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Abstract
A few classes of RNA-RNA interaction (RRI) with complex roles in cellular functions, such as
miRNA-target and lncRNAs, have already been studied. Accordingly, RRI bioinformatics tools
proposed in the last decade are tailored for those specific classes. Interestingly, there are somewhat
unnoticed mRNA-mRNA interactions in the literature with potentially drastic biological roles.
Hence, there is a need for high-throughput generic RRI bioinformatics tools that can be used in more
comprehensive settings. In this work, we revisit two of the RRI partition function algorithms, piRNA
and rip. These are equivalent methods that implement the most comprehensive and computationally
intensive thermodynamic model for RRI. We propose simpler models that are shown to retain the
vast majority of the thermodynamic information that the more complex models capture. Specifically,
we simplify the energy model by ignoring the system’s entropy and show its equivalency to a base-pair
counting model. We allow different weights for base-pairs to maximize the correlations with the full
thermodynamic model. Our newly developed algorithm, BPPart, is 225× faster than piRNA and is
more expressive and easier to analyze due to its simplicity and order of magnitude reduction in the
number of dynamic programming tables. Still, based on our analysis of both the real and randomly
generated data, its scores achieve a correlation of 0.855 with piRNA at 37◦C. Finally, we illustrate
one use-case of such simpler models to generate hypotheses about the roles of specific RNAs in
various diseases. We have made our tool publicly available and believe that this faster and more
expressive model will make the incorporation of physics-guided information in complex RRI analysis
and prediction models more accessible.
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1 Introduction

Since mid 1990s with the advent of RNA interference discovery, RNA-RNA interaction (RRI)
has moved to the spotlight in modern, post-genome biology. RRI is ubiquitous and has
increasingly complex roles in cellular functions. In human health studies, miRNA-target and
lncRNAs are among an elite class of RRIs that have been extensively studied and shown
to play significant roles in various diseases including cancer. Bacterial ncRNA-target and
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RNA interference are other classes of RRIs that have received significant attention. However,
new evidence suggests that other classes of RRI, such as mRNA-mRNA interactions, are
biologically important. The RISE database [16] reports a number of biologically significant
instances of mRNA-mRNA interactions. These representative mRNA-mRNA interactions
suggest that general RRIs, including mRNA-mRNA interactions, play major roles in hu-
man biology. Hence, there is a need for high-throughput generic RNA-RNA interaction
bioinformatic tools for all types of RNAs.

In this paper, we revisit the well-studied problem of RNA-RNA interaction, and investigate
the trade-off of complexity of the full thermodynamic models, such as piRNA [8] and rip [21],
and accuracy of the scores they can generate. The aforementioned models are computationally
intensive, and this prohibits their application to not only large-scale studies, but even for
average sized pairs of RNAs. Because of the equivalency of these models, and availability of
piRNA (the links to the tool provided by Huang et al. [21] are broken), we chose piRNA as the
representative of the two in our experiments and analysis. piRNA is a dynamic programming
algorithm that computes the partition function, base-pairing probabilities, and structure for
the comprehensive Turner energy model in O(n4m2 + n2m4) time and O(n4 + m4) space.
Due to intricacies of the energy model, including various (kissing) loops such as hairpin loop,
bulge/internal loop, and multibranch loop, piRNA involves 96 different dynamic programming
tables and needs multiple table look-ups for computing their values. An implementation of
piRNA is currently available at http://chitsazlab.org/software/pirna.

In this paper, we introduce a strategic retreat from the slower comprehensive models
such as piRNA by simplifying the energy model; we ignore the systems’ entropy and derive
a model that only requires the consideration of simple weighted base-pair counting. We
develop the BPPart algorithm which aims to solve this simpler model with a much simpler
approach. We also allow different weights for base-pairs which helps us to attain a model
which correlates well with the full thermodynamic ones. In addition to this algorithm, we
implemented a correct version of an earlier developed method, IRIS [39], which is based on
base-pair maximization criterion, to have a thorough comparison between all these methods
which are vastly different in terms of complexity. The implementation of this model, which
we named BPMax, is also available in our publicly-available repository, and the results related
to that are available in the Supplementary Material.

By the explosion of experimental data and the necessity to have higher-throughput
methods, this retreat seems necessary, especially if one is willing to have more expressive
models or wants to build physics-guided models that retain most of the information that
can be derived from the thermodynamic system of RRI. BPPart involves eight 4-dimensional
dynamic programming tables, and BPMax involves only one 4-dimensional table. Both BPPart
and BPMax compared with piRNA are simpler dynamic programming algorithms which are
more than 225× and 1300× faster, respectively, on the 50,500 RRI samples we used for our
experiments. The reason for this noticeable speed-up is reducing the number of tables and
the number of table look-ups for computing the new values and also the fact that the 96 large
tables of piRNA renders piRNA memory- rather than compute-bound in practice. Moreover,
the significantly reduced memory footprint of BPPart and BPMax makes them feasible targets
for optimization on different hardware platforms like GPU based accelerators, an avenue we
plan to explore in the future.

The key question concerns the accuracy we lose by simplifying the scoring model from
the comprehensive Turner model to simply weighted base-pair counting. We answer this by
computing both the Pearson and Spearman’s rank correlations at different temperatures
between the results of BPPart, BPMax, and piRNA on 50,500 experimentally characterized

http://chitsazlab.org/software/pirna
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RRIs in the RISE database [16]. We find that the Pearson correlations between BPPart and
piRNA is 0.855 and BPMax and piRNA is 0.836 at 37◦C. Based on the results, we conclude
that BPPart and BPMax capture a significant portion of the thermodynamic information. The
simpler and faster algorithms, allow them to be used in high-throughput methods and be
complemented with machine learning techniques in the future for more accurate predictions.

1.1 Related work
During the last few decades, several computational methods emerged to study the secondary
structure of single and interacting nucleic acid strands. Most use a thermodynamic model such
as the well-known Nearest Neighbor Thermodynamic model [32, 6, 13, 8, 38, 50, 54, 44, 33, 51].
Some previous attempts to analyze the thermodynamics of multiple interacting strands
concatenate input sequences in some order and consider them as a single strand [2, 3, 12].
Alternatively, several methods avoid internal base-pairing in either strand and compute
the minimum free energy secondary structure for their hybridization under this constraint
[42, 11, 31]. The most comprehensive solution is computing the joint structure between two
interacting strands under energy models with a growing complexity [40, 1, 29, 10, 23, 8, 21].

Other methods predict the secondary structure of individual RNA independently, and
predict the (most likely) hybridization between the unpaired regions of the two interacting
molecules as a multistep process: 1) unfolding of the two molecules to expose bases needed
for hybridization, 2) the hybridization at the binding site, and 3) restructuring of the complex
to a new minimum free energy conformation [35, 49, 5, 7]. The success of such methods,
including our biRNA algorithm [7], suggests that the thermodynamic information vested in
subsequences and pairs of subsequences of the input RNAs can provide valuable information
for predicting features of the entire interaction.

In addition to general RNA-RNA interaction tools, many tools have been developed to
predict the secondary structure of interacting RNAs for a specific type of interest which has
been shown to be more effective in some cases due to the utilization of certain properties
belonging to that type. As mentioned earlier, miRNA-target prediction is one such class
of high interest for which such specialized tools have been created to incorporate various
properties specific to miRNAs; some of these tools use the seed region of a miRNA which is
highly conserved [26, 25, 27, 53], some consider the free energy to compute accessibility to
the binding site in 3′ UTR [18, 29, 25], some utilize the conservation level which is derived
using the phylogenetic distance [36, 4, 41, 15, 26, 25], and some others consider other target
sites as well, such as the 5′ UTR, Open Reading Frames (ORF), and the coding sequence
(CDS) for mRNAs [43, 34, 19, 52].

There are also several other tools developed for other specific types of RNA; IntaRNA
[5, 30] is one such tool that although is used for RNA-RNA interaction in general, it is
primarily designed for predicting target sites of non-coding RNAs (ncRNAs) on mRNAs.
There are many other examples, such as PLEXY [24] which is a tool designed for C/D
snoRNAs, RNAsnoop [45] that is designed for H/ACA snoRNAs, TargetRNA [46] which is a
tool aimed at predicting interaction of bacterial sRNAs [48].

2 MATERIALS AND METHODS

Here we describe how our algorithm, BPPart, utilizes a dynamic programming approach to
compute the partition function for RNA-RNA interaction when entropy is ignored and only
a weighted score for pairing different nucleotides is considered. This algorithm is guaranteed
to be mutually exclusive on the set of structures, i.e., it counts each structure exactly once.

WABI 2021
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Figure 1 An illustration of a zigzag (left) and a crossing bond (right), which are excluded in our
algorithm.

For BPMax which maximizes the (weighted scores) of base-pairs, such mutual exclusion is not
necessary because the max operator is idempotent (counting the same structure multiple
times does not affect the value of the objective function) and we can derive a simpler recursion.
Our codes are freely available under open source license.

Preliminaries

In this paper, we mostly follow the notations and definitions used to develop our piRNA
algorithm [8]. We denote the two nucleic acid strands by R and S. Strand R is indexed from
1 to LR, and S is indexed from 1 to LS both in 5′ to 3′ direction. Note that the two strands
interact in opposite directions, e.g. R in 5′ → 3′ with S in 3′ ← 5′ direction; however, we
consider the reverse of S in our figures for clearer illustration of the configurations. Each
nucleotide is paired with at most one nucleotide in the same or the other strand. The
subsequence from the ith nucleotide to the jth nucleotide, inclusive, in either strand is
denoted by [i, j].

An intramolecular base pair between the nucleotides i and j (by convention, i < j) in a
strand is called an arc and denoted by a bullet i • j. We represent the score of such arc by
score(i, j). Essentially, score(i, j) is c1 if i • j is GU or UG, is c2 if i • j is AU or UA, and
is c3 if i • j is CG or GC. An intermolecular base pair between the nucleotides k1 and k2,
where k1 ∈ R, k2 ∈ S, is called a bond, denoted by a circle k1 ◦ k2. We represent the score of
such a bond by iscore(k1, k2). Essentially, iscore(k1, k2) is c′

1 if k1 ◦ k2 is GU or UG, is c′
2 if

k1 ◦ k2 is AU or UA, and is c′
3 if k1 ◦ k2 is CG or GC.

An arc i • j in R covers a bond k1 ◦ k2 if i1 < k1 < j1. We call i • j an interaction arc in
R if there is a bond k1 ◦ k2 covered by i • j. The scope of an interaction arc is the interval
[i + 1, j− 1]. We call a base on either strand an event if it is either the end point of a bond or
that of an interaction arc. In our explanation we may use arc and bond as verbs. Two bonds
i1 ◦ i2 and j1 ◦ j2 are called crossing bonds (right case of Figure 1) if i1 < j1 and i2 > j2, or
vice versa. An interaction arc i1 • j1 in a strand subsumes a subsequence [i2, j2] in the other
strand if none of the bases in [i2, j2] has a bond with a base outside this arc. Mathematically,
for all bonds k1 ◦ k2 where i2 < k2 < j2, k1 lies within the scope of i1 • j1. Two interaction
arcs are equivalent if they subsume one another. Two interaction arcs i1 • j1 and i2 • j2 are
part of a zigzag, if neither i1 • j1 subsumes [i2, j2] nor i2 • j2 subsumes [i1, j1] (left case of
Figure 1).

In this work, we assume there are no pseudoknots in individual secondary structures of
R and S, and also there are no crossing bonds and no zigzags between R and S. These
constraints allow a polynomial algorithm – the general case of considering all possible
structures is NP-hard [1]. We denote the ensemble of unpseudoknotted structures of R and
S by S(R) and S(S) respectively. The ensemble of unpseudoknotted, crossing-free, and
zigzag-free joint interaction structures is denoted by SI(R, S).
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For a given joint interaction structure s ∈ SI(R, S), let AU(s) denote the number of A-U
base pairs in s. Similarly, CG(s) and GU(s) denote the number of C-G and G-U base pairs
in s, respectively. We define bpcount as a weighted sum, for some constants, c1, . . . , c3

bpcount(s) = c1GU(s) + c2AU(s) + c3CG(s). (1)

Rivas-Eddy Diagrams

For the sake of completeness, we describe the “Rivas-Eddy diagram” notation that we adopt
in this paper in the Supplementary Material. The Rivas-Eddy diagram to compute a certain
function is written like a formal (context free) grammar. The left hand side is labeled with the
name of a table (structure), and the right hand side has a number of alternate substructures
separated by vertical bars. Often, some of the boundary cases (e.g., singleton or empty
subsequences) are omitted for brevity.

2.1 Problem Definition
The Gibbs free energy

∆G = ∆H − T∆S (2)

is composed of a term ∆H called enthalpy that does not depend on temperature and a term
T ∆S that includes entropy and is linearly dependent on temperature T . Intuitively, enthalpy
is the chemical energy that is often released upon formation of chemical bonds such as base
pairing. Entropy, on the other hand, captures the size of all possible spatial conformations
for a fixed secondary structure. In other words, entropy captures the amount of 3D freedom
of the molecule. A base-pair brings enthalpy down, hence favorable from an enthalpy point
of view, and decreases freedom (entropy), hence unfavorable from an entropy point of view.
These two opposing objectives are combined linearly through the temperature coefficient.

In the full thermodynamic model, we consider both terms. In the base pair counting,
we consider only a simplistic enthalpy term. Partition function for the full thermodynamic
model is∑

s∈SI

e−∆G/RT , (3)

in which R is the gas constant, and SI are all possible states of the system, assuming that
they form a countable set (which they do in our case by we considering all possible ways
the two RNAs pair with one another). Now, by ignoring the term with the entropy, and
considering the approximation ∆G ∼ ∆H, we can simplify the model as follows∑

s∈SI

e−∆G/RT ≈
∑

s∈SI

e−∆H/RT ≈
∑

s∈SI (R,S)

e−bpcount(s)/RT . (4)

To make the 3rd term a better approximation for the first one, we allow different weights
for different base-pairs (AC, GT, and CG) in our model. We optimize these weights to maximize
the correlation of the scores with those of piRNA (which is based on the first term above)

WABI 2021
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and verify the consistency of the computed weights using a randomly generated dataset. So,
basically, by allowing the base-pairs to have different weights and finding the optimum ones,
we seek to minimize the information we lose by ignoring the term with the entropy.

In our experiments, we also perform analysis on the base-pair maximization model, BPMax,
which finds the structure that has the maximum weighted base pair count, i.e.

BPMax(R, S) = max
s∈SI (R,S)

bpcount(s). (5)

This problem (without the weights for base-pairs) was previously studied by Pervouchine [40]
in an algorithm called IRIS. However, there is no publicly available correct implementation
of IRIS. As in BPPart, we allow weighted scores for the base-pairs in the BPMax algorithm to
maximize the correlation of its scores with those of piRNA. We give a dynamic programming
algorithm for this model in the Supplementary Material.

2.2 BPPart Algorithm

In this section, we give a dynamic programming algorithm, BPPart, to compute the partition
function. It is well-known that the partition function can be computed by developing similar
recursions as the one introduced in the simpler base-pair maximization models, such as BPMax
and IRIS, with two simple modifications. The first is that algebraically, we operate with
the field of reals rather than the max-plus semi-ring. Here, the additive identity is 0, rather
than INT_MIN and the multiplicative identity is 1, rather than 0. The second is that because
addition is not idempotent, we must carefully ensure that we enumerate substructures in
a mutually exclusive manner. Before starting to explain the algorithm and its recursions,
we have to mention that similar and equivalent (except for the weighted base-pairs feature
that is being to our model to decrease the effect of ignoring entropy) algorithms can be
derived from the complete models (piRNA and rip). However, we found it easier to come
with decompositions and recursions from scratch and build our 8 dynamic programming
tables, rather than starting with the complete models with over 90 tables, and eliminating or
merging those that capture cases not required in our simplified model. This also helps us to
come up with less and cleaner equations, and avoid any potential problems in reducing those
methods to solve our problem. Still the overall structure of the algorithms would probably
seem similar due to their common approach toward computing the partition function, namely
decomposing more general structure to simpler ones and using dynamic programming.

First, we start with the recursions for computing the partition function on a single strand
which is going to occur in many cases of the double-stranded version. Let Qi,j represent the
partition function of the subsequence [i, j]. As shown in Figure 2, there are two mutually
exclusive cases: either (the right case) there is no arc, or (the left case) there is a unique
leftmost arc (the cyan fill ensures this) which starts at k, and a substructure on [k, j] with
an arc starting at k, for which we introduce a new table Qz.

To define Qzi,j , let i • k (read as “let i arc k”) for some index k. This results in two Q
substructures, one on [i + 1, k − 1], and the other on [k + 1, j]. Therefore, the value of Qzi,j

can be computed using Equation (7) which accounts for the assumption that no pairing is
allowed between two bases that are less than 3 bases apart:

Qi,j =


1 j ≤ i

1 +
j−4∑
k=i

Qzk,j otherwise,
(6)
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=

jki j i i j

QzQ

Figure 2 For computing Q, notice that either there is no pairing or there is at least one arc which
starts at some index k and results in a case of Qz.

=

i j i jk + 1k

Qk+1,j

Qz
Qi+1,k−1

Figure 3 Computing Qz can be achieved by considering the base k that is paired with i and the
two Q substructures it forms, one between i and k and one after k.

Qzi,j =


0 j − i < 4

j∑
k=i+4

Qi+1,k−1 × escore(i,k) ×Qk+1,j otherwise.
(7)

For the partition function of a pair of RNA sequences, we consider a 4-dimensional
table QI in which QIi1,j1,i2,j2 is the value of base pair counting partition function for the
subsequences [i1, j1] on R and [i2, j2] on S. As Figure 4 shows, we can split the set of all
possible structures of QI into three mutually exclusive subsets. The leftmost case shows the
structures in which there exist no bonds (the first term of Equation (8). The other two cases
occur when there is at least one bond, and hence, unique leftmost events on both R and S,
at positions k1 and k2, respectively. In the second (middle) case, these leftmost events are
end points of a bond, k1 ◦ k2; hence, this case can be broken into: a bond-free section on
the left of the bond itself, and a general case of QI on the right of the bond. The third case
occurs when k1 and k2 are not end points of a bond. We call this structure QIa, and explain
it next.

QIi1,j1,i2,j2 =

Q(1)
i1,j1
×Q(2)

i2,j2
+

j1∑
k1=i1

j2∑
k2=i2

Li1,j1,k1,i2,j2,k2 +

j1∑
k1=i1

j2∑
k2=i2

(
Q(1)

i1,k1−1 ×Q(2)
i2,k2−1 ×QIak1,j1,k2,j2

)
, (8)

Li1,j1,k1,i2,j2,k2 = Q(1)
i1,k1−1 ×Q(2)

i2,k2−1 × eiscore(k1,k2) ×QIk1+1,j1,k2+1,j2 . (9)

For computing QIai1,j1,i2,j2 , (see Figure 5) we have to consider the property of this
structure that the leftmost bases on both R and S have to be events, but they cannot both
be the end points of a bond. Therefore, either one or both of them have to be end points of
an interaction arc. There are two possibilities.

WABI 2021
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= QI QIaQI

Q(1)

Q(2)

i1 j1

i2 j2

k1

k2

k1

k2

Q(1) Q(1)

Q(2) Q(2)

Figure 4 Each case of a QI structure (left side of the equation) can lead to three cases: either no
bonds exist (leftmost case), or at least one bond exists. If the first event on both of the sequences is
a bond (middle case) the subsequences to the left of the bond involve only Q and the subsequences
to the right recurs on QI. Otherwise (rightmost case) we will have QIa (see Figure 5).

=QIa QIs
(2)

QIe
QI QIQIs

(1) QI

i1 j1 k1k1k1

k2 k2 k2
i2 j2

Figure 5 There are three cases for computing the QIa structure; either the leftmost base of only
one of the strands is an end point of an arc or both end points are.

First, if both i1 and i2 are end points of some interaction arcs, i1 • k1 and i2 • k2, these
arcs must be equivalent (or else, we have a zigzag). As shown in the rightmost diagram in
Figure 5, QIa then splits into two exclusive substructures, namely one where the first and
last bases on each strand are paired, and the two arcs are equivalent (we call it QIei1,k1,i2,k2

and derive its recursion later), followed by QIk1+1,j1,k2+1,j2 on the suffixes of these arcs.
Otherwise, exactly one of the leftmost events on R and S is an end point of a bond, and

we have two symmetric cases (QIs(1) and QIs(2)), one where the interaction arc is in R, and
the other where it is in S. In the first case (middle diagram in Figure 5), let k1 be the event
in R such that i1 • k1 is an interaction arc, and [i2, k2] is the longest subsequence in S that
i1 • k1 subsumes, and k2 is an event. The suffix of this substructure recurs on QI. We derive
QIs(1) later.

To derive QIei1,j1,i2,j2 , note that removing the arcs i1 • j1 and i2 • j2 yields the general
case of QIi1+1,j1−1,i2+1,j2−1 for the inner-section with an additional constraint that there
has be at least one bond in that region because the assumption is that the extracted arcs
were interaction arcs. We can fulfill this constraint by excluding all cases where no bonds
exist (i.e., considering only the two rightmost substructures of Figure 4).

To derive QIs
(1)
i1,j1,i2,j2

let k1 be the leftmost event in the subsequence [i1 + 1, j1 − 1].
Note that such a k1 is guaranteed to exist because first, i1 • j1 subsumes [i2, j2] and we
know that i2 is an event, i.e., the end point of either a bond (subsumed by i1 • j1) or of an
interaction arc. Then (see Figure 6) we define a new substructure, QIaux(1), after removing
i1 • j1 and the prefix of R up to k1.
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= QIaux
(1)QIs

(1)

i1 j1

i2 j2

i1 j1

i2

k1Q(1)

j2

i1 + 1

j1 − 1

Figure 6 QIs(1) has one arc that can be extracted and the structure derived will have the property
that the two end bases of the bottom strand cannot be paired (the new structure inherits this
property from QIs(1)). On the top strand, we consider the leftmost event. This new structure is
QIaux(1).

= QImQIaux
(1)

i1 Q(1)Q(1)i1 j1

i2 j2 i2 i2

k1 k1

QIs
(1)

i1
j1 j1

j2 j2

Figure 7 Two cases must be considered for the QIaux(1) structure, in which the two end points
of the bottom strand are events. For the top strand, only the leftmost end point is required to be an
event. It can either be the end point of an arc (rightmost case) or not (leftmost case).

To derive QIaux(1)
i1,j1,i2,j2

, note that the context of its definition implies that i1, i2 and j2
are all three events. Let, as shown in Figure 7, k1 be the last event on [i1, j1]. Now, if i1 • k1,
then recur on QIs(1). Otherwise, k1 is an event that does not pair with i1. We define a new
substructure, QIm, where all four corners are events, and neither i1 • j1 nor i2 • j2 is allowed.

For computing QImi1,j1,i2,j2 , since there are four corners each of which can be the end
point of either a bond or of an arc, there might be at most sixteen possibilities. Upon
combining some of those sixteen possibilities, we have to consider four mutually exclusive
cases (see Figure 8). The first one is the case where i1 ◦ i2 and j1 ◦ j2 and the remaining
part will be QIi1+1,j1−1,i2+1,j2−1. That case corresponds to all four corner events being the
end points of bonds. Since we assume there are no crossing bonds, we must have i1 ◦ i2 and
j1 ◦ j2. In the second case, i1 and i2 are the end points of a bond, i.e., i1 ◦ i2, but either j1 or
j2 (or both) does not form a bond. That captures three out of the sixteen total possibilities.
Since j1 and j2 are both events but do not form a bond, we define a term QIac which is the
sum of QIe and the two symmetric QIs’s, since they preserve the constraints that arise in
the first term in the definition of QIa (see Figure 5). Note that we do not need a separate
dynamic programming table for QIac because it can simply be replaced with the sum of
the terms it represents. However, using this terms helps us to keep the equations easier to
follow. The prefix of this substructure in the second case is a general recursion on QI on the
subsequences [i1 + 1, k1 − 1] and [i2 + 1, k2 − 1]. The third case is the symmetric case of the
second case, i.e., there is no bond between i1 and i2, but j1 ◦ j2. The prefix of this bond is
a recursion on QIa. That captures three out of the sixteen total possibilities. Finally, the
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= QIaQI QIacQIm QIacQIa

i1 i1 j1 i1 j1 i1 j1

i2 j2

j1

i2 j2 i2 j2 i2 j2

i1 + 1

i2 + 1
j2 − 1

j1 − 1

i2 + 1 k2

k1

j2 − 1

j1 − 1 i1

i2 j2

j1k1k1 − 1

k2k2 − 1

i1 + 1

QI

k1 − 1

k2 − 1

Figure 8 For computing QIm, since we know the four end points are events, but none of the two
end points in one strand can form an arc, we must consider the four different cases shown above. For
convenience, arcs of QIac structure are shown with dash-dotted lines because it represents the sum
of three structures in which each of the arcs could be present or not (we could replace the second
and fourth cases with three cases, one for each term of Equation (11)).

fourth case corresponds to either i1 or i2 (or both) does not form a bond and either j1 or j2
(or both) does not form a bond. That captures the remaining nine out of the sixteen total
possibilities.

Putting all those together, we obtain

QIai1,j1,i2,j2 =
j1∑

k1=i1

j2∑
k2=i2

QIaci1,k1,i2,k2 ×QIk1+1,j1,k2+1,j2 , (10)

QIaci1,j1,i2,j2 = QIs(1)
i1,j1,i2,j2

+ QIs(2)
i1,j1,i2,j2

+ QIei1,j1,i2,j2 , (11)

QIei1,j1,i2,j2 =


0 j1 − i1 < 4

or j2 − i2 < 4

Mi1,j1,i2,j2 otherwise,

(12)

Mi1,j1,i2,j2 =
(

QIi1+1,j1−1,i2+1,j2−1 −Q(1)
i1+1,j1−1 ×Q(2)

i2+1,j2−1

)
×escore(i1,j1)+score(i2,j2), (13)

QIs(1)
i1,j1,i2,j2

=


0 j1 − i1 < 4 or j2 < i2

j1−1∑
k1=i1+1

Q(1)
i1+1,k1−1 × escore(i1,j1) × QIaux(1)

k1,j1−1,i2,j2
otherwise,

(14)

QIs(2)
i1,j1,i2,j2

=


0 j1 < i1 or j2 − i2 < 4

j2−1∑
k2=i2+1

Q(2)
i2+1,k2−1 × escore(i2,j2) × QIaux(2)

i1,j1,k2,j2−1 otherwise,

(15)

QIaux(1)
i1,j1,i2,j2

=
j1∑

k1=i1

(
QIs(1)

i1,k1,i2,j2
+ QImi1,k1,i2,j2

)
×Q(1)

k1+1,j1
, (16)
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QIaux(2)
i1,j1,i2,j2

=
j2∑

k2=i2

(
QIs(2)

i1,j1,i2,k2
+ QImi1,j1,i2,k2

)
×Q(2)

k2+1,j2
, (17)

QImi1,j1,i2,j2 =


eiscore(i1,i2) i1 = j1 and i2 = j2

Ni1,j1,i2,j2 i1 < j1 and i2 < j2

0 otherwise,

(18)

Ni1,j1,i2,j2 =

eiscore(i1,i2)+iscore(j1,j2) ×QIi1+1,j1−1,i2+1,j2−1+

eiscore(i1,i2) ×
j1∑

k1=i1+1

j2∑
k2=i2+1

QIi1+1,k1−1,i2+1,k2−1 ×QIack1,j1,k2,j2+

eiscore(j1,j2) ×QIai1,j1−1,i2,j2−1+
j1∑

k1=i1

j2∑
k2=i2

QIai1,k1,i2,k2 ×QIack1+1,j1,k2+1,j2 .

(19)

3 Results

To investigate the correlation between the scores of BPPart and BPMax, and those of piRNA,
we used the RISE database [16] which combines information about interacting RNAs from
multiple experiments. For the human dataset, we extracted all the interaction windows for
those pairs that have this data in RISE. We eliminated the ones with an interaction window
size of less than 15 because they are too short for an unbiased comparison. Then, we sorted
the remaining pairs based on the product of the lengths of the interacting windows (which is
the base of the term that appears in the time-complexity of the algorithms). Finally, the
first 50,500 pairs of sequences were chosen as our primary dataset for different experiments
and analysis.

We ran piRNA on our primary dataset at 37◦C. In order to run BPPart on this dataset,
we first have to choose the range of values that we want to explore for the weights of each
base-pair. In general, we want to use the stack energies of the Turner model as a starting
point for computing this range. Since the parameters form a projective space (invariant
results with respect to scaling), we considered a fixed weight of 3 for CG (and GC). Using the
experimentally computed stack energies of the Turner model, minimum and maximum values
for the weights of AU and GU were computed. That is, to compute the maximum weight of AU
(and UA), we consider the maximum released energy when AU (or UA) is stacked with another
pair; this happens when UA is stacked with CG and 2.4 kcal/mol energy is released. Then,
we considered the minimum value of released energy in an stack for CG or GC (for which we
assumed a constant weight of 3), which is 1.4 kcal/mol. We derived the maximum weight
of AU and UA as 5.143 by multiplying 2.4 by 3

1.4 . Finally, we made sure that the range of
values that we explore for the weight of AU and UA contains this maximum value (we chose
5.5 as the upper-bound). For finding the minimum weight of AU and UA, we consider their
minimum stack energy, which is 0.6 kcal/mol. Given the maximum energy of CG, namely
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3.4 kcal/mol, the value of interest is computed as 0.6× 3
3.4 = 0.529. However, for the sake of

comprehensiveness and exploring the shape of the plots, we used much smaller lower-bound,
−4.5, for our explorations.

Assuming a fixed weight of 3 for CG, we computed the Pearson and Spearman’s Rank
correlations with the scores from piRNA, for all the combinations of weights of AU and GU in
steps of 0.5. When computing the correlations, to normalize the scores from all algorithms,
we divide them by the sum of the lengths of corresponding sequences, LR + LS . This
normalization mitigates the effect of length bias on the computed correlations. This step is
necessary because, generally, as the length of the pair of sequences increases the scores of all
three algorithms increases, and if unnormalized scores are used, a biased higher correlation
will be derived. Note that for partition functions, piRNA and BPPart, we are computing the
log of the scores; that is why we factor out the sum of the lengths for normalization. If the
original values were to be used, we would have to take the (LR + LS)th roots of the scores.
Figure 9 (a) shows the Pearson correlations for different combinations of weights of AU and
GU at 37◦C. Figure 9 (b) shows the scatter plot of the scores for the best combination of
weights, which are 0.5, 1.0, and 3 for AU, GU, and CG, respectively. In this plot, the red line
shows the regression line that is fitted to the points by minimizing the mean squared error
(MSE). We performed the same steps and analysis for BPMax method (more details on this
method can be found in the Supplementary Material). The optimum values of correlation
are presented in Table 1. As the results show, there is a high correlation between piRNA and
BPPart as well as between piRNA and BPMax.

Table 1 Correlations between piRNA and BPPart and between piRNA and BPMax at 37◦C.

Method Pearson Spearman’s Rank

BPPart 0.855 0.864
BPMax 0.836 0.830

To make sure that the base-pair weights derived by our optimization approach are not
data-dependent, in spite of the our observation of very similar optimization plots on smaller
portions of the primary data, we conducted the same experiments for randomly generated
sequences. To factor out the effect of length, for each pair in our primary dataset, we
generated a pair of random sequences with the same lengths as those of the pair in our
primary dataset. Our results show similar optimized weights, but lower correlations on this
dataset (this will be discussed in the next section). More details on the results for this
dataset are provided in the Supplementary Material.

To better understand the behavior of the surface around the higher values in the correlation
plot of Figure 9 (a) and Figure 15 (b) in the Supplementary Material, we computed the
Shannon entropy for the values above a threshold. Figure 10 shows these values for the top
30 values of Pearson and Spearman’s Rank correlation at each temperature. We discuss
these results in the the next section.

Finally, we designed a pipeline for generating hypothesis about the roles of RNAs in
different diseases using our newly developed algorithm which makes large-scale analysis
of RRI datasets practical in a reasonable time (3 hours vs. one month using piRNA) with
reasonable resources (6.6 GB of RAM vs. about 70 GB of RAM for piRNA). We elaborate on
this pipeline and our results in the Supplementary Material.
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Figure 9 (a) Pearson correlation between piRNA and BPPart (vertical axis), on the primary
dataset, at 37◦C for different weights of AU (left axis) and GU (right axis). The weight of CG pair
is fixed to 3. (b) Scatter plot of the scores form piRNA (y-axis) and BPPart (x-axis) at 37◦C. The
read line is fitted to the points to minimize the Mean Squared Error (MSE).

4 Discussion

Note that we can rewrite equation 3 as the following

−∆G

T
= −∆H

T
+ ∆S, (20)

and it is clear that as T → 0, −∆H/T → ∞ and the contribution of ∆S is diminished to
0 since it is finite. Hence, at low temperatures, the effect of entropy becomes negligible,
and we expect to see strong correlation between the base pair counting model and full
thermodynamic model. To verify that the scores computed with our models follow this
theoretical observation, we computed the correlations at different temperatures, ranging from
−180 (◦C) to 37 (◦C) (at temperatures lower than −180 (◦C) the implementation of piRNA
was unstable and resulted in NaN values, which prevented us from computing the correlation
values). Figure 11 shows the Pearson correlations between BPPart and BPMax scores with
piRNA scores for for their best combination of base-pair weights at 37 (◦C). These optimum
weights for BPPart are 0.5, 1.0, and 3 for AU, GU, and CG, respectively, and for BPMax are 1.0,
1.5, and 3 for AU, GU, and CG, respectively.

Perfectly conforming with the theory, we see higher correlations at low temperatures.
These results, also, somewhat validates our implementations as piRNA was written totally
independently more than 10 years ago. Moreover, by comparing Figure 9 (a) to Figure 12, and
Figure 15 (b) to Figure 15 (a), we notice that the surface around the optimum value for higher
temperatures becomes flatter. Figure 10, which shows the entropy of the top 30 correlation
values, confirms this observation; this means the correlation values are less sensitive to a
change in the weights of the base pairs as the temperature increases; this conforms with
the theory because at higher temperatures, the thermodynamic entropy increases and the
total score of piRNA becomes less sensitive to the energy released by pairings. This means
that slight changes to our optimum weights at the body temperature, are less susceptible to
result in different correlations than the optimum possible correlations that can be achieved
by using the optimum weights.
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Figure 10 Shannon entropy for the top 30 Pearson (left) and Spearman’s rank (right) correlation
values at different temperatures for BPPart and BPMax.

Figure 11 Pearson correlation (left) and Spearman’s rank correlation (right) between piRNA and
BPPart and between piRNA and BPMax at different temperatures.

Another noticeable characteristic of the optimization plots in Figures 9 (a) and 15 is the
region in which the scores of both AU and GU are non-positive. This region for BPMax is flat
because when both of these pairs are penalized (or not rewarded when their score is zero),
the algorithm simply avoids making such pairs because it is trying to maximize the score.
Therefore, it only tries to maximize the number of CG pairs, which is independent of the
scores (penalty in this case) of the other two types of base pairs. This also applies to the case
where one of the base pairs has a non-positive score; in that case, BPMax works independently
of the score of that base pair. So, as soon as any of the scores becomes non-positive, BPMax
remains constant along the corresponding axis. For BPPart, however, the story is different
because it simply counts all the possible pairings and even if the score of a base pair becomes
negative, it does not ignore counting that.

Moreover, BPPart has a higher correlation than BPMax does, which comes with the price
of a 6× increase in empirical running time. Also, as Figure 10 shows, the Shannon entropy
for the top 30 values is less in BPMax and the gap between them grows as temperature
decreases; this shows that BPPart has a flatter region around the optimum value and its
optimum correlation is less sensitive to changes in the optimum weights. Hence, we now
have three choices in increasing order of computational cost: BPMax, BPPart, and piRNA. The
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computation time increases by about 6× and 225×, respectively, from one to the next on
the primary dataset. We also compared their costs on a single pair of sequences, each with a
length of 100 bases. It took about 1, 6, and 1200 minuets and about 0.2 GB, 1.8 GB, and 18.5
GB of RAM for BPMax, BPPart, and piRNA, respectively, to compute the score of interaction.
Note that here BPPart was about 200× faster than piRNA because the sequences had equal
lengths, and the terms of degree four in the length of one of the sequences that appear in the
time-complexity of piRNA (mentioned in the first section) do not make a difference here.

Given the higher correlations and less sensitivity to the optimum base-pair weights, paying
the extra cost (compared to BPMax) to use BPPart seems justifiable in many applications.
Another important benefit of partition functions, such as BPPart and piRNA over base-pair
maximization models (e.g., BPMax) is that they can be used to compute probabilities that a
base is paired or remains unpaired since we have the total counts for both cases; this property
becomes necessary when working with tools such as rip [21] and biRNA [7]. Moreover,
when studying the effects of SNPs and variants (e.g., the pipeline we have included in the
Supplementary Material) on RNA-RNA interaction, BPMax cannot replace partition functions
that are more sensitive to small perturbations.

Finally, based on the results of the experiments on both the primary dataset and the
random one, we see that although the shapes of the optimization plots and the optimum
weights are very similar, the correlation values are less for the random dataset. This
observation is probably due to the fact that interaction regions are more complementary than
the random sequences of the same size. When the genomic sequences are more complementary,
the effect of the energy released by pairing becomes more significant than the energy added
by an increase in the entropy on the final score of piRNA. In randomly generated sequences,
however, BPPart and BPMax do not capture the increase in the entropy that leads to higher
energy, which makes the interaction less desirable. With this effect, BPPart and BPMax,
might overestimate the score of interaction among two non-interacting regions. It is worth
mentioning that using the weighted base-pairs has diminished this effect because they are
optimized to generate more similar scores to the ones from complete models that consider
entropy. This hypothesis has to be thoroughly investigated in the future.

5 Conclusion

We revisited the problems of partition function and structure prediction for interacting
RNAs. We simplified the energy model by ignoring the effects of entropy and reduced the
full-thermodynamic model into a simple weighted base-pair counting one to obtain BPPart
for the partition function. As a result, BPPart runs about 225× faster than piRNA does.
Hence, we gained significant speedup by potentially sacrificing accuracy. To evaluate practical
accuracy of our new model, we computed the Pearson and Spearman’s Rank correlations
between the results of BPPart and piRNA on 50,500 experimentally characterized RRIs in
the RISE database [16]. Results highly correlate with those of piRNA. At the room and body
temperatures, there is considerable correlation and therefore, significant information in the
results of BPPart.

We conclude that our simpler models captures a significant portion of the thermodynamic
information. Its considerable speedup and simplicity enables its use-cases in larger-scale
studies which were not feasible with comprehensive models in reasonable time and resources.
This approach for simplifying the full thermodynamic models can also be used together
with other approximation methods that are based on thermodynamic models. Also, the
information captured by BPPart can possibly be used to introduce physics-guided information
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that may complement more complex prediction models in the future. We introduced a pipeline
which becomes practical with our faster model and might be useful to explain how some
mutations lead to some specific phenotypic consequences.
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A Rivas-Eddy Diagrams

Here we describe the “Rivas-Eddy diagram” notation that we adopt in this paper. The main
elements are:
1. A solid horizontal straight line represents a sequence; we have two sequences drawn as

two parallel horizontal lines.
2. A solid curved line between two points in the same sequence is an arc; all arcs are either

above the upper sequence, or below the lower one.
3. A dotted curved line with a cross in the middle, between two points in the same sequence

means that those two points do not form an arc.
4. A dashed curved line between two points in the same sequence denotes either 2 or 3.
5. A solid line between two points in different sequences is a bond.
6. Similarly, a dotted line with a cross in the middle, between two points in different

sequences means that those two points do not form a bond.
7. A dashed line between two points in different sequences denotes either 5 or 6.
8. A region is the space under an arc, or between bonds. When there are no additional

choices of bonds/arcs in a given region, we fill it with a color (cyan); no arc or bond
crosses a filled region.

9. A point in a sequence may be labeled with an index, and in general, the set of such
indices are free variables used in the recursions; the index of unlabeled points before
(after) labeled points is assumed to be the predecessor (successor) of the label.

10. A diagram may be labeled with the name(s) of the constituent substructures (which are
eventually implemented as dynamic programming tables/variables).

11. A vanishing arc (i.e., one that starts at some index, and does not explicitly specify an
end point) represents a structure whose start point is as specified, and the end point is to
be determined.

B Other Results for BPPart

For the sake of comparison of how the plots in Figure 9 would look like at −180◦C, we
generated the same plots and presented them in Figure 12.

As mentioned in the paper, we performed the same optimization procedure on randomly-
generated data. Figure 13 shows these optimization plots. Notice that we shapes of the plots
and optimum weights are very similar, but the correlations are less. The potential reasons
for this observation are disucussed in the paper.

C BPMax Algorithm

Here, we give the dynamic programming algorithm for the BPMax model. When explaining
some of the equations, helper functions, called H, L, M, N , are used to ease the reading of
the paper. To differentiate these helper functions, superscripts are used.

For a single strand of nucleotides, we define Si,j as the maximum weighted sum of base
pair scores on all possible foldings of subsequence [i, j]. We need to make such a table, for
each of the R and S strands, and we distinguish between them by superscripts (1) and (2),
respectively. We also define Fi1,j1,i2,j2 as the maximum weighted sum of base pair scores
(both intra- and inter-pairings) of subsequences [i1, j1] from R and [i2, j2] from S.
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Figure 12 (a) Pearson correlation between piRNA and BPPart (vertical axis), on the primary
dataset, at −180◦C for different weights of AU (left axis) and GU (right axis). The weight of CG

pair is fixed to 3. (b) Scatter plot of the scores form piRNA (y-axis) and BPPart (x-axis) at −180◦C.
The read line is fitted to the points to minimize the Mean Squared Error (MSE).

Figure 13 Pearson correlation between piRNA and BPPart (vertical axis), on the randomly
generated dataset, at −180◦C (left) and 37◦C (right) for different values of constant factors (weights)
for AU (left axis) and GU (right axis). The weight of CG pair is fixed at 3.

The computation of Si,j is based on the well known single RNA folding algorithm [37].
For short sequences (i.e., those whose length is strictly less than 5) the score is 0, otherwise,
we use the recursion in the second case of Equation (21) shown below. It considers the case
where we have an arc i • j and recurs on [i + 1, j − 1], and also other cases in which the ith

and jth bases are not paired and the [i, j] is split into two smaller subsequences:

Si,j =

 0 j − i < 4

max
(

Si+1,j−1 + score(i, j), j−1max
k=i

Si,k + Sk+1,j

)
otherwise.

(21)

We define the recurrences for Fi1,j1,i2,j2 similarly. When either sequence is empty, the
value is simply the S of the other sequence, and for two singleton sequences, it is the score of
the single bond possible. Otherwise we have three cases: (i) i1 arcs j1 (i1 • j1) in which case
the residual structure is given by a recursion on Fi1+1,j1−1,i2,j2 , (ii) the symmetric case of
i2 • j2 and Fi1,j1,i2+1,j2−1, or (iii) none of these arcs, and two recursive cases of Fi1,k1,i2,k2

and Fk1+1,j1,k2+1,j2 . They are illustrated in Figure 14, which lead to
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k2 + 1

k1
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i1 + 1

i2 + 1

j1 − 1

j2 − 1

Figure 14 The four cases defining table F . Note that in the BPMax algorithm, the cases do not
have to be mutually exclusive since we are working with the max operator, which is idempotent.

Fi1,j1,i2,j2 =



−∞ j1 < i1 and j2 < i2

S(1)
i1,j1

i1 ≤ j1 and j2 < i2

S(2)
i2,j2

j1 < i1 and i2 ≤ j2

iscore(i1, i2) i1 = j1 and i2 = j2

max [ Fi1+1,j1−1,i2,j2 + score(i1, j1),
Fi1,j1,i2+1,j2−1 + score(i2, j2),
Hi1,j1,i2,j2 ] otherwise,

(22)

Hi1,j1,i2,j2 = j1max
k1=i1−1

j2max
k2=i2−1

(Fi1,k1,i2,k2 + Fk1+1,j1,k2+1,j2). (23)

Note that H is equivalent to

Hi1,j1,i2,j2 = max



S(1)(i1, j1) + S(2)(i2, j2),
j1−1max
k1=i1

j2−1max
k2=i2

Fi1,k1,i2,k2 + Fk1+1,j1,k2+1,j2 ,

j2−1max
k2=i2

S(2)(i2, k2) + Fi1,j1,k2+1,j2 ,

j2−1max
k2=i2

Fi1,j1,i2,k2 + S(2)(k2 + 1, j2),
j1−1max
k1=i1

S(1)(i1, k1) + Fk1+1,j1,i2,j2 ,

j1−1max
k1=i1

Fi1,k1,i2,j2 + S(1)(k1 + 1, j1)


. (24)

In Equation (22), we compute S tables separately for each strand, according to Equa-
tion (21) with the corresponding sequence as the input, and we distinguish them by su-
perscripts (1) and (2) above. We use the same superscript convention throughout this
paper.
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Figure 15 Pearson correlation between piRNA and BPMax (vertical axis), on the primary dataset,
at −180◦C (left) and 37◦C (right) for different values of constant factors (weights) for AU (left axis)
and GU (right axis). The weight of CG pair is fixed at 3.

Figure 16 Pearson correlation between piRNA and BPMax (vertical axis), on the randomly generated
dataset, at −180◦C (left) and 37◦C (right) for different values of constant factors (weights) for AU

(left axis) and GU (right axis). The weight of CG pair is fixed at 3.

C.1 Results for BPMax
The BPMax algorithm was about 1300× faster than piRNA on our primary dataset. We
performed similar optimization procedure as the one explained for BPPart to obtain optimum
weights for the base-pairs that maximize the correlations with piRNA scores. Figure 15 showes
these optimization plots at −180◦C and 37◦C. We did the same analysis on randomly-
generate data and presented the optimization plots in Figure 16.

D Application of BPPart in Human Biology

One of the use-cases of BPPart and BPMax, among others, is making predictions about the
consequences of a slight change in the RNA sequences. This information becomes helpful for
various domains and tasks, such as synthetic biology and studying the mutations. Between
BPMax and BPPart, the latter is much more sensitive to small changes in the sequence, because
it considers all possible structures that the two interacting sequences might form. Therefore,
even a missense mutation might make a tangible difference in the computed BPPart score.
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To verify this hypothesis, we used BPPart to study the effects of known missense mutations,
provided by Ensembl, in the interaction regions of some RISE pairs. Given a pair of
interacting RNAs in RISE for which the information about the interacting regions is provided,
we retrieved the data of all the reported missense mutations of those regions from Ensembl
API. Also, we got the phenotypic consequences of each mutation from Ensembl. Finally,
we computed the BPPart score for the original sequence of one of the interacting regions
and each of the mutated versions of the other sequence. Among all the generated scores
for a pair, we found the outliers using the interquartile range. These outliers represent a
mutation in the interacting window of one of the RNA pairs that causes a great difference
in the interaction score. In the rest of this section, we almost-randomly pick and narrate
two of such cases that we observed, among many discovered ones. In the arxiv version of
this paper [14], we report 65 such pairs that have been discovered using this pipeline after
analyzing more than one million pairs of sequences that have been generated after applying
the known missense mutations to over 15, 200 pairs of interacting sequences reported in the
RISE database. Further study of each of these pairs and more comprehensive study of effect
of nonsense mutations on RRI would be a next step in the future.

D.1 Traces of TRAF3 in CADASIL
CADASIL is an inherited condition in which the muscle cells of small blood vessels, especially
the ones in the brain, gradually die and cause many impairements, such as stroke, cognitive
impairement, and mood disorders in the elderly [9]. It has been shown that mutation
in NOTCH3, which resides on the reverse strand of chromosome 19, is responsible for
this condition in people with this genetic disorder [22]. NOTCH3 and TRAF3 are a pair
of interacting RNAs that have been reported in RISE. One of the missense mutations
in NOTCH3 that has been reported to be contributing to CADASIL [22] lies within the
interacting region of this gene, from loci 15, 161, 520 to 15, 161, 543 (according to GRCh38
assembly of human genome), with TRAF3. Interestingly, this mutation, which replaces
nucletide C with G at loci 15, 161, 526 of chromosome 19, causes a dramatic increase in
the score of BPPart such that it makes it an outlier when the aformentioned procedure is
followed. TRAF3 is a gene that has been reported to play a role in angiogenesis [20, 28]. A
noticeable increase in the score of BPPart increases the chance that these two RNAs interact
and cause post-transcriptional conditions that affect the translation rate of TRAF3 which
possibly contributes to the phenotypic consequences of CADASIL. Further evaluation and
verification of this hypothesis requires further experimental analysis.

D.2 Traces of SNORD3D in Parkinson’s Disease
SNORD3D is a small nucleolar RNA which has been detected not long ago [17] with which
no specific task or annotation is associated in the literature yet. According to the RISE
database, one of the genes that interacts with this snoRNA is GBA. Mutations in GBA has
been reported to play a role in Parkinson’s disease which is a brain disorder that affects
movement and often causes tremors. One of the GBA mutations that is reported to be linked
with Parkinson’s disease lies within the interaction region of this gene, from loci 155, 239, 966
to 155, 239, 984 (according to GRCh38 assembly of human genome), with SNORD3D. This
specific mutation of GBA, which changes the nucleotide G to C at loci 155, 239, 972 of
chromosome 1, is one of the cases that is detected as an outlier using our aforementioned
analysis of BPPart scores. This mutation, when applied to GBA, decreases its score of
interaction with SNORD3D, which might cause the interaction to occur much less than the
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normal case. This possibly leads to a change in the expression of GBA protein. According to
KEGG, GBA is a member of Other glycan degradation, Sphingolipid metabolism, Metabolic
pathways, and Lysosome pathways [47]. Therefore, we hypothesize the role of SNORD3D in
some or all of those pathways, particularly, the ones that are closely related to Parkinson’s
disease. Further evaluation of this hypothesis requires further experimental data and analysis.
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