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Abstract
What sort of code is so difficult to analyze that every potential analyst can discern essentially no
information from the code, other than its input-output behavior? In their seminal work on program
obfuscation, Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang (CRYPTO 2001)
proposed the Black-Box Hypothesis, which roughly states that every property of Boolean functions
which has an efficient “analyst” and is “code independent” can also be computed by an analyst
that only has black-box access to the code. In their formulation of the Black-Box Hypothesis,
the “analysts” are arbitrary randomized polynomial-time algorithms, and the “codes” are general
(polynomial-size) circuits. If true, the Black-Box Hypothesis would immediately imply NP ̸⊂ BPP.

We consider generalized forms of the Black-Box Hypothesis, where the set of “codes” C and the set
of “analysts” A may correspond to other efficient models of computation, from more restricted models
such as AC0 to more general models such as nondeterministic circuits. We show how lower bounds
of the form C ̸⊂ A often imply a corresponding Black-Box Hypothesis for those respective codes
and analysts. We investigate the possibility of “complete” problems for the Black-Box Hypothesis:
problems in C such that they are not in A if and only if their corresponding Black-Box Hypothesis is
true. Along the way, we prove an equivalence: for nondeterministic circuit classes C, the “C-circuit
satisfiability problem” is not in A if and only if the Black-Box Hypothesis is true for analysts in A.
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1 Introduction

What kind of code “behaves” like a black box to any code analyst? In particular, what
programs are so difficult to analyze that every potential analyst can discern essentially no
information from the code, other than its input-output behavior? Such questions are of great
importance in cryptography and formal verification: what sort of code is difficult to verify
without considerable resources? What kind of code can be obfuscated? What properties of
functions can be automatically tested?

A priori, the answers to such questions depend on three factors:
1. The complexity of the code: what instructions are allowed in the code, the computational

complexity (e.g. time/space/size/depth complexity) of the algorithm implemented by the
code, and so on.

2. The complexity of the analyst: what sorts of operations the analyst can perform, and
how much resources it has (time/space/size/depth) to analyze the code.

3. The actual function being computed by the code. If the function itself is trivial or
extremely complicated, this could affect how “black box” it can possibly look.
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29:2 Black-Box Hypotheses and Lower Bounds

In this paper, we consider these three factors carefully, and study obfuscation from a
different direction compared to most existing literature on the subject. In particular, we
propose generalized forms of the “Black-Box Hypothesis” considered in Barak, Goldreich,
Impagliazzo, Rudich, Sahai, Vadhan, and Yang [5] and show how such questions are intimately
related to lower bound questions.

A Complexity-Theoretic View

In the pioneering work of Barak et al. [5] on obfuscation, the authors also proposed a
compelling conjecture about black-box obfuscation that they called a “Scaled-Down Rice’s
Theorem” [5, Conjecture 5.1]; the conjecture has recently been renamed the Black Box
Hypothesis (BBH) [20, 14]. Informally, the Black-Box Hypothesis posits that, when code
is represented as a small Boolean circuit, and a code analyst is represented as an efficient
(polynomial-time) randomized algorithm, the only possible analysis tasks are ones that could
have been performed using only the input-output behavior of the code (and not the code
itself).

While the original Black-Box Hypothesis is still a major open problem, other natural
variants of the hypothesis may be tractable for us to resolve, unconditionally. We consider
variants of the Black-Box Hypothesis in a more general complexity-theoretic setting, where
the complexity of the analyst, the complexity of the code being analyzed, and the function
to be obfuscated (the “box”) are carefully taken into account. For example, we consider the
case where the “analyst function” is taken from a “low” complexity class A (smaller than P,
polynomial time), and the box is also from a “low” complexity class C.

More formally, we study abstract forms of the Black-Box Hypothesis (sometimes abbrevi-
ated as BBH in the following). Let C be a set of circuits and let A be a complexity class
that permits oracles in its definition. We say that a property P : C → {0, 1} of C is semantic
if P (C) = P (C ′) for all pairs of circuits C and C ′ in C which compute the same function.

▶ Hypothesis 1 (C-Black-Box Hypothesis for A). [Informal Statement, cf. Hypothesis 14] Let
P : C → {0, 1} be any semantic property computable by some analyst A′ ∈ A. Then there
is a black-box analyst A ∈ A such that for every s and every circuit C ∈ C of size s on n

inputs, AC(1n0s−n) = P (C).

In prior work, the class of analysts A was always set to be BPP, and the class of circuits
C was generally set to be unrestricted circuits of fan-in two. In that full form, proving the
BBH would also prove NP ̸⊆ BPP, so that is presently out of reach! (The BBH could also
end up being false, of course.) By considering a range of natural possible choices for the weak
analysts A and the circuit sets C, we can try to delineate precisely how weak the analysts
from A need to be, in order for C-circuits to provably behave like black boxes, and to relate
the corresponding Black-Box Hypotheses to other core problems within complexity.

1.1 Our Results
We demonstrate several interesting relationships between circuit lower bounds and Black-Box
Hypotheses in the generalized setting. First, we prove that certain instances of the Black-Box
Hypothesis are true, from known circuit lower bounds. In fact we give a generic connection
from lower bounds to Black-Box Hypotheses. We also give some converse results, showing
that Black-Box Hypotheses imply certain circuit lower bounds. Finally, in some settings,
we can show that certain problems are “complete” for a Black-Box Hypothesis, in the sense
that proving the Black-Box Hypothesis is equivalent to proving a lower bound against the
aforementioned problem.
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Black-Box Hypotheses For Restricted Analysts, From Lower Bounds

In Section 4, we explore situations in which known lower bounds imply Black-Box Hypotheses.
We first consider Hypothesis 14 where the classes of analysts A are restricted, and the set
of potential “boxes” C consists of unrestricted circuits. We show that one can prove a
C-Black-Box Hypothesis for A, when the given set of boxes C is sufficiently powerful and
the set of analysts A is limited. We find this to be counterintuitive. It could have been
the case that, when the set of boxes C is powerful, an analyst with access to the code of
such a powerful box might be able to learn something interesting about it, and gain more
power than if it only had black-box access. However, it turns out that when the boxes are
sufficiently powerful, no analyst can learn any semantic property.

We find that, under very general conditions, circuit lower bounds against A (as an
algorithmic class) imply the Black-Box Hypothesis for A (as an analyst class).

▶ Theorem 2 (Informal Statement, cf. Theorem 16). Let A be a circuit class (of analysts), and
let f be a Boolean function computable with (general) circuits of size at most t(n). Suppose
f ̸∈ A, and suppose A is closed under projections from n variables onto O(t(n) log t(n))
variables. Then the (general) Black-Box Hypothesis for A is true.

The full formal version of the theorem appears in Section 4 as Theorem 16. Intuitively,
we apply a “input-switching” trick which reduces the task of computing f on an input y to
the task of deciding any non-trivial semantic property P on a circuit Dy.1 In particular,
given an analyst A computing P , we show how to map every Boolean string y (a potential
input for f) into a circuit Dy whose input-output behavior (and in particular, whether Dy
satisfies the property P ) depends on the value f(y). At a high level, Dy takes an input x,
evaluates f(y), and then (depending on f(y)) evaluates and outputs either C1(x) or C2(x),
where C1 and C2 are fixed circuits (independent of y), exactly one of which satisfies the
property P . In essence, we are “switching” the input y with a circuit Dy which can evaluate
f , and for which we can determine P . Then, we can run A on Dy without ever evaluating f

directly, and use its answer to determine f(y).
The conditions we impose on A are quite general, so Theorem 16 has several direct

corollaries. For example, recall AC0 is the class of unbounded fan-in circuits of constant
depth over And, Or, and Not.

▶ Corollary 3. The BBH for (polynomial-size) AC0 analysts is true. Moreover, the BBH for
2no(1)-size AC0 is true.

In particular, Theorem 16 implies that for every subexponential-size AC0 circuit family
{An} that is given the code of an arbitrary (general) circuit C as input, if {An} computes a
semantic property (i.e., its output depends only on the function computed by C, not the
code of C) then {An} must compute a trivial property (all-zeroes or all-ones). Similarly:

Let TC0
2 be the class of unbounded fan-in circuits of depth-two over Majority, And,

Or, and Not.

▶ Corollary 4. The BBH for (polynomial-size) TC0
2 is true. Moreover, the BBH for 2n1−ε-size

TC0
2 analysts is true for every ε > 0.

1 At this level of generality, the idea is similar in spirit to one of the proofs of Rice’s Theorem [19] which
shows that any non-trivial semantic property of Turing machines is undecidable, by way of a reduction
from the Halting Problem. However, Rice’s proof techniques do not translate to finite circuits, so we
prove Theorem 16 differently.

MFCS 2021
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A Generalization

Next, we turn to an even more general setting of Black-Box Hypotheses, where both the class
A of “analysts” and the set C of “boxes” can vary. Here we find that, roughly speaking, if A
and C jointly satisfy some natural closure properties, and there are functions computable by
boxes in C but not by analysts in A, then the C-Black-Box Hypothesis for A still holds.

▶ Theorem 5 (Informal Statement, cf. Theorem 18 and Theorem 20). Let A be a circuit
(analyst) class, let C be a set of circuits, and let f ̸∈ A be a Boolean function. Suppose
there is an analyst in A which, given input y, generates a circuit Dy ∈ C whose input-output
behavior depends on the value of f(y). Then the C-Black-Box Hypothesis for A is true.

We prove two formal versions of this theorem in Section 4.1, as Theorem 18 and The-
orem 20. These theorems are general enough that C does not have to be a class of circuits per
se: other non-uniform computational models, such as branching programs or span programs,
would also work. The intuition and proof techniques are similar to those used in Theorem 16,
but given the extra conditions on A, we can tailor the input-switching reduction from
Theorem 16 to the set C in order to produce stronger results. For example:

▶ Corollary 6. For all primes p, the AC0[p]-Black-Box Hypothesis for (poly-size) AC0 holds.

Theorem 20 implies that for every AC0 circuit family {An} that tries to analyze the code
of a given AC0[p] circuit C, if {An} computes a semantic property of C, then that property
must be trivial. More generally, we can conclude the following.

▶ Theorem 7. For all depths d ≥ 2 and all distinct primes p ̸= q, the AC0
d[p]-Black-Box

Hypothesis for 2so(1)-size AC0[q] analysts is true.

That is, even if in the above, {An} can have subexponential size, use Modq gates, and
fail on input circuits C with depth greater than a fixed constant d, {An} must still compute
a trivial property. Similarly:

▶ Theorem 8. For all depths d ≥ 2, the AC0
d-Black-Box Hypothesis for 2so(1)-size AC0

d−1
analysts is true.

Equivalences With Lower Bounds?

So far, our results show how lower bound statements of the form C ̸⊂ A can sometimes
be applied to prove the corresponding C-Black-Box Hypothesis for A analysts. A natural
next question is, could Black-Box Hypotheses (for various pairs of boxes and analysts) be
equivalent to proving lower bounds? As a first step, in Section 5 we prove conditional lower
bounds against some analyst classes A, assuming some C-Black-Box Hypothesis for A.

▶ Theorem 9 (Informal Statement, cf. Theorem 28). Suppose every analyst in A has
subexponential-size circuits, and let C be a “reasonable” set of circuits (left undefined here). If
the C-Black-Box Hypothesis for A is true, then the circuit satisfiability problem for C-circuits
is not in A.

Roughly speaking, we observe that if the C-circuit Evaluation problem (C-Eval) is not in
A, then the C-Black-Box Hypothesis for A is true, and if the C-circuit Satisfiability problem
(C-Sat) is in A, then the C-Black-Box Hypothesis for A is false. However, C-Sat is generally
harder than C-Eval.
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To better understand how lower bounds connect to Black-Box Hypotheses, we propose a
notion of BBH-completeness for computational problems. Very roughly, we want a C-BBH-
complete problem Π to have the property that Π ∈ C, and for a general analyst class A, if
Π /∈ A then the C-BBH for A is true. We show that for nondeterministic circuit classes C,
both C-Sat and C-Eval are C-BBH-complete.

▶ Theorem 10 (Informal Statement, cf. Theorem 31). Suppose every analyst in A has
subexponential-size circuits, and let C be a nondeterministic circuit class with “natural”
closure properties. Then C-Eval and C-Sat are both C-BBH-complete for A.

Theorem 31 shows that lower bounds for the satisfiability problem are equivalent in
some sense to proving that nondeterministic circuits behave like black boxes. Impagliazzo,
Kabanets, Kolokolova, McKenzie, and Romani [14] considered the question of whether one
can show the Black-Box Hypothesis is equivalent to NP ̸⊂ P/poly, with some partial results.
A consequence of Theorem 31 is that NP ̸⊂ P/poly is equivalent to the Black-Box Hypothesis
when polynomial-size circuits are the analysts and nondeterministic circuits are the boxes.
In this light, it would be very interesting if one could show the Black-Box Hypothesis is
actually equivalent to NP ̸⊂ P/poly: it would show that two rather different-looking forms of
the Black-Box Hypothesis are in fact equivalent.

Finally, we note that the aforementioned work of Impagliazzo et al. on BBH [14, 20]
yields another kind of equivalence between a different variant of black-box hypothesis and a
circuit lower bound.

▶ Theorem 11 (Follows from [14], informal, cf. Theorem 33). The following are equivalent:
1. The Circuit Satisfiability problem, Ckt-Sat, is not in P/poly.
2. Any symmetric property P that can be decided in P/poly with white-box access to the

input circuit can also be decided in P/poly with black-box access to the input circuit.

We view this interpretation of their result as further promising evidence towards more
general connections between black-box hypotheses and circuit lower bounds.

Organization

Section 2 covers significant prior work related to black-box hypotheses. Section 3 carefully
discusses how to generalize the Black-Box Hypothesis for various sets of “analysts” and
sets of “boxes”. Section 4 proves our main theorems, showing how circuit lower bounds
imply Black-Box Hypotheses in a very generic way. Section 5 considers how we might prove
equivalences between Black-Box Hypotheses and lower bounds. Section 6 concludes. The
appendices include missing proofs, as well as additional related work.

2 Background

In this paper we assume basic familiarity with computational complexity, especially cir-
cuit complexity (knowledge of the first 13 chapters of Arora and Barak [4] would suffice).
Throughout the paper, we will recall notation and definitions as needed. Sometimes (as is
common in complexity) we will blur the distinction between the analyst class A as a set
of circuit families (computing some decision problems) and the actual decision problems
computed by analysts in A.

We will study generic versions of the circuit evaluation and circuit satisfiability problems.
In the C-Eval problem, we are given a circuit C from a set C and an input x, and wish to
know if C(x) = 1. In the C-Sat problem, we are given a circuit from a set C and wish to
know if there is an x such that C(x) = 1. The Ckt-Sat problem is C-Sat where C is the
set of arbitrary Boolean circuits (without loss of generality, each gate has fan-in two).

MFCS 2021
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Historically, researchers interested in so-called “black-box hypotheses” were looking for
what they called a “scaled-down” Rice’s Theorem. In the following paragraphs, we provide a
brief overview of this research.

Rice’s Theorem

We briefly recall the statement and implications of Rice’s Theorem. Let M be the set of
Turing Machines. We say a property P : M → {0, 1} of Turing Machines is semantic if
P (M) depends only on the (possibly partial) function computed by M . That is, for any
TMs M1 and M2 with the same input-output behavior, P (M1) = P (M2). A property P is
non-trivial if there are M1, M2 ∈ M such that P (M1) ̸= P (M2). In his 1951 doctoral thesis,
Henry Rice proved the following sweeping result:

▶ Theorem 12 ([19]). Every non-trivial semantic property of Turing Machines is undecidable.

Rice’s powerful theorem states that any interesting property that we might want to test
of a given program is undecidable, assuming the property being tested depends only on the
function computed by the program. That is, any property that could in principle be tested
using only black-box access to the program, is undecidable given a description the program.
Rice’s theorem generalizes (and can be proved from) the undecidability of the TM-Sat
problem of determining whether a given TM accepts any string at all.

The Black Box Hypothesis

In their pioneering obfuscation work, Barak et al. [5] consider the question: can Rice’s
Theorem be scaled down in a way that would be useful to complexity theory? Specifically, let
us assume we are not interested in all Turing Machines, but rather in the set of efficient
algorithms; for example, those represented by Boolean circuits. One can still define properties
that are non-trivial and semantic when restricted to the set of Boolean circuits. In this
setting, all such properties P are decidable, because the language of a circuit is simply its
2n-bit truth table, which can be computed in finite time. However, one might want to know
something about the computational complexity of such properties. In this setting, the circuit
satisfiability problem Ckt-Sat is an analogue of TM-Sat. Although Ckt-Sat is decidable,
it is NP-hard, so one might hope to be able to replace undecidability in Rice’s Theorem with
NP-hardness.

In earlier work, Borchert and Stephan [8] note that using circuits instead of Turing
Machines and NP-hardness instead of undecidability is not enough to prove an analogue
of Rice’s Theorem. For every string x, the property {M ∈ M : M(x) = 1} is undecidable
by Rice’s Theorem, but the circuit analogue is decidable in polynomial time: it is simply
the circuit evaluation problem! Borchert and Stephan’s response to this issue is to look
at function properties depending on more complex measures, such as the number of Sat
assignments of a given circuit (in other words, the property is a symmetric Boolean function
in the truth table of the circuit). They show that any non-trivial “counting” property of
circuits is UP-hard; the UP-hardness were improved in [13].

Barak et al. [5] gave a different response to the above issue. They observe the property
{C : C(x) = 1} for circuits C is still “trivial” in some sense: it can be efficiently determined
given only black-box oracle access to the input circuit. This observation led Barak et al.
to formulate the following conjecture. For two circuits C and C ′ on n-bit inputs, we write
C ≡ C ′ when C and C ′ compute the same n-bit function.
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▶ Conjecture 13 (Black Box Hypothesis [5]). Suppose L ⊆ {0, 1}∗ satisfies the property that
for all C and C ′ such that C ≡ C ′, we have C ∈ L ⇐⇒ C ′ ∈ L. If L ∈ BPP, then there is
a probabilistic polynomial time algorithm S that decides L given only oracle access to C and
0n1|C|−n as input, i.e.,

C ∈ L =⇒ Pr
[
SC

(
0n1|C|−n

)
= 1

]
>

2
3

C ̸∈ L =⇒ Pr
[
SC

(
0n1|C|−n

)
= 1

]
<

1
3 .

That is, the BBH claims that every “white box” semantic property of circuits that is
decidable in randomized poly-time can also be decided in randomized poly-time with “black
box” access to the circuit. If the conjecture were true, then a strong form of P ̸= NP would
follow: P = NP implies that circuit satisfiability is solvable in polynomial-time when we have
“white-box” access to the input circuit, but the Sat problem requires Ω(2n) time to solve
with only black-box oracle access to the input circuit.

Impagliazzo et al. [14] proved interesting results towards understanding BBH. They show
a partial converse of the observation from the previous paragraph: if the BBH is false for
certain kinds of properties, then the circuit satisfiability problem has sub-exponential size
circuits. Since we know that BBH implies P ̸= NP, this suggests that it may be difficult to
resolve BBH regardless of its truth or falsity. Romani’s master thesis [20] gives an excellent
overview of the BBH and this work.

An additional section on “Other Related Work” appears in Appendix A.

3 Generalized Black-Box Hypotheses

We study the Black-Box Hypothesis (Conjecture 13) in a more general setting. Specifically,
instead of considering L ∈ BPP and a randomized uniform algorithm S from Conjecture 13,
we study the family of hypotheses that arise when L and S come from various (possibly
non-uniform) circuit classes, which may be weaker or stronger than probabilistic poly-time.

Let us set up some notation. For a circuit C, we let ⟨C⟩ denote the binary description of
C. Note that if C has size s, then ⟨C⟩ is a binary string of length O(s log s), which we call
the description length of C.

Let C be a set of circuits. A property of circuits in C is a function P : C → {0, 1}. A
property S is semantic iff for any two circuits C1, C2 ∈ C computing the same function (that
is, ∀x, C1(x) = C2(x)), P (C1) = P (C2). Recall a circuit family is an infinite sequence of
circuits, one for each possible input length; circuit families compute functions of the form
f : {0, 1}⋆ → {0, 1} in the natural way. We say that a circuit family {As} computes P if for
every circuit C ∈ C with description length s, As(⟨C⟩) = P (C).

We define a circuit class A to be a set of circuit families; our analyst classes A will have
this form. By convention, an oracle circuit C may have oracle gates of arbitrary fan-in, but
we will think of C as taking an oracle O with a fixed number of inputs. If C contains oracle
gates with a different number of inputs than the given oracle O, then we define such oracle
gates to output the constant 0 (regardless of O).

We formulate a generalization of the Black Box Hypothesis, which we call the C-Black
Box Hypothesis for A (C-BBH for A), in the following way.

▶ Hypothesis 14 (Generalized Black Box Hypothesis: C-BBH for A). Let P be a semantic
property of circuits in C. Let {A′

s} ∈ A be a circuit family that computes P . Then there
exists a circuit family {As} ∈ AC such that AC

s (1n0s−n) = 1 iff P (C) = 1.

MFCS 2021
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That is, the C-BBH for A hypothesizes that every semantic property of C-circuits that
can be decided by A-analysts with “white box” access to the C-circuit, can also be decided
by A-analysts with only black-box access to the circuit. When C is the set of all Boolean
circuits, we refer to the C-BBH for A simply as the “BBH for A”. Note that if we replace A
in the above with BPP, we recover Conjecture 13.

3.1 Encoding Circuits
Unfortunately, if we allow the class of analysts A to be an arbitrary circuit class, we
can encounter some strange (and counterintuitive) consequences. For instance, suppose
A is AC0, the circuit families over And, Or, and Not with constant-depth, polynomial
size, and unbounded fan-in. We can construct an oracle circuit family {As} such that
AC

s (1n0s−n) = Parity(n), the parity of the number of inputs of C (AC
s ignores C, and just

computes the parity of strings of the form 1⋆0⋆). Depending on how the description ⟨C⟩ is
represented, this behavior may not be computable by any white-box AC0 circuit family {A′

s},
since Parity is not in AC0 [1, 9]! We would like to avoid this sort of behavior, because as in
Conjecture 13, the oracle circuit family A is supposed to capture some notion of triviality.
In order for the “BBH for A” to be meaningful, it should be that the white-box circuit
family A′ is at least as powerful as the black-box family A. To this end, we shall require the
binary descriptions of circuits to contain all the information given freely to the oracle family.
Specifically, we assume that the description of a circuit C with n input wires is prefixed by
1n0, and that the first n wires in ⟨C⟩ are the input wires.

4 Circuit Lower Bounds Imply Black-Box Hypotheses

What can we prove about the BBH for general pairs of circuit sets and analysts C, A? First,
we can show there are interesting pairs for which the C-BBH for A is true in a strong way:
every semantic property is in fact trivial. The following theorem shows that, whenever lower
bounds hold against a circuit class A satisfying some simple conditions, the (general) BBH
for A is true. First, we recall a definition.

▶ Definition 15. A projection from n variables onto m variables is a function π : {0, 1}n →
{0, 1}m such that for every j, there exists i such that the jth coordinate of π(x) depends only
on the ith coordinate of x.

Observe that a projection is a kind of very weak reduction which can be computed not
only very efficiently but also very locally. By requiring closure under such a weak class of
reductions, we aim to keep A as general as possible.

▶ Theorem 16. Let A be a circuit class, f : {0, 1}⋆ → {0, 1} be a decision problem, and
s : N → N be a monotone function with the properties:
1. f is computable by a size-s(n) circuit family, but f is not computable by any family in A.
2. Either {Orn ◦ And2} ⊆ C ∈ A for some family C, or {Orn ◦ And2} ⊆ C ∈ A for some

family C. That is, either A contains a family that either computes the read-once n-clause
2-DNFs on 2n variables, or it contains a family that computes the n-clause 2-CNFs on
2n variables.

3. A is closed under composition with projections from n variables onto O(s(n) log s(n))
variables.

Then for every property P over the set of all circuits, if P is semantic and computable in
A, then for all n, P restricted to circuits on n-bit inputs is also trivial. In particular, the
(general) BBH for A is true.
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Proof. Let A and f satisfy the above properties, and let {Fn} be a size-s(n) circuit family
computing f . Let P be a semantic property computable in A.

First, we will prove that P is trivial. The idea is that, if P is not trivial, we can use
a circuit family for P to construct a circuit in A for computing f , a contradiction to the
assumed lower bound on f (assumption 1).

Let k ∈ N. P is semantic, so assume WLOG that for every k-input circuit K0 computing
the constant 0 function, P (K0) = 0. Assume for sake of contradiction that there is a k-input
Ck such that P (Ck) = 1. Let n ∈ N be our desired input length; we want to build a circuit
computing f on n-bit inputs. For an n-bit vector y, define the following circuit Dy with k

input wires x, with y hard-coded as n constant wires:

Dy(x) := Ck(x) ∧ Fn(y).

The circuit Dy computes some Boolean function on k input bits. For a fixed Ck, define
the function ρCk

that maps the n-bit input y to the description ⟨Dy⟩ of Dy as defined above.
Observe that for all x and y, Dy(x) = Ck(x) if f(y) = 1, and otherwise Dy(x) = 0. Because
P is semantic, P (Dy) = P (Ck) = 1 if f(y) = 1, and P (Dy) = 0 otherwise. In other words,
we have P (Dy) = f(y) for all y.

Note the size of Dy is t(k) + ||Ck|| + 1, where ||Ck|| denotes the size of Ck (which is
independent of n), so Dy has description length O(s(n) log s(n)). For a fixed Ck, ρCk

(y) =
⟨Dy⟩ depends only the n-bit vector y. In particular, within the description ⟨Dy⟩, the
descriptions ⟨Ck⟩ and ⟨Fn⟩ are both independent of y, so the only bits in ⟨Dy⟩ that vary
with y are those describing the hard-coded constant y itself. Hence each bit in ⟨Dy⟩ depends
on at most one bit of y. That is, ρCk

is a projection from n variables onto O(s(n) log s(n))
variables.

Since A is closed under such projections (assumption 3), and P is computable in A by
assumption, the circuit

Dy

ρCk

y

P

is also computable in A. However, P (Dy) = f(y), which is not computable in A, a
contradiction. It follows that for all Ck on k inputs, P (Ck) = 0, so P (on circuits containing
k inputs) is trivial.

We now turn to proving that there exists an oracle circuit family {As} in A such
that for any circuit C of size s on n inputs, AC

s (1n0s−n) = P (C). In fact we prove
the stronger claim that there exists a circuit family {As} in A (with no oracle gates)
such that for any circuit C of size s on n inputs, As(1n0s−n) = P (C). To this end, let
X = {n ∈ N : ∃C on n inputs with P (C) = 1}. First, suppose that A contains a family that
can compute {Orn ◦ And2}. For s ∈ N, let As be the circuit of the form∨

i∈X∩[s]

(xi ∧ ¬xi+1) .
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By assumptions 2 and 3 (closure under projections from n to 2n variables), such circuits are
in A. If instead A contains {Andn ◦ Or2}, we let As be the circuit of the form∧

i∈[s]\X

(¬xi ∨ xi+1) .

Now As(1n0s−n) = 1 iff n ∈ X (using no oracle gates). Since P is trivial, for all circuits C

on n inputs, As(1n0s−n) = 1 iff P (C) = 1, as desired. ◀

The above proof can be thought of as an “input-switching” trick. We start with the fact
that P is non-trivial on some k-bit input circuits. We use the description of a k-input circuit
witnessing non-triviality, along with the description of a circuit computing f on n-bit inputs,
to construct the description of a larger circuit Dy with n “free variables” y. By feeding n-bit
y into that description, and feeding that description into P , we obtain the description of an
A-circuit computing f .

Theorem 16 has many immediate corollaries. For example:

▶ Reminder of Corollary 3. The BBH for (polynomial-size) AC0 is true. Moreover, the
BBH for 2no(1)-size AC0 is true.

Proof. Take A to be AC0 and f to be the Parity function in Theorem 16, using the fact
that Parity does not have subexponential-size AC0 circuits [12]. ◀

▶ Reminder of Corollary 4. The BBH for (polynomial-size) TC0
2 is true. Moreover, the

BBH for 2n1−ε-size TC0
2 is true for every ε > 0.

Proof. Take A to be TC0
2 and f to be the InnerProduct function (mod 2) in Theorem 16,

using the fact that InnerProduct requires 2Ω(n)-size TC0
2 circuits [3]. ◀

4.1 Generalization
The proof of Theorem 16 critically relies on the fact that the circuit Dy can be arbitrarily
large and complex in comparison to its input. If we restrict C to contain only “simple”
circuits and allow A′

s to behave arbitrarily on circuits not in C, then we would need to be
more careful to ensure that Dy is still in C. By extending the input-switching trick from
Theorem 16, we can restrict the circuit set C in some interesting ways and still prove the
corresponding Black-Box Hypotheses.

▶ Definition 17. Let C be a set of circuits, and let f and g be Boolean functions. We say
that a function I : C × {0, 1}∗ → {0, 1}∗ is an input-switching function for C and f iff for
some bit b, for every circuit C ∈ C and every Boolean string y, I(C, y) is the description
⟨Dy⟩ of a circuit Dy with the same number of inputs as C such that Dy(x) = C(x) when
f(y) = b and Dy(x) = g(x) otherwise.

▶ Theorem 18. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision problem, and C
be a set of circuits with the properties:
1. A computes neither f nor ¬f .
2. A is closed under composition with an input-switching function I for C and f , in the

sense that for every function g computable by a circuit family in A and for every C ∈ C,
the function y 7→ g(I(C, y)) is also computable by a circuit family in A.

Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.
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The proof is in Appendix B.
The preconditions for Theorem 18 are somewhat too restrictive to be applied easily in

many cases, so we strengthen it further. To this end, we first define a relation ∼n on sets of
circuits.

▶ Definition 19. For sets C1 and C2 of circuits, say that C1 ∼n C2 iff there exist n-input
circuits C1 ∈ C1 and C2 ∈ C2 such that C1 ≡ C2 (that is, C1 and C2 compute precisely the
same Boolean function).

The relation ∼n enables us to more easily reason about semantic properties across several
sets of differently structured circuits.

▶ Theorem 20. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision problem, C =
⋃
i∈N

Ci

be a set of circuits, and I : C × {0, 1}∗ → {0, 1}∗ a function with the properties:
1. A computes neither f nor ¬f .
2. A is closed under composition with I.
3. For all i, the restriction of I to Ci × {0, 1}∗ is an input-switching function for Ci and f .
4. For every input size n ∈ N, the transitive closure of ∼n on {Ci} is the universal relation

on {Ci}.
Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.

Proof. Let P be a property over C. Applying Theorem 18 to A, f , and to each Ci, for all n

and all i, the restrictions of P to circuits in each Ci with n-bit inputs is trivial. Since P is
semantic, if i ∼n j, then the restriction of P to circuits in Ci ∪ Cj with n-bit inputs is also
trivial. Finally since the transitive closure of ∼n is universal, by induction we have that for
every n, the restriction of P to circuits in C with n-bit inputs is trivial. ◀

4.2 Examples
We now define some input-switching functions. First, let f be any function computable by a
circuit family {Fn}, and let DC,y be the circuit defined as follows, where x are the input
wires and y are hard-coded as n constant wires:

DC,y(x) := C(x) ∧ Fn(y).

If Fn has size s(n), then the map y 7→ ⟨DC,y⟩ (where ⟨DC,y⟩ is the description of DC,y) is
both an input-switching function and a projection from n variables onto the O(s(n) log s(n))
variables describing DC,y, so we recover Theorem 16.

Recall that AC0
d[p] denotes circuit families of depth d with unbounded fan-in And, Or,

and Modp gates.

▶ Reminder of Corollary 6. For all primes p, the AC0[p]-Black-Box Hypothesis for
(polynomial-size) AC0 is true. Moreover, the AC0[p]-Black-Box Hypothesis for 2so(1)-size AC0

is true.

Proof. Follows from Theorem 18. We make use of the fact that the Modp function is
computable in linear size AC0[p] but requires exponential size in AC0, and that in AC0 we
can mask a given AC0[p] circuit with a given Modp function.
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Let A be 2so(1) -size AC0, f = Modp, and C = AC0[p]. We now define a circuit DC,y with
the same number of inputs as C as

DC,y(x) := C(x) ∧ Modp(y).

Then for all x and y, DC,y(x) = C(x) if Modp(y) = 1, and DC,y(x) = 0 otherwise. Now the
map (C, y) 7→ ⟨DC,y⟩ is an input-switching function for C and Modp. Furthermore, we can
think of the map y 7→ ⟨DC,y⟩ as a projection from n variables y onto Θ(n log n) variables
describing DC,y, so A is closed under composition with I. Now from Theorem 18, every
semantic property P over C computable in A is trivial, so the C-BBH for A is true. ◀

If we invoke Theorem 20 instead of Theorem 18, we can get an even stronger result.

▶ Theorem 21. For all depths d ≥ 2 and distinct primes p ̸= q, the AC0
d[p]-BBH for 2so(1)-size

AC0[q] is true.

The proof is in Appendix C. The proof of Theorem 21 relies on the fact that small AC0[q]
circuits cannot evaluate some function that can be evaluated with small AC0[p] circuits
(namely a single Modp gate). We can prove a similar result using the depth-d Sipser function,
which is easy for AC0 circuits of depth d but hard for depth d − 1 [22, 12].

▶ Definition 22. The Sipser function fd,n : {0, 1}
√

n
log n × {0, 1}nd−2 × {0, 1}

√
1
2 dn log n →

{0, 1} is defined as follows:

If d is odd, then fd,n(x) =

√
n

log n∧
i1=1

n∨
i2=1

n∧
i3=1

· · ·

√
1
2 dn log n∧
id=1

xi1,...,id
.

If d is even, then fd,n(x) =

√
n

log n∧
i1=1

n∨
i2=1

n∧
i3=1

· · ·

√
1
2 dn log n∨
id=1

xi1,...,id
.

▶ Theorem 23. For all depths d ≥ 2, the AC0
d-BBH for 2so(1)-size AC0

d−1 is true.

The proof is in Appendix D.

5 Some Black-Box Hypotheses Imply Lower Bounds

In Section 4, we showed that many circuit lower bounds of the form C′ ̸⊆ A can be used
to prove a corresponding C-Black-Box Hypothesis for A (for a set of boxes C that suitably
captures the complexity class C′). Now we consider the converse question: can Black-Box
Hypotheses also be used to prove circuit lower bounds? For certain sets C of boxes and
classes A of analysts, it turns out that the C-Black-Box Hypothesis for A does in fact imply
lower bounds against A.

For a function s : N → N, let Circuit(s(n)) denote the set of (general) Boolean circuits
on n inputs of size at most s(n), for every n. (Note this is different from Size(s(n)), which
is the class of languages computed by circuit families of size at most s(n).) As a starting
point, the following simple proposition was essentially noted by Barak et al. [5].

▶ Proposition 24. If NP ⊂ P/poly, then for every polynomial p, the Circuit(p(n))-BBH
for P/poly is false.
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Proof. Take P to be the Ckt-Sat property (that is, P (C) = 0 iff the circuit C encodes the
all-zeroes function). By assumption, P ∈ P/poly, but even with randomness, Ω(2n) oracle
queries are needed to determine whether a size-p(n) circuit on n inputs is the all-zeroes
function. For every polynomial q, the polynomial q ◦ p is o(2n), so there is no size-q(s) circuit
family making Ω(2n) oracle queries on size-p(n) circuits. ◀

In fact, Proposition 24 can be strengthened by replacing Ckt-Sat with the property
P (C) = 1 iff C has a satisfying assignment that sets the first k inputs to 0 (for some
appropriately large k).

▶ Proposition 25. If NP ⊂ Size(2no(1)), then for every polynomial p, the Circuit(p(n))-
BBH for P/poly is false.

Propositions 24 and 25 are arguably not particularly useful, since very few researchers
believe the hypotheses of these propositions. However, they still do illustrate an interesting
observation, and we may be able to generalize them in a useful manner. Let C-Sat be the
satisfiability problem for circuits from the set C. One might hope to prove the following
generalization of Proposition 24, for every circuit set C and every analyst class A:

▶ Hypothesis 26 (The Satisfiability Black-Box Hypothesis). If C-Sat ∈ A, then the C-BBH
for A is false.

In this fully generic form, there are some simple counterexamples to Hypothesis 26. For
instance, if A contains all Boolean functions, then (for every set C) C-Sat ∈ A. However,
the C-BBH for A is true, because A can decide any semantic property with only black-box
access to the circuit being analyzed. Hence we require additional restrictions on C and A to
make the hypothesis interesting. In particular, we would like A to contain only functions of
subexponential circuit complexity, and for a sufficiently simple function f , we would like C
circuits to be able to compute f efficiently.

Recall that a Boolean function f : {0, 1}∗ → {0, 1} is a point function if there is an
a ∈ {0, 1}∗ such that for all x, f(x) = 1 ⇐⇒ x = a. The following notion of “reasonability”
for circuit sets will be useful in multiple contexts.

▶ Definition 27 (Reasonability). A set C of circuits is reasonable if there is a polynomial p

such that for all point functions f , there is a circuit family {Cn} ⊂ C of size at most p(n)
computing f .

We can show that if C is reasonable and A has subexponential-size circuits, then Hypothesis 26
is true. The following can be viewed as a kind of converse of Theorem 16.

▶ Theorem 28. If C is reasonable, A ⊆ Size(2no(1)), and C-Sat ∈ A, then the C-BBH for
A is false.

Proof. Assume C is reasonable, A has subexponential-size circuits, and C-Sat ∈ A. As in
Proposition 24, we take P to be the satisfiability property. By assumption, P ∈ A. Even
with randomness, Ω(2n) oracle queries are required to determine whether a circuit of size
p(n) on n inputs computes the constant 0 function. However, an A circuit can make at most
2no(1) queries to its oracle when given an input of size p(n). Per the reasonableness of C,
there are both satisfiable and unsatisfiable C-circuits of size p(n), so A, with only black-box
access to a C-circuit, cannot compute P . ◀

The preconditions for Theorem 28 are very general; most complexity classes of interest
only deal with functions of subexponential complexity and can compute point functions
efficiently. However, this weak condition is sufficient to remove the simple counterexamples.
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5.1 A Notion of BBH-Completeness
For very general circuit sets C and classes A of analysts, we have shown (roughly) in Section 4
that

C ̸⊂ A =⇒ C-BBH for A,

and in the previous paragraphs that for “reasonable” A and C,

C-BBH for A =⇒ C-Sat ̸∈ A.

For many pairs of classes C and A, we have

C-Eval ̸∈ A ⇐⇒ C ̸⊂ A.

So the results of Section 4 imply, at least for many natural pairs C, A, that C-Eval lower
bounds imply BBHs. However, C-Sat is generally a harder problem than C-Eval, so there
remains a gap between the lower bounds that provably imply a Black-Box Hypothesis, and
those lower bounds provably implied by a Black-Box Hypothesis.

A natural question is then, which of these implications can be strengthened? Is there a
single problem on C circuits, such that proving a lower bound for it is equivalent
to proving a C-Black-Box Hypothesis? In particular, is proving either C-Eval ̸∈ A or
C-Sat ̸∈ A equivalent to proving the C-BBH for A? Similar to other completeness notions in
complexity theory, we propose a concept of BBH-completeness to study equivalences between
circuit lower bounds and Black-Box Hypotheses.2

▶ Definition 29 (BBH-completeness). Let C be a set of circuits and A a complexity class. A
Boolean function f is complete for the C-BBH for A (or C-BBH-complete for A) iff

C-BBH for A ⇐⇒ f ̸∈ A.

When A is either implicitly understood or general, we say that f is C-BBH-complete.

Are there natural pairs (C, A) for which either C-Eval or C-Sat is C-BBH-complete
for A?

The Case of Nondeterministic Boxes. For the case of sets C of nondeterministic circuits,
the answer is yes. To state our theorem, we require one new concept. Recall that a
nondeterministic circuit C has a sequence of “normal” inputs x as well as a sequence of
“auxiliary” nondeterministic inputs y, and we say that C accepts x if there is a setting of y
such that C(x, y) = 1.

▶ Definition 30. For a given circuit C, a nondeterminization of C is a circuit C ′ in which
normal inputs to C have been converted into auxiliary nondeterministic inputs. A set C of
circuits is closed under nondeterminization if C ∈ C implies that every nondeterminization
of C is also in C.

2 It must be said that both authors are not entirely comfortable with the following definition of BBH-
completeness. Ideally, the following would be a consequence of f being BBH-complete, and the actual
definition would involve a notion of reducibility. However, in order to give a completeness concept that
fits all possible classes A and C at a high level of generality, it does not seem possible to use reductions:
a sound reducibility notion would inevitably have to depend on A (in particular, its allowed “sizes” and
its closure properties) directly.
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▶ Theorem 31. Let C be a reasonable set of circuits closed under nondeterminization. Assume
A has circuits of size 2no(1) and that A is closed under composition with an input-switching
function for C and C-Eval. Then C-Eval and C-Sat are C-BBH-complete for A.

Proof. We wish to prove that the following are equivalent:
1. C-BBH for A
2. C-Sat ̸∈ A
3. C-Eval ̸∈ A

(1) =⇒ (2) Follows from Theorem 28.
(2) =⇒ (3) We reduce C-Sat to C-Eval by observing that changing the inputs of a

nondeterministic circuit into auxiliary nondeterministic inputs preserves satisfiability.
Hence, given a nondeterministic circuit C, we can convert all of its input bits into
additional nondeterministic auxiliary inputs to obtain a circuit C ′, and then determine
whether C ′ is still satisfiable. However, C ′ has no remaining free inputs, so determining
satisfiability of C ′ is simply the problem of evaluating C ′ (with no inputs).

(3) =⇒ (1) Follows from Theorem 18. ◀

Interpreting Impagliazzo et al. as an Equivalence. Recently, Impagliazzo et al. [14] proved
that if the BBH is false for certain kinds of function properties, then the circuit satisfiability
problem has sub-exponential size circuits. In particular, they show that Ckt-Sat has
2no(1) -size circuits if a property P is highly sensitive on a function f that has sub-exponential
size circuits.

Impagliazzo et al. indicate that in some sense Ckt-Sat is BBH-complete, at least for
large analyst classes A. Specifically, if we consider only symmetric semantic properties, i.e.,
properties that depend only on the number of ones in the truth table of the input circuit, we
can define the following conjecture:

▶ Hypothesis 32 (Symmetric-BBH). Let P be a semantic and symmetric property of circuits.
Let {A′

s} be a polynomial size circuit family. Assume that for every circuit C of size s on n

inputs, A′
s(C) = 1 iff P (C) = 1. Then there exists a polynomial size oracle circuit family

{As} such that AC
s (1n0s−n) = 1 iff P (C) = 1.

Now [14] implies:

▶ Theorem 33 (Follows from [14]). The following are equivalent:
1. Ckt-Sat is not in P/poly.
2. The Symmetric-BBH is true.

Proof. The forward direction is Corollary 4.3 in [14]. For the converse direction, observe
that Ckt-Sat is a symmetric property that requires exponentially many black-box oracle
queries (and in particular, cannot be solved in P/poly with only black-box access to the
input circuit). Hence if the Symmetric-BBH is true, then Ckt-Sat also cannot be solved in
P/poly with white-box access to the input circuit, i.e., Ckt-Sat ̸∈ P/poly. ◀

6 Conclusion

In this paper, we introduced generalized Black-Box Hypotheses, which parameterize both the
type of “box” being analyzed, and the type of “analyst” examining such boxes. We showed
that generalized Black-Box Hypotheses can follow generically from circuit lower bounds, and
we showed how lower bounds for the circuit satisfiability problem are essentially equivalent
to Black-Box Hypotheses where the “boxes” correspond to nondeterministic circuits. We
conclude with some additional interesting directions to consider.
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What Other Lower Bounds Are Implied by Black-Box Hypotheses? In Section 5 we noted
a simple example of a lower bound implying a BBH: the C-BBH for A implies C-Sat ̸∈ A.
However, this lower bound is rather weak-looking: C-Sat is NP-complete for many very
simple C. Are there circuit-analysis problems which are likely not to be NP-complete, which
would still be implied by a Black-Box Hypothesis? We find this to be a very interesting
question, and we currently do not have good candidates for such a problem.

Randomized Lower Bounds and Their Black-Box Hypotheses. We have shown that
(deterministic) worst-case lower bounds can lead to results about analyzing circuits as boxes.
What results can be derived from average-case or randomized lower bounds? We have obtained
some preliminary results in this direction. For instance, if our analyst class A consists of
randomized algorithms rather than deterministic ones, we can still prove connections between
lower bounds against A and BBHs for A, along the lines of Section 4. There are likely other
connections like this to be found within the vast landscape of complexity theory.

Black-Box Hypotheses From More Lower Bounds? While we have shown that various
Black-Box Hypotheses do follow from certain lower bounds in a generic way, some lower
bounds don’t seem to imply a Black-Box Hypothesis. For example, a circuit-size hierarchy is
well-known: for nice functions s, there are functions computable with size-s(n) circuits that
do not have circuits of size less than s(n) − 5n (cf. [15]). This suggests the possibility that,
for analysts A implemented by circuits of size less than s(n) − 5n, and boxes C which are
circuits of size at least s(n), the C-Black-Box Hypothesis for A is true. However, our current
methods are unable to prove such a sharp result. Are there other intermediate lower bounds
(weaker than against e.g. C-Eval) that would still imply Black-Box Hypotheses?
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A Other Related Work

Obfuscation in Cryptography

In recent years, the theory of program obfuscation has exploded into a huge subject area within
cryptography, starting with an influential paper of Barak et al. [5] which crystallized several
key definitions and proved key impossibility results for obfuscation. Two major concepts
they proposed are virtual black-box obfuscation (VBB for short) and indistinguishability
obfuscation (iO for short), which we now describe briefly.

A VBB obfuscator O would take any efficient program/circuit C of size s, and output
the code of an “obfuscated” O(C) such that, for every probabilistic polynomial time (PPT)
adversary A, there is another PPT adversary A′, such that the probability A outputs 1 on
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the input O(C) is very close to the probability that A′ outputs 1 on (1n, 1s) when given
C as an oracle. That is, whatever computation A is doing on the code of O(C), A′ can
simulate that knowing only the size of C, its number of inputs, and with input-output access
to C. Barak et al. showed that there are tasks for which VBB obfuscation is impossible
assuming one-way functions exist. The notion of iO asks for a weaker guarantee: for all PPT
A, and all pairs of size-s circuits C1, C2 such that C1 ≡ C2, the probability A outputs 1 on
C1 is very close to the probability A outputs 1 on C2. In contrast to VBB, iO is possible
under plausible hardness conjectures (e.g., [11, 10, 6]), and it turns out to be very powerful,
capable of implementing deniable encryption, public-key encryption from one-way functions,
multiparty key exchange, and more (e.g., [21, 7]).

All of the above work on building obfuscation requires hardness assumptions that are
unproved (and are typically much stronger than P ̸= NP), and study how we might efficiently
transform arbitrary code into obfuscated code, relative to some class of adversarial analysts.

We briefly note the connection between VBB and the BBH. One can think of a VBB
obfuscator as an efficient mapping from general circuits to “obfuscated class of circuits”, a
restricted subclass of circuits, such that the BBH holds when the analyzable code C must
come from this restricted subclass. Namely, the VBB property says that, for any efficient
analyst that takes circuits from this class as input, there is an efficient black-box analyst
that can carry out essentially the same analyses. That is, when VBB is possible, there is a
“promise” class of circuits (the image of the obfuscator) for which a black-box hypothesis
is true. Accordingly, Barak et al. [5] showed that a “promise” version of the BBH is false,
assuming one-way functions exist.

Automated Formal Verification

Additionally, settings in which the Black-Box Hypothesis is false are of great interest in
automated formal verification. One central question is the following: what properties of a
program’s input-output behavior can be more efficiently tested by analyzing the program’s
code, than by treating it as a black box and simply running it on selected inputs? Many
properties of interest depend on the program’s behavior on all possible inputs, which may
be infeasible (or even impossible) to determine exhaustively. One may instead want to
analyze the code of the program in order to determine whether or not it satisfies the given
property. This may still be impossible, as many properties of interest are Turing-complete
when considered over the space of all possible programs. However, by restricting the class of
programs being tested, some such verification problems can become feasible, cf. [16, 17, 2].
In fact, in any setting where the class of programs being analyzed is restricted such that the
black box hypothesis is false, there must exist properties that can be tested by analyzing the
program but not by treating it as a black box.

B Proof of Theorem 18

▶ Reminder of Theorem 18. Let A be a circuit class, f : {0, 1}∗ → {0, 1} be a decision
problem, and C be a set of circuits with the properties:
1. A contains neither f nor ¬f .
2. A is closed under composition with an input-switching function I for C and f , in the

sense that for every function g computable by a circuit family in A and for every C ∈ C,
the function y 7→ g(I(C, y)) is also computable by a circuit family in A.

Then for every property P over C, if P is semantic and computable in A, then for all input
lengths n, P restricted to circuits on n-bit inputs is also trivial. Furthermore, if A also
contains {Orn ◦ And2} (or {Andn ◦ Or2}), then the C-BBH for A is true.
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Proof. Let A and f satisfy the above properties, and let I be the input-switching function
for C and f . Let P be a semantic property computable in A.

First, we will prove that P is trivial. The idea is that, if P is not trivial, we can use
a circuit family for P to construct a circuit in A for computing f , a contradiction to the
assumed lower bound on f .

Let k ∈ N. Assume WLOG that for every circuit G computing g on k inputs, P (G) = 0.
Assume for sake of contradiction that there is a k-input Ck such that P (Ck) = 1. For an
n-bit input y, consider the circuit Dy = I(Ck, y). Note that Dy computes some Boolean
function on k input bits. From the definition of I, Dy(x) = Ck(x) if f(y) = b, and
otherwise Dy(x) = G(x). Because P is semantic, P (Dy) = P (Ck) = 1 if f(y) = b, and
P (Dy) = P (G) = 0 otherwise. In other words, we have P (Dy) = b ⊗ f(y) for all y.

Since A is closed under composition with I(CK , −), and P is computable in A by
assumption, the circuit

Dy

I(Ck, −)

y

P

is also computable in A. However, P (Dy) = f(y) or ¬f(y), which are not computable in
A, a contradiction. It follows that for all Ck on k inputs, P (Ck) = 0, so P (on circuits
containing k inputs) is trivial.

As in Theorem 16, there exists a circuit family {As} in A (with no oracle gates) such
that for any circuit C of size s on n inputs, As(1n0s−n) = P (C). ◀

C Proof of Theorem 21

▶ Reminder of Theorem 21. For all depths d ≥ 2 and distinct primes p ̸= q, the AC0
d[p]-BBH

for 2so(1)-size AC0[q] is true.

Proof. Follows from Theorem 20. We make use of the fact that the Modp function is
computable in linear size AC0

d[p] but requires exponential size in AC0[q] [18, 23], and that in
AC0 we can mask a given AC0

d[p] circuit with a given Modp function, without increasing its
depth.

Let d ≥ 2, A be 2so(1)-size AC0[q], f = Modp, C = AC0
d[p], C1 = Or ◦ AC0

d−1[p],
C2 = And ◦ AC0

d−1[p], and C3 = Modp ◦ AC0
d−1[p]. (Note that C = C1 ∪ C2 ∪ C3.) We now

define a function I : C × {0, 1}∗ → {0, 1}∗, so that I(C, y) = ⟨Dy⟩, where Dy has the same
number of inputs as C. We condition on whether the input circuit C comes from C1, C2,
or C3.

Case 1. If C ∈ C1, then it has the form ∨m ◦ C ′, where C ′ is a depth-(d − 1) circuit with n

inputs and m outputs, and ∨m is an Or of fan-in m. For a k-bit vector y, we construct Dy
as follows:
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∨m+1

C ′ Modp

x y

Then for all x and y, Dy(x) = C(x) if Modp(y) = 0, and Dy(x) = 1 otherwise. Hence the
restriction of I to C1 × {0, 1}∗ is an input-switching function for C1 and f .

Case 2. If C ∈ C2, we construct Dy similarly to case (1). Assuming C = ∧m ◦ C ′ for the
same sort of C ′, we can construct Dy as follows:

∧m+1

C ′ Modp

x y

Then for all x and y, Dy(x) = C(x) if Modp(y) = 1, and Dy(x) = 0 otherwise. Hence the
restriction of I to C2 × {0, 1}∗ is an input-switching function for C2 and f .

Case 3. If C ∈ C3, then C is a Modp gate of fan-in m, composed with some depth-(d − 1)
circuit C ′ having n inputs and m outputs. We define a ⊗m×k gate to take m + k inputs
x1, . . . , xm, y1, . . . , yk, and output xi · yj for all i, j, and define a circuit D′

y(x) as follows:

Modp

⊗m×k

C ′ y

x

Note that for C of depth d, D′
y has depth d + 1. However, when treating y as a constant,

each C ′(x)i ∧yj simplifies to a single wire (either C ′(x)i if yj = 1, or the constant 0 if yj = 0).
Performing these simplifications and removing the layer of And gates, we get a circuit Dy of
depth d. (Note that each bit in ⟨Dy⟩ still only depends on at most one bit of y.) Now for
all x and y, Dy(x) = Modp (C ′(x) ⊗ y) = Modp (C ′(x)) × Modp(y) = C(x) × Modp(y).
That is, Dy(x) = C(x) if Modp(y) = 1, and Dy(x) = 0 otherwise. Hence the restriction of
I to C3 × {0, 1}∗ is an input-switching function for C3 and f .
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Next, we observe that in every case, each bit in ⟨Dy⟩ depends on only one bit of y, so
A is closed under composition with I (a projection). Finally, there are circuits C1, C2, C3,
which have an Or, And, and Modp output gate (respectively), yet C1 ≡ C2 ≡ C3 (e.g. they
can ignore their input and ouput the constant 0). Hence ∼k as defined in Theorem 20 is the
universal relation. Now from Theorem 20, every semantic property P over C computable in
A is trivial, so the C-BBH for A is true. ◀

D Proof of Theorem 23

▶ Reminder of Theorem 23. For all depths d ≥ 2, the AC0
d-BBH for 2so(1)-size AC0

d−1 is
true.

Proof. We proceed as in Theorem 21. Let d ≥ 2, f be the depth-d Sipser function, A be
2so(1) -size AC0

d−1, C = AC0
d, C1 = And◦AC0

d−1, and C2 = Or◦AC0
d−1. (Note that C = C1 ∪C2.)

We now define a function I : C × {0, 1}∗ → {0, 1}∗, so that I(C, y) = ⟨Dy⟩, where Dy has
the same number of inputs as C. We condition on whether the input circuit C comes from
C1 or C2.

Case 1. If C ∈ C1, then it has the form ∧m ◦ C ′, where C ′ is a depth-(d − 1) circuit with n

inputs and m outputs, and ∧m is an And of fan-in m. Let k ∈ N, and take n′ = (2k/d)1/(d−1),
so that fd,n′ has k inputs. For a k-bit vector y, we construct D′

y as follows:

∧m+1

C ′ F d,n′

x y

Here, F d,n′ denotes the obvious depth-d circuit computing the Sipser function fd,n′ . Now
by collapsing the output And gate of F d,n′ into the ∧m+1, we obtain a depth-d circuit Dy
on n inputs such that Dy(x) = C(x) if fd,n′(y) = 1, and Dy(x) = 0 otherwise. Hence the
restriction of I to C1 × {0, 1}∗ is an input-switching function for C1 and f .

Case 2. If C ∈ C2, then it has the form ∨m ◦ C ′. In this case, we construct the circuit D′
y

as follows:

∨m+1

C ′ F ′d,n′

x y

Here F ′d,n′ denotes the circuit obtained by replacing all And gates in F d,n′ with Or gates
and vice-versa, and negating all of the input wires. By collapsing the output Or gate of
F ′d,n′ into the ∨m+1, we obtain a depth-d circuit Dy on n inputs such that Dy(x) = C(x)
if fd,n′(y) = 1, and Dy(x) = 1 otherwise. Hence the restriction of I to C2 × {0, 1}∗ is an
input-switching function for C2 and f .
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As before, we observe that each bit in ⟨Dy⟩ depends on at most one bit of y, and that
there are circuits C1 and C2 which have an And and Or output gate (respectively) and
compute the constant 0 function. Applying Theorem 20, every semantic property P over C
computable in A is trivial, so the C-BBH for A is true. ◀
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