
ω-Forest Algebras and Temporal Logics
Achim Blumensath #

Masaryk University, Brno, Czech Republic

Jakub Lédl #

Masaryk University, Brno, Czech Republic

Abstract
We use the algebraic framework for languages of infinite trees introduced in [4] to derive effective
characterisations of various temporal logics, in particular the logic EF (a fragment of CTL) and its
counting variant cEF.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases forest algebras, temporal logics, bisimulation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.19

Funding Achim Blumensath: Work supported by the Czech Science Foundation, grant No. GA17-
01035S.
Jakub Lédl: Work supported by the Czech Science Foundation, grant No. GA17-01035S.

1 Introduction

Among the many different approaches to language theory, the algebraic one seems to be
particularly convenient when studying questions of expressive power. While algebraic language
theories for word languages (both finite and infinite) were already fully developed a long
time ago, the corresponding picture for languages of trees, in particular infinite ones, is much
less complete. Seminal results contributing to such an algebraic framework for languages of
infinite trees were provided by the group of Bojańczyk [7, 8] with one article considering
languages of regular trees only, and one considering languages of thin trees. The first complete
framework that could deal with arbitrary infinite trees was provided in [2, 3]. Unfortunately,
it turned out to be too complicated and technical for applications. Recently, two new general
frameworks have been introduced [1, 4] which seem to be more satisfactory: one is based on
the notion of a branch-continuous tree algebra, while the other uses regular tree algebras. The
first one seems to be more satisfactory from a theoretical point of view, while the second one
is more useful for applications, in particular for characterisation results.

In this article we concentrate on the approach based on regular tree algebras from [4]
which seems to be emerging as the standard. The goal is to apply the framework to a few
test cases and to see how well it performs for its intended purpose. While the definition of a
regular tree algebra (given in Section 2 below) is a bit naïve and seems circular at first sight,
it turns out that it is sufficient to guarantee the properties we need for applications: one can
show that (i) the class of regular tree algebras forms a pseudo-variety and that (ii) every
regular tree language has a syntactic algebra, which is in fact a regular tree algebra. By
general category-theoretic results, such as those from [6] or [5], this implies that there exists
a Reiterman type theorem for such algebras, i.e., the existence of equational characterisations
for sub-pseudo-varieties. This is precisely what is needed for a characterisation theorem.

Unfortunately progress on an algebraic theory of infinite trees has been rather slow since
matters have turned out to be significantly more complicated than the case of words or
finite trees. Hence, every step of progress is very welcome. For instance, the recent paper [11]
characterises the languages of infinite trees that are recognised by algebras of bounded growth.
The applications we are looking at in the present paper concern certain temporal logics,

© Achim Blumensath and Jakub Lédl;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 19; pp. 19:1–19:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:blumens@fi.muni.cz
mailto:jakubledl@mail.muni.cz
https://doi.org/10.4230/LIPIcs.MFCS.2021.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 ω-Forest Algebras and Temporal Logics

in particular, the logic EF and its counting variant cEF, and we aim to derive decidable
algebraic characterisations for them using our algebraic framework. Note that Bojańczyk and
Idziaszek have already provided a decidable characterisation for EF in [7], but their result is
only partially algebraic. They prove that a regular language is definable in EF if, and only if,
the language is bisimulation-invariant and its syntactic algebra satisfies a certain equation,
but they were not able to provide an algebraic characterisation of bisimulation invariance.
Due to our more general algebraic framework we are able to fill this gap below.

We start in the next section with a short overview of the algebraic framework from [4].
We have to slightly modify this material since it was originally formulated in the setting of
ranked trees while, when looking at temporal logics, it is more natural to consider unranked
trees and forests. The remainder of the article contains our various characterisation results.
In Section 3 we derive an algebraic characterisation of bisimulation-invariance, the result
missing in [7]. Then, in Section 4, we turn to our main result and present characterisations
for the logic cEF and some of its fragments, including a new and complete characterisation
of the logic EF.

2 Forest algebras

The main topic of this article are languages of (possibly infinite) forests and the logics defining
them. Before introducing the algebras we will use to recognise such languages, let us start
by fixing some notation and conventions. Although our main interest is in unranked forests,
we will use a more general version that combines the ranked and the unranked cases. As we
will see below (cf. Theorem 3.1), the ability to use ranks will increase the expressive power
of equations for our algebras considerably. Thus, we will work with ranked sets, i.e., sets
where every element a is assigned an arity ar(a). Formally, we consider such sets as families
A = (Am)m<ω, where Am is the set of all elements of A of arity m. Functions between ranked
sets then take the form f = (fm)m<ω with fm : Am → Bm.

We will consider (unranked, finitely branching, possibly infinite) forests where each vertex
is labelled by an element of a given ranked set A and each edge is labelled by a natural
number with the restriction that, if a vertex is labelled by an element of arity m, the numbers
labelling the outgoing edges must be less than m. If an edge u → v is labelled by the
number k, we will call v a k-successor of u. Note that a vertex may have several k-successors,
or none at all. We assume that the roots of a forest are ordered from left to right, as are
all the k-successors of a given vertex v, while we impose no ordering between a k-successor
and an l-successor, for k ̸= l. We write F0A for the set of all such A-labelled forests. (We
shall explain the index 0 further below.) We write dom(s) for the set of vertices of a forest
s ∈ F0A, and we will usually identify s with the function s : dom(s) → A that maps vertices
to their labels. We denote the empty forest by 0 and the disjoint union of two forests s and t

by s+ t (where the roots of t are added after those of s). We will frequently use term notation
to denote forests such as

a(b + c, 0, b) + b ,

which denotes a forest with two components: the first one consisting of a root labelled by
an element a of arity 3 which has two 0-successors labelled b and c, no 1-successor, and one
2-successor; the second component consists of a singleton with label b.

We use the symbol ⪯ for the forest ordering where the roots are the minimal elements
and the leaves the maximal ones. For a forest s, we denote by s|v the subtree of s attached
to the vertex v. The successor forest of v in s is the forest obtained from s|v by removing
the root v.

A. Blumensath and J. Lédl 19:3

For a natural number n, set [n] := {0, . . . , n − 1}. An alphabet is a finite (unranked) set Σ

of symbols. If we use an alphabet in a situation such as F0Σ where a ranked set is expected,
we will consider each symbol in Σ as having arity 1. Thus, for us a forest language over an
alphabet Σ will be a set L ⊆ F0Σ consisting of the usual unranked forests. (The power to
have elements of various arities is useful when writing down algebraic equations, but it is
rather unnatural when considering languages defined by temporal logics.) We denote by Σ∗

the set of all finite words over Σ, by Σω the set of infinite words, and Σ∞ := Σ∗ ∪ Σω.
A family of (word, forest,. . .) languages is a function K mapping each alphabet Σ to a class
K[Σ] of (word, forest,. . .) languages over Σ.

Our algebraic framework to study forest languages is built on the notion of an Eilenberg–
Moore algebra for a monad. To keep category-theoretical prerequisites at a minimum we will
give an elementary, self-contained definition. The basic idea is that, in the same way we can
view the product of a semigroup as an operation turning a sequence of semigroup elements
into a single element, we view the product of a forest algebra as an operation turning a given
forest that is labelled with elements of the algebra into a single element. The material in this
section is taken from [4] with minor adaptations to accommodate the fact that we are dealing
with unranked forests instead of ranked trees. Proofs can also be found in [5], although in a
much more general setting. We start by defining which forests we allow in this process.

▶ Definition 2.1.
(a) We denote by F the functor mapping a ranked set A to the ranked set FA = (FmA)m

where FmA consists of all (A ∪ {x0, . . . , xm−1})-labelled forests such that
the new labels x0, . . . , xm−1 have arity 0,
each label xi appears at least once, but only finitely many times, and
no root is labelled by an xi.

(b) The singleton function sing : A → FA maps a label a of arity m to the forest
a(x0, . . . , xm−1).

(c) The flattening function flat : FFA → FA takes a forest s ∈ FFA and maps it to the forest
flat(s) obtained by assembling all forests s(v), for v ∈ dom(s), into a single large forest.
This is done as follows. For every vertex of s(v) that is labelled by a variable xk, we take
the disjoint union of all forests labelling the k-successors of v and substitute them for xk.
This is done simultaneously for all v ∈ dom(s) and all variables in s(v) (see Figure 1 for
an example.) ⌟

Now we can define a forest algebra to be a set A equipped with a product FA → A.

▶ Definition 2.2.
(a) An ω-forest algebra A = ⟨A, π⟩ consists of a ranked set A and a function π : FA → A

satisfying the following two axioms:

the associative law π ◦ Fπ = π ◦ flat and the unit law π ◦ sing = id .

We will denote forest algebras by fraktur letters A and their universes by the corresponding
roman letter A. We will usually use the letter π for the product, even if several algebras
are involved.

(b) A morphism of ω-forest algebras is a function φ : A → B that commutes with the
products in the sense that π ◦ Fφ = φ ◦ π. ⌟

▶ Remark.
(a) In the following we will simplify terminology by dropping the ω and simply speaking

of forest algebras. But note that, strictly speaking, this name belongs to the kind of
algebras introduced by Bojańczyk and Walukiewicz in [10].

MFCS 2021

19:4 ω-Forest Algebras and Temporal Logics

a

x2 x1 x0

0 0 3

b c

c

0

c c b

x0

0

d

b c

x0

0 1

0

x1 x2

0 1 1 2

0 0

a

d c c b b c

b c c

x1 x2

0 0 0 0 3 3

0 1 0

0 0

Figure 1 The flattening operation.

(b) One can show that the functor F together with the two natural transformations flat and
sing forms what is called a monad in category theory. In this terminology, we can define
forest algebras as Eilenberg-Moore algebras for this monad.

(c) Note that a forest algebra A = ⟨A, π⟩ contains a monoid ⟨A0, +, 0⟩ (called the horizontal
monoid) and an ω-semigroup ⟨A1, A0, · ⟩ (the vertical ω-semigroup), whose operations
are derived from the product π. For instance, the vertical product a · b, for a, b ∈ A1,
is formed as the produce π(s), where s consists of a root labelled a, an internal vertex
labelled b, and a leaf labelled be the variable x0.

(d) The reason why we do not allow forests where some root is labelled by a variable xk is
that an infinite product of such forests is not always defined. For instance, multiplying
an infinite sequence of forests of the form x0 + a would create a forest with infinitely
many components, which is not allowed.

Sets of the form FA can be equipped with a canonical forest algebra structure by using
the flattening operation flat : FFA → FA for the product. By general category-theoretical
considerations it follows that algebras of this form are exactly the free forest algebras
(generated by A). In this article we consider forest languages over an alphabet Σ as subsets
L ⊆ F0Σ. Such a language is recognised by a morphism η : FΣ → A of forest algebras if
L = η−1[P] for some P ⊆ A0.

Example. Let Σ := {a, b}. We can recognise the language L ⊆ F0Σ of all forests s containing
at least one occurrence of the letter a as follows. Let A be the algebra consisting of two
elements 0m and 1m, for each arity m, where the product π maps a forest s ∈ FmA to 1m

if at least one vertex is labelled by 1n, for some n. Otherwise, s is mapped to 0m. Then
L = φ−1(10) where the morphism φ : F0Σ → A is defined by φ(a) := 11 and φ(b) := 01.
(As FΣ is freely generated by the set {a, b}, this determines φ for all inputs.)

In analogy to the situation with word languages we would like to have a theorem stating
that a forest language is regular if, and only if, it is recognised by a morphism into some
finite forest algebra. But this statement is wrong for two reasons. The first one is that every
forest algebra with at least one element of positive arity has elements of every arity and,
thus, is infinite. (For instance, given a ∈ A1, we obtain an element a(x0 + · · · + xn−1) ∈ An

of arity n). To fix this, we have to replace the property of being finite by that of having only
finitely many elements of each arity. We call such algebras finitary.

A. Blumensath and J. Lédl 19:5

But even if we modify the statement in this way it still fails since one can find finitary
forest algebras recognising non-regular languages. (An example for tree languages is given by
Bojańczyk and Klin in [9].) Therefore we have to restrict our class of algebras. A simple way
to do so is given by the class of (locally) regular algebras introduced in [4] where all of the
following results are taken from (again in the case of trees instead of forests).

▶ Definition 2.3. Let A be a forest algebra.
(a) A subset C ⊆ A is regularly embedded if, for every element a ∈ A, the preimage

π−1(a) ∩ FC is a regular (i.e., automaton recognisable) language over C.
(b) A is locally regular if every finite subset is regularly embedded.
(c) A is regular if it is finitary, finitely generated, and locally regular. ⌟
The definition of a regular forest algebra is not very enlightening. We refer the interested
reader to [4] for a purely algebraic (but much more complicated) characterisation.

▶ Theorem 2.4. Let L ⊆ F0Σ be a forest language. The following statements are equivalent.
(1) L is regular (i.e., automaton recognisable).
(2) L is recognised by a morphism into a locally regular forest algebra.
(3) L is recognised by a morphism into a regular forest algebra.
(The reason why we introduce two classes is that locally regular algebras enjoy better closure
properties, while the regular ones are more natural as recognisers of languages.) One can
show (see [4]) that the (locally) regular algebras form a pseudo-variety in the sense that
locally regular algebras are closed under quotients, subalgebras, finite products, and directed
colimits, while regular algebras are closed under quotients, finitely generated subalgebras,
finitely generated subalgebras of finite products, and so-called “rank-limits”. More important
for our current purposes is the existence of syntactic algebras and the fact that these are
always regular.

▶ Definition 2.5. Let L ⊆ FΣ be a forest language.
(a) The syntactic congruence of L is the relation

s ∼L t : iff p[s] ∈ L ⇔ p[t] ∈ L , for every context p ,

where a context is a (Σ ∪ {□})-labelled forest (where □ is a new symbol of the same
arity as s and t) and p[s] is the forest obtained from p by replacing each vertex labelled
by □ by the forest s.

(b) The syntactic algebra of L is the quotient S(L) := FΣ/∼L. ⌟

▶ Theorem 2.6. The syntactic algebra S(L) of a regular forest language L exists, it is regular,
and it is the smallest forest algebra recognising L. Furthermore, S(L) can be computed given
an automaton for L.

Regarding the last statement of this theorem, we should explain what we mean by
computing a forest algebra. Since forest algebras have infinitely many elements, we cannot
simply compute the full multiplication table. Instead, we say that a regular forest algebra A

is computable if, given a number n < ω, we can compute a list ⟨Aa⟩a∈An
of automata such

that Aa recognises the set π−1(a) ∩ FC, for some fixed set C of generators.

3 Bisimulation

To illustrate the use of syntactic algebras let us start with a simple warm-up exercise: we
derive an algebraic characterisation of bisimulation invariance. This example also explains
why algebras with elements of higher arities are needed (this is the reason Bojańczyk and
Idziaszek [7], whose framework supported only arity 1, had to leave such a characterisation
as an open problem).

MFCS 2021

19:6 ω-Forest Algebras and Temporal Logics

Recall that a bisimulation between two forests s and t is a binary relation Z ⊆
dom(s) × dom(t) such that ⟨u, v⟩ ∈ Z implies that

s(u) = t(v) and,
for every k-successor u′ of u, there is some k-successor v′ of v with ⟨u′, v′⟩ ∈ Z and vice
versa.

Two trees are bisimilar if there exists a bisimulation between them that relates their roots.
More generally, two forests are bisimilar if every component of one is bisimilar to some
component of the other. A language L of forests is bisimulation-invariant if s ∈ L implies
t ∈ L, for every forest t bisimilar to s.

▶ Theorem 3.1. A forest language L ⊆ F0Σ is bisimulation-invariant if, and only if, the
syntactic algebra S(L) satisfies the following equations:

c + c = c , a(x0 + x0) = a(x0) ,

c + d = d + c , a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3) ,

for all a ∈ S1(L) and c, d ∈ S0(L).

Proof. Let η : FΣ → S(L) be the syntactic morphism mapping a forest to its ∼L-class.
(⇒) Given elements c, d ∈ S0(L), we fix forests s ∈ η−1(c) and t ∈ η−1(d). If L is

bisimulation-invariant, we have

p[s] ∈ L iff p[s + s] ∈ L and p[s + t] ∈ L iff p[t + s] ∈ L ,

for every context p. Consequently, s ∼L s + s and s + t ∼L t + s, which implies that c = c + c

and c + d = d + c.
The remaining two equations are proved similarly. Fix a ∈ S1(L) and s ∈ η−1(a). Setting

s′ := s(x0 + x0), bisimulation-invariance of L implies that

p[s] ∈ L iff p[s′] ∈ L , for every context p .

Consequently s ∼L s′ and a(x0) = η(s) = η(s′) = a(x0 + x0).
Similarly, for t := s(x0 + x1 + x2 + x3) and t′ := s(x0 + x2 + x1 + x3), we have

p[t] ∈ L iff p[t′] ∈ L , for every context p .

Hence, t ∼L t′ and a(x0 + x1 + x2 + x3) = a(x0 + x2 + x1 + x3).
(⇐) Suppose that S(L) satisfies the four equations above and let s and s′ be bisimilar

forests. We claim that η(s) = η(s′), which implies that s ∈ L ⇔ s′ ∈ L.
Fix a bisimulation relation Z ⊆ dom(s) × dom(s′). W.l.o.g. we may assume that Z only

relates vertices on the same level of the respective forests and that it only relates vertices
whose predecessors are also related. (If not, we can always remove the pairs not satisfying
this condition without destroying the fact that Z is a bisimulation.) Let ≈ be the equivalence
relation on dom(s) ∪ dom(s′) generated by Z.

We will transform the forests s and s′ in several steps while preserving their value under η

until both forests are equal. (Note that each of these steps necessarily modifies the given forest
at every vertex.) An example of this process can be found in Figure 2. The first step consists
in translating the problem into the algebra S(L). We define two new forests t0, t′

0 ∈ F0S(L)
with the same domains as, respectively, s and s′ and the following labelling. If v ∈ dom(s)
has the 0-successors u0, . . . , un−1, we set

t0(v) := η(s(v))(x0 + · · · + xn−1)

and we make ui an i-successor of v in t0. We obtain t′
0 from s′ in the same way. By associativity

it follows that π(t0) = η(s) and π(t′
0) = η(s′).

A. Blumensath and J. Lédl 19:7

t0 a

a a c

c c c

0 0 0

0 0 0

t′0 a

a c c

c

0 0 0

0

t1 a(x0 + x1 + x2 + x2)

a(x0 + x0)a(x0 + x1) c

c c c

0 1 2

0 0 1

t′1 a(x0 + x0 + x1 + x2)

a(x0 + x0) c c

c

0 1 2

0

t2 a

a c c

c c

a

c c

0 2 3

0 0

1

1 1

t′2 a

a c c

c c

a

c c

0 2 3

0 0

1

1 1

Figure 2 Transforming bisimilar forests.

Next we make the shapes of the forests t0 and t′
0 the same. Let t1 and t′

1 be the forests
with the same domains as t0 and t′

0 and the following labelling. For every vertex v of t0 with
successors u0, . . . , un−1 and labelling

t0(v) = a(x0 + · · · + xn−1) ,

we set

t1(v) := a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,

where each variable xi is repeated mi times and the numbers mi are determined as follows.
Let M be some number such that, for every i < n, no vertex v′ ≈ v has at more than M

successors u′ with u′ ≈ ui. (Note that there are only finitely many such vertices.) We choose
the constants mi such that∑

k∈Ui

mk = M , where Ui := { k < n | uk ≈ ui } .

We obtain the forest t′
1 in the same way from t′

0. By the top right equation in the statement of
the theorem, the value of the product is not affected by this modification. Hence, π(t1) = π(t0)
and π(t′

1) = π(t′
0).

Finally, let t2 and t′
2 be the unravelling of, respectively, t1 and t′

1, i.e., the forest where
for every vertex v with successors u0, . . . , un−1 and label

t1(v) = a(x0 + · · · + x0 + · · · + xn−1 + · · · + xn−1) ,

we set

t2(v) := a(x0 + · · · + xk + · · · + xl + · · · + xm)

(where we number the variables from left-to-right, e.g., a(x0 + x0 + x1 + x2 + x2) becomes
a(x0 + x1 + x2 + x3 + x4)), and we duplicate each attached subforest a corresponding number
of times such that the value of the product does not change. We do the same for t′

2.
We have arrived at a situation where, for each component r of the forests t2, there is some

component r′ of t′
2 that differs only in the ordering of successors, but not in their number.

Consequently, there exists a bijection σ : dom(t) → dom(r′) such that, for a vertex v of r

with successors u0, . . . , un−1,

r′(v) = r(v)(xσv(0) + · · · + xσv(n−1)) ,

where the function σv : [n] → [n] is chosen such that σ(ui) is the σv(i)-successor of σ(v).

MFCS 2021

19:8 ω-Forest Algebras and Temporal Logics

Let r̂ be the tree obtained from r as follows. For a vertex v with successors u0, . . . , un−1
and labelling

r(v) = a(x0 + · · · + xn−1) ,

we set

r̂(v) := a(xσv(0) + · · · + xσv(n−1)) ,

and we reorder the attached subtrees accordingly. By associativity and the bottom right
equation, this does not change the value of the product. It follows that r̂ = r′. Consequently,
π(r) = π(r′).

We have shown that, for every component of t0 there is some component of t′
0 with the

same product. Therefore, we can write

π(t0) = a0 + · · · + am−1 and π(t′
0) = b0 + · · · + bn−1

where the sets {a0, . . . , am−1} and {b0, . . . , bm−1} coincide. Using the equations c + c = c

and c + d = d + c we can therefore transform π(t0) into π(t′
0). Consequently,

η(s) = π(t0) = π(t′
0) = η(s′) .

As η recognises L it follows that s ∈ L ⇔ s′ ∈ L, as desired. ◀

Note that we immediately obtain a decision procedure for bisimulation-invariance from
this theorem, since we can compute the syntactic algebra and check whether it satisfies the
given set of equations.

▶ Corollary 3.2. It is decidable whether a given regular language L is bisimulation-invariant.

4 The Logic cEF

Let us now proceed to the main result of this article: a characterisation of the temporal logic
cEF. For simplicity, the following definition of its semantics only considers forests instead of
arbitrary transition systems.

▶ Definition 4.1.
(a) Counting EF, cEF for short, has two kinds of formulae: tree formulae and forest formulae,

which are inductively defined as follows.
Every forest formula is a finite boolean combination of formulae of the form Ekφ

where k is a positive integer and φ a tree formula.
Every tree formula is a finite boolean combination of (i) forest formulae and (ii) for-
mulae of the form Pa, for a ∈ Σ.

To define the semantics we introduce a satisfaction relation |=f for forest formulae and
one |=t for tree formulae. In both cases boolean combinations are defined in the usual
way. For a tree t, we define

t |=t Pa : iff the root of t has label a ,

t |=t φ : iff t′ |=f φ , for a forest formula φ , where t′ denotes the successor
forest of the root of t .

For a forest s, we define

s |=f Ekφ : iff there exist at least k vertices v, distinct from the roots, such that

s|v |= φ .

A. Blumensath and J. Lédl 19:9

(b) For k, m < ω, we denote by cEFk the fragment of cEF that uses only operators El where
l ≤ k, and cEFm

k is the fragment of cEFk where the nesting depth of the operators El is
restricted to m. For k = 1, we set EF := cEF1 and EFm := cEFm

1 . ⌟

The following is our main theorem. Before giving the statement a few technical remarks
are in order. In the equations below we make use of the ω-power aω of an element a ∈ A1
(which is the infinite vertical product aaa . . .), and the idempotent power aπ (which is the
defined as aπ = an for the minimal number n with anan = an). For the horizontal semigroup
we use multiplicative notation instead: n × a for a + · · · + a and π × a for n × a with n as
above.

When writing an ω-power of an element of arity greater than one, we need to specify with
respect to which variable we take the power. We use the notation aωi to indicate that the vari-
able xi should be used. Note that, when using several ω-powers like in (a(x0, (b(x0, x1))ω1))ω0 ,
the intermediate term after resolving the inner power can be a forest with infinitely many
occurrences of the variable x0. But after resolving the outer ω-power, we obtain a forest
without variables, i.e., a proper element of F0A. Consequently, the equations below are all
well-defined. Finally, to keep notation light we will frequently write x instead of x0, if this is
the only variable present.

▶ Theorem 4.2. A forest language L ⊆ F0Σ is definable in the logic cEFk if, and only if,
the syntactic algebra S(L) satisfies the following equations:

c + d = d + c (a(x) + b(x))ω = (ab(x))ω

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω

aω + aω = aω (a(x + c + c))ω = (a(x + c))ω

(abb′)ω = (ab′b)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

(aab)ω = (ab)ω [a(x + bc + c)]ω = [a(x + bc)]ω

an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c ,

[a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)

for all a, b, b′ ∈ S1(L), c, d ∈ S0(L), an ∈ Sn(L), and n ≤ k.

No attempt was made to simplify the above axioms. While having a simpler description
would of course be nice, the importance of this result lies in the facts that (i) an equational
axiomatisation exists; that (ii) the equations can be checked algorithmically; and (iii) that
our framework was sufficient to derive them.

We defer the proof to the appendix. Let us here concentrate on some of the consequences
instead.

▶ Corollary 4.3. For fixed k, it is decidable whether a given regular language L is cEFk-
definable.

For the logic cEF, where the value of k is not bounded, a similar result can now be
derived as a simple corollary. The basic argument is contained in the following lemma.

▶ Lemma 4.4. Given a forest algebra A that is generated by A0 ∪ A1, we can compute a
number K such that, if A satisfies the equations of Theorem 4.2 for some value of k, it
satisfies them for k = K.

Proof. Set K := m2m1
0 + m0 where m0 := |A0| and m1 := |A1|. By assumption there is some

number k for which A satisfies the equations of Theorem 4.2. W.l.o.g. we may assume that
k ≥ K. The only two equations depending on k are

MFCS 2021

19:10 ω-Forest Algebras and Temporal Logics

(1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c

(2)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)
We have to show that A also satisfies (1)K and (2)K .

For (2)K , note that k ≥ K ≥ |A0| implies that K × c = π × c = k × c, for all c ∈ A0.
Consequently,

a(K × x)(c) = a(k × x)(c) and, therefore, (a(K × x))π(c) = (a(k × x))π(c) .

This implies the claim.
For (1)K , fix a ∈ An and c ∈ A0. If n ≤ K − m0, then K − n ≥ m0 = |A0| implies that

(K − n) × c = π × c. Consequently,

a(c, . . . , c) + (K − n) × c = a(c, . . . , c) + π × c = a(c, . . . , c) + π × c + c

and we are done. Thus, we may assume that n > K − m0 = m2m1
0 . As A is generated by

A0 ∪ A1, there exists some forest s ∈ Fi(A0 ∪ A1) with π(s) = a. We distinguish several cases.
If some of the variables x0, . . . , xn−1 does not appear in s, we can use (1)k to show that

a(c, . . . , c, . . . , c) + (K − n) × c = a(c, . . . , c + · · · + c, . . . c) + (K − n) × c

= a(c, . . . , k × c, . . . , c) + (K − n) × c

= a(c, . . . , k × c, . . . , c) + (K − n) × c + c .

Next, suppose that s is highly branching in the sense that it has the form

s = r(t0 + · · · + tm2
0−1)

where each subterm ti contains some variable. Then there are indices i0 < · · · < im0−1 such
that π(ti0(c̄)) = · · · = π(tim0−1(c̄)) (where c̄ denotes as many copies of c as appear in the
respective term). Hence, (1)k again implies that

a(c̄) + (K − n) × c = π(s(c̄)) + (K − n) × c

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄)
))

+ (K − n) × c

= π
(
r
(
t0(c̄) + · · · + tm2

0−1(c̄) + k × ti0(c̄)
))

+ (K − n) × c

= a(c̄) + (K − n) × c + c .

Note that a tree of height h := m1 where every vertex has at most d := m2
0 successors has

at most dh = m2m1
0 leaves. Hence, if s is not highly branching in the sense above, the fact

that it contains n > m2m1
0 variables implies that there must be a chain v0 ≺ · · · ≺ vm1 of

vertices such that, for every i < m1, there is some leaf u labelled by a variable with vi−1 ≺ u

and vi ⪯̸ u. (For i = 0, we omit the first condition.) Hence, we can decompose s as

s(c̄) = r0(c̄, r1(c̄, . . . rm1(c̄))) ,

and there are two indices i < j such that

π(r0(c̄, . . . ri(c̄, x))) = π(r0(c̄, . . . rj(c̄, x))) .

Consequently, we can use pumping to obtain a term

π(s(c̄)) = π
(
r0(c̄, . . . , ri(c̄, x))

[
ri+1(c̄, . . . , rj(c̄, x))

]k
rj+1(c̄, . . . , rm1(c̄))

)
which contains at least k occurrences of c, and the claim follows again by (1)k. ◀

A. Blumensath and J. Lédl 19:11

According to this lemma, we can check for cEF-definability of a language L, by computing
its syntactic algebra S(L), the associated constant K, and then checking the equations for
k = K.

▶ Corollary 4.5. It is decidable whether a given regular language L is cEF-definable.

When taking the special case of k = 1 in Theorem 4.2, we obtain the following character-
isation of EF-definability.

▶ Theorem 4.6. A forest language L ⊆ F0Σ is definable in the logic EF if, and only if, the
syntactic algebra S(L) satisfies the following equations:

c + d = d + c (a(x) + b(x))ω = (ab(x))ω

(ab)π = b(ab)π (a(x) + c)ω = (a(x + c))ω

(abb′)ω = (ab′b)ω (a(x + c + c))ω = (a(x + c))ω

(aab)ω = (ab)ω
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

ac = ac + c c = c + c [a(x + aπc)]ω = aπc ,

for all a, b, b′ ∈ S1(L) and c, d ∈ S0(L).

▶ Corollary 4.7. It is decidable whether a given regular language L is EF-definable.

References

1 A. Blumensath. Branch-Continuous Tree Algebras. unpublished. arXiv:1807.04568.
2 A. Blumensath. Recognisability for algebras of infinite trees. Theoretical Computer Science,

412:3463–3486, 2011.
3 A. Blumensath. An Algebraic Proof of Rabin’s Tree Theorem. Theoretical Computer Science,

478:1–21, 2013.
4 A. Blumensath. Regular Tree Algebras. Logical Methods in Computer Science, 16:16:1–16:25,

2020.
5 A. Blumensath. Algebraic Language Theory for Eilenberg–Moore Algebras. Logical Methods

in Computer Science, 17:6:1–6:60, 2021.
6 M. Bojańczyk. Recognisable languages over monads. unpublished note. arXiv:1502.04898v1.
7 M. Bojańczyk and T. Idziaszek. Algebra for Infinite Forests with an Application to the Temporal

Logic EF. In Proc. 20th International Conference on Concurrency Theory, CONCUR, LNCS
5710, pages 131–145, 2009.

8 M. Bojańczyk, T. Idziaszek, and M. Skrzypczak. Regular languages of thin trees. In Proc. 30th
International Symposium on Theoretical Aspects of Computer Science, STACS 2013, pages
562–573, 2013.

9 M. Bojańczyk and B. Klin. A non-regular language of infinite trees that is recognizable by a
finite algebra. Logical Methods in Computer Science, 15, 2019.

10 M. Bojańczyk and I. Walukiewicz. Forest Algebras. In J. Flum, E. Grädel, and T. Wilke,
editors, Logic and Automata: History and Perspectives, pages 107–132. Amsterdam University
Press, 2007.

11 T. Colcombet and A. Jaquard. A Complexity Approach to Tree Algebras: the Bounded
Case. In 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12–16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
127:1–127:13, 2021.

MFCS 2021

http://arxiv.org/abs/1807.04568
http://arxiv.org/abs/1502.04898v1

19:12 ω-Forest Algebras and Temporal Logics

A The proof of Theorem 4.2

For the proof of Theorem 4.2, we need to set up a bit of machinery. We start by defining the
suitable notion of bisimulation for cEFk. The difference to the standard notion is that we
use reachability instead of the edge relation and that we also have to preserve the number of
reachable positions.

▶ Definition A.1. Let m, k < ω.
(a) For trees s, t ∈ FΣ, we define

s ≈0
k t : iff the roots of s and t have the same label

s ≈m+1
k t : iff the roots of s and t have the same label ,

for every k-tuple x̄ in dom(s) not containing the root, there is
some k-tuple ȳ in dom(t) not containing the root such that

s|xi ≈m
k t|yi for all i < k and,

for every k-tuple ȳ in dom(t) not containing the root, there is
some k-tuple x̄ in dom(s) not containing the root such that

s|xi
≈m

k t|yi
for all i < k .

To simplify notation, we will frequently write x ≈m
k y for vertices x and y instead of the

more cumbersome s|x ≈m
k t|y.

(b) For forests s, t ∈ FΣ with possibly several components, we set

s ∼m+1
k t : iff for every k-tuple x̄ in s there is some k-tuple ȳ in t such that

s|xi
≈m

k t|yi
for all i < k and,

for every k-tuple ȳ in t there is some k-tuple x̄ in s such that
s|xi ≈m

k t|yi for all i < k . ⌟

Let us show that this notion of bisimulation captures the expressive power of cEF. The
proof is mostly standard. We start by introducing the following notion of a type.

▶ Definition A.2.
(a) We define the type tpm

k (s) of a tree s ∈ FΣ by

tp0
k(s) := s(⟨⟩) and tpm+1

k (s) := ⟨s(⟨⟩), θs⟩

where ⟨⟩ denotes the root of s and

θs :=
{

⟨l, σ⟩
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct, not equal to the root ,

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

.

(b) For an arbitrary forest s ∈ FΣ, we set Tpm+1
k (s) := θs, where

θs :=
{

⟨l, σ⟩
∣∣ l ≤ k , x0, . . . , xl−1 ∈ dom(s) distinct ,

σ = tpm
k (s|x0) = · · · = tpm

k (s|xl−1)
}

. ⌟

As standard proof establishes the following equivalences.

A. Blumensath and J. Lédl 19:13

▶ Lemma A.3. Let k, m < ω.
(a) For trees s, t ∈ F0Σ, the following statements are equivalent.

(1) s ≈m
k t

(2) tpm
k (s) = tpm

k (t)
(3) s |= φ ⇔ t |= φ , for all φ ∈ cEFm

k .

(b) For arbitrary forests s, t ∈ F0Σ, the following statements are equivalent.
(1) s ∼m

k t

(2) Tpm
k (s) = Tpm

k (t)
(3) s |= φ ⇔ t |= φ , for all φ ∈ cEFm

k .

▶ Corollary A.4. A language L ⊆ FΣ is cEFm
k -definable if, and only if, it is regular and

satisfies

s ∼m
k t implies s ∈ L ⇔ t ∈ L , for all regular forests s, t ∈ F0Σ .

Proof. (⇒) follows by the implication (1) ⇒ (3) of Lemma A.3.
(⇐) Set

φ :=
∨ {

χτ

∣∣ τ = Tpm
k (s) for some regular forest s ∈ L

}
,

where χτ are the formulae from the proof of Lemma A.3. For a regular forest t ∈ F0Σ, it
follows that

t |= φ iff Tpm
k (t) = Tpm

k (s) , for some regular forest s ∈ L ,

iff t ∼m
k s , for some regular forest s ∈ L ,

iff t ∈ L .

Let K be the language defined by φ. Since L and K are both regular languages that contain
the same regular forests, it follows that L = K. Thus, L is cEFm

k -definable. ◀

We want to show that an algebra recognises cEFk-definable languages if, and only if, it
satisfies the following equations.

▶ Definition A.5.
(a) A forest algebra A is an algebra for cEFk if it is finitary, generated by A0 ∪ A1, and

satisfies the following equations.
(G1)k an(c, . . . , c) + (k − n) × c = an(c, . . . , c) + (k − n + 1) × c

(G1) (ab)π = b(ab)π

(G2) aω + aω = aω

(G3) c + d = d + c

(G4) (a(x) + b(x))ω = (ab(x))ω

(G5) (a(x) + c)ω = (a(x + c))ω

(G6) (a(x + c + c))ω = (a(x + c))ω

(G7)
[
a(b(x0, x1))ω1

]ω0 = [ab(x0, x0)]ω0

(G8) (abb′)ω = (ab′b)ω

(G9) (aab)ω = (ab)ω

(G10) [a(x + bc + c)]ω = [a(x + bc)]ω
(G12)k [a(x + (a(k × x))π(c))]ω = k × (a(k × x))π(c)

where a, b, b′ ∈ A1, c, d ∈ A0, an ∈ An, and n ≤ k.
(b) A forest algebra A is an algebra for cEF if it is an algebra for cEFk, for some k ≥ 1. ⌟

MFCS 2021

19:14 ω-Forest Algebras and Temporal Logics

Figure 3 A forest s with a convex set U (in bold) that has three close U -ends (on the left) and
five far ones (on the right). The height is h(s, U) = 2.

In the proof that algebras for cEF recognise exactly the cEF-definable languages, we use
one of the Green’s relations (suitably modified for forest algebras).

▶ Definition A.6. Let A be a forest algebra. For a, b ∈ A0, we define

a ≤L b : iff a = c(b) or a = b + d , for some c ∈ A1 , d ∈ A0 . ⌟

▶ Lemma A.7. Let A be an algebra for cEFk.
(a) The relation ≤L is antisymmetric.
(b) For a ∈ A1 , c ∈ A0, we have

c = c + c implies ac = ac + c ,

c = a(c, c) implies c = c + c .

Proof.
(a) For a contradiction, suppose that there are elements a ̸= b with a ≤L b ≤L a. By

definition, we can find elements c and d such that (1) a = c(b) or (2) a = b + c, and
(i) b = d(a) or (ii) b = a + d. We have thus to consider four cases. In each of them we
obtain a contradiction via (G1)k or (G2).

(1, i) a = cb = cda = (cd)π(a) = d(cd)π(a) = da = b .

(1, ii) a = cb = c(a + d) = (c(x + d))π(a) = (c(x + d))π(a) + d = a + d = b .

(2, i) b = da = d(b + c) = (d(x + c))π(b) = (d(x + c))π(b) + c = b + c = a .

(2, ii) a = b + c = a + d + c = a + k × (d + c) = a + k × (d + c) + d = a + d = b .

(b) By (G1)k we have

c = c + c implies ac = a(c + c) = a(k × c) = a(k × c) + c = ac + c ,

c = a(c, c) implies c = a(c, c) = (a(x, c))π(c) = (a(x, c))π(c) + c = c + c . ◀

Let us take a look at the following situation (see Figure 3). Let s be a forest and U a set
of vertices. We assume that U is convex in the sense that u ⪯ v ⪯ w and u, w ∈ U implies
v ∈ U (where ⪯ denotes the forest order). We call the maximal elements (w.r.t. ⪯) of U the
U -ends. An U -end u is close if u′ ∈ U , for all u′ ⪯ u. Otherwise, it is far. We would like to
know how many of the U -ends are close.

▶ Lemma A.8. Let m ≥ 0 and k ≥ 1, let s ∼m+k+2
k t be two forests, U ⊆ dom(s) a convex

set that is closed under ≈m
k , and set

V := { v ∈ dom(t) | u ≈m
k v for some u ∈ U } .

A. Blumensath and J. Lédl 19:15

(a) V is convex and closed under ≈m
k .

(b) The numbers of ends of U and V are the same, or both numbers are at least k.
(c) If U has less than k ends, then U is finite if, and only if, V is finite.
(d) If U is finite and has less than k ends, then U and V have the same numbers of close

ends and of far ends.

Proof.
(a) If V is not convex, there are vertices v ≺ v′ ≺ v′′ of t with v, v′′ ∈ V and v′ /∈ V . Fix

vertices u ≺ u′ ≺ u′′ with u ≈m+2
k v, u′ ≈m+1

k v′, and u′′ ≈m
k v′′. By definition of V , we

have u, u′′ ∈ U and u′ /∈ U . This contradicts the fact that U is convex.
To see that V is closed under ≈m

k , suppose that v ∈ V and v ≈m
k v′. By definition of V ,

there is some u ∈ U with u ≈m
k v. Hence, u ≈m

k v ≈m
k v′. As ≈m

k is transitive, this implies
that v′ ∈ V .

(b) For a contradiction, suppose that U has n < k ends while V has more than n ends. (The
other case follows by symmetry.) Choose n + 1 ends v0, . . . , vn ∈ V . Since s ≈m+2

k t,
there are vertices u0, . . . , un in s with ui ≈m+1

k vi. By definition of V , we have ui ∈ U .
By assumption, there is some index j such that uj is not an end. Hence, we can find a
vertex u′ ≻ uj with u′ ∈ U . Fix a vertex v′ ≻ vj of t with u′ ≈m

k v′. Then v′ ∈ V and
vj is not an end. A contradiction.

(c) For a contradiction, suppose that U is finite, but V is not. (The other case follows by
symmetry.) By (b), V has only finitely many ends. Hence, there is some element v ∈ V

such that v ⪯̸ v′ for every end v′ of V . Since s ≈m+3
k t, we can find a vertex u of s with

u ≈m+2
k v. This implies that u ∈ U . As U is finite, we can find some end u′ of U with

u ⪯ u′. Fix some v′ ⪰ v with u′ ≈m+1
k v′. Then u′ ∈ U implies v′ ∈ V . By choice of v,

there is some v′′ ≻ v′ with v′′ ∈ V . Choose u′′ ≻ u′ with u′′ ≈m
k v′′. By choice of u′, we

have u′′ /∈ U . This contradicts the fact that v′′ ∈ V .
(d) By (b), we only need to prove that the number of close ends is the same. Let Û and V̂ be

the sets of U -ends and V -ends, respectively. We denote by N(s, U) the number of close
U -ends and by F (s, U) the set of all proper subforests s′ of s that are attached to some
vertex v that does not belong to U but where at least one root belongs to U . (A forest s′

is a proper subforest of s attached at v if s′ can be obtained from the subtree s|v by
removing the root v.) We define the following equivalence relation.

⟨s, U⟩ ≍0 ⟨t, V ⟩ : iff N(s, U) = N(t, V) ,

⟨s, U⟩ ≍i+1 ⟨t, V ⟩ : iff N(s, U) = N(t, V) and
#τ (s, U) = #τ (t, V) , for every ≍i-class τ ,

where #τ (s, U) denotes the number of subforests s′ ∈ F (s, U) that belong to the class τ .
We define the U -height of s by

h(s, U) :=
{

0 if F (s; U) = ∅
1 + max { h(s′, U) | s′ ∈ F (s, U) } otherwise.

By induction on l, we will prove the following claim:

(∗) s ∼m+l+2
k t and h(s, U) ≤ l implies h(s, U) = h(t, V) and ⟨s, U⟩ ≍l ⟨t, V ⟩ .

As h(s, U) ≤ |Û | < k, it then follows that ⟨s, U⟩ ≍k ⟨t, V ⟩. In particular, N(s, U) =
N(t, V), as desired.

MFCS 2021

19:16 ω-Forest Algebras and Temporal Logics

It thus remains to prove (∗). First, consider the case where l = 0. If h(t, V) > 0, there is
some V -end v that is not close. Fix some vertex v′ ≺ v with v′ /∈ V . Since s ∼m+2

k t, we
can find vertices u′ ≺ u of s with u′ ≈m+1

k v′ and u ≈m
k v. By definition of V , it follows

that u′ /∈ U and u ∈ U . As U is finite, we can find some U -end w ⪰ u. But u′ ≺ u ⪯ w

implies that w is not close. Hence, h(s, U) > 0. A contradiction.
For the second part, suppose that ⟨s, U⟩ ̸≍0 ⟨t, V ⟩, that is, N(s, U) ̸= N(t, V). By
symmetry, we may assume that m := N(s, U) < N(t, v). Pick m+1 distinct close V -ends
v0, . . . , vm. Since m + 1 ≤ k and s ∼m+2

k t, there are elements u0, . . . , um ∈ dom(s) with
ui ≈m+1

k vi. There must be some index j such that uj is not a close U -end. As U is closed
under ≈m

k and uj ≈m
k vj ≈m

k u, for some u ∈ U , it follows that uj ∈ U . Furthermore,
uj ≈m+1

k vj and the fact that vj is a V -end implies that u′ /∈ U , for all u′ ≻ uj . Thus,
uj is a U -end. But h(s, U) = 0 implies that all U -ends of s are close. A contradiction.
For the inductive step, suppose that s ∼m+(l+1)+2

k t holds but we have h(s, U) ̸= h(t, V)
or ⟨s, U⟩ ̸≍l+1 ⟨t, V ⟩. We distinguish several cases.

(i) Suppose that h(s, U) > h(t, V). By definition of h, there is a subforest s′ ∈ F (s, U)
with h(s′, U) = h(s, U) − 1. Then there is some subforest t′ of t with s′ ∼m+l+2

k t′.
By inductive hypothesis it follows that

h(s, U) = h(s′, U) + 1 = h(t′, V) + 1 < h(t, V) + 1 ≤ h(s, U) .

A contradiction.
(ii) Suppose that h(s, U) < h(t, V). By definition of h, there is a subforest t′ ∈ F (t, V)

with h(t′, V) = h(t, V) − 1. Fix a subforest s′ of s with s′ ∼m+l+2
k t′. By inductive

hypothesis, it follows that

h(s, U) > h(s′, U) = h(t′, V) = h(t, V) − 1 ≥ h(s, U) .

A contradiction.
(iii) Suppose that N(s, U) ̸= N(t, v) and there is no ≍l-class τ with #τ (s, U) ̸= #τ (t, V).

Then we have |Û | − N(s, U) = |V̂ | − N(t, V). Since |Û | = |V̂ | it follows that
N(s, U) = N(t, V). A contradiction.

(iv) Finally, suppose that there is some ≍l-class τ with #τ (s, U) ̸= #τ (t, V). By
symmetry, we may assume that m := #τ (s, U) < #τ (t, V). We choose m+1 vertices
v0, . . . , vm of t such that the attached subforests have class τ . Since s ∼m+(l+1)+2

k t

and m + 1 ≤ k, there are vertices u0, . . . , um of s such that ui ∼m+l+2
k vi, for all

i ≤ m. Let si be the subforest of s attached to ui, and ti the subforest of t attached
to vi. By inductive hypothesis, it follows that si ≍l ti, for i ≤ m. Thus, s has at
least m + 1 different subforest in the class τ . A contradiction. ◀

▶ Proposition A.9. Let A be an algebra for cEFk. Then

s ≈(k+3)(|A0|+1)
k t implies π(s) = π(t) , for all regular trees s, t ∈ F0(A0 ∪ A1) .

Proof. Let m be the number of L-classes above b := π(s) (including that of b itself). We will
prove by induction on m that

s ≈f(m)
k t implies π(t) = b ,

where f(m) := (m + 1)(k + 3). Set

S := { x ∈ dom(s) | π(s|x) = b } ,

T := { y ∈ dom(t) | x ≈f(m−1) y for some x ∈ S } .

A. Blumensath and J. Lédl 19:17

As t is regular it is the unravelling of some finite graph G. For each y ∈ T , we will prove
that π(t|y) = b by induction on the number of strongly connected components of G that
are contained in T and that are reachable from y. Hence, fix y ∈ T , let C be the strongly
connected component of G containing y, and choose some x ∈ S with x ≈f(m)−1

k y. We
distinguish two cases.
(a) Let us begin our induction with the case where C is trivial, i.e., it consists of the single

vertex y without self-loop. Then

t|y = a(t0 + · · · + tn−1 + t′
0 + · · · + t′

q−1)

where a := t(y) and the subtrees ti lie outside of T while the t′
i contain vertices in T . Set

di := π(ti). By our two inductive hypotheses, we already know that π(t′
i) = b and that

b <L di. Hence,

π(t|y) = a(d0 + · · · + dn−1 + q × b) .

We have to show that this value is equal to b. Suppose that

s|x = a(s0 + · · · + sl−1 + s′
0 + · · · + s′

p−1) ,

where again the trees si lie outside of S, while the s′
i contain vertices of S. Setting

ci := π(si) it follows that

π(s|x) = a(c0 + · · · + cl−1 + p × b) .

Since x ∈ S, we already know that this value is equal to b. Hence, it remains to show
that

a(c0 + · · · + cl−1 + p × b) = a(d0 + · · · + dn−1 + q × b) .

We start by proving that

c0 + · · · + cl−1 = d0 + · · · + dn−1 .

By (G4) it is sufficient to prove that, for every c ∈ A0, the number of occurrences of the
value c in the sum on the left-hand side is either the same as that on the right-hand
side, or that we can add an arbitrary number of c on both sides without changing
the respective values. Hence, consider some element c ∈ A0 where these numbers are
different. Let U be the set of all vertices u ≻ x such that π(s|u) = c and let V be the
set of vertices v ≻ y with π(t|v) = c. As ≤L is antisymmetric, these two sets are convex.
Furthermore, by inductive hypothesis on m, they are also closed under ≈f(m−1)

k . Since
f(m) − 1 = f(m − 1) + k + 2, we can therefore apply Lemma A.8 and we obtain one of
the following cases.

(i) U and V both have at least k ends. Then we can write s0+· · ·+sl−1 as r(s′
0, . . . , s′

k−1)
with π(s′

i) = c. Hence, it follows by (G1)k that

c0 + · · · + cl−1 = π(r)(c, . . . , c) = π(r)(c, . . . , c) + π × c

= c0 + · · · + cl−1 + π × c .

For t it follows in the same way that

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c .

Consequently, we can add an arbitrary number of terms c to both sides of the above
equation and thereby make their numbers equal.

MFCS 2021

19:18 ω-Forest Algebras and Temporal Logics

(ii) Both U and V are infinite, but each has less than k ends. Thus, U contains an
infinite path and we can use Ramsey’s Theorem (or the fact that s is regular) to
write π(s0 + · · · + sl−1) as a′eω where ec = c = eω. By (G3) and (G1)k it follows
that

c0 + · · · + cl−1 = a′eω = a′(eω + · · · + eω) = a′(c + · · · + c)
= a′(c + · · · + c) + π × c

= c0 + · · · + cl−1 + π × c .

For t|y, we similarly obtain

d0 + · · · + dn−1 = d0 + · · · + dn−1 + π × c ,

and we can equalise the number of c as in Case (i).
(iii) The last remaining case is where both U and V are finite and they have the same

number of close ends. Then the sums c0 + · · · + cl−1 and d0 + · · · + dn−1 contain
the same number of terms with value c and there is nothing to prove.

We have thus shown that

c0 + · · · + cl−1 = d0 + · · · + dn−1 .

If p = q, we are done. Hence, we may assume that p ̸= q. To conclude the proof, we set

U := { u ∈ S | x ≺ u } and V := { v ∈ T | y ≺ v } .

If p > 0, then x ≈f(m)−1
k y and U ̸= ∅ implies V ̸= ∅. Hence, q > 0. In the same way,

q > 0 implies p > 0. Consequently, we have p, q > 0. We consider several cases.
(i) If b + b = b, then

a(d0 + · · · + dn−1 + q × b) = a(c0 + · · · + cl−1 + q × b)
= a(c0 + · · · + cl−1 + p × b) = b ,

as desired.
(ii) If U is not a chain, we obtain b = a′(b, b), for some a′, and Lemma A.7 implies that

we are in Case (i).
(iii) If U contains an infinite chain, we can use Ramsey’s Theorem (or the fact that s is

regular), to obtain a factorisation b = eω, which implies that b + b = b by (G3).
Hence, we are in Case (i) again.

(iv) If U is a finite chain, then so is V , by Lemma A.8. Hence, p = 1 = q and we are
done.

(b) It remains to consider the case where C is not trivial. Then we can factorise

t|y = r(t0, . . . , tn−1, t′
0, . . . , t′

q−1) ,

where r ∈ FA is the unravelling of C, the subtrees ti lie outside of T , while the subtrees t′
i

contain vertices in T . Setting di := π(ti), it follows by the two inductive hypotheses that
di >L b and π(t′

i) = b. Consequently,

π(t|y) = π(r)(d0, . . . , dn−1, b, . . . , b) .

A. Blumensath and J. Lédl 19:19

Let us simplify the term r. Introducing one variable xv, for every vertex v ∈ C, we can
write r as a system of equations

xv = av(xu0 + · · · + xul−1 + c0 + · · · + cq−1) , for v ∈ C ,

where u0, . . . , ul−1 are the successors of v that belong to C and c0, . . . , cq−1 are constants
from {d0, . . . , dn−1, b} that correspond to successors outside of C. Solving this system
of equations, we obtain a finite term r0 built up from elements of A0 ∪ A1 using as
operations the horizontal product, the vertical product, and the ω-power operation, such
that

π(t|y) = π(r0)(d0, . . . , dn−1, b) .

With the help of the equations (G5)–(G10), we can transform r0 in several steps (while
preserving its product) until it assumes the form[

a0 · · · aj−1
(
x + d0 + · · · + dn−1 + b

)]ω

or
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1

)]ω

where a0, . . . , aj−1 are the labels of the vertices in C.
We distinguish two cases. First suppose that there is no term with value b in the above
sum. This means that every subtree attached to C lies entirely outside of the set T . Then
x ≈f(m)−1

k y implies that we can factorise s|x as

s|x = r′(s0, . . . , sl−1)

where
{π(s0), . . . , π(sl−1)} = {d0, . . . , dn−1} ,
all labels of r′ are among a0, . . . , aj−1,
every vertex of r′ has, for every i < k, some descendant labelled ai.

As above we can transform s|x into[
a0 · · · aj−1

(
x + c0 + · · · + cl−1

)]ω

where ci := π(si). Since {c0, . . . , cl−1} = {d0, . . . , dn−1} it follows that

π(t|y) = (a0 · · · aj−1(x + d0 + · · · + dn−1))ω

= (a0 · · · aj−1(x + c0 + · · · + cl−1))ω = π(s|x) = b .

It thus remains to consider the case where some term has value b. Using (G7) and (G11)
and the fact that b <L di, it then follows that

π(t|y) =
[
a0 · · · aj−1

(
x + d0 + · · · + dn−1 + b

)]ω =
[
a0 · · · aj−1(x + b)

]ω
.

For every i < j, we fix some zi ∈ S with label ai such that x ≺ zi and some successor
of zi also belongs to S. Then

π(s|zi) = ai(ci
0 + · · · + ci

li−1 + b + · · · + b) ,

for some ci
0, . . . , ci

li−1 >L b. Since

b = π(s|zi) = ai(ci
0 + · · · + ci

li−1 + b + · · · + b) ≤L ci
0 + · · · + ci

li+1 + b + · · · + b ≤L b

MFCS 2021

19:20 ω-Forest Algebras and Temporal Logics

it follows by asymmetry of ≤L that

ci
0 + · · · + ci

li+1 + b + · · · + b=b and ai(b) = ai(ci
0 + · · · + ci

li+1 + b + · · · + b)=b .

Consequently, a0 · · · aj−1b = b, which implies that aπb = b where a := a0 · · · aj−1. We
claim that b + b = b. It then follows that

b = a(b) = a(k × x)(b) = (a(k × x))π(b) ,

which, by (G12)k, implies that

π(t|y) = [a(x + b)]ω = [a(x + a(k × x)π(b))]ω = k × a(k × x)π(b) = k × b = b ,

as desired.
Hence, it remains to prove our claim that b + b = b. By our assumption on y and C, there
is some vertex u ∈ C that has some successor v /∈ C with v ∈ T . Since s|x ≈f(m)−1

k t|y
and f(m) ≥ f(m − 1) + k + 1, there are vertices x ⪯ u0 ≺ · · · ≺ uk−1 each of which has
some successor vi ∈ S with vi ⪯̸ ui+1. Consequently, we can write

π(s|x) = a′a′′(b, . . . , b) and π(s|u0) = a′′(b, . . . , b) ,

where a′ ∈ A1 and a′′ ∈ Ak. Hence, it follows by (G1)k that

b + b = π(s|u0) + b = a′′(b, . . . , b) + b = a′′(b, . . . , b) = π(s|u0) = b . ◀

▶ Theorem A.10. A regular forest algebra A is an algebra for cEFk if, and only if, there
exists a number m < ω such that

s ∼m
k t implies π(s) = π(t) , for all regular forests s, t ∈ F(A0 ∪ A1) .

Proof. (⇐) In each of the equations (G1)k–(G12)k, the two terms on both sides are ∼m
k -

equivalent.
(⇒) By Proposition A.9, there is some number m such that

s ≈m
k t implies π(s) = π(t) , for regular trees s, t ∈ F(A0 ∪ A1) .

Let s, t ∈ F(A0 ∪ A1) be regular forests. We claim that

s ∼m+k+2
k t implies π(s) = π(t) .

Suppose that s = s0 + · · · + sl−1 and t = t0 + · · · + tn−1, for trees si and ti, and set ci := π(si)
and di := π(ti). Analogous to Part (a) of the proof of Proposition A.9, we can use Lemma A.8
to show that

π(s) = c0 + · · · + cl−1 = d0 + · · · + dn−1 = π(t) . ◀

We complete the proof of Theorem 4.2 as follows.

▶ Theorem A.11. A regular language L ⊆ F0Σ is cEFk-definable if, and only if, its syntactic
algebra S(L) is an algebra for cEFk.

Proof. (⇐) Suppose that S(L) is an algebra for cEFk. By Theorem A.10, every language
recognised by S(L) is invariant under ∼m

k , for some m (when considering regular forests
only). Consequently, the claim follows by Corollary A.4.

A. Blumensath and J. Lédl 19:21

(⇒) If L is cEFk-definable, it follows by Corollary A.4 that L is ∼m
k -invariant, for

some m. Thus ∼m
k is contained in the syntactic congruence of L, which means that the

syntactic morphism η : FΣ → S(L) maps ∼m
k -equivalent forests to the same value. Given

forests s, t ∈ F(S0 ∪ S1) with s ∼m
k t, we can choose forests s′, t′ ∈ FΣ with s′ ∼m

k t′ and
s(v) = η(s′(v)) and t(v) = η(t′(v)). Thus,

s ∼m
k t implies π(s) = η(s′) = η(t′) = π(t) .

By Theorem A.10, it follows that S(L) is an algebra for cEFk. ◀

MFCS 2021

	1 Introduction
	2 Forest algebras
	3 Bisimulation
	4 The Logic cEF
	A The proof of Theorem 4.2

