rn, in order to decide which integer lattice point y ∈ Zn we round x to, we only look at
this pairwise distances of x on the torus. We try to find a point z on the torus that is far
from all the coordinates of x, and do the rounding according to it. One naive attempt would
be to take z that is furthest from all coordinates of x, however this point turns out to be
very noise sensitive and therefore yield a body with large surface area. Instead, we consider
a probability distribution that only puts significant weight on z’s that are somewhat far from
all xi’s, yet is not too concentrated around the maximizers. Coming up and analyzing a
construction along these lines turns out to require considerable technical effort, and we defer
a more elaborate discussion to Section 4

Organization of the paper

In Section 2, we set up basic notations and preliminaries. Section 3 is devoted to the proof
of Theorem 3, and Section 4 is devoted for the proof of Theorem 4. In Section 5 we prove
Theorems 7, 8, and in Section 6 we state some open problems.

2 Preliminaries

Notations

We write X ≲ Y or X = O(Y ) to say that there exists an absolute constant C > 0 such
that X ⩽ CY , and similarly write X ≳ Y or X = Ω(Y ) to say that there exists an absolute
constant c > 0 such that X ⩾ cY . We write X ≍ Y or X = Θ(Y ) to say that Y ≲ X ≲ Y .

We denote random variables by boldface letters such as x and ∆. We denote by N (µ, σ2)
the distribution of a standard Gaussian random variable with mean µ and variance σ2, and
by N (µ⃗, Σ) the distribution of a multi-dimensional Gaussian random variable with means µ⃗

and covariance matrix Σ.
For a measurable set D of finite measure, we denote by a ∈ D or a ∈R D a uniform

sample from D.

2.1 Needles
▶ Definition 9. Let δ > 0, and let a ∈ Rn. A random δ-needle is a line defined as
ℓa,u = {a + tu | t ∈ [0, 1]} where the direction vector u is a chosen as a standard Gaussian
N (0, δIn).

Given a tiling body D, a random δ-needle from D is a random δ-needle ℓa,u where a ∈ D

is chosen uniformly. Random needles are a useful tool to measure the surface area of a D, as
shown in the following two lemmas. First, given a tiling body D and a needle ℓa,u, we may

CCC 2021



5:8 On Symmetric Tilings of Euclidean Space

think of the needle as “wrapping around” around D, i.e. its points are taken modulo D. We
denote this “wrapped around” line by ℓ̃a,u. We will use the following formula from [32]; the
case n = 2 is formula (8.10) therein, and the extension to general n is discussed in page 274.

▶ Lemma 10. There is a constant Cn = Θ(1), such that the following holds. Let S be a
piecewise smooth surface in a tiling body D of volume 1, and let δ > 0. Then

E
a∈D,u∼N (0,δIn)

[∣∣ℓ̃a,u ∩ S
∣∣] = Cn ·

√
δ · area(S).

▶ Lemma 11. Let D be a tiling body of volume 1, and let δ > 0. Then

Pr
a∈D,u∼N (0,δIn)

[ℓa,u ∩ ∂D ̸= ∅] ⩽ Θ(
√

δ)area(∂D).

Proof. Set S = ∂D, and note that whenever ℓa,δu ∩ ∂D ̸= ∅, we have that
∣∣ℓ̃a,δu ∩ S

∣∣ ⩾ 1.
Hence by the previous lemma we get that

Pr
a∈D,u∼N (0,δIn)

[ℓa,u ∩ ∂D ̸= ∅] ⩽ E
a∈D,u∼N (0,δIn)

[∣∣ℓ̃a,u ∩ ∂D
∣∣] ⩽ Θ(

√
δ) · area(∂D). ◀

We will use the above lemma to prove lower bounds on the surface area of a tiling body, by
finding δ such that the probability on the left hand side of Lemma 11 is at least Ω(1); this
would imply that area(∂D) ⩾ Ω(1/

√
δ).

2.2 Basic useful properties of tiling bodies

▶ Lemma 12. Let D ⊆ Rn be a permutation-symmetric body, such that for all z ∈ Zn \ {0}
we have D ∩ (D + z) = ∅, and let x ∈ D. Then for every 1 ⩽ i, j ⩽ n, if xi − xj ∈ Z, then
xi = xj.

Proof. Assume towards contradiction xi − xj is a non-zero integer k, and let Si,j ∈ Sn be
the permutation that maps i to j, j to i and has any r ̸= i, j as a fixed point. Since D is
permutation-symmetric, we have that Si,j(x) ∈ D. Also, we have

x − Si,j(x) = (xi − xj)(ei − ej) = k(ei − ej),

where ei is the ith element in the standard basis. In other words, we get that x = Si,j(x) + z

for non-zero z ∈ Zn, and therefore x ∈ D + z. This contradict the fact that D and D + z are
disjoint. ◀

▶ Lemma 13. Let D be a volume 1 tiling body, and choose a = (a1, . . . , an) ∈ D uniformly
at random. Then the random variable (a1(mod 1), . . . , an(mod 1)) is uniform over [0, 1)n.

Proof. Sample x ∈ [0, 1)n, and take a = x (mod D). Note that the distribution of a is
uniform over D. Indeed, for that we note that the map x → x (mod D) is bijection from
[0, 1)n to D: otherwise, there were x ̸= x′ in [0, 1)n that are equal mod D, and therefore
differ by non-zero lattice point (which is clearly impossible). Now as the distribution of a
(mod 1) is just x, the claim follows. ◀
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3 The lower bound: proof of Theorem 5

In this section, we prove the lower bound on the surface area of a permutation-symmetric tiling
body D. Throughout, we will have two parameters: σ, which is magnitude of each coordinates
in the needle we consider (which will be of order

√
log n

n ), and an auxiliary parameter Z

(which will be of order n
log n ). Let D be a permutation-symmetric tiling body containing

0. We denote by a a random point in D, and by u a Gaussian vector N (0, σ2In). We will
prove that Pra,u [ℓa,u ̸⊆ D] = Ω(1), which by Lemma 11 implies that area(∂D) ⩾ Ω(1/σ).
As σ = Θ(

√
log n/n), this would establish Theorem 5.

Notations

For x, y ∈ R, define

d(x, y) := min
z∈Z,z ̸=0

|(x + z) − y| ∈ [0, 1].

To gain some intuition for the definition of d(x, y), suppose x and y are two entries of a point
a ∈ D. Clearly, if d(x, y) is small, then x, y nearly differ by an integer z ̸= 0, and this says
that the point a is somewhat close to the boundary of D (in the sense that Lemma 12 could
kick in if we move along a direction that decreases this distance).

Our argument will indeed inspect d(ai, aj) for all distinct i, j ∈ [n] and the way they
change along a random direction. A key measure that we will keep track of is the energy of
a point a ∈ D, defined by

Ψ(a) :=
∑
i<j

e−Z·d(ai,aj).

We show that for a ∈R D and u ∼ N (0, σ2In), if ℓa,u ⊆ D with probability close to 1, then
the energy of a increases along the line ℓa,u with high probability, and in particular that
Ψ(a + u) > Ψ(a). We then argue that with high probability, this should be the case for the
point a as well as for a − u, hence Ψ(a + u) > Ψ(a − u) with high probability. This event
however can happen with probability at most 0.5 by symmetry, hence completing the proof.

3.1 Analyzing the energy along a random line
By definition of d(x, y), we either have d(x, y) = (x + z − y) or d(x, y) = −(x + z − y) for
some z ∈ Z \ {0}, and this sign determines whether x, y need to move in different directions
or the same direction for d(x, y) to get smaller. To capture this, we denote

γ(x, y) :=
{

+1 if d(x, y) = x + z − y for some z ∈ Z, z ̸= 0,

−1 otherwise.

Next, we discuss the energy of a configuration, which is the key concept used in the proof.
Let Z be a parameter to be chosen later (of the order n/ log n). As stated earlier, our
goal is to analyze the behaviour of Ψ(a) along a random σ2-needle from a in direction u.
Towards this end, note that we expect (at least if ui, uj are small) that d(ai + ui, aj + uj) =
d(ai, aj) + γ(ai, aj)(uj − uj), hence expect Ψ(a + u) to be close to

Ψ(a, u) :=
∑
i<j

e−Z·(d(ai,aj)+γ(ai,aj)·(ui−uj)).

Indeed, this is the content of the following claim.
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▷ Claim 14. Suppose |ui| ⩽ 1/20 for all i, and a + [0, 1] · u ⊂ D, then

|Ψ(a + u) − Ψ(a, u)| ⩽ n2 · e−Z/4.

Proof. We consider the contribution of each pair (i, j) to Ψ(a + u) and Ψ(a, u) separately.
Without loss of generality we may only consider pairs i, j that γ(ai, aj) = 1, and thus
d(ai, aj) = ai − aj + z for some z ∈ Z, z ̸= 0. Let

d = ai − aj + z + (ui − uj) = (ai + ui) − (aj + uj) + z.

First, we argue that d ⩾ 0. Otherwise, since ai − aj + z ⩾ 0 it follows by continuity that
there is λ ∈ [0, 1] such that ai − aj + z + λ(ui − uj) = 0, and hence the point a + λu has
entries that differ by an integer z ̸= 0, and this contradicts Lemma 12 (as a + λu ∈ D). We
now consider two cases:

Case 1: d ∈ [0, 0.5]. In this case, we have d(ai +ui, aj +uj) = d, and thus the contribution
of the pair (i, j) to both sums is the same (e−Z·d).
Case 2: d > 0.5. Since |ui − uj | ⩽ 0.1, it follows that d(ai, aj) = d − (ui − uj) > 0.4,
which implies d(ai + ui, aj + uj) > 0.3. Therefore, the contribution to Ψ(a, u) from i, j is
at most e−0.4·Z and to Ψ(a + u) is at most e−0.3·Z , and in particular (i, j) contributes
(in absolute value) at most e−Z/4 to the difference between the sums.

Taking a sum over all pairs (i, j) concludes the proof. ◁

3.2 Analyzing the expectation and variance of Ψ(a, u)
Next, we consider Ψ(a, u) as a random variable over the choice of u and compute its
expectation and variance. In both computations we will use the well-known fact that
E[e−Z·N(0,c2)] = eZ2c2/2 for all c > 0.

▷ Claim 15. For every a ∈ Rn we have Eu∼N (0,σ2In) [Ψ(a, u)] = Ψ(a) · e(Z·σ)2 .

Proof. By linearity of expectation we have that

E
u∼N (0,σ2In)

[Ψ(a, u)] =
∑
i<j

e−Z·d(ai,aj) · E
u∼N (0,σ2In)

[
e−Z·γ(ai,aj)·(ui−uj)

]
.

Note that the above expectation does not depend on i, j: for every i, j the distribution of
ui − uj is N(0, σ2) − N(0, σ2) ∼ N(0, 2σ2), so it is symmetric around 0 and thus the sign
γ(ai, aj) does not affect the expectation. Hence we have

E
u∼N (0,σ2In)

[Ψ(a, u)] = Ψ(a) · E[eZ·N(0,2σ2)] = Ψ(a) · eZ2σ2
. ◁

Next, we turn our attention into upper bounding the variance of Ψ(a, u), and for that
we first define the notion of good points a ∈ D and prove two preliminary claims. We say a
point a is good if any interval of length (10 log n)/n on the torus contains at least log n and
at most 100 log n coordinates from a(mod 1). Note by Lemma 13, if a is chosen randomly
from D then a (mod 1) is uniform over [0, 1)n and by Chernoff bound is easily shown to be
good with probability > 0.999.

We first show that good points have high energy.

▷ Claim 16. There exists c2 > 0, such that for Z = 0.1 log n
n , if a is good then Ψ(a) > c2 log2 n.

Proof. Partition the torus [0, 1) into m = n/(10 log n) disjoint intervals of length 1/m =
(10 log n)/n each. We say that Ii is unanimous, if there is bi ∈ R (called anchor) such that
(1) bi(mod 1) is the middle of Ii, and (2) for the majority of points aj ∈ Ii, |aj − bi| < 1/m.

We consider two cases:
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Case 1: There is an interval Ii that is not unanimous. Note that there are at least log n

coordinates j of a such that aj ∈ Ii. Let j⋆ be such coordinate, and write aj⋆ = zj⋆ + {aj⋆}
where zj⋆ ∈ Z and {aj⋆} is the fractional part of aj⋆ . Consider b = zj⋆ + mi where
mi is the middle of Ii. Then since Ii is not unanimous, b is not an anchor of it and
so there are at least 1

2 log n coordinates of a, say (ak)k∈Ki,j⋆ that mod 1 are in Ii, and
|ak − b| ⩾ 1/m. Writing ak = zk + {ak}, we observe that zk ̸= zj⋆ , since otherwise
|ak − b| = |{ak} − mi| ⩽ 1/(2m). Hence the difference ak − aj⋆ is 10 log n/n close to an
integer zk − zj⋆ ̸= 0, and so d(ak, aj⋆) ⩽ 10 log n/n, and the contribution of Ψ(a) is at least
e−1. Summing we get

Ψ(a) ⩾ 1
2

∑
j⋆:aj⋆ ∈Ii

∑
k∈Ki,j⋆

e−Zd(ak,aj⋆ ) ⩾
1
2

∑
j:aj∈Ii

e−1 |Ki,j⋆ | ⩾ 1
4e

log2 n.

Case 2: All intervals are unanimous. Let bi be an anchor of Ii. Note that since the
fractional part of two adjacent anchors, i.e. of bi, bi+1, are 1/m apart, we have that either
|bi − bi+1| ⩽ 1/m or |bi − bi+1| ⩾ 1 − 1/m. We claim there exists i for which the latter
condition holds. To see this, assume that for all i = 1, . . . , m − 1 we have that the first
condition holds. Then we have bi = z + i 10 log n

n for some z ∈ Z for all i = 1, . . . , m, and
hence |bm − b1| ⩾ 1 − 1/m (and the condition holds for i = m).

Thus, we fix i such that |bi − bi+1| ⩾ 1 − 1/m, and thus bi − bi+1 = z + α for z ̸= 0
and |α| ⩽ 1/m. Let Ki be the coordinates j of a such that |aj − bi| ⩽ 1/m for j ∈ Ki

and similarly define Ki+1. We have that ar − aj = z + α + (ar − bi+1) + (aj − bi), hence
ar − aj = z + β for |β| ⩽ 3/m for all r ∈ Ki+1, j ∈ Ki. Thus d(ar, aj) ⩽ 3/m, and we get

Ψ(a) ⩾ |Ki| |Ki+1| e−Z·3/m ⩾
1
4e−3 log2 n ◁

Let Ci =
∑

j ̸=i e−Z·d(ai,aj) be the contribution of ai to Ψ(a). Note that Ψ(a) = 1
2

∑
i Ci.

▷ Claim 17. There exists c3 > 0, such that if a is good, then for all i we have Ci <

c3Ψ(a)/ log n.

Proof. Note that d(ai, aj) ⩾ |{ai}−{aj}|. Since any interval of length 10 log n/n on the torus
contains at most 100 log n points of a, we have that the number of j’s such that |{ai} − {aj}|
is between 10 log n/n · k and 10 log n/n · (k + 1) is at most 200 log n (for all k). Therefore,

Ci < 200 log n ·
∞∑

k=0
e−Z·k·(10 log n)/n = 200 log n ·

∞∑
k=0

e−k ⩽ 400 log n.

Using Claim 16, we may bound log n ⩽ 1
c2

Ψ(a)
log n , finishing the proof. ◁

We are now ready to bound the variance of Ψ(a, u).

▷ Claim 18. There exists c1 > 0 such that the following holds. Let Z = n/10 log n, let
a ∈ Rn be good and let u ∼ N (0, σ2In). Then

varu[Ψ(a, u)] ⩽ c1

log n
· (e4(Z·σ)2

− e2(Z·σ)2
) · Ψ(a)2.
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Proof. Using Claim 15 to compute the expectation of Ψ(a, u), we have by definition that

varu(Ψ(a, u)) = E
u


∑

i<j

e−Z·d(ai,aj) · (eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2
)

2


=
∑
i<j

e−2Z·d(ai,aj) · E
u

[(
eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)2
]
+

∑
(i,j,k)

distinct

e−Z·(d(ai,aj)+d(ai,ak))

· E
u

[
(eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)(eZ·γ(ai,ak)·(ui−uk) − e(Z·σ)2
)
]
.

Here, we used that fact that if i, j, k, r are distinct then eZ·γ(ai,aj)·(ui−uj), eZ·γ(ak,ar)·(uk−ur)

are independent with expectation e(Z·σ)2 , hence the contribution of these terms is 0. Com-
puting, we see that

E
u

[(
eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)2
]

= E
[
eZ·N(0,8σ2)

]
− e2(Z·σ)2

= e4(Z·σ)2
− e2(Z·σ)2

,

and

E
u

[
(eZ·γ(ai,aj)·(ui−uj) − e(Z·σ)2

)(eZ·γ(ai,ak)·(ui−uk) − e(Z·σ)2
)
]

= E
[
e(γ(ai,aj)+γ(ai,ak))Z·N(0,σ2)

]
E

[
eZ·N(0,2σ2)

]
− e2(Z·σ)2

⩽ E
[
e2Z·N(0,σ2)

]
E

[
eZ·N(0,2σ2)

]
− e2(Z·σ)2

= e3(Z·σ)2
− e2(Z·σ)2

.

Thus, we get that

varu(Ψ(a, u))

⩽
∑
i<j

e−2Z·d(ai,aj)(e4(Z·σ)2
− e2(Z·σ)2

)

+
∑

(i, j, k) distinct

e−Z·(d(ai,aj)+d(ai,ak))(e3(Z·σ)2
− e2(Z·σ)2

)

⩽ (e4(Z·σ)2
− e2(Z·σ)2

)
∑

i

∑
j ̸=i

e−2Z·d(ai,aj) +
∑

j,k ̸=i

e−Z·(d(ai,aj)+d(ai,ak))


= (e4(Z·σ)2

− e2(Z·σ)2
)
∑

i

∑
j ̸=i

e−2Z·d(ai,aj)

2

= (e4(Z·σ)2
− e2(Z·σ)2

) ·
∑

i

C2
i .

Therefore, using Claim 17 we conclude that

varu(Ψ(a, u)) ⩽ (e4(Z·σ)2
−e2(Z·σ)2

)c3Ψ(a)
log n

·
∑

i

Ci = 2c3

log n
·(e4(Z·σ)2

−e2(Z·σ)2
) ·Ψ(a)2.

Setting c1 := 2c3 completes the proof. ◁
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Putting the last two claims together, we have:

▷ Claim 19. Let σ = 104√
c1

√
log n

n and let a ∈ Rn be good. Then

Pr
u

[Ψ(a, u) > Ψ(a) + (Zσ)4

2 Ψ(a)] ⩾ 0.96.

Proof. We upper bound the probability of the complement event. Using Claim 15 (and
et ⩾ 1 + t + t2/2 for t ⩾ 0), we get

E
u

[Ψ(a, u)] ⩾ Ψ(a) ·
(

1 + (Zσ)2 + (Zσ)4

2

)
.

Hence

Pr
u

[
Ψ(a, u) ⩽ Ψ(a) + (Zσ)4

2 Ψ(a)
]
⩽ Pr

u

[∣∣∣∣Ψ(a, u) − E
u′

[Ψ(a, u′)]
∣∣∣∣ ⩾ Ψ(a) · (Zσ)2

]
.

We want to upper bound the probability of the last event using Chebyshev’s inequality.
Since a is good, the conclusion of Claim 18 holds. Since Zσ = o(1), for large enough n we get

varu[Ψ(a, u)] ⩽ c1

log n
· (e4(Z·σ)2

− e2(Z·σ)2
) · Ψ(a)2 ⩽

c1

log n
· Ψ(a)2 · 8(Zσ)2.

Therefore, applying Chebyshev’s inequality we see the probability in question is at most

varu[Ψ(a, u)]
Ψ(a)2 · (Zσ)4 ⩽

c1 · Ψ(a)2 · 8(Zσ)2

(log n) · Ψ(a)2 · (Zσ)4 = 8c1

(log n) · (Zσ)2 = 4c1

102c1
= 0.04. ◁

3.3 Finishing the argument
For each u, denote εu = Pra∈D [ℓa,u ̸⊆ D], ε = Eu∼N (0,σ2In) [εu] = Pra,u [ℓa,u ̸⊆ D].

▷ Claim 20. For each u, DT V [a; a − u] ⩽ εu + ε−u.

Proof. Let K be a Borel set. Note that it is enough to show that (1) if K ⊆ D then 0 ⩽
Pra∈D [a ∈ K] − Pra∈D [a − u ∈ K] ⩽ εu, and (2) if K ⊆ D̄, then −ε−u ⩽ Pra∈D [a ∈ K] −
Pra∈D [a − u ∈ K] ⩽ 0. Indeed, given both (1) and (2), the triangle inequality implies for
any Borel set K ⊆ Rn,∣∣∣∣ Pr

a∈D
[a ∈ K] − Pr

a∈D
[a − u ∈ K]

∣∣∣∣
⩽

∣∣∣∣ Pr
a∈D

[a ∈ K ∩ D] − Pr
a∈D

[a − u ∈ K ∩ D] + Pr
a∈D

[a ∈ K \ D] − Pr
a∈D

[a − u ∈ K \ D]
∣∣∣∣

⩽ εu + ε−u.

To prove (1), note that Pra∈D [a ∈ K] = µ(K) and

Pr
a∈D

[a − u ∈ K] = Pr
a∈D

[a ∈ K + u] = µ((K + u) ∩ D).

This is at most µ(K + u) = µ(K) (hence the expression in (1) is non-negative) and at least
⩾ µ(K + u) − µ((K + u) \ D) = µ(K) − µ(K \ (D − u)). Therefore

0 ⩽ Pr
a∈D

[a ∈ K]− Pr
a∈D

[a − u ∈ K] ⩽ µ(K\(D−u)) ⩽ µ(D\(D−u)) = Pr
a∈D

[a + u ̸∈ D] ⩽ εu.

To prove (2), note that Pra∈D [a ∈ K] = 0 (hence the expression in (2) is non-positive)
and

Pr
a∈D

[a − u ∈ K] ⩽ Pr
a∈D

[a − u ̸∈ D] ⩽ ε−u. ◁

CCC 2021



5:14 On Symmetric Tilings of Euclidean Space

▷ Claim 21. ε ⩾ 0.1.

Proof. Let E1 be the event that a + u[0, 1] ⊆ D, let E2 be the event that Ψ(a) ⩽ 1, let E3 be
the event that |ui| > 1/20 for some i and let E4 be the event that Ψ(a, u) > Ψ(a)+ (Zσ)4

2 Ψ(a).
Finally, let E5 be the event that Ψ(a+u) > Ψ(a) and denote E(a, u) = E1∩(¬E2)∩(¬E3)∩E4.
Note that if the event E holds for a, u, then E5 also holds, since by Claim 14:

Ψ(a + u) ⩾ Ψ(a, u) − n2 · e−Z/4 > Ψ(a) + (Zσ)4

2 Ψ(a) − n2 · e−Z/4 ⩾ Ψ(a).

By Claim 16 the probability of E2 is at most the probability a is bad, hence it is at
most 0.005. By definition, the probability of E1 is 1 − ε. By the union bound and Chernoff
inequality, the probability of E3 is o(1). Thus, by Claim 19 we have

Pr
a,u

[E(a, u)] ⩾ 0.96 − ε − 0.005 − o(1) ⩾ 0.95 − ε. (1)

Fix u. Using Claim 20 we get that

Pr
a

[E(a − u, u)] ⩾ Pr
a

[E(a, u)] − DT V [a; a − u] ⩾ Pr
a

[E(a, u)] − εu − ε−u.

By the union bound, we now conclude that

Pr
a

[E(a − u, u) ∩ E(a, u)] ⩾ 1−Pr
a

[
E(a − u, u)

]
−Pr

a

[
E(a, u)

]
⩾ 2Pr

a
[E(a, u)]−1−εu−ε−u.

Taking expectation over u, we get that

Pr
a,u

[E(a − u, u) ∩ E(a, u)] ⩾ 2Pr
a,u

[E(a, u)] − 1 − 2E
u

[εu] ⩾ 0.9 − 4ε.

Next, when both E(a − u, u) and E(a, u) hold, we have by the previous observation that
E5 holds for both pairs (a − u, u) and (a, u), and so Ψ(a + u) > Ψ(a) = Ψ((a − u) + u) >

Ψ(a − u). Thus, we get that Pra,u [Ψ(a + u) > Ψ(a − u)] ⩾ 0.9 − 4ε. On the other hand, the
probability on the left hand side is at most 0.5; this follows as Pra,u [Ψ(a + u) > Ψ(a − u)] =
Pra,u [Ψ(a − u) > Ψ(a + u)] (since the distributions of u and −u are identical) and their
sum is at most 1. Combining the two inequalities we get that ε ⩾ 0.1. ◁

4 The upper bound: proof of Theorem 6

In this section we prove a matching upper bound on the surface area of a permutation-
symmetric foam by giving a (probabilistic) construction of a permutation-symmetric tiling
body D of surface area O(n/

√
log n). The main technical result proved in this section,

Lemma 23, establishes a weaker statement, and in Section B we show how to deduce
Theorem 6 from it.

4.1 Reduction to constructing a rounding scheme
Suppose S is function mapping (multi-)sets of n points from R/Z, to R/Z. We further
assume that for all (multi-)sets A, it holds that S(A) ̸∈ {0} ∪ A.

Given such S, we may extend it to Rn by S(x1, . . . , xn) := S({{x1}, . . . , {xn}}), where
{xi} is the fractional part of x. We can construct a rounding scheme R : Rn → Zn using S

as follows.
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On input x = (x1, . . . , xn), denote z = S(x) and view z as a number in [0, 1).
For each i ∈ [n]:

if {xi} ∈ [0, z), set R(x)i = ⌊xi⌋,
otherwise, {xi} ∈ (z, 1), and set R(x)i = ⌈xi⌉.

First, R is well-defined since z /∈ {0, {x1}, . . . , {xn}}. Next, note that for any t ∈ Zn it holds
that R(x + t) = R(x) + t, thus R induces that the body D = {x | R(x) = 0} is tiling with
respect to the lattice Zn. Last, we note that since for any π ∈ Sn we have that S(π(x)) = S(x),
we also have that R(π(x)) = π(R(x)), and hence D is permutation-symmetric.

In our proof we will define a distribution over mappings S, and we will want to study the
noise sensitivity of the resulting body D using properties of the mappings S. The following
claim gives useful conditions to study noise sensitivity in terms of mapping S.

▷ Claim 22. Let x and x + ∆ two points in Rn. Suppose that
1. S(x) = S(x + ∆) =: z; and
2. for all i, {xi + λ∆i} ≠ z, ∀λ ∈ [0, 1].
Then the points x, x + ∆ fall in the same cell in the tiling induced by D.

Proof. Suppose towards contradiction that the conclusion of the statement does not hold, i.e.
x and x + ∆ belong to different cells in the tiling induced by D. Thus, the rounding function
R when applied on x and on x + ∆ should produce different lattice points, so there is an
i such that R(x)i ̸= R(x + ∆)i. We fix that i and assume without loss of generality that
∆i ⩾ 0 and that xi ∈ [0, 1). We now consider two cases, depending on the range xi falls into:
1. If xi ∈ [0, z), then by definition of R we get that R(x)i = 0, and R(x + ∆)i = 0 unless

xi + ∆i > z, which leads to a contradiction to the second condition (z is on the interval
between xi and xi + ∆i).

2. If xi ∈ (z, 1), then R(x)i = 1, and R(x + ∆)i = 1 unless xi + ∆i > 1 + z, which again
leads to a contradiction to the second condition (1 + z is on the interval between xi and
xi + ∆i). ◀

Our main technical statement is the following lemma.

▶ Lemma 23. There exists a distribution over mappings (Sr⃗)r⃗ (r⃗ is a vector of randomness)
such that for small enough ε > 0, setting σ = ε

√
log n

n we have

E⃗
r

[
Pr

x,∆∼N (0,σ2In)
[Conditions of Claim 22 hold for x and x + ∆]

]
⩾ 1 − O(ε).

Deducing from Theorem 6 from Lemma 23 mostly involves measure-theoretic arguments,
and we defer this deduction to Section B. We will actually need the following slightly
more informative version of Lemma 23 above, using the reduction from mappings to tilings
presented in the beginning of this section, and an inspection of the bodies Dr⃗ our proof gives.

▶ Lemma 24. There exists a distribution over tiling bodies (Dr⃗)r⃗ such that

1. For small enough ε > 0, we have

E⃗
r

[
Pr

x,∆∼N (0,ε2In)
[At least one of the conditions of Claim 22 fail for x and x + ∆]

]
≲

n√
log n

ε.

2. For each r⃗, Dr⃗ is a countable union of semi-algebraic sets (i.e., sets defined by finitely
many polynomial inequalities).
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4.2 The construction of Sr⃗

4.2.1 Overview
Before jumping into the technical details, we start with some intuition. Recall that on input x

(a set of n points from R/Z) we must output a number z ∈ R/Z, and our goal is to minimize
the probability so that the conditions of Claim 22 fail on a short needle ℓx,∆. Note that it
would not be beneficial for us to choose z that are close to xi. For example, if we chose z

such that |xi − zi| ⩽ σ, then there is constant probability that the interval {xi + λ∆i}λ∈[0,1]
would contain the point z, i.e. the second condition of Claim 22 would fail.

Thus, a natural candidate for the choice of z would be the maximizer of mini∈[n] |xi − zi|.
It is not hard to see that this minimum is typically of the order log n/n, so intuitively the
second condition of Claim 22 should hold with probability ⩾ 1 − ε. However, such choice for
z would not be very stable: it is typically the case that there are numerous z1, . . . , zr that
nearly achieve this maximum, thus the maximizer among them could change when looking
at x + ∆ (i.e., this event would happen with probability significantly more than ε), leading
to a failure of the first condition of Claim 22.

We must therefore assign each one of the near-maximizer z1, . . . , zr some weight, so that
the weight of each one of them does not significantly change when moving to x + ∆. A
general form of construction of this type is to design a scoring function f : [0, ∞] → [0, 1],
and given an input x to assign the weight w(z) =

∏
i

f(|xi − z|) to each z, and sample z with

probability proportional to w(z).
We remark that this general recipe essentially captures our (natural) attempts so far. On

the one hand, we want f to penalize z if it is very close to xi, hence we want f(t) at least
mildly increasing. On the other hand, if f is very sharply increasing (e.g exponential), then
one runs into the same problems as we had when we thought of picking z that maximizes
mini∈[n] |xi − zi|. We are thus led to consider “mildly increasing” scoring functions f , and
polynomials turn out to be good choice. Indeed, our scoring function f will be “trivial” if
|xi − z| is too small or too large (i.e. it’ll be 0 if |xi − z| ⩽ log n

50n and 1 if |xi − z| ⩾ log n
25n ),

and otherwise behaves cubically.

4.2.2 A basic scoring function
Our construction of (Sr⃗)r⃗ uses a non-negative scoring function f with the following properties.

▶ Fact 25. There exists a function f : [0, ∞) → [0, 1] that is twice differentiable with
continuous second derivative with the following properties:
1. f(t) = 0 if t ⩽ 1.
2. f(t) = 1 if t ⩾ 2.
3. f(t) ≍ (t − 1)3 if 1 ⩽ t ⩽ 2.
4. |f ′(t)| ≲ t2 and |f ′′(t)| ≲ t for all t.
Exhibiting function f as in Fact 25 is not hard, and we omit the proof. The function f

defined by f(t) = (t − 1)3 if 1 ⩽ t ⩽ 2 and f(t) = 0 for t ⩽ 1, f(t) = 1 for t ⩾ 2 is almost
enough, except that it is not differentiable at t = 1. One can fix by convolving a smooth
bump function with compact support.

Next, we wish to define the mapping Sr⃗. We view the input x as a multi-set, and the
randomness vector r⃗ as an infinite sequence of (i, h) where i is a uniformly random element
from [m] and h is a uniform real-number from [0, 1].
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Set m = n1/3, partition the circle the circle R/Z into m intervals of length 1/m each,
Ij :=

[
j−1
m , j

m

]
, and let zj = j−1/2

m be the middle of Ij . It will be convenient for us to define
gj(t) = f( 50n

log n |t − zj |), and subsequently rj(x) :=
∏

y∈Ij∩x

gj(y). There two cases:

4.2.2.1 Case (A): ri(x) ̸= 0 for some i ∈ [m]

In this case, we define a probability distribution pi(x) over the i’s proportionally to the
ri(x)’s, i.e. we define pi(x) := ri(x)∑

i
ri(x)

. We now perform correlated sampling of i ∈ [m]
according to pi(x) using the randomness vector r⃗. More precisely, we go over the randomness
vector r⃗ = (i1, h1), (i2, h2), . . . and find the smallest j such that hj ⩽ pij

(x), in which case
we choose i = ij . We then define Sr⃗(x) = zij .

4.2.2.2 Case (B): ri(x) = 0 for all i ∈ [m]

If 1/2 ̸∈ x, we define Sr⃗(x) = 1/2. Otherwise, we define Sr(x) = z, where z is the first
element from { 1

4n , 3
4n , . . . , 4n−1

4n } that is at least 1
4n -away from all the entries of x.

4.3 Estimating gj on close points
▶ Fact 26. Let j ∈ [m] and xi ∈ [zj − log n

25n − ε0.95, zj + log n
25n + ε0.95] \ [zj − log n

50n , zj + log n
50n ],

∆i ∈ R, and denote αi = dist
(

xi, [zj − log n
50n , zj + log n

50n ]
)

.

1. If αi ⩾ 2 |∆i|, then |gj(xi + ∆i) − gj(xi)| ≲ |∆i|
αi

gj(xi).
2. In general, |gj(xi + ∆i) − gj(xi)| ≲ n3(α3

i + |∆i|3).

Proof. Using Taylor’s approximation with remainder, there is yi ∈ [xi, xi + ∆i] such that
gj(xi + ∆i) = gj(xi) + g′

j(yi)∆i, hence

|gj(xi + ∆i) − gj(xi)| ≲ |∆i|
∣∣g′

j(yi)
∣∣ ≲ |∆i|

50n

log n
f ′

(
50n

log n
|yi − zj |

)
≲

n

log n
|∆i|

(
50n

log n
|yi − zj | − 1

)2
.

For the second item, since yi ∈ [xi, xi +∆i], we get that
∣∣∣ 50n

log n |yi − zj | − 1
∣∣∣ ⩽ 50n

log n (αi + |∆i|),
and plugging that in yields

|gj(xi + ∆i) − gj(xi)| ≲ n3 |∆i| (α2
i + ∆2

i ) ≲ n3(α3
i + |∆i|3),

where the last inequality holds as ab ≲ a3 + b3/2 for all a, b > 0 (Young’s inequality). For the
first item, note that since yi ∈ [xi, xi +∆i] we get that

(
50n
log n |yi − zj | − 1

)
⩾ 50n

log n (αi − |∆i|),
and by the lower bound on αi this is ⩾ 25n

log n αi. Therefore we may continue as

|gj(xi + ∆i) − gj(xi)| ≲
n

log n
|∆i|

(
50n

log n
|yi − zj | − 1

)2
≲

|∆i|
αi

(
50n

log n
|yi − zj | − 1

)3
.

Also, we have that
(

50n
log n |yi − zj | − 1

)
⩽ 50n

log n (αi + |∆i|) ≲ n
log n αi, so

|gj(xi + ∆i) − gj(xi)| ≲
|∆i|
αi

(
n

log n
αi

)3
≲

|∆i|
αi

gj(xi). ◀
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4.4 Analysis of the construction
In this section we prove that Lemma 23 holds for the construction of Sr⃗ from the last section,
and for that we show that for small enough ε, the expected probability of the complement
event is O(ε), i.e. that

E⃗
r

[
Pr

x,∆∼N (0,σ2In)
[One of the conditions in Claim 22 fails for x and x + ∆]

]
≲ ε. (2)

We will think of ε as very small (say ε ⩽ 2−n2), and analyze the contribution of x’s from
case (A) and case (B) separately. Case (A) is the main case that occurs often, and case (B)
should be thought of rare.

4.4.1 Analysis of case (B)
First, we show that the probability x (or equivalently x + ∆) falls into Case (B) is at most
n−ω(1). For this, it will be helpful for us to sample x, a multi-set of n uniformly chosen
numbers in [0, 1] in the following equivalent way:

Sample t1, . . . , tm – where ti is the number of i’s such that xi’s that fall into interval Ii.
Sample ti points uniformly from Ii, for each i = 1, . . . , m.

Note that E[ti] = n/m, hence by Chernoff bound Pr[ti ⩾ 2 · n/m] = e−Ω(n/m) = n−ω(1).
Thus, by the union bound we have that

Pr [∀i ti ⩽ 2 · n/m] = 1 − n · n−ω(1) = 1 − n−ω(1).

Next, we condition on ti = ti, and assume that indeed ti < 2 · n/m for all i. Let Ei be the
event that ri(x) = 0. Note that conditioned on ti = ti, the Ei’s are independent and that

Pr[¬Ei| t1, . . . , tm] = Pr
a∈Ii

[
50n

log n
|a − zi| ⩽ 1

]ti

=
(

1 − log n/25n

1/m

)ti

⩾

(
1 − m log n

25n

)2·n/m

⩾ e−4 log n/25 = n−4/25, (3)

where we used the fact that e−δ ⩽ 1 − δ/2 for small enough δ > 0. Therefore,

Pr[E1 ∧ E2 ∧ . . . ∧ Em| t1, . . . , tm] ⩽ (1 − n−4/25)m = (1 − n−4/25)n1/3
= n−ω(1),

as long as the ti’s satisfy the condition ti < 2 · n/m. Therefore, the overall probability of
case (B) is n−ω(1).

Next, we analyze the probability that the conditions of Claim 22 fail given we are in case
(B). Note that if the conditions of Claim 22 fail to hold, then either (I) exactly one of x,
x + ∆ falls under Case (B), or (II) both x and x + ∆ fall under Case (B), but 1/2 ∈ x + λ∆
for some λ ∈ [0, 1]. We’ll bound these cases separately.

4.4.1.1 Case (I)

Assuming x is under Case (B), we know that each of the m intervals of the form Ji :=
[zi − log n

50n , zi + log n
50n ] contains at least one point from x. Let xi be that point (if there

are multiple, pick one at random). Then xi is uniformly distributed in Ji. Therefore, the
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probability of xi + ∆i is outside Ji, where ∆i ∼ N(0, σ2) and σ2 ⩽ ε2, is O(ε). Given case
(B) occurs with probability ⩽ n−ω(1), we conclude that its contribution to the conditions of
Claim 22 failing is at most

O(mε) · n−ω(1) = O(ε).

4.4.1.2 Case (II)

Fix ∆ = ∆, and consider xj conditioned on being in case (B). If xj is in one of the intervals
Ji, then its distribution is uniform over Ji, in which case we get that the probability 1/2
falls inside the interval [xj , xj + ∆j ] is at most m |∆j |. If xj is not in one of the intervals Ji,
then it is distributed uniformly on [0, 1] \ ∪m

i=1Ji, and the probability 1/2 is in [xj , xj + ∆j ]
is at most 2 |∆j | ⩽ m |∆j |.

Therefore by the union bound,

Pr
x

[∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j ] | case(B), ∆] ⩽ m

n∑
j=1

|∆i|.

Taking expectation over ∆ ∼ N (0, σ2In) and using Cauchy-Schwarz we get that

Pr
x,∆

[∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j ] | case(B)] ⩽ mE
∆

 n∑
j=1

|∆i|


⩽ m

√
n

√
E

∆∼N (0,σ2In)
[∥∆∥2

2]

= mnσ.

Therefore, the contribution of this case is upper bounded as

Pr
x,∆

[case(B) ∧ ∃j ∈ [n] 1/2 ∈ [xj , xj + ∆j ]] ⩽ Pr
x,∆

[case(B)]mnσ = n−ω(1) · σ = O(ε).

4.4.2 Analysis of case (A)

We now analyze the contribution of x’s that fall into case (A) to the left hand side of (2).

4.4.2.1 Case (A), Condition 2

If x falls under Case (A), then the distance from all xi’s to z = S(x) is at least log n
100n .

Therefore, Condition 2 holds as long as |∆i| < log n
100n for all i. Since for each i we have that

Pr
∆∼N (0,σ2In)

[
|∆i| ⩾

log n

100n

]
= Pr

∆∼N (0,σ2In)

[
∆2

i ⩾
log2 n

1002n2

]
≲

σ2

log2 n/n2
≲ ε2/ log n,

we get by the union bound that

Pr
∆∼N (0,σ2In)

[
∃i |∆i| ⩾

log n

100n

]
≲ nε2/ log n ≲ ε,

for a sufficiently small ε.
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4.5 Case (A), Condition 1
This is the main part of the proof. We show that in case (A), the probability that Sr⃗(x) ̸=
Sr⃗(x+∆) is at most O(ε). Note that the procedure describing Sr⃗ in this case is the correlated
sampling procedure of Holenstein [18], where Sr⃗(x) samples i according to the distribution
p(x) = (p1(x), . . . , pm(x)) and Sr⃗(x + ∆) samples i according to the distribution p(x + ∆).
Therefore, the probability they sample different i’s is at most the statistical distance between
the distributions, ∥p(x) − p(x + ∆)∥1. Therefore, we must show that

Ex,x+∆
[
∥p(x) − p(x + ∆)∥1

∣∣case(A)
]

= O(ε). (4)

Before we turn to this task, we upper bound the contribution from several rare cases.

4.5.1 Contribution from some rare cases
First, we show that the case some ∆i is too large contributes at most O(ε) to the LHS of (4).

▷ Claim 27. Pr∆∼N (0,σ2In)
[
|∆i| ⩾ ε0.95/n for some i

]
⩽ ε.

Proof. For each i, we have that

Pr
∆∼N (0,σ2In)

[
|∆i| ⩾ ε0.95/n

]
⩽ 2−Ω((ε0.95/n)2/σ2) = 2−Ω

(
1

ε0.1 log n

)
⩽

ε

n
,

for small enough ε, and the claim follows from the union bound. ◁

From now on, we assume that the ∆i’s are distributed from N(0, σ2)||∆i|<ε0.95/n. In
particular, we can assume that if tj is the number of x’s that fall into interval Ij , these
numbers stay the same under x + ∆. 2 Next, we handle the case in which p(x) is supported
only on a single j. Note that in this case, if p(x + ∆) is also only supported on this single j,
then the contribution of these cases to the LHS of (4) is 0. We show that the contribution
from the other case is O(ε).

▷ Claim 28.

Pr
x,∆

[∃j⋆ such that p(x) is only supported on j⋆, the support of p(x + ∆) is different]

≲ ε.

Proof. In case (B), we have shown that the probability that rj(x) = 0 for all j is n−ω(1), and
the same argument shows that the probability rj(x) = 0 for all but a single j⋆ is still n−ω(1).
Denote this event by E.

Let us condition on the event E, on j⋆ and the number t1, . . . , tm of xi’s that fall into
I1, . . . , Im. Note that for each j ̸= j⋆, since rj(x) = 0 there is i such that xi ∈ Jj

def=
[zj − log n

50n , zj + log n
50n ], and we condition on that ij for each j (if there is more than one, we

choose one arbitrarily). Note that the distribution of xij is thus uniform over Jj .

2 Strictly speaking, xi + ∆i may be in a different interval than xi, but in this case it doesn’t affects
the distribution p(x). Indeed, suppose xi is in Ij but xi + ∆i is in Ij+1. Then |xi + ∆i − zj+1| ⩾
|zj+1 − j/m|− |∆i|− |xi − j/m| ⩾ 1/m−2ε0.95/n ⩾ 1/m−ε0.95. Therefore, 50n

log n |xi + ∆i − zj+1| > 2,
and so f( 50n

log n |xi + ∆i − zj+1|) = 1.
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Now note that if for each j ̸= j⋆ it holds that xij + ∆ij ∈ Jj , then rj(x + ∆) = 0, so the
only contribution to the probability of the event in question comes when xij

+ ∆ij
̸∈ Jj (or

from case (B), which we have already accounted for earlier). Conditioned on ∆ = ∆, the
probability for that is at most

E
(xij

)j ̸=j⋆

 ∑
j ̸=j⋆

1xij
+∆ij

̸∈Jj

 =
∑
j ̸=j⋆

E
xj

[
1xij

+∆ij
̸∈Jj

]
⩽

∑
j ̸=j⋆

|∆j |
log n/(50n) ,

therefore taking expectation over ∆ and using Cauchy-Schwarz we get that

E
∆,(xij

)j ̸=j⋆

 ∑
j ̸=j⋆

1xij
+∆ij

̸∈Jj

 ≲
n

log n

√
m

√ ∑
j ̸=j⋆

E
∆

[
|∆j |2

]
⩽

n

log n

√
m

√
mσ2 ⩽ n2σ.

Therefore, we get that

Pr
x,∆

[p(x) is only supported on j⋆, but the support of p(x + ∆) is different]

⩽ Pr [E]n2σ

⩽ n−ω(1)n2σ

≲ ε. ◁

Let E be the event that the support of p(x) consists of at least two distinct j’s. We condition
on the event E in the subsequent argument. The following claim shows that conditioned on
E, the sum of the rj(x)’s is at least somewhat bounded away from 0. It will only come into
play later in the proof.

▷ Claim 29. Prx

[∑
j

rj(x) ⩽ ε1.6

∣∣∣∣∣ E

]
≲ ε.

Proof. Since we conditioned on E, there are j1 ̸= j2’s such that rj1(x), rj2(x) > 0. We
condition on j1 and j2, and assume without loss of generality that j1 = 1, j2 = 2. We show
that

Pr
x

[
r1(x) < ε1.6 ∧ r2(x) < ε1.6 ∣∣ r1(x), r2(x) > 0

]
≲ ε, (5)

and thus the result would follow.
Let t1 be the number of i’s such that xi ∈ I1, and t2 be the number of i’s such that

xi ∈ I2. Note that t1, t2 ⩽ n. In addition, conditioned on t1 = t1 and t2 = t2, the events
r1(x) < ε1.6 and r2(x) < ε1.6 become independent. Therefore, to prove (5), it suffices to
show for all t1 ⩽ n, t2 ⩽ n,

Pr
x

[
r1(x) < ε1.6 ∣∣ r1(x) > 0, t1 = t1, t2 = t2

]
≲ ε0.5. (6)

Note that one way to sample r1(x)|r1(x) > 0, t1 = t1 is as follows.
Sample points x1, . . . , xt1 uniformly from I1 conditioned on |xi − z1| > log n

50n ;
r1(x) =

∏t1
i=1 g1(xi).

Let Yi be the random variable Yi := g1(xi)−0.32, where xi is sampled as above (we need
0.32 < 1/3). Let E be the event that |xi − z1| ⩾ log n

25n . If E holds, then we get that g1(xi) = 1,

and otherwise g1(xi) ≳
∣∣∣ 50n

log n |xi − z1| − 1
∣∣∣3

, so

E [Yi] ⩽ Pr [E] · 1 + Pr
[
Ē

]
E

[
g1(xi)−0.32 ∣∣ Ē

]
≲ 1 + E

[∣∣∣∣ 50n

log n
|xi − z1| − 1

∣∣∣∣−0.96
∣∣∣∣∣ Ē

]
.
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We write the last expectation as an integral, noting that |xi − z1| is distributed uniformly
on

[
log n
50n , log n

25n

]
, hence

E

[∣∣∣∣ 50n

log n
|xi − z1| − 1

∣∣∣∣−0.96
∣∣∣∣∣ Ē

]
≲

n

log n

∫ log n
25n

log n
50n

∣∣∣∣ 50n

log n
t − 1

∣∣∣∣−0.96
dt = 1

50

∫ 1

0
y−0.96dt ≲ 1,

where we made the change of variables y = 50n
log n t − 1. Thus, E[Yi] ≲ 1, and so there is a

constant B such that E[Yi] ⩽ B. Therefore by independence E
[∏t1

i=1 Yi

]
⩽ Bt1 ⩽ Bn, and

so writing r1(x) in terms of the Yi’s and using Markov’s inequality we get that

Pr
x

[
r1(x) < ε1.6 ∣∣ r1(x) > 0, t1 = t1, t2 = t2

]
= Pr

[
t1∏

i=1
Yi > ε−1.6×0.32

]
⩽ Bn · ε0.512

≲ ε0.5. ◁

4.5.2 Analyzing the typical case

To expand out ∥p(x) − p(x + ∆)∥1, we will be using the following claim. The set-up one
should have in mind is that rj = rj(x) and dj = rj(x + ∆) for some x and ∆ that are typical
enough.

▷ Claim 30. Let rj ⩾ 0, dj be real-numbers satisfying |dj | ⩽ rj/2 for all j. Denote T =
∑

rj ,
T ′ =

∑
(rj + dj), and let pj = rj/T and qj = (ri + di)/T ′ be two distributions. Then

∥p − q∥1 ≲
∑

i

|di|
ri

· min(ri, T − ri)
T

. (7)

We defer the proof of Claim 30 to Section A. Morally speaking, it says that

E
x,∆

[∥p(x) − p(x + ∆)∥1] ≲
m∑

j=1
E
x

[
E
∆

[
|rj(x) − rj(x + ∆)|

rj(x) · min(rj(x), T (x) − rj(x))
T (x)

]]
,

(8)

where T (x) =
∑
j

rj(x) (this is only morally because we are assuming that the supports

of pj(x) and pj(x + ∆) are the same, but formally speaking they may be different). In
particular, to be able to handle with that we first must understand the expectation of
|rj(x) − rj(x + ∆)| over ∆.

▷ Claim 31. Let j ∈ [m], x1, . . . , xk ∈ [zj − log n
25n −ε0.95, zj + log n

25n +ε0.95]\[zj − log n
50n , zj + log n

50n ],
and let r(x) =

∏c
i=1 gj(xi). Denote αi = dist

(
xi, [zj − log n

50n , zj + log n
50n ]

)
. and let ∆i ∼

N(0, σ2)||∆i|<ε0.95 . Then

E
∆

[|r(x + ∆) − r(x)|] ≲ max

ε2.65, r(x) · σ ·

√√√√ c∑
i=1

1
α2

i

 . (9)
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Proof. We consider two cases.

4.5.2.1 Case 1: αi ⩽ ε0.9 for some i

In this case, we have

gj(xi) ≲
(

50n

log n
αi

)3
≲ n3ε3·0.9 ≲ ε2.66.

Similarly, we have dist(xi +∆i, [zj − log n
50n , zj + log n

50 ]) ⩽ αi + |∆i| ⩽ 2αi, so gj(xi +∆i) ≲ ε2.66.
We conclude that r(xi), r(xi + ∆i) ≲ ε2.66, hence the contribution from these cases is at
most ε2.65.

4.5.2.2 Case 2: αi > ε0.9 for all i

In this case, we get that xi + ∆i is also not in the interval [zj − log n
50n , zj + log n

50n ], hence
gj(xi + ∆i) ̸= 0, so r(x + ∆) > 0. Since r(x) are defined using products, it would be more
convenient for us to analyze log(r(x + ∆)/r(x)) as opposed to r(x + ∆)/r(x) − 1, and to
justify we can do that we first argue that r(x + ∆)/r(x) = 1 + o(1).

To see that, note that as |∆i| ⩽ ε0.95 ⩽ αi/2, we may use Fact 26 to conclude that

|g(xi + ∆i) − g(xi)| ≲
|∆i|
αi

|g(xi)| ≲ ε0.05 |g(xi)| .

In particular, we get that gj(xi+∆i)
gj(xi) = 1±O(ε0.05), and hence r(x+∆)

r(x) = 1±O(kε0.05). Writing
r(x+∆)

r(x) = 1 + η, we get η is small in absolute value, and hence |log(r(x + ∆)/r(x))| ≳ |η| ≳∣∣∣ r(x+∆)
r(x) − 1

∣∣∣ =
∣∣∣ r(x+∆)−r(x)

r(x)

∣∣∣. I.e.,

E
∆

[
|r(x + ∆) − r(x)|

r(x)

]
≲ E

∆

[∣∣∣∣log
(

r(x + ∆)
r(x)

)∣∣∣∣] = E
∆

[∣∣∣∣∣
k∑

i=1
log gj(xi + ∆i)

gj(xi)

∣∣∣∣∣
]

= E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]

, (10)

where we define the random variables Yi = log gj(xi+∆i)
gj(xi) .

Observe that Yi’s are mutually independent, since each Yi only depends on the corres-
ponding ∆i. We wish to upper bound the average and variance of Yi, and to do that it
would be more convenient to analyze Zi = gj(xi+∆i)−gj(xi)

gj(xi) and then relate the two.
Using second order Taylor’s approximation, we have that there is yi ∈ [xi, xi + ∆i] such

that

gj(xi + ∆i) = gj(xi) + g′
j(xi)∆i + 1

2g′′
j (yi)∆2

i ,

hence∣∣∣∣E∆ [Zi]
∣∣∣∣ = 1

gj(xi)

∣∣∣∣E∆
[
g′

j(xi)∆i + 1
2g′′

j (yi)∆2
i

]∣∣∣∣ = 1
2gj(xi)

∣∣∣∣E∆ [
g′′

j (yi)∆2
i

]∣∣∣∣ . (11)

Using properties of f , we have

∣∣g′′
j (yi)

∣∣ =
(

50n

log n

)2
f ′′

(
50n

log n
|yi − zj |

)
≲

(
50n

log n

)2 ∣∣∣∣ 50n

log n
|yi − zj | − 1

∣∣∣∣ .
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Since yi ∈ [xi, xi + ∆i], we get that
(

50n
log n |yi − zj | − 1

)
⩾ 50n

log n αi − ε0.95 ⩾ 25n
log n αi, and so

we may continue the previous inequality as

|g′′(yi)| ≲
(

50n

log n

)2
∣∣∣ 50n

log n |yi − zj | − 1
∣∣∣3

( 25n
log n αi)2 ≲

1
α2

i

|gj(yi)| ≲
1

α2
i

|gj(xi)| ,

where the last inequality is by Fact 26. Plugging this into (11) we get that∣∣∣∣E∆ [Zi]
∣∣∣∣ ≲ 1

α2
i
E
∆

[
∆2

i

]
= 1

α2
i

σ2.

In a similar fashion, we upper bound the second moment of Zi. Using Fact 26, we get
that |Zi| ⩽ ∆i

αi
, and so E∆

[
Z2

i

]
≲ 1

α2
i
E∆

[
∆2

i

]
= 1

α2
i
σ2.

We can now upper bound the average of Yi as follows. Recall that, |Zi| = o(1) so by
Taylor’s approximation Yi = log(1 + Zi) = Zi − 1

2(1+ξi)2 Z2
i for some ξi ∈ [1, 1 + Zi] and

hence∣∣∣∣E [Yi]
∣∣∣∣ ≲ |E[Zi]| +

∣∣E[Z2
i ]|

∣∣ ≲ 1
α2

i

σ2. (12)

This approximation (along with the fact that |Zi| = o(1)) also implies |Yi| ≲ |Zi|, hence

E[Y2
i ] ≲ E[Z2

i ] ≲ 1
α2

i

σ2. (13)

We can now continue equation (10) to upper bound the LHS there. Denoting µi := E[Yi],
we have

E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]
⩽

k∑
i=1

|µi| + E
∆

[∣∣∣∣∣
k∑

i=1
Yi − µi

∣∣∣∣∣
]
⩽

k∑
i=1

|µi| +

√√√√E
∆

[
k∑

i=1
(Yi − µi)2

]
,

where in the last inequality we used Cauchy-Schwarz and the fact that Yi’s are independent.
Using (12) we have that

∑k
i=1 |µi| ≲ σ2 ∑k

i=1
1

α2
i
, and to upper bound the second term we

use (13):

E
∆

[
(Yi − µi)2]

⩽ E
∆

[
Y2

i

]
≲

1
α2

i

σ2.

Together, we get that

E
∆

[∣∣∣∣∣
k∑

i=1
Yi

∣∣∣∣∣
]
≲ σ2

k∑
i=1

1
α2

i

+

√√√√σ2
k∑

i=1

1
α2

i

≲ σ

√√√√ k∑
i=1

1
α2

i

,

where the last inequality holds since σ2 ∑k
i=1

1
α2

i
≲ 1 (as σ2 ≲ ε2 and αi ⩾ ε0.9). ◁

Next, using the previous claim we upper bound the expectation of each summand on the
RHS of (8). The following statement addresses a single term, and should be thought of as
being applied after conditioning on x, ∆ being not-too untypical, and focusing only on xi’s
for which there is a chance that gj(xi + ∆i) ̸= gj(xi).
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▷ Claim 32. Let j ∈ [m], k ⩽ n, S ⩾ 0 and let x1, . . . , xk be chosen uniformly at random
from [zj − log n

25n − ε0.95, zj + log n
25n + ε0.95] \ [zj − log n

50n , zj + log n
50n ]. Let ∆i ∼ N(0, σ2)||∆i|<ε0.95 .

Then

E
x,∆

[
|rj(x + ∆) − rj(x)|

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6

]
≲ ε1.05 + k

σn

log n
· Pr

x
[rj(x) ⩾ S]

+σ
n

log n

√
kE

x

[
rj(x)

rj(x) + S

]
.

Proof. Upper bounding max(a, b) ⩽ a + b for a, b ⩾ 0, by Claim 31, we have

E
x,∆

[
|rj(x + ∆) − rj(x)|

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6

]

≲ E
x

ε2.65 + rj(x) · σ ·
√∑k

i=1
1

α2
i

rj(x) · min(rj(x), S)
rj(x) + S + ε1.6


≲ ε1.05 + σE

x


√√√√ k∑

i=1

1
α2

i

· min(rj(x), S)
rj(x) + S + ε1.6

,

and it is enough to bound the second term. Note that while we expect that each αi to be of

the order log n/n, convexity works against us and it could still be the case that
k∑

i=1

1
α2

i
could

be large. The point is that in this case, some αi must be close to 0, in which case gj(xi) is
very small – cubically with αi – thereby balancing the 1/α2

i term. The following proposition
formalizes this intuition, and the proof is deferred to Section A

▶ Proposition 33. There is an absolute constant A > 0 such that for any z > 0 and r ⩽ 1
such that rj(x) = r · gj(xi), it holds that

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]

⩽ E
xi

[√
z + A

n2

log2 n
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6 + A
n

log n
· 1r·gj(xi)⩾S

]
.

Applying Proposition 33 iteratively k times (once for each i, taking r =
∏

i′ ̸=i

gj(xi′) and

the appropriate z), we get that

E
x


√√√√ k∑

i=1

1
α2

i

· min(rj(x), S)
rj(x) + S + ε1.6


⩽ E

x

[√
k · A

n2

log2 n
· min(rj(x), S)

rj(x) + S + ε1.6 + k · A
n

log n
· 1rj(x)⩾S

]
.

The proof is concluded by noting that min(rj(x),S)
rj(x)+S+ε1.6 ⩽ rj(x)

rj(x)+S . ◁

We are now ready to finish the proof of inequality (4).
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Proof of inequality (4)
Let E be the event that: (1) the support of p(x) has size at least 2, (2)

∑
j

rj(x) ⩾ ε1.6 and

also for x + ∆, and (3) |∆i| ⩽ ε0.95 for all i ∈ [n]. As we argued in Claims 27, 28, 29 the
contribution (x, ∆) ̸∈ E to the LHS of inequality (4) is ≲ ε, hence it is enough to analyze
the contribution of (x, ∆) ∈ E.

Denote T (x) =
∑

j∈[m]
rj(x).

E
x,∆

[∥p(x) − p(x + ∆)∥11E ] = E
x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E


= E

x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E1rj(x)⩽ε2.7


︸ ︷︷ ︸

(I)

+ E
x,∆

 ∑
j∈[m]

∣∣∣∣rj(x)
T (x) − rj(x + ∆)

T (x + ∆)

∣∣∣∣ 1E1rj(x)>ε2.7


︸ ︷︷ ︸

(II)

.

First, we show that (I) ≲ ε. As T (x) ⩾ ε1.6 (since E holds) and rj(x) ⩽ ε2.7, we get that
rj(x)/T (x) ⩽ ε1.1, and next we argue that rj(x + ∆)/T (x + ∆) ≲ ε1.05. Fix j and suppose
x1, . . . , xkj

are the xi’s that fall inside Ij . The following easy fact will be helpful.

▶ Fact 34. For all x, ∆ we have rj(x + ∆) =
∑

S⊆[kj ]

∏
r∈S

gj(xr)
∏

r ̸∈S

(gj(xr) − gj(xr + ∆r)).

Proof. Write rj(x + ∆) =
kj∏

r=1
gj(xr + ∆r) =

kj∏
r=1

(gj(xr) + (gj(xr + ∆r) − gj(xr))) and

expand out. ◀

Combining Fact 34 and Fact 26, we get that

rj(x + ∆) ⩽
∑

S⊆[kj ]

∏
r∈S

gj(xr)
∏
r ̸∈S

|gj(xr) − gj(xr + ∆r)|

⩽
∑

S⊆[kj ]

∏
r∈S

gj(xr)B|S|n3|S|
∏
r ̸∈S

(α3
r + |∆r|3)

⩽
∑

S⊆[kj ]

∏
r∈S

gj(xr)B|S|n3|S|
∏
r ̸∈S

α3
r

+ 4nB|n|n3n max
r

|∆r|3 .

Consider the right hand side above. For the first term we use α3
r ≲ gj(xr) to get it is at most∑

S⊆[kj ]

B′|S|n3|S|rj(xr) ⩽ (B′′)nn3nε2.7 ⩽ ε2.65/2.

For the second term we use |∆r| ⩽ ε0.95 to bound it by ε2.65/2 as well. We thus get
rj(x + ∆) ⩽ ε2.65, and so rj(x + ∆)/T (x + ∆) ⩽ ε1.05. Combined, we get that

(I) ⩽ m(ε1.1 + ε1.05) ≲ ε.
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Next, we handle (II). Denote T ′(x) =
∑
j

rj(x)1rj(x)⩾ε2.7 , and note that T ′(x) ⩾ T (x) −

mε2.7 ⩾ (1 − mε1.1)T (x) and similarly for T ′(x + ∆). Thus, we may replace T (x), T (x + ∆)
with T ′(x), T ′(x + ∆) and incur (by the triangle inequality) a loss of at most mε1.1 ≲ ε.
Thus, we want to upper bound

E
x,∆

 ∑
j∈[m]

∣∣∣∣ rj(x)
T ′(x) − rj(x + ∆)

T ′(x + ∆)

∣∣∣∣ 1E1rj(x)>ε2.7


︸ ︷︷ ︸

(III)

≲ ε.

We intend to apply Claim 30 with rj = rj(x) and dj = rj(x+∆)−rj(x) for each x separately,
but for that we first have to argue that |dj | ⩽ rj/2. For each i ∈ [n] there is j such that
xi ∈ Ij , and we denote αi = dist

(
xi, [zj − log n

50n , zj + log n
50n ]

)
. Note that

ε2.7 ⩽ rj(x) ⩽ gj(xi) ≲
(

n

log n
αi

)3
,

hence αi ≳ log n
n ε0.9, and for small enough ε we get that αi ⩾ ε0.91 ⩾ 2 |∆i|. Therefore,

Combining Fact 34 and Fact 26 we get

|dj(x)| = |rj(x) − rj(x + ∆)| ⩽
∑

S⊆[kj ]
S ̸=[kj ]

∏
r∈S

gj(xr)
∏
r ̸∈S

|gj(xr) − gj(xr + ∆r)|

⩽
∑

S⊆[kj ]
S ̸=[kj ]

B|S|rj(x)
∏
r ̸∈S

|∆i|
αi

.

Bounding |∆i|
αi

⩽ ε0.95/ε0.91 = ε0.04 we get that

|rj(x) − rj(x + ∆)| ⩽ rj(x)ε0.04
∑

S⊆[kj ]
S ̸=[kj ]

B|S| ⩽ B′nε0.04rj(x) ⩽ rj(x)/2 = rj/2.

Therefore, we may apply Claim 30 and get that

(III) ≲ E
x,∆

 m∑
j=1

|rj(x) − rj(x + ∆)|
rj(x) · min(rj(x), T ′(x))

T ′(x) 1E1rj(x)>ε2.7


≲ E

x,∆

 m∑
j=1

|rj(x) − rj(x + ∆)|
rj(x) · min(rj(x), T ′(x))

T ′(x) + ε1.6 1E1rj(x)>ε2.7

, (14)

where the last inequality holds since T ′(x) ≳ ε1.6. Next, we wish to discard xi that are very
far from their closest center zj . For each j, note that

[
zj − log n

50n , zj + log n
50n

]
is exactly the set

of y’s on which gj(y) = 0, and let Rj ⊆ Ij be Rj =
[
zj − log n

25n − ε0.95, zj + log n
25n + ε0.95

]
\[

zj − log n
50n , zj + log n

50n

]
. Note that for each y ∈ Ij \ Rj , we have that either gj(y) = 0 if

y ∈
[
zj − log n

50n , zj + log n
50n

]
, and otherwise gj(y) = 1. Furthermore, in the latter case we also

have that gj(y + ∆i) = 1 since |∆i| ⩽ ε0.95.
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We sample x in the following way. First, sample t1, . . . , tm the number of xi’s in each
interval I1, . . . , Im, then for each j sample kj to be the number of xi’s inside the interval Ij

that fall inside Rj . Finally, for each j ∈ [m] sample kj points uniformly from Rj , tj − kj

uniformly from Ij \ Rj , and let x be the (multi-)set of all the sampled points. We condition
on the tj ’s and kj ’s henceforth in (14). Furthermore, we condition on the identity of the i’s
for which xi ∈ Ij for each j.

Since i’s for which xi ∈ Ij ∈ [zj − log n
25n − ε0.95, zj + log n

25n + ε0.95] do not affect both rj(x)
and rj(x + ∆), we may ignore them and hence take expectation only over i’s such xi ∈ Rj .
Call these y’s. Then from (14) we get

(III) ≲ E
t⃗,k⃗

 E
y,∆

 m∑
j=1

|rj(y) − rj(y + ∆)|
rj(y) · min(rj(y), T ′(y))

T ′(y) + ε1.6


⩽ E

t⃗,k⃗

 m∑
j=1

E
y,∆

[
|rj(y) − rj(y + ∆)|

rj(y) ·
min(rj(y), T ′

−j(y))
rj(y) + T ′

−j(y) + ε1.6

],

where T ′
−j(x) =

∑
j′ ̸=j

rj′(x)1rj′ (x)⩾ε2.7 . Note that conditioned on t⃗ = t⃗, k⃗ = k⃗, the values of

yi’s such that yi ∈ Ij are independent of T ′
−j(y), and they are distributed uniformly over

Rj . Therefore, using Claim 32 we have

(III) ≲ E
t⃗,k⃗

 m∑
j=1

ε1.05 + kj
σn

log n
· Pr

y

[
rj(y) ⩾ T ′

−j(y)
∣∣ t⃗, k⃗

]
+ E

y

[
σ

n

log n

√
kj

rj(y)
T ′(y)

].

⩽ mε1.05 + n2σ

m∑
j=1

Pr
y

[
rj(y) ⩾ T ′

−j(y)
]

+ σ
n

log n
E
t⃗,⃗k

[√
max

j
kj

]
.

Note that if T ′
−j(x) ⩽ rj(x), then

T (x) ⩽ T ′
−j(x) + rj(x) +

∑
j′

rj′(x)1rj′ (x)⩽ε2.7 ⩽ 2rj(x) + m · ε2.7 ⩽ 3,

so we bound the sum on the right hand side by mPrx [T (x) ⩽ 3]. For the expectation, we
use Cauchy-Schwarz and overall we get

(III) ⩽ mε1.05 + n3σPr
x

[T (x) ⩽ 3] + σ
n

log n

√
E

t⃗,k⃗

[
max

j
kj

]
.

The first term is clearly ≲ ε. For the second term, we use Claim 35 below, that asserts that
Prx [T (x) ⩽ 3] ⩽ n−ω(1), hence by the definition of σ the second term is also ≲ ε. For the
third term, note that each kj is a sum of n independent Berounlli random variables with
parameter p ⩽ log n/n, therefore by Chernoff bound

Pr [kj ⩾ 10 log n] ⩽ e− 1
3 92 log n ⩽ n−9.

The union bound now implies that Pr [maxj kj ⩾ 10 log n] ⩽ n−8, and hence

E
t⃗,k⃗

[
max

j
kj

]
⩽ n−8 · n + 10 log n ≲ log n.

Using the definition of σ, we get that the third term is also ≲ ε. Combining all, we get that
(III) ≲ ε, and we are done.
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▷ Claim 35.

Pr
x

∑
j

rj(x) ⩽ 3

 < n−ω(1). (15)

Proof. The proof is very similar to the analysis of Case (B) above. In particular, similarly to
inequality (3),

Pr[rj(x) < 1] =
(

1 − 2m log n

25n

)tj

⩾

(
1 − 2m log n

25n

)2·n/m

> e−2 log n/25 = n−2/25,

as long as tj < 2 · n/m (which is the case except with probability n−ω(1). Since m >

n2/25 · nΩ(1), the probability of not having at least three rj(x)’s equal to 1 is n−ω(1). ◁

5 The value of the t-fold symmetric odd cycle game

5.1 The upper bound: Theorem 7
Suppose that n = 2m − 1 and A is a strategy for C

⊗symt
n . We will view A as a symmetric

function over ordered t tuples, i.e. as A : Ct
n → {0, 1}t satisfying A(π(x)) = π(A(x)) for all

permutations π over [t].
We identify Cn =

{
i
n

∣∣ i = 0, 1, . . . , n − 1
}

, consider the lattice L = (Cn + Z)t and define
a rounding map R : L → Zt on it as follows. For x ∈ Ct

n, we define R(x) = A(x) + nx

(mod 2), and then we extend R to L by R(x + z) = R(x) + z for x ∈ Ct
n and z ∈ Zt.

Let D = R−1(0t). The symmetry of A implies that D is permutation-symmetric, and we
also note that D is a tiling of the lattice L.

▶ Definition 36. A random ε-Bernoulli direction, denoted by u ∼ B(ε), is a random variable
distributed on

{
± 1

n , 0
}

, such that for each i ∈ [t] independently, Pr [ui = 0] = 1 − 2ε and
Pr [ui = 1/n] = Pr [ui = −1/n] = ε.

We will mostly be concerned with ε = 1/4, in which case the distribution of x, x + u(mod 1)
where x ∈R Ct

n and u is an independent 1
4 -Bernoulli step, is exactly the distribution of

challenges to the players. Inspecting, we see that players succeed on these challenges if and
only if R(x) = R(x + u), as the following claim shows.

▷ Claim 37. Let x ∈ Ct
n and u ∈

{
± 1

n , 0
}t. Then the players succeed on challenges (x, x + u

(mod 1)) if and only if R(x) = R(x + u).

Proof. Note that x and x + u are either in the same cell of D or in adjacent cells, so to prove
the statement it is enough to show that the players succeed on the challenge if and only if
R(x) = R(x + u) (mod 2).

Write x + u = d + z where d ∈ Ct
n is x + u (mod 1), and z ∈ Zt. Note that

R(x + u) = R(d) + z = A(d) + dn + z (mod 2), R(x) = A(x) + nx (mod 2)

and subtracting the equations we get that

R(x + u) − R(x) = A(d) − A(x) + dn + z − nx (mod 2).

Multiplying the equality x + u = d + z by n and taking modulo 2 we get that nu + nx =
nd + nz = nd + z (mod 2) where the last transition used the fact that n is odd. Thus,
R(x+u)−R(x) = A(d)−A(x)+nu (mod 2). Note that the players succeed on the challenge
if and only if A(x) = A(d) + nu (mod 2), and plugging that in we get that they succeed if
and only if R(x + u) − R(x) = 0 (mod 2), as desired. ◁
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Claim 37 implies that the failure probability of the players is

Pr
x∈Ct

n,u∼B(1/4)
[x, x + u are in different cells of D].

Setting y = x (mod D), it is easily seen that the distribution of y is uniform over D, so the
probability of the above event is equal to

η
def= Pr

y∈D,u∼B(1/4)
[y + u ̸∈ D].

The rest of the proof is devoted to lower bounding η. Setting k = M
n
√

log t

t for large constant
M to be determined later, we show:

▶ Lemma 38. η ⩾ Ω(1/k).

Below, we will assume k is an integer, otherwise we may multiply it by a constant factor
close to 1 and make it an integer. We then further assume k is prime, otherwise we may find
a prime in [k, 2k] and replace k by it. Define δ = Prx∈D,u∼B(1/4) [x + ku ̸∈ D] and observe
the following easy relation between δ and η.

▷ Claim 39. δ ⩽ kη.

Proof. By the union bound

δ ⩽
k−1∑
j=0

Pr
x∈D,u

[x + ju ∈ D, x + (j + 1)u ̸∈ D].

Note that for each j, the distribution of y = x + ju (mod D) is uniform over D, the jth
term in the above sum is at most Pry∈D,u [y + u ̸∈ D] = η. ◁

5.1.1 Disjoint Bernoulli steps
We will also consider the situation after making two Bernoulli steps whose support is disjoint,
and for that we make the following definition.

▶ Definition 40. The distribution of two disjoint ε-Bernoulli direction, denoted by (u1,
u2) ∼ DB(ε), is defined as follows. For each i independently, set each one of the following
options with probability ε

2 : (u1
i , u2

i ) = (1/n, 0), (u1
i , u2

i ) = (−1/n, 0), (u1
i , u2

i ) = (0, 1/n),
(u1

i , u2
i ) = (0, −1/n); otherwise, set (u1

i , u2
i ) = (0, 0).

We note that if (u1, u2) ∼ DB(ε), then u1 + u2 is distributed as B(ε). Therefore:

▷ Claim 41. It holds that:
Prx∈D,u∼B(1/4) [x + ku ̸∈ D] ⩽ 2δ;
Prx∈D,u∼B(1/4) [x + u ̸∈ D] ⩽ 2η.

Proof. We prove the first item, and the second item is proved analogously. To sample
u ∼ B(1/4), we sample (u1, u2) ∼ DB(1/4) and take u = u1 + u2, so by the union bound
the probability in the first item is at most

Pr
x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ̸∈ D

]
+ Pr

x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ∈ D, x + ku1 + ku2 ̸∈ D

]
.

The first probability is δ, and we argue that the second probability is at most the first.
Indeed, setting y = x + ku1, this probability is at most the probability that y, y + ku2 are
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in different cells of D. Note that this occurs if and only if y (mod D) and y (mod D) + ku2

are in different cells of D; note also that for every fixing of u1, the distribution of y (mod D)
is uniform over D. Thus

Pr
x∈D,(u1,u2)∼DB(1/4)

[
x + ku1 ∈ D, x + ku1 + ku2 ̸∈ D

]
⩽ Pr

y∈D,(u1,u2)∼DB(1/4)

[
y + ku2 ̸∈ D

]
= δ. ◀

▶ Definition 42. Let x ∈ D and u be a direction. We say (x, u) is decent if

Pr
(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku2 ̸∈ D | u1 + u2 = u

]
<

1
32 .

▷ Claim 43. Prx∈RD,u∼B(1/4) [(x, u) is decent] ⩾ 1 − 64(η + δ)

Proof. Denote

p(x, u)
= Pr

(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku2 ̸∈ D | u1 + u2 = u

]
.

Note that

E
x∈RD

u∼B(1/4)

[p(x, u)] = Pr
x∈RD

(u1,u2)∼DB(1/4)

[
x + u1 ̸∈ D ∨ x + u2 ̸∈ D ∨ x + ku1 ̸∈ D ∨ x + ku1 ̸∈ D

]
,

which is at most 2(δ + η) by the union bound. Thus, by Markov’s inequality

Pr
x∈RD,u∼B(1/4)

[(x, u) is not decent] = Pr
x∈RD,u∼B(1/4)

[
p(x, u) ⩾ 1

32

]
⩽ 64(δ + η). ◀

5.1.2 Analyzing the potential function
Our argument closely follows the argument in Section 3, and below we focus on the necessary
adjustments. Set Z = t

10 log t . The definition of the potential function stays as is. We will
have several constants floating around in the proof which are not important for the most
part, however we make the distinction between the constants c1, . . . , c6 that will be absolute
(i.e. not depending on M), and the constants t0(M), t1(M), t2(M) that will depend on M .

The following is a variant of Claim 14, which is the main difference with the argument
from Section 3.

▷ Claim 44. If x, x + u, x − u, x + ku, x − ku ∈ D and both (x, u), (x, −u) are decent, then

|Ψ(x + ku) − Ψ(x, ku)| ⩽ t2 · e−Z/4.

Proof. We consider the contribution of each pair (i, j) to Ψ(x + ku) and Ψ(x, ku) separately.
Without loss of generality we may only consider pairs i, j that γ(xi, xj) = 1, and thus
d(xi, xj) = xi − xj + z for some z ∈ Z, z ̸= 0. Let d = xi − xj + z + k(ui − uj).

▶ Proposition 45. d ⩾ 0.
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Proof. Assume otherwise. Since xi −xj +z ⩾ 0 it follows by continuity that there is λ ∈ [0, 1)
such that xi − xj + z + λk(ui − uj) = 0. Note that ui − uj can either be 0, ± 1

n , ± 2
n . If

ui − uj = 0, we get that xi − xj + z = 0, and as x ∈ D this contradicts Lemma 12. Otherwise,
multiplying by n, we get that λkn(ui − uj) is an integer. Note that kn(ui − uj) is either ±k

or ±2k, and as k is prime we get that λ = 1
2 , λ = 1

k or λ = 1
2k , and we analyze each case

separately. If λ = 1
k then we get xi − xj + ui − uj + z = 0, so x + u ∈ D has two coordinates

differing by a non-zero integer, contradicting Lemma 12. We next consider the other two
cases separately, and assume that ui − uj > 0 – otherwise we use −u instead of u in the
argument below.

If λ = 1
2k , then necessarily ui − uj = 2

n and and we get that xi − xj + z + 1
n = 0.

Sample (u1, u2) ∼ DB(1/4) conditioned on u1 + u2 = u. Note that the event that u1
i = 1/n

and u1
j = 0 occurs with probability 1/32. Since (x, u) is decent, we get that x + u1 ∈ D

with probability strictly greater than 31
32 . Thus, the probability that x + u1 ∈ D and

(u1
i , u1

j ) = (1/n, 0) is positive, and in this case we get

(x + u1)i − (x + u1)j = xi − xj + 1
n

= −z ̸= 0,

contradicting Lemma 12.
The case that λ = 1

2 is similar. We must have that ui − uj = 2
n , and thus we get

xi − xj + k
n + z = 0. Sample (u1, u2) ∼ DB(1/4) conditioned on u1 + u2 = u. Note that the

event that u1
i = 1/n and u1

j = 0, occurs with probability 1/32. Since (x, u) is decent, we
get that x + ku1 ∈ D with probability strictly greater than 31

32 . Thus, the probability that
x + ku1 ∈ D and (u1

i , u1
j ) = (1/n, 0) is positive, and in this case we get

(x + ku1)i − (x + ku1)j = xi − xj + k

n
= −z ̸= 0,

contradicting Lemma 12. ◀

We therefore get that d ⩾ 0, and the rest of the proof is identical to the proof of Claim 14.
◁

▷ Claim 46. There is an absolute constants c1 > 0 and t0(M) > 0, such that if t ⩾ t0 then
for every x ∈ D

Ψ(x) · ec1k2Z2/n2
⩽ E

u∼B(1/4)
[Ψ(x, ku)] ⩽ Ψ(x) · ec−1

1 k2Z2/n2
.

Proof. By linearity of expectation we have

E
u∼B(1/4)

[Ψ(x, ku)] =
∑
i<j

e−Z·d(xi,xj) · E
u∼B(1/4)

[
e−Z·γ(xi,xj)·k(ui−uj)

]
.

Note that the above expectation does not depend on i, j: for every i, j the distribution of
ui−uj is w, where Pr [w = 2/n] = Pr [w = −2/n] = 1

16 , Pr [w = 1/n] = Pr [w = −1/n] = 1
4 ,

Pr [w = 0] = 3
8 . In particular, this distribution is symmetric around 0 and thus the sign

γ(xi, xj) does not affect the expectation. Hence we have

E
u

[Ψ(x, u)] = Ψ(x) · E
w

[ekZ·w] = Ψ(x) · E
w

[
ekZ·w + e−kZ·w

2

]
.

Note that |kZ · w| ⩽ M
n
√

log t

t
t

10 log t
1
n ⩽ 1 for large enough t, so we have that

ec1(kZ·w)2
⩽

ekZ·w + e−kZ·w

2 ⩽ ec−1
1 (kZ·w)2

.
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Finally, the expectation of ec(kZ·w)2 is at least ec′k2Z2/n2 and at most ec′′k2Z2/n2 , and the
claim follows. ◁

The proofs of the following several claims are essentially identical to their analogs in
Section 3, and are therefore omitted. We say a point x is good if any interval of length 10 log t

t

on the circle contains at least log t and at most 100 log t coordinates from x (mod 1). By
Chernoff bound, a random x ∈ D is good with probability > 0.999 given t is large enough.

▷ Claim 47. There exists an absolute constant c2 > 0, such that if x is good then
Ψ(x) > c2 log2 t.

Proof. The proof is identical to the proof of Claim 16. ◁

▷ Claim 48. There exists an absolute constant c3 > 0, such that if x is good, then for all i

we have Ci < c3
Ψ(x)
log t .

Proof. The proof is identical to the proof of Claim 17. ◁

▷ Claim 49. There exists an absolute constant c5, c6 > 0 and t1(M) > 0, such that if t ⩾ t1
then for all good x ∈ D we have

varu∼B(1/4)[Ψ(x, u)] ⩽ c5

log t
·
(

ec−1
6

k2Z2
n2 − ec6

k2Z2
n2

)
· Ψ(x)2.

Proof. The proof is a straightforward adaptation of the proof of Claim 18. ◁

Consequently, we have to adjust Claim 19 as follows.

▷ Claim 50. There is an absolute constant M > 0 and t2 > 0 such that if k = M
n
√

log t

t

and t ⩾ t1, then for all good x ∈ D we have

Pr
u∼B(1/4)

[
Ψ(x, u) > Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x)
]
⩾ 0.99.

Proof. Let c1, . . . , c6 be the constants from the previous claims, and choose M =
√

200c5
c2

1c6
.

Then take t0(M), t1(M) from Claims 46 49 and choose t2(M) = max(t0(M), t1(M)). We
upper bound the probability of the complement event. Using Claim 46 (and et ⩾ 1+ t+ t2/2),
we get

E
u∼B(1/4)

[Ψ(x, u)] ⩾ Ψ(x) ·
(

1 + c1
k2Z2

n2 + c2
1
2

k4Z4

n4

)
.

Hence

Pr
u∼B(1/4)

[
Ψ(x, u) ⩽ Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x)
]

⩽ Pr
u∼B(1/4)

[∣∣∣∣Ψ(x, u) − E
u′∼B(1/4)

[Ψ(x, u′)]
∣∣∣∣ ⩾ Ψ(x)c1

k2Z2

n2

]
.

We want to upper bound the probability of the last event using Chebyshev’s inequality. Since
x is good, the conclusion of Claim 49 holds, and so

varu∼B(1/4)[Ψ(x, u)] ⩽ c5

log t

(
ec−1

6
k2Z2

n2 − ec6
k2Z2

n2
)

· Ψ(x)2 ⩽
c5

log t
· 2c−1

6 k2Z2

n2 · Ψ(x)2,

for sufficiently large t. Therefore, applying Chebyshev’s inequality we see the probability in
question is at most

varu∼B(1/4)[Ψ(x, u)]
Ψ(x)2 · c2

1
k4Z4

n4

⩽
c5

log t · 2c−1
6 k2Z2

n2 · Ψ(x)2

Ψ(x)2 · c2
1

k4Z4

n4

= 2c5

c2
1c6

n2

k2Z2 log t
= 2c5

c2
1c6

1
M2 ⩽ 0.01. ◀
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5.1.3 Finishing the argument
For each u, denote δu = Prx∈D [x + ku ̸∈ D], and note that δ = Eu [δu].

▷ Claim 51. For each u, DT V [x; x − ku] ⩽ δu + δ−u.

Proof. The proof is a direct conversion of the proof of Claim 20 to the discrete setting,
replacing the notion of “Borel sets” with finite sets. ◁

We can now prove Lemma 38.

Proof of Lemma 38. Take M and t2 from Claim 50. We may assume that t ⩾ t2, otherwise
the lemma just follows from the fact that η ⩾ Ω(1/n), which holds as the value of the t-fold
symmetric repeated game is at most the value of the original game, which is 1 − Θ(1/n).

Take x ∈R D, u ∼ B(1/4). Let E1 be the event that (x, u), (x, −u) are decent, E2 be
the event that Ψ(x) ⩽ c2 log2 t, E3 the event that x + ku, x − ku, x + u, x − u ∈ D, and
let E4 be the event that Ψ(x, u) ⩾ Ψ(x) + c2

1
2

k4Z4

n4 Ψ(x). Finally, let E5 be the event that
Ψ(x + u) > Ψ(x) and denote E(x, u) = E1 ∩ E2 ∩ E3 ∩ E4. Note that if the event E holds
for x, u, then E5 also holds, since by Claim 44:

Ψ(x + u) ⩾ Ψ(x, u) − t2 · e−Z/4 ⩾ Ψ(x) + c2
1
2

k4Z4

n4 Ψ(x) − t2 · e−Z/4 > Ψ(x).

In the last inequality, we used the fact that if E holds, then c2
1
4

k4Z4

n4 Ψ(x) ⩾ Ω(1), and
t2 · e−Z/4 = n2e−t/40 log t = o(1) for large enough t.

By Claim 43, Pr [E1] ⩾ 1 − 128(δ + η). By Claim 47 the probability of E2 is at most the
probability x is bad, hence it is at most 0.005, by Claim 41 Pr [E3] ⩾ 1 − 4(δ + η), and by
Claim 50, Pr [E4] ⩾ 0.99. We thus get

Pr
x,u

[E(x, u)] ⩾ 0.99 − 4(δ + η) − 0.005 − 128(δ + η) ⩾ 0.95 − 132(δ + η). (16)

Fix u. Using Claim 51 we get that

Pr
x

[E(x − u, u)] ⩾ Pr
x

[E(x, u)] − DT V [x; x − u] ⩾ Pr
x

[E(x, u)] − δu − δ−u.

By the union bound, we now conclude that

Pr
x

[E(x − u, u) ∩ E(x, u)] ⩾ 1−Pr
x

[
E(x − u, u)

]
−Pr

x

[
E(x, u)

]
⩾ 2Pr

x
[E(x, u)]−1−δu−δ−u.

Taking expectation over a random step u, we get that

Pr
x,u

[E(x − u, u) ∩ E(x, u)] ⩾ 2Pr
x,u

[E(x, u)] − 1 − 2E
u

[δu] ⩾ 0.9 − 270(δ + η),

where we used (16). Next, when both E(x − u, u) and E(x, u) hold, we have by the previous
observation that E5 holds for both pairs (x − u, u) and (x, u), and so Ψ(x + u) > Ψ(x) =
Ψ((x−u)+u) > Ψ(x−u). Thus, we get that Prx,u [Ψ(x + u) > Ψ(x − u)] ⩾ 0.9−270(δ +η).
On the other hand, the probability on the left hand side is at most 0.5; this follows as
Prx,u [Ψ(x + u) > Ψ(x − u)] = Prx,u [Ψ(x − u) > Ψ(x + u)], and their sum is at most 1.
Combining the two inequalities we get that η + δ ⩾ Ω(1), which using Claim 39 implies that
η = Ω(1/k) as desired. ◀

5.2 The lower bound: proof of Theorem 8
In this section we use the permutation-symmetric body constructed in Theorem 6 in order
to prove Theorem 8.
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5.2.1 Tools
We need the following isoperimetric inequality.

▶ Fact 52. For all ε > 0 there is δ > 0 such that the following holds. Let A ⊆ [0, 1]n be a
measurable set such that ε ⩽ vol(A) ⩽ 1 − ε. Then area(A ∩ interior([0, 1]n)) ⩾ δ.

Proof. This is the combination of [29, Theorem 6, Theorem 7] as we explain below. Theorem
7 therein asserts that if A ⊆ [0, 1]n has Lebesgue measure α and surface area S, then there
is a measurable set in Gaussian space B ⊆ Rn with Gaussian measure α and (Gaussian)
surface area at most S. Now [29, Theorem 7] asserts among sets with Gaussian measure
α, the minimizers of surface area are halfspaces of the form Bβ = {z ∈ Rn | z1 ⩽ β} where
β is chosen so that the Gaussian measure of Bβ is α, so S ⩾ surface − area(Bβ), which is
bounded away from 0 if α is bounded away from 0 and 1. ◀

Secondly, we need a slight strengthening of Theorem 6. Recall that in Sections 4 and B
we have constructed a semi-algebraic, bounded tiling body D ⊆ Rt whose surface area is
A = O(t/

√
log t), and for small enough ε we have

Pr
x∈D,∆∼N(0,ε2It)

[x + ∆ ̸∈ D] ≲ Aε.

We note that the argument in Section 4 holds in fact for more general class of ∆ (we only
used the fact it is independent of x, has mean 0 and is sub-Gaussian). Thus, we consider the
distribution ∆ε ∈ {0, ±ε/n}t of Bernoulli steps, namely for each i independently choosing
(∆ε)i as Pr [(∆ε)i = 0] = 1

2 , Pr
[
(∆ε)i = − ε

n

]
= 1

4 , Pr
[
(∆ε)i = ε

n

]
= 1

4 . Thus, running the
argument therein we get:

▶ Lemma 53. The distribution over tiling bodies (Dr⃗)r⃗ from Lemma 24 satisfies, for small
enough ε > 0

E⃗
r

[
Pr

x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε]
]
≲ A

ε

n
.

Slightly adapting the argument from Section B, we may ensure that the chosen body D also
has small noise sensitivity for Bernoulli random steps ∆ε for small enough ε,3 but we will
only need this to happen for a specific suitably chosen ε which can be ensured as follows.
Take ε small enough for which Lemma 53 holds, and note that by Markov’s inequality we
get from Lemma 53 that

Pr
r⃗

[
Pr

x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε] ⩾ C · A · ε

n

]
⩽

1
4

for an absolute constant C. Thus, from Claim 59 and the union bound we get that there
is r⃗⋆ ∈ ∩k⩾k0Gk such that the above event holds, and the rest of the proof in Section B
shows that D = Dr⃗⋆ has surface area O(A). We summarize this discussion with the following
lemma.

3 The proof is essentially the same, adapting the definition of Gk therein to be

Gk =

r⃗

∣∣∣∣∣∣
Pr x∈Dr⃗

∆∼N(0,4−k·In)
[x, x + ∆ lie in different cells of Sr⃗] ⩽ 4 · A2−k

Prx∈Dr⃗

∆2−k

[x, x + ∆2−k lie in different cells of Sr⃗] ⩽ 4 · A2−k

 .
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▶ Lemma 54. For all t, for small enough ε, there is a permutation-symmetric, bounded
tiling body D with surface area A = O(t/

√
log t) such that

Pr
x,∆ε

[At least one of the conditions of Claim 22 fail for x and x + ∆ε] ≲ A · ε

n
.

5.2.2 Decisive boxes

In this section, we use Lemma 54 to devise a symmetric strategy for the players in the t-fold
repeated game. Take small enough ε so such Lemma 54 holds and assume that k

def= 1/ε

is an integer. Let D be the permutation-symmetric tiling body from Lemma 54. It will
be convenient for us to think of challenges to the players as Ct

n =
{

i
n

∣∣ i = 0, 1, . . . , n − 1
}

.

Partition [0, 1)t into the boxes Ba⃗ =
t∏

i=1

[
ai

n , ai

n + 1
n

)
for a⃗ ∈ {0, 1, . . . , n − 1}t; it will be

convenient for us identify a challenge of a player x′ with the box it belongs to, i.e. with Ba⃗

for a⃗ = nx′. Consider the way D further partitions the boxes Ba⃗.

▶ Definition 55. We say a box Ba⃗ is decisive if there exists z ∈ Zn such that µ(Ba⃗∩(D+z)) ⩾
2
3 µ(Ba⃗). Otherwise, we say Ba⃗ is indecisive.

We show that almost all boxes are decisive:

▶ Lemma 56. The number of indecisive boxes is O(Ant−1).

Proof. Define Φ =
∑

z∈Zt

∑
a⃗∈{0,1,...,n−1}t

area(∂(D+z)∩interior(Ba⃗)). By considering the surface

area of D, we will show that Φ ⩽ A, and we will lower bound Φ as a function of the number
of the indecisive boxes, from which we will get the result. Let B be such that D ⊆ [−B, B]t,
and take m large enough.

5.2.2.1 The upper bound

For a⃗ ∈ {0, 1, . . . , mn − 1}t, we define the box Ba⃗ as above, and define

Φm =
∑
z∈Zt

∑
a⃗∈{0,1,...,mn−1}t

area(∂(D + z) ∩ interior(Ba⃗)).

On the one hand, we clearly have that Φm = mtΦ, and we next upper bound Φm. Since
D ⊆ [−B, B]t, we have that

Φm =
∑

z∈{−B,−B+1,...,B+m}t

∑
a⃗∈{0,1,...,mn−1}t

area(∂(D + z) ∩ interior(Ba⃗))

⩽
∑

z∈{−B,−B+1,...,B+m}t

area(∂(D + z))

= (m + 2B + 1)tarea(∂D)
⩽ (m + 2B + 1)tA.

Combining the upper and lower bound we get Φ ⩽
(
1 + 2B+1

m

)t
A, and sending m to infinity

gets that Φ ⩽ A.
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5.2.2.2 The lower bound

Interchanging the order of summation, we write

Φ =
∑

a⃗∈{0,1,...,n−1}t

∑
z∈Zt

area(∂(D + z) ∩ interior(Ba⃗)),

and we show that if the box Ba⃗ is indecisive, then the innermost sum is at least Ω(1/nt−1).
Indeed, if Ba⃗ is indecisive, then µ(Ba⃗∩(D+z)) ⩽ 2

3 µ(Ba⃗) for all a⃗. Thus, we may find P ⊆ Zn

such that for H = Ba⃗ ∩
⋃

z∈P (D + z) we have that 1
6 µ(Ba⃗) ⩽ µ(H) ⩽ 5

6 µ(Ba⃗). We now scale
and translate H, i.e. take H ′ = nH − a⃗, so that the above translates to H ′ ⊆ [0, 1]n such
that 1

6 ⩽ µ(H ′) ⩽ 5
6 , and hence by Fact 52 area(∂H ′ ∩ interior([0, 1]n)) ⩾ Ω(1). Removing

the scaling, we get that area(∂H ∩ interior(Ba⃗)) ⩾ Ω(n1−t). Therefore, we get that

Φ ⩾
∑

a⃗∈{0,1,...,n−1}t

Ba⃗ indecisive

Ω(n1−t) = Ω(n1−t · #{indecisive boxes})

Combining the upper and lower bound on Φ, we get that the number of indecisive boxes is
at most O(Ant−1). ◀

Next, we show that if Ba⃗ is a typical decisive box, and ∆1 ∈R {0, ±1/n} is chosen randomly
as above, then Ba⃗+∆1 is very likely to be somewhat decisive, and furthermore with the same
cell of D.

▶ Lemma 57. It holds that

Pr
∆1

a⃗∈{0,1,...,n−1}t

[
∃z ∈ Zn, µ(Ba⃗ ∩ (D + z)) ⩾ 2

3µ(Ba⃗), µ(Ba⃗+n∆1 ∩ (D + z)) >
1
2µ(Ba⃗+n∆1)

]

⩾ 1 − O

(
A

n

)
.

(17)

Proof. Choose a random a⃗, take a random x ∈ Ba⃗, and let y = x (mod D). Note that as
the distribution of x is uniform over [0, 1]n and the distribution of y is uniform over D. Let
E1(a⃗, x, ∆1) be the event that y and y + ∆1 are in different cells of D. Then by the union
bound and the choice of D

Pr
a⃗,x,∆1

[E1] = Pr
a⃗,x,∆ε

[y, y + k∆ε in different cells of D]

⩽
k−1∑
j=0

Pr
y,∆ε

[y + j∆ε, y + (j + 1)∆ε in different cells of D]

=
k−1∑
j=0

Pr
w∈D,∆ε

[w, w + ∆ε in different cells of D]

⩽
k−1∑
j=0

C · A · ε

n
= C

A

n
.

Let E2(a⃗) be the event that Ba⃗ is decisive, and if E2(a⃗) holds let z ∈ Zn be such that
µ(Ba⃗ ∩ (D + z)) ⩾ 2

3 µ(Ba⃗). Then by Lemma 56 Pr [E2(a⃗)] ⩾ 1 − O(A/n). Denote

pa⃗,∆1 = Pr
x,a,∆1

[E1(a⃗, x, ∆1) | a⃗ = a⃗, ∆1 = ∆1].
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The expectation of pa⃗,∆1 is the probability of E1(a⃗, x, ∆1), so

Pr
a⃗,∆1

[
E2(a⃗) ∧ pa⃗,∆1 ⩽

1
10

]
⩾ 1 − Pr

a⃗

[
E2(a⃗)

]
− Pr

a⃗,∆1

[
pa⃗,∆1 >

1
10

]
⩾ 1 − O

(
A

n

)
−

Pra⃗,x,∆1 [E1(a⃗, x, ∆1)]
1/10 ,

which is at least 1 − O
(

A
n

)
. To finish the proof, we show that for every a⃗, ∆1 such that

E2(⃗a) holds and pa⃗,∆1 ⩽ 1
10 , we have the the event on the left hand side of (17) holds.

Indeed, fix such a⃗, ∆1. Then there is a unique z ∈ Zn such that µ(Ba⃗ ∩ (D + z)) =
Prx∈Ba⃗

[x ∈ (D + z)] is at least 2
3 µ(Ba⃗). Note that if y, y + ∆1 are in the same cell of D,

then x, x + ∆1 are in the same cell of D, so
µ(Ba⃗+n∆1 ∩ (D + z))

µ(Ba⃗+n∆1) = µ(Ba⃗+n∆1 ∩ (D + z))
µ(Ba⃗)

= Pr
x∈Ba⃗

[x + ∆1 ∈ (D + z)]

⩾ Pr
x∈Ba⃗

[x ∈ (D + z), x + ∆1 ∈ (D + z)]

⩾ Pr
x∈Ba⃗

[x ∈ (D + z) and y, y + ∆1 in the same cell of D]

⩾ Pr
x∈Ba⃗

[y, y + ∆1 in the same cell of D] − Pr
x∈Ba⃗

[x ̸∈ (D + z)]

= 1 − pa⃗,∆1 − Pr
x∈Ba⃗

[x ̸∈ (D + z)]

⩾ 1 − 1
10 − 1

3 >
1
2 . ◀

5.2.3 Proof of Theorem 8
In this section, we prove Theorem 8. For that, we show that the success probability of the
following players’ strategy is at least 1 − O(A/n).
1. On challenge x′ ∈ Ct

n, consider the box that x′ belongs to, i.e. Ba⃗ for a⃗ = nx′.
2. Check if there is z ∈ Zt such that µ(Ba⃗ ∩ (D + z)) > 1

2 µ(Ba⃗), and note that it is unique
if such point exists. If there is no such z, abort. We refer to z as the chosen lattice point
of the player.

3. Output z + nx′ (mod 2).
First, we argue that this strategy is symmetric. Indeed, the effect of permuting the entries of
x′ by π ∈ St is that a, z above also get permuted by π, and therefore the output also gets
permuted by π. Next, we analyze the success probability of this strategy.

Note the following equivalent way of picking challenges (x′, y′): sample uniformly a⃗ ∈
{0, 1, . . . , n − 1}t, set x′ = a⃗/n, sample ∆1 Bernoulli as above and set y′ = x′ + ∆1 (mod 1).
Denote the box of x′ by Ba⃗(x′), and consider the event E defined in Lemma 57. We show
that whenever the event E holds, the players are successful with the above strategy, and as
the probability of E is at least 1 − O(A/n), the proof would be concluded.

Fix a⃗, ∆1 such that E holds, and let z ∈ Zt be the (unique) point such that µ(Ba⃗ ∩
(D + z)) ⩾ 2

3 µ(Ba⃗), µ(Ba⃗+n∆1 ∩ (D + z)) > 1
2 µ(Ba⃗+n∆1). The first condition implies that

the x′-player does not abort and their chosen lattice point is z, and we next show that
the y′-player does not abort as well. Note that the box of y′ is Ba⃗(y′) for a⃗(y′) = a⃗ + n∆1
(mod 1), and write a⃗ + n∆1 = a⃗(y′) + w for w ∈ Zt. Thus,

µ(Ba⃗(y′) ∩ (D + z − w)) = µ(Ba⃗(y′)+w ∩ (D + z)) = µ(Ba⃗+n∆1 ∩ (D + z)) >
1
2µ(Ba⃗+n∆1),

which is equal to 1
2 µ(Ba⃗(y′)), so the y′-player also does not abort and their chosen lattice

point is z − w. We now analyze the answers of the players on each coordinate.
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If i is a coordinate such that y′
i ̸= x′

i, then we may write y′
i = x′

i +∆1 +b for b ∈ {−1, 0, 1}
and ∆1 ≠ 0. Then we get that a⃗(y′)i = a⃗i + n(∆1)i + nb, so wi = −nb. Thus, the answer
of the x′-player is zi + nx′

i (mod 2), whereas the answer of the y′-player is

(z−w)i +ny′
i = zi +nb+nx′

i +n∆1 +nb = zi +nx′
i +n∆1 +2nb = zi +nx′

i +1 (mod 2),

where we used 2nb = 0(mod 2), and n∆1 = 1(mod 2) (as ∆1 = ± 1
n ). Thus, the players

are consistent on the ith coordinate.
If i is a coordinate such that y′

i = x′
i, then in the above notations we have wi = 0, ∆i = 0

and we get that the answers of the players are the same on the ith coordinate, so they
are consistent on i. ◀

6 Open Problems

In this section, we propose several challenges for further investigation of symmetric parallel
repetition.

Recall from the introduction that on general games a strong parallel repetition theorem
still fails, even for symmetric repetition. A simple example is the union of many disjoint, odd
cycle games. It would be interesting to understand for what instances of Max-Cut one has
that a strong parallel holds with symmetric repetition, motivating the following problem.

▶ Problem 1. For the Max-Cut problem, extend the family of graphs for which symmetric
parallel repetition outperforms standard parallel repetition.

Optimistically, one may hope that if symmetric parallel repetition would work for general
enough class of graphs, then one would be able to reduce any graph to a graph in that
class by mild preprocessing that doesn’t affect the value of the game by much, and only
then perform symmetric repetition. If possible, that would establish the equivalence of the
Max-Cut Conjecture and UGC.

Secondly, there are well-known connections between parallel repetition and notions of
mixing times and eigenvalues of the underlying graph; for example, a strong parallel repetition
theorem is known to hold for expander graphs [31, 3], and more generally for graphs with
low threshold rank [35], i.e. graphs with only constantly many eigenvalues close to 1. We
expect there could be stronger relations between symmetric parallel repetition and higher
order eigenvalues of G⊗symk, the k-fold symmetric tensor product of G.

▶ Problem 2. What is the relation between the performance of the k-fold symmetric parallel
repetition of a given instance of Max-Cut G, and the first k + 1 eigenvalues of G?

Finally, we believe that solving the foam problem for special classes of bodies may be an
interesting geometric question (albeit unrelated to the study of parallel repetition); a very
natural class to study is the class of convex bodies.
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A Deferred proofs

A.1 Proof of Claim 30
We split the proof into two cases.

Case 1: ri ⩽ T/2 for all i

In this case, min(ri, T − ri) = ri for all i, and the sum on the RHS of (7) is just (
∑

i |di|)/T .
We have

∥p − q∥1 =
∑

i

∣∣∣∣ri + di

T ′ − ri

T

∣∣∣∣ ⩽ ∑
i

∣∣∣∣ri + di

T
− ri

T

∣∣∣∣ +
∑

i

∣∣∣∣ri + di

T ′ − ri + di

T

∣∣∣∣
=

∑
i

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ ·
∑

i

(ri + di)

=
∑

i

|di|
T

+
∣∣∣∣1 − T ′

T

∣∣∣∣
=

∑
i

|di|
T

+ 1
T

·

∣∣∣∣∣∑
i

di

∣∣∣∣∣
⩽ 2 ·

∑
i

|di|
T

.

Case 2: one of the ri’s is greater than T/2

Without loss of generality, r1 > T/2. Denote by S :=
∑

i>1 ri = T −r1; S′ :=
∑

i>1(ri +di) =
T ′ − r1 − d1. In this case, the RHS of (7) is given by

|d1| · S

r1 · T
+

∑
i>1

|di|
T

. (18)

We will estimate |p1 − q1| and
∑

i>1 |pi − qi| separately. First, note that T ′ ⩾ T −
∑

j |dj | ⩾
T/2.

For |p1 − q1|, we have

|p1 − q1| =
∣∣∣∣r1

T
− r1 + d1

T ′

∣∣∣∣ =
∣∣∣∣r1 · (S′ − S) + d1 · S

T · T ′

∣∣∣∣ ⩽ 2
∣∣∣∣S′ − S

T

∣∣∣∣ + 2
∣∣∣∣d1 · S

T · r1

∣∣∣∣
⩽

∑
i>1

|di|
T

+ |d1| · S

r1 · T
.

In the third transition, we used the fact that T ′ ⩾ T/2 ⩾ r1/2.
For

∑
i>1 |pi − qi|, by a similar calculation to the first case we have

∑
i>1

|pi − qi| =
∑
i>1

∣∣∣∣ri + di

T ′ − ri

T

∣∣∣∣ ⩽ ∑
i>1

∣∣∣∣ri + di

T
− ri

T

∣∣∣∣ +
∑
i>1

∣∣∣∣ri + di

T ′ − ri + di

T

∣∣∣∣
⩽

∑
i>1

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ ·
∑
i>1

ri + di

=
∑
i>1

|di|
T

+
∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ S′,
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and it is enough to bound
∣∣ 1

T ′ − 1
T

∣∣ S′ by constant times the expression in (18). We have

∣∣∣∣ 1
T ′ − 1

T

∣∣∣∣ S′ =
∣∣∣∣S′ · (S′ − S) + S′ · d1

T ′T

∣∣∣∣ ⩽ ∣∣∣∣ (S′ + d1) · (S′ − S)
T ′T

∣∣∣∣ +
∣∣∣∣S · d1

T ′T

∣∣∣∣
⩽

∣∣∣∣S′ · (S′ − S)
T ′T

∣∣∣∣ +
∣∣∣∣d1 · (S′ − S)

T ′T

∣∣∣∣ + 2 ·
∣∣∣∣S · d1

T 2

∣∣∣∣ ,

where in the last transition we used T ′ ⩾ T/2 > 0. We bound each term separately. For the
first term, as T ′ ⩾ T/2, |S′| ⩽ 2T (since |di| ⩽ ri) we get∣∣∣∣S′ · (S′ − S)

T ′T

∣∣∣∣ ⩽ 4
∣∣∣∣S′ − S

T

∣∣∣∣ ⩽ 4
∑
i⩾2

|di|
T

.

For the second term, we have |d1| ⩽ r1 ⩽ T , T ′ ⩾ T/2 and so∣∣∣∣d1 · (S′ − S)
T ′T

∣∣∣∣ ⩽ 2 |S′ − S|
T

⩽ 2
∑
i⩾2

|di|
T

.

For the third term, we have, as T ⩾ r1, S·d1
T 2 ⩽ |d1|

r1
S
T .

A.2 Proof of Proposition 33

We will use the fact for points xi in our domain, gj(xi) ≍
(

n
log n αi

)3
. We consider two cases,

based on the values of S and r.

Case 1: Prxi[r · gj(xi) > S] < 1/2

We claim that for a sufficiently large constant A > 0,

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(I)

⩽ E
xi

[√
z + An2/ log2 n · min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(II)

.

To do that, we compare both sides to Exi

[√
z · min(r·gj(xi),S)

r·gj(xi)+S+ε1.6

]
. For (I), we have

E
xi

[(√
z + 1/α2

i −
√

z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
≲ E

xi

[
1/α2

i√
z + 1/α2

i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
.

Since αi ≲ log n/n always, we may further upper bound this by

≲ E
xi

[
1/α2

i√
z + A/(log n/n)2

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]
≲ E

xi

 1/α2
i√

z + An2/ log2 n
·

r
(

n
log n αi

)3

S + ε1.6

,

where we used min(r · gj(xi), S) ⩽ rgj(xi) and the asymptotic we have for gj . Simplifying
and using Exi

[αi] ≲ log n/n, we get that the last expression is equal to

n2

log2 n

1√
z + An2/ log2 n

· r

S + ε1.6 .
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For (II), we have

E
xi

[(√
z + An2/ log2 n −

√
z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]

≳ E
xi

 An2/ log2 n√
z + An2/ log2 n

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

.

Restricting to the event E that rgj(xi) ⩽ S (that has probability at least 1/2 by assumption),
we have that the last expression is at least

≳ Exi

 An2/ log2 n√
z + An2/ log2 n

· r · gj(xi)
S + ε1.6

∣∣∣∣∣∣ E

 ≳
An2/ log2 n√

z + An2/ log2 n
· r

S + ε1.6 ,

where the last inequality holds since Eαi
[gj(xi) | E] ≳ 1 (this is true for any event E with

constant probability in our range of interest of xi’s). Combining the bounds for (I), (II), we
see that we may pick large enough A so that

E
xi

[(√
z + 1/α2

i −
√

z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
⩽ E

xi

[(√
z + An2/ log2 n −

√
z

)
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
,

and hence (I) ⩽ (II). Let A1 be a large enough value of A so that this holds.

Case 2: Prxi [r · gj(xi) > S] ⩾ 1/2

Using
√

a + b ⩽
√

a +
√

b, we have

E
xi

[√
z + 1

α2
i

· min(r · gj(xi), S)
r · gj(xi) + S + ε1.6

]

⩽ E
xi

[√
z · min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(III)

+ E
xi

[
1

αi
· min(r · gj(xi), S)

r · gj(xi) + S + ε1.6

]
︸ ︷︷ ︸

(IV )

.

Clearly, (III) ⩽ Exi

[√
z + A n2

log2 n
· min(r·gj(xi),S)

r·gj(xi)+S+ε1.6

]
, and we upper bound (IV ). Recall that

gj(xi) ≍
(

n
log n αi

)3
, so

(IV ) ≲ E
xi

[
1

αi
· min(r(nαi/ log n)3, S)

B · r(nαi/ log n)3 + S + ε1.6

]
,

for some absolute constant B > 0. Writing the last expression as an integral, we note that
αi is distributed uniformly on the interval [0, log n

50n + ε0.95], so we get

(IV ) ≲
(

n

log n

) ∫ log n
25n

0

1
t

min(r(nt/ log n)3, S)
B · r(nt/ log n)3 + S + ε1.6 dt.

We break the range of integration into R1 =
[
0, (S/r)1/3 log n

n

]
, and R2 =

[
(S/r)1/3 log n

n , log n
25n

]
.

On R1 our expression is equal to(
n

log n

)2 ∫ ( S
r )1/3 log n

n

0

r(nt/ log n)2

B · r(nt/ log n)3 + S + ε1.6 dt ≲

(
n

log n

)4 ∫ ( S
r )1/3 log n

n

0

rt2

S
dt

≲
n

log n
.
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On R2 our expression is at most(
n

log n

) ∫ log n
25n

( S
r )1/3 log n

n

1
t

S

B · r(nt/ log n)3 dt ≲
S

r

(
log n

n

)2 ∫ log n
25n

( S
r )1/3 log n

n

1
t4 dt.

Computing the integral, we see it is at most (
(

S
r

)1/3 log n
n )−3, hence the overall expression is

≲ n/ log n, and since E
[
1r·gj(xi)>S

]
⩾ 1/2 we conclude that there is A2 > 0 such that

(IV ) ⩽ A2
n

log n
E
xi

[
1r·gj(xi)>S

]
.

The proposition is thus proven for A = max(A1, A2).

B From Noise Sensitivity to Surface Area

Let Dr⃗ be a family of tilings of Rn that are constructed from Lemma 24. I.e., the family Dr⃗

satisfies that the there is A = O(n/
√

log n) such that for sufficiently small ε, we have that

E⃗
r

 Pr
x∈Dr⃗

∆∼N(0,ε2·In)

[x, x + ∆ fall in different cells of the tiling induced by Dr⃗]

 ⩽ Aε.

Let k0 be the first integer such that this condition holds for any 0 < ε ⩽ 2−k0 . Thus, defining
for each k ⩾ k0 the set

Gk =
{

r⃗
∣∣∣ Pr

x∈Dr⃗

∆∼N(0,4−k·In)

[x, x + ∆ lie in different cells of the tiling of Sr⃗] ⩽ 2 · A2−k
}

,

we have by Markov’s inequality that Prr⃗ [r⃗ ∈ Gk] ⩾ 1
2 .

▷ Claim 58. The sets Gk are monotone decreasing, i.e. for each k, Gk+1 ⊆ Gk.

Proof. Fix r⃗ ∈ Gk+1. Let ∆ ∼ N(0, 4−k−1 · In), and note that ∆′ = 2 · ∆ ∼ N(0, 4−k · In).
Thus,

Pr
x∈Dr⃗

∆′∼N(0,4−k·In)

[x, x + ∆′ in different cells]

⩽ Pr
x∈Dr⃗

∆∼N(0,A4−k−1·In)

[x, x + ∆ in different cells]

+ Pr
x∈Dr⃗

∆∼N(0,4−k−1·In)

[x + ∆, x + 2∆ in different cells]. (19)

First, we argue that the second probability on the right hand side is equal to the first one.
To see that, denote y = x + ∆ and observe that the points y, y + ∆ lie in different cells
of the tiling induced by Dr⃗ if and only if the points y (mod Dr⃗), y (mod Dr⃗) + ∆ lie in
different cells. Additionally, note for any fixed ∆, the distribution of y (mod Dr⃗) when we
take x ∈R Dr⃗, is uniform over Dr⃗.

Therefore, the bound we get from (19) is (using the fact that r⃗ ∈ Gk+1)

2 · Pr
x∈Dr⃗

∆∼N(0,4−k−1·In)

[x, x + ∆ in different cells] ⩽ 2 · 2 · A2−(k+1) = 2 · A2−k,

and so r⃗ ∈ Gk. ◁
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▷ Claim 59. It holds that Prr⃗

[
r⃗ ∈

⋂
k⩾k0

Gk

]
⩾ 1

2 , and in particular
⋂

k⩾k0
Gk is not empty.

Proof. Define the sequence of functions gm(r⃗) = 1r⃗∈
⋂

k0⩽k⩽m
Gk

, and also g = 1r⃗∈
⋂

k⩾k0
Gk

.
Clearly, on each r⃗, the sequence gm(r⃗) is monotonically decreasing to g(r⃗), and in other
words we have monotone pointwise convergence of the non-negative functions gm to g. Thus,
by the monotone convergence theorem

Pr
r⃗

r⃗ ∈
⋂
k⩾0

Gk

 = E⃗
r

[g(r⃗)] = E⃗
r

[
lim

k→∞
gk(r⃗)

]
= lim

k→∞
E⃗
r

[gk(r⃗)].

By the previous claim, gm = 1Gm , hence Er⃗ [gm(r⃗)] ⩾ 1
2 and in particular the limit above is

at least 1
2 . ◁

Pick r⃗⋆ ∈
⋂

k⩾k0
Gk, ε = 2−k0 and denote D = Dr⃗⋆ for the rest of the proof. Clearly

D induces a tiling of the space Rn, and next we will show that the surface area of D is
O(A) = O(n/

√
log n), as desired.

Towards this end, we will use Lemma 10 that tells us that the surface area of D is a
constant multiple of

1
ε

E
x∈RD

∆∼N(0,ε2In)

[|(x, x + ∆) ∩ ∂D|],

and we first observe that (x, x + ∆) ∩ ∂D is almost surely countable. 4

▷ Claim 60. Let ε > 0 and sample x ∈R D, ∆ ∼ N(0, ε2In). Then with probability 1,
(x, x + ∆) ∩ ∂D is finite or countable.

Proof. Recall that by Lemma 24, D is a countable union of semi-algebraic sets, say B1, B2, . . ..
Note that for each semi-algebraic set Bi, the probability that (x, x + ∆) ∩ ∂Bi is infinite is
0, hence by the union bound, with probability 1 all of these sets are finite, in which case
(x, x + ∆) ∩ ∂D is finite or countable. ◁

For a parameter h, a point x ∈ Rn and a direction ∆, we say a point y ∈ (x, x + ∆) is
h-isolated if
1. It holds that y ∈ ∂D.
2. The neighbourhood of radius h around y does not contain x, x + ∆ or any point from ∂D

(besides y).
Define the quantity gm(x, ∆) to be the number of 2−m∥∆∥2-isolated points in the interval
[x, x + ∆].

▷ Claim 61. gm(x, ∆) is an increasing sequence in m, and for any x, ∆ for which Claim 60
holds, we have

lim
m→∞

gm(x, ∆) = |(x, x + ∆) ∩ ∂D| .

Proof. The monotonicity of gm(x, ∆) in m, and gm(x, ∆) ⩽ |(x, x + ∆) ∩ ∂D| are clear. We
set ℓ = gm(x, ∆) and split the rest of the proof according to whether ℓ is finite or not.

4 The diligent reader may note that here, we are only considering intersections of the surface with the
open interval (x, x + ∆) as opposed to the closed interval. This does not make any difference, since
the contribution of the endpoints is proportional to the measure of ∂D. Hence, if the measure of ∂D
is 0 they endpoints contribute 0 to that expectation, and if the measure of ∂D is positive, then the
expectation is infinite either way.
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Case 1: ℓ is finite

In this case we argue that gm(x, ∆) = |(x, x + ∆) ∩ ∂D| for large enough m. To see that,
let y1, . . . , yℓ ∈ (x, x + ∆) be all of the intersection points of (x, x + ∆) and ∂D, and take
large enough m so that 2−m∥∆∥2 is smaller than all of the distances ∥yi − yj∥2, ∥yi − x∥2,
∥yi − (x + ∆)∥2 for all i and j.

Case 1: ℓ is infinite

Consider the set S = [x, x+∆]∩∂D, and note that it is a closed. By Claim 60, S is countable,
and we argue that S must have an isolated point. Otherwise, S is a closed set and has no
isolated point, i.e. it s a perfect set, but then it must be uncountable (e.g. see [1]). We thus
conclude that S has an isolated point w1; we may remove it from S, have that the resulting
set is again closed and countable, so we may again find an isolated point. Repeating this
argument, for any v ∈ N we may find a collection of isolated points w1, . . . , wv ∈ S that are
all different from x and x + ∆. As in case 1, we conclude that gm(x, ∆) ⩾ v for large enough
m, and since it holds for any v we conclude that limm→∞ gm(x, ∆) = ∞. ◁

By Lemma 10, we have that the surface area of D is at most a constant multiple of

1
ε

E
x∈RD

∆∼N(0,ε2In)

[|(x, x + ∆) ∩ ∂D|] = 1
ε

E
x∈RD

∆∼N(0,ε2In)

[
lim

m→∞
gm(x, ∆)

]

= lim
m→∞

1
ε

E
x∈RD

∆∼N(0,ε2In)

[gm(x, ∆)].

In the first transition we used Claims 61 and 60, and in the second one we used monotone
convergence. Thus, if we assume that the surface area of D is larger than c ·A for a sufficiently
large absolute constant c, then we get that limm→∞

1
εE x∈RD

∆∼N(0,ε2In)
[gm(x, ∆)] ⩾ 10A. In the

rest of the proof we will reach a contradiction and thereby show that for sufficiently large
absolute constant c, the surface area of D is at most cA, as required.

By properties of limits, we conclude there exists m such that

E
x∈RD

∆∼N(0,ε2In)

[gm(x, ∆)] ⩾ 5Aε, (20)

and we fix this m henceforth.
Take 0 < δ ⩽ 2−m, and consider the following experiment. Take x ∈R D uniformly at

random, ∆ ∼ N(0, ε2In) and take a uniformly random point y ∈R [x, x + ∆]. We consider
the event E in which the points y and y + δ∆ lie in different cells in the tiling induced by D.

▷ Claim 62. For any x, ∆ we have that Pry [E | x, ∆] ⩾ δgm(x, ∆).

Proof. Let ℓ = gm(x, ∆), and let z1, . . . , zℓ be the 2−m∥∆∥2-isolated points on the interval
(x, x + ∆). For each j, let Ij = (zj − δ∆, zj), and note that as δ ⩽ 2−m and the isolation of
the points, we conclude that the intervals Ij are disjoint and contained in (x, x + ∆). Also,
note that if we pick y ∈ Ij , then y and y + δ∆ lie in different cells of the tiling induced by D;
this holds since the interval between them contains exactly one point from ∂D (namely, the
point zj). Therefore,

Pr
y

[E | x, ∆] ⩾
ℓ∑

j=1
Pr
y

[y ∈ Ij | x, ∆] ⩾
ℓ∑

j=1

δ∥∆∥2

∥∆∥2
= δℓ. ◁
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▷ Claim 63. Prx,∆,y [E] ⩽ 2Aδε.

Proof. Consider x, ∆, y the random variables in the definition of the event E. Let z = y
(mod D), and note that the points y and y + δ∆ fall in different cells if and only if the points
z and z + δ∆ fall in different cells. Therefore, the probability of E is exactly the probability
that z, z + δ∆ fall in different cells. Further, note that conditioned on ∆, the distribution of
z is uniform over D, so

Pr
∆∼N(0,ε2In)

[z, z + δ∆ lie in different cells of D]

= Pr
∆′∼N(0,δ2ε2In)

[z, z + ∆′ lie in different cells of D],

which is at most 2Aδε by the choice of D and the fact that δε ⩽ ε ⩽ 2−k0 . ◁

Combining the above claims we reach a contradiction:

2Aδε ⩾ Pr
x,∆,y

[E] = E
x,∆

[
Pr
y

[E | x, ∆]
]
⩾ E

x,∆
[δgm(x, ∆)] ⩾ δ · 5Aε,

and contradiction. The first transition is by Claim 62, the second transition is by conditional
probability formula, the third transition is by Claim 63 and the final one is by equation (20).
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