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Abstract
We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate
about events in computations and their causal (in)dependencies. Variants of such logics have been
studied, with different expressiveness, corresponding to a number of true concurrent behavioural
equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-
preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities.

It is known that one can decide whether or not two 1-safe Petri nets (and in general finite
asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-
bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying
suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been
scarcely investigated in the realm of true concurrent logics.

We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from
domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We
consider these results a first step towards a more complete investigation of the satisfiability problem
for true concurrent logics, which we believe to have notable solvable cases.
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1 Introduction

When dealing with concurrent and distributed systems, the so-called true concurrent models
are used to provide a precise account of the computational steps and of their dependencies,
like causality and concurrency. An early and widely used foundational model in this class is
given by Winskel’s event structures [41]. They describe the behaviour of a system in terms
of events in computations and two dependency relations: a partial order modelling causality
and an additional relation representing conflict. A survey on the applications of such causal
models can be found in [42]. Recently they have been used in the study of concurrency
in weak memory models [31, 20], for process mining and differencing [14], in the study of
atomicity [15] and information flow [2] properties.

In the true concurrent approach numerous behavioural equivalences have been defined
ranging from hereditary history-preserving bisimilarity to the coarser pomset and step
equivalences (see, e.g., [37]). Correspondingly, behavioural logics have been proposed including
operators that allow one to express causal properties of computations (see, e.g., [12, 7, 32,
29, 25, 11, 33] just to mention a few).
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In particular, event-based logics have been introduced [3, 30], interpreted over event
structures, expressive enough to provide a logical characterization of the main behavi-
oural equivalences in the true concurrent spectrum [37], from hereditary history-preserving
(hhp-)bisimilarity [7] to the coarser equivalences. Formulae of such logics include variables
which can be bound to events in computations and describe their dependencies.

The relation between operational models, behavioural equivalences, and true concurrent
logics has been widely studied and the model-checking problem has been investigated for
various logics describing true concurrency properties (see, e.g.,[1, 18, 16, 17, 23, 6, 27]). The
decidability of true concurrent equivalences has also been settled in various papers.

A natural problem that, to the best of our knowledge, has been scarcely investigated for
true concurrent logics is satisfiability, which has been historically referred to as the classical
decision problem [10] in the context of first-order logic. The satisfiability problem for true
concurrent logics is the quest for an algorithm that, given as input any formula φ, determines
whether or not there exists an event structure that satisfies φ. From this point of view,
formulae are intended as abstract specifications of desired properties and event structures
are abstractions of actual systems that, if implemented, should have those properties. An
algorithm for satisfiability is therefore a sort of oracle that can tell system designers whether
or not their desires can be realized. Obviously, checking satisfiability allows one also to verify
whether two requirements, despite being syntactically different, are equivalent.

In this paper we tackle the satisfiability problem for the logic proposed in [3], referred to as
Lhp, corresponding to history-preserving (hp-)bisimilarity [9, 34, 13], a classical equivalence in
the spectrum. The logic is endowed with least and greatest fixpoint operators, in mu-calculus
style, in order to express interesting properties of infinite computations. For the propositional
mu-calculus, corresponding to ordinary interleaving bisimilarity, satisfiability is decidable
and every satisfiable formula has a finite model. For Lhp instead the finite model property
fails, essentially because of the presence of an interpreted transitive relation (causality).

Still, hp-bisimilarity and the related logic has been shown to have good decidability
properties. The equivalence itself is known to be decidable for finite safe Petri nets [38, 19, 24]
(while hhp-bisimilarity is undecidable [21]). Additionally, the model-checking problem has
been proved decidable for Lhp over event structures satisfying a suitable regularity property [5].

Here we show that satisfiability for Lhp is undecidable via a reduction from a well-known
undecidable tiling problem [8], similarly to what was done for some two-variable logics [26].
Despite the first-order features of Lhp, the reduction is not trivial since quantifications can
be used in a quite restricted way: formulae can refer only to events enabled in the current
configuration and execute them, inspecting their relations with (a limited number) of past
events. In particular, it is impossible to relate events which are not consistent (in conflict).
The “local” nature of quantifications makes it hard to constrain the event structure model
to have a “grid shape”. Still, we can show that, given a domino system, it is possible to
construct a formula which is satisfied only by event structures embedding an event-based
representation of a valid tiling for such domino. Consequently, the formula is satisfiable if
and only if the domino system admits a tiling, whence the undecidability of satisfiability.

We show that, instead, for Lf
hp, the fragment of Lhp without fixpoints, satisfiability is

decidable. The result relies on the fact that Lf
hp can be encoded into first-order logic and

the fact that it enjoys the finite model property.
We foresee that our results can be of help for settling the decidability status of other

similar logics for true concurrency, like other fragments of the logic in [3], or the event
identifier logic of [30] and the mu-calculi for true concurrency in [18, 16, 17], for which
satisfiability has not yet been investigated.
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Figure 1 A simple PES E and (part of) its set of configurations.

2 Event Structures

We recap the basics of prime event structures [41], a widely known model of concurrency.
Throughout the paper E is a fixed countable set of events from which all events are taken, Λ
a set of labels ranged over by a, b, c, . . ., and λ : E → Λ a labelling function.

▶ Definition 1 (prime event structure). A (Λ-labelled) prime event structure (PES) is a tuple
E = ⟨E,≤,#⟩, where E ⊆ E is the set of events and ≤, # are binary relations on E, called
causality and conflict respectively, such that:
1. ≤ is a partial order and ⌈e⌉ = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and for all e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

Hereafter, we will assume that the components of a PES E are named as in the definition
above, possibly with subscripts. Concurrency is a derived relation, defined as follows.

▶ Definition 2 (consistency, concurrency). Let E be a PES. We say that e, e′ ∈ E are consistent,
written e⌢ e′, if ¬(e#e′). A subset X ⊆ E is called consistent if e⌢ e′ for all e, e′ ∈ X. We
say that e and e′ are concurrent, written e || e′, if e⌢ e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

Causality and concurrency will be sometimes used on set of events. Given X ⊆ E and
e ∈ E, by X < e we mean that for all e′ ∈ X, e′ < e. Similarly X || e, resp. X ⌢ e, means
that for all e′ ∈ X, e′ || e, resp. e′ ⌢ e.

A simple PES is depicted in Fig. 1(left). Graphically, curly lines represent immediate
conflicts and the causal partial order proceeds along the arrows. Events are denoted by their
labels, possibly with superscripts. For instance, in E , the events a1 and b1, labelled by a and
b, respectively, are in conflict. Event a0 causes the event b0 which, in turn, is concurrent
with each ai and bi (for i ≥ 1).

A state of a system modelled as a PES is represented as the set of events executed to
reach the state. It is formalised by the notion of configuration.

▶ Definition 3 (configuration). Let E be a PES. A configuration in E is a finite consistent
subset of events C ⊆ E closed w.r.t. causality (i.e., ⌈e⌉ ⊆ C for all e ∈ C). The set of finite
configurations of E is denoted by C(E).

In words, a configuration cannot contain events in conflict and it must be closed with
respect to causality. The empty set of events ∅ is always a configuration, which can be
interpreted as the initial state of the computation. The evolution of a system can be
represented by a transition system where configurations are states.

MFCS 2021



13:4 (Un)Decidability for History Preserving True Concurrent Logics

▶ Definition 4 (transition system). Let E be a PES and let C ∈ C(E). Given e ∈ E \ C
such that C ∪ {e} ∈ C(E), and X,Y ⊆ C with X < e, Y || e we write C X,Y < e−−−−−→λ(e) C ∪ {e},
possibly omitting X, Y or the label λ(e).

Transitions are labelled by the executed event e. In addition, they can report its label λ(e),
a subset of causes X and a set of events Y ⊆ C concurrent with e. When X or Y are empty
they are normally omitted, e.g., we write C X < e−−−→λ(e) C

′ for C X,∅ < e−−−−−→λ(e) C
′ and C e−→λ(e) C

′

for C ∅,∅ < e−−−−→λ(e) C
′. Some configurations of the PES E in Fig. 1 (left) can be found in the

same figure, on the right. Examples of transitions are {a0, b0} a0,b0 < b1

−−−−−−→a {a0, b0, b1} and
{a0, b0} a0 < a1

−−−−→a {a0, b0, a1}.
A PES is called image-finite when every configuration enables a finite number of events

for each fixed label. In the rest of the paper all PESs will be assumed to be image-finite.
This assumption, as it commonly happens for modal logics, is crucial to have a logical
characterisation of bisimilarity in terms of a finitary logic.

▶ Definition 5 (image-finiteness). A PES E is called image-finite when, for every configuration
C ∈ C(E) and label a ∈ Λ, the set {C ′ ∈ C(E) | ∃e ∈ E.C

e−→a C
′} is finite.

3 A Logic for True Concurrency

We review the logic for concurrency of interest in the paper, a Hennessy-Milner style logic,
originally introduced in [3], which corresponds to history-preserving bisimilarity. Its formulae
predicate over executability of events in computations and their mutual relations (causality
and concurrency).

Syntax

In order to specify dependencies between events in computation, formulae include event
variables, from a fixed denumerable set Var , denoted by x, y, . . .. Tuples of variables like
x1, . . . , xn will be denoted by the corresponding boldface letter x and, abusing the notation,
tuples will be often used as sets. The logic, besides standard propositional connectives,
includes a diamond modality (and, dually, a box modality). The formula ⟨|x,y < a z|⟩φ holds
when in the current configuration an a-labelled event e is enabled which causally depends on
the events bound to the variables in x and is concurrent with those in y. Event e is executed
and bound to variable z, and then the formula φ must hold in the resulting configuration.

Fixpoint operators refer to propositional variables. In order to let them interact correctly
with event variables, whose values can be passed from an iteration to the next one in
the recursion, we use abstract propositions. For dealing with fixpoint operators we fix a
denumerable set X a of abstract propositions, ranged over by X, Y , . . . . Each abstract
proposition X has an arity ar(X) and it represents a formula with ar(X) (unnamed) free
event variables. Then, for x such that |x| = ar(X), we write X(x) to indicate the abstract
proposition X whose free event variables are named x.

▶ Definition 6 (hp-logic). The syntax of Lhp over the sets of event variables Var , abstract
propositions X a and labels Λ is defined as follows:

φ ::= T | φ ∧ φ | ⟨|x,y < a z|⟩φ | (µZ(x).φ)(y) | Z(x) |
F | φ ∨ φ | [[x,y < a z]]φ | (νZ(x).φ)(y)

The free event variables of a formula φ are denoted fv(φ) and defined in the obvious way.
Just note that the modalities act as binders for the variable representing the event executed,
hence fv(⟨|x,y < a z|⟩φ) = fv([[x,y < a z]]φ) = (fv(φ) \ {z}) ∪ x ∪ y. The free propositions
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in φ, i.e., the propositions not bound by µ, are denoted by fp(φ). In fixpoint formulae,
like (µX(x).φ)(y), we require that the tuple x does not include multiple occurrences of the
same variable and correspond exactly to the free event variables of the inner formula φ, i.e.,
fv(φ) = x. Intuitively, the fixpoint part µX(x).φ defines a recursive formula X(x) whose
free variables are then instantiated with y. The formula (µX(x).φ)(x) will be abbreviated
as µX(x).φ. When both fv(φ) and fp(φ) are empty we say that φ is closed. When x or y
are empty they are often omitted, e.g., we write ⟨|a z|⟩φ for ⟨|∅, ∅ < a z|⟩φ.

Given a formula φ and variables x, y ∈ V ar, we denote by φ[y/x] the formula obtained
from φ via a (capture avoiding) substitution of the free occurrences of x in φ by y. Similarly,
given a proposition Z(x) ∈ X and a formula ψ such that fv(ψ) ⊆ x, we denote by φ[Z(x) := ψ]
the formula obtained from φ by replacing free occurrences of Z(y) by ψ[y⧸x].

In the logic we can easily represent the possibility of performing concurrent events.
Borrowing the notation from [3], we write (⟨|a z|⟩ ⊗ ⟨|b z′|⟩)φ for the formula ⟨|a z|⟩⟨|z < b z′|⟩φ
that declares the existence of two concurrent events labelled by a and b, respectively, such
that if we execute such events and bind them to z and z′, respectively, then φ holds.

Consider again the PES in Fig. 1. Let ψ2b = (⟨|bx|⟩ ⊗ ⟨|b y|⟩)T be the formula stating that
two concurrent b-events can be executed. Then E satisfies the formula ⟨|a z|⟩ψ2b, which states
that after executing an a-labelled event one can execute two concurrent b-labelled events. It
satisfies also the formula [[ax]](νX(x).(ψ2b ∧ [[x < a z]]X(z))) stating that after any causal
chain of a-labelled events ψ2b holds. Instead the formula µX.(([[ax]] ⊗ [[a y]])T ∨ ⟨|a z|⟩X) that
asks for the reachability of a state where two concurrent a-labelled events can be executed, is
false in E . As a final example, the formula ⟨|ax|⟩(νX(x)⟨|x < a y|⟩X(y)) asks for the existence
of an infinite causal chain of a-labelled events and it is satisfied by E .

Semantics

Since the logic Lhp is interpreted over PESs, the satisfaction of a formula is defined with
respect to a configuration C, representing the state of the computation and an environment
η : Var → E, that binds free variables in the formula to events in C. Namely, if EnvE denotes
the set of environments, the semantics of a formula will be a set of pairs in C(E) × EnvE .
Given a set of pairs S ⊆ C(E) × EnvE and two tuples of variables x and y, with |x| = |y|, we
define S[y⧸x] = {(C, η′) | ∃(C, η) ∈ S ∧ η(x) = η′(y)}. The semantics of Lhp also depends
on a proposition environment providing a semantic interpretation for propositions.

▶ Definition 7 (proposition environment). Let E be a PES. A proposition environment is a
function π : X → 2C(E)×EnvE such that for all abstract propositions X and tuples of variables
x, y with |x| = |y| = ar(X) it holds π(X(y)) = π(X(x))[y⧸x]. The set of proposition
environments, ranged by π, is denoted PEnvE .

The condition posed on proposition environments ensures that the semantics of a formula
only depends on the events that the environment associates with its free variables and that
it does not depend on the naming of the variables.

We can now give the semantics of the logic Lhp. Given an event environment η and
an event e we write η[x 7→ e] to indicate the updated environment which maps x to e.
Similarly, for a proposition environment π and S ⊆ C(E) × EnvE , we write π[Z(x) 7→ S] for
the corresponding update. For a pair (C, η) ∈ C(E) × EnvE and variables x, y, z, we define
the (x,y < az)-successors of (C, η), as

Succx,y<az
E (C, η) = {(C ′, η[z 7→ e]) | C

η(x),η(y) < e−−−−−−−−→a C
′}.

MFCS 2021
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In words Succx,y<az
E (C, η) consists of the pairs (C ′, η′) where C ′ is a configuration reachable

from C, by executing an event e satisfying the requirement expressed by x,y < az, namely
events in η(x) are causes of e and events in η(y) are concurrent with e. The environment η′

is the update of η where event e has been bound to variable z.

▶ Definition 8 (semantics). Let E be a PES. The denotation of a formula in Lhp is given
by the function {|·|}E : Lhp → PEnvE → 2C(E)×EnvE defined inductively as follows, where we
write {|φ|}E

π instead of {|φ|}E(π):

{|T|}E
π = C(E) × EnvE {|F|}E

π = ∅ {|Z(y)|}E
π = π(Z(y))

{|φ1 ∧ φ2|}E
π = {|φ1|}E

π ∩ {|φ2|}E
π {|φ1 ∨ φ2|}E

π = {|φ1|}E
π ∪ {|φ2|}E

π

{|⟨|x, y < a z|⟩ φ|}E
π = {(C, η) ∈ C(E) × EnvE | Succx,y<az

E (C, η) ∩ {|φ|}E
π ̸= ∅}

{|[[x, y < a z]] φ|}E
π = {(C, η) ∈ C(E) × EnvE | Succx,y<az

E (C, η) ⊆ {|φ|}E
π}

{|νZ(x).φ|}E
π = ν(fφ,Z(x),π) {|µZ(x).φ|}E

π = µ(fφ,Z(x),π)

where fφ,Z(x),π : 2C(E)×EnvE → 2C(E)×EnvE is the function defined by fφ,Z(x),π(S) =
{|φ|}E

π[Z(x) 7→S], that we refer to as the semantic function of φ, Z(x), π. Moreover, α(fφ,Z(x),π),
for α ∈ {µ, ν}, denotes the corresponding (least or greatest) fixpoint. When (C, η) ∈ {|φ|}E

π

we say that the PES E satisfies the formula φ in the configuration C and environments η, π.

The semantics of boolean connectives is standard. The formula ⟨|x,y < a z|⟩φ holds in
(C, η) when configuration C enables an a-labelled event e that is causally dependent on (at
least) the events bound to the variables in x and concurrent with (at least) those bound to
the variables in y and can be executed producing a new configuration C ′ = C ∪ {e} which,
paired with the environment η′ = η[z 7→ e], satisfies φ. The semantics of [[x,y < a z]]φ is
dual. When φ is closed (so that the environments η, π are irrelevant) and E satisfies the
formula φ in the empty configuration, we simply say that E satisfies φ.

4 Undecidability of Lhp

In this section we study the satisfiability problem for the logic Lhp, i.e., the problem of
determining whether a closed formula in Lhp is satisfied by some (image-finite) PES. We
prove it to be undecidable by reduction from domino tilings.

Domino systems
Tiling problems are a simple and general form of combinatorial problems introduced in [39, 40]
for proving the unsolvability of the ∀∃∀-prefix class in the pure predicate calculus. Along the
years they revealed to be a powerful tool for proving undecidability results for fragments of
first-order logic and for decision problems in mathematical theories (see, e.g., [10]).

▶ Definition 9 (dominoes). A domino system is a tuple D = (D,H, V ) where D is a finite
set and H,V ⊆ D2 are binary relations.

The elements of D should be thought of as square tiles (called domino pieces, or Wang
tiles) with a color on each side and a fixed orientation. Hence for d, e ∈ D read (d, e) ∈ V , or
dV e, as “e can stand immediately above d” because the upper color of d and the lower color
of e are the same. Similarly (d, e) ∈ H, or dHe, should be read as “the left side of e can be
attached to the right side of d”. A tiling is thus a covering of N × N thought as an infinite
board on which each point is a spot to be occupied by a domino.
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The plane N×N together with the binary relations H = {((p, q), (p+1, q)) : p, q ∈ N} and
V = {((p, q), (p, q + 1)) : p, q ∈ N} can be seen as domino system referred to as the grid SN.
Given two domino systems D = (D,H, V ) and D′ = (D′, H ′, V ′) a homomorphism f : D → D′

is a function f : D → D′ such that for all (d1, d2) ∈ H it holds that (f(d1), f(d2)) ∈ H ′ and,
similarly, for all (d1, d2) ∈ V it holds that (f(d1), f(d2)) ∈ V ′. Tilings can be then formalised
relying on the notion of homomorphism.

▶ Definition 10 (tiling). A tiling of a domino system D is a homomorphism T : SN → D.

Given a tiling T : SN → D, intuitively T (p, q) = d means that the point (p, q) is filled
with a copy of the piece d. Our undecidability proof relies on the following well-known result
about domino tilings.

▶ Theorem 11 (undecidability of tiling [8]). The problem of establishing the existence of a
tiling for a given domino system is undecidable.

Reduction from Domino Tiling

In order to show that Lhp is undecidable, we associate with each domino system a formula
of Lhp such that the formula is satisfiable if and only if the domino system admits a tiling.

For various fragments of first-order logic (even with only two variables), the approach
consists in using suitable unary predicates to establish a correspondence between elements of
the model and domino pieces, and binary predicates to represent adjacency. For example,
undecidability results for two-variables logics are obtained in [26, 22] using in a crucial way
the transitivity of some predicates in the chosen relational vocabulary. A suitable interplay
between existential and universal quantifications allows to build formulae whose models are
grid-like, i.e., such that SN can be embedded into these models.

Similarly, the idea here is to embed the grid inside a PES. Events are associated, via their
label, with pieces of the domino and adjacency is suitably represented with arrangements of
causality and concurrency between events. This is far from trivial since formulae of the logic
can refer only to events enabled in the current configuration and execute them, checking
their relations with (a limited number) of past events. As a consequence, quantification has
a “local” nature and only the relations between consistent events can be inspected. This is
quite a subtle point, since similar restrictions upon quantifications can yield decidable logics,
like the guarded fragment with transitive guards studied in [35].

Greatest fixpoints like (νX(x).φ)(y) can be used to ensure that what is being predicated
by φ(x) holds repeatedly throughout an unbounded number of reachable configurations. For
a given domino system, we define formulae that verify the proper adjacency of pieces by
exploring the events along diagonal slices of the grid, starting from the bottom row and
ending at the leftmost column. All slices are finite causal chains but overall they grow
unboundedly in length. The formula for a domino system is quite complex and not immediate
to read, but the underlying intuition will be explained in detail after the definition.

▶ Definition 12 (formula for a domino). Let D be a domino system with D = {d1, . . . , dn}.
Define the set of 6n labels A = {bs

k | b ∈ {a, i, j} ∧ k ∈ {1, . . . , n} ∧ s ∈ {0, 1}}. For s ∈ {0, 1}
we let s̄ abbreviate 1 − s. Consider the following formulae (1)–(4).∨

dk H dh
dk V dv

⟨|i0k x|⟩⟨|x < i1h y|⟩⟨|y < j1v z|⟩T (1)

MFCS 2021
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∧
b∈{a,j}

dk,dl∈D
s∈{0,1}

[[isk x]][[x < bs
l y]] (νX(x, y, z).

∨
dk H dh

⟨|x, y < is̄h u|⟩T ∧
∧

c∈{a,j}
dm∈D

[[z < cs
m v]]X(x, y, v))(x, y, y) (2)

∧
b∈{a,i}
c∈{a,j}

dl,dm∈D
dk H dh

s∈{0,1}

[[bs
k x]][[x < as

l y]][[y < cs
m z]][[x, y < bs̄

h w]] (νX(y, z, w, u).

∨
dk V dp

dl H dp

⟨|y, w, z < as̄
p r|⟩T ∧

∧
e∈{a,j}
dq∈D

[[u,w < es
q v]]X(y, z, w, v))(y, z, w, z) (3)

∧
b∈{a,i}
dl∈D

dk H dh

s∈{0,1}

[[bs
k x]][[x < jsl y]][[x, y < bs̄

h z]]
∨

dk V dp

dl H dp

dl V dq

⟨|y, z < as̄
p v|⟩⟨|v < js̄q w|⟩T (4)

Calling ψi the corresponding formula (i) above, we denote the formula for the domino system
D by φD = ψ1 ∧ νZ.(ψ2 ∧ ψ3 ∧ ψ4 ∧ [[Az]]Z), where we write [[Az]]Z for

∧
bs

k
∈A

[[bs
k z]]Z.

Intuitively, the formula φD requires a model to contain a grid of consistent events, as
depicted in Fig. 2. The formula also arranges causal dependencies that constrain the order
of exploration, i.e., of execution, of the grid as an ever growing right-angled triangle. This
allows to build the grid one diagonal at a time, starting from the leftmost smallest diagonal
which consists of a single event at coordinates (0, 0) in Fig. 2. Every diagonal, except the
first, is delimited by two events with special labels: the first at the bottom of the diagonal is
labelled i, the last at the top is labelled j. Inner events are, instead, all labelled a. Actually,
labels include also a subscript and a superscript. Subscripts k ∈ {1, . . . , n} represent the
associated domino piece dk. Superscripts s ∈ {0, 1}, instead, are used to distinguish events
in a diagonal from those in the next and previous ones. So the superscript for all the events
in a diagonal starting at coordinates (t, 0) is simply s = t mod 2, as shown in the figure.

To explain how the formula works we first comment on how the satisfaction of the formula
implies the existence of a grid in the model. For this, the superscripts on labels play no role
and can be safely ignored. They will become relevant later for the converse implication.

The first two diagonals are determined by the first subformula ψ1 (1). This formula
simply requires the existence of three events, executable from the initial state, such that
each one causes the next. Such events represent the first three domino pieces in the tiling.
So, they are required to be labelled ik, ih, jv, in a way that the adjacency constraints are
respected, i.e., dk H dh and dk V dv. Each diagonal beyond the first two is, instead, jointly
defined by the other three subformulae ψ2, ψ3, ψ4, which are guaranteed to be checked on
every reachable state of the computation via the outermost greatest fixpoint of φD.
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In Fig. 3 we give a graphical representation of such three subformulae. In each sub-figure,
greyed out events represent the configuration to which the subformula is intended to apply.
Events highlighted in red are universally quantified by box operators in the formula, while
events highlighted in blue are existentially quantified by diamond operators. The picture
also reports, close to events, the variables to which such events are bound in the formula.

The subformula ψ2 (2) starts a new diagonal. The first event in the new diagonal must
be labelled ip, for some domino piece dp horizontally compatible with the one corresponding
to the first event in the previous diagonal, labelled il in the figure. Moreover, the new event
ip must be caused by il and concurrent with the second event in the previous diagonal,
labelled am in the figure. In addition, using a fixpoint subformula, we ask that the new
event is executed after (hence consistent with) the whole red diagonal. This implies that
ip is necessarily concurrent with all the events in the red diagonal, although not explicitly
required. In fact, since it is consistent and executed after the diagonal, the only alternative
would be that ip were caused by some event in the diagonal. But this would mean that also
am causes ip, while we know that they are concurrent.

The subformula ψ3 (3) continues the “construction” of the new diagonal starting from
the second event and, with each successive application, up to the third-to-last event of the
new diagonal. Basically, it builds the a-labelled part of the new diagonal, except the last
a-labelled event. In particular, a single application of ψ3 ensures the executability of an event
labelled aq, for some domino piece dq vertically compatible with the one corresponding to
the event just below in the grid, which is necessarily part of the previous diagonal, labelled il
in the figure, and horizontally compatible with the one just after the latter in the previous
diagonal, that is am in the example. The new event aq must be caused by the one just before
it in the new diagonal, ip in this case. Furthermore, as in the previous property, the new
event must be caused by the event am at the same height in the previous diagonal, and
concurrent with the events coming after it in such diagonal.

Finally, the subformula ψ4 (4) concludes the construction of the new diagonal, requiring
the executability of the last two events labelled as and jt, respectively. As before, the
corresponding domino pieces ds and dt must be compatible with those of the adjacent events
below and on the left, all of which belonging to the previous diagonal. Moreover, the new
event as must be caused by the one just before it in the new diagonal and by the last event
of the previous diagonal. Instead, jt is just required to be caused by as, which, however, by
transitivity of the causality relation, means that jt is caused by every other event in the new
diagonal and all those in the previous diagonals.
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Figure 2 Grid of events for the domino tiling (with simplified event labels).
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Figure 3 Graphical representation of the properties, from left to right, (2), (3) and (4).

Note that the subformulae ψ2 and ψ3 use a (greatest) fixpoint in order to fully explore a
diagonal, which is unbounded. This ensures the consistency of each newly added event with
the previous diagonal and thus with the whole right-angled triangle up to such diagonal.

Relying on the intuitions described above we can prove the desired result: given a domino
system D, the formula φD is satisfiable if and only if D admits a tiling. We next present a
sketch of the proof.

For proving the first implication we show how, given a PES which satisfies the formula
φD, one can build a tiling for the domino system D. Recall that a tiling of D is a function
T : N × N → D complying with the adjacency relations H and V of D. Proceeding, as
mentioned before, by diagonals, we can inductively define an infinite chain of functions fi,
for all i ∈ N+, whose domain is the right-angled triangle up to the (i+ 1)-th diagonal, i.e.
{(x, y) ∈ N × N | x + y ≤ i}. The first function f1 is obtained directly from the events
guaranteed to exist by the satisfaction of the subformula ψ1 of φD. Every other function
fi is defined extending fi−1 and using the events whose existence is required by the other
subformulae of φD. The join of the fi’s is defined on the whole grid and provides a tiling.

▶ Theorem 13 (satisfiability implies tiling). Let D be a domino system with D = {d1, . . . , dn},
if the corresponding formula φD is satisfiable, then D admits a tiling.

For the converse implication, we need to show how to transform a tiling T of D into a
PES which satisfies the property φD. From the grid of domino pieces corresponding to the
tiling T we define a PES E whose events are E = N×N. Events are labelled isk if they belong
to the bottom row, jsk if in the left-most column, except (0, 0), or as

k otherwise, where k is the
subscript of the corresponding domino piece dk occupying the same position, and s is the
index corresponding to the diagonal to which the event belongs. Explicitly, if the coordinates
of the event are (x, y), then the index is s = (x+ y) mod 2, hence it is the same for all the
events in a same diagonal. The PES has empty conflict relation, while causality is defined as
in Fig. 4. In this way, every event

is caused exactly by those at lower or equal height in the smallest right-angled triangle
containing the event,
causes those at higher or equal height outside of such triangle or above the event along
its diagonal,
is concurrent with all the others.

For instance, consider the event at position (4, 2) in Fig. 4, labelled a0
k. It is caused by the

events highlighted in red, it causes those highlighted in green, and it is concurrent with those
highlighted in blue. It is easy to see that E is well-defined, i.e. it is a PES, in fact, the set of
causes of each event is clearly finite. Moreover, E is image-finite since every configuration
enables a finite number of events (bounded by 1 plus half the size of the configuration).
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Figure 4 PES for the canonical grid of the domino tiling (with simplified event labels).

Formalising the ideas outlined above, one can prove that φD holds in the initial state of
E . In particular, the formulae ψ2, ψ3 and ψ4, inside the outermost fixpoint, can be shown to
hold in every reachable state, sometimes vacuously. For example, consider the configuration
C consisting of all the events appearing in Fig. 4 except those highlighted in green. Let us
focus on the subformula ψ3 (3) and argue that it holds in configuration C. Observe that the
initial three box modalities in ψ3 require a specific structure to be executable, in absence of
which the formula holds vacuously. Such structure consists of a causal chain of three events,
labelled with some combination of letters i, a, j but all with the same superscript s. Inspecting
the structure in the figure, it occurs that there are only two possible causal chains of three
events executable from C: both starting with (4, 2), and then going either along its diagonal
up to (2, 4), or along its row up to (6, 2). However, since the three events must be labelled
with the same superscript s, only the chain along the diagonal is actually considered by the
formula (along rows events alternate superscripts instead). Then, exploiting the similarities
with the graphical representation of ψ3 in Fig. 3b, it is possible to see that after binding
those events the rest of the property holds.

▶ Theorem 14 (tiling implies satisfiability). Let D be a domino system with D = {d1, . . . , dn},
if D admits a tiling, then the formula φD is satisfiable.

By the theorems above and the undecidability of the domino problem we conclude.

▶ Corollary 15 (undecidability of Lhp). The satisfiability problem for Lhp is undecidable.

5 Decidability without fixpoints

In this section we show that, in absence of fixpoint operators, the logic Lhp has the finite
model property. Moreover, we provide an encoding of formulae into first-order logic preserving
their (un)satisfiability. As a consequence we deduce tha satisfiability for the logic without
fixpoints becomes decidable.

In the following we will denote by Lf
hp the fragment of the logic Lhp without fixpoint

operators (and propositions). Consequently, the semantics of formulae in Lf
hp can be defined

without proposition environments π, since there are no propositions to interpret.
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In order to prove the finite model property the idea consists in showing that every model
of a formula can be reduced to a finite one by restricting to a suitable chosen subset of events.
To this aim, we introduce a way to truncate PESs by keeping only events up to a certain
causal level and with a specific subset of labels. The causal level of an event e is inductively
defined as lev(e) = max{lev(e′) + 1 | e′ ∈ E ∧ e′ < e}, where it is intended that max ∅ = 0.

▶ Definition 16 (prefix of a PES). Let E be a PES. For k ∈ N and A ⊆ Λ, consider the set
of events E(A,k) = {e ∈ E | lev(e) ≤ k ∧ ∀e′ ∈ ⌈e⌉. λ(e′) ∈ A}. Then, the A-labelled k-prefix
of E is the PES defined as E(A,k) = ⟨E(A,k), <|E(A,k) ,#|E(A,k)⟩.

Note that, by the very definition of causal level, lev(e′) < lev(e) for all e′ < e; hence, the
(A-labelled) k-prefix E(A,k) of a PES E is a causally closed subset of E . From this observation,
it immediately follows that E(A,k) is indeed a PES, i.e., the definition is well-given.

Notably, when a PES is image-finite, the same holds for all its prefixes. Hence, for every
k ∈ N and finite A, the A-labelled k-prefix E(A,k) can be shown to be finite.

▶ Lemma 17 (finiteness of prefixes). Let E be a image-finite PES. For all k ∈ N and A ⊆ Λ,
if A is finite, then E(A,k) is finite.

Now, in order to prove the finite model property of Lf
hp it is enough to show that the

satisfaction of formulae of Lf
hp is preserved when truncating a PES up to a suitable level

k and set of labels A. Both k and A can be obtained directly from the formula. Let the
modal depth of a formula φ, denoted by d(φ), be defined as usual. If φ is T or F, its modal
depth is 0. If it is a conjunction or disjunction, the modal depth is the maximum of those
of the conjuncts, resp. disjuncts. Otherwise, when φ consists of a modality followed by a
subformula ψ, the modal depth is d(φ) = 1 + d(ψ). Let A(φ) be the (finite) set of labels
appearing in the formula φ. Then, whenever a formula φ is satisfied by a PES E , it is also
satisfied by the A(φ)-labelled d(φ)-prefix of E , which, by the previous lemma, is finite.

▶ Theorem 18 (finite model property of Lf
hp). Let φ be a closed formula of Lf

hp. If φ is
satisfiable, then there exists a finite PES satisfying φ.

The result above implies that satisfiability for Lf
hp is semi-decidable. In fact, finite PESs

are denumerable and checking whether a finite PES satisfies a formula is decidable. Then,
to conclude it is sufficient to observe that the axioms of PESs are expressible as first-order
formulae and Lf

hp, as it happens for many modal logics, can be encoded into first-order logic,
hence also unsatisfiability is semi-decidable.

First, as mentioned, for a fixed formula in Lf
hp the set of labels appearing in it is finite.

Once the finite set of labels A is fixed, the theory of prime event structures, apart from the
axiom of finite causes, is expressible as a finite set of first-order axioms.

▶ Definition 19 (first-order theory of PESs). Let A ⊆ Λ be a finite set of labels. The first
order theory of theory of PESs over A, consists of the following axioms with < and # as
binary predicates and labels as unary predicates.
1. ∀x, y, z. (x < y) ∧ (y < z) → (x < z)
2. ∀x. ¬(x < x)
3. ∀x. ¬(x#x)
4. ∀x, y. (x#y) → (y#x)
5. ∀x, y, z. (x < y) ∧ (x#z) → (y#z)
6. ∀x.

(∨
a∈A a(x) ∧

∧
a,b∈A,a̸=b ¬(a(x) ∧ b(x))

)
We denote by TP ES(A) the conjunction of the above axioms.
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Axioms (1) and (2) state that < is a (strict) partial order. Axioms (3) and (4) ask conflict
# to be irreflexive and symmetric, while (5) requires conflict to be inherited along causality.
Finally (6) asks that each event has exactly one label.

Now, given a set of variables X ⊆ Var and a variable y ∈ Var , let us write y ∈ X as an
abbreviation for

∨
x∈X(x = y). Then we can express the property of being a configuration as:

conf (X) ≡ ∀x, y.((x ∈ X) ∧ (y < x) → (y ∈ X))∧
∀x, y.((x#y) → ¬((x ∈ X) ∧ (y ∈ X))

We can finally provide the translation of Lf
hp into first-order formulae.

▶ Definition 20 (compiling Lf
hp to first-order logic). Let X be a finite set of variables and

let φ be a formula of Lf
hp. We denote by (φ)X the first-order formula inductively defined as

follows:
(T)X = T and (F)X = F
(φ ∧ ψ)X = (φ)X ∧ (ψ)X and (φ ∨ ψ)X = (φ)X ∨ (ψ)X

(⟨|x,y < a z|⟩φ)X = ∃z.
∧

x∈x(x < z) ∧
∧

y∈y ¬(y < z) ∧ a(z) ∧ ¬(z ∈ X)∧
conf (X ∪ {z}) ∧ (φ)X∪{z}

([[x,y < a z]]φ)X = ∀z. (
∧

x∈x(x < z) ∧
∧

y∈y ¬(y < z) ∧ a(z) ∧ ¬(z ∈ X)∧
conf (X ∪ {z})) → (φ)X∪{z}

Then, given a closed formula φ of the logic Lf
hp we can obtain an equisatisfiable first-order

formula by taking the conjuction of the first order theory of PESs and the encoding of φ
defined above.

▶ Proposition 21. Let φ be a closed formula of Lf
hp and let A be the set of labels occurring

in φ. It holds that φ is satisfiable iff the first-order formula TP ES(A) ∧ (φ)∅ is satisfiable.

The proof is straightforwardly based on the observation that a PES E satisfying φ can be
seen as a first-order structure satisfying TP ES(A) ∧ (φ)∅, and vice versa. The only delicate
aspects is the absence of the axiom of finite causes in TP ES(A). Hence, it could happen that
TP ES(A) ∧ (φ)∅ is satisfiable by a structure which, seen as a PES E , includes events with
infinitely many causes. However, in this case, since these events would never be executable,
it is clear that also the PES E ′ obtained from E by removing all events with infinitely many
causes is a model for φ.

We can finally deduce that the satisfiability for Lf
hp is decidable.

▶ Corollary 22 (decidability of Lf
hp). The satisfiability problem for the logic fragment Lf

hp is
decidable and every satisfiable formula has a finite model.

The proof combines the results proved above. First, by Theorem 18, when a formula φ
in Lf

hp is satisfiable it has a finite model labelled over the finite set A of labels occurring
in φ. Since the finite PESs labelled over a finite alphabet are denumerable and checking
whether a finite PES satisfies a formula is decidable, we can semi-decide satisfiability of a
formula φ by enumerating the finite PESs labelled over A and checking whether each of the
generated PES satisfies φ. Moreover, by Proposition 21, unsatisfiability of a formula φ in
Lf

hp is reducible to unsatisfiability of the first-order formula TP ES(A) ∧ (φ)∅, and thus it is
semi-decidable. We conclude that satisfiability for Lf

hp is decidable.
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6 Conclusions and Perspectives

The logic Lhp investigated in this paper is one of a number of fragments of a logic introduced
in [3]. Other fragments Lp and Ls can be obtained by syntactical restrictions, characterising
coarser true concurrent notions of bisimilarity, namely pomset and step bisimilarity. The full
logic, instead, corresponds to hereditary hp-bisimilarity, the finest behavioural equivalence
in the true concurrent spectrum of [37], finer than hp-bisimilarity. Each logic fragment
admits a variant with fixpoints and a variant without fixpoints. However, the induced logical
equivalences for image-finite PESs are the same with or without fixpoints. We proved that
the satisfiability problem for Lhp is undecidable, and thus the same holds also for the logic
for hereditary hp-bisimilarity in [3]. On the other hand, satisfiability is decidable for Lf

hp,
the fragment of Lhp without fixpoints.

Some preliminary investigations suggest that the step logic Ls (with fixpoints) is decidable
via a reduction to the propositional µ-calculus. The same technique appears to be promising
for the pomset logic Lp (with fixpoints) but this case is more complex and unresolved to this
day. Similar logics for true concurrent properties are event identifier logic of [30] and the
mu-calculi for true concurrency in [18, 16, 17]. Also in this case, to the best of our knowledge
satisfiability has not yet been investigated. This offer a range of open questions that, when
answered, would draw an interesting picture of problems across the decidability border.

In a sense there are “two dimensions” to the satisfiability problem: one is the syntax and
the other the semantics, so that there are also many interesting variants and facets of the
satisfiability question when the restrictions are imposed on the model side. For example
a notable semantics is that of regular models in the sense of [36]. Investigating whether
restricting the semantics with the constraint of regularity affects decidability is an intriguing
direction of future work.

A formalisation of the semantics of the logics in terms of suitable (parity) games is often a
source of inspiration for facing complexity and decidability issues for modal logics. Currently,
there is no established game-theoretical characterisation of the semantics of the logic in [3],
of which Lhp is a fragment. However, such a development could be naturally guided by the
approach in [16, 17] and by the relation between fixpoint games [4] and logics for concurrency,
hinted at in [28]. This also appears as an interesting route to explore.
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