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Abstract
The Promise Constraint Satisfaction Problem (PCSP) is a generalization of the Constraint Satisfaction
Problem (CSP) that includes approximation variants of satisfiability and graph coloring problems.
Barto [LICS ’19] has shown that a specific PCSP, the problem to find a valid Not-All-Equal solution
to a 1-in-3-SAT instance, is not finitely tractable in that it can be solved by a trivial reduction to a
tractable CSP, but such a CSP is necessarily over an infinite domain (unless P=NP). We initiate a
systematic study of this phenomenon by giving a general necessary condition for finite tractability
and characterizing finite tractability within a class of templates – the “basic” tractable cases in the
dichotomy theorem for symmetric Boolean PCSPs allowing negations by Brakensiek and Guruswami
[SODA’18].
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1 Introduction

Many computational problems, including various versions of logical satisfiability, graph
coloring, and systems of equations can be phrased as Constraint Satisfaction Problems
(CSPs) over fixed templates (see [5]). One of the possible formulations of the CSP is via
homomorphisms of relational structures: a template A is a relational structure with finitely
many relations and the CSP over A, written CSP(A), is the problem to decide whether a
given finite relational structure X (similar to A) admits a homomorphism to A.

The complexity of CSPs over finite templates (i.e., those templates whose domain is a
finite set) is now completely classified by a celebrated dichotomy theorem independently
obtained by Bulatov [10] and Zhuk [19, 20]: every CSP(A) is either tractable (that is,
solvable in polynomial-time) or NP-complete. The landmark results leading to the complete
classification include Schaefer’s dichotomy theorem [18] for CSPs over Boolean structures (i.e.,
structures with a two-element domain), Hell and Nešetřil’s dichotomy theorem [15] for CSPs
over graphs, and Feder and Vardi’s thorough study [13] through Datalog and group theory.
The latter paper also inspired the development of a mathematical theory of finite-template
CSPs [16, 9, 6], the so called algebraic approach, that provided guidance and tools for the
general dichotomy theorem by Bulatov and Zhuk.

The algebraic approach has been successfully applied in many variants and generalizations
of the CSP such as the infinite-template CSP [7] or valued CSP [17]. This paper concerns a
recent vast generalization of the basic CSP framework, the Promise CSP (PCSP).
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11:2 Finitely Tractable Promise Constraint Satisfaction Problems

A template for the PCSP is a pair (A,B) of similar structures such that A has a homomor-
phism to B, and the PCSP over (A,B), written PCSP(A,B), is the problem to distinguish
between the case that a given finite structure X admits a homomorphism to A and the case
that X does not have a homomorphism to B (the promise is that one of the cases takes place).
This framework generalizes that of CSP (take A = B) and additionally includes important
problems in approximation, e.g., if A = Kk (the clique on k vertices) and B = Kl, k ≤ l, then
PCSP(A,B) is a version of the approximate graph coloring problem, namely, the problem to
distinguish graphs that are k-colorable from those that are not l-colorable, a problem whose
complexity is open after more than 40 years of research. On the other hand, the basics of
the algebraic approach to CSPs can be generalized to PCSPs [1, 8, 11, 3].

The approximate graph coloring problem shows that a full classification of the complexity
of PCSPs over graph templates is still open and so is the analogue of Schaefer’s Boolean
CSP, PCSPs over pairs of Boolean structures. However, strong partial results have already
been obtained. Brakensiek and Guruswami [8] proved a dichotomy theorem for all symmetric
Boolean templates allowing negations, i.e., templates (A,B) such that A = ({0, 1}; R0, R1, . . . ),
B = ({0, 1}; S0, S1, . . . ), each relation Ri, Si is invariant under permutations of coordinates,
and R0 = S0 is the binary disequality relation ̸=. Ficak, Kozik, Olšák, and Stankiewicz [14]
later generalized this result to all symmetric Boolean templates. These templates play a
central role in this paper.

To prove tractability or hardness results for PCSPs, a very simple but useful reduction is
often applied: If (A,B) and (A′,B′) are similar PCSP templates and there exist homomor-
phisms A′ → A and B → B′, then the trivial reduction (which does not change the instance)
reduces PCSP(A′,B′) to PCSP(A,B); we say that (A′,B′) is a homomorphic relaxation of
(A,B). In fact, all the tractable symmetric Boolean PCSPs can be reduced in this way to a
tractable CSP over a structure with a possibly infinite domain.

An interesting example of a PCSP that can be naturally reduced to a tractable CSP over
an infinite domain is the following problem. An instance is a list of triples of variables and the
problem is to distinguish instances that are satisfiable as positive 1-in-3-SAT instances from
those that are not even satisfiable as Not-All-Equal-3-SAT instances. This computational
problem is essentially the same as PCSP(A,B) where A consists of the ternary 1-in-3 relation
over {0, 1} and B consists of the ternary not-all-equal relation over {0, 1}. It is easy to see
that A → C → B where C is the relation “x+y +z = 1” over the set of all integers. Therefore
PCSP(A,B) is reducible (by means of the trivial reduction) to PCSP(C,C) = CSP(C) which
is a tractable problem. The main result of [2] is that no finite structure can be used in place
of C for this particular template – this PCSP is not finitely tractable in the sense of the
following definition.

▶ Definition 1. We say that PCSP(A,B) is finitely tractable if there exists a finite relational
structure C such that A → C → B and CSP(C) is tractable. Otherwise we call PCSP(A,B)
not finitely tractable. (We assume P ̸= NP throughout the paper.)

In this paper, we initiate a systematic study of this phenomenon. As the main technical
contribution, we determine which of the “basic tractable cases” in Brakensiek and Guruswami’s
classification [8] are finitely tractable. It turns out that finite tractability is quite rare, so the
infinite nature of the 1-in-3 versus Not-All-Equal problem is not exceptional at all.

1.1 Symmetric Boolean PCSPs allowing negations
We now discuss the classification of symmetric Boolean templates allowing negations from [8].
It will be convenient to describe these templates by listing the corresponding relation
pairs, that is, instead of (A = ({0, 1}; R1, . . . , Rn),B = ({0, 1}; S1, . . . , Sn)) we describe this
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template by the list (R1, S1), . . . , (Rn, Sn). Recall that the template is symmetric if all the
involved relations are symmetric, i.e., invariant under any permutation of coordinates, and
the template allows negations if (̸=, ̸=) is among the relation pairs, where ̸== {(0, 1), (1, 0)}
is the disequality relation.

It may be also helpful to think of an instance of PCSP(A,B) as a list of constraints
of the form Ri(variables) and the problem is to distinguish between instances where each
constraint is satisfiable and those which are not satisfiable even when we replace each Ri

by the corresponding “relaxed version” Si. Allowing negations then means that we can use
constraints x ̸= y – we can effectively negate variables.

The following relations are important for the classification.

odd-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi is odd}, even-in-s = {x ∈ {0, 1}s :
∑s

n=1 xi is even}
r-in-s = {x ∈ {0, 1}s :

∑s
n=1 xi = r}

≤r-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi ≤ r}, ≥r-in-s = {x ∈ {0, 1}s :
∑s

i=1 xi ≥ r}
not-all-equal-s = {x ∈ {0, 1}s :

∑s
i=1 xi ̸∈ {0, s}}

The next theorem lists some of the tractable cases of the classification, which are “basic”
in the sense explained below.

▶ Theorem 2 ([8]). PCSP((P, Q), (̸=, ̸=)) is tractable if (P, Q) is equal to
(a) (odd-in-s, odd-in-s), or (even-in-s, even-in-s), or
(b) (≤r-in-s, ≤(2r − 1)-in-s) and r ≤ s/2, or

(≥r-in-s, ≥(2r − s + 1)-in-s) and r ≥ s/2, or
(c) (r-in-s, not-all-equal-s)
for some positive integers r, s.

It follows from the results in [8] (namely Theorem 2.1 and a simple analysis of compatible
relations) that every tractable symmetric Boolean PCSP allowing negations can be obtained by

taking any number of ( ̸=, ̸=) and any number of relation pairs from a fixed item in
Theorem 2,
adding any number of “trivial” relation pairs (P, Q) such that P ⊆ Q, and Q is the full
relation or P contains only constant tuples, and
taking a homomorphic relaxation of the obtained template.

In this sense, Theorem 2 provides building blocks for all tractable templates.

1.2 Contributions
Some of the cases in Theorem 2 are finitely tractable: templates in item (a) are tractable
CSPs (they can be decided by solving systems of linear equations of the two-element field),
templates in item (c) for r odd and s even are homomorphic relaxations of (odd-in-s, odd-in-s),
and templates in item (b) for r = 1 or r = s − 1 as well as all templates with s ≤ 2 are
tractable CSPs (reducible to 2-SAT) [18, 5]. Our main theorem proves that all the remaining
cases are not finitely tractable. In fact, we prove this property even for some relaxations of
these templates:

▶ Theorem 3. The PCSP over any of the following templates is not finitely tractable.
(1) (r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where 1 < r < s/2,

(r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s/2 < r < s − 1
(2) (≤r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2

(≥r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2

MFCS 2021



11:4 Finitely Tractable Promise Constraint Satisfaction Problems

(3) (r-in-s, ≤(2r − 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2, and r is even
(r-in-s, ≥(2r − s + 1)-in-s), ( ̸=, ̸=) where s is even, 1 < r = s/2, and r is even

(4) (r-in-s, not-all-equal-s) where s > r, s > 2, and r is even or s is odd

Note that the templates in the last item do not contain the disequality pair; the special
case with r = 1 and s = 3 is the main result of [2]. Disequalities in the other items
are necessary, since otherwise the templates are homomorphic relaxations of CSPs over
one-element structures.

In Theorem 18 we provide a general necessary condition for finite tractability of an
arbitrary finite-template PCSP in terms of so called h1 identities. Showing that templates in
Theorem 3 do not satisfy this necessary condition forms the bulk of the paper.

The necessary condition in Theorem 18 seems very unlikely to be sufficient for finite
tractability. Nevertheless, we observe in Theorem 12 that finite tractability does depend
only on h1 identities, just like standard tractability [11], see Theorem 10 and the discussion
following the theorem.

2 Preliminaries

2.1 PCSP

We use the notation [n] = {1, 2, . . . , n} throughout the paper.
A relational structure (of finite signature) is a tuple A = (A; R1, R2, . . . , Rn) where A is a

set, called the domain, and each Ri is a relation on A of arity ar(Ri) ≥ 1, that is, Ri ⊆ Aar(Ri).
The structure A is finite if A is finite. Two relational structures A = (A; R1, R2, . . . , Rn)
and B = (B; S1, S2, . . . , Sn) are similar if they have the same number of relations and
ar(Ri) = ar(Si) for each i ∈ [n]. In this case, a homomorphism from A to B is a mapping
f : A → B such that (f(a1), f(a2), . . . , f(ak)) ∈ Si whenever i ∈ [n] and (a1, a2, . . . , ak) ∈ Ri

where k = ar(Ri). If there exists a homomorphism from A to B, we write A → B, and if
there is none, we write A ̸→ B.

▶ Definition 4. A PCSP template is a pair (A,B) of similar relational structures such that
A → B.

The PCSP over (A,B), written PCSP(A,B), is the following problem. Given a finite
relational structure X similar to A (and B), output “Yes.” if X → A and output “No.” if
X ̸→ B.

We define CSP(A) = PCSP(A,A).

▶ Definition 5. Let (A,B) and (A′,B′) be similar PCSP templates. We say that (A′,B′) is
a homomorphic relaxation of (A,B) if A′ → A and B → B′.

Recall that if (A′,B′) is a homomorphic relaxation of (A,B), then the trivial reduction,
which does not change the input structure X, reduces PCSP(A′,B′) to PCSP(A,B).

2.2 Polymorphisms

A crucial concept for the algebraic approach to (P)CSP is a polymorphism.

▶ Definition 6. Let A = (A; R1, . . . , Rm) and B = (B; S1, . . . , Sm) be two similar relational
structures. A function c : An → B is a polymorphism from A to B if for each relation Ri in
A with ki = arity(Ri)
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a11
a21
...

aki1

 ∈ Ri,


a12
a22
...

aki2

 ∈ Ri . . . ,


a1n

a2n

...
akin

 ∈ Ri ⇒


c(a11, a12, . . . , a1n)
c(a21, a22, . . . , a23)

...
c(aki1, aki2, . . . , akin)

 ∈ Si.

We denote the set of all polymorphisms from A to B by Pol(A,B) and define Pol(C) =
Pol(C,C).

The computational complexity of a PCSP depends only on the set of polymorphisms
of its template [8]. We note that tractability of the PCSPs in Theorem 2 stems from
nice polymorphisms: parities (item (a)), majorities (item (b)), and alternating thresholds
(item (c)).

The set of polymorphisms is an algebraic object named minion in [11], which we define in
Definition 8 below.

▶ Definition 7. An n-ary function fπ : An → B is called a minor of an m-ary function
f : Am → B given by a map π : [m] → [n] if

fπ(x1, . . . , xn) = f(xπ(1), . . . , xπ(m))

for all x1, . . . , xn ∈ A.

▶ Definition 8. Let O(A, B) = {f : An → B : n ≥ 1}. A minion on (A, B) is a non-empty
subset M of O(A, B) that is closed under taking minors. For fixed n ≥ 1, let M(n) denote
the set of n-ary functions from M.

As mentioned, M = Pol(A,B) is always a minion and the complexity of PCSP(A,B)
depends only on M. This result was strengthened in [11, 3] (generalizing the same result for
CSPs [6]) as follows.

▶ Definition 9. Let M and N be two minions. A mapping ξ : M → N is called a minion
homomorphism if it preserves arities and preserves taking minors, i.e., ξ(fπ) = (ξ(f))π for
every f ∈ M(m) and every π : [m] → [n].

▶ Theorem 10. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion homo-
morphism Pol(A′,B′) → Pol(A,B), then PCSP(A,B) is log-space reducible to PCSP(A′,B′).

An h1 identity (h1 stands for height one) is a meaningful expression of the form
function(variables) ≈ function(variables), e.g., if f : A3 → B and g : A4 → B, then
f(x, y, x) ≈ g(y, x, x, z) is an h1 identity. Such an h1 identity is satisfied if the corre-
sponding equation holds universally, e.g., f(x, y, x) ≈ g(y, x, x, z) is satisfied if and only if
f(x, y, x) = g(y, x, x, z) for every x, y, z ∈ A.

Every minion homomorphism ξ : M → N preserves h1 identities in the sense that if
functions f, g ∈ M satisfy an h1 identity, then so do their ξ-images ξ(f), ξ(g) ∈ N . In fact,
an arity-preserving ξ between minions is a minion homomorphism if and only if it preserves
h1 identities (see [6] for details). In this sense, Theorem 10 shows that the complexity of a
PCSP depends only on h1 identities satisfied by polymorphisms.

MFCS 2021



11:6 Finitely Tractable Promise Constraint Satisfaction Problems

2.3 Notation for tuples
Repeated entries in tuples will be indicated by ×, e.g. (2 × a, 3 × b) stands for the tuple
(a, a, b, b, b).

The i-th cyclic shift of a tuple (x1, . . . , xm) is the tuple (x(m−i mod m)+1, . . . , xm, x1, . . . ,

x(m−i−1 mod m)+1). A cyclic shift is the i-th cyclic shift for some i. We will use cyclic shifts
both for tuples of zeros and ones and tuples of variables.

We will often use special p-tuples and n = p2-tuples of zeros and ones as arguments for
Boolean functions, where p will be a fixed prime number. For 0 ≤ k ≤ p, 0 ≤ l ≤ p2, and
0 ≤ k1, . . . , kp ≤ p we write

⟨k⟩p = (k × 1, (p − k) × 0) = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
p−k

), ⟨l⟩n = (1, 1, . . . , 1︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
n−l

)

and

⟨k1, . . . , kp⟩p = ⟨k1⟩p⟨k2⟩p . . . ⟨kp⟩p

for the concatenation of ⟨k1⟩p, . . . , ⟨kp⟩p. (Note here that the “i” in ki is an index, not an
exponent.) The subscripts p and n in ⟨⟩p and ⟨⟩n will be usually clear from the context and
we omit them. We will sometimes need to shift n-ary tuples ⟨k1, . . . , kp⟩ blockwise, e.g., to
⟨k2. . . . , kp, k1⟩. In such a situation we talk about a p-ary cyclic shift to avoid confusion.

It will be often convenient to think of an n-tuple k = ⟨k1, . . . , kp⟩ as a p × p zero-one
matrix with columns ⟨k1⟩, . . . , ⟨kp⟩. For example, the ones in ⟨p × 5⟩ form a 5 × p “rectangle”
and ⟨(p − 2) × 5, 2 × 4⟩ is “almost” a 5 × p rectangle – the bottom right 1 × 2 corner is
removed. A p-ary cyclic shift of k corresponds to cyclic permutation of columns.

The area of a zero-one n-tuple k is defined as the fraction of ones and is denoted λ(k).

λ(k) =
(

n∑
i=1

ki

)
/p2

The area of ⟨k1, . . . , kp⟩ is thus (k1 + · · · + kp)/p2.
If t is a p-ary function we simply write t⟨k⟩ instead of t(⟨k⟩). Similar shorthand is used

for n-ary functions and tuples ⟨k1, . . . , kp⟩p.

3 Finitely tractable PCSPs

3.1 Finite tractability depends only on h1 identities
We start by observing that finite tractability also depends only on h1 identities satisfied
by polymorphisms, just like standard tractability (recall the discussion about h1 identities
and minion homomorphisms below Theorem 10). This result, Theorem 12, is an immediate
consequence of the following lemma and Theorem 10.

▶ Lemma 11. Let (A,B) be a PCSP template. Then the following are equivalent.
PCSP(A,B) is finitely tractable.
There exists a finite relational structure C such that CSP(C) is solvable in polynomial
time and there exists a minion homomorphism Pol(C) → Pol(A,B).

Proof. This lemma is a consequence of known results and we only sketch the argument here.
In Section II.B of [2] it is argued that the first item is equivalent to the claim that a finite
tractable template (C,C) pp-constructs (A,B). The latter claim is equivalent to the second
item by Theorem 4.12 in [3]. ◀



K. Asimi and L. Barto 11:7

▶ Theorem 12. Let (A,B) and (A′,B′) be PCSP templates. If there exists a minion
homomorphism Pol(A′,B′) → Pol(A,B) and PCSP(A′,B′) is finitely tractable, then so is
PCSP(A,B).

3.2 Necessary condition for finite tractability
In this subsection, we derive the necessary condition for finite tractability that will be used
to prove Theorem 3. A cyclic polymorphism is a starting point for the condition.

▶ Definition 13. A function c : Ap → B is called cyclic if it satisfies the h1 identity

c(x1, x2, . . . , xp) ≈ c(x2, . . . , xp, x1).

Cyclic polymorphisms can be used [4] to characterize the borderline between tractable
and NP-complete CSPs proposed in [9] and confirmed in [10, 19, 20]. We only state the
direction needed in this paper.

▶ Theorem 14 ([4]). Let C be a CSP template over a finite domain C. If CSP(C) is not
NP-complete, then C has a cyclic polymorphism of arity p for every prime number p > |C|.

Polymorphism minions of CSP templates are closed under arbitrary composition (cf. [5]).
In particular, if CSP(C) is not NP-complete, then Pol(C) contains the function

t(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp)
= c(c(x11, x21, . . . , xp1), c(x12, x22, . . . , xp2), . . . , c(x1p, x2p, . . . , xpp)), (1)

where c is a p-ary cyclic function and p > |C|. Such a function satisfies strong h1 identities
which are not satisfied by the templates in Theorem 3. We now (in two steps) describe one
such collection of strong enough identities.

▶ Definition 15. A function t : Ap2 → B is doubly cyclic if it satisfies every identity of the
form t(x1, . . . , xp) ≈ t(y1, . . . , yp), where xi is a p-tuple of variables and yi is a cyclic shift
of xi for every i ∈ [p], and every identity of the form t(x1, x2 . . . , xp) ≈ t(x2, . . . , xp, x1),
where each xi is a p-tuple of variables.

Observe that t from Equation (1) is doubly cyclic – the first type of identities come from
the cyclicity of the inner c while the second type from the outer c. It will be also useful for us
to observe in Lemma 22 that, after rearranging the arguments (we read them row-wise), t is a
cyclic function of arity p2. From the finiteness of the domain C we get one more property of
function t. In the next definition, by an x/y-tuple we mean a tuple containing only variables
x and y.

▶ Definition 16. A doubly cyclic function t : Ap2 → B is b-bounded if there exists an
equivalence relation ∼ on the set of all p-ary x/y-tuples with at most b equivalence classes
such that t satisfies every identity of the form t(u1, . . . up) ≈ t(v1, . . . , vp) where ui and vi

are x/y-tuples such that ui ∼ vi for every i ∈ [p].

▶ Lemma 17. Let c : Cp → C be a cyclic function. Then the function t defined by
Equation (1) is a b-bounded doubly cyclic function for b = |C||C|2 .

Proof. We define ∼ by declaring two p-ary x/y-tuples u and v ∼-equivalent if c(u) ≈ c(v).
As there are b = |C||C|2 binary functions C2 → C, this equivalence has at most b equivalence
classes. By definitions, t is then b-bounded and doubly cyclic. ◀

MFCS 2021



11:8 Finitely Tractable Promise Constraint Satisfaction Problems

The promised necessary condition for finite tractability is now a simple consequence:

▶ Theorem 18. Let (A,B) be a finite PCSP template that is finitely tractable. Then
there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic polymorphism for every
sufficiently large prime p.

Proof. If (A,B) is finitely tractable, then, by Lemma 11, there exists a minion homomorphism
ξ : Pol(C) → Pol(A,B), where C is finite and CSP(C) is tractable. By Theorem 14, C has
a p-ary cyclic polymorphism for every sufficiently large prime. Then, by Lemma 17, the
polymorphism t of C defined by Equation (1) is a b-bounded and doubly cyclic (with the
appropriate b). As ξ preserves h1 identities, ξ(t) is a b-bounded doubly cyclic polymorphism
of (A,B). ◀

3.3 Proof of Theorem 3
Finally, we are ready to start proving Theorem 3. Without loss of generality, we consider
only templates on the first lines of Cases (1)–(3) of Theorem 3 (in particular, r ≤ s/2) and
assume that r ≤ s/2 in Case (4) (the remaining templates can be obtained by swapping zero
and one in the domains). We fix such a template (A,B).

Striving for a contradiction, suppose that PCSP(A,B) is finitely tractable. By Theorem 18
there exists b such that (A,B) has a p2-ary b-bounded doubly cyclic polymorphism t for
every sufficiently large arity p2. We fix such a b and t, where p is fixed to a sufficiently large
prime p congruent to 1 modulo s (which is possible by the Dirichlet prime number theorem).
How large must p be will be seen in due course. We denote n = p2 and observe that n ≡ 1
(mod s) as well.

Using the cyclicity in Section 4 and double cyclicity in Section 5 we will show that certain
evaluations t(z) of t are tame in that t(z) = t⟨0⟩ (recall here the notation in Subsection 2.3) iff
the area of z is below a threshold θ. The threshold is defined as θ = 1/2 for all the templates
but the (r-in-s, not-all-equal-s) template in Case (4), where we set θ = r/s (observe that
θ = r/s also in Case (2) and (3)). We restate the definition of tameness for convenience.

▶ Definition 19. A tuple z ∈ {0, 1}n is tame if

t(z) =
{

t⟨0⟩n if λ(z) < θ

1 − t⟨0⟩n if λ(z) > θ

(Note here that λ(z) is never equal to θ since n is odd and n ≡ 1 (mod s).)

The evaluations that we use are called near-threshold almost rectangles defined as follows.

▶ Definition 20. A tuple z ∈ {0, 1}n is an almost rectangle if it is a p-ary cyclic shift
of a tuple of the form ⟨z1, . . . , z1, z2, . . . , z2⟩p, where 0 ≤ z1, z2 ≤ p, the number of z1’s is
arbitrary, and |z1 − z2| < 5b. The quantity ∆z = |z1 − z2| is referred to as the step size. We
say that z is near-threshold if |λ(z) − θ| < 1/s∆z+3.

The proof can now be finished by using the tameness of near-threshold almost rectangles
(that will be established in Lemma 25) together with the b-boundedness of t as follows.

Let m = (p − 1)/2 and choose positive integers z2,1 and z2,2 so that θp − 2b < z2,1 <

z2,2 < θp and the x/y-tuples (z2,1 × x, (p − z2,1) × y) and (z2,2 × x, (p − z2,2) × y) are
∼-equivalent (see Definition 16 of boundedness). This is possible by the pigeonhole principle
since there are more than b integers in the interval and ∼ has at most b classes.

By the choice of z2,1 and z2,2, for any meaningful choice of z1, we have t(z1) = t(z2)
where zi = ⟨m × z1, (p − m) × z2,i⟩p, i = 1, 2. We choose z1 as the maximum number such
that λ(z1) < θ. (Note here that for z1 = p the area of z1 can be made arbitrarily close to
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(1 + θ)/2 > θ by choosing a sufficiently large p, so we may assume z1 < p.) From m < p/2 it
follows that increasing z2,1 by one makes the area of z1 greater than increasing z1 by one,
therefore λ(z2) > θ.

Note that z1 > pθ since otherwise the area of z2 is less than θ. On the other hand,
z1 < pθ + 3b, otherwise the area of z1 is greater (assuming p > 5):

λ(z1) = mz1 + (p − m)z2,1

p2 ≥
p−1

2 (pθ + 3b) + p+1
2 (pθ − 2b)

p2 =
p2θ + b(p−5)

2
p2 > θ.

It follows that the step size of both z1 and z2 is less than 5b, so both zi are almost rectangles.
By choosing a sufficiently large p, the difference λ(z2) − λ(z1) can be made arbitrarily small,
and since λ(z1) < θ < λ(z2) both zi are then near-threshold.

Now the tameness of near-threshold almost rectangles (Lemma 25) gives us t(z1) =
t⟨0⟩n ̸= 1 − t⟨0⟩n = t(z2). On the other hand, we also have t(z1) = t(z2), a contradiction.

4 Step size at most one

In this section we prove the following lemma.

▶ Lemma 21. Every near-threshold almost rectangle of step size at most one is tame.

We will use the cyclicity of an operation obtained from t by an appropriate rearrangnment
of its arguments, stated in the following lemma. Its proof is in Appendix A.

▶ Lemma 22. Let t : Ap2 → B be a doubly cyclic function. Then the function tσ defined by

tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2
...

...
. . .

...
x1p x2p · · · xpp


is a cyclic function.

Observe that an almost rectangle z = ⟨z2 + 1, . . . , z2 + 1, z2, . . . , z2⟩p regarded as a p × p

matrix is, when read row-wise, equal to a sequence of consecutive ones, followed by zeros. In
other words, using the notation tσ from Lemma 22, we have t(z) = tσ⟨k⟩n for some k. Also
note that every almost rectangle of step size at most one has a p-ary cyclic shift of this form.
Finally, notice that if z is near-threshold, then k ≤ 2⌊θn⌋. In order to prove Lemma 21, it is
therefore enough to verify the following lemma.

▶ Lemma 23. Denote a = ⌊θn⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{

tσ⟨0⟩n if 0 ≤ k ≤ a

1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

The rest of this section is devoted to proving this lemma. We require an additional
definition. We say that an s-tuple of evaluations ⟨k1⟩n, . . . , ⟨ks⟩n, where 0 ≤ ki ≤ n, is
plausible if

∑s
i=1 ki = rn in Cases (1), (3), (4) and

∑s
i=1 ki ≤ rn in Case (2). The following

lemma is a consequence of the fact that tσ is a polymorphism (as t is) which is, additionally,
cyclic by Lemma 22. No other properties of t are needed in this section.

▶ Lemma 24. If an s-tuple ⟨k1⟩, . . . , ⟨ks⟩ is plausible, then (tσ⟨k1⟩, . . . , tσ⟨ks⟩) ∈ Q (recall
here that (P, Q) is introduced in the statement of Theorem 3).

Moreover, in Cases (1), (2), and (3), we have tσ⟨n − k⟩ = 1 − tσ⟨k⟩ for every 0 ≤ k ≤ n.
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Proof. For the first part, let ⟨k1⟩, . . . , ⟨ks⟩ be plausible. Form an s × rn matrix M whose
first row is ⟨k1⟩rn and the j-th row is the (

∑j−1
l=1 kl)-th cyclic shift of ⟨kj⟩rn for j ∈ {2, . . . , s}.

Note that each of the first
∑

ki columns of M contains exactly 1 one and the remaining
columns are all zero (the latter only applies in Case (2)). Split this matrix into r-many s × n

blocks M1, M2, . . . , Mr. Their sum X =
∑r

j=1 M j is an s × n zero-one matrix whose each
column contains exactly r ones in Cases (1), (3), and (4), and at most r ones in Case (2).
Moreover, for all j ∈ [s], the j-th row of X is a cyclic shift of ⟨kj⟩, therefore its tσ-image
is tσ⟨kj⟩ by cyclicity of tσ. Each column belongs to the relation P , therefore, as tσ is a
polymorphism, we get that tσ applied to the rows gives a tuple in Q. This implies the first
claim.

For the second part, we take ⟨k⟩ together with the k-th cyclic shift of ⟨n − k⟩ and use the
fact that tσ preserves the disequality relation pair. ◀

We now consider Cases (1)–(4) separately. Case (2) is the simplest. If 0 ≤ k ≤ a then
⟨k⟩, ⟨k⟩, . . . , ⟨k⟩ is a plausible tuple. By Lemma 24, the tuple (tσ⟨k⟩, tσ⟨k⟩, . . . , tσ⟨k⟩) is in
Q; therefore tσ⟨k⟩ = 0. For the remaining values 2a ≥ k ≥ a + 1 we apply the second part of
this lemma and get tσ⟨k⟩ = 1.

For Case (1) we prove tσ⟨k⟩ = 0 and tσ⟨n − k⟩ = 1 for any 0 ≤ k ≤ a by induction on
i = a − k, i = 0, 1, . . . , a. For the first step, k = (n − 1)/2, we apply Lemma 24 to the
plausible s-tuple 2r × ⟨k⟩, ⟨r⟩, (s − 2r − 1) × ⟨0⟩. Since Q contains no p-tuple with more than
(2r − 1) ones, we get tσ⟨k⟩ = 0. Then also tσ⟨n − k⟩ = 1 by the second part of the lemma.
For the induction step, we use the tuple

r × ⟨k⟩, r × ⟨n − k − 1⟩, ⟨r⟩, (s − 2r − 1) × ⟨0⟩

in a similar way, additionally using that tσ⟨n − k − 1⟩ = 1 by the induction hypothesis.
We proceed to Case (4). We will prove, starting from the left, the following chain of

disequalities.

tσ⟨a⟩ ≠ tσ⟨a + 1⟩ ≠ tσ⟨a − 1⟩ ≠ tσ⟨a + 2⟩ ≠ tσ⟨a − 2⟩ ≠ . . . ̸= tσ⟨2a⟩ ≠ tσ⟨0⟩

This will imply tσ⟨a⟩ = tσ⟨a − 1⟩ = · · · = tσ⟨0⟩ ≠ tσ⟨a + 1⟩ = tσ⟨a + 2⟩ = · · · = tσ⟨2a⟩. We
start with the first disequality tσ⟨a⟩ ≠ tσ⟨a + 1⟩. The sequence of arguments

(s − r) × ⟨a⟩, r × ⟨a + 1⟩

has length s and is plausible as (s − r)a + r(a + 1) = sa + r and sa + r is equal to
rn. (Indeed, n ≡ 1 (mod s), so n = ms + 1 for some integer m; then a = mr and
sa + r = smr + r = (n − 1)r + r = rn.) By Lemma 24, tσ⟨a⟩ ≠ tσ⟨a + 1⟩ since Q does not
contain all-equal tuples in Case (4). The remaining disequalities are proved in Appendix B.

Case (3) can be done similarly as Case (4) with an additional reasoning that we now explain.
Consider, e.g., the proof that tσ⟨a⟩ ̸= tσ⟨a + 1⟩ using the sequence (s − r) × ⟨a⟩, r × ⟨a + 1⟩.
We cannot directly conclude that tσ⟨a⟩ ≠ tσ⟨a + 1⟩ since relation Q contains the all-zero
tuple – we can only conclude that tσ⟨a⟩ and tσ⟨a + 1⟩ are not both ones. However, we can
also prove in the same way that tσ⟨n − a⟩ and tσ⟨n − (a + 1)⟩ are not both ones by using
the “complementary” tuple (s − r) × ⟨n − a⟩, r × ⟨n − (a + 1)⟩. The claim tσ⟨a⟩ ≠ tσ⟨a + 1⟩
then follows from the second part of Lemma 24.

The proof of Lemma 23 is concluded.
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5 Arbitrary step size

The entire section is devoted to the proof of the following lemma.

▶ Lemma 25. Every near-threshold almost rectangle is tame.

We start by redefining plausibility.
We say that an m-tuple of evaluations k1 = ⟨k1

1, . . . , kp
1⟩, . . . , km = ⟨k1

m, . . . , kp
m⟩, where

m ∈ [s], is plausible if
∑m

j=1 ki
j = rp for all i ∈ [p] (note that we do not make exception for

Case (2) here). In other words, by arranging the integers defining k1, k2, . . . , km as rows of
an m × p matrix, we get a matrix whose every column sums up to rp. Note that the sum of
the areas of the evaluations is then equal to r.

The following lemma is a “2-dimensional analogue” of Lemma 24. The proof applies the
first type of doubly cyclic identities from Definition 15, it is given in Appendix C.

▶ Lemma 26. If a tuple k1, . . . , ks is plausible, then (t(k1), . . . , t(ks)) ∈ Q.
Moreover, in Cases (1), (2), and (3), we have t⟨p − k1, . . . , p − kp⟩ = 1 − t⟨k1, . . . , kp⟩

for any evaluation ⟨k1, . . . , kp⟩.

The next lemma will be applied to produce plausible sequence of evaluations. The proof
uses the other type of doubly cyclic identities. It is given in Appendix D, here we provide a
brief sketch. (In the statement, note that r/θ = s except for Case (1) where r/θ = 2r.)

▶ Lemma 27. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z) − θ| ≤ 1/s3 and
let p be sufficiently large. Then

there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−1, l of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−1), λ(z) = λ(k1) = · · · = λ(kr/θ−1), and l has the
same step size ∆z as z;
there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−2, l1, l2 of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−2), λ(z) = λ(k1) = · · · = λ(kr/θ−2), both l1 and l2
have step size strictly smaller than ∆z, and |λ(l1) − λ(l2)| ≤ 1/p.

Proof sketch. We can assume that z = ⟨c × z1, d × z2⟩ for some c, d, z1, z2. For the first
item, we consider the (r/θ − 1) × p matrix X whose first row is z and the i-th row is the c-th
cyclic shift of the (i − 1)-st row for each i ∈ {2, . . . , r/θ − 1}. Let Y be the r/θ × p matrix
obtained from X by adding a row (l1, . . . , lp) so that each column sums up to rp and we
define k1, . . . , km, l as the n-tuples determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, . . . , lp⟩.
The inequality |λ(z) − θ| ≤ 1/s3 (and p being sufficiently large) ensures that l is correctly
defined (i.e., all the li are between 0 and p), the construction gives that l is an almost
rectangle with step size ∆z and that z and ki have equal areas, and the double cyclicity of t

implies t(z) = t(ki). For the second item we additionally split the l row in two roughly equal
rows. This will guarantee the two properties of l1 and l2. ◀

Equipped with these lemmata we are ready to prove Lemma 25. The proof is by induction
on the step size. Step sizes zero and one are dealt with in Lemma 21, so we assume that z is
a near-threshold almost rectangle of step size 2 ≤ ∆z < 5b.

We will consider Case (4) in detail and discuss the adjustments for the other cases
afterwards. Assume first that λ(z) is not too close to θ, say, |λ(z) − θ| ≥ 1/s5b+4. We apply
the second item in Lemma 27 and get a plausible s-tuple k1, . . . , ks−2, l1, l2 such that z, k1,
. . . , ks−2 all have the same t-images and areas, and l1 and l2 are almost rectangles with step
sizes strictly smaller than ∆z, whose areas differ by at most 1/p.
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The average area of almost rectangles k1, . . . , ks−2, l1, l2 is r/s = θ, the first s − 2 of
them have the same area as z, bounded away from θ by a constant (namely 1/s5b+4), and
the last two have almost the same area (the difference is at most 1/p). By choosing a large
enough p we get sgn(λ(l1)−θ) = sgn(λ(l2)−θ) ̸= sgn(λ(z)−θ) and |λ(li)−θ| ≤ s · |λ(z)−θ|;
in particular, both li are near-threshold since s · |λ(z) − θ| ≤ 1/s∆z+3−1 ≤ 1/s∆li+3. By
the induction hypothesis, both li are tame. By Lemma 26, the values t(k1), . . . , t(ks−2),
t(l1), and t(l2) are not all equal. But t(z) = t(k1) = · · · = t(ks−2), t(l1) = t(l2), and
sgn(λ(z) − θ) ̸= sgn(λ(l1) − θ) so it follows that z is tame, as required.

It remains to deal with the case that λ(z) is too close to θ. In this case we will find an almost
rectangle l with the same step size as z such that t(l) = 1 − t(z) and λ(l) − θ = −s′(λ(z) − θ),
where s′ is such that 2 ≤ s′ ≤ s. If λ(l) is already not too close to the threshold θ, then we
observe that l is near-threshold (indeed, |λ(l) − θ| ≤ s|λ(z) − θ| ≤ s/s5b+4 ≤ 1/s∆z+3) and
apply to l the first part of the proof, thus obtaining that l is tame and, consequently, z is
tame as well. If λ(l) is still too close to θ, then we simply repeat the process until we get a
rectangle that is not too close.

To find such an almost rectangle l we apply the first item of Lemma 27 and get a plausible
s-tuple k1, . . . , ks−1, l such that t(z) = t(k1) = · · · = t(ks−1) and l is an almost rectangle of
the same step size as z. Since the area of each ki is equal to λ(z) and the average area in the
plausible s-tuple is θ, we get that λ(l) − θ = −(s − 1)(λ(z) − θ). By Lemma 26, t(l) and t(z)
are not equal. This concludes the construction of l and the proof of Lemma 25 for Case (4).

The remaining cases (1), (2), and (3) require a modification that is similar to the
modification for Case (3) in the proof of Lemma 23. Consider the situation that λ(z) is not
too close to θ. In Cases (2) and (3) Lemma 27 is applied not only to k1, . . . , k2r−2, l1, l2
but also to the tuple formed by “complementary” almost rectangles, which have different
t-images by the second part of Lemma 26. In Case (1) we additionally complete the two
2r tuples to s-tuples by adding s − 2r zeros. The other situation, that λ(z) is too close, is
adjusted in an analogous fashion.

6 Conclusion

We have characterized finite tractability among the basic tractable cases in the Brakensiek–
Guruswami classification [8] of symmetric Boolean PCSPs allowing negations. A natural
direction for future research is an extension to all the tractable cases (not just the basic
ones), or even to all symmetric Boolean PCSPs [14], not only those allowing negations. An
obstacle, where our efforts have failed so far, is already in relaxations of the basic templates
(P, Q) with disequalities. For example, which (P, Q), ( ̸=, ≠), with P a subset of ≤r-in-s and
Q a superset of ≤(2r − 1)-in-s, give rise to finitely tractable PCSPs?

Another natural direction is to better understand the “level of tractability.” For the
finitely tractable templates (A,B) considered in this paper, it is always possible to find a
tractable CSP(C) with A → C → B and such that C is two-element. Is it so for all symmetric
Boolean templates? For general Boolean templates, the answer is “No”: [12] presents an
example that requires a three-element C. However, it is unclear whether there is an upper
bound on the size of C for finitely tractable (Boolean) PCSPs, and if there is, how it could
be computed. There are also natural concepts beyond finite tractability, still stronger than
standard tractability. We refer to [2] for some questions in this direction.
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A Doubly cyclic functions are cyclic

In this appendix we prove Lemma 22, which we restate here for convenience.

▶ Lemma 22. Let t : Ap2 → B be a doubly cyclic function. Then the function tσ defined by

tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2
...

...
. . .

...
x1p x2p · · · xpp


is a cyclic function.

Proof. By cyclically shifting the arguments we get the same result:

tσ(x21, x31, . . . , xp1, x12, x22, x32, . . . , xp2, x13, . . . , x2p, x3p, . . . , xpp, x11)

= tσ


x21 · · · x2,p−1 x2p

...
. . .

...
...

xp1 · · · xp,p−1 xpp

x12 · · · x1p x11

 = t


x21 · · · xp1 x12

...
. . .

...
...

x2,p−1 · · · xp,p−1 x1p

x2p · · · xpp x11



= t


x21 · · · xp1 x11

...
. . .

...
...

x2,p−1 · · · xp,p−1 x1,p−1
x2p · · · xpp x1p

 = t


x11 x21 · · · xp1
x12 x22 · · · xp2

...
...

. . .
...

x1p x2p · · · xpp



= tσ


x11 x12 · · · x1p

x21 x22 · · · x2p

...
...

. . .
...

xp1 xp2 · · · xpp


= tσ(x11, x21, . . . , xp1, x12, x22, . . . , xp2, . . . , x1p, x2p, . . . , xpp). ◀

B Step size one, Case (4)

In this section we finish the proof of Lemma 23 for Case (4). We state the lemma for
convenience.

▶ Lemma 23. Denote a = ⌊θn⌋. For every 0 ≤ k ≤ 2a, we have

tσ⟨k⟩n =
{

tσ⟨0⟩n if 0 ≤ k ≤ a

1 − tσ⟨0⟩n if 1 + a ≤ k ≤ 2a

https://doi.org/10.1145/800133.804350
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029
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Recall that we want to prove, starting from the left, the chain of disequalities

tσ⟨a⟩ ≠ tσ⟨a + 1⟩ ≠ tσ⟨a − 1⟩ ≠ tσ⟨a + 2⟩ ≠ tσ⟨a − 2⟩ ≠ . . . ̸= tσ⟨2a⟩ ≠ tσ⟨0⟩

and that we have already verified the first one.
For the second disequality tσ⟨a + 1⟩ ≠ tσ⟨a − 1⟩, as well as for the further disequalities

we need to distinguish two cases: Case (4a) r and s have the same parity and Case (4b) r is
even and s is odd. In Case (4a) we directly use the sequence

(s − r)/2 × ⟨a − 1⟩, (s + r)/2 × ⟨a + 1⟩

and derive tσ⟨a + 1⟩ ≠ tσ⟨a − 1⟩ using Lemma 24 as before. In Case (4b) we first use

(s − 1) × ⟨a⟩, ⟨a + r⟩

to deduce tσ⟨a + r⟩ ≠ tσ⟨a⟩ (so tσ⟨a + 1⟩ = tσ⟨a + r⟩) and then

(s − 1)/2 × ⟨a − 1⟩, (s − 1)/2 × ⟨a + 1⟩, ⟨a + r⟩

to deduce tσ⟨a − 1⟩ ≠ tσ⟨a + 1⟩.
To prove tσ⟨a − i + 1⟩ ≠ tσ⟨a + i⟩ for i ∈ {2, 3, . . . , a}, we observe that, by the already

established disequalities, we have tσ⟨a − i + 1⟩ = · · · = tσ⟨a⟩, and then use
(s + r)/4 × ⟨a + i⟩, (s − r)/2 × ⟨a − 1⟩, (s + r)/4 × ⟨a − i + 2⟩ in Case (4a) and (s + r)/2
is even;
(s + r + 2)/4 × ⟨a + i⟩, (s − r − 2)/2 × ⟨a − 1⟩, 2 × ⟨a − i + 1⟩, (s + r − 6)/4 × ⟨a − i + 2⟩
in Case (4a) and (s + r)/2 is odd;
r/2 × ⟨a + i⟩, (s − r) × ⟨a⟩, r/2 × ⟨a − i + 2⟩ in Case (4b).

Finally, for proving tσ⟨a + i⟩ ≠ tσ⟨a − i⟩ we use
(s − r)/2 × ⟨a − i⟩, (s − r)/2 × ⟨a + i⟩, r × ⟨a + 1⟩ in Case (4a) and
(s − 1)/2 × ⟨a − i⟩, (s − 1)/2 × ⟨a + i⟩, 1 × ⟨a + r⟩ in Case (4b).

This completes the proof for Case (4).

C Proof of Lemma 26

▶ Lemma 26. If a tuple k1, . . . , ks is plausible, then (t(k1), . . . , t(ks)) ∈ Q.
Moreover, in Cases (1), (2), and (3), we have t⟨p − k1, . . . , p − kp⟩ = 1 − t⟨k1, . . . , kp⟩

for any evaluation ⟨k1, . . . , kp⟩.

Proof. Let k1, . . . , ks be a plausible tuple. Fix, for a while, an arbitrary i ∈ [p]. Form a
s × rp matrix Mi whose first row is ⟨ki

1⟩rp and j-th row is the (
∑j−1

l=1 ki
l)-th cyclic shift of

⟨ki
j⟩rp for j ∈ {2, . . . , s}. Split this matrix into r-many s × p blocks M1

i , M2
i , . . . , Mr

i . Their
sum Xi =

∑r
j=1 M j

i is an s × p matrix whose each column contains exactly r ones. Moreover,
for all j ∈ [s], the j-th row of the matrix Xi is a cyclic shift of ⟨ki

j⟩p. Put the matrices X1,
. . . , Xp aside to form an s × n matrix Y . Its rows have the same t-images as k1, . . . , ks,
respectively, because t is doubly cyclic. Each column belongs to the relation P , therefore, as
t is a polymorphism, we get that t applied to the rows gives a tuple in Q. This tuple is equal
to (t(k1), . . . , t(ks)).

The second part can be proved in a similar way as the second part of Lemma 24 using
the disequality relation pair. ◀

MFCS 2021
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D Proof of Lemma 27

▶ Lemma 27. Let z be an almost rectangle of step size ∆z ≥ 2 with |λ(z) − θ| ≤ 1/s3 and
let p be sufficiently large. Then

there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−1, l of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−1), λ(z) = λ(k1) = · · · = λ(kr/θ−1), and l has the
same step size ∆z as z;
there exists a plausible r/θ-tuple k1, k2,. . . , kr/θ−2, l1, l2 of almost rectangles such that
t(z) = t(k1) = t(k2) = · · · = t(kr/θ−2), λ(z) = λ(k1) = · · · = λ(kr/θ−2), both l1 and l2
have step size strictly smaller than ∆z, and |λ(l1) − λ(l2)| ≤ 1/p.

Proof. Without loss of generality we can assume that z = ⟨c × z1, d × z2⟩ for some c, d and
z1 > z2. Let m = r/θ − 1 for the first item and m = r/θ − 2 for the second one. We define
an integer m × p matrix X so that the first row is (c × z1, d × z2) and the i-th row is the c-th
cyclic shift of the (i − 1)-st row for each i ∈ {2, . . . , m}. Let Y be the (m + 1) × p matrix
obtained from X by adding a row (l1, . . . , lp) so that each column sums up to rp. It is easily
seen by induction on i ≤ m that the sum of the first i rows is a cyclic shift of a tuple of the
form (e, . . . , e, e′, . . . , e′), where |e − e′| = ∆z and the “step down” is at position ci mod p

(when columns are indexed from 0). It follows that (l1, . . . , lp) is also a cyclic shift of a tuple
of the form (e, . . . , e, e′, . . . , e′) where e and e′ differ by ∆z.

Next we observe that each li > 0 if p is sufficiently large. Indeed, note that since |z1−z2|/p

can be made arbitrarily small (recall |z1 −z2| < 5b), we have p(λ(z)−ϵ) < z1, z2 < p(λ(z)+ϵ),
where ϵ > 0 can be made arbitrarily small. We then have li > rp − mp(λ(z) + ϵ) ≥
rp − (r/θ − 1)p(θ + 1/s3 + ϵ) = p(θ − (r/θ − 1)(1/s3 + ϵ)) > p(θ − r/θ(1/s3 + ϵ)), which is,
for a sufficiently small ϵ, greater than 0 since r/θs3 ≤ 1/s2 < θ. Similarly, each li < 2θ ≤ p

if m = r/θ − 1 and li < 3θ if m = r/θ − 2.
Now we can finish the proof of the first item. We set k1, . . . , km, l to be the n-tuples

determined by the rows of Y via ⟨⟩, e.g., l = ⟨l1, . . . , lp⟩. The inequalities 0 ≤ li ≤ p

guarantee that l is correctly defined and we see, using also the double cyclicity of t (for
t(z) = t(k1) = . . . ), that these n-tuples have all the required properties.

To finish the proof of the second item, we define the ki as above and set l1 = ⟨⌊l1/2⌋, . . . ,

⌊lp/2⌋⟩, l2 = ⟨⌈l1/2⌉, . . . , ⌈lp/2⌉⟩. Since 0 ≤ li ≤ 3θ/2 < p, these tuples are correctly defined
almost rectangles. Their areas clearly differ by at most 1/p. As ∆z ≥ 2, their step sizes are
strictly smaller than ∆z, and we are done in this case as well. ◀
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