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Abstract
Given two strings A and B such that B is a permutation of A, the max duo-preservation string
mapping (MPSM) problem asks to find a mapping π between them so as to preserve a maximum
number of duos. A duo is any pair of consecutive characters in a string and it is preserved by π

if its two consecutive characters in A are mapped to same two consecutive characters in B. This
problem has received a growing attention in recent years, partly as an alternative way to produce
approximation algorithms for its minimization counterpart, min common string partition, a
widely studied problem due its applications in comparative genomics. Considering this favored
field of application with short alphabet, it is surprising that MPSMℓ, the variant of MPSM with
bounded alphabet, has received so little attention, with a single yet impressive work that provides
a 2.67-approximation achieved in O(n) [5], where n = |A| = |B|. Our work focuses on MPSMℓ,
and our main contribution is the demonstration that this problem admits a Polynomial Time
Approximation Scheme (PTAS) when ℓ = O(1). We also provide an alternate, somewhat simpler,
proof of NP-hardness for this problem compared with the NP-hardness proof presented in [16].
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1 Introduction

Evaluating the similarity between strings is a core problem of stringology, with various
applications ranging from data compression to bioinformatics. Various distance measures
on string have been proposed such as the Hamming distance (see [23] for a full survey), the
Jaro-Winkler distance [28], the overlap coefficient [27], etc. However, in real life applications,
many of these simple distance measures fail to provide significant information, and the
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5:2 MPSM with Bounded Alphabet

PB = cb abba ab

PA = abba cb ab

(a) A solution expressed as blocks.

B = c b a b b a a b

A = a b b a c b a b

(b) The same solution expressed as mapping.

Figure 1 An instance of MCSP along with its solution.

computation of more involved distances is often required. One of the most commonly used
distance measure between two strings is the so called edit distance [18]. Given a set of
allowed operations on strings, and a cost function on the allowed operations, the edit distance
measures the minimum overall cost of edit operations that need to be performed to transform
the first string into the second. The edit distance is a versatile concept that applies to various
complex objects apart from strings, and allows for the representation of many different
problems by considering different sets of allowed edit operations and different cost functions.
In data compression, the edit distance can be used to help store efficiently a couple or a set
of similar yet different data (e.g., different versions of the same object), by encoding a base
element only, and then representing each other element of the dataset as the series of edit
operations that results in it starting from the base element [25]. In bioinformatics, the edit
distance provides some measure of kinship between species by measuring the similarity of
their DNA [17, 24].

When the only allowed edit operation is shifting a block of characters within the string,
computing the edit distance between two strings amounts to solving min common string
partition problem. The min common string partition (MCSP) is a fundamental problem
in the field of string comparison [9, 15], and can be applied more specifically to genome
rearrangement problems, as shown in [26], where each block of the partition can be seen as a
gene. Consider two strings A and B, both of length n, such that B is a permutation of A.
MCSP asks for a partition PA of A and a partition PB of B, both of minimum cardinality
|PA| = |PB | = p, such that PA is a permutation of PB. As B can be reconstructed by
shifting p− 1 blocks of PA, the edit distance between A and B is equal to p− 1. Figure 1
provides a visual representation of the problem with A = abbacbab and B = cbabbaab.

By focusing on how the blocks of P are mapped between A and B, the problem can be
alternatively defined as follows: given two strings A and B, both of length n, such that B is
a permutation of A, one needs to define a mapping π that maps each position i of A to a
position π(i) of B such that, for all i ∈ {1, . . . , n}, the letter A[i] is the same as the letter
B[π(i)]. The number p− 1 of cuts in a partition with p blocks is then equal to the number
of consecutive positions, or duos, (i, i + 1) such that π(i) + 1 ̸= π(i + 1) (in Figure 1b, this
happens for i = 4 and i = 6). Hence, maximizing the number of duos that are preserved by
the mapping, i.e., such that π(i) + 1 = π(i + 1) immediately yields a solution for MCSP. This
gives rise to the maximization version of the MSCP problem, called max duo-preservation
string mapping (MPSM):

▶ Definition 1. max duo-preservation string mapping
Given two strings A and B of length n such that A is a permutation of B, the max duo-
preservation string mapping problem (MPSM) asks for a bijective mapping π between
positions of A and B such that:
∀i ∈ {1, . . . , n}, A[i] = B[π(i)]
the number of duos preserved by π is maximum
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Related works
k-MCSP denotes the restricted version of MCSP where each character occurs at most k

times. This problem has been shown NP-hard and APX-hard even with k = 2 [15]. Several
approximations are known for low values of k [9, 10, 11, 15, 19, 20], and the problem was
also studied extensively in terms of parameterized algorithms [6, 7, 12, 16]. Another variant
of MCSP, denoted by MCSPℓ, deals with the version where the alphabet used to form the
strings consists of at most ℓ characters. This version of the problem has been proved to
be NP-hard [16] for any ℓ ≥ 2. The best approximation ratio known so far for the general
version is O(log n log∗ n) [11].

In order to tackle the approximation issue from a different angle, the maximization version
of the problem (as described in Definition 1) was introduced in [8], with an O(k2) approxim-
ation for k−MPSM (where, similarly to k−MCSP, each character occurs at most k times).
The problem has be shown APX-hard in [3] even with k = 2, and the article also provided
the first constant approximation for the general problem with a simple 4-approximation
algorithm. This ratio was later improved to 3.5 using a local search technique [2], 3.25
through a combinatorial triplet matching approach [4], and finally 2 + ε in nO(1/ε) with a
combination of a greedy algorithm and local search [13]. Note that [13] also presented a
2.67-approximation algorithm with time complexity O(n2). Moreover a 1.4+ε approximation
algorithm for 2−MCSP appears in [29]. Regarding the version of MCSP where the alphabet
has at most ℓ characters (MCSPℓ), a recent work proposed a 2.67-approximation algorithm
that requires time as low as O(n + ℓ7) [5]. The method presented in [5] also guarantees a
2.67-approximation in O(n3) for the weighted version of the problem which was introduced
in [22]. The weighted version takes into consideration the positions of the preserved duos (the
closer the better). Finally, the problem was also studied through the prism of fixed-parameter
tractability, and was shown to be FPT with respect to the number of preserved duos in [1],
whereas [21] presented more efficient algorithms still parameterized with respect to the
solution size.

Our Contribution
In this work, we tackle the MCSPℓ problem where the alphabet used to form strings A

and B has at most ℓ = O(1) characters. The problem is NP-hard even with ℓ = 2, as its
minimization counterpart has be shown to be NP-hard in [16]. We do however provide a
more direct reduction in Section 4. The main contribution of this article consists of the proof
that MCSPℓ admits a Polynomial Time Approximation Scheme (PTAS), as we provide an
algorithm based on dynamic programming that guarantees, for every fixed integer k > 1,
a (1 + 1

k−1 )-approximation within time complexity O(kn1+cℓk ), where c is some constant,
which amounts to O(nO(1)) provided that both k and ℓ are constant. The algorithm and its
approximation analysis are presented in Section 3.

We remind that a PTAS is a family of approximation algorithms. For any fixed ε > 0, a
PTAS for a maximization problem runs in time polynomial in the instance size and outputs
a feasible solution of value SOL such that (1 + ε)SOL ≥ OPT where OPT denotes the
optimal value achieved by a feasible solution. A fully polynomial time approximation scheme
(FPTAS) also satisfies (1 + ε)SOL ≥ OPT but its running time is polynomial both in the
instance size and 1/ε.

Since the objective value of MCSPℓ is upper bounded by a polynomial of the instance
size (indeed, at most n− 1 duos can be preserved), the existence of an FPTAS for MCSPℓ

would lead to the unlikely fact that P=NP.

WABI 2021
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2 Preliminaries

Let A and B represent two strings formed on an alphabet L, such that B is a permutation
of A. Let n = |A| = |B|. We denote by ℓ the size of the alphabet L.

A word w on alphabet L is a non empty tuple of letters from L. The i-th letter of w is
denoted by w[i] (similar to the fact that the i-th letter of A is denoted by A[i]). Dk(L) is the
complete dictionary of words on L with at most k letters (i.e., the word size is at most k).
Note that |Dk(L)| =

∑k
i=1 ℓi = O(ℓk). When the context is clear, the dictionary is denoted

by D.

Cardinality assignments X and [w]

In what follows, X denotes a vector in N|Dk(L)| called cardinality assignment, that assigns a
cardinality1 to every word of Dk(L). X(w) denotes the cardinality assigned to word w in X.
[w] denotes the cardinality assignment that assigns 1 to w and 0 to every other word.

Regular operations on vectors are allowed on cardinality assignments. In particular, the
cardinality assignment X + [w] (resp., X − [w]) is identical to X except that position w is
increased (resp., decreased) by one unit.

Finally, we denote by X0 the cardinality assignment that assigns 0 to every word.

String description and String-cuts

We call string-cut a partitioning S of a string A in sub-strings. Concretely, a string-cut is an
ordered list of words whose concatenation results in A. We say that a cardinality assignment
X describes a string-cut S if words in S appear with the exact frequencies described by
X. Similarly, we say that a cardinality assignment X describes a string A if there exists a
string-cut S of A such that X describes S.

A string-cut is said to be k-bounded if its words have length at most k. We denote by St

the t-th word of a string-cut S, while the operation S :: w consists of appending word w to
the end of S.

Example

Consider the string A = abbabbaab formed on the alphabet L = {a, b}. The dictionary
D2(L) contains all possible words of length at most two using letters of alphabet L. Namely,
D2(L) = {a, b, aa, bb, ab, ba}. The string A can be partitioned in the following 2-bounded
string-cut S = (ab, b, ab, ba, ab) described by the cardinality assignment X = (0, 1, 0, 0, 3, 1)
(because S has zero a, one b, zero aa, zero bb, three ab, and one ba). Hence, it holds that the
cardinality assignment X describes A.

Cardinality assignment evaluation

For any cardinality assignment X, we introduce the function eval(X), which returns the
number of duos of characters within the words of the cardinality assignment, namely:

eval(X) =
∑
w∈D

(|w| − 1) ·X(w).

1 How many times the word occurs.
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When two string-cuts SA and SB are described by the same cardinality assignment X

(i.e., SA is a permutation of SB), any mapping between words of SA of SB translates in a
mapping between letters of A and letters of B that preserves at least eval(X) duos. There
are possibly more preserved duos if consecutive words in SA are mapped to consecutive words
in SB as shown in Figure 2, where two strings and A and B are indeed represented by two
string-cuts that are described by the same cardinality assignment. On the one hand, the
mapping in Figure 2a preserves only duos that are within words of the string-cuts, and hence
it saves 4 duos. On the other hand, the mapping in Figure 2b maps two consecutive words
in SA to two consecutive words in SB so that an extra duo bb is preserved.

SB = ab ab ba b ab

SA = ab b ab ba ab

(a) A mapping that preserves eval(X) = 4 duos.

SB = ab ab ba b ab

SA = ab b ab ba ab

(b) A mapping that preserves eval(X)+1 = 5 duos.

Figure 2 Two mappings between SA and SB with A = abbabbaab and B = ababbabab.

Also, notice that given two string-cuts on A and B that are described by the same cardinality
assignment X, a mapping between words of the string-cuts can be easily constructed: map
the i-th occurrence of each word in SA to its i-th occurrence in SB. Since any mapping of
words preserves at least eval(X) duos, our method aims at computing two string cuts SA

and SB that are both described by some cardinality assignment X, such that eval(X) is a
lower bound on the number of duos preserved by some mapping which may be reconstructed
by arbitrarily mapping words of SA to words of SB . We now move on to the description of
our algorithm.

3 A Polynomial Time Approximation Scheme for MPSMℓ

In the following, we describe a method based on dynamic programming which results in a
polynomial time approximation scheme (PTAS) for MSPMℓ.

For the sake of clarity, the algorithm is presented in a two-fold fashion. In Section 3.1
we describe and analyze a procedure called GENERATE(A, k) which, given a string A and
an integer k, uses dynamic programming to generate an exhaustive collection of possible
cardinality assignments that describe some k-bounded string-cut of A. One important
feature that ensures the polynomial complexity of our method is the following: although
the number of different k-bounded string-cuts of A and B grows exponentially with n, the
number of different cardinality assignments describing these string-cuts is upper bounded by
a polynomial in n provided that both k and ℓ are constant. In Section 3.2, we show how
to use the data structure created by the procedure GENERATE(A, k) to find the best possible
cardinality assignment that describes both A and B, and to generate a matching between
characters of A and B that saves the maximum number of duos within k-bounded string-cuts
of A and B. Finally, in Section 3.3, we show how the method yields a PTAS for MSPMℓ.

WABI 2021



5:6 MPSM with Bounded Alphabet

3.1 Algorithm GENERATE(A, k)

Algorithm 1 GENERATE(A, k).

Require: a string A and a positive integer k

Ensure: a couple (Ω,S) such that
Ω is a set of cardinality assignments such that any k-bounded string-cut of A is
described by some cardinality assignment X ∈ Ω
S is a dictionary that assigns a single string-cut S(X) to every cardinality assignment
X ∈ Ω

1: Ω0 ← {X0}
2: S(X0) = ∅
3: for i = 1 to n do
4: Ωi ← ∅
5: for each j ∈ [1, min(i, k)] do
6: w ← (A[i− j + 1], ..., A[i])
7: for each X ∈ Ωi−j do
8: if (X + [w]) /∈ Ωi then
9: Ωi ← Ωi ∪ (X + [w])

10: S(X + [w])← S(X) :: w

11: end if
12: end for
13: end for
14: end for
15: Ω← Ωn

16: return (Ω,S)

Algorithm 1 is based on dynamic programming and generates a collection of cardinality
assignments Ω, as well as a dictionary S of corresponding string-cuts, such that for each
X ∈ Ω, there exists a single string-cut S(X) ∈ S that describes X. When building Ωi, the
algorithm considers words w of length j ≤ k which are sub-strings of A and whose last
character is A[i]. Then, it appends w onto a string-cut S(X) such that X ∈ Ωi−j , and store
the resulting string-cut in S.

Let us describe the data structures that are created throughout Algorithm 1.
GENERATE(A, k) aims at computing:

a complete collection Ω containing all possible cardinality assignments describing some
k-bounded string-cut of A,
a corresponding dictionary of string-cuts S, such that for all X ∈ Ω, there exists a unique
string -cut in S described by X. S(X) denotes the unique string-cut in S described by X.

The first property of (Ω,S) is proved in the following (Proposition 2). The second
property is ensured by Lines 8-10: a single entry is added to the dictionary S (Line 10) only
when a new cardinality assignment is added to some set Ωi (Line 9), while Line 8 ensures
that there is no duplicate entries within the Ωi’s.

Let us now prove that the collection Ω produced by Algorithm 1 contains all the cardinality
assignments necessary to describe any k-bounded string-cut of A.

▶ Proposition 2. For any k-bounded string-cut S of A, it holds that there exists X ∈ Ω that
describes S.
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Proof. We demonstrate the following claim by induction on i.

▷ Claim 3. Any k-bounded string-cut S of the sub-string Ai = (A[1], . . . , A[i]) is described
by some cardinality assignment X of Ωi.

The claim holds trivially for i = 0 and i = 1, as one can verify that after the first iteration,
we have Ω1 = {A[1]}. In other words, Ω1 contains a single cardinality assignment, the one
that describes a single word with a single letter (the first letter of A).

Now, let us suppose that Claim 3 is verified for all j < i and prove that it is verified also
for i.

Let S be a k-bounded string-cut of Ai, let X ′ denote the cardinality assignment that
describes S, and let w̃ with length |w̃| denote the last word of S. We need to prove that X ′

belongs to Ωi by the end of the algorithm.
By hypothesis, the claim holds for j = i − |w̃|. In other words, there is a cardinality

assignment X̃ ∈ Ωi−|w̃| that describes the string-cut S \ w̃ of Ai−|w̃|. Moreover, X̃ is equal
to X ′ − [w̃] as the string cut X̃ corresponds to the string-cut X ′ with one less occurrence of
word w̃.

Consider the ith iteration of the outer loop starting at Line 3 of Algorithm 1 and the
inner loop (Line 5) where j = |w̃| (Recall that S is k-bounded so |w̃| ≤ k). By induction
hypothesis, it holds that X̃ belongs to Ωi−|w̃|, so there will be an iteration of the innermost
loop (Line 7) with X = X̃: at this point of the algorithm, it will be checked if the cardinality
assignment X̃ + [w] = X ′ already belongs to Ωi, and will include it to Ωi if it is not the case.

Hence, by the end of the algorithm, it holds that X ′ ∈ Ωi, and the proof is complete. ◀

Regarding the complexity of Algorithm 1, let us stress that no set Ωi has any duplicate
entries (ensured by the if condition at Line 8), so that its cardinality is bounded by the
number of different possible cardinality assignments describing any k-bounded string-cut
over a string of length i. Recall that such cardinality assignment is a vector with |Dk(L)|
coordinates, each coordinate describing the frequency of a word in a string-cut. Roughly,
each coordinate of a cardinality assignment of Ωi is upper bounded by i, so that there are at
most i|Dk(L)| different cardinality assignments, i.e., |Ωi| ≤ i|Dk(L)|. Moreover, let us remind
that there exists a constant c such that |Dk(L)| ≤ c · |L|k, and thus |Ωi| ≤ ic·|L|k .

Hence, the total number of innermost loops that are made at the ith iteration of the
outer loop is at most k|Ωi−1|. The overall complexity is thus

∑n
i=1 k|Ωi| which is bounded

by k
∑n

i=1 ic·|L|k = O(n · knc·|L|k ) = O(knc·|L|k+1).

3.2 Algorithm MATCH(A, B, k)

We now devise the following algorithm, called MATCH (see Algorithm 2), parameterized by
k for MPSM, which first runs Algorithm 1 on A and B in order to compute the couples
(ΩA,SA) and (ΩB ,SB).

Algorithm 2 consists of identifying the cardinality assignment XSOL that belongs to both
ΩA and ΩB and which contains the largest number of duos. Along with the identification
of XSOL comes the identification of two string-cuts (namely, SSOL

A and SSOL
B for A and B,

respectively) which are both described by XSOL.
The complexity of the loop in MATCH-Ω(k) can be brought down to O(|ΩA|) with a

proper data structure, that is, a structure that ensures a fast (linear time) verification of the
condition expressed at Line 5. Hence the overall complexity is given by the generation of
couples (ΩA,SA) and (ΩB ,SB), namely O(kn1+c·|L|k ).

WABI 2021



5:8 MPSM with Bounded Alphabet

Algorithm 2 MATCH(A, B, k).

1: Initialize SSOL
A = ∅, SSOL

A = ∅, XSOL = X0
2: (ΩA,SA)← GENERATE(A, k)
3: (ΩB ,SB)← GENERATE(B, k)
4: for each X ∈ ΩA do
5: if X ∈ ΩB and eval(X) > eval(XSOL) then
6: XSOL ← X

7: end if
8: end for
9: SSOL

A ← SA(XSOL)
10: SSOL

B ← SB(XSOL)
11: return (SSOL

A , SSOL
B )

As mentioned at the end of Section 2, a mapping between letters of A of B that preserves
at least eval(XSOL) duos can be easily derived from the couple (SSOL

A , SSOL
B ) computed by

Algorithm 2. Now it remains to make the link between eval(XSOL) and the number of duos
preserved by an optimal solution.

3.3 Approximation Analysis
We now prove that MATCH(A, B, k) yields a Polynomial Time Approximation Scheme for
MPSMℓ.

First, we need to provide some lower bound on the number of duos that are preserved by
our solution.

▶ Proposition 4. Let SSOL
A and SSOL

B be the string-cuts generated by MATCH(A, B, k). Both
are described by the same cardinality assignment XSOL.

Given any couple of k-bounded string-cuts S̃A on A and S̃B on B that are both described
by the same cardinality assignment X̃, it holds that eval(XSOL) ≥ eval(X̃).

Proof. From Proposition 2, we can assert that X̃ ∈ ΩA and X̃ ∈ ΩB. Hence, in the first
part of the MATCH(A, B, k), the cardinality assignment X̃ will be considered as a candidate.
Eventually, the algorithm retains XSOL that yields the best solution among all candidates
considered, including X̃. ◀

Consider now an optimal solution π∗ for MPSMℓ that preserves OPT duos, and an
approximate solution π returned by Algorithm 2 that preserves SOL ≥ eval(XSOL) duos.
As stated in Section 2, π∗ induces string-cuts S∗

A and S∗
B of A and B, such that S∗

A is a
permutation of S∗

B. These string-cuts may contain words that are strictly longer than k.
Consider the string-cuts S′

A and S′
B that result from cutting all such words into slices of

length at most k in both S∗
A and S∗

B , such that S′
A and S′

B are both described by the same
cardinality assignment, say X ′. No more than OPT/k additional cuts are added this way. It
holds that:

S′
A and S′

B are k-bounded, and they are described by the same cardinality assignment
X ′. Hence, by applying Proposition 2, it holds that SOL ≥ eval(X ′).
The optimal mapping π∗ preserves eval(X ′) duos within words of X ′ and at most
OPT/k duos between words of X ′, one for each added cut. Hence, it holds that OPT ≤
eval(X ′) + OPT/k.
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Combining these two facts, one immediately derives the following approximation between
OPT and SOL:

OPT

SOL
≤ 1 + 1

k − 1 , ∀k > 1.

By fixing k = ⌈1/ε + 1⌉, we can then assert that our algorithm guarantees a (1 + ε)-
approximation within time complexity O(nO(1)) provided that both k and ℓ are bounded by
some constant. Hence, our final result holds:

▶ Proposition 5. MPSMℓ with ℓ = O(1) admits a PTAS.

4 Hardness result

The fact that MCSP2 is NP-complete is known from [16, Theorem 1]. However, we give an
alternate, somewhat simpler, proof.

▶ Proposition 6 (Alternate Proof). MPSMℓ and MCSPℓ are both NP-hard, even if ℓ = 2.

Proof. Consider an instance I of the NP-complete problem 3-partition [14], with a set of
integers X = {x1, ..., xn} such that n = 3m, and let mΣ =

∑
xi∈X xi. As standard hypothesis

for 3-partition, suppose Σ/4 < xi < Σ/2 holds for all xi. The question is whether X can
be partitioned in m triplets, each of total sum Σ.

We build an instance J(I) of MPSMℓ with ℓ = 2, consisting of two strings A and B built
in the following way.

For each integer xi in X, we build a string Ai that consists of one b followed by xi + 1
consecutive a’s. We also build a sub-string An+1 that contains a single letter b. String A

is the concatenation of all strings Ai’s.
Consider the substring Bi that consists of one b followed by Σ + 3 letters a, followed by
2 letters b. String B results from the concatenation of m substrings Bi, with a single
additional b at the very start. Note that all Bi’s are identical, we merely index them by i

to simplify the proof.

One can easily verify that both strings A and B contain exactly mΣ + n occurrences of
letter a and n + 1 occurrences of letter b, so J(I) is a valid instance of MCSP2.

We are going to show that instance I of 3-partition admits a solution if and only if
instance J(I) of MPSM2 admits a solution that preserves mΣ + 2m duos.
(⇒) First, note that in string A, there are exactly n ba duos, n ab duos, mΣ aa duos, and
no bb duo. On the other hand, string B has m ab duos, m ba duos, mΣ + 2m aa duos, and
2m bb duos.

Thus, any solution will preserve at most mΣ + 2m duos in total, that is, min{mΣ, mΣ +
2m} = mΣ duos of type aa, min{m, n} = m duos of type ab, min{0, 2m} = 0 duos of type
bb, and min{m, n} = m duos of type ba.

Suppose I is a yes-instance of 3-partition. A solution is given by a set of triplets
{T1, ..., Tm}. Using this set, we can construct a solution to J(I) which preserves exactly
mΣ + 2m duos.

For each Ti = {xi1, xi2, xi3}, with xi1 ≤ xi2 ≤ xi3, we map the whole sub-string Ai1 to
the first xi1 + 2 characters of sub-string Bi, we map all a’s of Ai2 to the following xi2 + 1 a’s
of Bi, and finally we map all a’s of Ai3 and the first letter of Ai3+1 to the remaining part of
Bi except for its final b, which remains unmatched for now.

The unmatched b’s of A are arbitrarily matched with the remaining b’s of B (their
quantities are equal because B is a permutation of A).
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The resulting overall mapping preserves every duo aa of A and all duos ab and ba of B,
that is, a total of mΣ + 2m duos. Thus, the first part of the reduction is complete.
(⇐) Now suppose that there exists a mapping between A and B which preserves mΣ + 2m

duos. Since A and B have exactly mΣ + 2m duos in common, the mapping must preserve
all aa duos of A and all duos of type ab and ba of B.

Since all the aa duos of A are preserved, letters a of the word associated with any number
of X cannot be mapped with letters a of more than one Bi. Since each Bi has exactly mΣ+3
letters a, each Bi receives words associated with numbers of X whose sum is at most mΣ. If
one Bi receives words associated with numbers whose sum is strictly less than mΣ, then not
all the aa duos of A are preserved, leading to a contradiction. Therefore, each Bi hosts a set
of numbers whose sum is Σ. In other words, a 3-partition of the numbers is derived. ◀

5 Conclusion

When the alphabet used to form the instance is bounded, an exhaustive list of all possible
cardinality assignments describing k-bounded string-cuts can be produced in polynomial time
for any constant k. This fact helped us devise a Polynomial Time Approximation Scheme for
MPSMℓ, which is the best result one might expect as no FTPAS can exist for this problem
unless P=NP. Future developments include inquiries as to how the techniques presented
in this article can be adapted to tackle the weighted version of MPSM introduced in [22].
Though polynomial, the time complexity of our method may well prove to be intractable in
practical cases with large instances. That is why we also intend to devise different approaches
for MPSMℓ and evaluate them though experiments.
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