
Efficient Privacy-Preserving Variable-Length
Substring Match for Genome Sequence
Yoshiki Nakagawa #

Department of Computer Science and Engineering, Waseda University, Tokyo, Japan

Satsuya Ohata #

Digital Garage, Inc., Tokyo, Japan

Kana Shimizu1 #

Department of Computer Science and Engineering, Waseda University, Tokyo, Japan
National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

Abstract
Finding a similar substring that commonly appears in query and database sequences is an essential
task for genome data analysis. This study proposes a secure two-party variable-length string search
protocol based on secret sharing. The unique feature of our protocol is that time, communication,
and round complexities are not dependent on the database length N , after the query input. This
property brings dramatic performance improvements in search time, since N is usually quite large
in an actual genome database, and the same database is repeatedly used for many queries. Our
concept hinges on a technique that efficiently applies the compressed full-text index (FOCS 2000)
for a secret-sharing scheme. We conducted an experiment using a human genomic sequence with the
length of 10 million as the database and a query with the length of 100 and found that the query
response time of our protocol was at least three orders of magnitude faster than a well-designed
baseline protocol under the realistic computation/network environment.

2012 ACM Subject Classification Theory of computation → Pattern matching; Security and
privacy→ Privacy-preserving protocols; Theory of computation→ Cryptographic protocols; Applied
computing → Genomics

Keywords and phrases Private Genome Sequence Search, Secure Multiparty Computation, Secret
Sharing, FM-index, Suffix Tree, Maximal Exact Match

Digital Object Identifier 10.4230/LIPIcs.WABI.2021.2

Supplementary Material Software (Source Code): https://waseda.box.com/v/wabi2021-suppl-
ppgs-src

Funding This work is partially supported by JST CREST grant number JPMJCR19F6.
Kana Shimizu: Supported part in MEXT/JSPS KAKENHI Grant Number 19K12209 and 21H04871.

1 Introduction

The dramatic reduction in the cost of genome sequencing has prompted increased interest in
personal genome sequencing over the last 15 years. Extensive collections of personal genome
sequences have been accumulated both in academic and industrial organizations, and there
is now a global demand for sharing the data to accelerate scientific research [13, 24]. As
discussed in previous studies, disclosing personal genome information has a high privacy
risk [10], so it is crucial to ensure that individuals’ privacy is protected upon data sharing.
At present, the most popular approach for this is to formulate and enforce a privacy policy,
but it is a time-consuming process to reach an agreement, especially among stakeholders
with different legal backgrounds, which slows down the pace of research. Therefore, there is a

1 Corresponding author

© Yoshiki Nakagawa, Satsuya Ohata, and Kana Shimizu;
licensed under Creative Commons License CC-BY 4.0

21st International Workshop on Algorithms in Bioinformatics (WABI 2021).
Editors: Alessandra Carbone and Mohammed El-Kebir; Article No. 2; pp. 2:1–2:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nakapandayo@fuji.waseda.jp
mailto:satsuya-ohata@dglab.com
mailto:shimizu.kana@waseda.jp
https://doi.org/10.4230/LIPIcs.WABI.2021.2
https://waseda.box.com/v/wabi2021-suppl-ppgs-src
https://waseda.box.com/v/wabi2021-suppl-ppgs-src
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Privacy-Preserving Genome Sequence Search

strong demand for privacy-preserving technologies that can potentially compensate for or even
replace the traditional policy-based approach [3, 21]. One important application that needs a
privacy-preserving technology is private genome sequence search, where different stakeholders
respectively hold a query sequence and a database sequence and the goal is to let the query
holder know the result while simultaneously keeping the query and the database private.
Many studies have addressed the problem of how to compute exact or approximate edit
distance or the longest common substring (LCS) through techniques based on homomorphic
encryption [17, 8, 22] and secure multi-party computation (MPC) [15, 31, 33, 7, 2, 26, 23],
or how to compute sequence similarity based on private set intersection [4]. While these
studies can evaluate global sequence similarity for two sequences of similar length, other
studies address the problem of finding a substring between a query and a long genome
sequence or a set of long genome sequences, with the aim of evaluating local sequence
similarity [28, 16, 30, 29, 18, 6, 25]. [28] proposed an approach to combine an additive
homomorphic encryption and index structures such as FM-index [11] and the positional
Burrows-Wheeler transform [9] to find the longest prefix of a query that matches a database
(LPM) and a set-maximal match for a collection of haplotypes. [30] used a similar approach
and improved the time and communication complexities for LPM on a protein sequence by
using a wavelet matrix. [16] improved the round complexity of a set-maximal match, though
the search time was more than one order of magnitude slower than [28] due to the heavy
computational cost caused by the fully homomorphic encryption. [29] used the Goldreich-
Micali-Wigderson protocol to build a suffix tree for a set-maximal match. According to
experiments by [18], the search time of [29] is one order of magnitude slower than [28] and [18].
[18] used a garbled circuit to build a suffix tree for substring match and a set-maximal match
under a different security assumption such that the tree-traversal pattern is leaked to the
cloud server. [6] and [25] found fixed-length substring matches using a one-way hash function
or homomorphic encryption on a public cloud under a security assumption such that the
database is a public sequence and a query is leaked to a private cloud server.

In this study, we aim to improve privacy-preserving substring match under the security
assumption such that both the query and the database sequence are strictly protected. We
first propose a more efficient method for finding LPM, and then extend it to find the longest
maximal exact match (LMEM), which is more practically important in bioinformatics. We
designed the protocol for LMEM for ease of explanation, and the protocol can be applied to
similar problems such as finding all maximal exact matches (MEMs) with a small modification.
To our knowledge, this is the first study to address the problem of securely finding MEMs.

Our Contribution

The time complexity of the previous studies [28, 30] include the factor of N , and thus they
do not scale well to a large database. For a similar reason, using secure matching protocols
(e.g., [32]) for the shares (or tags in searchable encryption) of all substrings in a query and
database is even worse in terms of time complexity. To achieve a real-time search on an
actual genome database, we propose novel secret-sharing-based protocols that do not include
the factor of N in the time, communication, and round complexities for the search time (i.e.,
the time after the input of a query until the end of the search).

The basic idea of the protocols is to represent the database string by a compressed
index [11, 12] and store the index as a lookup table. LPM and MEMs are found by at most
ℓ and 2ℓ table lookups respectively, where ℓ is the length of the query. More specifically, the
table V is referenced in a recursive manner; i.e., one needs to obtain V [j], where j = V [i],
given i. To ensure security, we need to compute V [j] without seeing any element of V .

Y. Nakagawa, S. Ohata, and K. Shimizu 2:3

Figure 1 Arithmetic addition and multiplication over secret sharing.

The key technical contribution of this study is an efficient protocol that achieves this type
of recursive reference. We named the protocol secret-shared recursive oblivious transfer
(ss-ROT). While the previous studies requires O(N) time complexity to ensure security, the
time, communication, and round complexities of ss-ROT are all O(ℓ) for ℓ recursive table
lookups, except for the preparation of the table and generation of shares before the query
input. Since the entire protocols mainly consist of ℓ table lookups for LPM, and 2ℓ table
lookups and 2ℓ inner product computations for LMEM, the search times for LPM and LMEM
do not depend on the database size.

We implemented the proposed protocol and tested it on substrings of a human genome
sequence 103 to 107 in length and confirmed that the actual CPU time and data transfer
overhead were in good agreement with the theoretical complexities. We also found that the
search time of our protocol was three orders of magnitude faster than that of the previous
method [28, 30]. For conducting further performance analysis, we designed and implemented
baseline protocols using major techniques of secret-sharing-based protocols. The results
showed that the search times of our protocols were at least two orders of magnitude faster
than those of the baseline protocols.

2 Preliminaries

2.1 Secure Computation based on Secret Sharing
Here, we explain the 2-out-of-2 additive secret sharing ((2, 2)-SS) scheme and how to securely
compute arithmetic/Boolean gates (Figure 1).

Secret Sharing and Secure Computation

In t-out-of-n secret sharing (e.g., [27]), we split the secret value x into n pieces, and can
reconstruct x by combining more or an equal number of t pieces. We call the split pieces
“share”. The basic security notion for secret sharing is that we cannot obtain any information
about x even if we gather less than or equal to (t−1) shares. In this paper, we consider a case
with (t, n) = (2, 2). A 2-out-of-2 secret sharing ((2, 2)-SS) scheme over Z2n consists of two
algorithms: Share and Reconst. Share takes as input x ∈ Z2n and outputs ([[x]]0, [[x]]1) ∈ Z2

2n ,
where the bracket notation [[x]]i denotes the arithmetic share of the i-th party (for i ∈ {0, 1}).
We denote [[x]] = ([[x]]0, [[x]]1) as their shorthand. Reconst takes as inputs [[x]]0 and [[x]]1 and
outputs x. For arithmetic sharing [[x]]i and Boolean sharing [[x]]Bi , we consider power-of-two
integers n (e.g., n = 16) and n = 1, respectively.

Depending on the secret sharing scheme, we can compute arithmetic/Boolean gates over
shares; that is, we can execute some kind of processing related to x without x. This means it
is possible to perform some computation without violating the privacy of the secret data,

WABI 2021

2:4 Privacy-Preserving Genome Sequence Search

Table 1 Secure subprotocols used in this paper.

Input Output
Equality [[x]], [[y]] [[z]]B s.t. z = 1 if x = y otherwise z = 0
Comp [[x]], [[y]] [[z]]B s.t. z = 1 if x < y otherwise z = 0

CastUp [[x]] ∈ Z2n , n′ [[x]] ∈ Z2n′ (n < n′)
B2A [[x]]B [[x]]

Choose [[x]], [[y]], [[e ∈ {0, 1}]] [[z]] s.t. z = x if e = 1, otherwise (e = 0) z = y

and is called secure (multi-party) computation. It is known that we can execute arbitrary
computation by combining basic arithmetic/Boolean gates. In the following paragraphs, we
show how to concretely compute these gates over shares.

Semi-Honest Secure Two-Party Computation Based on (2, 2)-Additive SS

We use a standard (2, 2)-additive SS scheme, defined by
Share(x) : randomly choose r ∈ Z2n and let [[x]]0 = r and [[x]]1 = x− r.
Reconst([[x]]0, [[x]]1) : output [[x]]0 + [[x]]1.

Note that one of the shares of x ([[x]]0 or [[x]]1) does not reveal any information about x.
In Figure 1, the secret value x = 2 is split into [[x]]0 = 4 and [[x]]1 = 6. These are valid
(2, 2)-additive shares because 4 + 6 ≡ 2 (mod 8) holds. Even if we can see [[x]]0 = 4, we
cannot decide the value of x since we execute a split of x uniformly at random. This means,
in Figure 1, computing nodes P0 and P1 cannot obtain any information about x as long as
these two nodes do not collude. On the other hand, we can compute arithmetic ADD/MULT
gates over shares as follows:

[[z]]← ADD([[x]], [[y]]) can be done locally by just adding each party’s share on x and on y.
In Figure 1 (left), we show an example of secure addition. P0/P1 obtain shares 6/7 by
adding their two shares. In this process, P0/P1 cannot find they are computing 2 + 3.
Multiplication is more complex than addition. There are various methods for multi-
plication over shares, most of which require communication between computing nodes.
In this paper, we use the standard method for [[w]]← MULT([[x]], [[y]]) based on Beaver
triples (BT) [5]. Such a triple consists of bt0 = (a0, b0, c0) and bt1 = (a1, b1, c1) such
that (a0 + a1)(b0 + b1) = (c0 + c1). Hereafter, a, b, and c denote a0 + a1, b0 + b1, and
c0 + c1, respectively. We use these BTs as auxiliary inputs for computing MULT. Note
that we can compute them in advance (or in offline phase) since they are independent of
inputs [[x]] and [[y]]. We adopt a trusted initializer setting (e.g., [19, 20]); that is, BTs are
generated by the party other than two computing nodes and then distributed. In the
online phase of MULT, each i-th party Pi (i ∈ {0, 1}) can compute the multiplication
share [[z]] = [[xy]] as follows:

1. Pi first computes ([[x]]i − ai) and ([[y]]i − bi), and sends them to P1−i.
2. Pi reconstructs x′ = x− a and y′ = y − b.
3. P0 computes [[z]]0 = x′y′ + x′b0 + y′a0 + c0, and P1 computes [[z]]1 = x′b1 + y′a1 + c1.
Here, [[z]]0 and [[z]]1 calculated with the above procedures are valid shares of xy; that
is, Reconst([[z]]0, [[z]]1) = xy. We shorten the notations and write the ADD and MULT
protocols simply as [[x]] + [[y]] and [[x]] · [[y]], respectively.

We also write ADD(ADD([[xA]], [[xB]]), [[xC]]) as Σc={A,B,C}[[xc]]. Note that, similarly to the
ADD protocol, we can also locally compute multiplication by constant c, denoted by c · [[x]].
We can easily extend the above protocols to Boolean gates. By converting + and − into

Y. Nakagawa, S. Ohata, and K. Shimizu 2:5

⊕ in the arithmetic ADD and MULT protocols, we can obtain the XOR and AND protocols,
respectively. We can construct NOT and OR protocols from the properties of these gates.
When we compute NOT([[x]]B0 , [[x]]B1), P0 and P1 output ¬[[x]]B0 and [[x]]B1 , respectively. When
we compute OR([[x]]B , [[y]]B), we compute ¬AND(¬[[x]]B ,¬[[y]]B). We shorten the notations
and write XOR, AND, NOT, and OR simply as [[x]] ⊕ [[y]], [[x]] ∧ [[y]], ¬[[x]], and [[x]] ∨ [[y]],
respectively. By combining the above gates, we can securely compute higher-level protocols.
The functionality of the secure subprotocols [23] used in this paper are shown in Table 1.
Due to space limits, we omit the details of their construction. Note that we can compute
Choose by [[z]] = [[y]]+[[e]]·([[x]]−[[y]]). In this paper, we consider the standard simulation-based
security notion in the presence of semi-honest adversaries (for 2PC), as in [14]. We show the
definition in Appendix B. Roughly speaking, this security notion guarantees the privacy of
the secret under the condition that computing nodes do not deviate from the protocol; that is,
although computing nodes are allowed to execute arbitrary attacks in their local, they do not
(maliciously) manipulate transmission data to other parties. The building blocks we adopt
in this paper satisfy this security notion. Moreover, as described in [14], the composition
theorem for the semi-honest model holds; that is, any protocol is privately computed as long
as its subroutines are privately computed.

2.2 Index Structure for String Search
Notation and Definition

Σ denotes a set of ordered symbols. A string consists of symbols in Σ. We denote a
lexicographical order of two strings S and S′ by S ≤ S′ (i.e., A < C < G < T and AAA <
AAC). We denote the i-th letter of a string S by S[i] and a substring starting from the i-th
letter to the j-th letter by S[i, j]. The index starts with 0. The length of S is denoted by |S|.
A reverse string of S (i.e., S[|S| − 1], . . . , S[0]) is denoted by Ŝ. We consider a direction from
the i-th position to the j-th position as rightward if i < j and leftward otherwise.

Given a query w and a database S, we define the longest prefix that matches a database
string (LPM) by max(0,j){j|w[0, . . . , j] = S[k, . . . , l]}, where 0 ≤ j < ℓ and 0 ≤ k ≤ l < N ,
and the longest maximal exact match (LMEM) by max(i,j){j − i|w[i, . . . , j] = S[k, . . . , l]},
where 0 ≤ i ≤ j < ℓ and 0 ≤ k ≤ l < N .

FM-Index and related data structures

FM-Index [11] and related data structures [12] are widely used for genome sequence search.
Given a query string w of length ℓ and a database string S of length N , [11] enables LPM
to be found in O(ℓ) time regardless of N , and it also enables LMEM to be found in O(ℓ) if
auxiliary data structures are used [12]. Given all the suffixes of a string S: S[0, . . . , |S| − 1],
S[1, . . . , |S|−1], . . . , S[|S|−1], a suffix array is an array of positions (p0, . . . , p|S|−1) such that
S[p0, . . . , |S| − 1] ≤ S[p1, . . . , |S| − 1] ≤ S[p2, . . . , |S| − 1], . . . ,≤ S[p|S|−1, . . . , |S| − 1]. We
denote the suffix array of S by SA and denote its i-th element by SA[i]. A Burrows-Wheeler
transform (BWT) is a permutation of the sequence S such that its i-th letter becomes
S[SA[i]− 1]. We denote a BWT of S by L and denote its i-th letter by L[i]. Let us define
a rank of S for a letter c ∈ Σ at position t by Rankc(t, S) = |{j|S[j] = c, 0 ≤ j < t}|
and a count of occurrences of letters that are lexicographically smaller than c in S by
CFc(S) =

∑
r<c Rankr(|S|, S), and the operation LFc(i, S) = CFc(L) + Rankc(i, L). The

match between w and S is reported as a form of left-closed and right-open interval on SA,
and the lower and upper bounds of the interval are respectively computed by LF. Given a

WABI 2021

2:6 Privacy-Preserving Genome Sequence Search

letter c and an interval [f, g) that corresponds to suffixes that share the prefix x (i.e., [f, g)
reports the locations of the substring x in S), we can find a new interval that corresponds to
all suffixes that share the prefix cx (i.e., locations of the substring cx) by

[f ′, g′) = [LFc(f, S), LFc(g, S)). (1)

The leftward extension of the match is called a backward search, which is the main func-
tionality of FM-Index. By starting the search with the initial interval [0, N) and conducting
the backward searches for w[ℓ− 1], w[ℓ− 2], . . ., the longest suffix match is detected when
f = g. Rank and CF are precomputed and stored in an efficient form that can be searched in
constant time. Therefore, the longest suffix match can be computed in O(ℓ) time. LPM is
found if the search is conducted on Ŝ and match is extended by w[0], w[1], . . . , w[ℓ− 1].

Searching LMEM by repeating LPM for w[0, . . . , ℓ − 1], w[1, . . . , ℓ − 1], w[2, . . . , ℓ −
1], . . . , w[ℓ − 1] takes O(ℓ2) time. We can improve it to O(ℓ) time by using the longest
common prefix (LCP) array and related data structures [12]. The LCP array, denoted by
LCP, is an array that stores the length of the longest prefix of S[SA[i − 1], |S| − 1] and
S[SA[i], |S| − 1] in LCP[i] for 0 < i ≤ N . The lcp-interval [i, j) of lcp-value d is an interval
such that it satisfies LCP[i] < d, LCP[j] < d, LCP[k] > d for all k ∈ {i + 1, . . . , j − 1}, and
LCP[k] = d for at least one k ∈ {i + 1, . . . , j− 1}, and is denoted by d− [i, j). d− [i, j) corres-
ponds to all the suffixes that share the prefix S[SA[i], . . . , SA[i]+d−1]. The parent interval of
d− [i, j) is the lcp-interval h− [m, n) such that h < d and 0 ≤ m ≤ i < j ≤ n < N , and there
is no other lcp-interval t− [r, s) such that h < t < d and 0 ≤ m ≤ r ≤ i < j ≤ s ≤ n < N .
The parent of the lcp-interval [f, g) can be found by

[f ′, g′) =
{

[PSV[fi], NSV[fi]) LCP[gi] ≤ LCP[fi]
[PSV[gi], NSV[gi]) (otherwise) ,

(2)

where PSV[i] = max{j|0 ≤ j < i ∧ LCP[j] < LCP[i]} and NSV[i] = min{j|i ≤ j < N ∧
LCP[j] < LCP[i]}. By finding a parent interval using PSV and NSV whenever it fails to
extend the match, we can avoid useless backward searches, and thus LMEM is found at most
2ℓ backward searches. LCP, PSV and NSV are precomputed and stored in an efficient form
that can be searched in constant time, so we can find LMEM in O(ℓ) time. See section 5.2
of [12] for more details of the data structures. Examples of the search by FM-Index, LCP,
PSV, and NSV are provided in Appendix A.

Figure 2 Schematic view of our goal and model. (0) Server (DB holder) distributes Beaver triples.
(A reliable third party can serve as the trusted initializer instead.) (1) Server distributes shares of
the database. (2) User (query holder) distributes shares of the query. (3) The computing nodes
jointly calculate shares of the result. (4) The results are sent to User. The offline phase is (0), DB
preparation phase is (1), and Search phase consists of (2)–(4).

Y. Nakagawa, S. Ohata, and K. Shimizu 2:7

Table 2 Summary of complexities for our protocols and related protocols. BTime and Bsize are
generation time and size of BTs. Dtime and Dsize are generation time for the shares of the database
and size of the shares. Stime is the time for Search phase. Comm. is the size of data exchanged
between computing nodes. Round is the number of data exchanges.

Btime Bsize Dtime Dsize Stime Comm. Round
ss-ROT (ours) 0 0 ℓN ℓN ℓ ℓ ℓ

Secure LPM (ours) ℓ ℓ ℓN ℓN ℓ ℓ ℓ

[30, 28] (LPM by AHE) − − − − ℓN ℓ
√

N ℓ

Baseline (LPM) ℓ2N ℓ2N N N ℓ2N ℓ2N log ℓ + log N

Secure LMEM (ours) ℓ2 ℓ2 ℓN ℓN ℓ2 ℓ2 ℓ

Baseline (LMEM) ℓ3N ℓ3N N N ℓ3N ℓ3N log ℓ + log N

3 Proposed protocols

Problem Setting and Outline of Our Protocols

We assume that a query holder A, a database holder B, and two computing nodes P0 and P1
participate the protocol. A holds a query string w of length ℓ and B holds a database string
T of length N . After the protocol is run, only A knows LPM or LMEM between w and T .
P0 and P1 do not obtain any information of w and T , except for ℓ and N .

Our protocol consists of offline, DB preparation, and Search phases. In the offline phase,
B generates BTs (correlated randomness used for multiplication) and sends them to P0 and
P1. In the DB preparation phase, B creates a lookup table and distributes its shares to P0
and P1. In the Search phase, A generates shares of the query and sends them to P0 and P1,
and P0 and P1 jointly compute the result without obtaining any information of the lookup
table. Finally, A obtains the results. Figure 2 shows the schematic view of our goal and
model. Note that the Offline and DB preparation phases do not depend on a query string,
so they can be computed in advance for multiple queries.

In Section 3.1, we propose the important building block ss-ROT that enables recursive
reference to a lookup table. In Section 3.2, we describe how to design the lookup table based
on FM-Index, and propose an efficient protocol for LPM by using the lookup table and ss-
ROT. In Section 3.3, we describe the additional table design for auxiliary data structures, and
propose the complete protocol for LMEM. Table 2 summarizes the theoretical complexities
of the three protocols. For comparison, the complexities of the baseline protocols and a
previous method for LPM based on an additive homomorphic encryption [28, 30] are shown.
As we mentioned in Section 1, the baseline protocols are designed using major techniques of
secret-sharing-based protocols. The detailed algorithms are described in Appendix C.

3.1 Secret-shared Recursive Oblivious Transfer
We define a problem called a secret-shared recursive oblivious transfer (ss-ROT) as follows.

▶ Definition 1. We assume a database holder B and two computing nodes P0 and P1
participate the protocol. B holds a vector V of length N and 0 ≤ V [i] < N . Given the initial
position p0 and the depth of recursion ℓ (2 ≤ ℓ), the secret-shared recursive oblivious transfer
protocol outputs shares of

V [V [· · ·V︸ ︷︷ ︸
ℓ

[p0] · · ·]] (3)

without leaking V to P0 and P1.

WABI 2021

2:8 Privacy-Preserving Genome Sequence Search

Protocol 1 Secret-shared Recursive Oblivious Transfer (ss-ROT).

Input: Public input: p0
Input: Private input of server: Rj [i] (i = 0, . . . , N − 1, j = 0, . . . , ℓ− 1)

1: (Preparation by B) B generates and distributes [[Rj [i]]]0 and [[Rj [i]]]1 to P0 and P1
2: for 0 ≤ j ≤ ℓ− 2 do ▷ Step 1
3: P0 and P1 obtain a position pj+1 by pj+1 = Reconst([[Rj [pj]]]0, [[Rj [pj]]]1) .

4: end for
5: P0 and P1 output [[Rℓ−1[pℓ−1]]]0 and [[Rℓ−1[pℓ−1]]]1 . ▷ Step 2

For simplicity, we denote the recursion of Eq. 3 by V (ℓ)[p0] (e.g., V [V [p0]] is denoted by
V (2)[p0]). In our protocol, all the random values are uniformly generated from Z2n .

DB Preparation Phase. B generates ℓ− 1 random values r0, . . . , rℓ−2 and computes the
following vectors R0, . . . , Rℓ−1. Each vector Rj has N elements.

Rj [i] =


(V [i] + rj) mod N (j = 0)
(V [(i− rj−1) mod N] + rj) mod N (1 ≤ j ≤ ℓ− 2)
(V [(i− rj−1) mod N]) mod N (j = ℓ− 1)

(4)

B computes Share(Rj [i]) and sends [[Rj [i]]]0 and [[Rj [i]]]1 to P0 and P1, for i = 0, . . . , N−1
and j = 0, . . . , ℓ− 1.

Search Phase. The Search phase consists of two steps and is described in Lines 2–5 of
Protocol 1. The input is the initial position p0 and shares of R. The output is [[V (ℓ)[p0]]].
An example of a search is illustrated in Figure 3.

Figure 3 Example of a search when V = (2, 0, 3, 1), p0 = 2, and ℓ = 4. The goal is to
compute [[V (4)[2]]] = [[2]]. Here we assume B generates r0 = 1, r1 = 2, r2=1. In Step 1 of
Search phase, P0 and P1 jointly compute Reconst([[R0[2]]]0, [[R0[2]]]1) to obtain R0[2] = 0. (R0[2]
is randomized by r0, so any element of V is leaked.) In a similar way, P0 and P1 compute
R1[0] = 3 and R2[3] = 1. In Step 2, P0 and P1 output [[R3[1]]]0 and [[R3[1]]]1 respectively. Since
R0[2] = V [2]+r0, R1[V [2]+r0] = V [V [2]+r0−r0]+r1, R2[V [V [2]]+r1] = V [V [V [2]]+r1−r1]+r2,
and R3[V [V [V [2]]] + r2] = V [V [V [V [2]]] + r2 − r2], ss-ROT successfully computes [[V (4)[2]]].

3.1.1 Security and Complexities
▶ Theorem 2. ss-ROT is correct and secure in the semi-honest model.

Due to space limits, the proof is shown in Appendix D.
In the DB preparation phase, B generates shares of V of length N for ℓ times. Therefore,

time and communication complexities are O(ℓN). For the Search phase, Reconst is computed
ℓ times in Step 1. Since the time, communication, and round complexities of Reconst are
O(1), those of the Search phase become O(ℓ).

Y. Nakagawa, S. Ohata, and K. Shimizu 2:9

3.2 Secure LPM
Construction of Lookup Table. The goal is to find LPM securely. To apply FM-Index for
a prefix search, the reverse string of T (i.e., T̂) is used. The backward search of FM-Index is
formulated by Eq. 1. If we precompute LFc(i, T̂) for i = 0, . . . , N and c ∈ {A,T,G,C}, and
store them in a lookup table that consists of four vectors: VA, VC, VG, and VT such that
Vc[i] = LFc(i, T̂), Eq. 1 is replaced by the following table lookup

fk+1 = Vw[k][fk], gk+1 = Vw[k][gk]. (5)

I.e., starting with the initial interval [f0 = 0, g0 = N), we can compute the match by
recursively referring to the lookup table while f < g.

Protocol Overview. The key idea of Secure LPM is to refer to V by ss-ROT, i.e., P0 and
P1 jointly refer to V ℓ times in a recursive manner. To achieve backward search, P0 and
P1 need to select Vx[·] for each reference, where x is a query letter to be searched with.
This is achieved by expressing the query letter by unary code (Eq. 7) and computing the
inner product of Eq. 7 and (VA[·], VC[·], VG[·], VT[·]). To find LPM, P0 and P1 need to check
f = g for each reference. We use the subprotocol Equality to check it securely. Since V

is randomized with different numbers for searching f and g, the difference of the random
numbers is precomputed and removed securely upon the equality check. A receives only the
result of each equality check to know LPM. For examples, LPM is the prefix of length i− 1
when f = g for the i-th reference. If f ̸= g for all references, LPM is the entire query.

DB Preparation Phase. B creates a lookup table and generates the following 4ℓ vectors in
a similar manner to ss-ROT. For simplicity, we denote the length of Vc by N ′ = N + 1.

Rj
c,f [i] =

{
(Vc[i] + rj

f) mod N ′ (j = 0)
(Vc[(i− rj−1

f) mod N ′] + rj
f) mod N ′ (1 ≤ j < ℓ)

(6)

Rj
c,f [i] is used for computing the lower bound f of the interval [f, g). We also generate Rj

c,g[i]
for the upper bound g. R consists of 8ℓ vectors, each of length N ′. Since the longest match
is found when f = g, B also generates a vector r′[j] = rj

f − rj
g that is used for equality check

of f and g. Then, B sends shares of Rj
c,f [i], Rj

c,g[i], and r′[j] to P0 and P1.

Search Phase. Protocol 2 describes the algorithm in detail. A generates four vectors qA,
qC, qG, qT, each of length ℓ, as follows.

qc[j] =
{

1 (c = w[j])
0 (c ̸= w[j])

(7)

For each j, (qA[j], qC[j], qG[j], qT[j]) encodes w[j] (e.g., (qA[j], qC[j], qG[j], qT[j]) = (1, 0, 0, 0)
if w[j] = A). The aim of the encode is to compute [[Rx[j]]] = [[

∑
c∈Σ qc[j] · Rc[j]]] when

w[j] = x. Figure 4 illustrates an example of the table lookup.
A generates shares of qA, qC, qG, qT and distributes them to P0 and P1. P0 and P1

compute LFw[j](f ′, T̂)+rj
f and LFw[j](g′, T̂)+rj

g in Lines 5–8 without leaking f ′ and g′, where
[f ′, g′) corresponds to the match of w[0, j] and T̂ . In Lines 10–12, the equality of f ′ and g′

is examined for all rounds. Note that fj and gj are randomized by different values rj−1
f and

rj−1
g in order to conceal f ′ and g′, so our protocol computes the equality of fj − gj − r′[j− 1]

and 0. In Lines 15–16, A receives all the results of equality checks (i.e., [[o[1]]]B , . . . , [[o[ℓ]]]B)
from P0 and P1, and knows LPM by reconstructing them. For example, if w =GCT and
o = (0, 0, 1), A knows that LPM is GC.

WABI 2021

2:10 Privacy-Preserving Genome Sequence Search

Protocol 2 Secure LPM.

Input: Public input: N , N ′ = N + 1, ℓ, Σ = {A, C, G, T}, f0 = 0, g0 = N

Input: Private input of user: query qc ∈ {0, 1}ℓ (c ∈ Σ)
Input: Private input of server: Rj

c,f , Rj
c,g ∈ ZN ′

N ′ (c ∈ Σ, 0 ≤ j < ℓ), r′ ∈ Zℓ
N ′

1: (Preparation by B) B distributes [[Rj
c,f]], [[Rj

c,g]](c ∈ Σ, 0 ≤ j < ℓ), [[r′]] to P0 and P1
2: (Preparation by A) A distributes [[qc]] (c ∈ Σ) to P0 and P1.
3: (Computation by P0 and P1)
4: for j = 0, · · · , ℓ− 1 do
5: [[fj]]←

∑
c∈Σ MULT([[Rj

c,f [fj]]], [[qc[j]]]) ▷ Select [[Rj
w[j],f [fj]]]

6: [[gj]]←
∑

c∈Σ MULT([[Rj
c,g[gj]]], [[qc[j]]]) ▷ Select [[Rj

w[j],g[gj]]]
7: fj+1 ← Reconst([[fj]]0, [[fj]]1) ▷ Update randomized lower bound
8: gj+1 ← Reconst([[gj]]0, [[gj]]1) ▷ Update randomized upper bound
9: end for

10: for j = 1, · · · , ℓ parallelly do
11: [[o[j]]]B ← Equality([[fj]]− [[gj]]− [[r′[j − 1]]], [[0]]) ▷ Equality check of upper and lower

bounds.
12: end for
13: P0 and P1 send [[o]]B0 , [[o]]B1 to A
14: (Verification by A)
15: for j = 1, · · · , ℓ do
16: o[j]← Reconst([[o[j]]]B0 , [[o[j]]]B1)
17: end for
Output: A outputs o[1], . . . , o[ℓ] to determine LPM.

3.2.1 Security and Complexities

▶ Theorem 3. Protocol 2 is correct and secure in the semi-honest model.

Due to space limits, the proof is shown in Appendix E. A may reveal T by making many
queries. Such a problem is called output privacy. Although output privacy is outside of the
scope of this paper, we should mention here that A needs to make an unrealistically large
number of queries for obtaining T by such a brute-force attack, considering that N is very
long.

The DB preparation phase generates shares of Rj
c,f and Rj

c,g (c ∈ Σ and 0 ≤ j < ℓ); i.e.,
8× ℓ vectors of length N ′. Therefore, the time and communication complexities are O(ℓN).
For the Search phase, MULT and Reconst are computed twice in Lines 4–9 for ℓ rounds and
Equality is computed once in Lines 10–12 for ℓ rounds. Each time, the communication and
round complexities of these subprotocols are O(1), so those of the Search phase become O(ℓ).

3.3 Secure LMEM

Construction of Lookup Table. As described in Section 2.2, we can find a parent interval
by a reference to LCP, PSV, and NSV. Therefore, in addition to Vc defined in Section 3.2,
we prepare lookup tables that simply store all the outputs of them; i.e., Vlcp[i] = LCP[i],
Vpsv[i] = PSV[i], and Vnsv[i] = NSV[i].

Y. Nakagawa, S. Ohata, and K. Shimizu 2:11

Figure 4 Example of a secure table lookup when w =GCT and T̂ =ACGT. Only the lookup
for a lower bound is shown. For simplicity, Rj

c,f and rj
f are denoted by Rj

c and rj . LFw[i](fi, T̂)
(i = 0, 1, 2) is computed by VG[0], VC[2], and VT[1]. V is referenced securely by using R. R0

G[0] is
computed by

∑
c∈Σ qc[0] ·Rc[0]. R1

C[2 + r0] is computed by
∑

c∈Σ qc[1] ·Rc[2 + r0]. R2
T[1 + r1] is

computed by
∑

c∈Σ qc[2] ·Rc[1 + r1].

DB Preparation Phase. B generates randomized vectors Rc,f , Rc,g and r′[j] = rj
f − rj

g

using the same algorithm in Section 3.2 for length 2ℓ. As shown in Eq. 2, Vlcp is referred by
the upper and lower bounds of [f, g). Therefore, B generates following circular permutations
of Vlcp such that Wl,f and Rc,f , and Wl,g and Rc,g, are permutated by the same random
values, respectively. I.e.,

W j
l,x[i] =

{
Vlcp[i] (j = 0)
Vlcp[(i− rj−1

x) mod N] (1 ≤ j < 2ℓ) ,

where x is either f or g. Vpsv is referred by both f and g, and is plugged in to f . Therefore,
B generates W j

p,f and W j
p,g such that both of them are randomized by rj

f , and W j
p,f is

permutated by rj−1
f and W j

p,g is permutated by rj−1
g as follows.

W j
p,f [i] =

{
(Vpsv[i] + rj

f) mod N (j = 0)
(Vpsv[(i− rj−1

f) mod N] + rj
f) mod N (1 ≤ j < 2ℓ)

W j
p,g[i] =

{
(Vpsv[i] + rj

g) mod N (j = 0)
(Vpsv[(i− rj−1

g) mod N] + rj
f) mod N (1 ≤ j < 2ℓ)

Similarly, Vnsv is referred by both f and g, and is plugged in to g. Therefore, B generates
W j

n,f [i] and W j
n,g[i] as follows.

W j
n,f [i] =

{
(Vnsv[i] + rj

f) mod N (j = 0)
(Vnsv[(i− rj−1

f) mod N] + rj
g) mod N (1 ≤ j < 2ℓ)

W j
n,g[i] =

{
(Vnsv[i] + rj

g) mod N (j = 0)
(Vnsv[(i− rj−1

g) mod N] + rj
g) mod N (1 ≤ j < 2ℓ)

B distributes shares of Rc,f , Rc,g, r′, Wl,f , Wl,g, Wp,f , Wp,g, Wn,f , and Wn,g to P0 and P1.

Search Phase. Protocol 3 describes the algorithm in detail. A generates query vectors
qA, qC, qG, qT by Eq. 7 and distributes shares of the vectors to P0 and P1. In Line 6 of
Protocol 3, [f̂ , ĝ) is computed by the reference to R (i.e., a search based on a backward
search) similarly to Lines 5–6 of Protocol 2. In Line 9, [fex, gex) is computed by the reference
to W (i.e., a search based on LCP, PSV and NSV). In Line 11, the interval is updated by
either [f̂ , ĝ) or [fex, gex) based on the result of f ′ = g′ in Line 7, where [f ′, g′) corresponds
to the interval that corresponds to a substring match.

WABI 2021

2:12 Privacy-Preserving Genome Sequence Search

In each round, we need to know a query letter to be searched with, so we need to maintain
the right end position of the match in the query. The position moves toward the right while
the match is extended, but remains the same when the interval is updated based on PSV and
NSV. To memorize the position, we prepare shares of a unit bit vector u of length ℓ, in which
the position t is memorized as u[t] = 1 and u[i ̸= t] = 0. In Lines 14–18, u remains the same
if the interval is updated based on PSV and NSV, and u = (u, [ℓ− 1], u[0], u[1], . . . , u[ℓ− 2])
otherwise. In Lines 19–21, the inner product of qc (c ∈ Σ) and u becomes the encode of w[t]
that is used for the next round.

We also maintain the left end position of the match. While the match is extended, the
position remains the same and it moves toward the right when the interval is updated by
[fex, gex). The new left end position can be computed by p + m− c where p is the current
position, m is the length of the current match, and c is the lcp-value of [fex, gex) (i.e., the
longest common prefix length of suffixes contained in [fex, gex)). The position is computed
in Line 23. The match length is incremented by 1 for each extension. When the interval
is updated by [fex, gex), the match length is reduced to the lcp-value of [fex, gex), which is
computed by max(LCP[f], LCP[g]). The match length is computed in Line 22. In Line 25,
the longest match length and the corresponding left end position are updated. After all the
positions in the query have been examined, LMEM and its left end position are sent to A in
Line 27.

3.3.1 Security and Complexities
▶ Theorem 4. Protocol 3 is correct and secure in the semi-honest model.

Due to space limits, the proof is shown in Appendix F.
The DB preparation phase generates shares of Rj

c,f and Rj
c,g (c ∈ Σ, 0 ≤ j < ℓ) and

W j
x,f and W j

x,g (x ∈ {l, p, n} and 0 ≤ j < ℓ); 14× ℓ vectors of length N + 1. Therefore, the
time and communication complexities are O(ℓN). For the Search phase, MULT is computed
ℓ times in parallel in Lines 15–16. (These are not dependent on each other.) In Line 20,
MULT is computed ℓ times in parallel, and Line 20 is computed in parallel four times in
Lines 19–21. Lines 15–16 and Lines 19–21 are repeated for 2ℓ− 1 rounds. Other subprotocols
are also computed for 2ℓ− 1 rounds. The time, communication, and round complexities are
O(1) for MULT, and independent computation of MULT for ℓ times does not increase the
round complexity. The time, communication and round complexities are O(1) for the other
subprotocols used in Protocol 3. Therefore, the complexities of the Search phase are O(ℓ2)
for time and communication, and O(ℓ) for the number of rounds.

4 Experiment

We implemented Protocol 2 (Secure LPM) and Protocol 3 (Secure LMEM). For comparison,
we also implemented baseline protocols (Baseline (LPM) and Baseline (LMEM)). Details
of the baseline protocols are provided in Appendix C. All protocols were implemented by
Python 3.5.2. The dataset was created from Chromosome 1 of the human genome. We
extracted substrings of length N = 103, 104, 105, 106, and 107 for databases, and ℓ = 10, 25,
50, 75, and 100 for queries. Share was run with n = 16 and n = 32 for N < 105 and 105 ≤ N

in the proposed protocols, and n = 1 for a Boolean share and n = 8 for an arithmetic share
in the baseline protocols. We did not implement a data transfer module, and each protocol is
implemented as a single program. Therefore, the search time of the protocols was measured
by the time consumed by either one of P0 and P1. To assess the influence of communication

Y. Nakagawa, S. Ohata, and K. Shimizu 2:13

Protocol 3 Secure LMEM.

Input: Public input: N , N ′ = N + 1, ℓ, Σ = {A, T, G, C}, f0 = 0, g0 = N

Input: Private input of user: query qc ∈ {0, 1}ℓ (c ∈ Σ)
Input: Private input of server: Rj

c,f , Rj
c,g, W j

l,f , W j
l,g, W j

p,f , W j
p,g, W j

n,f , W j
n,g ∈ ZN ′

N ′ (c ∈
Σ, 0 ≤ j < ℓ), r′ ∈ Zℓ

N ′

1: (Preparation by B) B generates shares of input vectors. B also generates shares of
variables: [[u]] = [[(1, 0, . . . , 0)]], [[pmax]] = [[0]], [[p]] = [[0]], [[mmax]] = [[0]], [[m]] = [[0]]. All
shares are sent to P0 and P1.

2: (Preparation by A) A generates and distributes [[qc]] (c ∈ Σ) to P0 and P1.
3: (Computation by P0 and P1)
4: Set shares of the initial letter [[zc]] = [[qc[0]]] (c ∈ Σ).
5: for j = 0, · · · , 2ℓ− 1 do
6: [[f̂j]]←

∑
c∈Σ MULT([[Rj

c,f [fj]]], [[z[c]]]), [[ĝj]]←
∑

c∈Σ MULT([[Rj
c,g[gj]]], [[z[c]]])

7: [[e1]]B ← Equality([[f̂j]]− [[ĝj]]− [[r′[j − 1]]], [[0]]), [[e1]]← B2A([[e1]]B) ▷ If f = g.
8: [[e2]]B ← Comp([[W j

l,f [fj]]], [[W j
l,g[gj]]]), [[e2]]← B2A([[e2]]B) ▷ If LCP[f] < LCP[g]

9: [[fex]]← Choose([[W j
p,g[gj]]], [[W j

p,f [fj]]], [[e2]]), [[gex]]← Choose([[W j
n,g[gj]]], [[W j

n,f [fj]]], [[e2]])
10: [[lex]]← Choose([[W j

l,g[gj]]], [[W j
l,f [fj]]], [[e2]])

11: [[fj+1]]← Choose([[fex]], [[f̂j]], [[e1]]), [[gj+1]]← Choose([[gex]], [[ĝj]], [[e1]])
12: fj+1 ← Reconst([[fj+1]]0, [[fj+1]]1), gj+1 ← Reconst([[gj+1]]0, [[gj+1]]1) ▷ Update f , g

13: [[e′]]← B2A(ADD([[e1]]B , [[1]]B))
14: for i = 0, · · · , ℓ− 1 parallelly do ▷ Maintain right end of the match.
15: [[u1[i]]]← MULT([[u[i]]], [[e1]]) ▷ u1 = u and u2 = (0, . . . , 0) if f̂ − ĝ − r′ = 0,
16: [[u2[i]]]← MULT([[u[i]]], [[e′]]) u1 = (0, . . . , 0) and u2 = u otherwise.
17: [[u[i]]]← ADD([[u2[(i− 1) mod ℓ]]], [[u1[i]]]) ▷ u is incremented iff. f̂ − ĝ − r′ ̸= 0.
18: end for
19: for c ∈ Σ parallelly do
20: [[zc]]←

∑
i∈{0,...,ℓ−1} MULT([[qc[i]]], [[u[i]]]) ▷ Select next letter to be searched with.

21: end for
22: [[m′]]← Choose([[lex]], ADD([[1]], [[m]]), [[e1]]) ▷ Calculate match length
23: [[p]]← Choose(ADD(ADD([[p]], [[m]]), [[−lex]]), [[p]], [[e1]]) ▷ Update left end position of

match
24: [[e3]]← B2A(Comp([[m′]], [[mmax]])), [[m]]← [[m′]]
25: [[mmax]]← Choose([[mmax]], [[m]], [[e3]]), [[pmax]]← Choose([[pmax]], [[p]], [[e3]]) ▷ Update max
26: end for
27: P0 and P1 send [[mmax]]0, [[mmax]]1, [[pmax]]0, and [[pmax]]1 to A
28: (Verification by A) max← Reconst([[mmax]]0, [[mmax]]1) and pmax ← Reconst([[pmax]]0, [[pmax]]1).
Output: A outputs mmax and pmax to report LMEM.

on a realistic environment, we theoretically estimated delays caused by network bandwidth
and latency. We assume three environments: LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100
Mbps), and WAN2 (50 ms/10 Mbps). During the run of Search phase, we stored all the
data that were transferred from P0 to P1 in a file and measured the file size as an actual
communication size. Note that the communication is symmetric and data transfer size from
P0 to P1 is equal to that from P1 to P0. Based on the data transfer size D byte, we estimate
the communication delay by D/k + 1000 × eT , where k is bandwidth, e is latency and T

is a round of communication. All the protocols were run with a single thread on the same
machine equipped with Intel Xeon 2.2 GHz CPU and 256 GB memory. We also tested the

WABI 2021

2:14 Privacy-Preserving Genome Sequence Search

Table 3 Offline time (Time), offline size (Size), DB preparation time (Time), DB preparation
size (Size), Search time on a local machine (Time), Search communication size (Size), estimated
Search time for three environments: LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100 Mbps), and WAN2

(50 ms/10 Mbps), for N = 104 (only for Baseline (LMEM)), 105, 106, 107, and ℓ = 100. The size
unit is MB and the time unit is sec except for the cell describing “20 h<”.

Offline DB preparation Search Estimated time on network
N Time Size Time Size Time Size LAN WAN1 WAN2

Secure 105 0.166 0.013 123 305 0.141 0.010 0.181 2.162 10.249
LPM 106 0.141 0.013 1248 3051 0.113 0.010 0.153 2.134 10.221
(ours) 107 0.150 0.013 12628 30517 0.126 0.010 0.167 2.147 10.234

105 - - - - 691 163 691 707 838
[30] 106 - - - - 7817 517 7818 7863 8261

107 - - - - 20 h< - - - -

Baseline
(LPM)

105 3995 184 0.146 0.095 13 122 13 24 118
106 38767 1841 1.522 0.954 164 1227 165 268 1196
107 20 h< - - - - - - - -

Secure 105 7.619 1.704 435 1068 4.817 0.999 5.577 42.900 195.654
LMEM 106 7.882 1.704 4467 10681 4.926 0.999 5.686 43.009 195.763
(ours) 107 8.457 1.704 46384 106811 5.740 0.999 6.501 43.824 196.578

Baseline 104 12747 611 0.015 0.010 46 407 46 80 389
(LMEM) 105 20 h< - - - - - - - -

C++ implementation of [30], which is based on AHE. The algorithm for LPM in [28] for
the string with |Σ| ≤ 4 (e.g., genome sequence) is the same as [30]. [30] is implemented
as a server-client software, and the client and the server were run with individual single
threads on the same machine. Therefore, the results of [30] do not include delays caused by
bandwidth limitation and latency, so we also estimated delays based on the data transfer size
and round of communication in the same manner. Each run of the program was terminated
if the total runtime of all phases exceeded 20 hours.

Comparison to Baseline Protocols. Table 3 shows the offline time and size, DB preparation
time and size, and Search time and communication size for N = 105, 106, 107, and ℓ = 100.
It also shows the result of Baseline (LMEM) for N = 104, as the runs for N > 104 did not
finish within 20 hours. The Search times and communication sizes of Secure LPM and Secure
LMEM are several orders of magnitudes faster and smaller than those of Baseline (LPM)
and Baseline (LMEM). Since the round and communication complexities of the proposed
protocols do not depend on N , their estimated Search time remains small even on WAN
environments. The left panel of Figure 5 shows the estimated Search time on WAN1 for
N = 103, 104, . . . , 107 and ℓ = 100. The times of Secure LPM and Secure LMEM do not
increase, while those of the baseline protocols increase linearly to N . The right panel of
Figure 5 shows the estimated Search time on WAN1 for ℓ = 10, 25, . . . , 100 for N = 106. We
can not show the results of Baseline (LMEM) because none of its runs were finished within
the time limit. As shown in the graph, the time of Secure LPM increases linearly to ℓ and
that of Baseline (LPM) increases proportionally to ℓ2, which are in good agreement with the
theoretical complexities in Table 2. According to the graph, the time of Secure LMEM also
increases linearly to ℓ though its time and communication complexities are O(ℓ2). This is
because the CPU times are much smaller than the delays caused by network latency that are
influenced by the round complexity O(ℓ).

Y. Nakagawa, S. Ohata, and K. Shimizu 2:15

Figure 5 Estimated time (actual search time on a local machine + estimated data transfer time)
for various N and ℓ.

We have preliminary results for testing Secure LPM and Baseline (LPM) on the actual
network (10 ms/100 Mbps). The results were 40 sec for Secure LPM and 1739 sec for Baseline
(LPM) when N = 106. Though both of the preliminary implementations have room for
improvement in the performance of data transfer, the results also indicate that our protocol
outperforms the baseline protocol and the previous study.

The time and size of Secure LPM and Secure LMEM are several orders of magnitude
better than those of the baseline protocols for the offline phase, and vice versa for the DB
preparation phase. The total time of the offline and DB preparation phases of our protocols
are more than one order magnitude faster than that of baseline protocols. For the total size
of the offline and DB preparation phases, Secure LMEM was better than Baseline (LMEM),
but Baseline (LPM) was better than Secure LPM though the complexity is better for Secure
LPM. This is because the majority of the shares were Boolean in the baseline protocols,
while all of the shares were arithmetic in the proposed protocols.

Comparison to [30]. [30] is a two-party MPC based on AHE. Each homomorphic operation
is time consuming and has no offline and DB preparation phases. As shown in Table 3, the
Search time of Secure LPM is four orders of magnitude faster than [30] for N = 106. Since
time complexity of [30] includes a factor of N , the difference in Search time becomes greater
as N becomes large. Moreover, our protocols have a further advantage in communication for
a query response when the network environment is poor, as the round complexity of [30]
and our protocols are the same while [30] requires O(

√
N) communication size. The entire

runtimes including all the phases are still six times faster for N = 105 and N = 106. We can
compute LMEM by examining [30] for all the positions in a query string, but this approach
consumed 3406 sec and 2.6 GByte of communication for N = 104.

5 Discussion

As clearly shown by the results, Search time of the proposed protocols are significantly
efficient. Considering the importance of query response time for real applications, it is
realistic to reduce Search time at the cost of DB preparation time. Since the total times for
offline and DB preparation phases of the proposed protocols were significantly better than
those of the well-designed baseline protocols, we consider the trade-off between Search and
DB preparation times in our approach to be efficient. For further reduction of DB preparation
time, parallelizing the share generation is a feasible approach. Regarding the DB preparation

WABI 2021

2:16 Privacy-Preserving Genome Sequence Search

phase, the data transfer between the server and the computing nodes is problematic when
the number of queries and the length of the database are large. One potential solution to
mitigate the problem is to use an AES-based random number generation that is similar to
the technique used in [1]. To explain it briefly, when the server needs to distribute a share
of x, (1) the server and P0 generate the same randomness r using a pre-shared key and a
pseudorandom function, and (2) the server computes x − r and sends it to P1. Although
P0’s computation cost increases, we can remove the data transfer from the server to P0. In
our protocols, the generation of shares in the DB preparation phase cannot be outsourced
because they are dependent on the database. Designing an efficient algorithm to outsource
the share generation is an important open question.

References
1 Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-

throughput semi-honest secure three-party computation with an honest majority. In Proc. of
CCS 2016, pages 805–817, 2016. doi:10.1145/2976749.2978331.

2 Gilad Asharov, Shai Halevi, Yehuda Lindell, and Tal Rabin. Privacy-preserving search of similar
patients in genomic data. PoPETs, 2018(4):104–124, 2018. doi:10.1515/popets-2018-0034.

3 Md Momin Al Aziz, Md. Nazmus Sadat, Dima Alhadidi, Shuang Wang, Xiaoqian Jiang,
Cheryl L. Brown, and Noman Mohammed. Privacy-preserving techniques of genomic data - a
survey. Briefings Bioinform., 20(3):887–895, 2019.

4 Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering GATTACA: efficient and secure testing of fully-sequenced human genomes. In
Proc. of CCS 2011, pages 691–702, 2011. doi:10.1145/2046707.2046785.

5 Donald Beaver. Efficient multiparty protocols using circuit randomization. In Proc. of
CRYPTO 1991, pages 420–432, 1991. doi:10.1007/3-540-46766-1_34.

6 Yangyi Chen, Bo Peng, XiaoFeng Wang, and Haixu Tang. Large-scale
privacy-preserving mapping of human genomic sequences on hybrid clouds. In
Proc. of NDSS 2012, 2012. URL: https://www.ndss-symposium.org/ndss2012/
large-scale-privacy-preserving-mapping-human-genomic-sequences-hybrid-clouds.

7 Ke Cheng, Yantian Hou, and Liangmin Wang. Secure similar sequence query on outsourced
genomic data. In Proc. of AsiaCCS 2018, pages 237–251, 2018. doi:10.1145/3196494.
3196535.

8 Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. Homomorphic computation of edit
distance. In Proc. of FC 2015, pages 194–212, 2015. doi:10.1007/978-3-662-48051-9_15.

9 Richard Durbin. Efficient haplotype matching and storage using the positional burrows–wheeler
transform (pbwt). Bioinformatics, 30(9):1266–1272, 2014.

10 Yaniv Erlich and Arvind Narayanan. Routes for breaching and protecting genetic privacy.
Nature Reviews Genetics, 15(6):409–421, 2014.

11 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proc. of FOCS 2000, pages 390–398, 2000. doi:10.1109/SFCS.2000.892127.

12 Johannes Fischer, Veli Mäkinen, and Gonzalo Navarro. An(other) entropy-bounded compressed
suffix tree. In Proc. of CPM 2008, pages 152–165, 2008. doi:10.1007/978-3-540-69068-9_16.

13 Marc Fiume, Miroslav Cupak, Stephen Keenan, Jordi Rambla, Sabela de la Torre,
Stephanie OM Dyke, Anthony J Brookes, Knox Carey, David Lloyd, Peter Goodhand, et al.
Federated discovery and sharing of genomic data using beacons. Nature biotechnology, 37(3):220–
224, 2019.

14 Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004. doi:10.1017/CBO9780511721656.

15 Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party computation
using garbled circuits. In Proc. of USENIX 2011, 2011. URL: http://static.usenix.org/
events/sec11/tech/full_papers/Huang.pdf.

https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1145/2046707.2046785
https://doi.org/10.1007/3-540-46766-1_34
https://www.ndss-symposium.org/ndss2012/large-scale-privacy-preserving-mapping-human-genomic-sequences-hybrid-clouds
https://www.ndss-symposium.org/ndss2012/large-scale-privacy-preserving-mapping-human-genomic-sequences-hybrid-clouds
https://doi.org/10.1145/3196494.3196535
https://doi.org/10.1145/3196494.3196535
https://doi.org/10.1007/978-3-662-48051-9_15
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1007/978-3-540-69068-9_16
https://doi.org/10.1017/CBO9780511721656
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Huang.pdf

Y. Nakagawa, S. Ohata, and K. Shimizu 2:17

16 Y. Ishimaki, H. Imabayashi, K. Shimizu, and H. Yamana. Privacy-preserving string search
for genome sequences with fhe bootstrapping optimization. In Proc. of IEEE Big Data 2016,
pages 3989–3991, 2016.

17 Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for genomic
computation. In Proc. of IEEE S&P 2000, pages 216–230, 2008. doi:10.1109/SP.2008.34.

18 Md Safiur Rahman Mahdi, Md Momin Al Aziz, Noman Mohammed, and Xiaoqian Jiang.
Privacy-preserving string search on encrypted genomic data using a generalized suffix tree.
Informatics in Medicine Unlocked, 23:100525, 2021.

19 Payman Mohassel, Ostap Orobets, and Ben Riva. Efficient server-aided 2pc for mobile phones.
PoPETs, 2016(2):82–99, 2016. doi:10.1515/popets-2016-0006.

20 Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving
machine learning. In Proc. of IEEE S&P 2017, pages 19–38, 2017. doi:10.1109/SP.2017.12.

21 Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter, Jean-
Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic era. ACM
Computing Surveys (CSUR), 48(1):1–44, 2015.

22 Koji Nuida, Satsuya Ohata, Shigeo Mitsunari, and Nuttapong Attrapadung. Arbitrary
univariate function evaluation and re-encryption protocols over lifted-elgamal type ciphertexts.
IACR Cryptology ePrint Archive, 2019:1233, 2019. URL: https://eprint.iacr.org/2019/
1233.

23 Satsuya Ohata and Koji Nuida. Communication-efficient (client-aided) secure two-party
protocols and its application. In proc. of FC 2020, pages 369–385, 2020.

24 Anthony A Philippakis, Danielle R Azzariti, Sergi Beltran, Anthony J Brookes, Catherine A
Brownstein, Michael Brudno, Han G Brunner, Orion J Buske, Knox Carey, Cassie Doll, et al.
The matchmaker exchange: a platform for rare disease gene discovery. Human mutation,
36(10):915–921, 2015.

25 Victoria Popic and Serafim Batzoglou. A hybrid cloud read aligner based on minhash and
kmer voting that preserves privacy. Nature communications, 8(1):1–7, 2017.

26 Thomas Schneider and Oleksandr Tkachenko. EPISODE: efficient privacy-preserving similar
sequence queries on outsourced genomic databases. In Proc. of AsiaCCS 2019, pages 315–327,
2019. doi:10.1145/3321705.3329800.

27 Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
28 Kana Shimizu, Koji Nuida, and Gunnar Rätsch. Efficient privacy-preserving string search

and an application in genomics. Bioinformatics, 32(11):1652–1661, 2016. doi:10.1093/
bioinformatics/btw050.

29 Katerina Sotiraki, Esha Ghosh, and Hao Chen. Privately computing set-maximal matches in
genomic data. BMC Medical Genomics, 13(7):1–8, 2020.

30 H. Sudo, M. Jimbo, K. Nuida, and K. Shimizu. Secure wavelet matrix: Alphabet-friendly
privacy-preserving string search for bioinformatics. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 16(5):1675–1684, 2019.

31 Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue Bu.
Efficient genome-wide, privacy-preserving similar patient query based on private edit distance.
In Proc. of CCS 2015, pages 492–503, 2015. doi:10.1145/2810103.2813725.

32 Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi Koshiba.
Secure pattern matching using somewhat homomorphic encryption. In Ari Juels and Bryan
Parno, editors, Proc. of CCSW’13, pages 65–76, 2013. doi:10.1145/2517488.2517497.

33 R. Zhu and Y. Huang. Efficient and precise secure generalized edit distance and beyond. IEEE
Transactions on Dependable and Secure Computing, pages 1–1, 2020.

WABI 2021

https://doi.org/10.1109/SP.2008.34
https://doi.org/10.1515/popets-2016-0006
https://doi.org/10.1109/SP.2017.12
https://eprint.iacr.org/2019/1233
https://eprint.iacr.org/2019/1233
https://doi.org/10.1145/3321705.3329800
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1093/bioinformatics/btw050
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1145/2517488.2517497

2:18 Privacy-Preserving Genome Sequence Search

Figure A1 An example of search by FM-Index.

Figure A2 An example of search by FM-ndex, LCP array, PSV and NSV.

A Examples of a Search with FM-Index and Auxiliary Data Structures

Let us show examples of a search with FM-Index, LCP array, PSV and NSV. In addition to
the data structures defined in Section 2.2, we also define a string F such that F [i] = S[SA[i]].
For the case of S =ATGAATGCGA, the indices become SA = (9, 3, 0, 4, 7, 8, 2, 6, 1, 5), L =
GGAAGCTTAA, and F = AAAACGGGTT. Figure A1 illustrates the example of a backward
search to find the longest suffix of the query (ATG) that matches the database, and Figure A2
illustrates the search for MEMs with the query (CGC) by using LCP array, PSV, and NSV.
As shown in the upper center panel of Figure A2, the search failed when the backward search
with ‘C’ after finding the interval [7, 8) that corresponds to GC. Since LCP[8] ≤ LCP[7], the
parent lcp-interval becomes [PSV[7] = 5, NSV[7] = 8), which corresponds to ‘G’. The match
CG is then searched with the backward search with ‘C’ from the parent lcp-interval.

Y. Nakagawa, S. Ohata, and K. Shimizu 2:19

B Semi-Honest Security

Here, we recall the simulation-based security notion in the presence of semi-honest adversaries
(for two-party computation), as in [14].

▶ Definition 5. Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a probabilistic 2-ary functionality and
fi(x⃗) denote the i-th element of f(x⃗) for x⃗ = (x0, x1) ∈ ({0, 1}∗)2 and i ∈ {0, 1}; f(x⃗) =
(f0(x⃗), f1(x⃗)). Let Π be a 2-party protocol to compute the functionality f . The view of
party Pi for i ∈ {0, 1} during an execution of Π on input x⃗ = (x0, x1) ∈ ({0, 1}∗) where
|x0| = |x1|, denoted by ViewΠ

i (x⃗), consists of (xi, ri, mi,1, . . . , mi,t), where xi represents Pi’s
input, ri represents its internal random coins, and mi,j represents the j-th message that
Pi has received. The output of all parties after an execution of Π on input x⃗ is denoted as
OutputΠ(x⃗). Then, for each party Pi, we say that Π privately computes f in the presence
of semi-honest corrupted party Pi if there exists a probabilistic polynomial-time algorithm S
such that

{(S(i, xi, fi(x⃗)), f(x⃗))} ≡ {(ViewΠ
i (x⃗), OutputΠ(x⃗))},

where the symbol ≡ means that the two probability distributions are statistically indistinguish-
able.

As described in [14], the composition theorem for the semi-honest model holds; that is, any
protocol is privately computed as long as its subroutines are privately computed.

C Our Secure Baseline LPM and LMEM

In this section, we show our secure baseline LCP and LMEM based on secret sharing.
We explain how to construct LCP, since we can obtain LMEM by (parallelly) executing
LCP for all positions in the query. Note that x⃗ = (x1, x2, · · ·), x⃗i denotes an i-th element
of x⃗, [[⃗t]] = ([[⃗t]]0, [[⃗t]]1), and (|x⃗|, |y⃗|) = (L, N). Here, we assume N > L. When [[x⃗]] =
([[x1]], [[x2]], · · · , [[xp]]), [[x⃗]] ≫ 1 means ([[0]], [[x1]], · · · , [[x]]p−1). In our protocol, we use two
subprotocols as follows:

All-AND takes a list [[⃗t]] (with p Boolean shares) as input and outputs [[t1 ∧ · · · ∧ tp]]B . We
can compute this function with ⌈p⌉ communication rounds (by appropriate parallelization)
and O(NL)-bit data transfer. The total data transfer size for this All-AND is {− 1

3 L3 +
1
2 (N + 1)L2 − 1

6 (3N + 1)L}-bit since we execute All-AND at most (N − 1) times.
All-OR takes a list [[u⃗]] (with p Boolean shares) as input and outputs [[u1 ∨ · · · ∨up]]B . We
can compute this function with ⌈p⌉ communication rounds (by appropriate parallelization)
and O(N)-bit data transfer. The total data transfer size for this All-OR is {− 1

2 L2 +
1
2 (2N − 1)L}-bit since we execute All-OR for L times.

Our protocol is as in Protocol A1.
In the following, we explain the details of our baseline longest common prefix search

protocol using an example that strings x⃗ = “TGA” and y⃗ = “ATTGC”. In this example,
w = 2 since there exists “TG” in y⃗, but “TGA” does not. First, we check whether w = 1
or not. To achieve this functionality, we check whether the first character of x⃗ (i.e., “T”
in the example) exists in y⃗ using Equality for N times. If there exists at least one True in
this calculation result, it means w = 1 (or larger), and we can achieve this functionality
using All-OR. Then, we check whether w = 2 or not; that is, we check whether there exists
“TG” in the subsequence of y⃗. Here, we only need to consider (“AT”, “TT”, “TG”, “GC”)
as subsequences in our example. We search for the perfect matching using Equality and

WABI 2021

2:20 Privacy-Preserving Genome Sequence Search

Protocol A1 Baseline Secure LPM.

Functionality: Compute the length of the longest common prefix w

Input: Strings [[x⃗]] and [[y⃗]], where (|x⃗|, |y⃗|) = (L, N)
Output: [[w]]

1: for i = 1, · · · , L do
2: for j = 1, · · · , N do
3: [[s⃗i,j]]B = Equality([[x⃗i]], [[y⃗j]])
4: end for
5: end for
6: for i = 1, · · · , L do
7: PI (I ∈ 0, 1) locally generates an empty list [[u⃗]]I .
8: for j = 1, · · · , N − i + 1 do
9: if i = 1 then

10: PI locally adds [[s⃗1,j]]BI to [[u⃗]]I .
11: else
12: PI locally generates an empty list [[⃗t]]I .
13: for k = 1, · · · , i do
14: PI locally add [[s⃗k,k+j−1]]BI to [[⃗t]]I .
15: end for
16: PI adds All-AND([[⃗t]]) to [[u⃗]]I .
17: end if
18: end for
19: [[v⃗L−i+1]]B = All-OR([[u⃗]])
20: end for
21: [[v⃗]]B = [[v⃗]]B ⊕ ([[v⃗]]B ≫ 1)
22: [[v⃗]] = B2A([[v⃗]]B)
23: [[w]] =

∑L
ℓ=1 [[v⃗ℓ]] · ℓ

24: return [[w]]

All-AND in our protocol. The condition w = 2 (or larger) holds if there is at least one
perfect matching, and we can achieve this functionality using All-OR. We can compute
the cases of w ≤ 3 using almost the same strategy. After that, we extract the number of
the longest common prefix. In the above procedure, we can obtain (False, True, True) for
(w = 3, w = 2, w = 1), respectively. We can extract the leftmost True using 1-bit right-shift
and XOR, which is a common technique for constructing secure protocols. Finally, we can
obtain a final output [[w]] using B2A and the inner product (with constant numbers). Note
that we can optimize Equality by replacing simple OR. This is because all characters in x⃗

and y⃗ are {“A”, “T”, “G”, “C”}, and we can represent them using 2-bit arithmetic sharing.
With an appropriate parallelization, we can execute Protocol A1 with O(log ⌈L⌉+ log ⌈N⌉)
communication rounds.

D Proof of Theorem 2

Proof. Correctness and security of ss-ROT protocol are proved as follows.

Proof of correctness. We assume the following equation.

pi = (V (i)[p0] + ri−1) mod N (8)

Y. Nakagawa, S. Ohata, and K. Shimizu 2:21

In Step 1, for j = 0, the protocol computes p1 by reconstructing R0[p0]. From the
definition of Rj [i] in Eq. 4,

p1 = R0[p0] = (V (1)[p0] + r0) mod N . (9)

For j = k, the protocol computes pk+1 by reconstructing Rk[pk]. From the definition of Rj [i]
in Eq. 4 and the assumption of Eq. 8,

pk+1 = Rk[pk] = (V [(pk − rk−1) mod N] + rk) mod N

= (V [V (k)[p0]] + rk) mod N

= (V (k+1)[p0] + rk) mod N . (10)

Eq. 8 holds for i = 1 by Eq. 9. It also holds for i = k + 1 under the assumption that
Eq. 8 holds for i = k. Therefore by induction, Eq. 8 holds for i = 1, . . . , ℓ− 1.

In Step 2, P0 and P1 output [[Rℓ−1[pℓ−1]]]. Since Eq. 8 holds for i = ℓ− 1,

Rℓ−1[pℓ−1] = (V [(pℓ−1 − rℓ−2) mod N]) mod N

is transformed into (V (ℓ)[p0]) mod N by plugging in pℓ−1 = V (ℓ−1)[p0] + rℓ−2. Therefore the
final output of ss-ROT becomes [[(V (ℓ)[p0]) mod N]]. The above argument completes the proof
of correctness of Theorem 2.

Proof of security. Due to space limits, we only show a sketch of the proof. In the
DB preparation phase of ss-ROT, B does not disclose any private values, and P0 and
P1 receive the shares. In the Search phase, all the messages exchanged between P0 and
P1 are shares except for the result of Reconst in Step 1. In the j-th step of the loop in
Step 1, pj+1 = Rj [pj] = (V (j+1)[p0] + rj) mod N is reconstructed. Since the reconstructed
value is randomized by rj , no information is leaked. Note that for each vector Rj , all the
elements Rj [0], . . . , Rj [N − 1] are randomized by the same value rj , but only one of them is
reconstructed, and different random numbers r0, . . . , rℓ−1 are used for R0, . . . , Rℓ−1. In Step
2, P0 and P1 output a result, and no information other than the result is leaked. ◀

E Proof of Theorem 3

Proof. Correctness and security of Protocol 2 are proved as follows.

Proof of correctness. The lookup table V simply stores all possible outputs of LF. Therefore,
backward search (Eq. 1) is equivalent to Eq. 5. For the case of querying w,
Vw[k−1][· · ·Vw[0][p0] · · ·] becomes lower bound f (for p0 = 0) or upper bound g (for p0 = N)
of the interval that corresponds to the prefix match of length k. In Line 5 of Protocol 2,
[[Rk

A,f [fk]× qA[k] + Rk
C,f [fk]× qC[k] + Rk

G,f [fk]× qG[k] + Rk
T,f [fk]× qT[k]]] is computed. Since

qw[j][j] = 1 and qc[j] = 0 (c ̸= w[j]), it is equivalent to [[Rk
w[k],f [fk]]]. Line 6 computes

[[Rj
w[k],g[gk]]] in the same manner. Each vector Rj

c,f in Eq. 6 is generated in the same manner
as Rj in Eq. 4. Since Eq. 6 uses the common random values rj

f and rj−1
f for Rj

A,f , Rj
C,f ,

Rj
G,f , Rj

T,f , we can recursively reference Vc (c ∈ {A, C, G, T}), which is obvious from
the correctness of ss-ROT. Therefore, the recursion by Line 5 and Line 7 can compute
(Vw[k−1][· · ·Vw[0][f0] · · ·] + rk−1

f) mod N ′ , and the recursion by Line 6 and Line 8 can also
compute (Vw[k−1][· · ·Vw[0][g0] · · ·] + rk−1

g) mod N ′ .

WABI 2021

2:22 Privacy-Preserving Genome Sequence Search

The longest match is found when the interval width becomes 0. Since fk =
(Vw[k−1][· · ·Vw[0][f0] · · ·] + rk−1

f) mod N ′ and gk = (Vw[k−1][· · ·Vw[0][g0] · · ·] + rk−1
g) mod N ′

are randomized, Line 11 computes fk − gk − (r′[k − 1] = rk−1
f − rk−1

g) to obtain the correct
interval width. Line 11 also computes the equality of 0 and the interval width for each
round. By reconstructing all the results in Lines 15–17, A knows the round, in which the
interval width becomes 0; i.e., he/she knows LPM. The above argument completes the proof
of correctness of Theorem 3.

Proof of security. Due to space limitation, we only show a sketch of the proof. For Lines
1–2 of Protocol 2, A and B do not disclose any private values, and P0 and P1 receive the
shares. For Lines 3–13, it is guaranteed by the subprotocols ADD, MULT, and Equality
that all the messages exchanged between P0 and P1 are shares except for the output
of Reconst in Lines 7–8. (See Section 2.1 for details of the subprotocols.) In Lines 7–8,
reconstructed values are Rk

w[j],f [fj] and Rk
w[j],g[gj]. Since the values are (Vw[j][fj]+rj

f) mod N ′

and (Vw[j][gj] + rj
g) mod N ′ according to Eq. 6, it is obvious that V is randomized for all

rounds j = 0, . . . , ℓ− 1, and no information is leaked. For Lines 14–17, only the output of
Equality at Line 11 is reconstructed. The reconstructed values are either 1 or 0 according to
Equality, and no information other than the result is leaked. ◀

F Proof of theorem 4

Proof. Correctness and security of Protocol 3 are proved as follows.

Proof of correctness. V , R, r′ and q are generated by the same algorithm used in Protocol 2.
Therefore, Line 6 is equivalent to a backward search, and e1 is the result of the equality
check of 0 and the width of the obtained interval in Line 7. The lookup tables Vlcp, Vpsv,
and Vnsv store all the outputs of LCP, PSV and NSV, and Wl, Wp, and Wn are generated
based on Vlcp, Vpsv, and Vnsv, respectively. Since W j

l,f and W j
l,g are circular permutations of

Vlcp by the same random values rj−1
f and rj−1

g that are used for generating Rc,f and Rc,g

(c ∈ Σ) respectively, Line 8 can compute LCP[gj] ≤ LCP[fj] and e2 holds the result. By
using Choose and e2, either [W j

p,f [fj], W j
n,f [fj]) or [W j

p,g[gj], W j
n,g[gj]) is selected. W j

p,f and
W j

p,g are permutated by rj−1
f and rj−1

g , but are randomized by the identical random value
rj

f . Similarly, W j
n,f and W j

n,g are permutated by rj−1
f and rj−1

g , but are randomized by rj
g.

Since Wp,f [fj] and W j
n,g[gj] are generated in the same manner as Rc,f and Rc,g, it is obvious

that the reference by them is correct. The reference by W j
n,f [fj] is transformed into

Xj+1
g [W j

n,f [fj]] = Vx[W j
n,f [fj]− rj

g] + rj+1
g

= Vx[Vnsv[fj − rj−1
f] + rj

g − rj
g] + rj+1

g

= Vx[Vnsv[fj − rj−1
f]] + rj+1

g (11)

and the reference by W j
p,f [gj] is transformed into

Xj+1
f [W j

p,g[gj]] = Vx[W j
p,g[gj]− rj

f] + rj+1
f

= Vx[Vpsv[gj − rj−1
g] + rj

f − rj
f] + rj+1

f

= Vx[Vpsv[gj − rj−1
g]] + rj+1

f (12)

Y. Nakagawa, S. Ohata, and K. Shimizu 2:23

where Xj+1 is any one of Rj+1
c , W j+1

p and W j+1
n , and Vx is the corresponding lookup table;

i.e., either one of Vc, Vpsv and Vnsv. Note that Vx could be a different table for each j + 1,
but we abuse the same notation for simplicity of notation. Since fj and gj are described
in the form of V

(j)
x [p0] + rj−1

f and V
(j)

x [p′
0] + rj−1

g based on Eq. 8, Eq. 11 and Eq. 12 are
transformed into V

(j+2)
x [p0] + rj+1

g and V
(j+2)

x [p′
0] + rj+1

f , which also satisfy the recursion
form of Eq. 8. Thus, the intervals [W j

p,f [fj], W j
n,f [fj]) and [W j

p,g[gj], W j
n,g[gj]) are correct

intervals and Line 9 is equivalent to computing Eq. 2.
Lines 14–18, u remains the same if e1 = 0 and is permutated such that u[i] = u[(i−1) mod ℓ

]
otherwise. Therefore Lines 19–21 can choose the letter to be searched with. The match
length and the start position are obtained based on e1 in Lines 22–23, and the longest value
and the corresponding position are selected in Lines 24–25. The shares of the length and
start position of LMEM are sent to A, and A reconstructs them. Then, Protocol 3 outputs
them. The above argument completes the proof of correctness of Theorem 4.

Proof of security. Due to space limits, we only show a sketch of the proof. For Lines 1–2
of Protocol 3, A and B do not disclose any private values, and P0 and P1 receive the shares.
For Lines 3–27, it is guaranteed by the subprotocols ADD, MULT, Equality, and Choose that
all the messages exchanged between P0 and P1 are shares except for the output of Reconst
in Line 12. (See Section 2.1 for details of the subprotocols.) In Line 12, the reconstructed
values are fi+1 = V

(j+1)
x [p0] + rj

f and gj+1 = V
(j+1)

x [p0] + rj
g, according to Eq. 8, Eq. 11,

and Eq. 12. Since fj+1 and gj+1 are randomized by rj
f and rj

g, respectively, for all rounds
j = 0, . . . , 2ℓ− 1, no information is leaked. In Line 28, A reconstructs only the search result
(the length and start position of LMEM). ◀

WABI 2021

	1 Introduction
	2 Preliminaries
	2.1 Secure Computation based on Secret Sharing
	2.2 Index Structure for String Search

	3 Proposed protocols
	3.1 Secret-shared Recursive Oblivious Transfer
	3.1.1 Security and Complexities

	3.2 Secure LPM
	3.2.1 Security and Complexities

	3.3 Secure LMEM
	3.3.1 Security and Complexities

	4 Experiment
	5 Discussion
	A Examples of a Search with FM-Index and Auxiliary Data Structures
	B Semi-Honest Security
	C Our Secure Baseline LPM and LMEM
	D Proof of Theorem 2
	E Proof of Theorem 3
	F Proof of theorem 4

