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—— Abstract

The maximum parsimony phylogenetic reconciliation problem seeks to explain incongruity between
a gene phylogeny and a species phylogeny with respect to a set of evolutionary events. While the
reconciliation problem is well-studied for species and gene trees subject to events such as duplication,
transfer, loss, and deep coalescence, recent work has examined species phylogenies that incorporate
hybridization and are thus represented by networks rather than trees. In this paper, we show that
the problem of computing a maximum parsimony reconciliation for a gene tree and species network
is NP-hard even when only considering deep coalescence. This result suggests that future work on
maximum parsimony reconciliation for species networks should explore approximation algorithms
and heuristics.
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1 Introduction

Genes evolve via several evolutionary processes operating at various evolutionary timescales.
Nucleotides can mutate, and domains can recombine. Genes can be generated, lost, or
replaced through gene duplication, gene loss, horizontal gene transfer, and gene conversion.
Populations can diverge or combine through speciation and hybridization. In addition to
these events, within a population, polymorphisms can persist across speciation events, leading
to a phenomenon known as incomplete lineage sorting (ILS) [15, 18]. Thus, the history of a
set of genes may differ from the history of the species in which they evolved [12].
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Figure 1 Gene trees, species trees, and species networks. (a) A gene tree. (b) A species
tree and reconciliation. Under the multispecies coalescent model, the gene tree evolves within
the species tree, and incongruence between the trees is due to ILS. (c) A species network and
reconciliation. The same gene tree evolves within the species network, and no ILS is necessary.

In phylogenetics, reconciliations attempt to explain these differences by mapping gene
histories within species histories to infer the evolutionary events that shaped that gene
family (Figure la,b). The simplest and most common approach seeks a most parsimonious
reconciliation (MPR) [7, 12, 14], in which each type of event in the model has an associated
non-negative cost and the objective is to find a reconciliation of minimum total cost.

The time complexity of the MPR problem depends on the events being modeled and the
set of constraints being considered. For example, the lowest common ancestor mapping, which
can be computed in polynomial time [14, 26], solves the MPR problem when considering
only duplications [8], only duplications and losses [8], and only deep coalescence [22]. When
considering duplications, transfers, and losses, the MPR problem can be solved in polynomial
time or is NP-hard depending on whether the species tree is undated, partially dated, or
fully dated, and on whether the reconciliation is constrained to be time-consistent [13, 20].
Similarly, depending on details of the underlying model, the MPR. problem can be solved in
polynomial time when considering duplications, transfers, losses, and coalescence [4, 17], or
is NP-hard when considering duplications, losses, and coalescence [2]. The MPR problem is
also NP-hard when simultaneously modeling the evolution of domains, genes, and species [9].

Though the species history is often represented by a tree, hybridization is increasingly
recognized as an important evolutionary process, requiring the use of species networks
(Figure 1c). In eukaryotic species, hybridization encompasses two different processes: hybrid
speciation, in which there is no underlying tree, and introgression, in which there is an
underlying tree [5, 6]. Horizontal gene transfer in prokaryotic species can be considered a
special case of introgression [16] and results in reticulate evolutionary histories as well.

Several authors have recently considered reconciliations with species networks. For
example, several methods exist for the related problem of inferring a species network that
minimizes deep coalescence [23, 24, 25]. However, the authors did not analyze the time
complexity of their algorithms. Furthermore, their approaches require searching over the
space of species network topologies, in contrast to the problem considered here, in which
the species network is assumed to be known. Other authors have focused on the problem
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of inferring MPRs between gene trees and species networks, showing that the problem can
be solved in polynomial time when minimizing the duplication-transfer-loss cost [11] or the
duplication-loss cost [19]. There is little previous work on the problem of inferring MPRs
between a gene tree and species network in which incongruence is due to deep coalescence,
and the question of whether this problem can be solved in polynomial time remained open.

In this paper, we show that the problem of inferring an MPR between a gene tree and
species network in the presence of incomplete lineage sorting is NP-hard. Our results suggest
that future work on this problem should focus on developing heuristics or approximation
algorithms.

2 Definitions

We use the terms node and vertex interchangeably. A rooted binary phylogenetic network
refers to a rooted directed acyclic graph with a single root with in-degree 0 and out-degree 2;
additional internal nodes with either in-degree 1 and out-degree 2, called branch nodes,
or in-degree 2 and out-degree 1, called hybridization nodes; and one or more leaves with
in-degree 1 and out-degree 0. Edges leading to hybridization nodes are called hybridization
edges. Given a network N, let V/(N) denote its node set and F(N) denote its edge set. Let
L(N) C V(N) denote its leaf set, I(N) = V(N) \ L(N) denote its set of internal nodes, and
r(N) € I(N) denote its root node. For a node v € V(N), let ¢(v) denote its set of children
(the empty set if v is a leaf), let p(v) denote its set of parents (the empty set if v is the root
node), and, if v has a single parent, e(v) denotes the edge (p(v),v). The size of N, denoted
by |N|, is equal to |V (N)| + |E(N)|.

Let <y (<n) be the partial order on V(N) such that v <y u (v <y w) if and only if
there exists a path in N from u to v (v # u); v is said to be lower or equal to (lower than) w,
and v a (strict) descendant of u, and u a (strict) ancestor of v.

Given two nodes v and v of N such that v <y u, a path from u to v in N is a sequence
of contiguous edges from u to v in N. Note that if u = v, the path from v to v is empty. As
there can be multiple paths between pairs of vertices in a network, let pathsy(u,v) denote
the set of all paths from u to v. Let paths(N) denote the set of all paths in network N.

A binary phylogenetic tree is a binary phylogenetic network with no hybridization
nodes; that is, a directed binary tree. In the remainder of this paper, we refer to rooted
binary phylogenetic networks and rooted phylogenetic trees simply as networks and trees,
respectively.

A species network S represents the evolutionary history of a set of species and a gene tree
G represents the evolutionary history of a set of genes sampled from these species. A leaf
mapping Le: L(G) — L(S) associates each leaf in the gene tree with a corresponding species
from which the gene was sampled. The mapping need not be one-to-one nor onto. Note that
gene phylogenies are assumed to be trees whereas species phylogenies may, in general, be
networks.

In this paper, we assume that both the gene tree and species network are undated.
Thus, the only temporal constraints on the nodes are those induced by ancestor-descendant
relationships.

2.1 Reconciliations

A reconciliation for a given gene tree, species network, and leaf mapping comprises a pair of
mappings: The vertex mapping R, : V(G) — V(S) associates each node of G with a node of
S. For each non-root node g of G, the path mapping R, : V(G) — paths(S) associates a path
in S from R,(p(g)) to R,(g). The vertex mapping must be consistent with the given leaf
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mapping and must satisfy temporal constraints; namely if a gene node g is mapped to species
node s and a child ¢’ of g is mapped to species node s’, then s must be an ancestor of s'.
The path mapping is required because S is a network, and thus there may be multiple paths
between ancestors and descendants in the network. The formal definition of a reconciliation
is given in Definition 1.

» Definition 1 (Reconciliation). Given a gene tree G, a species network S, and a leaf mapping
Le, a reconciliation? R for (G, S, Le) is a pair of mappings (Ry, R,,) where R, : V(G) — V(9)
is o vertex mapping and R, : V(G) — paths(S) is a path mapping subject to the following
constraints:

1. If g € L(G), then R,(g) = Le(g).

2. If g € I(G), then for each g’ € c(g), R,(g") <s Ru(g).

3. If g #71(G), then R,(g) € pathss(Ry(p(g)), Rv(g)). Otherwise, R,(g) = 0.

Constraint 1 asserts that R, extends the leaf mapping Le. Constraint 2 asserts that R,
satisfies the temporal constraints implied by S. Constraint 3 asserts that the vertex mapping
and path mapping are consistent. We note that some formulations of the reconciliation
problem include an additional constraint asserting that no two paths in the path mapping
use two different hybridization edges leading to the same hybridization node. While we
do not explicitly enforce this constraint in Definition 1, the NP-hardness proof in the next
section satisfies this additional constraint nonetheless.

In a multispecies coalescent process, evolution in the species network is viewed backward
in time, from the leaves toward the root. Then, given a reconciliation R, we can count the
number of gene lineages “passing through” each edge e of the species network. Specifically,
given edge e € E(S),

Lr(e) = {9 € V(G) : e € Ry(9)}],
and the number of “extra lineages” is defined to be
XLg(e) = max(0,Lg(e) — 1).

Note, for example, that if two gene paths pass through a species edge, there is one extra
lineage on that edge.

Finally, the deep coalescence cost of a reconciliation is the sum of extra lineages across all
edges of the species network:

DCpr= Y  XLg(e).
e€E(S)

This value is the reconciliation cost in this model.
Finally, we formalize these optimization and decision problems:

» Problem 2 (Most Parsimonious Reconciliation (MPR)). Given a gene tree G, a species
network S, and a leaf mapping Le, find a reconciliation R for (G, S, Le) such that the deep
coalescence cost DCpg is minimized.

» Problem 3 (Most Parsimonious Reconciliation Decision Problem (MPRD)). Given a gene

tree G, a species network S, a leaf mapping Le, and an integer k, is there a reconciliation R
for (G, S, Le) such that DCg < k?

2 When explaining topological incongruence through only deep coalescence, a reconciliation is sometimes
called a coalescent history [5].
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3 NP-hardness

» Theorem 4. MPRD is NP-hard.

In the proof that follows, it will be convenient to consider the gene tree as the collection
of all paths P from its root to its leaves. For a given leaf mapping Le : L(G) — L(S), a
lineage mapping with respect to Le is a mapping M from each path p, € P whose endpoint
is leaf ¢ to a path in S from some fixed node v € V(S) to Le(¢). Each reconciliation has a
corresponding lineage mapping, M. Specifically, let R = (R,, R,) be a reconciliation and
let (G), 91, -, 9k, gx = £, denote the nodes on the unique path from r(G) to leaf ¢. Then,
M associates this path in G with path R,(g1)Rp(g2) ... Rpy(gr) in S. Note that multiple
different reconciliations may induce the same lineage mapping since there are, in general,
different mappings of nodes of G to nodes of S than induce the same set of paths. For
simplicity, when referring to lineage mappings we use the notation M (¢) in lieu of M (py).

Finally, we use the notation (A, B) to represent a binary tree with a root and children A
and B, either of which may be leaves or trees themselves.

Proof. Our proof is by a reduction from 3SAT. In particular, we consider the most general
version of 3SAT in which the literals in a clause need not be unique and clauses need not be
unique. Consider an instance of 3SAT with n variables and m clauses and, without loss of
generality, assume that n and m are both powers of 2. (If not, the 3SAT instance can be
padded with dummy variables and clauses to construct an equivalent instance in polynomial
time by simply introducing new variables as needed and repeating clauses as needed.)

Construction. The gene tree G is constructed as follows: A gene wvariable gadget for a
variable z; comprises a tree G7 with three leaves, labelled a;,b;,y;, with the topology
((as, bi),yi). The root of this gadget is labelled ;. These n variable gadgets are connected
via a perfect binary tree G*. A gene clause gadget for a clause c; consists simply of a single
leaf ¢;. These m leaves are connected via a perfect binary tree G¢. A k-caterpillar of length
k is a binary tree constructed from a path of length &k (k + 1 vertices and k edges) where
each of the first k vertices on that path has two children: one is the next vertex on the path,
and another is a leaf. In total a k-caterpillar has k + 1 leaves. The root of the gene tree G
has two children: one is the root of the tree G* and the other is the root of a 2n-caterpillar
called e. One of the two deepest leaves of caterpillar e is the root of G¢ and the remaining
leaves are labeled eq, ..., eq, in order of depth from the root. The structure of the gene tree
is depicted in Figure 2.

The species network S is constructed as follows: A species variable gadget for variable
x; consists of a subtree S¥ with four children labeled T;, A;, B;, and F;, with topology
(T, A;), (F;, B;)). A; and B; are leaves. The root of this gadget is labelled X;. T; and F;
are the first vertices of paths which correspond to setting x; to true or false, respectively.
We henceforth refer to these paths as the variable setting paths for T; and Fj, respectively.
The remaining vertices on these variable settings paths are described in the next paragraph;
ultimately these paths join at a hybridization node which has a single leaf child Y;. The
roots of these n variable gadgets are joined via a perfect binary tree S®.

A species clause gadget S for clause C; is constructed as follows. Let z1, 22, and 23
denote the three literals in that clause. If literal z; is the unnegated variable x; then a
vertex Uy ; and its child V; ; are introduced on the variable setting path for F; in the species
variable gadget for x;. Conversely, if literal z; is the negation of z;, then vertex U; ; and
its child V7 ; are introduced on the variable setting path for T;. The analogous process is
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2n-caterpillar e

Figure 2 The gene tree in the NP-hardness construction. The shaded subtree G* on the left
contains a variable gadget Gy for each variable x; in the 3SAT instance, and the shaded subtree G°¢
on the right contains a single leaf ¢; for each clause j in the 3SAT instance.

used to introduce a pair of vertices Us ; and V3 ; for the variable setting path for literal z;
and a pair of vertices Us ; and V3 ; for the variable setting path for literal z3. If the clause
contains repeated literals, we will add the vertices to paths in numerical order based on their
subscripts. For example, if z; = 29, then we will introduce the vertex Us ; immediately after
the vertex V; ; on the corresponding variable setting path, so that V; ; will be one of the
parents of Uz ;. The root of the species clause gadget for clause Cj is a vertex U; with Uy ;
as one child and U, j’ as the second child whose children are U, ; and Us ;. Note that U, ;,
U, ;, and Us ; are hybridization nodes since they each have two parents. Node V; ; has a
second child Vj, V3 ; and V3 ; have a child V] (a hybridization node), V; is another parent of
V; (a hybridization node) which, in turn, has a single child L;, a leaf of the species network.
The roots of the m species clause gadgets are connected with a perfect binary tree S°¢.

Finally, the root of the species network has two children: one is the root of the species
variable tree S* and the other is the root of a 2n-caterpillar called E. One of the two deepest
leaves of caterpillar F is the root of the clause gadget tree S¢ and the remaining leaves
are labeled E, ..., Esy, in increasing depth from the root. A representation of the species
network is shown in Figure 3.

The leaf mapping Le is as follows: For the leaves in the variable gadgets, Le(a;) = A;,
Le(b;) = By, and Le(y;) =Y, for 1 < ¢ < n. For the leaves of the 2n-caterpillar, Le(e;) = E;,
for 1 < i < 2n. For the leaves in the clause gadgets, Le(¢;) = L;, for 1 <i < m.

Finally, the value of k£ in the decision problem is set to be n, the number of variables
in the 3SAT instance. It is easily seen that this construction can be performed in time
polynomial in the size of the 3SAT instance.

Correctness. We prove that the constructed MPRD instance has a reconciliation with
deep coalescence cost no more than n if and only if there is a satisfying assignment of the
variables in the given 3SAT instance.

We begin with several observations. First, in any reconciliation, r(G) must be mapped to
r(S) because the lowest common ancestor of the leaves in the variable gadgets and clause
gadgets in G is r(G) while the lowest common ancestor in S of their images under the
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Figure 3 The species network in the NP-hardness reduction. (A) The shaded subtree S® on the
left contains a variable gadget SY for each variable z; in the 3SAT instance, and the subtree S°¢
on the right contains a clause gadget S§ for each clause j in the 3SAT instance. (B) The variable
gadget on the left is shown in detail. Vertices T; and F; are the first vertices on the variable setting
paths (indicated in bold) for variable z;. The clause gadget on the right is shown in detail for clause
j. The bold edges are from variable setting paths for the three variables in clause j. Note that the
edge Uy, j, Vi ; indicated on the left is the k** bold edge in the clause gadget for clause j if and only
if variable z; is the k** variable in clause j. In this example, Uk,j, Vik,; appears on a true variable
setting path, indicating that variable x; appears negated in clause j.

WABI 2021
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leaf mapping is r(S). The species network S has unique paths from its root to the leaves
Ay, ..., Ay, B1,..., By, and Eq, ..., Fo,. Therefore, all lineage mappings and have the same
unique paths M (¢) for all leaves £ among aq,...,an, b1,...,by, and ey, ..., es,. The only
leaves ¢ € L(G) for which M (£) has more than one possible path are yi, ..., y, and £1, ..., {y,.

Note that in order for a reconciliation to have cost no more than n, the induced lineage
mapping M must satisfy the property that M (y;) contains the node X;, the root of the
gadget S7. To see this, suppose by way of contradiction that there is a variable leaf y; such
that the path M(y;) (a path from r(S) to Y;) does not contain the vertex X;. The only
paths from r(S) to Y; that do not contain X; are through clause gadgets, and therefore
M (y;) must pass through the F caterpillar. Since there is a unique path from r(S) to A;
in S and that path does not pass through the E caterpillar, M (a;) cannot contain nodes
from the F caterpillar. Therefore, M (y;) must diverge from M (a;) at r(5), and therefore
also diverges from M (ea,,) at r(S) since eq,, is more distantly related to y; than a; is to y;.
But then each of the 2n internal nodes of the caterpillar E has at least two lineages, one
from M(y;) and one from M (e, ), contributing a cost of at least 2n > n, contradicting the
assumed cost bound.

There are, therefore, only two possibilities for M (y;) — it either includes the variable
setting path for T; or the variable setting path for F; in the variable gadget for z;. Both of
these options contribute at least one to the total cost since M (a;) and M (b;) must diverge
at (or above) X; and, since y; is more distantly related to a; and b; than a; and b; are to
one another, M(y;) must diverge from M (a;) and M(b;) at (or above) X;. Thus, M(y;)
must contribute an extra lineage on an edge shared with M (a;) or M(b;). Since there are n
variables, this contributes a cost of n, so these are necessarily the only extra lineages.

For any clause j, M (¢;) must contain at least one of the edges (Uy ;, Vi,;) for k € {1,2,3}.
This is a consequence of the fact that without these three edges, there is no path in S from
the root to L;. Therefore M (¢;) shares an edge with at least one species variable setting
path corresponding to the negation of a literal in clause j.

Now suppose there is a satisfying assignment of the variables in the 3SAT instance. Then
construct a lineage mapping M with respect to Le as follows: M(y;) contains the variable
setting path T; if the variable z; is set to true, and the variable setting path Fj if the variable
x; is set to false. For a clause j, let 2z, k € {1,2,3}, denote one of three literals in that
clause that evaluates to true with respect to the given satisfying assignment. If 2z is an
unnegated variable x;, then, by construction, the F; variable setting path contains the edge
(Uk,j» Vk.j) in the clause gadget S§. We then construct M ({;) so that it follows the unique
path from 7(5) to U;, and then passes through the clause gadget via that edge. If 2 is a
negated variable —x;, then, by construction, the T; variable setting path contains the edge
(Uk,j» Vk,j) in the clause gadget S§ and M(¢;) is chosen to pass through the clause gadget
via that edge. A reconciliation inducing this lineage mapping is trivial since each vertex in
the gene tree has a corresponding vertex in the species network. The only cost incurred by
this reconciliation is one for each variable gadget as noted above. The total cost is therefore
n and thus this is a “yes” instance of MPRD.

Conversely, suppose there is some reconciliation with cost at most n and let M be the
corresponding lineage mapping. Then, we induce a setting of each variable z; based on
whether M (y;) contains the T; or F; variable setting path. As noted previously, this induces a
cost of n and thus the remaining paths cannot contribute any additional cost. Therefore, for
each clause C;, M (¢;) must pass through an otherwise unused edge (Uy ;, Vi ;), k € {1, 2,3},
implying that, by construction, the k" literal in clause C; has a setting that satisfies that
clause. Therefore, the 3SAT instance is satisfied. <
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Finally, we note that for simplicity, the reduction above did not seek to ensure that the
species network has a temporal representation, meaning that there is a consistent timing of
events in that network. It is always possible to add additional nodes to the species network
to satisfy the temporal representation property [1] and it is easily verified that our reduction
holds after adding these nodes.

4  Discussion

In this work, we have shown that the problem of inferring an MPR between a gene tree
and species network in the presence of incomplete lineage sorting is NP-hard. These results
suggest several important directions for future research. First, approximation algorithms
and exact fixed-parameter tractable algorithms should be explored for the MPR, problem.
Second, the problem may be solved effectively in many instances using satisfiability solvers or
integer linear programming, as has been done for phylogenetic reconciliation in other event
models [3, 10, 21]. Third, heuristics can be explored and tested experimentally.
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