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Abstract
Hard graph problems are ubiquitous in Bioinformatics, inspiring the design of specialized Fixed-
Parameter Tractable algorithms, many of which rely on a combination of tree-decomposition and
dynamic programming. The time/space complexities of such approaches hinge critically on low
values for the treewidth tw of the input graph. In order to extend their scope of applicability, we
introduce the Tree-Diet problem, i.e. the removal of a minimal set of edges such that a given
tree-decomposition can be slimmed down to a prescribed treewidth tw′. Our rationale is that the
time gained thanks to a smaller treewidth in a parameterized algorithm compensates the extra
post-processing needed to take deleted edges into account.

Our core result is an FPT dynamic programming algorithm for Tree-Diet, using 2O(tw)n time
and space. We complement this result with parameterized complexity lower-bounds for stronger
variants (e.g., NP-hardness when tw′ or tw−tw′ is constant). We propose a prototype implementation
for our approach which we apply on difficult instances of selected RNA-based problems: RNA design,
sequence-structure alignment, and search of pseudoknotted RNAs in genomes, revealing very
encouraging results. This work paves the way for a wider adoption of tree-decomposition-based
algorithms in Bioinformatics.
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1 Introduction

Graph models and parameterized algorithms are found at the core of a sizable proportion of
algorithmic methods in bioinformatics addressing a wide array of subfields, spanning sequence
processing [48], structural bioinformatics [50], comparative genomics [9], phylogenetics [2],
and further examples that can be found in a review by Bulteau and Weller [10]. RNA
bioinformatics is no exception, with the prevalence of the secondary structure, an outer
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Figure 1 General description of our approach and rationale. Starting from a structured instance,
e.g. an RNA structure with pseudoknots, our tree-diet/path-diet algorithms extract simplified
tree/path decompositions, having prescribed target width tw′. Those can be used within existing
parameterized algorithms to yield efficient heuristics, a posteriori approximations or even exact
solutions.

planar graph [47], as an abstraction of RNA conformations, and the notable utilization of
graph models to represent complex topological motifs called pseudoknots [49], inducing the
hardness of several tasks, such as structure prediction [1, 29, 37], structure alignment [5], or
structure/sequence alignment [32]. Such motifs are functionally important and conserved, as
witnessed by their presence in the consensus structure of 336 RNA families in the 14.5 edition
of the RFAM database [23]. Moreover, methods in RNA bioinformatics [36] are increasingly
considering non-canonical base pairs and modules [25, 31], further increasing the density of
RNA structural graphs and outlining the need for scalable algorithms.

A parameterized complexity approach can be used to circumvent the frequent NP-hardness
of relevant problems. It generally considers one or several parameters, whose values are
naturally bounded (or much smaller than the input size) within real-life instances. Once
relevant parameters have been identified, one aims to design a Fixed Parameter Tractable
(FPT) algorithm, having polynomial complexity for any fixed value of the parameter, and
reasonable dependency on the parameter value. The treewidth is a classic parameter for
FPT algorithms, and intuitively captures a notion of distance of the input to a tree. It is
popular in bioinformatics due to the existence of efficient heuristics [19, 8] for computing
tree-decompositions of reasonable treewidth. Given a tree-decomposition, many combin-
atorial optimization tasks can be solved using dynamic programming (DP), in time/space
complexities that remain polynomial for any fixed treewidth value. Resulting algorithms
remain correct upon (almost) arbitrary modifications of the objective function parameters,
and can be adapted to study statistical properties of search spaces through changes of algebra.

Unfortunately, the existence of a parameterized (or FPT) algorithm does not necessarily
imply that of a practically-efficient implementation, even when the parameter takes low
typical values. Indeed, the dependency of the complexity on the treewidth may be prohibitive,
both in terms of time and memory requirements. This limitation is particularly obvious while
searching and aligning structured RNAs, giving rise to an algorithmic problem called the
RNA structure-sequence alignment [39, 21, 32], for which the best known exact algorithm
is in Θ(n.mtw+1), where n is the structure length, m the sequence/window, and tw is the
treewidth of the structure (inc. backbone). Similar complexities hold for problems that
can be expressed as (weighted) constraint satisfaction problems, with m representing the
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cardinality of the variable domains. Such frameworks are frequently used for molecular
design, both in proteins [44] and RNA [51], and may require the consideration of tree-widths
up to 20 or more [20].

In this paper, we investigate a pragmatic strategy to increase the practicality of paramet-
erized algorithms based on the treewidth parameter [6]. We put our instance graphs on a diet,
i.e. we introduce a preprocessing that reduces their treewidth to a prescribed value by remov-
ing a minimal cardinality set of edges. As discussed previously, the practical complexity of
many algorithms greatly benefits from the consideration of simplified instances, having lower
treewidth. Moreover, specific countermeasures for errors introduced by the simplification
can sometimes be used to preserve the correctness of the algorithm. For instance, searching
structured RNAs using RNA structure-sequence alignment [39], an iterated filtering strategy
could use instances of increasing treewidth to restrict potential hits, weeding them early so
that a – costly – full structure is reserved to (quasi-)hits. This strategy could remain exact
while saving substantial time. Alternative countermeasures could be envisioned for other
problems, such as a rejection approach to correct a bias introduced by simplified instances in
RNA design.

After stating our problem(s) in Section 2, we study in Section 3 the parameterized
complexity of the Graph-Diet problem, the removal of edges to reach a prescribed treewidth.
We propose, in Section 4,a practical Dynamic Programing FPT algorithm for Tree-Diet,
along with possible further optimizations for Path-Diet, two natural simplifications of the
Graph-Diet problem, where a tree (resp. path) decomposition is provided as input and
used as a guide. Finally, we show in Section 5 how our algorithm can be used to extract
hierarchies of graphs/structural models of increasing complexity to provide alternative
sampling strategies for RNA design, and speed-up the search for pseudoknotted non-coding
RNAs. We conclude in Section 6 with future considerations and open problems.

2 Statement of the problem(s) and results

A tree-decomposition T (over a set V of vertices) is a tree whose nodes are subsets of V ,
known as bags. The bags containing any v ∈ V induce a (connected) subtree of T . A
path-decomposition is a tree-decomposition whose underlying tree T is a path. The width
of T (denoted w(T )) is the size of its largest bag minus 1. An edge {u, v} is visible in T
if some bag contains both u and v, otherwise it is lost. T is a tree-decomposition of G if
all edges of G are visible in T . The treewidth of a graph G is the minimum width over all
tree-decompositions of G.

▶ Problem (Graph-Diet). Given a graph G = (V, E) of treewidth tw, and an integer
tw′ < tw, find a tree-decomposition over V of width at most tw′ losing a minimum number
of edges from G.

A tree-diet of T is any tree-decomposition T ′ obtained by removing vertices from the
bags of T . T ′ is a d-tree-diet if w(T ′) ≤ w(T ) − d.

▶ Problem (Tree-Diet). Given a graph G, a tree-decomposition T of G of width tw, and
an integer tw′ < tw, find a (tw − tw′)-tree-diet of T losing a minimum number of edges.

Note that for Tree-Diet, T does not have to be optimal, so the width tw of the input
tree decomposition might be larger than the actual treewidth of G, thus Tree-Diet can be
used to reduce the width of any input decomposition. We define Binary-Tree-Diet and
Path-Diet analogously, where T is restricted to be a binary tree (respectively, a path). An
example of an instance of Graph-Diet and of Tree-Diet are given in Figure 2.

WABI 2021
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Figure 2 Illustrations for the Graph-Diet and Tree-Diet problems. Given a graph G on
the left (treewidth 3), an optimal solution for Graph-Diet, with target treewidth 2, yields the
tree-decomposition in the middle (edge ah is lost). On the other hand, any 1-tree-diet for the
tree-decomposition on the right loses at least 3 edges.

Parameterized Complexity in a Nutshell

The basics of parameterized complexity can be loosely defined as follows (see [17] for the
formal background). A parameter k for a problem is an integer associated with each instance
which is expected to remain small in practical instances (especially when compared to the
input size n). An exact algorithm, or the problem it solves, is FPT if it takes time f(k)poly(n),
and XP if it takes time ng(k) (for some functions f, g). Under commonly accepted conjectures
(see for instance [15] for details), W[1]-hard problems may not be FPT, and Para-NP-hard
problems (NP-hard even for some fixed value of k) are not FPT nor XP.

2.1 Our results

Our results are summarized in Table 1. Although the Graph-Diet problem would give the
most interesting tree-decompositions in theory, it seems unlikely to admit efficient algorithms
in practice (see Section 3).

Thus we focus on the Tree-Diet relaxation, where an input tree-decomposition is
given, which we use as a guide/restriction towards a thinner tree-decomposition. Seen as
an additional constraint, it makes the problem harder (the case tw′ = 1 becomes NP-hard,
Theorem 3, although for Graph-Diet it corresponds to the Spanning Tree problem
and is polynomial). With parameter tw however, it does help reduce the search space. In
Theorem 10 we give an O((6∆)tw∆2n) Dynamic Programming algorithm, where ∆ is the
maximum number of children of any bag in the tree-decomposition. This algorithm can thus
be seen as XP in general, but FPT on bounded-degree tree-decompositions (e.g. binary trees
and paths). This is not a strong restriction, since the input tree may safely and efficiently be
transformed into a binary one (see Appendix A for more details). Moreover, the duplications
of bags which are used in the conversion may only decease the number of lost edges incurred
by Tree-Diet.

We also consider the case where the treewidth needs to be reduced by d = 1 only,
this without constraining the source treewidth. We give a polynomial-time algorithm for
Path-Diet in this setting (Theorem 13) which generalizes into an XP algorithm for larger
values of d, noting that an FPT algorithm for d is out of reach by Theorem 5. We also show
that the problem is Para-NP-hard if the tree degree is unbounded (Theorem 4).
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Table 1 Parameterized results for our problems. Algorithm complexities are given up to
polynomial time factors (O∗ notation), ∆ denotes the maximum number of children in the input
tree-decomposition. (*) see Theorem 2 statement for a more precise formulation.

Parameter Source treewidth Target treewidth Difference
Problem tw tw′ d = tw − tw′

Graph-Diet
Para-NP-hard Para-NP-hard*

open tw′ = 2 d = 1
EDP(K4) [18] Theorem 2

Tree-Diet
XP Para-NP-hard

O∗((6∆)tw) FPT open d = 1
Theorem 10 Theorem 4

Binary-Tree-
XP openDiet FPT

Path-Diet
O∗(12tw) XP

Theorem 10 O∗(twd)

Para-NP-hard
tw′ = 1

Theorem 3 W[1]-hard
Theorem 5

Theorem 13

3 Algorithmic Limits: Parameterized Complexity Considerations

Graph-Diet can be seen as a special case of the Edge Deletion Problem (EDP) for the
family of graphs H of treewidth tw′ or less: given a graph G, remove as few edges as possible
to obtain a graph in H. Such edge modification problems are more often parameterized by
the number k of edited edges (see [14] for a complete survey). Given our focus on increasing
the practicality of treewdith-based algorithms in bioinformatics, we restrict our focus to
treewidth related parameters tw, tw′ and d = tw − tw′.

Considering the target treewidth tw′, we note that EDP is NP-hard when H is the family
of treewidth-2 graphs [18], namely K4-free graphs, hence the notation EDP(K4). It follows
that Graph-Diet is Para-NP-hard for the target treewidth parameter tw′.

3.1 Graph-Diet: practical solutions seem unlikely
For a combination of the parameters tw′ and k, we could imagine graph minor theorems
yielding parameterized algorithms “for free”, as it is often the case with treewidth-based
problems. In this respect, Graph-Diet corresponds to deciding if a graph G belongs
to the family of graphs having treewidth tw′, augmented by k additional edges, denoted
as Treewidth-tw′+ke since its introduction by Cai [12]. If this family were minor-closed,
polynomial minor-free-testing [27, 34] would yield an FPT algorithm. However, this is
not the case: for some graphs in the family, an edge contraction yields a graph G′ not in
Treewidth-tw′+ke, as illustrated by Figure 3.

Regarding the source graph treewidth tw, a theoretical approach could be via Courcelle’s
Theorem [13] and Monadic Second Order (MSO) formulas: it suffices to express the property
of being in Treewidth-tw′+ke using MSO to prove that Graph-Diet is FPT for tw. We
presume this is feasible (the main brick being minor testing, which is expressible in MSO),
however it is not clear whether this is doable with formulas independent of k, in order to
obtain an algorithm for the treewidth alone. In any case, this approach would probably
not yield practical algorithms. Indeed, Courcelle’s theorem typically lead to running times
involving towers of exponentials on the relevant parameters, so we do not investigate it
further within the scope of this paper.

WABI 2021
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Figure 3 A graph G (left) with treewidth 3. Deleting edge cd gives treewidth 2, implying
that G ∈ Treewidth2 + 1e. However, if one contracts edge cd, then the resulting graph (right) has
treewidth 3, and deleting any single edge does not decrease the treewidth. This example shows that
the graph family Treewidth 2+1e is not minor-closed.

Another meta-theorem by Cai [11] may yield an FPT algorithm if Treewidth-tw′+ke can
be described through a finite number forbidden induced subgraphs, but again k would most
likely be a parameter as well. On a related note, it is worth noting that Edge Deletion
to other graph classes (interval, permutation, . . . ) does admit efficient algorithms when
parameterized by the treewidth alone [35], painting a contrasted picture.

The vertex deletion equivalent of Graph-Diet, where one asks for a minimum subset
of vertices to remove to obtain a given treewidth, is known as a Treewidth Modulator.
This problem has been better-studied than its edge-deletion counterpart [16], and has been
shown to be FPT for the treewidth [3], with a reasonable dependency in the parameter.
However, it is currently unclear how this can be adapted into an edge deletion algorithm.

Overall an FPT algorithm for Graph-Diet does not seem out of reach, and could result
from one of the above-mentioned meta-theorems. However it seems unlikely to induce a
“practical” exact algorithms. Indeed, any algorithm for Graph-Diet can be used to compute
the Treewidth of an arbitrary graph, for which current state-of-the-art exact algorithms
require time in twO(tw3) [6]. We thus have the following conjecture, which motivates the
Tree-Diet relaxation of the problem.

▶ Conjecture 1. Graph-Diet is FPT for the source treewidth parameter (tw), but no
algorithm with single-exponential running time exists.

Finally, for parameter d, any polynomial-time algorithm for constant d would allow to
compute the treewidth of any graph in polynomial time. Since treewidth is NP-hard we have
the following result

▶ Theorem 2. There is no XP algorithm for Graph-Diet with parameter d unless P= NP.

3.2 Lower Bounds for Tree-Diet
Parameters tw′ and d would be the most interesting in practice, since parameterized algorithms
would be efficient for small diets or small target treewidth. However, we prove strong lower-
bounds for Tree-Diet on each of these parameters, leaving very little hope for parameterized
algorithms (we thus narrow down the possible algorithms to the combined parameter tw′ + d,
i.e. tw, see Section 4). Only XP for parameter d when T has a constant degree remains open
(cf. Table 1).

▶ Theorem 3. Tree-Diet and Path-Diet are Para-NP-hard for the target treewidth
parameter tw′ (NP-hard for tw′ = 1).



B. Marchand, Y. Ponty, and L. Bulteau 7:7

a
a

a a

b
b

b b

c
c

c c

•••••
•• • ••

•K1

(N + 1)

••• •••· · ·
Z1

(N)

d d

d d

e e

e e

f
f

f f

•••••
•• • ••

•K2

(N + 1)

••• •••· · ·
Z2

(N)g
g

g gh h h h

i i

i i

•••••
•• • ••

•K3

(N + 1)

••• •••· · ·
Z3

(N)

Figure 4 Reduction for Theorem 4 showing that Tree-Diet is NP-hard even for d = 1, from a
graph G (left) with k = 3 and n = 3 to a graph G′ (right, given by its tree-decomposition of width
N + n + 1): a 1-tree-diet for G′ amounts to selecting a k-clique in the root bag, i.e. in G.

Proof. By reduction from the NP-hard problem Spanning Caterpillar Tree [42]: given
a graph G, does G has a spanning tree C that is a caterpillar? Given G = (V, E) with
n = |V |, we build a tree-decomposition T of G consisting of n − 1 bags containing all vertices
(the width of the decomposition is therefore n − 1) connected in a path. Then (G, T ) admits
a tree-diet to treewidth 1 with n − 1 visible edges if, and only if, G admits a caterpillar
spanning tree. Indeed, the subgraph of G with visible edges must be a graph with pathwidth
1, i.e. a caterpillar [30]. With n − 1 visible edges, the caterpillar connects all n vertices
together, i.e. it is a spanning tree. ◀

▶ Theorem 4. Tree-Diet is Para-NP-hard for parameter d. More precisely, it is W[1]-hard
for parameter ∆, the degree of T , even when d = 1.

Proof. By reduction from Multi-Colored Clique. Consider a k-partite graph G = (V, E)
with V =

⋃k
i=1 Vi. We assume that G is regular (each vertex has degree δ and that each

Vi has the same size n (Multi Colored Clique is W[1]-hard under these restrictions
[17, 15]). Let L := δk −

(
k
2
)

and N = max{|V |, L + 1}. We now build a graph G′ and a
tree-decomposition T ′: start with G′ := G. Add k independent cliques K1, . . . , Kk of size
N + 1. Add k sets of N vertices Zi (i ∈ [k]) and, for each i ∈ [k], add edges between each
v ∈ Vi and each z ∈ Zi. Build T using 2k + 1 bags T0, T1,i, T2,i for i ∈ [k], such that T0 = V ,
T1,i = Vi ∪ Ki and T2,i = Vi ∪ Zi. The tree-decomposition is completed by connecting T2,i to
T1,i and T1,i to T0 for each i ∈ [k]. Thus, T is a tree-decomposition of G′ with ∆ = k and
maximum bag size n + N + 1 (vertices of V induce a size-3 path in T , other vertices appear
in a single bag, edges of G appear in T0, edges of Ki in T1,i, and finally edges between Vi

and Zi appear in T2,i). The following claim completes the reduction:

T has a 1-tree-diet losing at most L edges from G′ ⇔ G has a k-clique.

⇐ Assume G has a k-clique X = {x1, . . . , xk} (with xi ∈ Vi). Build T ′ by removing
each xi from bags T0 and T1,i. Then T ′ is a 1-tree-diet of T . There are no edges lost by
removing xi from T1,i (since xi is not connected to Ki), and the edges lost in T0 are all
edges of G adjacent to any xi. Since X forms a clique and each xi has degree δ, there are
L = kδ −

(
k
2
)

such edges.

WABI 2021
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⇒ Consider a 1-tree-diet T ′ of T losing L edges. Since each bag T1,i has maximum
size, T ′ must remove at least one vertex xi in each T1,i. Note that xi ∈ Vi (since removing
xi ∈ Ki would loose at least N ≥ L + 1 edges). Furthermore, xi may not be removed from
T2,i (otherwise N edges between xi and Zi would be lost), so xi must also be removed from
T0. Let K be the number of edges in G[{x1 . . . xk}]. The total number of lost edges in T0 is
δk − K. Thus, we have δk − K ≤ L and K ≥

(
k
2
)
: {x1, . . . , xk} form a k-clique of G. ◀

▶ Theorem 5. Path-Diet is W[1]-hard for parameter d.

4 FPT Algorithm

4.1 For general tree-decompositions
We describe here a O(3twn)-space, O(∆tw+2 ·6twn)-time dynamic programming algorithm for
the Tree-Diet problem, with ∆ and tw being respectively the maximum number of children
of a bag in the input tree-decomposition and its width. On binary tree-decompositions (where
each bag has at most 2 children), it yields a O(3twn)-space O(12twn)-time FPT algorithm.

4.1.1 Coloring formulation
We aim at solving the following problem: given a tree-decomposition T of width tw of a
graph G, we want to remove vertices from the bags of T to reach a target width tw′ while
losing as few edges from G as possible. We tackle the problem through an equivalent coloring
formulation: our algorithm will assign a color to each occurrence of a vertex in the tree
decomposition. We work with three colors: red (r), orange (o), and green (g). Green means
that the vertex is kept in the bag, while orange and red means removal of the vertex. An edge
is thus visible within a bag when both its ends are green. It is lost if there is no bag where
it is visible. To ensure equivalence with the original problem, the colors will be assigned
following local rules, which we now describe.

We first root the tree-decomposition arbitrarily.

▶ Definition 6. A coloring of vertices in the bags of the decomposition is said to be valid if
it follows the following rules:

A vertex of a bag not present in its parent may be green or orange (R1)
A green vertex in a bag may be either green or red in its children (R2)
A red vertex in a bag must stay red in its children (R3)
An orange vertex in a bag has to be either orange or green in exactly one child (unless
there is no child with this vertex), and must be red in the other children (R4)

These rules are summarized in Figure 5 (a).

When going down the tree, a green vertex may only stay green or permanently become
red. An immediate consequence of these rules is therefore that the green occurences of a
given vertex form a (possibly empty) connected subtree. Informally, orange vertices are
locally absent but “may potentially be found further down the tree”, while red vertices are
removed from both the current bag and its entire subtree. Figure 5 (b) shows an example
sketch for a valid coloring of the occurrences of a given vertex in the tree-decomposition. A
vertex may only be orange along a path starting form its highest occurrence in the tree, with
any part branching off that path entirely red. It ends at the top of a (potentially empty)
green subtree, whose vertices may also be parents to entirely red subtrees.
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Figure 5 (a) Color assignation rules for vertices, when going down-tree. (b) Sketch of the general
pattern our color assignation rules create on Tu, the subtree of bags containing a given vertex u.

We will now more formally prove the equivalence of the coloring formulation to the
original problem. Let us first introduce two definitions. Given a valid coloring C of a
tree-decomposition of G, an edge (u, v) of G is said to be realizable if there exists a bag in
which both u and v are green per C. Given an integer d, a coloring C of T is said to be
d-diet-valid if removing red/orange vertices reduces the width of T from w(T ) to w(T ) − d.

▶ Proposition 7. Given a graph G, a tree-decomposition T of width tw, and a target width
tw′ < tw, The Tree-Diet problem is equivalent to finding a (tw − tw′)-diet-valid coloring C
of T allowing for a number of realizable edges in G as large as possible.

Proof. Given a (tw − tw′)-tree-diet of T , specifying which vertices are removed from which
bags, we obtain a valid coloring C for T incurring the same number of lost (unrealizable)
edges. To start with, a vertex u is colored green in the bags where it is not removed. By the
validity of T ′ as a decomposition, this set of bags forms a connected subtree, that we denote
T g

u . We also write Tu for the subtree of bags containing u in the original decomposition T . If
T g

u and Tu do not have the same root, then u is colored orange on the the path in T from the
root of Tu (included) and the root of T g

u (excluded). Vertex u is colored red in any other bag
of Tu not covered by these two cases. The resulting coloring follows rules (R1-4) and induces
the same set of lost/non-realizable edges as the original (tw − tw′)-tree-diet. Conversely, an
equivalent (tw − tw′)-tree-diet is obtained from a (tw − tw′)-diet-valid coloring by removing
red/orange vertices and keeping green ones. If a given vertex has no green occurences, it
is entirely removed from the tree decomposition and all its edges are lost (it becomes an
isolated vertex). We may add it back to the tree decomposition by introducing a new bag
containing only this vertex, which we connect arbitrarily to the tree decomposition. ◀

4.1.2 Decomposition of the search space and sub-problems
Based on this coloring formulation, we now describe a dynamic programming scheme for the
Tree-Diet problem. We work with sub-problems indexed by tuples (Xi, f), with Xi a bag
of the input tree decomposition and f a coloring of the vertices of Xi in green, orange or red
(in particular, f−1(g) denotes the green vertices of Xi, and similarly for o and r).

Let us introduce some notations before giving the definition of our dynamic programming
table. Given an edge (u, v) of G, realizable when coloring a tree-decomposition T of G

with C, we write T g
uv the subtree of T in which both u and v are green. We denote by Ti

the subtree of the decomposition rooted at Xi, and C(i, f) the d-diet-valid colorings of Ti

agreeing with f on i, with d = tw − tw′. Our dynamic programming table is then defined as:
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c(Xi, f) =


max

C∈C(i,f)

∣∣∣∣∣
{

Edges (u, v) of G, realizable within Ti colored with C
such that T g

uv is entirely contained strictly below Xi

}∣∣∣∣∣
if f assigns green to at most tw′ + 1 vertices

−∞ otherwise

The cell c(Xi, f) therefore aggregates all edges realizable strictly below Xi. As we shall
see through the recurrence relation below and its proof, edges with both ends green in Xi

will be accounted for above Xi in T .
We assume w.l.o.g that the tree-decomposition is rooted at an empty bag R. Given the

definition of the table, the maximum number of realizable edges, compatible with a tree-diet
of (tw − tw′) to T , can be found in c(R, ∅).

The following theorem presents a recurrence relation obeyed by c(Xi, f) :

▶ Theorem 8. For a bag Xi of T , with children Y1, ...Y∆, we have:

c(Xi, f) = max
m:f−1(o)→[1..∆]

 ∑
1≤j≤∆

(
max

f ′
j
∈compatible(Yj ,f,m)

c(Yj , f ′
j) +

∣∣count(f, f ′
j)
∣∣)

with
m: a map from the orange vertices in Xi to the children of Xi. It decides for each orange
vertex u, which child, among those which contain u, will color u orange or green; If there
are no orange vertices in Xi, only the trivial empty map is considered.
compatible(Yj , f, m): the set of colorings of Yj compatible with f on Xi and m;
count(f, f ′

j): set of edges of G involving two vertices of Yj green by f ′
j , but such that one

of them is either not in Xi or not green by f .
Note that compatible(Yj , f, m) may contain colorings f ′

j that colour too many vertices in Yj

in green to reach target width tw′. In that case c(Yj , f ′
j) = −∞.

Theorem 8 relies on the following separation lemma for realizable edges under a valid
coloring of a tree-decomposition. Recall that we suppose w.l.o.g that the tree-decomposition
is rooted at an empty bag.

▶ Lemma 9. An edge (u, v) of G, realizable in T under C, is contained in exactly one set of
the form count(C|P , C|X) with X a bag of T and P its parent, C|P , C|X the restrictions of C
to P and X, respectively, and “count” defined as above. In addition, X is the root of the
subtree of T in which both u and v are green.

Dynamic programming algorithm

The recurrence relation of Theorem 8 naturally yields a dynamic programming algorithm for
the Tree-Diet problem, as stated below:

▶ Theorem 10. There exists a O(∆tw+2 · 6tw · n)-time, O(3tw · n)-space algorithm for
the Tree-Diet problem, with ∆ the maximum number of children of a bag in the input
tree-decomposition, and tw its width.

▶ Corollary 11. Binary-Tree-Diet (∆ = 2) admits an FPT algorithm for the tw parameter.

A pseudo-code implementation of the algorithm, using memoization, is included in Ap-
pendix B.
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(c) (d)
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• •

• •• •

• •

u v

u
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Figure 6 Five cases where two vertices are deleted in the same bag with d = 1. Bags are
points in the line, and an interval covering all bags containing v is drawn for each v (with an
equivalent coloring, see Proposition 7). Cases (a) to (d) can be safely avoided by applying the given
transformations. In the example for case (e), however, it is necessary to delete both vertices u and v
form a central bag. It is sufficient to avoid cases (a) and (b) in order to obtain an XP algorithm
for d.

4.2 For path decompositions

In the context of paths decompositions, we note that the number of removed vertices per
bag can be limited to at most 2d without losing the optimality. More precisely, we say that
a coloring C is d-simple if any bag has at most d orange and d red vertices. We obtain the
following result, using transformations given in Figure 6.

▶ Proposition 12. Given a graph G and a path-decomposition T , if C is a d-diet-valid
coloring of T losing k edges, then T has a d-diet-valid coloring that is d-simple, and loses at
most k edges.

Together with Proposition 7, this shows that it is sufficient to restrict our algorithm to
d-simple colorings. (See also Figure 6). In particular, for any set Xi, choosing which ≤ d

vertices are orange and which ≤ d are red, among the total of n vertices, is enough to fix
a coloring. The number of such colorings is therefore bounded by O(tw2d). Applying this
remark to our algorithm presented in Section 4.1 yields the following result:

▶ Theorem 13. Path-Diet can be solved in O(tw2dn)-space and O(tw4dn)-time.

5 Proofs of concept

We now illustrate the relevance of our approach, and the practicality of our algorithm
for Tree-Diet, by using it in conjunction with FPT algorithms for three problems in
RNA bioinformatics. We implemented in C++ the dynamic programming scheme de-
scribed in Theorem 10 and Appendix B. Its main primitives are made available for Python
scripting through pybind11 [22]. It actually allows to solve a generalized weighted version
of Tree Diet, as explained in Appendix B. This feature allows to favour the conserva-
tion of important edges (e.g. RNA backbone) during simplification, by assigning them a
much larger weight compared to other edges. Our implementation is freely available at
https://gitlab.inria.fr/amibio/tree-diet.
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Figure 7 (Left) Target secondary structure (blue BPs), full set of disruptive base pairs (DPB;
top) inferred by RNAPond on the Eterna77 puzzle, and subsets of DBPs (bottom) cumulatively
removed by the tree-diet algorithm to reach prescribed treewidths. (Right) Number of BPs retained
by our algorithm, targeting various treewidth values for the EteRNA22 and EteRNA77 puzzles.

5.1 Memory-parsimonious unbiased sampling of RNA designs

As a first use case for our simplification algorithm, we strive to ease the sampling phase of a
recent method, called RNAPond [51], addressing RNA negative design. The method targets
a set of base pairs S, representing a secondary structure of length n, and infers a set D of
m disruptive base pairs (DBPs) that must be avoided. It relies on a Θ(k · (n + m)) time
algorithm for sampling k random sequences (see Appendix C for details) after a preprocessing
in Θ(n·m·4tw) time and Θ(n·4tw) space. Here, the input consists of a graph G = ([1, n], S∪D)
and a tree decomposition T of G, having width tw. In practice, the preprocessing largely
dominates the overall runtime, even for large values of k, and its large memory consumption
represents the main bottleneck.

This discrepancy in the complexities/runtimes of the preprocessing and sampling suggests
an alternative strategy: relaxing the set of constraints to (S′, D′), with (S′ ∪ D′) ⊂ (S ∪ D),
and compensating it through a rejection of sequences violating constraints in (S, D) \ (S′, D′).
The relaxed algorithm would remain unbiased, while the average-case time complexity of
the rejection algorithm would be in Θ(k · q · (n + m)) time, where q represents the relative
increase of the partition function (≈ the sequence space) induced by the relaxation. The
preprocessing step would retain the same complexity, but based on a (reduced) treewidth
tw′ ≤ tw for the relaxed graph G′ = ([1, n], S′ ∪ D′).

These complexities enable a tradeoff between the rejection (time), and the preprocessing
(space), which may be critical to unlock future applications of RNA design. Indeed, the
treewidth can be decreased by removing relatively few base pairs, as demonstrated below
using our algorithm on pairs inferred for hard design instances.

We considered sets of DBPs inferred by RNAPond over two puzzles in the EteRNA
benchmark. The EteRNA22 puzzle is an empty secondary structure spanning 400 nts, for
which RNAPond obtains a valid design after inferring 465 DBPs. A tree decomposition of
the graph formed by these 465 DPBs is then obtained with the standard min-fill-ordering
heuritic [8], giving a width of 6. The EteRNA77 puzzle is 105 nts long, and consists in
a collection of helices interspersed with destabilizing internal loops. RNApond failed to
produce a solution,and its final set of DBPs consists of 183 pairs, for which the same heuristic
yields a tree decomposition of width 9. We further make both tree decompositions binary
through bag duplications (see Appendix A), giving an FPT runtime to our algorithm, while
potentially lowering the number of lost edges.
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Executing the tree-diet algorithm (Theorem 10) on both graphs and their tree decompos-
itions, we obtained simplified graphs, having lower treewidth while typically losing few edges,
as illustrated and reported in Figure 7. Remarkably, the treewidth of the DBPs inferred for
EteRNA22 can be decreased to tw′ = 5 by only removing 5 DBPs/edges (460/465 retained),
and to tw′ = 4 by removing 4 further DBPs (456/465). For EteRNA77, our algorithm
reduces the treewidth from 9 to 6 by only removing 7 DBPs.

Rough estimates can be provided for the tradeoff between the rejection and preprocessing
complexities, by assuming that removing a DBP homogeneously increases the value of Z by
a factor α := 16/10 (#pairs/#incomp. pairs). The relative increase in partition function is
then q ≈ αb, when b base pairs are removed. For EteRNA22, reducing the treewidth by 2
units (6→4), i.e. a 16 fold reduction of the memory and preprocessing time, can be achieved
by removing 9 DBPs, i.e. a 69 fold expected increase in the time of the generation phase. For
EteRNA77, the same 16 fold (tw′ = 9 → 7) reduction of the preprocessing time/space can
be achieved through an estimated 4 fold increase of the generation time. A more aggressive
256 fold memory gain can be achieved at the expense of an estimated 1 152 fold increase
in generation time. Given the large typical asymmetry in runtimes and implementation
constants between the computation-heavy preprocessing and, relatively light, generation
phases, the availability of an algorithm for the tree-diet problem provides new options,
especially to circumvent memory limitations.

5.2 Structural alignment of complex RNAs
Structural homology is often posited within functional families of non-coding RNAs, and is
foundational to algorithmic methods for multiple RNA alignments [23], considering RNA
base pairs while aligning distant homologs. In the presence of complex structural features
(pseudoknots, base triplets), the sequence-structure alignment problem becomes hard, yet
admits XP solutions based on the treewidth of the base pair + backbone graph. In particular,
Rinaudo et al. [32] describe a Θ(n.mtw+1) algorithm for optimally aligning a structured
RNA of length n onto a genomic region of length m. It optimizes an alignment score that
includes: i) substitution costs for matches/mismatches of individual nucleotides and base
pairs (including arc-breaking) based on the RIBOSUM matrices [24]; and ii) an affine gap
cost model [33]. We used the implementation of the Rinaudo et al. algorithm, implemented
in the LicoRNA software package [45, 46].

5.2.1 Impact of treewidth on the structural alignment of a riboswitch
In this case study, we used our tree-diet algorithm to modulate the treewidth of complex
RNA structures, and investigate the effect of the simplification on the quality and runtimes of
structure-sequence alignments. We considered the Cyclic di-GMP-II riboswitch, a regulatory
motif found in bacteria that is involved in signal transduction, and undergoes conformational
change upon binding the second messenger c-di-GMP-II [40, 41]. A 2.5Å resolution 3D model
of the c-di-GMP-II riboswitch in C. acetobutylicum, proposed by Smith et al. [38] based on
X-ray crystallography, was retrieved from the PDB [4] (PDBID: 3Q3Z). We annotated its base
pairs geometrically using the DSSR method [28]. The canonical base pairs, supplemented
with the backbone connections, were then accumulated in a graph, for which we heuristically
computed an initial tree decomposition T4, having treewidth tw = 4.

We simplified our the initial tree decomposition T4, and obtained simplified models T3,

and T2, having width tw′ = 3 and 2 respectively. As controls, we included tree decompositions
based on the secondary structure (max. non-crossing set of BPs; T2D) and sequence (T1D).
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Figure 8 Impact on alignment quality (SPS; Left) and runtime (Right) of simplified instances for
the RNA sequence-structure alignment of the pseudoknotted c-di-GMP-II riboswitch. The impact of
simplifications on the quality of predicted alignments, using RFAM RF01786 as a reference, appears
limited while the runtime improvement is substantial.

We used LicoRNA to predict an alignment aT ,w of each original/simplified tree decomposition
T onto each sequence w of the c-di-GMP-II riboswitch family in the RFAM database [23]
(RF01786). Finally, we reported the LicoRNA runtime, and computed the Sum of Pairs
Score (SPS) [43] as a measure of the accuracy of aT ,w against a reference alignment a⋆

w:

SPS(aT ,w; a⋆
w) = | MatchedCols(aT ,w) ∩ MatchedCols(a⋆

w) |
| MatchedCols(a⋆

w) |
,

using as reference the alignment a⋆
w between the 3Q3Z sequence and w induced by the

manually-curated RFAM alignment of the RF01786 family.
The results, presented in Figure 8, show a limited impact of the simplification on the

quality of the predicted alignment, as measured by the SPS in comparison with the RFAM
alignment. The best average SPS (77.3%) is achieved by the initial model, having treewidth
of 4, but the average difference with simplified models appears very limited (e.g. 76.5% for
T3), especially when considering the median. Meanwhile, the runtimes mainly depend on the
treewidth, ranging from 1h for T4 to 300ms for T1D. Overall, T2D seems to represent the
best compromise between runtime and SPS, although its SPS may be artificially inflated by
our election of RF01786 as our reference (built from a covariance model, i.e. essentially a 2D
structure). Finally, the difference in number of edges (and induced SPS) between T2D and
T2, both having tw = 2, exemplifies the difference between the Tree-Diet and Graph-Diet
problems, and motivates further work on the latter.

5.2.2 Exact iterative strategy for the genomic search of ncRNAs
In this final case study, we consider an exact filtering strategy to search new occurrences of a
structured RNA within a given genomic context. In this setting, one attempts to find all
ε-admissible (cost ≤ ε) occurrences/hits of a structured RNA S of length n within a given
genome of length g ≫ n, broken down in windows of length κ.n, κ > 1. Classically, one
would align S against individual windows, and report those associated with an admissible
alignment cost. This strategy would have an overall Θ(g · ntw+2) time complexity, applying
for instance the algorithm of [32].

Our instance simplification framework enables an alternative strategy, that incrementally
filters out unsuitable windows based on models of increasing granularity. Indeed, for any given
target sequence, the min alignment cost cδ obtained for a simplified instance of treewidth
tw − δ can be corrected (cf Appendix D) into a lower bound c⋆

δ for the min alignment
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Figure 9 Corrected costs associated with the search for structured homologs of the Twister
ribozyme in chromosome 5 of S. bicolor, using simplified instances of various treewidth (A). Gray
areas represent scores which, upon correction, remain below the cutoff, and have to be considered
for further steps of the iterated filtering. Canonical base pairs of the ribozyme (PDBID 4OJI; B),
mapped onto to the best hit (C) and second best hit (D) found along the search colored depending
on their support in the target sequence (Red: incompatible; Purple: unstable G-U; Blue: stable).

cost c⋆
0 of the full-treewidth instance tw. Any window such that c⋆

δ > ε thus also obeys
c⋆

0 > ε, and can be safely discarded from the list of putative ε-admissible windows, without
having to perform a full-treewidth alignment. Given the exponential growth of the alignment
runtime for increasing treewidth values (see Figure 8-right) this strategy is expected to yield
substantial runtime savings.

We used this strategy to search occurrences of the Twister ribozyme (PDBID 4OJI),
a highly-structured (tw = 5) 54nts RNA initially found in O. sativa (asian rice) [26]. We
targeted the S. bicolor genome (sorghum), focusing on a 10kb region centered on the 2,485,140
position of the 5th chromosome, where an instance of the ribozyme was suspected within
an uncharacterized transcript (LOC110435504). The 4OJI sequence and structure were
extracted from the 3D model as above, and included into a tree decomposition T5 (73 edges),
simplified into T4 (71 edges), T3 (68 edges) and T2 (61 edges) using the tree-diet algorithm.

We aligned all tree decompositions against all windows of size 58nts using 13nts offset, and
measured the score and runtime of the iterative filtering strategy using a cost cutoff ε = −5.
The search recovers the suspected occurrence of twister as its best result (Figure 9.C), but
produced hits (cf Figure 9.D) with comparable sequence conservation that could be the
object of further studies. Regarding the filtering strategy, while T2 only allows to rule out
3 windows out of 769, T3 allows to eliminate an important proportion of putative targets,
retaining only 109 windows, further reduced to 15 windows by T4, 6 of which end up as final
hits for the full model T5 (cf Figure 9.A). The search remains exact, but greatly reduces the
overall runtime from 24 hours to 34 minutes (42 fold!).

6 Conclusion and discussion

We have established the parameterized complexity of three treewidth reduction problems,
motivated by applications in Bioinformatics, as well as proposed practical algorithms for
instances of reasonable treewidths. The reduced widths obtained by our proposed algorithm
can be used to obtain: i) sensitive heuristics, owing to the consideration of a maximal
amount of edges/information in the thinned graphs; ii) a posteriori approximation ratios, by
comparing the potential contribution of removed edges to the optimal score obtained of the
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thinned instance by a downstream FPT/XP algorithm; iii) substantial practical speedups
without loss of correctness, e.g. when partial filtering can be safely achieved based on
simplified input graphs

Open questions. Regarding the parameterized complexity of Graph-Diet and Tree-Diet,
some questions remain open (see Table 1): an FPT algorithm for Tree-Diet (ideally, with
2O(tw) · n running time), would be the most desirable, if possible satisfying the backbone
constraints. We also aim at settling the parameterized complexity of the Graph-Diet
problem, and try to give efficient exact algorithms for this problem (possibly using some
tree-decomposition in input). Finally, we did not include the number of deleted edges in our
multivariate analysis: even though in practice it is more difficult, a priori, to guarantee it
has a small value, we expect it can be used to improve the running time in many cases.

Backbone Preservation. In two of our applications, the RNA secondary structure graph
contains two types of edges: those representing the backbone of the sequence (i.e., between
consecutive bases) and those representing base pair bounds. In practice, we want all backbone
edges to be visible in the resulting tree-decomposition, and only base pairs may be lost.
This can be integrated to the Tree-Diet model (and to our algorithms) using weighted
edges, using the total weight rather than the count of deleted edges for the objective function.
Note that some instances might be unrealizable (with no tree-diet preserving the backbone,
especially for low tw′). In most cases, ad-hoc bag duplications can help avoid this issue.

From a theoretical perspective, weighted edges may only increase the algorithmic com-
plexity of the problems. However, a more precise model could consider graphs which already
include a hamiltonian path (the backbone), and the remaining edges form a degree-one or
two subgraph. Such extra properties may, in some cases, actually reduce the complexity
of the problem. As an extreme case, we conjecture the Path-Diet problem for tw′ = 1
becomes polynomial in this setting.
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A Editing Trees before the Diet

Any tree decomposition can be transformed into a binary one through the duplications
of bags having more than 2 children. To do so in practice, one will, as long as the tree
decomposition is not binary, apply the following transformation:
1. Find a bag X with children Y1, . . . , Y∆ and ∆ > 2.
2. Introduce a new bag X ′ with the same content as X and locally modify the tree decom-

position in the following way: X will now have Y1 and X ′ as children, while X ′ will have
Y2 · · · Y∆.

When it is no longer possible to apply this transformation, the tree decomposition is binary.
For each bag having originally ∆ > 2 children in the decomposition, ∆ − 1 new bags have
been introduced. In total, with Nbags the original number of bags in the decomposition,
strictly less than Nbags new bags have been introduced (each new bag is associated to an
edge of the original tree decomposition).

This tranformation is in fact the first step towards obtaining a nice tree decomposition
[7, 15].

A question that arises then is what impact these modifications may have on the output
of Tree-Diet, when applied to the tree decomposition given as input. We argue that
duplication operations (as used above to get a binary tree decomposition) can only improve
the solution, i.e decrease the number of lost edges. Indeed, within the coloring formulation
of the problem, new bags yield new opportunities for an edge to be represented, with both
its end-points green in some bag. See Figure 10 for an illustration.

More generally, any operation on the input tree decomposition that does not suppress
any of the original bags can only improve the solution to the Tree Diet problem. We
do not tackle here the problem of finding the best edition operations to apply onto a tree
decomposition given as input to Tree Diet, which is an a priori difficult task.

B Pseudo-code

Algorithm 1 present a pseudo-code of our dynamic programming algorithm for Tree Diet,
with a memoization approach. The C++/pybind11 [22] implementation is available at
https://gitlab.inria.fr/amibio/tree-diet.
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Figure 10 Left: A graph and a path-decomposition whose optimal 1-tree-diet loses an edge (ad).
However, duplicating the bag abcd (right) yields a tree-decomposition with a lossless 1-tree-diet.

Note that the implementation allows to solve a more general weighted version of Tree
Diet, where each edge is given a weight, and the objective is to find a (tw − tw′)-diet of the
input tree decomposition preserving a set of edges of maximum total weight.

In the context of RNA applications, this feature allows to favour as much as possible
preservation of the backbone of RNA molecules, i.e. edges between consecutive nucleotides
along the string, by assigning them a weight greater than the number of non-backbone edges.

Edge weights are passed to the function in the form of a dictionary/map W associating a
real weight to each edge. Within Algorithms 1, the only place where it is taken into account
is the the count function, which computes the weight of edges accounted for by the bag that
is currently visited.

C Correctness of the rejection-based sampling of RNA designs

A recent method for RNA design, called RNAPond [51], implements a sampling approach
to tackle the inverse folding of RNA. Targeting a secondary structure S of length n, it
performs a Boltzmann-weighted sampling of sequences and, at each iteration, identifies
Disruptive Base Pairs (DBPs) that are not in S, yet are recurrent in the Boltzmann ensemble
of generated sequences. Those base pairs are then added to a set D of DBPs, and excluded
in subsequent generations through an assignment of non-binding pairs of nucleotides, outside
of B := {(G, C), (C, G), (A, U), (U, A), (G, U), (U, G)} .

At the core of the method, one finds a random generation algorithm which takes as input
a secondary structure S and a set D of DBPs. The algorithm generates from the set WS,D
of sequences w ∈ {A, C, G, U}n which are: i) compatible with all (i, j) ∈ S, i.e. (wi, wj) ∈ B;
and ii) incompatible with all (k, l) ∈ D, i.e. (wk, wl) /∈ B. The algorithm then enforces a
(dual) Boltzmann distribution over the sequences in WS,D:

∀w ∈ WS,D : P(w | D, S) = e−β.Ew,S

ZS,D
with ZS,D :=

∑
w′∈WS,D

e−β.Ew′,S (1)

where β > 0 is an arbitrary constant akin to a temperature. Yao et al. describe an algorithm
which generates k sequences in Θ(k(n + |D|)) time, after a preprocessing in Θ(n.|D|.4tw)
time and Θ(n.4tw) space, where tw is the treewidth of the graph having edges in S ∪ D.

The discrepancy in the preprocessing and sampling complexities suggests an alternative
strategy, utilizing rejection on top of a relaxed sampling. Namely, we consider a rejection
algorithm, which starts from a relaxation (S′, D′) of the initial constraints (S′ ∪ D′ ⊂ S ∪ D),
and iterates Yao et al.’s algorithm to generate sequences in WS′,D′ ⊃ WS,D, rejecting those
outside of WS,D, until k suitable ones are obtained. The rejection algorithm generates a
given sequence w ∈ WS,D on its first attempt with probability p := e−β.Ew,S /ZS′,D′ and,
more generally, after r rejections with probability (1 − q)r p with q := ZS,D/ZS′,D′ . The
overall probability of emitting w is thus

p ·
∑
r≥0

(1 − q)r = p

q
= e−β.Ew,S

ZS,D
= P(w | D, S).
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Algorithm 1 Dynamic programming algorithm for Tree-Diet.

Input : Tree-decomposition T , graph G, target width tw′, edge weights W

Output : Maximum total weight of a set of realizable/non-lost edges in a
(tw − tw′)-diet of T

Side-Product : A filled table c[Xi, f ], ∀Xi bag and f coloring of Xi

1 Function optim_num_real_edges(Xi, f, G, tw′, W):

2 if c[Xi, f ] already computed then return c[Xi, f ]; ;

3 if |f−1(o) ∪ f−1(r)| ≤ (|Xi| − tw′ − 1) then
4 //not enough removals.;
5 c[Xi, f ] = −∞;
6 return c[Xi, f ];
7 end
8 if Xi == leaf then
9 c[Xi, f ] = 0;

10 return c[Xi, f ];
11 end
12 int ans = −∞;

13 for m ∈ orange_maps(Xi, f) do
14 int ans_m = 0;
15 for Yj ∈ Xi.children do
16 int ans_j = −∞;
17 for f ′

j ∈ compatible(f, m, Xi, Yj) do
18 int val = 0;

19 val += count(f, f ′
j , W );

20 val += optim_num_real_edges(Yj , f ′
j , G, tw′);

21 if val ≥ ans_j then ans_j = val;
22 ;
23 end
24 ans_m += ans_j;
25 end
26 if ans_m ≥ ans then ans = ans_m; ;
27 end
28 c[Xi, f ] = ans

29 return c[Xi, f ];
30 end

In other words, our relaxed generator coupled with the rejection step, represents an unbiased
algorithm for the Boltzmann distribution of Eq. (1) over WS,D.

Meanwhile, the average-case complexity can be impacted by the strategy. Indeed,
the relaxed instance (S′, D′) can accelerate the preprocessing due to a reduced treewidth
tw′ ≤ tw. The rejection step only increases the expected number of generations by a factor
q := ZS′,D′/ZS,D, representing the inflation of the sequence space, induced by the relaxation
of the constraints. Overall, the average-case time complexity of the rejection algorithm is in
Θ(n · |D′| ·4tw′ +k ·q ·(n+ |D′|)) time and Θ(n ·4tw′) space. This space improvement is notable
when tw′ < tw, and could be key for the practical applicability of the method, especially
given that memory represents the bottleneck of most treewidth-based DP algorithms.
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D Lower bound for the min. alignment cost from simplified models

Here, we justify the filtering strategy described in Section 5.2.2. Namely, we formally prove
that, given a structured RNA S and a targeted genomic region w, a lower bound for the
minimal alignment cost of S and w can be obtained from the minimal alignment cost of
some S′ ⊆ S and w. If this lower bound for S′ ⊆ S is higher than the specified cutoff ε, then
there is no need to align w to S the full model, as the resulting cost is guaranteed to stay
above the selection cutoff ε.

Let S be an arc-annotated sequence of length m (Si denotes the ith character of S), w be
a target (flat) sequence of length m, and µ : [1, n] → [1, m] ∪ {⊥} represents an alignment2.
We consider the following cost function, adapted from [32], which quantifies the quality of an
alignment µ for S and w:

C(S, w, µ) =
∑

i unpaired in S,
k:=µi

γ(Si, wk) +
∑

(i,j)∈S,
(k,l):=(µi,µj)

ϕ(Si, Sj , wk, wl)

+
∑

g∈gaps(S)

λq(g) +
∑

g∈gaps(w)

λT (g)

where
γ(a, b) returns the substitution cost which penalizes (mismatches) or rewards (matches)
the substitution of a into b (set to 0 and handled in gaps if b =⊥);
ϕ(a, b, c, d) return a base pair substitution cost, penalizing (arc breaking) or rewarding
(conservation or compensatory mutations) the transformation of nucleotides (a, b) into
nucleotides/gaps (c, d) (set to 0 and handled in gaps if (c, d) = (⊥, ⊥));
λS and λT penalize gaps introduced by µ respectively in S and w (affine cost model).

Given this definition, consider a simplified model S′ ⊂ S, associated with a minimal cost

c′ := min
µ

C(S, w, µ)

and denote by c⋆ the minimal cost of the full model S, we have the following inequality.

▶ Proposition 14.

c′ −
∑

i unpaired in S,′

paired in S

max
b

γ(Si, b) +
∑

(i,j)∈S\S′

min
a,b

ϕ(Si, Sj , a, b) ≤ c⋆ (2)

Proof. For any alignment, we have, per the definition of C(S, w, µ):

C(S, w, µ) = C(S′, w, µ) −
∑

i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

ϕ(Si, Sj , wk, wl).

Minimizing over all alignment µ, one obtains

min
µ

C(S, w, µ) = min
µ

C(S′, w, µ) −
∑

i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) +
∑

(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

ϕ(Si, Sj , wk, wl).

2 An alignment µ is subject to further constraints, notably including some restricted form of monotonicity,
when represented as a function. However, those constraints are reasonably intuitive and we omit them
is this discussion for the sake of simplicity.
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Figure 11 (a) Histogram of alignment scores obtained by aligning the full structure (tw = 5)
model of the Twister ribozyme (pdb-id: 4OJI) with κ · n-sized windows in a 10kb region of the 5th

chromosome of S. bicolor. A vertical line is positioned at the ϵ threshold. (b;c;d) Corrected alignment
scores obtained for reduced-treewidth models for each window, plotted against the corresponding
score of the full model. The corrected alignment score indeed acts as a lower bound to the full-model
score (points above the y = x red line), allowing a iterative filtering strategy.

Independently minimizing each term of the right-hand-side, we obtain a first lower bound

c⋆ ≥ c′ − max
µ

∑
i unpaired in S,′

paired in S,
and k:=µi

γ(Si, wk) + min
µ

∑
(i,j)∈S\S′

s.t. (k,l):=(µi,µj)

ϕ(Si, Sj , wk, wl).

further coarsened by an independent optimization of the elements in the sums

c⋆ ≥ c′ −
∑

i unpaired in S,′

paired in S

max
µ

γ(Si, wk) +
∑

(i,j)∈S\S′

min
µ

ϕ(Si, Sj , wk, wl)

= c′ −
∑

i unpaired in S,′

paired in S

max
a

γ(Si, a) +
∑

(i,j)∈S\S′

min
a,b

ϕ(Si, Sj , a, b).

where the last line is obtained by considering the worst-case contributors to nucleotides and
base pairs substitutions. Importantly, the right-hand side no longer depends on µ any more,
and can be used to easily computed a corrected score/lower bound. ◀

The corrected expression, shown in the left hand side of Equation (2) allows, when lower
than a cutoff ε, to safely discard w as a potential hit for the full model S. This corrected
score score is plotted in Figure 9A, allowing for a gradual reduction of the search space
for ε-admissible hits. We show in Figure 11 the corrected scores obtained for simplified
structures S′ of various treewidths, plotted against the scores of the full target structure.
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