BISER: Fast Characterization of Segmental
Duplication Structure in Multiple Genome
Assemblies

Hamza ISerié
Department of Computer Science, University of Victoria, Canada

Can Alkan

Department of Computer Engineering, Bilkent University, Ankara, Turkey

Faraz Hach

Vancouver Prostate Centre, Canada

Ibrahim Numanagié¢ &
Department of Computer Science, University of Victoria, Canada

—— Abstract

The increasing availability of high-quality genome assemblies raised interest in the characterization of
genomic architecture. Major architectural parts, such as common repeats and segmental duplications
(SDs), increase genome plasticity that stimulates further evolution by changing the genomic structure.
However, optimal computation of SDs through standard local alignment algorithms is impractical
due to the size of most genomes. A cross-genome evolutionary analysis of SDs is even harder, as one
needs to characterize SDs in multiple genomes and find relations between those SDs and unique
segments in other genomes. Thus there is a need for fast and accurate algorithms to characterize SD
structure in multiple genome assemblies to better understand the evolutionary forces that shaped
the genomes of today.

Here we introduce a new tool, BISER, to quickly detect SDs in multiple genomes and identify
elementary SDs and core duplicons that drive the formation of such SDs. BISER improves earlier
tools by (i) scaling the detection of SDs with low homology (75%) to multiple genomes while
introducing further 8-24x speed-ups over the existing tools, and by (ii) characterizing elementary
SDs and detecting core duplicons to help trace the evolutionary history of duplications to as far as
90 million years.

2012 ACM Subject Classification Applied computing — Bioinformatics

Keywords and phrases genome analysis, fast alignment, segmental duplications, core duplicons,
sequence decomposition

Digital Object Identifier 10.4230/LIPIcs.WABI.2021.15

Supplementary Material BISER is implemented in Seq and C++ programming languages:
Software (Source Code): https://github.com/0xTCG/biser
archived at swh:1:dir:0659879a5b71885efcca60618£9888ee6a5533c6

Funding H.I. and I.N. were supported by the National Science and Engineering Council of Canada
(NSERC) Discovery Grant (RGPIN-04973) and the Canada Research Chairs Program. F.H. was
supported by NSERC Discovery Grant (RGPIN-05952) and Michael Smith Foundation for Health
Research (MSFHR) Scholar Award (SCH-2020-0370).

Acknowledgements We thank Haris Smajlovi¢ for his invaluable comments and suggestions during

the manuscript preparation.

© Hamza ISerié¢, Can Alkan, Faraz Hach, and Ibrahim Numanagié;
37 licensed under Creative Commons License CC-BY 4.0
21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 15; pp. 15:1-15:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:inumanag@uvic.ca
https://doi.org/10.4230/LIPIcs.WABI.2021.15
https://github.com/0xTCG/biser
https://archive.softwareheritage.org/swh:1:dir:0659879a5b71885efcca60618f9888ee6a5533c6;origin=https://github.com/0xTCG/biser;visit=swh:1:snp:9eb1f70330bc37ad0f61f9100e4a64b28a4868c6;anchor=swh:1:rev:b9f6988c5a42d528ad6c5b1cd80babf66cc5bbe4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2

BISER

1 Introduction

Segmental duplications (SDs), also known as low-copy repeats, are genomic segments larger
than 1 Kbp that are duplicated one or more times in a given genome with a high level of
homology [8]. While nearly all eukaryotic genomes harbour SDs, it is the human genome
that exhibits the largest diversity of SDs. At least 6% of the human genome is covered by
SDs ranging from 1 Kbp to a few megabases [8]. The architecture of human SDs also differs
from other mammalian species both in its complexity and frequency [27]. For example, while
most species harbour tandem SDs, the human genome is repleted with interspersed (both
intra- and inter-chromosomal) SD blocks [10]. Human SDs are also often duplicated multiple
times within the genome, often immediately next to, or even within an already existing SD
cluster. This complex duplication architecture points to a major role that SDs play in human
evolution [9, 7, 31]. Human SDs also introduce a significant level of genomic instability that
results in increased susceptibility to various diseases [5, 19]. This has led to evolutionary
adaptation in the shape of genes and transcripts unique to the human genome that aim
to offset the effects of such instability [15]. Finally, SDs display significant diversity across
different human populations and can be used as one of the markers for population genetics
studies [38].

In order to understand the architecture and evolution of eukaryotic SDs, the first step
is detecting all SDs within a given genome. However, SD detection is a computationally
costly problem. The theoretically optimal solution to this problem — a local alignment of the
entire genome to itself — is unfeasible due to large sizes of eukaryotic genomes that render
the classical quadratic time algorithms such as Smith-Waterman impractical. Furthermore,
the homology levels between SD copies — as low as 75% — prevent the use of the available
edit distance approximations with theoretical guarantees [4, 20]. This is likely to remain so
due to the sub-quadratic inapproximability of edit distance metrics [6]. The vast majority
of sequence search and whole-genome alignment tools that rely on heuristics to compute
the local alignments, such as MUMmer [32] and BLAST [2], also assume high levels of
identity between two sequences and therefore are not able to efficiently find evolutionarily
older SD regions. Even specialized aligners for noisy long reads, such as Minimap2 [30] or
MashMap [24], cannot handle 75% homology that is lower than the expected noise of long
reads (up to 15%, although sequencing error rates are improved recently to 5%) [3]. Finally,
even if we use higher homology thresholds (such as 90%) to define an SD, the presence of
low-complexity repeats and the complex SD rearrangement architecture often prevents the
off-the-shelf use of the existing search and alignment tools for detecting SDs.

For these reasons, only a few SD detection tools have been developed in the last two
decades, and most of them employ various heuristics and workarounds — often without any
theoretical guarantees — to quickly find a set of acceptable SDs. The gold standard for SD
detection, Whole-Genome Assembly Comparison (WGAC), uses various techniques such
as hard-masking and alignment chunking to find SDs [8]. While its output is used as the
canonical set of SDs in the currently available genomes, and as such forms the basis of the
vast majority of SD analysis studies, WGAC can only find recent or highly conserved SDs
(i.e. SDs with > 90% homology) within primate lineages. Furthermore, WGAC requires
specialized hardware to run and takes several days to complete. Few other tools developed
as a replacement for WGAC — namely SDdetector [13] and ASGART [14] — are also limited
in their ability to find SDs with less than 90% homology. Currently, the only tools that
are able to detect SDs with lower homology are SDquest [34] and SEDEF [33]. SEDEF
exploits the unique biological properties of the SD evolutionary process and combines it with

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

a Poisson error model and MinHash approximation scheme, previously used for long-read
alignment [24], to quickly find SDs even with 75% homology — thus enabling the study of
SDs as old as 90 million years [33], — while also providing basic theoretical guarantees about
the sensitivity of the search process. SDquest, on the other hand, relies on k-mer counting
to find seed SD regions that are later extended and aligned with LASTZ [21].

It is important to point out that an SD is often formed by copying parts of older, more
ancient SDs to a different location. This, in turn, implies that each SD can be decomposed
into a set of short building blocks, where each block either stems from an ancient SD or

a newly copied genomic region. Such building blocks are called “elementary SDs” [27].
Elementary SDs are often shared across related species within the same evolutionary branch.

It has been proposed that the whole SD formation process is evolutionarily driven by a small
subset of elementary SDs, often dubbed seeds or core duplicons, and that every SD harbours
at least one such core duplicon [27]. Based on their cores, SDs can be hierarchically clustered
into distinct clades. For example, the human genome SDs can be divided into 435 duplicon
blocks that are further classified into 24 clades, seeded by a set of core duplicons with a total
span of 2 Mbps that is often gene-rich and transcriptionally active. The prime example of a
mosaic-like recombination region that is seeded by an SD core is the LCR16 locus of the
human genome that is shared with many other primates [10].

The SD evolutionary history analysis and the detection of core duplicons require a joint
analysis of SDs in many related species. However, while existing SD tools are able to find
SDs in single genomes in a reasonable amount of time, none of them can scale — at least not
efficiently — to multiple genome assemblies. Furthermore, no publicly available tool is able to
provide a deeper understanding of SD evolutionary architecture or find core duplicons across
different species, mostly due to the computational complexity of such analysis because of the
large number of existing SDs within different species'. For these reasons, only a small subset
of previously reported core duplicons was analyzed in-depth (e.g. LCR16 cores), and often
so by manually focusing on narrow genomic regions to make the analysis tractable [10]. This
has prevented the emergence of a clearer picture of the SD evolution across different species,
especially of those SDs that preclude the primate branch of the evolutionary tree.

Here we introduce BISER (Brisk Inference of Segmental duplication Evolutionary
stRucture), a new framework implemented in Seq [36] and C++ that is specifically developed

to quickly detect SDs even at low homology levels (75%) across multiple related genomes.

BISER is also able to infer the elementary and core duplicons and thus allow an evolutionary
analysis of all SDs in a given set of related genomes. The key conceptual advances of BISER
consist of a novel linear-time algorithm that can quickly detect regions that harbour SDs in
a given set of genomes, and a new method for fast SD decomposition into a set of elementary
SDs based on the union-find algorithm. BISER can discover, decompose and cluster SDs in
the human genome in 60 CPU minutes — an 8% speed-up over SEDEF and 25x speed-up
over SDquest — and analyze all shared SDs in seven primate genomes in less than 16 CPU
hours, translating to 2.5 hours on a standard 8-core laptop computer. The flexibility of
BISER will make it a useful tool for SD characterizations that will open doors towards a
better understanding of the complex evolutionary architecture of these functionally important
genomic events.

1 The source code that was used for older analyses [27] is not publicly available. SDquest, on the other
hand, is able to detect elementary SDs but only at the single genome level.

15:3

WABI 2021

15:4

BISER

2 Methods

2.1 Preliminaries

Consider a genomic sequence G = g1g293 . - - g|| of length |G| and alphabet ¥ = {A,C, G, T,
N}. Let G; = g; ... Ggitn—1 be a substring of G of length n that starts at position ¢ in G. To
simplify the notation, the length is assumed to be n. We will use an explicit notation Gj.;4r
for a substring of length n starting at position ¢ when a need arises. Let s o s represent a
string concatenation of strings s; and ss.

Segmental duplications are long, low-copy repeats generated during genome evolution
over millions of years. Following such an event, different copies of a repeat get subjected to
different sets of mutations, causing them to diverge from each other over time. Thus, it is
necessary to introduce a similarity metric between two strings in order to detect SDs in a
given genome. To that end, we use the Levenshtein’s [28] edit distance metric £ between two
strings s and s’ that measures the minimum number of edit operations (i.e., substitutions,
insertions, and deletions at the single nucleotide level) in the alignment of s and s’. Let £ be
the length of such alignment; it is clear that max(|s|, |s'|) < £ <|s|+ |s’|. We can also define
an edit error err(-,-) between s and s’ (or, in the context of this paper, an error) as the
normalized edit distance: err(s,s’) = £(s, s')/{. Intuitively, this corresponds to the sequence
divergence of s and s’. Now we can formally define an SD as follows:

» Definition 1. A segmental duplication (SD) within the error threshold € is a tuple of
paralog sequences (G;, G;) that satisfies the following criteria:
1. err(G;,Gj) < ¢
2. £ > 1,000 where € is the length of the optimal alignment between G; and G;; and
3. the overlap between G; and G; is at most € -n 2.
Given a set of genomes G', ..., G and their mutual evolutionary relationships, our goal is
to:
find a set of valid SDs, SD’, within each G* (SD detection);
find all copies of both s and s’ for (s,s') € SD" in other genomes G7, j # i, if such copies
exist (SD cross-species conservation detection); and
decompose each SD from SD = SD' U --- U SD” into a set of elementary SDs E,
and determine the set of core duplicons that drive the formation of SDs in SD (SD
decomposition).
To that end, we present BISER, a computational framework that is able to efficiently perform
these steps, and we describe the algorithms behind it in the following sections. For the sake
of clarity, unless otherwise noted, we assume that we operate on a single genome G. Since
SDs are by definition different from low-complexity repeats and transposons, we also assume
that all genomes G',...,G" are hard-masked and, as such, do not contain such elements.

2.1.1 SD Error Model

Different paralogs of an SD are mutated independently of each other. Therefore, the sequence
similarity of paralogs is correlated with the age of the duplication event — more recent copies
are nearly identical, while distant ancestral copies are dissimilar. It has been proposed that

2 Ideally, the SD mates should not overlap; however, due to the presence of errors, we need to account for
at most € - n overlap.

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

the sequence similarity of older SDs (e.g., those shared by the mouse and human genomes)
falls as low as 75% [33]. In other words, the error between different copies of an old SDs
exceeds 25% (i.e., err(s,s’) > 0.25 for SD paralogs s and s’, according the definition above).

Detection of duplicated regions within such a large error threshold is a challenging
problem, as nearly any edit distance approximation technique with or without theoretical
guarantees breaks down at such high levels of dissimilarity [4, 24], provided that this error is
truly random. However, that is not the case: we have previously shown that the SD mutation
process is an amalgamation of two independent mutation processes, namely the background
point mutations (also known as paralogous sequence variants, or PSVs) and the large-scale
block edits. As such, the overall error rate € can be expressed as a sum of two independent
error rates, ep (PSV mutation rate) and g (block edit rate), where only ep is driven by a
truly random mutation process.

In the case when paralogs share the 75% sequence identity, it has been shown that the
random point mutations (PSVs) contribute at most 15% (ep < 0.15) towards the total error
¢ [33] (this also holds for many other mammalian genomes, as their substitution rate is often
lower than the human substitution rate [16]). The remaining 10% is assumed to correspond
to the block edit rate eg. Note that these mutations are clustered block errors and as such
are randomly distributed across SD regions. The probability of a large block event is roughly
0.005 based on the analysis of existing SD calls.

On the other hand, we assume that PSVs between two SD paralogs s and s’ follow a

Poisson error model [24, 17], and that those mutations occur independently from each other.

It follows that any k-mer in s’ has accumulated on average k - €p mutations compared to the
originating k-mer in s, provided that such k-mer was part of the original copy event. By
setting a Poisson parameter A = k - ep, we obtain the probability of a duplication event in
which a k-mer is preserved in both SD paralogs (i.e., that a k-mer is error-free) to be e

Let us return to the main problem of determining whether two strings s and s” are “similar
enough” to be classified as SDs. As mentioned before, classical edit distance calculation
algorithms would be too slow for this purpose. Instead, we use an indirect approach
that measures the similarity of strings s and s’ by counting the number of shared k-mers
in their respective k-mer sets K(s) and K(s’). It has been shown that Jaccard index

(T(K(s),K(s")) = w) is a good proxy for £(s, s’) under the Poisson error model [24].

K(s)UK(s’)
Thus we can combine the Poisson error model with the SD error model, and obtain the

expected value of Jaccard index 7 between any two strings s and s’, whose edit error err(s, s')
follows the SD error model and is lower than ¢ = ep + ep to be [33]:

B , 1—ep) 1
P KK 2 L L

(1)

As we cannot use local alignment to efficiently enumerate all SDs in a given genome due
to both time and space complexity, we utilize a heuristic approach to enumerate all pairs of

regions in G that are likely to harbour one or more segmental duplications. We call these
pairs putative SDs. These pairs are not guaranteed to contain a “true” SD and must be later
aligned to each other to ascertain the presence of true SDs. Nevertheless, such an approach
will filter out the regions that do not harbour SDs, and thus significantly reduce the amount
of work needed for detecting “true” SDs. The overall performance of our method, both in
terms of performance and sensitivity, will depend on how well the putative SDs are chosen.

The problem of putative SD detection can be, thanks to the SD error model, easily
expressed as an instance of a filtering problem: find all pairs of indices 7, in G such that
J(K(G;),K(G;)) > 7, where 7 is the lower bound from the Equation 1. Here we assume
that the size of G; and G exceeds the SD length threshold (1,000 bp), and no k-mer occurs
twice in either G; or Gj.

7’66}:

15:5

WABI 2021

15:6

BISER

2.2 SD Detection

Algorithm 1 Algorithm for finding putative

SDs.
Input :Genomic sequence G, its k-mer index Ig, Y LK
threshold A.
Output : A list SD of putative SDs. / (3) implicit putative SD extension
L« [; SD <+ [}; (no intersection)
for z < 1 to |G| do

K+ IG[G1:1+I€]§ (74K7ZL) — (17 1)7
append (z, K, , k) to L if L is empty; (1) new putative SD
while ix < |K| and i, <|L| do
Y Ki; (ba, by, 1) < Lig;
(1) if y </{, then ,((2) putative SD extension
insert (z,y, k) to L before ir;
advance ix and ir;
Ise if y > ¢, + 1 and
max(z — lz,y — ly) — 1 < A then
extend L;, to cover Gg.zyk and
Gy:y+k;
increase counts for | J(L:,) and [(L:,);
advance ix; i, <CheckJaccard (L;,)
Ise if y < start(L;, +1) then (b)
insert (z,y, k) to L before ir;
advance ix and ip;

S
(3) else
increase count for | J(Ls,); X '
i1, +CheckJaccard (L;,) 5’

end

o)

(2)

(1) new putative SD

o)

()

end

Preserved regions Mutated regions
end 9 9

(@) (<)

Figure 1 (a) A plane-sweep algorithm for finding putative SDs. (b) Visual guide for the algorithm.
The algorithm sweeps a vertical dashed line through the set of winnowed k-mers in a genome G
(represented by the z axis). At each k-mer starting at the location z, it queries the index Ig to
obtain a sorted list K of k’s occurrences in G (shown on the right side of the sweep line). The
algorithm then scans K and the list L of putative SDs found thus far at the same time. At each
step, it examines ir-th element of L and ix-th element of K, and decides whether to start a new
putative SD (cases (1) and (1’), green k-mers on the right), extend the current putative SD with the
current k-mer (case (2), black k-mer on the right), or subsume the current k-mer within the current
putative SD (case (3), red k-mer). In all of these cases, the algorithm updates the counts of k-mer
union U ; and intersection ﬂ ,, for each processed putative SD (note that it only updates the counts
and does not maintain the sets themselves). The CheckJaccard procedure marks each putative SD
in L that satisfies the SD criteria as “good” and removes it from L when the extension is complete.
(c) A visual representation of a valid k-mer matching in a valid alignment (shown by green lines).
Any addition of a red matching to the set of green matchings would render the alignment invalid as
red matchings are not co-linear with the green matchings (in other words, they “cross” the existing
matchings).

As we cannot use local alignment to efficiently enumerate all SDs in a given genome due
to both time and space complexity, we utilize a heuristic approach to enumerate all pairs of
regions in G that are likely to harbour one or more segmental duplications. We call these
pairs putative SDs. These pairs are not guaranteed to contain a “true” SD and must be later
aligned to each other to ascertain the presence of true SDs. Nevertheless, such an approach

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

will filter out the regions that do not harbour SDs, and thus significantly reduce the amount
of work needed for detecting “true” SDs. The overall performance of our method, both in
terms of performance and sensitivity, will depend on how well the putative SDs are chosen.

The problem of putative SD detection can be, thanks to the SD error model, easily
expressed as an instance of a filtering problem: find all pairs of indices 7, j in G such that that
J(K(G;),K(G;)) > 7, where 7 is the lower bound from the Equation 1. Here we assume
that the size of G; and G; exceeds the SD length threshold (1,000 bp) and no k-mer occurs
twice in either G; or Gj.

The filtering approach has already been successfully used in other software packages
and forms the backbone of both SEDEF (SD detection tool) and MashMap (Nanopore read
aligner).

However, both methods maintain the k-mer sets K(s) and K(s') to calculate the Jaccard
index between the sequences s and s’.

As these methods dynamically grow s and s’ (as the length n is not known in advance),
the corresponding sets K(s) and K(s') are constantly being updated, necessitating a costly
recalculation of K(s) N K(s') on each update. A common trick is to use the MinHash
technique to reduce the sizes of K(s) and K(s'), and thus the frequency of such updates.
However, the frequent recalculation of the Jaccard index still remains a major bottleneck
even in the MinHash-based approaches.

Here we note that the Jaccard index calculation can be significantly simplified by not
having to maintain the complete k-mer sets K(s) and K(s’). The need for keeping such sets
arises from the fact that calculation of K(s) N K(s') allows any k-mer in K(s) to match
any k-mer in K(s). However, such a loose intersection requirement is not only redundant
for approximation of edit distance under the SD error model but is even undesirable as
such intersections can introduce a cross-over k-mer matches that are not possible in the edit
distance metric space (see Figure lc for an example of valid and invalid matchings).

By disallowing such cross-over cases, we can significantly optimize the calculation of
the Jaccard index. Let us show how to do that without sacrificing sensitivity. Let us first
introduce s ® s’ as an alternative way of measuring the k-mer similarity between strings s
and s'.

For that purpose, let us introduce a notion of a co-linear k-mer matching between s and
s as a set of index pairs (4,7) (1 < ¢ < [s]|,1 < j < |s']) such that the k-mers that start at
i and j in s and s’ respectively are equal, and such that all pairs (i, 5) in a matching are
co-linear (i.e. for each (i,5) and (i, j'), either ¢ < i’ and j < j', or ¢ > ¢’ and j > j').

A ® operation describes the size of a maximum co-linear matching of k-mers between s
and ¢'. In other words, we want to select a maximal set of matching k-mers in K(s) and
K(s") such that no two k-mer matchings cross-over each other (see Figure 1c for an example
of cross-over, or non-co-linear, matchings). We can replace K(s) N K(s') with s ® s’ and
introduce an ordered Jaccard index J (s, s'), formally defined as:

- N s® s
) T R UK

The following lemma allows us to use an ordered Jaccard index J in lieu of classical Jaccard
index J:

» Lemma 2. The ordered Jaccard index J (s, s') of two strings s and s' is equal to the Jaccard
index J(K(s),K(s")) (under the assumptions of SD error model, namely the separation of
ep and ep), assuming that s and s’ only share k-mers that have not been modified by PSVs
following the originating copy event.

15:7

WABI 2021

15:8

BISER

Proof. Tt is sufficient to prove that the size of | K(s) N K(s')| always corresponds to the size
of maximal co-linear matching between s and s’.

To show that s ® s < |K(s) N K(s')], it is enough to note that matched k-mers in any
matching are by definition identical, and thus belong to K(s) N K(s').

We will prove that s ® s’ > | K(s) N K(s')| by contradiction. First, note that the string s
is equal to s’ immediately after the duplication event (i.e. before the occurrence of PSVs)
and that all k-mers are co-linear in their maximal matching because s contains no repeated
k-mers (an assumption made by the SD error model). Now, suppose that there is a cross-over
in K(s) NK(s’). That implies either a cross-over between s and s’ before PSVs occurred —
contradicting the previous observation — or a cross-over after it, contradicting the assumption
that any matched k-mer pair was matched before the occurrence of PSVs. Hence K(s) NK(s')
cannot contain any cross-overs, and s ® s’ = | K(s) N K(s')|. <

If the conditions of Lemma 2 are satisfied, we can calculate s ® s’ in linear time by a simple
scan through s and s’ at the same time. A linear calculation of s ® s’, together with the
fact that the lower bound 7 in Equation 1 equally holds for J as well (a consequence of
Lemma 2), allows us to use a plane sweep technique to select all pairs of substrings (s, s’) in
G whose ordered Jaccard distance J (s,s') exceeds T, and as a result, select all putative SDs
in G (see Figure 1 for details).

We begin by creating a k-mer index I5 that connects each k-mer in G to an ordered
list of its respective locations in G. Then we sweep a vertical line in G from left to right
while maintaining a sorted list L of putative SDs found thus far. For each location x in
G encountered by a sweep line, we query Is to obtain a sorted list K containing loci of
G.ptk’s copies in G. Then, for any y in K, we check if it either (1) begins a new potential
putative SD that maps z to y, (2) extends an existing putative SD, or (3) is covered by
existing putative SD in L. If a putative SD in L is too distant from y, it is promoted to
the final list of putative SD regions if it satisfies the ordered Jaccard index threshold 7 and
the other SD criteria from the Definition 1. Note that we do not allow a k-mer to extend
a putative SD if the distance between it and the SD exceeds the user-defined threshold A
(set to 250 by default). It takes |L| + | K| steps to process each k-mer in G because both L
and K are sorted. However, because the size of |L| is kept low by the distance criteria, and
because |K| is low enough in practice, 2, the time complexity of Algorithm 1 is O(|G|) for
constructing the index Ig, and linear in terms of the genome size for plane sweeping.

The key assumption in Lemma 2 — that two paralogs only share the k-mers that have
not been mutated since the copy event — does not always hold in practice on real data. As
such, the Algorithm 1 might occasionally under-estimate the value of T, leading potentially
to some false negatives. We control that by using A — the same parameter that controls
the growth of putative SDs by limiting the maximum distance of neighbouring k-mers in
s® s’ (Figure 1) — to limit the growth of under-estimated SDs and thus start the growth of
potentially more successful SDs earlier. This heuristic might cause a large SD to be reported
as a set of smaller disjoint SD regions. For that reason, we post-process the set of putative
SDs upon the completion of Algorithm 1 and merge together any two SDs that are close to
each other if their union satisfies the ordered Jaccard index criteria. We also extend each
putative SD by 5 Kbp both upstream and downstream to account for the small SD regions
that might have been filtered out during the search process. This parameter is user-defined
and might be adjusted for different genome assemblies.

3 The average size of L in our experiments was 370, and the average size of K is 30.

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

The performance of the plane sweep technique can be further improved by winnowing the
set of k-mers used for the construction of I [24]. Instead of indexing all k-mers in G, we
only consider k-mers in a winnowing fingerprint W(G) of G. W(G) is calculated by sliding a
window of size w through G and by taking in each window a lexicographically smallest k-mer
(the rightmost k-mer is selected in case of a tie). The expected size of W(G) for a random
sequence G is 2|G|/(w + 1) [35]. The main benefit of winnowing is that it can significantly
speed up the search step (up to an order of magnitude) without sacrificing sensitivity. The
winnow W (@) can be computed in a streaming fashion in linear time using O(w) space with
the appropriate data structures [11].

Following the discovery of putative SDs, we locally align paralogs from each putative SD
and only keep those regions whose size satisfies the SD criteria mentioned above. BISER uses
a two-tiered local chaining algorithm described previously in SEDEF that uses a seed-and-
extend approach and efficient O(nlogn) chaining method following by a SIMD-parallelized
sparse dynamic programming algorithm to calculate the boundaries of the final SD regions
and their alignments [1, 30, 39].

2.3 SD Decomposition

Once the set of final SDs SD = {(s1,s}), ...} is discovered and the precise global alignment
of each paralog pair (s,s’) € 8D is calculated, we proceed by decomposing the set SD
into a set of evolutionary building blocks called elementary SDs. More formally, we aim to
find a minimal set of elementary SDs E = {e1,...,e g}, such that each SD paralog s is a
concatenation of € o--- o0&, . Each é; either belongs to E or there is some e; € E such that
err(é;,e;) < e. An example of such a decomposition is given in Figure 2.

Figure 2 A decomposition of three partially overlapping SDs into a set of elementary SDs. Each
paralog pair is indicated by a pair of two thick black lines linked by a dashed line. Each elementary
SD is represented as a coloured box. The boxes of core duplicons — elementary SDs shared by all
SDs — are depicted with a dashed border. Note that a boundary of each elementary SD is induced
by a boundary of an existing SD. Different boundaries are represented by different shapes, and their
images (paralog copies) also share the same shape. For the sake of simplicity, we only show the
identifiers (shapes) for locations that define elementary SD boundaries.

Note that each locus covered by an SD paralog is either copied to another locus during
the formation of that SD (in other words, it is “mirrored” by its paralog) or belongs to
an alignment gap. As SD events can copy over the regions that already form an existing
SD, a single locus might “mirror” a large number of existing locations. In order to find all
locations that a locus ¢ mirrors, we use a modification of Tarjan’s union-find disjoint set

15:9

WABI 2021

15:10

BISER

algorithm [41] to link together all mirrored locations. This algorithm begins by giving each
locus in a genome covered by an existing SD a distinct identifier (represented by a distinct
shape in Figure 2). It then iterates over the set of SDs, and for each pair of SD paralogs
(s, ') uses the global alignment between s and s’ to link the identifiers of any two loci that
are mirrored by the SD event. Linking merges the two identifiers into a single identifier.
Upon the completion of the algorithm, all copies (“mirrors”) of each locus will share the
same identifier.

Note that the boundaries of SD paralogs, or their images, correspond to the boundaries
of elementary SDs, as each paralog by definition starts and ends with an elementary SD
(Figure 2). However, as the set of elementary SDs should be minimal, it is not only necessary
but sufficient to focus only on the identifiers that belong to a boundary of an existing SD
paralog in order to construct the set of elementary SDs E. These identifiers describe a set of
locations in G that form the boundaries of elementary SDs. We can obtain the final set E
by iterating over G and checking if a locus is identified with a boundary-covering identifier.

In practice, SD boundaries and SD alignments are highly uneven, and SDs themselves
exhibit a complex mosaic structure that often introduces “mirror loops” [34] that can collapse
multiple unrelated loci into a single identifier. BISER handles these cases by discarding any
mirrored loci that lie within a close distance of an already existing elementary SD boundary.

After decomposing SDs into the set of elementary SDs F, we select some of them as
core duplicons. We define these duplicons as the minimal set of elementary SDs that cover
all existing SDs (an SD is covered by an elementary if either paralog is composed of that
elementary SD). We use a classical set-cover approximation algorithm [12] to determine a set
of core duplicons from FE.

2.4 Multiple Genomes

The above method can be efficiently scaled to v distinct genomes G, ..., G? by constructing a
composite k-mer index Ig1y,...uq~ and by running the search procedure on each G in parallel.
We only need to ensure that the SD overlap criteria are enforced only if a k-mer belongs to
the same genome that is currently being searched. Note that the size of the genome index
grows sub-linearly with the number of genomes, as most genomes — especially mammalian
ones — share the large number of common k-mers. Also, note that this method can be trivially
extended to search for reverse-complemented SD copies by adding an additional iteration
over G, where G is a reverse complement of G.

The detection of cross-species conserved SD regions happens automatically when using
a composite index Igiy...uqv. However, as such procedure does not distinguish between
conserved SDs and other conserved regions, BISER uses additional checks to ensure that
every reported conservation is also a valid SD in at least one of the provided genomes.

3 Results

We have evaluated all stages of BISER for speed and accuracy on both simulated and
real-data datasets. All results were obtained on a multi-core Intel Xeon 8260 CPU (2.40GHz)
machine with 1 TB of RAM. The run times are rounded to the nearest minute and are
reported for both single-core as well as multi-core (8 CPU cores) modes when ran in parallel
via GNU Parallel [40]. All real-data genomes were hard-masked, and all basepair coverage
statistics are provided with respect to the hard-masked genomes.

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

In our experiments, we used k = 14 when searching for putative SDs and k = 10 during the
alignment step (note that both parameters are user-adjustable). The size of the winnowing
window was set to 16. We found that the lower values of k significantly impact the running
time without providing any visible improvement to the detection sensitivity, while higher
values of k significantly lower the detection sensitivity.

SEDEF BISER
Percentage of simulated SDs detected by BISER . 7.1
100 —— — WGAC
o % @
g 70 m== Random
E 85 hg19 chrl <1
)
75
1 4 7 10 13 16 19 2 25
Errore
(a)
Percentage of core duplicons detected by BISER
100 ~a
9 \’\5\/\/\
@
§ 90 == Core coverage <
g g5 Core detection
& 80 === Core copy coverage -
75
i A 7 10 13 16 19 22 25 WGAC
Error €
SEDEF BISER
(b)

(d)

Figure 3 (a) Performance of BISER’s algorithm on simulated SDs. z-axis represents the simulated
SD error rate €, while y axis represents the percentage of correctly detected SDs. Note that the plot
area is cropped as BISER detects more than 98% of simulated SDs for any € < 0.25. (b) Performance
of BISER'’s core duplicon detection on simulated cores. The red line shows the percentage of ancestral
core locations covered by a detected SD; the green line shows the percentage of cores identified as
such; while the blue line shows the coverage of later core copies covered by a detected SD. Note that
the plot area is also cropped. (¢) Venn diagram depicts the SD coverage of the BISER, WGAC,
SEDEF and SDquest (in Mbp) on the hard-masked human genome (hgl9). (d) Venn diagram
depicts the SD coverage of the BISER, WGAC, SEDEF and SDquest (in Mbp) on the hard-masked
mouse genome (mm8). Note that nearly all bases out of ~17 Mbp bases that are shown to be unique
to SEDEF (and not covered by BISER) map to gaps and low-copy repeats and should be therefore
treated as noise (not true SDs).

3.1 Simulations
3.1.1 SD detection

The accuracy of using the strong Jaccard index together with the SD error model as a
function of error parameter e, as well as the overall sensitivity of BISER’s SD detection
pipeline, was evaluated on a set of 1,000 simulated segmental duplications ranging from 1 to
100Kbp. All sequences and mutations were randomly generated with uniform distribution
according to the SD error model with ¢ € {0.01,0.02,...,0.25} (i.e., we allowed the overall
error rate to reach 25%). We consider a simulated SD as being “covered” if BISER found an
SD that covers more than 90% of the original SD’s basepairs. As shown in Figure 3a, the
overall sensitivity is around 99% even for € = 0.25.

15:11

WABI 2021

15:12

BISER

We performed the same experiment on human (hg19) chromosome 1 (Figure 3a), where we
selected uniformly at random 10,000 sequences of various lengths and duplicated them within
the chromosome. Each duplication was followed by introducing random PSVs according
to the SD error model while varying the values of ¢ as described above. Even in this case,
BISER’s performance stays the same, and only a handful of very small SDs (of size ~1,000)
were missed.

3.1.2 Core duplicon detection

We also devised a simulation experiment to measure the power of BISER’s core duplicon
detection module. We began with a random DNA sequence of size 10 Mbp. Then we
simulated an evolutionary process by introducing a set of novel SDs for 50 generations. In
each generation, we introduced a novel core duplicon that does not overlap with an existing
core, and we introduce a random number of SD events according to the SD error model that
contains at least one core duplicon introduced thus far. In each iteration, we made sure
that the difference between paralogs does not exceed ¢ € {0.01,0.02,...,0.25} regardless of
their age. We finally used BISER to analyze the final sequence to predict SDs and their
elementary decomposition, as well as the core duplicons. BISER was able to successfully
cover all ancestral cores, and properly decompose them into the elementary SDs and finally
identify them as core duplicons (Figure 3b). Furthermore, BISER covered 95% or more of
the more recent copies of the ancestral cores. We note that the combination of large block
indels leads BISER to occasionally report a single ancestral core as a set of 2 or more core
duplicons or to report an elementary SD that covers less than 90% of a core. These cases are
rare and happen less than 8% of the time at the highest levels of €. The sensitivity of core
duplicon detection is further described in Figure 3b.

Table 1 Running time performance of BISER (single-core and 8-core mode) on Intel Xeon 8260
CPU at 2.40 GHz for single genomes (hgl9 and mma8).

Single genome (hgl9)

Total Putative SDs Alignment Decomposition
1 core 1h 8m 44m 24m <lm

8 cores 10m 6m 4m <Ilm

Single genome (mmS8)

Total Putative SDs Alignment Decomposition
1 core 1h 26m 40m 46m <lm

8 cores 13m 5m 8m <lm

Table 2 Running time performance of BISER (single-core and 8-core mode) on Intel Xeon 8260
CPU at 2.40 GHz for seven genomes.

Seven genomes (see below)

Total Putative SDs Alignment Decomposition
1 core 30h 23m 11h 58m 18h 19m 6m
8 cores 4h 30m 1h 54m 2h 29m 6m

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

3.2 Single-genome results

We have run BISER on the H.sapiens hgl9 genome and M.musculus mm8 genome, and
compared it to the published WGAC [8]*, SEDEF [33] and SDquest [34] SD calls. We also
compared the runtime performance of BISER to that of SEDEF and SDquest. Note that we
were not able to run WGAC due to the lack of hardware necessary for its execution. We did
not compare BISER to other SD detection tools — namely SDdetector [13], MashMap2 [25]
and ASGART [14] — as it has been previously shown that these tools underperform when
compared to SEDEF or SDquest, and require an order of magnitude more resources than
either SEDEF or SDquest do (see [33] for the detailed comparisons with these tools). For the
same reason, we did not compare BISER, to whole-genome aligners such as Minimap2 [30]
and MUMmer/nucmer [32], as well as DupMasker [26], as none of these tools were designed
to detect de movo SDs in a genome.

BISER was able to find and align all SD regions in hgl9 in 10 minutes on 8 cores (or
~one hour on a single core) (Table 1). To put this into perspective, BISER is nearly 8x
faster than SEDEF, 24 x faster than SDquest, and an order of magnitude faster than WGAC
that takes days to find human SDs (personal communication; we were not able to run WGAC
pipeline ourselves due to legacy hardware requirements). As a side note, BISER has the
same memory requirements as SEDEF or SDquest and needs around 5 GB of RAM per
core. Since SEDEF by default operates on a genome that is not hard-masked, we also ran
SEDEF on a hard-masked genome to measure its theoretical speed (note that SEDEF was
not designed for hard-masked genomes; thus, the basepair analysis is omitted). SEDEF took
21 minutes on 8 CPU cores to process a hard-masked hgl9, leaving it still >2x slower than
BISER. Similar performance gains were observed on the mm8 genome as well.

In terms of sensitivity, BISER discovers about 1 GB of putative SD regions. After the
alignment step, BISER reports 112 Mb of final SD regions within the 75% edit distance
in hgl9. That is 34 Mbp more than WGAC and 17 Mbp more than SDquest. The total
coverage of SEDEF and BISER are similar to each other, differing by 3 Mbp uniquely
detected by SEDEF and 7 Mbp uniquely covered by BISER (Table 3). BISER misses a few
Mbp of SD regions unique to SDquest and a negligible amount unique to WGAC (Figure
3). On the mm8 genome, we can observe similar trends. However, we also observed that
SEDEF covers roughly 17 Mbp not covered by BISER (Figure 3). When SEDEF is run on a
hard-masked genome, it does not cover these bases; further analysis showed that nearly all
bases (>16.3 Mbp) originally reported as unique to SEDEF actually map either to alignment
gaps, soft-masked repeat elements, or small islands (<200bp) between the low-copy repeats
and as such do not constitute “true” SDs.

BISER found roughly ~67,000 elementary SDs that describe hgl9 SD calls. Of those,
2,759 were identified as core duplicons. BISER’s core duplicons cover all 100 of the core
duplicons reported in the earlier work [27], including the cores from the LCR16 cluster. Note
that many previously identified core duplicons in the hgl7 version of the human genome
turned out to be short tandem repeats in the hgl9 version. The whole decomposition process
took less than a minute on the final set of ~58,000 SDs.

4 http://humanparalogy.gs.washington.edu

15:13

WABI 2021

http://humanparalogy.gs.washington.edu

15:14

BISER

Table 3 SD coverage of the human and mouse genomes (hgl9 and mm8) and the runtime
performance of BISER, SEDEF and SDquest. “Missed” and “Extra” columns are calculated with
respect to the WGAC SD calls. All running times are reported on 8 CPU cores. We could not
run WGAC as we do not have access to the legacy hardware needed for its execution; the reported
runtime is from [33].

hg19
Tool Covered (MBp) Missed (MBp) Extra (MBp) Time
WGAC (gold standard) 78.2 days
BISER 112.4 0.4 34.6 10m
SEDEF 108.4 0.1 30.3 1h 15m
SDquest 95.2 2.5 19.5 3h 56m
mma3
Tool Covered (MBp) Missed (MBp) Extra (MBp) Time
WGAC (gold standard) 60.6 days
BISER 94.4 0.8 34.6 13m
SEDEF 105.2 0.1 447 1h 24m
SDquest 82.5 2.7 24.5 6h 06m

3.3 Multi-genome results

In addition to running BISER on a single genome, we also ran BISER on the following seven
related genomes:

C.jacchus (marmoset, version calJac3),

M.mulatta (macaque, version theMacl0),

G.gorilla (gorilla, version gorGor6),

P.abelii (orangutan, version ponAbe3),

P.troglodytes (chimpanzee, version panTro6),

H.sapiens (human, version hgl9), and

M.musculus (mouse, version mmas).

These genomes were analyzed in the previous work [10] with the sole exception of M.musculus
that is novel to this analysis.

BISER took around four and a half hours to complete the run on 8 cores. Of that, it
took around 2 hours to find putative SDs within the same species (42 minutes for in-species
detection and 71 minutes for detecting SDs conserved across different species). The remaining
time (2h 29m) was spent calculating the final alignments for all reported SDs (Table 2). The
vast majority of alignment time (1h 37m minutes out of 2h 29m) was spent only on aligning
putative SDs from calJac3 genome. We presume that this is due to the high presence of
unmasked low-complexity regions in this particular assembly.

The SD decomposition and core duplicon detection took slightly less than 6 minutes
to complete on a set of nearly 2,407,000 SDs. BISER found ~116,000 elementary SD sets
seeded by ~13,000 cores. All cores from [27] and [10] were covered by BISER’s cores as well.

4 Conclusion

More than a decade ago, the Genome 10K Project Consortium proposed to build genome
assemblies for 10,000 species [18]. Due to the lack of high-quality long-read sequencing data,
this aim was not immediately realized. However, the Genome 10K Project spearheaded

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

the development of other large-scale many-genome sequencing projects such as the Earth
BioGenome Project [29] and Vertebrate Genomes Project®. Recent developments in generating
more accurate long-read sequencing data, coupled with better algorithms to assemble genomes
now promise to make the aforementioned and similar projects feasible.

Analyzing the recently and soon-to-be generated genome assemblies to understand
evolution requires the development of various algorithms for different purposes, from gene

annotation [37] to orthology analysis [22] and the selection and recombination analysis [23].

Although a handful of tools such as SEDEF and SDquest are now available to characterize
segmental duplications in genome assemblies, they cannot perform multi-species SD analysis,
and they suffer from computational requirements. We developed BISER as a new segmental
duplication characterization algorithm to be added to the arsenal of evolution analysis tools.

We demonstrate that (1) BISER is substantially faster than earlier tools; (2) it can
characterize SDs in multiple genomes to delineate the evolutionary history of duplications;
and (3) it can identify elementary SDs and core duplicons to help understand the mechanisms
that give rise to SDs. We believe that BISER will be a powerful and common tool and
will contribute to our understanding of SD evolution when thousands of genome assemblies
become available in the next few years. The next step in this line of research would consist of
interpreting BISER’s results, biological analysis of the reported core duplicons, and applying
BISER to a larger set of available mammalian genomes to infer the evolutionary history of
ancient duplications.

—— References

1 Mohamed Ibrahim Abouelhoda and Enno Ohlebusch. Multiple genome alignment: Chaining
algorithms revisited. In Ricardo Baeza-Yates, Edgar Chavez, and Maxime Crochemore, editors,
Combinatorial Pattern Matching, pages 1-16. Springer Berlin Heidelberg, 2003.

2 S.F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. J Mol Biol, 215(3):403-410, October 1990. doi:10.1016/S0022-2836(05)80360-2.

3 Shanika L. Amarasinghe, Shian Su, Xueyi Dong, Luke Zappia, Matthew E. Ritchie, and
Quentin Gouil. Opportunities and challenges in long-read sequencing data analysis. Genome
Biology, 21:30, 2020. doi:10.1186/s13059-020-1935-5.

4 A. Andoni, R. Krauthgamer, and K. Onak. Polylogarithmic approximation for edit distance
and the asymmetric query complexity. In Proc. IEEE 51st Annual Symp. Foundations of
Computer Science, pages 377-386, October 2010. doi:10.1109/F0CS.2010.43.

5 Francesca Antonacci, Jeffrey M Kidd, Tomas Marques-Bonet, Brian Teague, Mario Ventura,
Santhosh Girirajan, Can Alkan, Catarina D Campbell, Laura Vives, Maika Malig, Jill A
Rosenfeld, Blake C Ballif, Lisa G Shaffer, Tina A Graves, Richard K Wilson, David C Schwartz,
and Evan E Eichler. A large and complex structural polymorphism at 16p12.1 underlies

microdeletion disease risk. Nat Genet, 42(9):745-750, September 2010. doi:10.1038/ng.643.

6 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, STOC 15, pages 51-58, New York, NY, USA, 2015. ACM. doi:
10.1145/2746539.2746612

7 J. A. Bailey, J. M. Kidd, and E. E. Eichler. Human copy number polymorphic genes. Cytogenet
Genome Res, 123(1-4):234-243, 2008. doi:10.1159/000184713.

8 J. A. Bailey, A. M. Yavor, H. F. Massa, B. J. Trask, and E. E. Eichler. Segmental duplications:
organization and impact within the current human genome project assembly. Genome Res,
11(6):1005-1017, June 2001. doi:10.1101/gr.187101.

5 https://vertebrategenomesproject.org/

15:15

WABI 2021

https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1038/ng.643
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1159/000184713
https://doi.org/10.1101/gr.187101
https://vertebrategenomesproject.org/

15:16

BISER

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Jeffrey A Bailey and Evan E Eichler. Primate segmental duplications: crucibles of evolution,
diversity and disease. Nat Rev Genet, 7(7):552-564, July 2006. doi:10.1038/nrg1895.
Stuart Cantsilieris, Susan M. Sunkin, Matthew E. Johnson, Fabio Anaclerio, John Huddleston,
Carl Baker, Max L. Dougherty, Jason G. Underwood, Arvis Sulovari, PingHsun Hsieh,
Yafei Mao, Claudia Rita Catacchio, Maika Malig, AnneMarie E. Welch, Melanie Sorensen,
Katherine M. Munson, Weihong Jiang, Santhosh Girirajan, Mario Ventura, Bruce T. Lamb,
Ronald A. Conlon, and Evan E. Eichler. An evolutionary driver of interspersed segmental
duplications in primates. Genome biology, 21:202, 2020. doi:10.1186/s13059-020-02074-4.
Keegan Carruthers-Smith. Sliding window minimum implementations, 2013. last accessed 28
January 2021. URL: SlidingWindowMinimumImplementations.

Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of operations
research, 4(3):233-235, 1979.

Jean-Félix Dallery, Nicolas Lapalu, Antonios Zampounis, Sandrine Pigné, Isabelle Luyten,
Joélle Amselem, Alexander H. J. Wittenberg, Shiguo Zhou, Marisa V. de Queiroz, Guillaume P.
Robin, Annie Auger, Matthieu Hainaut, Bernard Henrissat, Ki-Tae Kim, Yong-Hwan Lee,
Olivier Lespinet, David C. Schwartz, Michael R. Thon, and Richard J. O’Connell. Gapless
genome assembly of colletotrichum higginsianum reveals chromosome structure and association
of transposable elements with secondary metabolite gene clusters. BMC genomics, 18:667,
2017. doi:10.1186/s12864-017-4083-x.

Franklin Delehelle, Sylvain Cussat-Blanc, Jean-Marc Alliot, Hervé Luga, and Patricia Balar-
esque. ASGART: fast and parallel genome scale segmental duplications mapping. Bioinform-
atics, 34:2708-2714, 2018. doi:10.1093/bioinformatics/bty172.

Max L. Dougherty, Jason G. Underwood, Bradley J. Nelson, Elizabeth Tseng, Katherine M.
Munson, Osnat Penn, Tomasz J. Nowakowski, Alex A. Pollen, and Evan E. Eichler. Transcrip-
tional fates of human-specific segmental duplications in brain. Genome research, 28:1566-1576,
2018. doi:10.1101/gr.237610.118.

John W. Drake, Brian Charlesworth, Deborah Charlesworth, and James F. Crow. Rates
of spontaneous mutation. Genetics, 148(4):1667-1686, 1998. arXiv:https://www.genetics.
org/content/148/4/1667.full.pdf.

Huan Fan, Anthony R Ives, Yann Surget-Groba, and Charles H Cannon. An assembly and
alignment-free method of phylogeny reconstruction from next-generation sequencing data.
BMC genomics, 16:522, July 2015. doi:10.1186/s12864-015-1647-5.

Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome
sequence for 10,000 vertebrate species. J Hered, 100(6):659-674, 2009. doi:10.1093/jhered/
esp086.

Santhosh Girirajan, Megan Y. Dennis, Carl Baker, Maika Malig, Bradley P. Coe, Catarina D.
Campbell, Kenneth Mark, Tiffany H. Vu, Can Alkan, Ze Cheng, Leslie G. Biesecker, Raphael
Bernier, and Evan E. Eichler. Refinement and discovery of new hotspots of copy-number
variation associated with autism spectrum disorder. Am J Hum Genet, 92(2):221-237, February
2013. doi:10.1016/j.ajhg.2012.12.016.

Hiroyuki Hanada, Mineichi Kudo, and Atsuyoshi Nakamura. On practical accuracy of
edit distance approximation algorithms. arXiv preprint arXiv:1701.06134, 2017. arXiv:
1701.06134v1.

Robert S. Harris. Improved Pairwise Alignment of Genomic Dna. PhD thesis, Pennsylvania
State University, University Park, PA, USA, 2007. AAI3299002.

Xiao Hu and Iddo Friedberg. SwiftOrtho: A fast, memory-efficient, multiple genome orthology
classifier. GigaScience, 8, October 2019. doi:10.1093/gigascience/giz118.

Martin Hoélzer and Manja Marz. PoSeiDon: a Nextflow pipeline for the detection of evol-
utionary recombination events and positive selection. Bioinformatics, July 2020. doi:
10.1093/bioinformatics/btaa695.

https://doi.org/10.1038/nrg1895
https://doi.org/10.1186/s13059-020-02074-4
Sliding Window Minimum Implementations
https://doi.org/10.1186/s12864-017-4083-x
https://doi.org/10.1093/bioinformatics/bty172
https://doi.org/10.1101/gr.237610.118
http://arxiv.org/abs/https://www.genetics.org/content/148/4/1667.full.pdf
http://arxiv.org/abs/https://www.genetics.org/content/148/4/1667.full.pdf
https://doi.org/10.1186/s12864-015-1647-5
https://doi.org/10.1093/jhered/esp086
https://doi.org/10.1093/jhered/esp086
https://doi.org/10.1016/j.ajhg.2012.12.016
http://arxiv.org/abs/1701.06134v1
http://arxiv.org/abs/1701.06134v1
https://doi.org/10.1093/gigascience/giz118
https://doi.org/10.1093/bioinformatics/btaa695
https://doi.org/10.1093/bioinformatics/btaa695

H. ISeri¢, C. Alkan, F. Hach, and |I. Numanagi¢

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M. Phillippy. A fast
approximate algorithm for mapping long reads to large reference databases. In S. Cenk Sahinalp,
editor, Proceedings of 21st Annual International Conference on Research in Computational
Molecular Biology (RECOMB 2017), volume 10229, pages 66-81, Cham, 2017. Springer
International Publishing. doi:10.1007/978-3-319-56970-3_5.

Chirag Jain, Sergey Koren, Alexander Dilthey, Adam M Phillippy, and Srinivas Aluru. A fast
adaptive algorithm for computing whole-genome homology maps. Bioinformatics, 34(17):i748—
i756, 2018.

Zhaoshi Jiang, Robert Hubley, Arian Smit, and Evan E. Eichler. Dupmasker: a tool for
annotating primate segmental duplications. Genome research, 18:1362-1368, August 2008.
doi:10.1101/gr.078477.108.

Zhaoshi Jiang, Haixu Tang, Mario Ventura, Maria Francesca Cardone, Tomas Marques-Bonet,
Xinwei She, Pavel A Pevzner, and Evan E Eichler. Ancestral reconstruction of segmental
duplications reveals punctuated cores of human genome evolution. Nature genetics, 39:1361—
1368, November 2007. doi:10.1038/ng.2007.9.

Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady, 10(8):707-710, 1966.

Harris A. Lewin, Gene E. Robinson, W. John Kress, William J. Baker, Jonathan Coddington,
Keith A. Crandall, Richard Durbin, Scott V. Edwards, Félix Forest, M. Thomas P. Gilbert,
Melissa M. Goldstein, Igor V. Grigoriev, Kevin J. Hackett, David Haussler, Erich D. Jarvis,
Warren E. Johnson, Aristides Patrinos, Stephen Richards, Juan Carlos Castilla-Rubio, Marie-
Anne van Sluys, Pamela S. Soltis, Xun Xu, Huanming Yang, and Guojie Zhang. Earth
BioGenome Project: Sequencing life for the future of life. Proceedings of the National
Academy of Sciences of the United States of America, 115:4325-4333, April 2018. doi:
10.1073/pnas.1720115115.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics (Ozford,
England), 34:3094-3100, September 2018. doi:10.1093/bioinformatics/bty191.

Tomas Marques-Bonet, Jeffrey M Kidd, Mario Ventura, Tina A Graves, Ze Cheng, LaDeana W
Hillier, Zhaoshi Jiang, Carl Baker, Ray Malfavon-Borja, Lucinda A Fulton, Can Alkan, Gozde
Aksay, Santhosh Girirajan, Priscillia Siswara, Lin Chen, Maria Francesca Cardone, Arcadi
Navarro, Elaine R Mardis, Richard K Wilson, and Evan E Eichler. A burst of segmental
duplications in the genome of the African great ape ancestor. Nature, 457(7231):877-881,
February 2009. doi:10.1038/nature07744.

Guillaume Margais, Arthur L. Delcher, Adam M. Phillippy, Rachel Coston, Steven L. Salzberg,
and Aleksey Zimin. MUMmer4: A fast and versatile genome alignment system. PLoS
computational biology, 14:€1005944, January 2018. doi:10.1371/journal.pcbi.1005944.
Ibrahim Numanagié, Alim S Gokkaya, Lillian Zhang, Bonnie Berger, Can Alkan, and Faraz
Hach. Fast characterization of segmental duplications in genome assemblies. Bioinformatics,
34:i706-i714, September 2018. doi:10.1093/bioinformatics/bty586.

Lianrong Pu, Yu Lin, and Pavel A Pevzner. Detection and analysis of ancient segmental
duplications in mammalian genomes. Genome research, 28:901-909, June 2018. doi:10.1101/
gr.228718.117.

Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data, pages 76-85. ACM, 2003.

Ariya Shajii, Ibrahim Numanagié, Riyadh Baghdadi, Bonnie Berger, and Saman Amarasinghe.
Seq: A high-performance language for bioinformatics. Proc. ACM Program. Lang., 3, October
2019. doi:10.1145/3360551.

Alaina Shumate and Steven L. Salzberg. Liftoff: accurate mapping of gene annotations.
Bioinformatics, December 2020. doi:10.1093/bioinformatics/btaal016.

15:17

WABI 2021

https://doi.org/10.1007/978-3-319-56970-3_5
https://doi.org/10.1101/gr.078477.108
https://doi.org/10.1038/ng.2007.9
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1073/pnas.1720115115
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/nature07744
https://doi.org/10.1371/journal.pcbi.1005944
https://doi.org/10.1093/bioinformatics/bty586
https://doi.org/10.1101/gr.228718.117
https://doi.org/10.1101/gr.228718.117
https://doi.org/10.1145/3360551
https://doi.org/10.1093/bioinformatics/btaa1016

15:18

BISER

38

39

40

41

Peter H Sudmant, Jacob O Kitzman, Francesca Antonacci, Can Alkan, Maika Malig, Anya
Tsalenko, Nick Sampas, Laurakay Bruhn, Jay Shendure, 1000 Genomes Project, and Evan E
Eichler. Diversity of human copy number variation and multicopy genes. Science, 330(6004):641—
646, October 2010. doi:10.1126/science.1197005.

Hajime Suzuki and Masahiro Kasahara. Introducing difference recurrence relations for faster
semi-global alignment of long sequences. BMC' bioinformatics, 19(1):33-47, 2018.

O. Tange. GNU Parallel - the command-line power tool. ;login: The USENIX Magazine,
36(1):42-47, February 2011. doi:10.5281/zenodo.16303.

Robert Endre Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. J. Comput. Syst. Sci., 18(2):110-127, 1979. doi:10.1016/0022-0000(79)90042-4.

https://doi.org/10.1126/science.1197005
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.1016/0022-0000(79)90042-4

	1 Introduction
	2 Methods
	2.1 Preliminaries
	2.1.1 SD Error Model

	2.2 SD Detection
	2.3 SD Decomposition
	2.4 Multiple Genomes

	3 Results
	3.1 Simulations
	3.1.1 SD detection
	3.1.2 Core duplicon detection

	3.2 Single-genome results
	3.3 Multi-genome results

	4 Conclusion

